Remove path name from test case
[binutils-gdb.git] / bfd / coff-sh.c
1 /* BFD back-end for Renesas Super-H COFF binaries.
2 Copyright (C) 1993-2023 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4 Written by Steve Chamberlain, <sac@cygnus.com>.
5 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "coff/sh.h"
30 #include "coff/internal.h"
31
32 #undef bfd_pe_print_pdata
33
34 #ifdef COFF_WITH_PE
35 #include "coff/pe.h"
36
37 #ifndef COFF_IMAGE_WITH_PE
38 static bool sh_align_load_span
39 (bfd *, asection *, bfd_byte *,
40 bool (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
41 void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bool *);
42
43 #define _bfd_sh_align_load_span sh_align_load_span
44 #endif
45
46 #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
47
48 #else
49
50 #define bfd_pe_print_pdata NULL
51
52 #endif /* COFF_WITH_PE. */
53
54 #include "libcoff.h"
55
56 /* Internal functions. */
57
58 #ifdef COFF_WITH_PE
59 /* Can't build import tables with 2**4 alignment. */
60 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
61 #else
62 /* Default section alignment to 2**4. */
63 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
64 #endif
65
66 #ifdef COFF_IMAGE_WITH_PE
67 /* Align PE executables. */
68 #define COFF_PAGE_SIZE 0x1000
69 #endif
70
71 /* Generate long file names. */
72 #define COFF_LONG_FILENAMES
73
74 #ifdef COFF_WITH_PE
75 /* Return TRUE if this relocation should
76 appear in the output .reloc section. */
77
78 static bool
79 in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
80 reloc_howto_type * howto)
81 {
82 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
83 }
84 #endif
85
86 static bfd_reloc_status_type
87 sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
88 static bool
89 sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
90 bfd_byte *, struct internal_reloc *,
91 struct internal_syment *, asection **);
92 static bool
93 sh_align_loads (bfd *, asection *, struct internal_reloc *,
94 bfd_byte *, bool *);
95
96 /* The supported relocations. There are a lot of relocations defined
97 in coff/internal.h which we do not expect to ever see. */
98 static reloc_howto_type sh_coff_howtos[] =
99 {
100 EMPTY_HOWTO (0),
101 EMPTY_HOWTO (1),
102 #ifdef COFF_WITH_PE
103 /* Windows CE */
104 HOWTO (R_SH_IMM32CE, /* type */
105 0, /* rightshift */
106 4, /* size */
107 32, /* bitsize */
108 false, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_bitfield, /* complain_on_overflow */
111 sh_reloc, /* special_function */
112 "r_imm32ce", /* name */
113 true, /* partial_inplace */
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
116 false), /* pcrel_offset */
117 #else
118 EMPTY_HOWTO (2),
119 #endif
120 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
121 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
122 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
123 EMPTY_HOWTO (6), /* R_SH_IMM24 */
124 EMPTY_HOWTO (7), /* R_SH_LOW16 */
125 EMPTY_HOWTO (8),
126 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
127
128 HOWTO (R_SH_PCDISP8BY2, /* type */
129 1, /* rightshift */
130 2, /* size */
131 8, /* bitsize */
132 true, /* pc_relative */
133 0, /* bitpos */
134 complain_overflow_signed, /* complain_on_overflow */
135 sh_reloc, /* special_function */
136 "r_pcdisp8by2", /* name */
137 true, /* partial_inplace */
138 0xff, /* src_mask */
139 0xff, /* dst_mask */
140 true), /* pcrel_offset */
141
142 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
143
144 HOWTO (R_SH_PCDISP, /* type */
145 1, /* rightshift */
146 2, /* size */
147 12, /* bitsize */
148 true, /* pc_relative */
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 sh_reloc, /* special_function */
152 "r_pcdisp12by2", /* name */
153 true, /* partial_inplace */
154 0xfff, /* src_mask */
155 0xfff, /* dst_mask */
156 true), /* pcrel_offset */
157
158 EMPTY_HOWTO (13),
159
160 HOWTO (R_SH_IMM32, /* type */
161 0, /* rightshift */
162 4, /* size */
163 32, /* bitsize */
164 false, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield, /* complain_on_overflow */
167 sh_reloc, /* special_function */
168 "r_imm32", /* name */
169 true, /* partial_inplace */
170 0xffffffff, /* src_mask */
171 0xffffffff, /* dst_mask */
172 false), /* pcrel_offset */
173
174 EMPTY_HOWTO (15),
175 #ifdef COFF_WITH_PE
176 HOWTO (R_SH_IMAGEBASE, /* type */
177 0, /* rightshift */
178 4, /* size */
179 32, /* bitsize */
180 false, /* pc_relative */
181 0, /* bitpos */
182 complain_overflow_bitfield, /* complain_on_overflow */
183 sh_reloc, /* special_function */
184 "rva32", /* name */
185 true, /* partial_inplace */
186 0xffffffff, /* src_mask */
187 0xffffffff, /* dst_mask */
188 false), /* pcrel_offset */
189 #else
190 EMPTY_HOWTO (16), /* R_SH_IMM8 */
191 #endif
192 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
193 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
194 EMPTY_HOWTO (19), /* R_SH_IMM4 */
195 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
196 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
197
198 HOWTO (R_SH_PCRELIMM8BY2, /* type */
199 1, /* rightshift */
200 2, /* size */
201 8, /* bitsize */
202 true, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_unsigned, /* complain_on_overflow */
205 sh_reloc, /* special_function */
206 "r_pcrelimm8by2", /* name */
207 true, /* partial_inplace */
208 0xff, /* src_mask */
209 0xff, /* dst_mask */
210 true), /* pcrel_offset */
211
212 HOWTO (R_SH_PCRELIMM8BY4, /* type */
213 2, /* rightshift */
214 2, /* size */
215 8, /* bitsize */
216 true, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_unsigned, /* complain_on_overflow */
219 sh_reloc, /* special_function */
220 "r_pcrelimm8by4", /* name */
221 true, /* partial_inplace */
222 0xff, /* src_mask */
223 0xff, /* dst_mask */
224 true), /* pcrel_offset */
225
226 HOWTO (R_SH_IMM16, /* type */
227 0, /* rightshift */
228 2, /* size */
229 16, /* bitsize */
230 false, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_bitfield, /* complain_on_overflow */
233 sh_reloc, /* special_function */
234 "r_imm16", /* name */
235 true, /* partial_inplace */
236 0xffff, /* src_mask */
237 0xffff, /* dst_mask */
238 false), /* pcrel_offset */
239
240 HOWTO (R_SH_SWITCH16, /* type */
241 0, /* rightshift */
242 2, /* size */
243 16, /* bitsize */
244 false, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_bitfield, /* complain_on_overflow */
247 sh_reloc, /* special_function */
248 "r_switch16", /* name */
249 true, /* partial_inplace */
250 0xffff, /* src_mask */
251 0xffff, /* dst_mask */
252 false), /* pcrel_offset */
253
254 HOWTO (R_SH_SWITCH32, /* type */
255 0, /* rightshift */
256 4, /* size */
257 32, /* bitsize */
258 false, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_bitfield, /* complain_on_overflow */
261 sh_reloc, /* special_function */
262 "r_switch32", /* name */
263 true, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 false), /* pcrel_offset */
267
268 HOWTO (R_SH_USES, /* type */
269 0, /* rightshift */
270 2, /* size */
271 16, /* bitsize */
272 false, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 sh_reloc, /* special_function */
276 "r_uses", /* name */
277 true, /* partial_inplace */
278 0xffff, /* src_mask */
279 0xffff, /* dst_mask */
280 false), /* pcrel_offset */
281
282 HOWTO (R_SH_COUNT, /* type */
283 0, /* rightshift */
284 4, /* size */
285 32, /* bitsize */
286 false, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_bitfield, /* complain_on_overflow */
289 sh_reloc, /* special_function */
290 "r_count", /* name */
291 true, /* partial_inplace */
292 0xffffffff, /* src_mask */
293 0xffffffff, /* dst_mask */
294 false), /* pcrel_offset */
295
296 HOWTO (R_SH_ALIGN, /* type */
297 0, /* rightshift */
298 4, /* size */
299 32, /* bitsize */
300 false, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_bitfield, /* complain_on_overflow */
303 sh_reloc, /* special_function */
304 "r_align", /* name */
305 true, /* partial_inplace */
306 0xffffffff, /* src_mask */
307 0xffffffff, /* dst_mask */
308 false), /* pcrel_offset */
309
310 HOWTO (R_SH_CODE, /* type */
311 0, /* rightshift */
312 4, /* size */
313 32, /* bitsize */
314 false, /* pc_relative */
315 0, /* bitpos */
316 complain_overflow_bitfield, /* complain_on_overflow */
317 sh_reloc, /* special_function */
318 "r_code", /* name */
319 true, /* partial_inplace */
320 0xffffffff, /* src_mask */
321 0xffffffff, /* dst_mask */
322 false), /* pcrel_offset */
323
324 HOWTO (R_SH_DATA, /* type */
325 0, /* rightshift */
326 4, /* size */
327 32, /* bitsize */
328 false, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield, /* complain_on_overflow */
331 sh_reloc, /* special_function */
332 "r_data", /* name */
333 true, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 false), /* pcrel_offset */
337
338 HOWTO (R_SH_LABEL, /* type */
339 0, /* rightshift */
340 4, /* size */
341 32, /* bitsize */
342 false, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 sh_reloc, /* special_function */
346 "r_label", /* name */
347 true, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 false), /* pcrel_offset */
351
352 HOWTO (R_SH_SWITCH8, /* type */
353 0, /* rightshift */
354 1, /* size */
355 8, /* bitsize */
356 false, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield, /* complain_on_overflow */
359 sh_reloc, /* special_function */
360 "r_switch8", /* name */
361 true, /* partial_inplace */
362 0xff, /* src_mask */
363 0xff, /* dst_mask */
364 false) /* pcrel_offset */
365 };
366
367 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
368
369 /* Check for a bad magic number. */
370 #define BADMAG(x) SHBADMAG(x)
371
372 /* Customize coffcode.h (this is not currently used). */
373 #define SH 1
374
375 /* FIXME: This should not be set here. */
376 #define __A_MAGIC_SET__
377
378 #ifndef COFF_WITH_PE
379 /* Swap the r_offset field in and out. */
380 #define SWAP_IN_RELOC_OFFSET H_GET_32
381 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
382
383 /* Swap out extra information in the reloc structure. */
384 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
385 do \
386 { \
387 dst->r_stuff[0] = 'S'; \
388 dst->r_stuff[1] = 'C'; \
389 } \
390 while (0)
391 #endif
392
393 /* Get the value of a symbol, when performing a relocation. */
394
395 static long
396 get_symbol_value (asymbol *symbol)
397 {
398 bfd_vma relocation;
399
400 if (bfd_is_com_section (symbol->section))
401 relocation = 0;
402 else
403 relocation = (symbol->value +
404 symbol->section->output_section->vma +
405 symbol->section->output_offset);
406
407 return relocation;
408 }
409
410 #ifdef COFF_WITH_PE
411 /* Convert an rtype to howto for the COFF backend linker.
412 Copied from coff-i386. */
413 #define coff_rtype_to_howto coff_sh_rtype_to_howto
414
415
416 static reloc_howto_type *
417 coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
418 asection * sec,
419 struct internal_reloc * rel,
420 struct coff_link_hash_entry * h,
421 struct internal_syment * sym,
422 bfd_vma * addendp)
423 {
424 reloc_howto_type * howto;
425
426 howto = sh_coff_howtos + rel->r_type;
427
428 *addendp = 0;
429
430 if (howto->pc_relative)
431 *addendp += sec->vma;
432
433 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
434 {
435 /* This is a common symbol. The section contents include the
436 size (sym->n_value) as an addend. The relocate_section
437 function will be adding in the final value of the symbol. We
438 need to subtract out the current size in order to get the
439 correct result. */
440 BFD_ASSERT (h != NULL);
441 }
442
443 if (howto->pc_relative)
444 {
445 *addendp -= 4;
446
447 /* If the symbol is defined, then the generic code is going to
448 add back the symbol value in order to cancel out an
449 adjustment it made to the addend. However, we set the addend
450 to 0 at the start of this function. We need to adjust here,
451 to avoid the adjustment the generic code will make. FIXME:
452 This is getting a bit hackish. */
453 if (sym != NULL && sym->n_scnum != 0)
454 *addendp -= sym->n_value;
455 }
456
457 if (rel->r_type == R_SH_IMAGEBASE)
458 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
459
460 return howto;
461 }
462
463 #endif /* COFF_WITH_PE */
464
465 /* This structure is used to map BFD reloc codes to SH PE relocs. */
466 struct shcoff_reloc_map
467 {
468 bfd_reloc_code_real_type bfd_reloc_val;
469 unsigned char shcoff_reloc_val;
470 };
471
472 #ifdef COFF_WITH_PE
473 /* An array mapping BFD reloc codes to SH PE relocs. */
474 static const struct shcoff_reloc_map sh_reloc_map[] =
475 {
476 { BFD_RELOC_32, R_SH_IMM32CE },
477 { BFD_RELOC_RVA, R_SH_IMAGEBASE },
478 { BFD_RELOC_CTOR, R_SH_IMM32CE },
479 };
480 #else
481 /* An array mapping BFD reloc codes to SH PE relocs. */
482 static const struct shcoff_reloc_map sh_reloc_map[] =
483 {
484 { BFD_RELOC_32, R_SH_IMM32 },
485 { BFD_RELOC_CTOR, R_SH_IMM32 },
486 };
487 #endif
488
489 /* Given a BFD reloc code, return the howto structure for the
490 corresponding SH PE reloc. */
491 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
492 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
493
494 static reloc_howto_type *
495 sh_coff_reloc_type_lookup (bfd *abfd,
496 bfd_reloc_code_real_type code)
497 {
498 unsigned int i;
499
500 for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501 if (sh_reloc_map[i].bfd_reloc_val == code)
502 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
503
504 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
505 abfd, (unsigned int) code);
506 return NULL;
507 }
508
509 static reloc_howto_type *
510 sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
511 const char *r_name)
512 {
513 unsigned int i;
514
515 for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
516 if (sh_coff_howtos[i].name != NULL
517 && strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
518 return &sh_coff_howtos[i];
519
520 return NULL;
521 }
522
523 /* This macro is used in coffcode.h to get the howto corresponding to
524 an internal reloc. */
525
526 #define RTYPE2HOWTO(relent, internal) \
527 ((relent)->howto = \
528 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
529 ? &sh_coff_howtos[(internal)->r_type] \
530 : (reloc_howto_type *) NULL))
531
532 /* This is the same as the macro in coffcode.h, except that it copies
533 r_offset into reloc_entry->addend for some relocs. */
534 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
535 { \
536 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
537 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
538 coffsym = (obj_symbols (abfd) \
539 + (cache_ptr->sym_ptr_ptr - symbols)); \
540 else if (ptr) \
541 coffsym = coff_symbol_from (ptr); \
542 if (coffsym != (coff_symbol_type *) NULL \
543 && coffsym->native->u.syment.n_scnum == 0) \
544 cache_ptr->addend = 0; \
545 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
546 && ptr->section != (asection *) NULL) \
547 cache_ptr->addend = - (ptr->section->vma \
548 + COFF_PE_ADDEND_BIAS (ptr)); \
549 else \
550 cache_ptr->addend = 0; \
551 if ((reloc).r_type == R_SH_SWITCH8 \
552 || (reloc).r_type == R_SH_SWITCH16 \
553 || (reloc).r_type == R_SH_SWITCH32 \
554 || (reloc).r_type == R_SH_USES \
555 || (reloc).r_type == R_SH_COUNT \
556 || (reloc).r_type == R_SH_ALIGN) \
557 cache_ptr->addend = (reloc).r_offset; \
558 }
559
560 /* This is the howto function for the SH relocations. */
561
562 static bfd_reloc_status_type
563 sh_reloc (bfd * abfd,
564 arelent * reloc_entry,
565 asymbol * symbol_in,
566 void * data,
567 asection * input_section,
568 bfd * output_bfd,
569 char ** error_message ATTRIBUTE_UNUSED)
570 {
571 bfd_vma insn;
572 bfd_vma sym_value;
573 unsigned short r_type;
574 bfd_vma addr = reloc_entry->address;
575 bfd_byte *hit_data = addr + (bfd_byte *) data;
576
577 r_type = reloc_entry->howto->type;
578
579 if (output_bfd != NULL)
580 {
581 /* Partial linking--do nothing. */
582 reloc_entry->address += input_section->output_offset;
583 return bfd_reloc_ok;
584 }
585
586 /* Almost all relocs have to do with relaxing. If any work must be
587 done for them, it has been done in sh_relax_section. */
588 if (r_type != R_SH_IMM32
589 #ifdef COFF_WITH_PE
590 && r_type != R_SH_IMM32CE
591 && r_type != R_SH_IMAGEBASE
592 #endif
593 && (r_type != R_SH_PCDISP
594 || (symbol_in->flags & BSF_LOCAL) != 0))
595 return bfd_reloc_ok;
596
597 if (symbol_in != NULL
598 && bfd_is_und_section (symbol_in->section))
599 return bfd_reloc_undefined;
600
601 if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section,
602 addr))
603 return bfd_reloc_outofrange;
604
605 sym_value = get_symbol_value (symbol_in);
606
607 switch (r_type)
608 {
609 case R_SH_IMM32:
610 #ifdef COFF_WITH_PE
611 case R_SH_IMM32CE:
612 #endif
613 insn = bfd_get_32 (abfd, hit_data);
614 insn += sym_value + reloc_entry->addend;
615 bfd_put_32 (abfd, insn, hit_data);
616 break;
617 #ifdef COFF_WITH_PE
618 case R_SH_IMAGEBASE:
619 insn = bfd_get_32 (abfd, hit_data);
620 insn += sym_value + reloc_entry->addend;
621 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
622 bfd_put_32 (abfd, insn, hit_data);
623 break;
624 #endif
625 case R_SH_PCDISP:
626 insn = bfd_get_16 (abfd, hit_data);
627 sym_value += reloc_entry->addend;
628 sym_value -= (input_section->output_section->vma
629 + input_section->output_offset
630 + addr
631 + 4);
632 sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1;
633 insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff);
634 bfd_put_16 (abfd, insn, hit_data);
635 if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0)
636 return bfd_reloc_overflow;
637 break;
638 default:
639 abort ();
640 break;
641 }
642
643 return bfd_reloc_ok;
644 }
645
646 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
647
648 /* We can do relaxing. */
649 #define coff_bfd_relax_section sh_relax_section
650
651 /* We use the special COFF backend linker. */
652 #define coff_relocate_section sh_relocate_section
653
654 /* When relaxing, we need to use special code to get the relocated
655 section contents. */
656 #define coff_bfd_get_relocated_section_contents \
657 sh_coff_get_relocated_section_contents
658
659 #include "coffcode.h"
660 \f
661 static bool
662 sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
663
664 /* This function handles relaxing on the SH.
665
666 Function calls on the SH look like this:
667
668 movl L1,r0
669 ...
670 jsr @r0
671 ...
672 L1:
673 .long function
674
675 The compiler and assembler will cooperate to create R_SH_USES
676 relocs on the jsr instructions. The r_offset field of the
677 R_SH_USES reloc is the PC relative offset to the instruction which
678 loads the register (the r_offset field is computed as though it
679 were a jump instruction, so the offset value is actually from four
680 bytes past the instruction). The linker can use this reloc to
681 determine just which function is being called, and thus decide
682 whether it is possible to replace the jsr with a bsr.
683
684 If multiple function calls are all based on a single register load
685 (i.e., the same function is called multiple times), the compiler
686 guarantees that each function call will have an R_SH_USES reloc.
687 Therefore, if the linker is able to convert each R_SH_USES reloc
688 which refers to that address, it can safely eliminate the register
689 load.
690
691 When the assembler creates an R_SH_USES reloc, it examines it to
692 determine which address is being loaded (L1 in the above example).
693 It then counts the number of references to that address, and
694 creates an R_SH_COUNT reloc at that address. The r_offset field of
695 the R_SH_COUNT reloc will be the number of references. If the
696 linker is able to eliminate a register load, it can use the
697 R_SH_COUNT reloc to see whether it can also eliminate the function
698 address.
699
700 SH relaxing also handles another, unrelated, matter. On the SH, if
701 a load or store instruction is not aligned on a four byte boundary,
702 the memory cycle interferes with the 32 bit instruction fetch,
703 causing a one cycle bubble in the pipeline. Therefore, we try to
704 align load and store instructions on four byte boundaries if we
705 can, by swapping them with one of the adjacent instructions. */
706
707 static bool
708 sh_relax_section (bfd *abfd,
709 asection *sec,
710 struct bfd_link_info *link_info,
711 bool *again)
712 {
713 struct internal_reloc *internal_relocs;
714 bool have_code;
715 struct internal_reloc *irel, *irelend;
716 bfd_byte *contents = NULL;
717
718 *again = false;
719
720 if (bfd_link_relocatable (link_info)
721 || (sec->flags & SEC_HAS_CONTENTS) == 0
722 || (sec->flags & SEC_RELOC) == 0
723 || sec->reloc_count == 0)
724 return true;
725
726 if (coff_section_data (abfd, sec) == NULL)
727 {
728 size_t amt = sizeof (struct coff_section_tdata);
729 sec->used_by_bfd = bfd_zalloc (abfd, amt);
730 if (sec->used_by_bfd == NULL)
731 return false;
732 }
733
734 internal_relocs = (_bfd_coff_read_internal_relocs
735 (abfd, sec, link_info->keep_memory,
736 (bfd_byte *) NULL, false,
737 (struct internal_reloc *) NULL));
738 if (internal_relocs == NULL)
739 goto error_return;
740
741 have_code = false;
742
743 irelend = internal_relocs + sec->reloc_count;
744 for (irel = internal_relocs; irel < irelend; irel++)
745 {
746 bfd_vma laddr, paddr, symval;
747 unsigned short insn;
748 struct internal_reloc *irelfn, *irelscan, *irelcount;
749 struct internal_syment sym;
750 bfd_signed_vma foff;
751
752 if (irel->r_type == R_SH_CODE)
753 have_code = true;
754
755 if (irel->r_type != R_SH_USES)
756 continue;
757
758 /* Get the section contents. */
759 if (contents == NULL)
760 {
761 if (coff_section_data (abfd, sec)->contents != NULL)
762 contents = coff_section_data (abfd, sec)->contents;
763 else
764 {
765 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
766 goto error_return;
767 }
768 }
769
770 /* The r_offset field of the R_SH_USES reloc will point us to
771 the register load. The 4 is because the r_offset field is
772 computed as though it were a jump offset, which are based
773 from 4 bytes after the jump instruction. */
774 laddr = irel->r_vaddr - sec->vma + 4;
775 /* Careful to sign extend the 32-bit offset. */
776 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
777 if (laddr >= sec->size)
778 {
779 /* xgettext: c-format */
780 _bfd_error_handler
781 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"),
782 abfd, (uint64_t) irel->r_vaddr);
783 continue;
784 }
785 insn = bfd_get_16 (abfd, contents + laddr);
786
787 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
788 if ((insn & 0xf000) != 0xd000)
789 {
790 _bfd_error_handler
791 /* xgettext: c-format */
792 (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"),
793 abfd, (uint64_t) irel->r_vaddr, insn);
794 continue;
795 }
796
797 /* Get the address from which the register is being loaded. The
798 displacement in the mov.l instruction is quadrupled. It is a
799 displacement from four bytes after the movl instruction, but,
800 before adding in the PC address, two least significant bits
801 of the PC are cleared. We assume that the section is aligned
802 on a four byte boundary. */
803 paddr = insn & 0xff;
804 paddr *= 4;
805 paddr += (laddr + 4) &~ (bfd_vma) 3;
806 if (paddr >= sec->size)
807 {
808 _bfd_error_handler
809 /* xgettext: c-format */
810 (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"),
811 abfd, (uint64_t) irel->r_vaddr);
812 continue;
813 }
814
815 /* Get the reloc for the address from which the register is
816 being loaded. This reloc will tell us which function is
817 actually being called. */
818 paddr += sec->vma;
819 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
820 if (irelfn->r_vaddr == paddr
821 #ifdef COFF_WITH_PE
822 && (irelfn->r_type == R_SH_IMM32
823 || irelfn->r_type == R_SH_IMM32CE
824 || irelfn->r_type == R_SH_IMAGEBASE)
825
826 #else
827 && irelfn->r_type == R_SH_IMM32
828 #endif
829 )
830 break;
831 if (irelfn >= irelend)
832 {
833 _bfd_error_handler
834 /* xgettext: c-format */
835 (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"),
836 abfd, (uint64_t) paddr);
837 continue;
838 }
839
840 /* Get the value of the symbol referred to by the reloc. */
841 if (! _bfd_coff_get_external_symbols (abfd))
842 goto error_return;
843 bfd_coff_swap_sym_in (abfd,
844 ((bfd_byte *) obj_coff_external_syms (abfd)
845 + (irelfn->r_symndx
846 * bfd_coff_symesz (abfd))),
847 &sym);
848 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
849 {
850 _bfd_error_handler
851 /* xgettext: c-format */
852 (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"),
853 abfd, (uint64_t) paddr);
854 continue;
855 }
856
857 if (sym.n_sclass != C_EXT)
858 {
859 symval = (sym.n_value
860 - sec->vma
861 + sec->output_section->vma
862 + sec->output_offset);
863 }
864 else
865 {
866 struct coff_link_hash_entry *h;
867
868 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
869 BFD_ASSERT (h != NULL);
870 if (h->root.type != bfd_link_hash_defined
871 && h->root.type != bfd_link_hash_defweak)
872 {
873 /* This appears to be a reference to an undefined
874 symbol. Just ignore it--it will be caught by the
875 regular reloc processing. */
876 continue;
877 }
878
879 symval = (h->root.u.def.value
880 + h->root.u.def.section->output_section->vma
881 + h->root.u.def.section->output_offset);
882 }
883
884 symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
885
886 /* See if this function call can be shortened. */
887 foff = (symval
888 - (irel->r_vaddr
889 - sec->vma
890 + sec->output_section->vma
891 + sec->output_offset
892 + 4));
893 if (foff < -0x1000 || foff >= 0x1000)
894 {
895 /* After all that work, we can't shorten this function call. */
896 continue;
897 }
898
899 /* Shorten the function call. */
900
901 /* For simplicity of coding, we are going to modify the section
902 contents, the section relocs, and the BFD symbol table. We
903 must tell the rest of the code not to free up this
904 information. It would be possible to instead create a table
905 of changes which have to be made, as is done in coff-mips.c;
906 that would be more work, but would require less memory when
907 the linker is run. */
908
909 coff_section_data (abfd, sec)->relocs = internal_relocs;
910 coff_section_data (abfd, sec)->contents = contents;
911
912 /* Replace the jsr with a bsr. */
913
914 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
915 replace the jsr with a bsr. */
916 irel->r_type = R_SH_PCDISP;
917 irel->r_symndx = irelfn->r_symndx;
918 if (sym.n_sclass != C_EXT)
919 {
920 /* If this needs to be changed because of future relaxing,
921 it will be handled here like other internal PCDISP
922 relocs. */
923 bfd_put_16 (abfd,
924 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
925 contents + irel->r_vaddr - sec->vma);
926 }
927 else
928 {
929 /* We can't fully resolve this yet, because the external
930 symbol value may be changed by future relaxing. We let
931 the final link phase handle it. */
932 bfd_put_16 (abfd, (bfd_vma) 0xb000,
933 contents + irel->r_vaddr - sec->vma);
934 }
935
936 /* See if there is another R_SH_USES reloc referring to the same
937 register load. */
938 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
939 if (irelscan->r_type == R_SH_USES
940 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
941 break;
942 if (irelscan < irelend)
943 {
944 /* Some other function call depends upon this register load,
945 and we have not yet converted that function call.
946 Indeed, we may never be able to convert it. There is
947 nothing else we can do at this point. */
948 continue;
949 }
950
951 /* Look for a R_SH_COUNT reloc on the location where the
952 function address is stored. Do this before deleting any
953 bytes, to avoid confusion about the address. */
954 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
955 if (irelcount->r_vaddr == paddr
956 && irelcount->r_type == R_SH_COUNT)
957 break;
958
959 /* Delete the register load. */
960 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
961 goto error_return;
962
963 /* That will change things, so, just in case it permits some
964 other function call to come within range, we should relax
965 again. Note that this is not required, and it may be slow. */
966 *again = true;
967
968 /* Now check whether we got a COUNT reloc. */
969 if (irelcount >= irelend)
970 {
971 _bfd_error_handler
972 /* xgettext: c-format */
973 (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"),
974 abfd, (uint64_t) paddr);
975 continue;
976 }
977
978 /* The number of uses is stored in the r_offset field. We've
979 just deleted one. */
980 if (irelcount->r_offset == 0)
981 {
982 /* xgettext: c-format */
983 _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"),
984 abfd, (uint64_t) paddr);
985 continue;
986 }
987
988 --irelcount->r_offset;
989
990 /* If there are no more uses, we can delete the address. Reload
991 the address from irelfn, in case it was changed by the
992 previous call to sh_relax_delete_bytes. */
993 if (irelcount->r_offset == 0)
994 {
995 if (! sh_relax_delete_bytes (abfd, sec,
996 irelfn->r_vaddr - sec->vma, 4))
997 goto error_return;
998 }
999
1000 /* We've done all we can with that function call. */
1001 }
1002
1003 /* Look for load and store instructions that we can align on four
1004 byte boundaries. */
1005 if (have_code)
1006 {
1007 bool swapped;
1008
1009 /* Get the section contents. */
1010 if (contents == NULL)
1011 {
1012 if (coff_section_data (abfd, sec)->contents != NULL)
1013 contents = coff_section_data (abfd, sec)->contents;
1014 else
1015 {
1016 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1017 goto error_return;
1018 }
1019 }
1020
1021 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1022 goto error_return;
1023
1024 if (swapped)
1025 {
1026 coff_section_data (abfd, sec)->relocs = internal_relocs;
1027 coff_section_data (abfd, sec)->contents = contents;
1028 }
1029 }
1030
1031 if (internal_relocs != NULL
1032 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1033 {
1034 if (! link_info->keep_memory)
1035 free (internal_relocs);
1036 else
1037 coff_section_data (abfd, sec)->relocs = internal_relocs;
1038 }
1039
1040 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1041 {
1042 if (! link_info->keep_memory)
1043 free (contents);
1044 else
1045 /* Cache the section contents for coff_link_input_bfd. */
1046 coff_section_data (abfd, sec)->contents = contents;
1047 }
1048
1049 return true;
1050
1051 error_return:
1052 if (internal_relocs != coff_section_data (abfd, sec)->relocs)
1053 free (internal_relocs);
1054 if (contents != coff_section_data (abfd, sec)->contents)
1055 free (contents);
1056 return false;
1057 }
1058
1059 /* Delete some bytes from a section while relaxing. */
1060
1061 static bool
1062 sh_relax_delete_bytes (bfd *abfd,
1063 asection *sec,
1064 bfd_vma addr,
1065 int count)
1066 {
1067 bfd_byte *contents;
1068 struct internal_reloc *irel, *irelend;
1069 struct internal_reloc *irelalign;
1070 bfd_vma toaddr;
1071 bfd_byte *esym, *esymend;
1072 bfd_size_type symesz;
1073 struct coff_link_hash_entry **sym_hash;
1074 asection *o;
1075
1076 contents = coff_section_data (abfd, sec)->contents;
1077
1078 /* The deletion must stop at the next ALIGN reloc for an alignment
1079 power larger than the number of bytes we are deleting. */
1080
1081 irelalign = NULL;
1082 toaddr = sec->size;
1083
1084 irel = coff_section_data (abfd, sec)->relocs;
1085 irelend = irel + sec->reloc_count;
1086 for (; irel < irelend; irel++)
1087 {
1088 if (irel->r_type == R_SH_ALIGN
1089 && irel->r_vaddr - sec->vma > addr
1090 && count < (1 << irel->r_offset))
1091 {
1092 irelalign = irel;
1093 toaddr = irel->r_vaddr - sec->vma;
1094 break;
1095 }
1096 }
1097
1098 /* Actually delete the bytes. */
1099 memmove (contents + addr, contents + addr + count,
1100 (size_t) (toaddr - addr - count));
1101 if (irelalign == NULL)
1102 sec->size -= count;
1103 else
1104 {
1105 int i;
1106
1107 #define NOP_OPCODE (0x0009)
1108
1109 BFD_ASSERT ((count & 1) == 0);
1110 for (i = 0; i < count; i += 2)
1111 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1112 }
1113
1114 /* Adjust all the relocs. */
1115 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1116 {
1117 bfd_vma nraddr, stop;
1118 bfd_vma start = 0;
1119 int insn = 0;
1120 struct internal_syment sym;
1121 int off, adjust, oinsn;
1122 bfd_signed_vma voff = 0;
1123 bool overflow;
1124
1125 /* Get the new reloc address. */
1126 nraddr = irel->r_vaddr - sec->vma;
1127 if ((irel->r_vaddr - sec->vma > addr
1128 && irel->r_vaddr - sec->vma < toaddr)
1129 || (irel->r_type == R_SH_ALIGN
1130 && irel->r_vaddr - sec->vma == toaddr))
1131 nraddr -= count;
1132
1133 /* See if this reloc was for the bytes we have deleted, in which
1134 case we no longer care about it. Don't delete relocs which
1135 represent addresses, though. */
1136 if (irel->r_vaddr - sec->vma >= addr
1137 && irel->r_vaddr - sec->vma < addr + count
1138 && irel->r_type != R_SH_ALIGN
1139 && irel->r_type != R_SH_CODE
1140 && irel->r_type != R_SH_DATA
1141 && irel->r_type != R_SH_LABEL)
1142 irel->r_type = R_SH_UNUSED;
1143
1144 /* If this is a PC relative reloc, see if the range it covers
1145 includes the bytes we have deleted. */
1146 switch (irel->r_type)
1147 {
1148 default:
1149 break;
1150
1151 case R_SH_PCDISP8BY2:
1152 case R_SH_PCDISP:
1153 case R_SH_PCRELIMM8BY2:
1154 case R_SH_PCRELIMM8BY4:
1155 start = irel->r_vaddr - sec->vma;
1156 insn = bfd_get_16 (abfd, contents + nraddr);
1157 break;
1158 }
1159
1160 switch (irel->r_type)
1161 {
1162 default:
1163 start = stop = addr;
1164 break;
1165
1166 case R_SH_IMM32:
1167 #ifdef COFF_WITH_PE
1168 case R_SH_IMM32CE:
1169 case R_SH_IMAGEBASE:
1170 #endif
1171 /* If this reloc is against a symbol defined in this
1172 section, and the symbol will not be adjusted below, we
1173 must check the addend to see it will put the value in
1174 range to be adjusted, and hence must be changed. */
1175 bfd_coff_swap_sym_in (abfd,
1176 ((bfd_byte *) obj_coff_external_syms (abfd)
1177 + (irel->r_symndx
1178 * bfd_coff_symesz (abfd))),
1179 &sym);
1180 if (sym.n_sclass != C_EXT
1181 && sym.n_scnum == sec->target_index
1182 && ((bfd_vma) sym.n_value <= addr
1183 || (bfd_vma) sym.n_value >= toaddr))
1184 {
1185 bfd_vma val;
1186
1187 val = bfd_get_32 (abfd, contents + nraddr);
1188 val += sym.n_value;
1189 if (val > addr && val < toaddr)
1190 bfd_put_32 (abfd, val - count, contents + nraddr);
1191 }
1192 start = stop = addr;
1193 break;
1194
1195 case R_SH_PCDISP8BY2:
1196 off = insn & 0xff;
1197 if (off & 0x80)
1198 off -= 0x100;
1199 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1200 break;
1201
1202 case R_SH_PCDISP:
1203 bfd_coff_swap_sym_in (abfd,
1204 ((bfd_byte *) obj_coff_external_syms (abfd)
1205 + (irel->r_symndx
1206 * bfd_coff_symesz (abfd))),
1207 &sym);
1208 if (sym.n_sclass == C_EXT)
1209 start = stop = addr;
1210 else
1211 {
1212 off = insn & 0xfff;
1213 if (off & 0x800)
1214 off -= 0x1000;
1215 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1216 }
1217 break;
1218
1219 case R_SH_PCRELIMM8BY2:
1220 off = insn & 0xff;
1221 stop = start + 4 + off * 2;
1222 break;
1223
1224 case R_SH_PCRELIMM8BY4:
1225 off = insn & 0xff;
1226 stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1227 break;
1228
1229 case R_SH_SWITCH8:
1230 case R_SH_SWITCH16:
1231 case R_SH_SWITCH32:
1232 /* These relocs types represent
1233 .word L2-L1
1234 The r_offset field holds the difference between the reloc
1235 address and L1. That is the start of the reloc, and
1236 adding in the contents gives us the top. We must adjust
1237 both the r_offset field and the section contents. */
1238
1239 start = irel->r_vaddr - sec->vma;
1240 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1241
1242 if (start > addr
1243 && start < toaddr
1244 && (stop <= addr || stop >= toaddr))
1245 irel->r_offset += count;
1246 else if (stop > addr
1247 && stop < toaddr
1248 && (start <= addr || start >= toaddr))
1249 irel->r_offset -= count;
1250
1251 start = stop;
1252
1253 if (irel->r_type == R_SH_SWITCH16)
1254 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1255 else if (irel->r_type == R_SH_SWITCH8)
1256 voff = bfd_get_8 (abfd, contents + nraddr);
1257 else
1258 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1259 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1260
1261 break;
1262
1263 case R_SH_USES:
1264 start = irel->r_vaddr - sec->vma;
1265 stop = (bfd_vma) ((bfd_signed_vma) start
1266 + (long) irel->r_offset
1267 + 4);
1268 break;
1269 }
1270
1271 if (start > addr
1272 && start < toaddr
1273 && (stop <= addr || stop >= toaddr))
1274 adjust = count;
1275 else if (stop > addr
1276 && stop < toaddr
1277 && (start <= addr || start >= toaddr))
1278 adjust = - count;
1279 else
1280 adjust = 0;
1281
1282 if (adjust != 0)
1283 {
1284 oinsn = insn;
1285 overflow = false;
1286 switch (irel->r_type)
1287 {
1288 default:
1289 abort ();
1290 break;
1291
1292 case R_SH_PCDISP8BY2:
1293 case R_SH_PCRELIMM8BY2:
1294 insn += adjust / 2;
1295 if ((oinsn & 0xff00) != (insn & 0xff00))
1296 overflow = true;
1297 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1298 break;
1299
1300 case R_SH_PCDISP:
1301 insn += adjust / 2;
1302 if ((oinsn & 0xf000) != (insn & 0xf000))
1303 overflow = true;
1304 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1305 break;
1306
1307 case R_SH_PCRELIMM8BY4:
1308 BFD_ASSERT (adjust == count || count >= 4);
1309 if (count >= 4)
1310 insn += adjust / 4;
1311 else
1312 {
1313 if ((irel->r_vaddr & 3) == 0)
1314 ++insn;
1315 }
1316 if ((oinsn & 0xff00) != (insn & 0xff00))
1317 overflow = true;
1318 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1319 break;
1320
1321 case R_SH_SWITCH8:
1322 voff += adjust;
1323 if (voff < 0 || voff >= 0xff)
1324 overflow = true;
1325 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1326 break;
1327
1328 case R_SH_SWITCH16:
1329 voff += adjust;
1330 if (voff < - 0x8000 || voff >= 0x8000)
1331 overflow = true;
1332 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1333 break;
1334
1335 case R_SH_SWITCH32:
1336 voff += adjust;
1337 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1338 break;
1339
1340 case R_SH_USES:
1341 irel->r_offset += adjust;
1342 break;
1343 }
1344
1345 if (overflow)
1346 {
1347 _bfd_error_handler
1348 /* xgettext: c-format */
1349 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
1350 abfd, (uint64_t) irel->r_vaddr);
1351 bfd_set_error (bfd_error_bad_value);
1352 return false;
1353 }
1354 }
1355
1356 irel->r_vaddr = nraddr + sec->vma;
1357 }
1358
1359 /* Look through all the other sections. If there contain any IMM32
1360 relocs against internal symbols which we are not going to adjust
1361 below, we may need to adjust the addends. */
1362 for (o = abfd->sections; o != NULL; o = o->next)
1363 {
1364 struct internal_reloc *internal_relocs;
1365 struct internal_reloc *irelscan, *irelscanend;
1366 bfd_byte *ocontents;
1367
1368 if (o == sec
1369 || (o->flags & SEC_HAS_CONTENTS) == 0
1370 || (o->flags & SEC_RELOC) == 0
1371 || o->reloc_count == 0)
1372 continue;
1373
1374 /* We always cache the relocs. Perhaps, if info->keep_memory is
1375 FALSE, we should free them, if we are permitted to, when we
1376 leave sh_coff_relax_section. */
1377 internal_relocs = (_bfd_coff_read_internal_relocs
1378 (abfd, o, true, (bfd_byte *) NULL, false,
1379 (struct internal_reloc *) NULL));
1380 if (internal_relocs == NULL)
1381 return false;
1382
1383 ocontents = NULL;
1384 irelscanend = internal_relocs + o->reloc_count;
1385 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1386 {
1387 struct internal_syment sym;
1388
1389 #ifdef COFF_WITH_PE
1390 if (irelscan->r_type != R_SH_IMM32
1391 && irelscan->r_type != R_SH_IMAGEBASE
1392 && irelscan->r_type != R_SH_IMM32CE)
1393 #else
1394 if (irelscan->r_type != R_SH_IMM32)
1395 #endif
1396 continue;
1397
1398 bfd_coff_swap_sym_in (abfd,
1399 ((bfd_byte *) obj_coff_external_syms (abfd)
1400 + (irelscan->r_symndx
1401 * bfd_coff_symesz (abfd))),
1402 &sym);
1403 if (sym.n_sclass != C_EXT
1404 && sym.n_scnum == sec->target_index
1405 && ((bfd_vma) sym.n_value <= addr
1406 || (bfd_vma) sym.n_value >= toaddr))
1407 {
1408 bfd_vma val;
1409
1410 if (ocontents == NULL)
1411 {
1412 if (coff_section_data (abfd, o)->contents != NULL)
1413 ocontents = coff_section_data (abfd, o)->contents;
1414 else
1415 {
1416 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1417 return false;
1418 /* We always cache the section contents.
1419 Perhaps, if info->keep_memory is FALSE, we
1420 should free them, if we are permitted to,
1421 when we leave sh_coff_relax_section. */
1422 coff_section_data (abfd, o)->contents = ocontents;
1423 }
1424 }
1425
1426 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1427 val += sym.n_value;
1428 if (val > addr && val < toaddr)
1429 bfd_put_32 (abfd, val - count,
1430 ocontents + irelscan->r_vaddr - o->vma);
1431 }
1432 }
1433 }
1434
1435 /* Adjusting the internal symbols will not work if something has
1436 already retrieved the generic symbols. It would be possible to
1437 make this work by adjusting the generic symbols at the same time.
1438 However, this case should not arise in normal usage. */
1439 if (obj_symbols (abfd) != NULL
1440 || obj_raw_syments (abfd) != NULL)
1441 {
1442 _bfd_error_handler
1443 (_("%pB: fatal: generic symbols retrieved before relaxing"), abfd);
1444 bfd_set_error (bfd_error_invalid_operation);
1445 return false;
1446 }
1447
1448 /* Adjust all the symbols. */
1449 sym_hash = obj_coff_sym_hashes (abfd);
1450 symesz = bfd_coff_symesz (abfd);
1451 esym = (bfd_byte *) obj_coff_external_syms (abfd);
1452 esymend = esym + obj_raw_syment_count (abfd) * symesz;
1453 while (esym < esymend)
1454 {
1455 struct internal_syment isym;
1456
1457 bfd_coff_swap_sym_in (abfd, esym, &isym);
1458
1459 if (isym.n_scnum == sec->target_index
1460 && (bfd_vma) isym.n_value > addr
1461 && (bfd_vma) isym.n_value < toaddr)
1462 {
1463 isym.n_value -= count;
1464
1465 bfd_coff_swap_sym_out (abfd, &isym, esym);
1466
1467 if (*sym_hash != NULL)
1468 {
1469 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1470 || (*sym_hash)->root.type == bfd_link_hash_defweak);
1471 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1472 && (*sym_hash)->root.u.def.value < toaddr);
1473 (*sym_hash)->root.u.def.value -= count;
1474 }
1475 }
1476
1477 esym += (isym.n_numaux + 1) * symesz;
1478 sym_hash += isym.n_numaux + 1;
1479 }
1480
1481 /* See if we can move the ALIGN reloc forward. We have adjusted
1482 r_vaddr for it already. */
1483 if (irelalign != NULL)
1484 {
1485 bfd_vma alignto, alignaddr;
1486
1487 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1488 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1489 1 << irelalign->r_offset);
1490 if (alignto != alignaddr)
1491 {
1492 /* Tail recursion. */
1493 return sh_relax_delete_bytes (abfd, sec, alignaddr,
1494 (int) (alignto - alignaddr));
1495 }
1496 }
1497
1498 return true;
1499 }
1500 \f
1501 /* This is yet another version of the SH opcode table, used to rapidly
1502 get information about a particular instruction. */
1503
1504 /* The opcode map is represented by an array of these structures. The
1505 array is indexed by the high order four bits in the instruction. */
1506
1507 struct sh_major_opcode
1508 {
1509 /* A pointer to the instruction list. This is an array which
1510 contains all the instructions with this major opcode. */
1511 const struct sh_minor_opcode *minor_opcodes;
1512 /* The number of elements in minor_opcodes. */
1513 unsigned short count;
1514 };
1515
1516 /* This structure holds information for a set of SH opcodes. The
1517 instruction code is anded with the mask value, and the resulting
1518 value is used to search the order opcode list. */
1519
1520 struct sh_minor_opcode
1521 {
1522 /* The sorted opcode list. */
1523 const struct sh_opcode *opcodes;
1524 /* The number of elements in opcodes. */
1525 unsigned short count;
1526 /* The mask value to use when searching the opcode list. */
1527 unsigned short mask;
1528 };
1529
1530 /* This structure holds information for an SH instruction. An array
1531 of these structures is sorted in order by opcode. */
1532
1533 struct sh_opcode
1534 {
1535 /* The code for this instruction, after it has been anded with the
1536 mask value in the sh_major_opcode structure. */
1537 unsigned short opcode;
1538 /* Flags for this instruction. */
1539 unsigned long flags;
1540 };
1541
1542 /* Flag which appear in the sh_opcode structure. */
1543
1544 /* This instruction loads a value from memory. */
1545 #define LOAD (0x1)
1546
1547 /* This instruction stores a value to memory. */
1548 #define STORE (0x2)
1549
1550 /* This instruction is a branch. */
1551 #define BRANCH (0x4)
1552
1553 /* This instruction has a delay slot. */
1554 #define DELAY (0x8)
1555
1556 /* This instruction uses the value in the register in the field at
1557 mask 0x0f00 of the instruction. */
1558 #define USES1 (0x10)
1559 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1560
1561 /* This instruction uses the value in the register in the field at
1562 mask 0x00f0 of the instruction. */
1563 #define USES2 (0x20)
1564 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1565
1566 /* This instruction uses the value in register 0. */
1567 #define USESR0 (0x40)
1568
1569 /* This instruction sets the value in the register in the field at
1570 mask 0x0f00 of the instruction. */
1571 #define SETS1 (0x80)
1572 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1573
1574 /* This instruction sets the value in the register in the field at
1575 mask 0x00f0 of the instruction. */
1576 #define SETS2 (0x100)
1577 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1578
1579 /* This instruction sets register 0. */
1580 #define SETSR0 (0x200)
1581
1582 /* This instruction sets a special register. */
1583 #define SETSSP (0x400)
1584
1585 /* This instruction uses a special register. */
1586 #define USESSP (0x800)
1587
1588 /* This instruction uses the floating point register in the field at
1589 mask 0x0f00 of the instruction. */
1590 #define USESF1 (0x1000)
1591 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1592
1593 /* This instruction uses the floating point register in the field at
1594 mask 0x00f0 of the instruction. */
1595 #define USESF2 (0x2000)
1596 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1597
1598 /* This instruction uses floating point register 0. */
1599 #define USESF0 (0x4000)
1600
1601 /* This instruction sets the floating point register in the field at
1602 mask 0x0f00 of the instruction. */
1603 #define SETSF1 (0x8000)
1604 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1605
1606 #define USESAS (0x10000)
1607 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1608 #define USESR8 (0x20000)
1609 #define SETSAS (0x40000)
1610 #define SETSAS_REG(x) USESAS_REG (x)
1611
1612 #define MAP(a) a, sizeof a / sizeof a[0]
1613
1614 #ifndef COFF_IMAGE_WITH_PE
1615
1616 /* The opcode maps. */
1617
1618 static const struct sh_opcode sh_opcode00[] =
1619 {
1620 { 0x0008, SETSSP }, /* clrt */
1621 { 0x0009, 0 }, /* nop */
1622 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */
1623 { 0x0018, SETSSP }, /* sett */
1624 { 0x0019, SETSSP }, /* div0u */
1625 { 0x001b, 0 }, /* sleep */
1626 { 0x0028, SETSSP }, /* clrmac */
1627 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
1628 { 0x0038, USESSP | SETSSP }, /* ldtlb */
1629 { 0x0048, SETSSP }, /* clrs */
1630 { 0x0058, SETSSP } /* sets */
1631 };
1632
1633 static const struct sh_opcode sh_opcode01[] =
1634 {
1635 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
1636 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */
1637 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */
1638 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
1639 { 0x0029, SETS1 | USESSP }, /* movt rn */
1640 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */
1641 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
1642 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
1643 { 0x0083, LOAD | USES1 }, /* pref @rn */
1644 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */
1645 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */
1646 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */
1647 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
1648 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */
1649 };
1650
1651 static const struct sh_opcode sh_opcode02[] =
1652 {
1653 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
1654 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1655 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1656 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1657 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
1658 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
1659 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
1660 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
1661 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1662 };
1663
1664 static const struct sh_minor_opcode sh_opcode0[] =
1665 {
1666 { MAP (sh_opcode00), 0xffff },
1667 { MAP (sh_opcode01), 0xf0ff },
1668 { MAP (sh_opcode02), 0xf00f }
1669 };
1670
1671 static const struct sh_opcode sh_opcode10[] =
1672 {
1673 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1674 };
1675
1676 static const struct sh_minor_opcode sh_opcode1[] =
1677 {
1678 { MAP (sh_opcode10), 0xf000 }
1679 };
1680
1681 static const struct sh_opcode sh_opcode20[] =
1682 {
1683 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
1684 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
1685 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
1686 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
1687 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
1688 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
1689 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
1690 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
1691 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
1692 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
1693 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
1694 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
1695 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
1696 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
1697 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
1698 };
1699
1700 static const struct sh_minor_opcode sh_opcode2[] =
1701 {
1702 { MAP (sh_opcode20), 0xf00f }
1703 };
1704
1705 static const struct sh_opcode sh_opcode30[] =
1706 {
1707 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
1708 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
1709 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
1710 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
1711 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
1712 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
1713 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
1714 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
1715 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1716 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1717 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
1718 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
1719 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1720 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
1721 };
1722
1723 static const struct sh_minor_opcode sh_opcode3[] =
1724 {
1725 { MAP (sh_opcode30), 0xf00f }
1726 };
1727
1728 static const struct sh_opcode sh_opcode40[] =
1729 {
1730 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
1731 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
1732 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
1733 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
1734 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
1735 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
1736 { 0x4008, SETS1 | USES1 }, /* shll2 rn */
1737 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */
1738 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */
1739 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
1740 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
1741 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
1742 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
1743 { 0x4014, SETSSP | USES1 }, /* setrc rm */
1744 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
1745 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
1746 { 0x4018, SETS1 | USES1 }, /* shll8 rn */
1747 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */
1748 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */
1749 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
1750 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
1751 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
1752 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
1753 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
1754 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
1755 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
1756 { 0x4028, SETS1 | USES1 }, /* shll16 rn */
1757 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */
1758 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */
1759 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
1760 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1761 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
1762 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
1763 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1764 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
1765 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
1766 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1767 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
1768 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
1769 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1770 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
1771 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
1772 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1773 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
1774 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
1775 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1776 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
1777 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
1778 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1779 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
1780 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
1781 };
1782
1783 static const struct sh_opcode sh_opcode41[] =
1784 {
1785 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1786 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
1787 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
1788 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
1789 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
1790 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1791 };
1792
1793 static const struct sh_minor_opcode sh_opcode4[] =
1794 {
1795 { MAP (sh_opcode40), 0xf0ff },
1796 { MAP (sh_opcode41), 0xf00f }
1797 };
1798
1799 static const struct sh_opcode sh_opcode50[] =
1800 {
1801 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
1802 };
1803
1804 static const struct sh_minor_opcode sh_opcode5[] =
1805 {
1806 { MAP (sh_opcode50), 0xf000 }
1807 };
1808
1809 static const struct sh_opcode sh_opcode60[] =
1810 {
1811 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
1812 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
1813 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
1814 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */
1815 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1816 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1817 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1818 { 0x6007, SETS1 | USES2 }, /* not rm,rn */
1819 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
1820 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
1821 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
1822 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */
1823 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
1824 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
1825 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
1826 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
1827 };
1828
1829 static const struct sh_minor_opcode sh_opcode6[] =
1830 {
1831 { MAP (sh_opcode60), 0xf00f }
1832 };
1833
1834 static const struct sh_opcode sh_opcode70[] =
1835 {
1836 { 0x7000, SETS1 | USES1 } /* add #imm,rn */
1837 };
1838
1839 static const struct sh_minor_opcode sh_opcode7[] =
1840 {
1841 { MAP (sh_opcode70), 0xf000 }
1842 };
1843
1844 static const struct sh_opcode sh_opcode80[] =
1845 {
1846 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1847 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
1848 { 0x8200, SETSSP }, /* setrc #imm */
1849 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
1850 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
1851 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
1852 { 0x8900, BRANCH | USESSP }, /* bt label */
1853 { 0x8b00, BRANCH | USESSP }, /* bf label */
1854 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
1855 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
1856 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */
1857 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1858 };
1859
1860 static const struct sh_minor_opcode sh_opcode8[] =
1861 {
1862 { MAP (sh_opcode80), 0xff00 }
1863 };
1864
1865 static const struct sh_opcode sh_opcode90[] =
1866 {
1867 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
1868 };
1869
1870 static const struct sh_minor_opcode sh_opcode9[] =
1871 {
1872 { MAP (sh_opcode90), 0xf000 }
1873 };
1874
1875 static const struct sh_opcode sh_opcodea0[] =
1876 {
1877 { 0xa000, BRANCH | DELAY } /* bra label */
1878 };
1879
1880 static const struct sh_minor_opcode sh_opcodea[] =
1881 {
1882 { MAP (sh_opcodea0), 0xf000 }
1883 };
1884
1885 static const struct sh_opcode sh_opcodeb0[] =
1886 {
1887 { 0xb000, BRANCH | DELAY } /* bsr label */
1888 };
1889
1890 static const struct sh_minor_opcode sh_opcodeb[] =
1891 {
1892 { MAP (sh_opcodeb0), 0xf000 }
1893 };
1894
1895 static const struct sh_opcode sh_opcodec0[] =
1896 {
1897 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
1898 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
1899 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
1900 { 0xc300, BRANCH | USESSP }, /* trapa #imm */
1901 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
1902 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
1903 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
1904 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
1905 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
1906 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
1907 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
1908 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
1909 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
1910 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
1911 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
1912 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
1913 };
1914
1915 static const struct sh_minor_opcode sh_opcodec[] =
1916 {
1917 { MAP (sh_opcodec0), 0xff00 }
1918 };
1919
1920 static const struct sh_opcode sh_opcoded0[] =
1921 {
1922 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
1923 };
1924
1925 static const struct sh_minor_opcode sh_opcoded[] =
1926 {
1927 { MAP (sh_opcoded0), 0xf000 }
1928 };
1929
1930 static const struct sh_opcode sh_opcodee0[] =
1931 {
1932 { 0xe000, SETS1 } /* mov #imm,rn */
1933 };
1934
1935 static const struct sh_minor_opcode sh_opcodee[] =
1936 {
1937 { MAP (sh_opcodee0), 0xf000 }
1938 };
1939
1940 static const struct sh_opcode sh_opcodef0[] =
1941 {
1942 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
1943 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
1944 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
1945 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
1946 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
1947 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
1948 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
1949 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
1950 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
1951 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
1952 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
1953 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
1954 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
1955 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1956 };
1957
1958 static const struct sh_opcode sh_opcodef1[] =
1959 {
1960 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
1961 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
1962 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
1963 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
1964 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
1965 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
1966 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
1967 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
1968 { 0xf08d, SETSF1 }, /* fldi0 fn */
1969 { 0xf09d, SETSF1 } /* fldi1 fn */
1970 };
1971
1972 static const struct sh_minor_opcode sh_opcodef[] =
1973 {
1974 { MAP (sh_opcodef0), 0xf00f },
1975 { MAP (sh_opcodef1), 0xf0ff }
1976 };
1977
1978 static struct sh_major_opcode sh_opcodes[] =
1979 {
1980 { MAP (sh_opcode0) },
1981 { MAP (sh_opcode1) },
1982 { MAP (sh_opcode2) },
1983 { MAP (sh_opcode3) },
1984 { MAP (sh_opcode4) },
1985 { MAP (sh_opcode5) },
1986 { MAP (sh_opcode6) },
1987 { MAP (sh_opcode7) },
1988 { MAP (sh_opcode8) },
1989 { MAP (sh_opcode9) },
1990 { MAP (sh_opcodea) },
1991 { MAP (sh_opcodeb) },
1992 { MAP (sh_opcodec) },
1993 { MAP (sh_opcoded) },
1994 { MAP (sh_opcodee) },
1995 { MAP (sh_opcodef) }
1996 };
1997
1998 /* The double data transfer / parallel processing insns are not
1999 described here. This will cause sh_align_load_span to leave them alone. */
2000
2001 static const struct sh_opcode sh_dsp_opcodef0[] =
2002 {
2003 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
2004 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2005 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
2006 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
2007 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
2008 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2009 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2010 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2011 };
2012
2013 static const struct sh_minor_opcode sh_dsp_opcodef[] =
2014 {
2015 { MAP (sh_dsp_opcodef0), 0xfc0d }
2016 };
2017
2018 /* Given an instruction, return a pointer to the corresponding
2019 sh_opcode structure. Return NULL if the instruction is not
2020 recognized. */
2021
2022 static const struct sh_opcode *
2023 sh_insn_info (unsigned int insn)
2024 {
2025 const struct sh_major_opcode *maj;
2026 const struct sh_minor_opcode *min, *minend;
2027
2028 maj = &sh_opcodes[(insn & 0xf000) >> 12];
2029 min = maj->minor_opcodes;
2030 minend = min + maj->count;
2031 for (; min < minend; min++)
2032 {
2033 unsigned int l;
2034 const struct sh_opcode *op, *opend;
2035
2036 l = insn & min->mask;
2037 op = min->opcodes;
2038 opend = op + min->count;
2039
2040 /* Since the opcodes tables are sorted, we could use a binary
2041 search here if the count were above some cutoff value. */
2042 for (; op < opend; op++)
2043 if (op->opcode == l)
2044 return op;
2045 }
2046
2047 return NULL;
2048 }
2049
2050 /* See whether an instruction uses a general purpose register. */
2051
2052 static bool
2053 sh_insn_uses_reg (unsigned int insn,
2054 const struct sh_opcode *op,
2055 unsigned int reg)
2056 {
2057 unsigned int f;
2058
2059 f = op->flags;
2060
2061 if ((f & USES1) != 0
2062 && USES1_REG (insn) == reg)
2063 return true;
2064 if ((f & USES2) != 0
2065 && USES2_REG (insn) == reg)
2066 return true;
2067 if ((f & USESR0) != 0
2068 && reg == 0)
2069 return true;
2070 if ((f & USESAS) && reg == USESAS_REG (insn))
2071 return true;
2072 if ((f & USESR8) && reg == 8)
2073 return true;
2074
2075 return false;
2076 }
2077
2078 /* See whether an instruction sets a general purpose register. */
2079
2080 static bool
2081 sh_insn_sets_reg (unsigned int insn,
2082 const struct sh_opcode *op,
2083 unsigned int reg)
2084 {
2085 unsigned int f;
2086
2087 f = op->flags;
2088
2089 if ((f & SETS1) != 0
2090 && SETS1_REG (insn) == reg)
2091 return true;
2092 if ((f & SETS2) != 0
2093 && SETS2_REG (insn) == reg)
2094 return true;
2095 if ((f & SETSR0) != 0
2096 && reg == 0)
2097 return true;
2098 if ((f & SETSAS) && reg == SETSAS_REG (insn))
2099 return true;
2100
2101 return false;
2102 }
2103
2104 /* See whether an instruction uses or sets a general purpose register */
2105
2106 static bool
2107 sh_insn_uses_or_sets_reg (unsigned int insn,
2108 const struct sh_opcode *op,
2109 unsigned int reg)
2110 {
2111 if (sh_insn_uses_reg (insn, op, reg))
2112 return true;
2113
2114 return sh_insn_sets_reg (insn, op, reg);
2115 }
2116
2117 /* See whether an instruction uses a floating point register. */
2118
2119 static bool
2120 sh_insn_uses_freg (unsigned int insn,
2121 const struct sh_opcode *op,
2122 unsigned int freg)
2123 {
2124 unsigned int f;
2125
2126 f = op->flags;
2127
2128 /* We can't tell if this is a double-precision insn, so just play safe
2129 and assume that it might be. So not only have we test FREG against
2130 itself, but also even FREG against FREG+1 - if the using insn uses
2131 just the low part of a double precision value - but also an odd
2132 FREG against FREG-1 - if the setting insn sets just the low part
2133 of a double precision value.
2134 So what this all boils down to is that we have to ignore the lowest
2135 bit of the register number. */
2136
2137 if ((f & USESF1) != 0
2138 && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2139 return true;
2140 if ((f & USESF2) != 0
2141 && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2142 return true;
2143 if ((f & USESF0) != 0
2144 && freg == 0)
2145 return true;
2146
2147 return false;
2148 }
2149
2150 /* See whether an instruction sets a floating point register. */
2151
2152 static bool
2153 sh_insn_sets_freg (unsigned int insn,
2154 const struct sh_opcode *op,
2155 unsigned int freg)
2156 {
2157 unsigned int f;
2158
2159 f = op->flags;
2160
2161 /* We can't tell if this is a double-precision insn, so just play safe
2162 and assume that it might be. So not only have we test FREG against
2163 itself, but also even FREG against FREG+1 - if the using insn uses
2164 just the low part of a double precision value - but also an odd
2165 FREG against FREG-1 - if the setting insn sets just the low part
2166 of a double precision value.
2167 So what this all boils down to is that we have to ignore the lowest
2168 bit of the register number. */
2169
2170 if ((f & SETSF1) != 0
2171 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2172 return true;
2173
2174 return false;
2175 }
2176
2177 /* See whether an instruction uses or sets a floating point register */
2178
2179 static bool
2180 sh_insn_uses_or_sets_freg (unsigned int insn,
2181 const struct sh_opcode *op,
2182 unsigned int reg)
2183 {
2184 if (sh_insn_uses_freg (insn, op, reg))
2185 return true;
2186
2187 return sh_insn_sets_freg (insn, op, reg);
2188 }
2189
2190 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2191 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
2192 This should return TRUE if there is a conflict, or FALSE if the
2193 instructions can be swapped safely. */
2194
2195 static bool
2196 sh_insns_conflict (unsigned int i1,
2197 const struct sh_opcode *op1,
2198 unsigned int i2,
2199 const struct sh_opcode *op2)
2200 {
2201 unsigned int f1, f2;
2202
2203 f1 = op1->flags;
2204 f2 = op2->flags;
2205
2206 /* Load of fpscr conflicts with floating point operations.
2207 FIXME: shouldn't test raw opcodes here. */
2208 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2209 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2210 return true;
2211
2212 if ((f1 & (BRANCH | DELAY)) != 0
2213 || (f2 & (BRANCH | DELAY)) != 0)
2214 return true;
2215
2216 if (((f1 | f2) & SETSSP)
2217 && (f1 & (SETSSP | USESSP))
2218 && (f2 & (SETSSP | USESSP)))
2219 return true;
2220
2221 if ((f1 & SETS1) != 0
2222 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2223 return true;
2224 if ((f1 & SETS2) != 0
2225 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2226 return true;
2227 if ((f1 & SETSR0) != 0
2228 && sh_insn_uses_or_sets_reg (i2, op2, 0))
2229 return true;
2230 if ((f1 & SETSAS)
2231 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2232 return true;
2233 if ((f1 & SETSF1) != 0
2234 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2235 return true;
2236
2237 if ((f2 & SETS1) != 0
2238 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2239 return true;
2240 if ((f2 & SETS2) != 0
2241 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2242 return true;
2243 if ((f2 & SETSR0) != 0
2244 && sh_insn_uses_or_sets_reg (i1, op1, 0))
2245 return true;
2246 if ((f2 & SETSAS)
2247 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2248 return true;
2249 if ((f2 & SETSF1) != 0
2250 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2251 return true;
2252
2253 /* The instructions do not conflict. */
2254 return false;
2255 }
2256
2257 /* I1 is a load instruction, and I2 is some other instruction. Return
2258 TRUE if I1 loads a register which I2 uses. */
2259
2260 static bool
2261 sh_load_use (unsigned int i1,
2262 const struct sh_opcode *op1,
2263 unsigned int i2,
2264 const struct sh_opcode *op2)
2265 {
2266 unsigned int f1;
2267
2268 f1 = op1->flags;
2269
2270 if ((f1 & LOAD) == 0)
2271 return false;
2272
2273 /* If both SETS1 and SETSSP are set, that means a load to a special
2274 register using postincrement addressing mode, which we don't care
2275 about here. */
2276 if ((f1 & SETS1) != 0
2277 && (f1 & SETSSP) == 0
2278 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2279 return true;
2280
2281 if ((f1 & SETSR0) != 0
2282 && sh_insn_uses_reg (i2, op2, 0))
2283 return true;
2284
2285 if ((f1 & SETSF1) != 0
2286 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2287 return true;
2288
2289 return false;
2290 }
2291
2292 /* Try to align loads and stores within a span of memory. This is
2293 called by both the ELF and the COFF sh targets. ABFD and SEC are
2294 the BFD and section we are examining. CONTENTS is the contents of
2295 the section. SWAP is the routine to call to swap two instructions.
2296 RELOCS is a pointer to the internal relocation information, to be
2297 passed to SWAP. PLABEL is a pointer to the current label in a
2298 sorted list of labels; LABEL_END is the end of the list. START and
2299 STOP are the range of memory to examine. If a swap is made,
2300 *PSWAPPED is set to TRUE. */
2301
2302 #ifdef COFF_WITH_PE
2303 static
2304 #endif
2305 bool
2306 _bfd_sh_align_load_span (bfd *abfd,
2307 asection *sec,
2308 bfd_byte *contents,
2309 bool (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
2310 void * relocs,
2311 bfd_vma **plabel,
2312 bfd_vma *label_end,
2313 bfd_vma start,
2314 bfd_vma stop,
2315 bool *pswapped)
2316 {
2317 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2318 || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2319 bfd_vma i;
2320
2321 /* The SH4 has a Harvard architecture, hence aligning loads is not
2322 desirable. In fact, it is counter-productive, since it interferes
2323 with the schedules generated by the compiler. */
2324 if (abfd->arch_info->mach == bfd_mach_sh4)
2325 return true;
2326
2327 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2328 instructions. */
2329 if (dsp)
2330 {
2331 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2332 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0];
2333 }
2334
2335 /* Instructions should be aligned on 2 byte boundaries. */
2336 if ((start & 1) == 1)
2337 ++start;
2338
2339 /* Now look through the unaligned addresses. */
2340 i = start;
2341 if ((i & 2) == 0)
2342 i += 2;
2343 for (; i < stop; i += 4)
2344 {
2345 unsigned int insn;
2346 const struct sh_opcode *op;
2347 unsigned int prev_insn = 0;
2348 const struct sh_opcode *prev_op = NULL;
2349
2350 insn = bfd_get_16 (abfd, contents + i);
2351 op = sh_insn_info (insn);
2352 if (op == NULL
2353 || (op->flags & (LOAD | STORE)) == 0)
2354 continue;
2355
2356 /* This is a load or store which is not on a four byte boundary. */
2357
2358 while (*plabel < label_end && **plabel < i)
2359 ++*plabel;
2360
2361 if (i > start)
2362 {
2363 prev_insn = bfd_get_16 (abfd, contents + i - 2);
2364 /* If INSN is the field b of a parallel processing insn, it is not
2365 a load / store after all. Note that the test here might mistake
2366 the field_b of a pcopy insn for the starting code of a parallel
2367 processing insn; this might miss a swapping opportunity, but at
2368 least we're on the safe side. */
2369 if (dsp && (prev_insn & 0xfc00) == 0xf800)
2370 continue;
2371
2372 /* Check if prev_insn is actually the field b of a parallel
2373 processing insn. Again, this can give a spurious match
2374 after a pcopy. */
2375 if (dsp && i - 2 > start)
2376 {
2377 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2378
2379 if ((pprev_insn & 0xfc00) == 0xf800)
2380 prev_op = NULL;
2381 else
2382 prev_op = sh_insn_info (prev_insn);
2383 }
2384 else
2385 prev_op = sh_insn_info (prev_insn);
2386
2387 /* If the load/store instruction is in a delay slot, we
2388 can't swap. */
2389 if (prev_op == NULL
2390 || (prev_op->flags & DELAY) != 0)
2391 continue;
2392 }
2393 if (i > start
2394 && (*plabel >= label_end || **plabel != i)
2395 && prev_op != NULL
2396 && (prev_op->flags & (LOAD | STORE)) == 0
2397 && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2398 {
2399 bool ok;
2400
2401 /* The load/store instruction does not have a label, and
2402 there is a previous instruction; PREV_INSN is not
2403 itself a load/store instruction, and PREV_INSN and
2404 INSN do not conflict. */
2405
2406 ok = true;
2407
2408 if (i >= start + 4)
2409 {
2410 unsigned int prev2_insn;
2411 const struct sh_opcode *prev2_op;
2412
2413 prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2414 prev2_op = sh_insn_info (prev2_insn);
2415
2416 /* If the instruction before PREV_INSN has a delay
2417 slot--that is, PREV_INSN is in a delay slot--we
2418 can not swap. */
2419 if (prev2_op == NULL
2420 || (prev2_op->flags & DELAY) != 0)
2421 ok = false;
2422
2423 /* If the instruction before PREV_INSN is a load,
2424 and it sets a register which INSN uses, then
2425 putting INSN immediately after PREV_INSN will
2426 cause a pipeline bubble, so there is no point to
2427 making the swap. */
2428 if (ok
2429 && (prev2_op->flags & LOAD) != 0
2430 && sh_load_use (prev2_insn, prev2_op, insn, op))
2431 ok = false;
2432 }
2433
2434 if (ok)
2435 {
2436 if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2437 return false;
2438 *pswapped = true;
2439 continue;
2440 }
2441 }
2442
2443 while (*plabel < label_end && **plabel < i + 2)
2444 ++*plabel;
2445
2446 if (i + 2 < stop
2447 && (*plabel >= label_end || **plabel != i + 2))
2448 {
2449 unsigned int next_insn;
2450 const struct sh_opcode *next_op;
2451
2452 /* There is an instruction after the load/store
2453 instruction, and it does not have a label. */
2454 next_insn = bfd_get_16 (abfd, contents + i + 2);
2455 next_op = sh_insn_info (next_insn);
2456 if (next_op != NULL
2457 && (next_op->flags & (LOAD | STORE)) == 0
2458 && ! sh_insns_conflict (insn, op, next_insn, next_op))
2459 {
2460 bool ok;
2461
2462 /* NEXT_INSN is not itself a load/store instruction,
2463 and it does not conflict with INSN. */
2464
2465 ok = true;
2466
2467 /* If PREV_INSN is a load, and it sets a register
2468 which NEXT_INSN uses, then putting NEXT_INSN
2469 immediately after PREV_INSN will cause a pipeline
2470 bubble, so there is no reason to make this swap. */
2471 if (prev_op != NULL
2472 && (prev_op->flags & LOAD) != 0
2473 && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2474 ok = false;
2475
2476 /* If INSN is a load, and it sets a register which
2477 the insn after NEXT_INSN uses, then doing the
2478 swap will cause a pipeline bubble, so there is no
2479 reason to make the swap. However, if the insn
2480 after NEXT_INSN is itself a load or store
2481 instruction, then it is misaligned, so
2482 optimistically hope that it will be swapped
2483 itself, and just live with the pipeline bubble if
2484 it isn't. */
2485 if (ok
2486 && i + 4 < stop
2487 && (op->flags & LOAD) != 0)
2488 {
2489 unsigned int next2_insn;
2490 const struct sh_opcode *next2_op;
2491
2492 next2_insn = bfd_get_16 (abfd, contents + i + 4);
2493 next2_op = sh_insn_info (next2_insn);
2494 if (next2_op == NULL
2495 || ((next2_op->flags & (LOAD | STORE)) == 0
2496 && sh_load_use (insn, op, next2_insn, next2_op)))
2497 ok = false;
2498 }
2499
2500 if (ok)
2501 {
2502 if (! (*swap) (abfd, sec, relocs, contents, i))
2503 return false;
2504 *pswapped = true;
2505 continue;
2506 }
2507 }
2508 }
2509 }
2510
2511 return true;
2512 }
2513 #endif /* not COFF_IMAGE_WITH_PE */
2514
2515 /* Swap two SH instructions. */
2516
2517 static bool
2518 sh_swap_insns (bfd * abfd,
2519 asection * sec,
2520 void * relocs,
2521 bfd_byte * contents,
2522 bfd_vma addr)
2523 {
2524 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2525 unsigned short i1, i2;
2526 struct internal_reloc *irel, *irelend;
2527
2528 /* Swap the instructions themselves. */
2529 i1 = bfd_get_16 (abfd, contents + addr);
2530 i2 = bfd_get_16 (abfd, contents + addr + 2);
2531 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2532 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2533
2534 /* Adjust all reloc addresses. */
2535 irelend = internal_relocs + sec->reloc_count;
2536 for (irel = internal_relocs; irel < irelend; irel++)
2537 {
2538 int type, add;
2539
2540 /* There are a few special types of relocs that we don't want to
2541 adjust. These relocs do not apply to the instruction itself,
2542 but are only associated with the address. */
2543 type = irel->r_type;
2544 if (type == R_SH_ALIGN
2545 || type == R_SH_CODE
2546 || type == R_SH_DATA
2547 || type == R_SH_LABEL)
2548 continue;
2549
2550 /* If an R_SH_USES reloc points to one of the addresses being
2551 swapped, we must adjust it. It would be incorrect to do this
2552 for a jump, though, since we want to execute both
2553 instructions after the jump. (We have avoided swapping
2554 around a label, so the jump will not wind up executing an
2555 instruction it shouldn't). */
2556 if (type == R_SH_USES)
2557 {
2558 bfd_vma off;
2559
2560 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2561 if (off == addr)
2562 irel->r_offset += 2;
2563 else if (off == addr + 2)
2564 irel->r_offset -= 2;
2565 }
2566
2567 if (irel->r_vaddr - sec->vma == addr)
2568 {
2569 irel->r_vaddr += 2;
2570 add = -2;
2571 }
2572 else if (irel->r_vaddr - sec->vma == addr + 2)
2573 {
2574 irel->r_vaddr -= 2;
2575 add = 2;
2576 }
2577 else
2578 add = 0;
2579
2580 if (add != 0)
2581 {
2582 bfd_byte *loc;
2583 unsigned short insn, oinsn;
2584 bool overflow;
2585
2586 loc = contents + irel->r_vaddr - sec->vma;
2587 overflow = false;
2588 switch (type)
2589 {
2590 default:
2591 break;
2592
2593 case R_SH_PCDISP8BY2:
2594 case R_SH_PCRELIMM8BY2:
2595 insn = bfd_get_16 (abfd, loc);
2596 oinsn = insn;
2597 insn += add / 2;
2598 if ((oinsn & 0xff00) != (insn & 0xff00))
2599 overflow = true;
2600 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2601 break;
2602
2603 case R_SH_PCDISP:
2604 insn = bfd_get_16 (abfd, loc);
2605 oinsn = insn;
2606 insn += add / 2;
2607 if ((oinsn & 0xf000) != (insn & 0xf000))
2608 overflow = true;
2609 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2610 break;
2611
2612 case R_SH_PCRELIMM8BY4:
2613 /* This reloc ignores the least significant 3 bits of
2614 the program counter before adding in the offset.
2615 This means that if ADDR is at an even address, the
2616 swap will not affect the offset. If ADDR is an at an
2617 odd address, then the instruction will be crossing a
2618 four byte boundary, and must be adjusted. */
2619 if ((addr & 3) != 0)
2620 {
2621 insn = bfd_get_16 (abfd, loc);
2622 oinsn = insn;
2623 insn += add / 2;
2624 if ((oinsn & 0xff00) != (insn & 0xff00))
2625 overflow = true;
2626 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2627 }
2628
2629 break;
2630 }
2631
2632 if (overflow)
2633 {
2634 _bfd_error_handler
2635 /* xgettext: c-format */
2636 (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
2637 abfd, (uint64_t) irel->r_vaddr);
2638 bfd_set_error (bfd_error_bad_value);
2639 return false;
2640 }
2641 }
2642 }
2643
2644 return true;
2645 }
2646
2647 /* Look for loads and stores which we can align to four byte
2648 boundaries. See the longer comment above sh_relax_section for why
2649 this is desirable. This sets *PSWAPPED if some instruction was
2650 swapped. */
2651
2652 static bool
2653 sh_align_loads (bfd *abfd,
2654 asection *sec,
2655 struct internal_reloc *internal_relocs,
2656 bfd_byte *contents,
2657 bool *pswapped)
2658 {
2659 struct internal_reloc *irel, *irelend;
2660 bfd_vma *labels = NULL;
2661 bfd_vma *label, *label_end;
2662 bfd_size_type amt;
2663
2664 *pswapped = false;
2665
2666 irelend = internal_relocs + sec->reloc_count;
2667
2668 /* Get all the addresses with labels on them. */
2669 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2670 labels = (bfd_vma *) bfd_malloc (amt);
2671 if (labels == NULL)
2672 goto error_return;
2673 label_end = labels;
2674 for (irel = internal_relocs; irel < irelend; irel++)
2675 {
2676 if (irel->r_type == R_SH_LABEL)
2677 {
2678 *label_end = irel->r_vaddr - sec->vma;
2679 ++label_end;
2680 }
2681 }
2682
2683 /* Note that the assembler currently always outputs relocs in
2684 address order. If that ever changes, this code will need to sort
2685 the label values and the relocs. */
2686
2687 label = labels;
2688
2689 for (irel = internal_relocs; irel < irelend; irel++)
2690 {
2691 bfd_vma start, stop;
2692
2693 if (irel->r_type != R_SH_CODE)
2694 continue;
2695
2696 start = irel->r_vaddr - sec->vma;
2697
2698 for (irel++; irel < irelend; irel++)
2699 if (irel->r_type == R_SH_DATA)
2700 break;
2701 if (irel < irelend)
2702 stop = irel->r_vaddr - sec->vma;
2703 else
2704 stop = sec->size;
2705
2706 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2707 internal_relocs, &label,
2708 label_end, start, stop, pswapped))
2709 goto error_return;
2710 }
2711
2712 free (labels);
2713
2714 return true;
2715
2716 error_return:
2717 free (labels);
2718 return false;
2719 }
2720 \f
2721 /* This is a modification of _bfd_coff_generic_relocate_section, which
2722 will handle SH relaxing. */
2723
2724 static bool
2725 sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
2726 struct bfd_link_info *info,
2727 bfd *input_bfd,
2728 asection *input_section,
2729 bfd_byte *contents,
2730 struct internal_reloc *relocs,
2731 struct internal_syment *syms,
2732 asection **sections)
2733 {
2734 struct internal_reloc *rel;
2735 struct internal_reloc *relend;
2736
2737 rel = relocs;
2738 relend = rel + input_section->reloc_count;
2739 for (; rel < relend; rel++)
2740 {
2741 long symndx;
2742 struct coff_link_hash_entry *h;
2743 struct internal_syment *sym;
2744 bfd_vma addend;
2745 bfd_vma val;
2746 reloc_howto_type *howto;
2747 bfd_reloc_status_type rstat;
2748
2749 /* Almost all relocs have to do with relaxing. If any work must
2750 be done for them, it has been done in sh_relax_section. */
2751 if (rel->r_type != R_SH_IMM32
2752 #ifdef COFF_WITH_PE
2753 && rel->r_type != R_SH_IMM32CE
2754 && rel->r_type != R_SH_IMAGEBASE
2755 #endif
2756 && rel->r_type != R_SH_PCDISP)
2757 continue;
2758
2759 symndx = rel->r_symndx;
2760
2761 if (symndx == -1)
2762 {
2763 h = NULL;
2764 sym = NULL;
2765 }
2766 else
2767 {
2768 if (symndx < 0
2769 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2770 {
2771 _bfd_error_handler
2772 /* xgettext: c-format */
2773 (_("%pB: illegal symbol index %ld in relocs"),
2774 input_bfd, symndx);
2775 bfd_set_error (bfd_error_bad_value);
2776 return false;
2777 }
2778 h = obj_coff_sym_hashes (input_bfd)[symndx];
2779 sym = syms + symndx;
2780 }
2781
2782 if (sym != NULL && sym->n_scnum != 0)
2783 addend = - sym->n_value;
2784 else
2785 addend = 0;
2786
2787 if (rel->r_type == R_SH_PCDISP)
2788 addend -= 4;
2789
2790 if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2791 howto = NULL;
2792 else
2793 howto = &sh_coff_howtos[rel->r_type];
2794
2795 if (howto == NULL)
2796 {
2797 bfd_set_error (bfd_error_bad_value);
2798 return false;
2799 }
2800
2801 #ifdef COFF_WITH_PE
2802 if (rel->r_type == R_SH_IMAGEBASE)
2803 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2804 #endif
2805
2806 val = 0;
2807
2808 if (h == NULL)
2809 {
2810 asection *sec;
2811
2812 /* There is nothing to do for an internal PCDISP reloc. */
2813 if (rel->r_type == R_SH_PCDISP)
2814 continue;
2815
2816 if (symndx == -1)
2817 {
2818 sec = bfd_abs_section_ptr;
2819 val = 0;
2820 }
2821 else
2822 {
2823 sec = sections[symndx];
2824 val = (sec->output_section->vma
2825 + sec->output_offset
2826 + sym->n_value
2827 - sec->vma);
2828 }
2829 }
2830 else
2831 {
2832 if (h->root.type == bfd_link_hash_defined
2833 || h->root.type == bfd_link_hash_defweak)
2834 {
2835 asection *sec;
2836
2837 sec = h->root.u.def.section;
2838 val = (h->root.u.def.value
2839 + sec->output_section->vma
2840 + sec->output_offset);
2841 }
2842 else if (! bfd_link_relocatable (info))
2843 (*info->callbacks->undefined_symbol)
2844 (info, h->root.root.string, input_bfd, input_section,
2845 rel->r_vaddr - input_section->vma, true);
2846 }
2847
2848 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2849 contents,
2850 rel->r_vaddr - input_section->vma,
2851 val, addend);
2852
2853 switch (rstat)
2854 {
2855 default:
2856 abort ();
2857 case bfd_reloc_ok:
2858 break;
2859 case bfd_reloc_overflow:
2860 {
2861 const char *name;
2862 char buf[SYMNMLEN + 1];
2863
2864 if (symndx == -1)
2865 name = "*ABS*";
2866 else if (h != NULL)
2867 name = NULL;
2868 else if (sym->_n._n_n._n_zeroes == 0
2869 && sym->_n._n_n._n_offset != 0)
2870 {
2871 if (sym->_n._n_n._n_offset < obj_coff_strings_len (input_bfd))
2872 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2873 else
2874 name = "?";
2875 }
2876 else
2877 {
2878 strncpy (buf, sym->_n._n_name, SYMNMLEN);
2879 buf[SYMNMLEN] = '\0';
2880 name = buf;
2881 }
2882
2883 (*info->callbacks->reloc_overflow)
2884 (info, (h ? &h->root : NULL), name, howto->name,
2885 (bfd_vma) 0, input_bfd, input_section,
2886 rel->r_vaddr - input_section->vma);
2887 }
2888 }
2889 }
2890
2891 return true;
2892 }
2893
2894 /* This is a version of bfd_generic_get_relocated_section_contents
2895 which uses sh_relocate_section. */
2896
2897 static bfd_byte *
2898 sh_coff_get_relocated_section_contents (bfd *output_bfd,
2899 struct bfd_link_info *link_info,
2900 struct bfd_link_order *link_order,
2901 bfd_byte *data,
2902 bool relocatable,
2903 asymbol **symbols)
2904 {
2905 asection *input_section = link_order->u.indirect.section;
2906 bfd *input_bfd = input_section->owner;
2907 asection **sections = NULL;
2908 struct internal_reloc *internal_relocs = NULL;
2909 struct internal_syment *internal_syms = NULL;
2910
2911 /* We only need to handle the case of relaxing, or of having a
2912 particular set of section contents, specially. */
2913 if (relocatable
2914 || coff_section_data (input_bfd, input_section) == NULL
2915 || coff_section_data (input_bfd, input_section)->contents == NULL)
2916 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2917 link_order, data,
2918 relocatable,
2919 symbols);
2920
2921 bfd_byte *orig_data = data;
2922 if (data == NULL)
2923 {
2924 data = bfd_malloc (input_section->size);
2925 if (data == NULL)
2926 return NULL;
2927 }
2928 memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2929 (size_t) input_section->size);
2930
2931 if ((input_section->flags & SEC_RELOC) != 0
2932 && input_section->reloc_count > 0)
2933 {
2934 bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2935 bfd_byte *esym, *esymend;
2936 struct internal_syment *isymp;
2937 asection **secpp;
2938 bfd_size_type amt;
2939
2940 if (! _bfd_coff_get_external_symbols (input_bfd))
2941 goto error_return;
2942
2943 internal_relocs = (_bfd_coff_read_internal_relocs
2944 (input_bfd, input_section, false, (bfd_byte *) NULL,
2945 false, (struct internal_reloc *) NULL));
2946 if (internal_relocs == NULL)
2947 goto error_return;
2948
2949 amt = obj_raw_syment_count (input_bfd);
2950 amt *= sizeof (struct internal_syment);
2951 internal_syms = (struct internal_syment *) bfd_malloc (amt);
2952 if (internal_syms == NULL)
2953 goto error_return;
2954
2955 amt = obj_raw_syment_count (input_bfd);
2956 amt *= sizeof (asection *);
2957 sections = (asection **) bfd_malloc (amt);
2958 if (sections == NULL)
2959 goto error_return;
2960
2961 isymp = internal_syms;
2962 secpp = sections;
2963 esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2964 esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2965 while (esym < esymend)
2966 {
2967 bfd_coff_swap_sym_in (input_bfd, esym, isymp);
2968
2969 if (isymp->n_scnum != 0)
2970 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2971 else
2972 {
2973 if (isymp->n_value == 0)
2974 *secpp = bfd_und_section_ptr;
2975 else
2976 *secpp = bfd_com_section_ptr;
2977 }
2978
2979 esym += (isymp->n_numaux + 1) * symesz;
2980 secpp += isymp->n_numaux + 1;
2981 isymp += isymp->n_numaux + 1;
2982 }
2983
2984 if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2985 input_section, data, internal_relocs,
2986 internal_syms, sections))
2987 goto error_return;
2988
2989 free (sections);
2990 sections = NULL;
2991 free (internal_syms);
2992 internal_syms = NULL;
2993 free (internal_relocs);
2994 internal_relocs = NULL;
2995 }
2996
2997 return data;
2998
2999 error_return:
3000 free (internal_relocs);
3001 free (internal_syms);
3002 free (sections);
3003 if (orig_data == NULL)
3004 free (data);
3005 return NULL;
3006 }
3007
3008 /* The target vectors. */
3009
3010 #ifndef TARGET_SHL_SYM
3011 CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3012 #endif
3013
3014 #ifdef TARGET_SHL_SYM
3015 #define TARGET_SYM TARGET_SHL_SYM
3016 #else
3017 #define TARGET_SYM sh_coff_le_vec
3018 #endif
3019
3020 #ifndef TARGET_SHL_NAME
3021 #define TARGET_SHL_NAME "coff-shl"
3022 #endif
3023
3024 #ifdef COFF_WITH_PE
3025 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3026 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3027 #else
3028 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3029 0, '_', NULL, COFF_SWAP_TABLE)
3030 #endif
3031
3032 #ifndef TARGET_SHL_SYM
3033
3034 /* Some people want versions of the SH COFF target which do not align
3035 to 16 byte boundaries. We implement that by adding a couple of new
3036 target vectors. These are just like the ones above, but they
3037 change the default section alignment. To generate them in the
3038 assembler, use -small. To use them in the linker, use -b
3039 coff-sh{l}-small and -oformat coff-sh{l}-small.
3040
3041 Yes, this is a horrible hack. A general solution for setting
3042 section alignment in COFF is rather complex. ELF handles this
3043 correctly. */
3044
3045 /* Only recognize the small versions if the target was not defaulted.
3046 Otherwise we won't recognize the non default endianness. */
3047
3048 static bfd_cleanup
3049 coff_small_object_p (bfd *abfd)
3050 {
3051 if (abfd->target_defaulted)
3052 {
3053 bfd_set_error (bfd_error_wrong_format);
3054 return NULL;
3055 }
3056 return coff_object_p (abfd);
3057 }
3058
3059 /* Set the section alignment for the small versions. */
3060
3061 static bool
3062 coff_small_new_section_hook (bfd *abfd, asection *section)
3063 {
3064 if (! coff_new_section_hook (abfd, section))
3065 return false;
3066
3067 /* We must align to at least a four byte boundary, because longword
3068 accesses must be on a four byte boundary. */
3069 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3070 section->alignment_power = 2;
3071
3072 return true;
3073 }
3074
3075 /* This is copied from bfd_coff_std_swap_table so that we can change
3076 the default section alignment power. */
3077
3078 static const bfd_coff_backend_data bfd_coff_small_swap_table =
3079 {
3080 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3081 coff_swap_aux_out, coff_swap_sym_out,
3082 coff_swap_lineno_out, coff_swap_reloc_out,
3083 coff_swap_filehdr_out, coff_swap_aouthdr_out,
3084 coff_swap_scnhdr_out,
3085 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3086 #ifdef COFF_LONG_FILENAMES
3087 true,
3088 #else
3089 false,
3090 #endif
3091 COFF_DEFAULT_LONG_SECTION_NAMES,
3092 2,
3093 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3094 true,
3095 #else
3096 false,
3097 #endif
3098 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3099 4,
3100 #else
3101 2,
3102 #endif
3103 32768,
3104 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3105 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3106 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3107 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3108 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3109 coff_classify_symbol, coff_compute_section_file_positions,
3110 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3111 coff_adjust_symndx, coff_link_add_one_symbol,
3112 coff_link_output_has_begun, coff_final_link_postscript,
3113 bfd_pe_print_pdata
3114 };
3115
3116 #define coff_small_close_and_cleanup \
3117 coff_close_and_cleanup
3118 #define coff_small_bfd_free_cached_info \
3119 coff_bfd_free_cached_info
3120 #define coff_small_get_section_contents \
3121 coff_get_section_contents
3122 #define coff_small_get_section_contents_in_window \
3123 coff_get_section_contents_in_window
3124
3125 extern const bfd_target sh_coff_small_le_vec;
3126
3127 const bfd_target sh_coff_small_vec =
3128 {
3129 "coff-sh-small", /* name */
3130 bfd_target_coff_flavour,
3131 BFD_ENDIAN_BIG, /* data byte order is big */
3132 BFD_ENDIAN_BIG, /* header byte order is big */
3133
3134 (HAS_RELOC | EXEC_P /* object flags */
3135 | HAS_LINENO | HAS_DEBUG
3136 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3137
3138 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3139 '_', /* leading symbol underscore */
3140 '/', /* ar_pad_char */
3141 15, /* ar_max_namelen */
3142 0, /* match priority. */
3143 TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */
3144 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3145 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3146 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3147 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3148 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3149 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3150
3151 { /* bfd_check_format */
3152 _bfd_dummy_target,
3153 coff_small_object_p,
3154 bfd_generic_archive_p,
3155 _bfd_dummy_target
3156 },
3157 { /* bfd_set_format */
3158 _bfd_bool_bfd_false_error,
3159 coff_mkobject,
3160 _bfd_generic_mkarchive,
3161 _bfd_bool_bfd_false_error
3162 },
3163 { /* bfd_write_contents */
3164 _bfd_bool_bfd_false_error,
3165 coff_write_object_contents,
3166 _bfd_write_archive_contents,
3167 _bfd_bool_bfd_false_error
3168 },
3169
3170 BFD_JUMP_TABLE_GENERIC (coff_small),
3171 BFD_JUMP_TABLE_COPY (coff),
3172 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3173 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3174 BFD_JUMP_TABLE_SYMBOLS (coff),
3175 BFD_JUMP_TABLE_RELOCS (coff),
3176 BFD_JUMP_TABLE_WRITE (coff),
3177 BFD_JUMP_TABLE_LINK (coff),
3178 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3179
3180 &sh_coff_small_le_vec,
3181
3182 &bfd_coff_small_swap_table
3183 };
3184
3185 const bfd_target sh_coff_small_le_vec =
3186 {
3187 "coff-shl-small", /* name */
3188 bfd_target_coff_flavour,
3189 BFD_ENDIAN_LITTLE, /* data byte order is little */
3190 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
3191
3192 (HAS_RELOC | EXEC_P /* object flags */
3193 | HAS_LINENO | HAS_DEBUG
3194 | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3195
3196 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3197 '_', /* leading symbol underscore */
3198 '/', /* ar_pad_char */
3199 15, /* ar_max_namelen */
3200 0, /* match priority. */
3201 TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */
3202 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3203 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3204 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3205 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3206 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3207 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3208
3209 { /* bfd_check_format */
3210 _bfd_dummy_target,
3211 coff_small_object_p,
3212 bfd_generic_archive_p,
3213 _bfd_dummy_target
3214 },
3215 { /* bfd_set_format */
3216 _bfd_bool_bfd_false_error,
3217 coff_mkobject,
3218 _bfd_generic_mkarchive,
3219 _bfd_bool_bfd_false_error
3220 },
3221 { /* bfd_write_contents */
3222 _bfd_bool_bfd_false_error,
3223 coff_write_object_contents,
3224 _bfd_write_archive_contents,
3225 _bfd_bool_bfd_false_error
3226 },
3227
3228 BFD_JUMP_TABLE_GENERIC (coff_small),
3229 BFD_JUMP_TABLE_COPY (coff),
3230 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3231 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3232 BFD_JUMP_TABLE_SYMBOLS (coff),
3233 BFD_JUMP_TABLE_RELOCS (coff),
3234 BFD_JUMP_TABLE_WRITE (coff),
3235 BFD_JUMP_TABLE_LINK (coff),
3236 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3237
3238 &sh_coff_small_vec,
3239
3240 &bfd_coff_small_swap_table
3241 };
3242 #endif