Remove path name from test case
[binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-dynconfig.h"
34
35 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
36 #define OCTETS_PER_BYTE(ABFD, SEC) 1
37
38 #define XTENSA_NO_NOP_REMOVAL 0
39
40 #ifndef XTHAL_ABI_UNDEFINED
41 #define XTHAL_ABI_UNDEFINED -1
42 #endif
43
44 /* Local helper functions. */
45
46 static bool add_extra_plt_sections (struct bfd_link_info *, int);
47 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
48 static bfd_reloc_status_type bfd_elf_xtensa_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bool do_fix_for_relocatable_link
51 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
52 static void do_fix_for_final_link
53 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
54
55 /* Local functions to handle Xtensa configurability. */
56
57 static bool is_indirect_call_opcode (xtensa_opcode);
58 static bool is_direct_call_opcode (xtensa_opcode);
59 static bool is_windowed_call_opcode (xtensa_opcode);
60 static xtensa_opcode get_const16_opcode (void);
61 static xtensa_opcode get_l32r_opcode (void);
62 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
63 static int get_relocation_opnd (xtensa_opcode, int);
64 static int get_relocation_slot (int);
65 static xtensa_opcode get_relocation_opcode
66 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
67 static bool is_l32r_relocation
68 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
69 static bool is_alt_relocation (int);
70 static bool is_operand_relocation (int);
71 static bfd_size_type insn_decode_len
72 (bfd_byte *, bfd_size_type, bfd_size_type);
73 static int insn_num_slots
74 (bfd_byte *, bfd_size_type, bfd_size_type);
75 static xtensa_opcode insn_decode_opcode
76 (bfd_byte *, bfd_size_type, bfd_size_type, int);
77 static bool check_branch_target_aligned
78 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
79 static bool check_loop_aligned
80 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
81 static bool check_branch_target_aligned_address (bfd_vma, int);
82 static bfd_size_type get_asm_simplify_size
83 (bfd_byte *, bfd_size_type, bfd_size_type);
84
85 /* Functions for link-time code simplifications. */
86
87 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
88 (bfd_byte *, bfd_vma, bfd_vma, char **);
89 static bfd_reloc_status_type contract_asm_expansion
90 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
91 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
92 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bool *);
93
94 /* Access to internal relocations, section contents and symbols. */
95
96 static Elf_Internal_Rela *retrieve_internal_relocs
97 (bfd *, asection *, bool);
98 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
99 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
100 static bfd_byte *retrieve_contents (bfd *, asection *, bool);
101 static void pin_contents (asection *, bfd_byte *);
102 static void release_contents (asection *, bfd_byte *);
103 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
104
105 /* Miscellaneous utility functions. */
106
107 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
108 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
109 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
110 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
111 (bfd *, unsigned long);
112 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
113 static bool is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
114 static bool pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
115 static bool xtensa_is_property_section (asection *);
116 static bool xtensa_is_insntable_section (asection *);
117 static bool xtensa_is_littable_section (asection *);
118 static bool xtensa_is_proptable_section (asection *);
119 static int internal_reloc_compare (const void *, const void *);
120 static int internal_reloc_matches (const void *, const void *);
121 static asection *xtensa_get_property_section (asection *, const char *);
122 static flagword xtensa_get_property_predef_flags (asection *);
123
124 /* Other functions called directly by the linker. */
125
126 typedef void (*deps_callback_t)
127 (asection *, bfd_vma, asection *, bfd_vma, void *);
128 extern bool xtensa_callback_required_dependence
129 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
130
131
132 /* Globally visible flag for choosing size optimization of NOP removal
133 instead of branch-target-aware minimization for NOP removal.
134 When nonzero, narrow all instructions and remove all NOPs possible
135 around longcall expansions. */
136
137 int elf32xtensa_size_opt;
138
139
140 /* The "new_section_hook" is used to set up a per-section
141 "xtensa_relax_info" data structure with additional information used
142 during relaxation. */
143
144 typedef struct xtensa_relax_info_struct xtensa_relax_info;
145
146
147 /* The GNU tools do not easily allow extending interfaces to pass around
148 the pointer to the Xtensa ISA information, so instead we add a global
149 variable here (in BFD) that can be used by any of the tools that need
150 this information. */
151
152 xtensa_isa xtensa_default_isa;
153
154
155 /* When this is true, relocations may have been modified to refer to
156 symbols from other input files. The per-section list of "fix"
157 records needs to be checked when resolving relocations. */
158
159 static bool relaxing_section = false;
160
161 /* When this is true, during final links, literals that cannot be
162 coalesced and their relocations may be moved to other sections. */
163
164 int elf32xtensa_no_literal_movement = 1;
165
166 /* Place property records for a section into individual property section
167 with xt.prop. prefix. */
168
169 bool elf32xtensa_separate_props = false;
170
171 /* Xtensa ABI. It affects PLT entry code. */
172
173 int elf32xtensa_abi = XTHAL_ABI_UNDEFINED;
174
175 /* Rename one of the generic section flags to better document how it
176 is used here. */
177 /* Whether relocations have been processed. */
178 #define reloc_done sec_flg0
179 \f
180 static reloc_howto_type elf_howto_table[] =
181 {
182 HOWTO (R_XTENSA_NONE, 0, 0, 0, false, 0, complain_overflow_dont,
183 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
184 false, 0, 0, false),
185 HOWTO (R_XTENSA_32, 0, 4, 32, false, 0, complain_overflow_bitfield,
186 bfd_elf_xtensa_reloc, "R_XTENSA_32",
187 true, 0xffffffff, 0xffffffff, false),
188
189 /* Replace a 32-bit value with a value from the runtime linker (only
190 used by linker-generated stub functions). The r_addend value is
191 special: 1 means to substitute a pointer to the runtime linker's
192 dynamic resolver function; 2 means to substitute the link map for
193 the shared object. */
194 HOWTO (R_XTENSA_RTLD, 0, 4, 32, false, 0, complain_overflow_dont,
195 NULL, "R_XTENSA_RTLD", false, 0, 0, false),
196
197 HOWTO (R_XTENSA_GLOB_DAT, 0, 4, 32, false, 0, complain_overflow_bitfield,
198 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
199 false, 0, 0xffffffff, false),
200 HOWTO (R_XTENSA_JMP_SLOT, 0, 4, 32, false, 0, complain_overflow_bitfield,
201 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
202 false, 0, 0xffffffff, false),
203 HOWTO (R_XTENSA_RELATIVE, 0, 4, 32, false, 0, complain_overflow_bitfield,
204 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
205 false, 0, 0xffffffff, false),
206 HOWTO (R_XTENSA_PLT, 0, 4, 32, false, 0, complain_overflow_bitfield,
207 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
208 false, 0, 0xffffffff, false),
209
210 EMPTY_HOWTO (7),
211
212 /* Old relocations for backward compatibility. */
213 HOWTO (R_XTENSA_OP0, 0, 0, 0, true, 0, complain_overflow_dont,
214 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", false, 0, 0, true),
215 HOWTO (R_XTENSA_OP1, 0, 0, 0, true, 0, complain_overflow_dont,
216 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", false, 0, 0, true),
217 HOWTO (R_XTENSA_OP2, 0, 0, 0, true, 0, complain_overflow_dont,
218 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", false, 0, 0, true),
219
220 /* Assembly auto-expansion. */
221 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, true, 0, complain_overflow_dont,
222 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", false, 0, 0, true),
223 /* Relax assembly auto-expansion. */
224 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, true, 0, complain_overflow_dont,
225 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", false, 0, 0, true),
226
227 EMPTY_HOWTO (13),
228
229 HOWTO (R_XTENSA_32_PCREL, 0, 4, 32, true, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
231 false, 0, 0xffffffff, true),
232
233 /* GNU extension to record C++ vtable hierarchy. */
234 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 4, 0, false, 0, complain_overflow_dont,
235 NULL, "R_XTENSA_GNU_VTINHERIT",
236 false, 0, 0, false),
237 /* GNU extension to record C++ vtable member usage. */
238 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 4, 0, false, 0, complain_overflow_dont,
239 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
240 false, 0, 0, false),
241
242 /* Relocations for supporting difference of symbols. */
243 HOWTO (R_XTENSA_DIFF8, 0, 1, 8, false, 0, complain_overflow_signed,
244 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", false, 0, 0xff, false),
245 HOWTO (R_XTENSA_DIFF16, 0, 2, 16, false, 0, complain_overflow_signed,
246 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", false, 0, 0xffff, false),
247 HOWTO (R_XTENSA_DIFF32, 0, 4, 32, false, 0, complain_overflow_signed,
248 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", false, 0, 0xffffffff, false),
249
250 /* General immediate operand relocations. */
251 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, true, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", false, 0, 0, true),
253 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, true, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", false, 0, 0, true),
255 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, true, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", false, 0, 0, true),
257 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, true, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", false, 0, 0, true),
259 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, true, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", false, 0, 0, true),
261 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, true, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", false, 0, 0, true),
263 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, true, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", false, 0, 0, true),
265 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, true, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", false, 0, 0, true),
267 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, true, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", false, 0, 0, true),
269 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, true, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", false, 0, 0, true),
271 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, true, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", false, 0, 0, true),
273 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, true, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", false, 0, 0, true),
275 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, true, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", false, 0, 0, true),
277 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, true, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", false, 0, 0, true),
279 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, true, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", false, 0, 0, true),
281
282 /* "Alternate" relocations. The meaning of these is opcode-specific. */
283 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", false, 0, 0, true),
285 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", false, 0, 0, true),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", false, 0, 0, true),
289 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", false, 0, 0, true),
291 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", false, 0, 0, true),
293 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", false, 0, 0, true),
295 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
296 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", false, 0, 0, true),
297 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", false, 0, 0, true),
299 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", false, 0, 0, true),
301 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", false, 0, 0, true),
303 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", false, 0, 0, true),
305 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", false, 0, 0, true),
307 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", false, 0, 0, true),
309 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", false, 0, 0, true),
311 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, true, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", false, 0, 0, true),
313
314 /* TLS relocations. */
315 HOWTO (R_XTENSA_TLSDESC_FN, 0, 4, 32, false, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
317 false, 0, 0xffffffff, false),
318 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 4, 32, false, 0, complain_overflow_dont,
319 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
320 false, 0, 0xffffffff, false),
321 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 4, 32, false, 0, complain_overflow_dont,
322 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
323 false, 0, 0xffffffff, false),
324 HOWTO (R_XTENSA_TLS_TPOFF, 0, 4, 32, false, 0, complain_overflow_dont,
325 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
326 false, 0, 0xffffffff, false),
327 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, false, 0, complain_overflow_dont,
328 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
329 false, 0, 0, false),
330 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, false, 0, complain_overflow_dont,
331 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
332 false, 0, 0, false),
333 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, false, 0, complain_overflow_dont,
334 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
335 false, 0, 0, false),
336
337 HOWTO (R_XTENSA_PDIFF8, 0, 1, 8, false, 0, complain_overflow_bitfield,
338 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF8", false, 0, 0xff, false),
339 HOWTO (R_XTENSA_PDIFF16, 0, 2, 16, false, 0, complain_overflow_bitfield,
340 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF16", false, 0, 0xffff, false),
341 HOWTO (R_XTENSA_PDIFF32, 0, 4, 32, false, 0, complain_overflow_bitfield,
342 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF32", false, 0, 0xffffffff, false),
343
344 HOWTO (R_XTENSA_NDIFF8, 0, 1, 8, false, 0, complain_overflow_bitfield,
345 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF8", false, 0, 0xff, false),
346 HOWTO (R_XTENSA_NDIFF16, 0, 2, 16, false, 0, complain_overflow_bitfield,
347 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF16", false, 0, 0xffff, false),
348 HOWTO (R_XTENSA_NDIFF32, 0, 4, 32, false, 0, complain_overflow_bitfield,
349 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF32", false, 0, 0xffffffff, false),
350 };
351
352 #if DEBUG_GEN_RELOC
353 #define TRACE(str) \
354 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
355 #else
356 #define TRACE(str)
357 #endif
358
359 static reloc_howto_type *
360 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
361 bfd_reloc_code_real_type code)
362 {
363 switch (code)
364 {
365 case BFD_RELOC_NONE:
366 TRACE ("BFD_RELOC_NONE");
367 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
368
369 case BFD_RELOC_32:
370 TRACE ("BFD_RELOC_32");
371 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
372
373 case BFD_RELOC_32_PCREL:
374 TRACE ("BFD_RELOC_32_PCREL");
375 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
376
377 case BFD_RELOC_XTENSA_DIFF8:
378 TRACE ("BFD_RELOC_XTENSA_DIFF8");
379 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
380
381 case BFD_RELOC_XTENSA_DIFF16:
382 TRACE ("BFD_RELOC_XTENSA_DIFF16");
383 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
384
385 case BFD_RELOC_XTENSA_DIFF32:
386 TRACE ("BFD_RELOC_XTENSA_DIFF32");
387 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
388
389 case BFD_RELOC_XTENSA_PDIFF8:
390 TRACE ("BFD_RELOC_XTENSA_PDIFF8");
391 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF8 ];
392
393 case BFD_RELOC_XTENSA_PDIFF16:
394 TRACE ("BFD_RELOC_XTENSA_PDIFF16");
395 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF16 ];
396
397 case BFD_RELOC_XTENSA_PDIFF32:
398 TRACE ("BFD_RELOC_XTENSA_PDIFF32");
399 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF32 ];
400
401 case BFD_RELOC_XTENSA_NDIFF8:
402 TRACE ("BFD_RELOC_XTENSA_NDIFF8");
403 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF8 ];
404
405 case BFD_RELOC_XTENSA_NDIFF16:
406 TRACE ("BFD_RELOC_XTENSA_NDIFF16");
407 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF16 ];
408
409 case BFD_RELOC_XTENSA_NDIFF32:
410 TRACE ("BFD_RELOC_XTENSA_NDIFF32");
411 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF32 ];
412
413 case BFD_RELOC_XTENSA_RTLD:
414 TRACE ("BFD_RELOC_XTENSA_RTLD");
415 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
416
417 case BFD_RELOC_XTENSA_GLOB_DAT:
418 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
419 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
420
421 case BFD_RELOC_XTENSA_JMP_SLOT:
422 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
423 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
424
425 case BFD_RELOC_XTENSA_RELATIVE:
426 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
427 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
428
429 case BFD_RELOC_XTENSA_PLT:
430 TRACE ("BFD_RELOC_XTENSA_PLT");
431 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
432
433 case BFD_RELOC_XTENSA_OP0:
434 TRACE ("BFD_RELOC_XTENSA_OP0");
435 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
436
437 case BFD_RELOC_XTENSA_OP1:
438 TRACE ("BFD_RELOC_XTENSA_OP1");
439 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
440
441 case BFD_RELOC_XTENSA_OP2:
442 TRACE ("BFD_RELOC_XTENSA_OP2");
443 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
444
445 case BFD_RELOC_XTENSA_ASM_EXPAND:
446 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
447 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
448
449 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
450 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
451 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
452
453 case BFD_RELOC_VTABLE_INHERIT:
454 TRACE ("BFD_RELOC_VTABLE_INHERIT");
455 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
456
457 case BFD_RELOC_VTABLE_ENTRY:
458 TRACE ("BFD_RELOC_VTABLE_ENTRY");
459 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
460
461 case BFD_RELOC_XTENSA_TLSDESC_FN:
462 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
463 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
464
465 case BFD_RELOC_XTENSA_TLSDESC_ARG:
466 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
467 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
468
469 case BFD_RELOC_XTENSA_TLS_DTPOFF:
470 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
471 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
472
473 case BFD_RELOC_XTENSA_TLS_TPOFF:
474 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
475 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
476
477 case BFD_RELOC_XTENSA_TLS_FUNC:
478 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
479 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
480
481 case BFD_RELOC_XTENSA_TLS_ARG:
482 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
483 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
484
485 case BFD_RELOC_XTENSA_TLS_CALL:
486 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
487 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
488
489 default:
490 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
491 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
492 {
493 unsigned n = (R_XTENSA_SLOT0_OP +
494 (code - BFD_RELOC_XTENSA_SLOT0_OP));
495 return &elf_howto_table[n];
496 }
497
498 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
499 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
500 {
501 unsigned n = (R_XTENSA_SLOT0_ALT +
502 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
503 return &elf_howto_table[n];
504 }
505
506 break;
507 }
508
509 /* xgettext:c-format */
510 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
511 bfd_set_error (bfd_error_bad_value);
512 TRACE ("Unknown");
513 return NULL;
514 }
515
516 static reloc_howto_type *
517 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
518 const char *r_name)
519 {
520 unsigned int i;
521
522 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
523 if (elf_howto_table[i].name != NULL
524 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
525 return &elf_howto_table[i];
526
527 return NULL;
528 }
529
530
531 /* Given an ELF "rela" relocation, find the corresponding howto and record
532 it in the BFD internal arelent representation of the relocation. */
533
534 static bool
535 elf_xtensa_info_to_howto_rela (bfd *abfd,
536 arelent *cache_ptr,
537 Elf_Internal_Rela *dst)
538 {
539 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
540
541 if (r_type >= (unsigned int) R_XTENSA_max)
542 {
543 /* xgettext:c-format */
544 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
545 abfd, r_type);
546 bfd_set_error (bfd_error_bad_value);
547 return false;
548 }
549 cache_ptr->howto = &elf_howto_table[r_type];
550 return true;
551 }
552
553 \f
554 /* Functions for the Xtensa ELF linker. */
555
556 /* The name of the dynamic interpreter. This is put in the .interp
557 section. */
558
559 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
560
561 /* The size in bytes of an entry in the procedure linkage table.
562 (This does _not_ include the space for the literals associated with
563 the PLT entry.) */
564
565 #define PLT_ENTRY_SIZE 16
566
567 /* For _really_ large PLTs, we may need to alternate between literals
568 and code to keep the literals within the 256K range of the L32R
569 instructions in the code. It's unlikely that anyone would ever need
570 such a big PLT, but an arbitrary limit on the PLT size would be bad.
571 Thus, we split the PLT into chunks. Since there's very little
572 overhead (2 extra literals) for each chunk, the chunk size is kept
573 small so that the code for handling multiple chunks get used and
574 tested regularly. With 254 entries, there are 1K of literals for
575 each chunk, and that seems like a nice round number. */
576
577 #define PLT_ENTRIES_PER_CHUNK 254
578
579 /* PLT entries are actually used as stub functions for lazy symbol
580 resolution. Once the symbol is resolved, the stub function is never
581 invoked. Note: the 32-byte frame size used here cannot be changed
582 without a corresponding change in the runtime linker. */
583
584 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
585 {
586 {
587 0x6c, 0x10, 0x04, /* entry sp, 32 */
588 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
589 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
590 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
591 0x0a, 0x80, 0x00, /* jx a8 */
592 0 /* unused */
593 },
594 {
595 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
596 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
597 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
598 0x0a, 0x80, 0x00, /* jx a8 */
599 0 /* unused */
600 }
601 };
602
603 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
604 {
605 {
606 0x36, 0x41, 0x00, /* entry sp, 32 */
607 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
608 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
609 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
610 0xa0, 0x08, 0x00, /* jx a8 */
611 0 /* unused */
612 },
613 {
614 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
615 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
616 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
617 0xa0, 0x08, 0x00, /* jx a8 */
618 0 /* unused */
619 }
620 };
621
622 /* The size of the thread control block. */
623 #define TCB_SIZE 8
624
625 struct elf_xtensa_link_hash_entry
626 {
627 struct elf_link_hash_entry elf;
628
629 bfd_signed_vma tlsfunc_refcount;
630
631 #define GOT_UNKNOWN 0
632 #define GOT_NORMAL 1
633 #define GOT_TLS_GD 2 /* global or local dynamic */
634 #define GOT_TLS_IE 4 /* initial or local exec */
635 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
636 unsigned char tls_type;
637 };
638
639 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
640
641 struct elf_xtensa_obj_tdata
642 {
643 struct elf_obj_tdata root;
644
645 /* tls_type for each local got entry. */
646 char *local_got_tls_type;
647
648 bfd_signed_vma *local_tlsfunc_refcounts;
649 };
650
651 #define elf_xtensa_tdata(abfd) \
652 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
653
654 #define elf_xtensa_local_got_tls_type(abfd) \
655 (elf_xtensa_tdata (abfd)->local_got_tls_type)
656
657 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
658 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
659
660 #define is_xtensa_elf(bfd) \
661 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
662 && elf_tdata (bfd) != NULL \
663 && elf_object_id (bfd) == XTENSA_ELF_DATA)
664
665 static bool
666 elf_xtensa_mkobject (bfd *abfd)
667 {
668 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
669 XTENSA_ELF_DATA);
670 }
671
672 /* Xtensa ELF linker hash table. */
673
674 struct elf_xtensa_link_hash_table
675 {
676 struct elf_link_hash_table elf;
677
678 /* Short-cuts to get to dynamic linker sections. */
679 asection *sgotloc;
680 asection *spltlittbl;
681
682 /* Total count of PLT relocations seen during check_relocs.
683 The actual PLT code must be split into multiple sections and all
684 the sections have to be created before size_dynamic_sections,
685 where we figure out the exact number of PLT entries that will be
686 needed. It is OK if this count is an overestimate, e.g., some
687 relocations may be removed by GC. */
688 int plt_reloc_count;
689
690 struct elf_xtensa_link_hash_entry *tlsbase;
691 };
692
693 /* Get the Xtensa ELF linker hash table from a link_info structure. */
694
695 #define elf_xtensa_hash_table(p) \
696 ((is_elf_hash_table ((p)->hash) \
697 && elf_hash_table_id (elf_hash_table (p)) == XTENSA_ELF_DATA) \
698 ? (struct elf_xtensa_link_hash_table *) (p)->hash : NULL)
699
700 /* Create an entry in an Xtensa ELF linker hash table. */
701
702 static struct bfd_hash_entry *
703 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
704 struct bfd_hash_table *table,
705 const char *string)
706 {
707 /* Allocate the structure if it has not already been allocated by a
708 subclass. */
709 if (entry == NULL)
710 {
711 entry = bfd_hash_allocate (table,
712 sizeof (struct elf_xtensa_link_hash_entry));
713 if (entry == NULL)
714 return entry;
715 }
716
717 /* Call the allocation method of the superclass. */
718 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
719 if (entry != NULL)
720 {
721 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
722 eh->tlsfunc_refcount = 0;
723 eh->tls_type = GOT_UNKNOWN;
724 }
725
726 return entry;
727 }
728
729 /* Create an Xtensa ELF linker hash table. */
730
731 static struct bfd_link_hash_table *
732 elf_xtensa_link_hash_table_create (bfd *abfd)
733 {
734 struct elf_link_hash_entry *tlsbase;
735 struct elf_xtensa_link_hash_table *ret;
736 size_t amt = sizeof (struct elf_xtensa_link_hash_table);
737
738 ret = bfd_zmalloc (amt);
739 if (ret == NULL)
740 return NULL;
741
742 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
743 elf_xtensa_link_hash_newfunc,
744 sizeof (struct elf_xtensa_link_hash_entry),
745 XTENSA_ELF_DATA))
746 {
747 free (ret);
748 return NULL;
749 }
750
751 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
752 for it later. */
753 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
754 true, false, false);
755 tlsbase->root.type = bfd_link_hash_new;
756 tlsbase->root.u.undef.abfd = NULL;
757 tlsbase->non_elf = 0;
758 ret->elf.dt_pltgot_required = true;
759 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
760 ret->tlsbase->tls_type = GOT_UNKNOWN;
761
762 return &ret->elf.root;
763 }
764
765 /* Copy the extra info we tack onto an elf_link_hash_entry. */
766
767 static void
768 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
769 struct elf_link_hash_entry *dir,
770 struct elf_link_hash_entry *ind)
771 {
772 struct elf_xtensa_link_hash_entry *edir, *eind;
773
774 edir = elf_xtensa_hash_entry (dir);
775 eind = elf_xtensa_hash_entry (ind);
776
777 if (ind->root.type == bfd_link_hash_indirect)
778 {
779 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
780 eind->tlsfunc_refcount = 0;
781
782 if (dir->got.refcount <= 0)
783 {
784 edir->tls_type = eind->tls_type;
785 eind->tls_type = GOT_UNKNOWN;
786 }
787 }
788
789 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
790 }
791
792 static inline bool
793 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
794 struct bfd_link_info *info)
795 {
796 /* Check if we should do dynamic things to this symbol. The
797 "ignore_protected" argument need not be set, because Xtensa code
798 does not require special handling of STV_PROTECTED to make function
799 pointer comparisons work properly. The PLT addresses are never
800 used for function pointers. */
801
802 return _bfd_elf_dynamic_symbol_p (h, info, 0);
803 }
804
805 \f
806 static int
807 property_table_compare (const void *ap, const void *bp)
808 {
809 const property_table_entry *a = (const property_table_entry *) ap;
810 const property_table_entry *b = (const property_table_entry *) bp;
811
812 if (a->address == b->address)
813 {
814 if (a->size != b->size)
815 return (a->size - b->size);
816
817 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
818 return ((b->flags & XTENSA_PROP_ALIGN)
819 - (a->flags & XTENSA_PROP_ALIGN));
820
821 if ((a->flags & XTENSA_PROP_ALIGN)
822 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
823 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
824 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
825 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
826
827 if ((a->flags & XTENSA_PROP_UNREACHABLE)
828 != (b->flags & XTENSA_PROP_UNREACHABLE))
829 return ((b->flags & XTENSA_PROP_UNREACHABLE)
830 - (a->flags & XTENSA_PROP_UNREACHABLE));
831
832 return (a->flags - b->flags);
833 }
834
835 return (a->address - b->address);
836 }
837
838
839 static int
840 property_table_matches (const void *ap, const void *bp)
841 {
842 const property_table_entry *a = (const property_table_entry *) ap;
843 const property_table_entry *b = (const property_table_entry *) bp;
844
845 /* Check if one entry overlaps with the other. */
846 if ((b->address >= a->address && b->address < (a->address + a->size))
847 || (a->address >= b->address && a->address < (b->address + b->size)))
848 return 0;
849
850 return (a->address - b->address);
851 }
852
853
854 /* Get the literal table or property table entries for the given
855 section. Sets TABLE_P and returns the number of entries. On
856 error, returns a negative value. */
857
858 int
859 xtensa_read_table_entries (bfd *abfd,
860 asection *section,
861 property_table_entry **table_p,
862 const char *sec_name,
863 bool output_addr)
864 {
865 asection *table_section;
866 bfd_size_type table_size = 0;
867 bfd_byte *table_data;
868 property_table_entry *blocks;
869 int blk, block_count;
870 bfd_size_type num_records;
871 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
872 bfd_vma section_addr, off;
873 flagword predef_flags;
874 bfd_size_type table_entry_size, section_limit;
875
876 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
877 || !section
878 || !(section->flags & SEC_ALLOC)
879 || (section->flags & SEC_DEBUGGING))
880 {
881 *table_p = NULL;
882 return 0;
883 }
884
885 table_section = xtensa_get_property_section (section, sec_name);
886 if (table_section)
887 table_size = table_section->size;
888
889 if (table_size == 0)
890 {
891 *table_p = NULL;
892 return 0;
893 }
894
895 predef_flags = xtensa_get_property_predef_flags (table_section);
896 table_entry_size = 12;
897 if (predef_flags)
898 table_entry_size -= 4;
899
900 num_records = table_size / table_entry_size;
901
902 table_data = retrieve_contents (abfd, table_section, true);
903 if (table_data == NULL)
904 {
905 *table_p = NULL;
906 return 0;
907 }
908
909 blocks = (property_table_entry *)
910 bfd_malloc (num_records * sizeof (property_table_entry));
911 block_count = 0;
912
913 if (output_addr)
914 section_addr = section->output_section->vma + section->output_offset;
915 else
916 section_addr = section->vma;
917
918 internal_relocs = retrieve_internal_relocs (abfd, table_section, true);
919 if (internal_relocs && !table_section->reloc_done)
920 {
921 qsort (internal_relocs, table_section->reloc_count,
922 sizeof (Elf_Internal_Rela), internal_reloc_compare);
923 irel = internal_relocs;
924 }
925 else
926 irel = NULL;
927
928 section_limit = bfd_get_section_limit (abfd, section);
929 rel_end = internal_relocs + table_section->reloc_count;
930
931 for (off = 0; off < table_size; off += table_entry_size)
932 {
933 bfd_vma address = bfd_get_32 (abfd, table_data + off);
934
935 /* Skip any relocations before the current offset. This should help
936 avoid confusion caused by unexpected relocations for the preceding
937 table entry. */
938 while (irel &&
939 (irel->r_offset < off
940 || (irel->r_offset == off
941 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
942 {
943 irel += 1;
944 if (irel >= rel_end)
945 irel = 0;
946 }
947
948 if (irel && irel->r_offset == off)
949 {
950 bfd_vma sym_off;
951 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
952 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
953
954 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
955 continue;
956
957 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
958 BFD_ASSERT (sym_off == 0);
959 address += (section_addr + sym_off + irel->r_addend);
960 }
961 else
962 {
963 if (address < section_addr
964 || address >= section_addr + section_limit)
965 continue;
966 }
967
968 blocks[block_count].address = address;
969 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
970 if (predef_flags)
971 blocks[block_count].flags = predef_flags;
972 else
973 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
974 block_count++;
975 }
976
977 release_contents (table_section, table_data);
978 release_internal_relocs (table_section, internal_relocs);
979
980 if (block_count > 0)
981 {
982 /* Now sort them into address order for easy reference. */
983 qsort (blocks, block_count, sizeof (property_table_entry),
984 property_table_compare);
985
986 /* Check that the table contents are valid. Problems may occur,
987 for example, if an unrelocated object file is stripped. */
988 for (blk = 1; blk < block_count; blk++)
989 {
990 /* The only circumstance where two entries may legitimately
991 have the same address is when one of them is a zero-size
992 placeholder to mark a place where fill can be inserted.
993 The zero-size entry should come first. */
994 if (blocks[blk - 1].address == blocks[blk].address &&
995 blocks[blk - 1].size != 0)
996 {
997 /* xgettext:c-format */
998 _bfd_error_handler (_("%pB(%pA): invalid property table"),
999 abfd, section);
1000 bfd_set_error (bfd_error_bad_value);
1001 free (blocks);
1002 return -1;
1003 }
1004 }
1005 }
1006
1007 *table_p = blocks;
1008 return block_count;
1009 }
1010
1011
1012 static property_table_entry *
1013 elf_xtensa_find_property_entry (property_table_entry *property_table,
1014 int property_table_size,
1015 bfd_vma addr)
1016 {
1017 property_table_entry entry;
1018 property_table_entry *rv;
1019
1020 if (property_table_size == 0)
1021 return NULL;
1022
1023 entry.address = addr;
1024 entry.size = 1;
1025 entry.flags = 0;
1026
1027 rv = bsearch (&entry, property_table, property_table_size,
1028 sizeof (property_table_entry), property_table_matches);
1029 return rv;
1030 }
1031
1032
1033 static bool
1034 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
1035 int lit_table_size,
1036 bfd_vma addr)
1037 {
1038 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
1039 return true;
1040
1041 return false;
1042 }
1043
1044 \f
1045 /* Look through the relocs for a section during the first phase, and
1046 calculate needed space in the dynamic reloc sections. */
1047
1048 static bool
1049 elf_xtensa_check_relocs (bfd *abfd,
1050 struct bfd_link_info *info,
1051 asection *sec,
1052 const Elf_Internal_Rela *relocs)
1053 {
1054 struct elf_xtensa_link_hash_table *htab;
1055 Elf_Internal_Shdr *symtab_hdr;
1056 struct elf_link_hash_entry **sym_hashes;
1057 const Elf_Internal_Rela *rel;
1058 const Elf_Internal_Rela *rel_end;
1059
1060 if (bfd_link_relocatable (info))
1061 return true;
1062
1063 BFD_ASSERT (is_xtensa_elf (abfd));
1064
1065 htab = elf_xtensa_hash_table (info);
1066 if (htab == NULL)
1067 return false;
1068
1069 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1070 sym_hashes = elf_sym_hashes (abfd);
1071
1072 rel_end = relocs + sec->reloc_count;
1073 for (rel = relocs; rel < rel_end; rel++)
1074 {
1075 unsigned int r_type;
1076 unsigned r_symndx;
1077 struct elf_link_hash_entry *h = NULL;
1078 struct elf_xtensa_link_hash_entry *eh;
1079 int tls_type, old_tls_type;
1080 bool is_got = false;
1081 bool is_plt = false;
1082 bool is_tlsfunc = false;
1083
1084 r_symndx = ELF32_R_SYM (rel->r_info);
1085 r_type = ELF32_R_TYPE (rel->r_info);
1086
1087 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1088 {
1089 /* xgettext:c-format */
1090 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1091 abfd, r_symndx);
1092 return false;
1093 }
1094
1095 if (r_symndx >= symtab_hdr->sh_info)
1096 {
1097 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1098 while (h->root.type == bfd_link_hash_indirect
1099 || h->root.type == bfd_link_hash_warning)
1100 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1101 }
1102 eh = elf_xtensa_hash_entry (h);
1103
1104 switch (r_type)
1105 {
1106 case R_XTENSA_TLSDESC_FN:
1107 if (bfd_link_dll (info))
1108 {
1109 tls_type = GOT_TLS_GD;
1110 is_got = true;
1111 is_tlsfunc = true;
1112 }
1113 else
1114 tls_type = GOT_TLS_IE;
1115 break;
1116
1117 case R_XTENSA_TLSDESC_ARG:
1118 if (bfd_link_dll (info))
1119 {
1120 tls_type = GOT_TLS_GD;
1121 is_got = true;
1122 }
1123 else
1124 {
1125 tls_type = GOT_TLS_IE;
1126 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase
1127 && elf_xtensa_dynamic_symbol_p (h, info))
1128 is_got = true;
1129 }
1130 break;
1131
1132 case R_XTENSA_TLS_DTPOFF:
1133 if (bfd_link_dll (info))
1134 tls_type = GOT_TLS_GD;
1135 else
1136 tls_type = GOT_TLS_IE;
1137 break;
1138
1139 case R_XTENSA_TLS_TPOFF:
1140 tls_type = GOT_TLS_IE;
1141 if (bfd_link_pic (info))
1142 info->flags |= DF_STATIC_TLS;
1143 if (bfd_link_dll (info) || elf_xtensa_dynamic_symbol_p (h, info))
1144 is_got = true;
1145 break;
1146
1147 case R_XTENSA_32:
1148 tls_type = GOT_NORMAL;
1149 is_got = true;
1150 break;
1151
1152 case R_XTENSA_PLT:
1153 tls_type = GOT_NORMAL;
1154 is_plt = true;
1155 break;
1156
1157 case R_XTENSA_GNU_VTINHERIT:
1158 /* This relocation describes the C++ object vtable hierarchy.
1159 Reconstruct it for later use during GC. */
1160 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1161 return false;
1162 continue;
1163
1164 case R_XTENSA_GNU_VTENTRY:
1165 /* This relocation describes which C++ vtable entries are actually
1166 used. Record for later use during GC. */
1167 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1168 return false;
1169 continue;
1170
1171 default:
1172 /* Nothing to do for any other relocations. */
1173 continue;
1174 }
1175
1176 if (h)
1177 {
1178 if (is_plt)
1179 {
1180 if (h->plt.refcount <= 0)
1181 {
1182 h->needs_plt = 1;
1183 h->plt.refcount = 1;
1184 }
1185 else
1186 h->plt.refcount += 1;
1187
1188 /* Keep track of the total PLT relocation count even if we
1189 don't yet know whether the dynamic sections will be
1190 created. */
1191 htab->plt_reloc_count += 1;
1192
1193 if (elf_hash_table (info)->dynamic_sections_created)
1194 {
1195 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1196 return false;
1197 }
1198 }
1199 else if (is_got)
1200 {
1201 if (h->got.refcount <= 0)
1202 h->got.refcount = 1;
1203 else
1204 h->got.refcount += 1;
1205 }
1206
1207 if (is_tlsfunc)
1208 eh->tlsfunc_refcount += 1;
1209
1210 old_tls_type = eh->tls_type;
1211 }
1212 else
1213 {
1214 /* Allocate storage the first time. */
1215 if (elf_local_got_refcounts (abfd) == NULL)
1216 {
1217 bfd_size_type size = symtab_hdr->sh_info;
1218 void *mem;
1219
1220 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1221 if (mem == NULL)
1222 return false;
1223 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1224
1225 mem = bfd_zalloc (abfd, size);
1226 if (mem == NULL)
1227 return false;
1228 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1229
1230 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1231 if (mem == NULL)
1232 return false;
1233 elf_xtensa_local_tlsfunc_refcounts (abfd)
1234 = (bfd_signed_vma *) mem;
1235 }
1236
1237 /* This is a global offset table entry for a local symbol. */
1238 if (is_got || is_plt)
1239 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1240
1241 if (is_tlsfunc)
1242 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1243
1244 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1245 }
1246
1247 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1248 tls_type |= old_tls_type;
1249 /* If a TLS symbol is accessed using IE at least once,
1250 there is no point to use a dynamic model for it. */
1251 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1252 && ((old_tls_type & GOT_TLS_GD) == 0
1253 || (tls_type & GOT_TLS_IE) == 0))
1254 {
1255 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1256 tls_type = old_tls_type;
1257 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1258 tls_type |= old_tls_type;
1259 else
1260 {
1261 _bfd_error_handler
1262 /* xgettext:c-format */
1263 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1264 abfd,
1265 h ? h->root.root.string : "<local>");
1266 return false;
1267 }
1268 }
1269
1270 if (old_tls_type != tls_type)
1271 {
1272 if (eh)
1273 eh->tls_type = tls_type;
1274 else
1275 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1276 }
1277 }
1278
1279 return true;
1280 }
1281
1282
1283 static void
1284 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1285 struct elf_link_hash_entry *h)
1286 {
1287 if (bfd_link_pic (info))
1288 {
1289 if (h->plt.refcount > 0)
1290 {
1291 /* For shared objects, there's no need for PLT entries for local
1292 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1293 if (h->got.refcount < 0)
1294 h->got.refcount = 0;
1295 h->got.refcount += h->plt.refcount;
1296 h->plt.refcount = 0;
1297 }
1298 }
1299 else
1300 {
1301 /* Don't need any dynamic relocations at all. */
1302 h->plt.refcount = 0;
1303 h->got.refcount = 0;
1304 }
1305 }
1306
1307
1308 static void
1309 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1310 struct elf_link_hash_entry *h,
1311 bool force_local)
1312 {
1313 /* For a shared link, move the plt refcount to the got refcount to leave
1314 space for RELATIVE relocs. */
1315 elf_xtensa_make_sym_local (info, h);
1316
1317 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1318 }
1319
1320
1321 /* Return the section that should be marked against GC for a given
1322 relocation. */
1323
1324 static asection *
1325 elf_xtensa_gc_mark_hook (asection *sec,
1326 struct bfd_link_info *info,
1327 Elf_Internal_Rela *rel,
1328 struct elf_link_hash_entry *h,
1329 Elf_Internal_Sym *sym)
1330 {
1331 /* Property sections are marked "KEEP" in the linker scripts, but they
1332 should not cause other sections to be marked. (This approach relies
1333 on elf_xtensa_discard_info to remove property table entries that
1334 describe discarded sections. Alternatively, it might be more
1335 efficient to avoid using "KEEP" in the linker scripts and instead use
1336 the gc_mark_extra_sections hook to mark only the property sections
1337 that describe marked sections. That alternative does not work well
1338 with the current property table sections, which do not correspond
1339 one-to-one with the sections they describe, but that should be fixed
1340 someday.) */
1341 if (xtensa_is_property_section (sec))
1342 return NULL;
1343
1344 if (h != NULL)
1345 switch (ELF32_R_TYPE (rel->r_info))
1346 {
1347 case R_XTENSA_GNU_VTINHERIT:
1348 case R_XTENSA_GNU_VTENTRY:
1349 return NULL;
1350 }
1351
1352 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1353 }
1354
1355
1356 /* Create all the dynamic sections. */
1357
1358 static bool
1359 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1360 {
1361 struct elf_xtensa_link_hash_table *htab;
1362 flagword flags, noalloc_flags;
1363
1364 htab = elf_xtensa_hash_table (info);
1365 if (htab == NULL)
1366 return false;
1367
1368 /* First do all the standard stuff. */
1369 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1370 return false;
1371
1372 /* Create any extra PLT sections in case check_relocs has already
1373 been called on all the non-dynamic input files. */
1374 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1375 return false;
1376
1377 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1378 | SEC_LINKER_CREATED | SEC_READONLY);
1379 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1380
1381 /* Mark the ".got.plt" section READONLY. */
1382 if (htab->elf.sgotplt == NULL
1383 || !bfd_set_section_flags (htab->elf.sgotplt, flags))
1384 return false;
1385
1386 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1387 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1388 flags);
1389 if (htab->sgotloc == NULL
1390 || !bfd_set_section_alignment (htab->sgotloc, 2))
1391 return false;
1392
1393 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1394 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1395 noalloc_flags);
1396 if (htab->spltlittbl == NULL
1397 || !bfd_set_section_alignment (htab->spltlittbl, 2))
1398 return false;
1399
1400 return true;
1401 }
1402
1403
1404 static bool
1405 add_extra_plt_sections (struct bfd_link_info *info, int count)
1406 {
1407 bfd *dynobj = elf_hash_table (info)->dynobj;
1408 int chunk;
1409
1410 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1411 ".got.plt" sections. */
1412 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1413 {
1414 char *sname;
1415 flagword flags;
1416 asection *s;
1417
1418 /* Stop when we find a section has already been created. */
1419 if (elf_xtensa_get_plt_section (info, chunk))
1420 break;
1421
1422 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1423 | SEC_LINKER_CREATED | SEC_READONLY);
1424
1425 sname = (char *) bfd_malloc (10);
1426 sprintf (sname, ".plt.%u", chunk);
1427 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1428 if (s == NULL
1429 || !bfd_set_section_alignment (s, 2))
1430 return false;
1431
1432 sname = (char *) bfd_malloc (14);
1433 sprintf (sname, ".got.plt.%u", chunk);
1434 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1435 if (s == NULL
1436 || !bfd_set_section_alignment (s, 2))
1437 return false;
1438 }
1439
1440 return true;
1441 }
1442
1443
1444 /* Adjust a symbol defined by a dynamic object and referenced by a
1445 regular object. The current definition is in some section of the
1446 dynamic object, but we're not including those sections. We have to
1447 change the definition to something the rest of the link can
1448 understand. */
1449
1450 static bool
1451 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1452 struct elf_link_hash_entry *h)
1453 {
1454 /* If this is a weak symbol, and there is a real definition, the
1455 processor independent code will have arranged for us to see the
1456 real definition first, and we can just use the same value. */
1457 if (h->is_weakalias)
1458 {
1459 struct elf_link_hash_entry *def = weakdef (h);
1460 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1461 h->root.u.def.section = def->root.u.def.section;
1462 h->root.u.def.value = def->root.u.def.value;
1463 return true;
1464 }
1465
1466 /* This is a reference to a symbol defined by a dynamic object. The
1467 reference must go through the GOT, so there's no need for COPY relocs,
1468 .dynbss, etc. */
1469
1470 return true;
1471 }
1472
1473
1474 static bool
1475 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1476 {
1477 struct bfd_link_info *info;
1478 struct elf_xtensa_link_hash_table *htab;
1479 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1480
1481 if (h->root.type == bfd_link_hash_indirect)
1482 return true;
1483
1484 info = (struct bfd_link_info *) arg;
1485 htab = elf_xtensa_hash_table (info);
1486 if (htab == NULL)
1487 return false;
1488
1489 /* If we saw any use of an IE model for this symbol, we can then optimize
1490 away GOT entries for any TLSDESC_FN relocs. */
1491 if ((eh->tls_type & GOT_TLS_IE) != 0)
1492 {
1493 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1494 h->got.refcount -= eh->tlsfunc_refcount;
1495 }
1496
1497 if (! elf_xtensa_dynamic_symbol_p (h, info))
1498 elf_xtensa_make_sym_local (info, h);
1499
1500 if (! elf_xtensa_dynamic_symbol_p (h, info)
1501 && h->root.type == bfd_link_hash_undefweak)
1502 return true;
1503
1504 if (h->plt.refcount > 0)
1505 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1506
1507 if (h->got.refcount > 0)
1508 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1509
1510 return true;
1511 }
1512
1513
1514 static void
1515 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1516 {
1517 struct elf_xtensa_link_hash_table *htab;
1518 bfd *i;
1519
1520 htab = elf_xtensa_hash_table (info);
1521 if (htab == NULL)
1522 return;
1523
1524 for (i = info->input_bfds; i; i = i->link.next)
1525 {
1526 bfd_signed_vma *local_got_refcounts;
1527 bfd_size_type j, cnt;
1528 Elf_Internal_Shdr *symtab_hdr;
1529
1530 local_got_refcounts = elf_local_got_refcounts (i);
1531 if (!local_got_refcounts)
1532 continue;
1533
1534 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1535 cnt = symtab_hdr->sh_info;
1536
1537 for (j = 0; j < cnt; ++j)
1538 {
1539 /* If we saw any use of an IE model for this symbol, we can
1540 then optimize away GOT entries for any TLSDESC_FN relocs. */
1541 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1542 {
1543 bfd_signed_vma *tlsfunc_refcount
1544 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1545 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1546 local_got_refcounts[j] -= *tlsfunc_refcount;
1547 }
1548
1549 if (local_got_refcounts[j] > 0)
1550 htab->elf.srelgot->size += (local_got_refcounts[j]
1551 * sizeof (Elf32_External_Rela));
1552 }
1553 }
1554 }
1555
1556
1557 /* Set the sizes of the dynamic sections. */
1558
1559 static bool
1560 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1561 struct bfd_link_info *info)
1562 {
1563 struct elf_xtensa_link_hash_table *htab;
1564 bfd *dynobj, *abfd;
1565 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1566 bool relplt, relgot;
1567 int plt_entries, plt_chunks, chunk;
1568
1569 plt_entries = 0;
1570 plt_chunks = 0;
1571
1572 htab = elf_xtensa_hash_table (info);
1573 if (htab == NULL)
1574 return false;
1575
1576 dynobj = elf_hash_table (info)->dynobj;
1577 if (dynobj == NULL)
1578 abort ();
1579 srelgot = htab->elf.srelgot;
1580 srelplt = htab->elf.srelplt;
1581
1582 if (elf_hash_table (info)->dynamic_sections_created)
1583 {
1584 BFD_ASSERT (htab->elf.srelgot != NULL
1585 && htab->elf.srelplt != NULL
1586 && htab->elf.sgot != NULL
1587 && htab->spltlittbl != NULL
1588 && htab->sgotloc != NULL);
1589
1590 /* Set the contents of the .interp section to the interpreter. */
1591 if (bfd_link_executable (info) && !info->nointerp)
1592 {
1593 s = bfd_get_linker_section (dynobj, ".interp");
1594 if (s == NULL)
1595 abort ();
1596 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1597 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1598 }
1599
1600 /* Allocate room for one word in ".got". */
1601 htab->elf.sgot->size = 4;
1602
1603 /* Allocate space in ".rela.got" for literals that reference global
1604 symbols and space in ".rela.plt" for literals that have PLT
1605 entries. */
1606 elf_link_hash_traverse (elf_hash_table (info),
1607 elf_xtensa_allocate_dynrelocs,
1608 (void *) info);
1609
1610 /* If we are generating a shared object, we also need space in
1611 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1612 reference local symbols. */
1613 if (bfd_link_pic (info))
1614 elf_xtensa_allocate_local_got_size (info);
1615
1616 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1617 each PLT entry, we need the PLT code plus a 4-byte literal.
1618 For each chunk of ".plt", we also need two more 4-byte
1619 literals, two corresponding entries in ".rela.got", and an
1620 8-byte entry in ".xt.lit.plt". */
1621 spltlittbl = htab->spltlittbl;
1622 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1623 plt_chunks =
1624 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1625
1626 /* Iterate over all the PLT chunks, including any extra sections
1627 created earlier because the initial count of PLT relocations
1628 was an overestimate. */
1629 for (chunk = 0;
1630 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1631 chunk++)
1632 {
1633 int chunk_entries;
1634
1635 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1636 BFD_ASSERT (sgotplt != NULL);
1637
1638 if (chunk < plt_chunks - 1)
1639 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1640 else if (chunk == plt_chunks - 1)
1641 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1642 else
1643 chunk_entries = 0;
1644
1645 if (chunk_entries != 0)
1646 {
1647 sgotplt->size = 4 * (chunk_entries + 2);
1648 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1649 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1650 spltlittbl->size += 8;
1651 }
1652 else
1653 {
1654 sgotplt->size = 0;
1655 splt->size = 0;
1656 }
1657 }
1658
1659 /* Allocate space in ".got.loc" to match the total size of all the
1660 literal tables. */
1661 sgotloc = htab->sgotloc;
1662 sgotloc->size = spltlittbl->size;
1663 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1664 {
1665 if (abfd->flags & DYNAMIC)
1666 continue;
1667 for (s = abfd->sections; s != NULL; s = s->next)
1668 {
1669 if (! discarded_section (s)
1670 && xtensa_is_littable_section (s)
1671 && s != spltlittbl)
1672 sgotloc->size += s->size;
1673 }
1674 }
1675 }
1676
1677 /* Allocate memory for dynamic sections. */
1678 relplt = false;
1679 relgot = false;
1680 for (s = dynobj->sections; s != NULL; s = s->next)
1681 {
1682 const char *name;
1683
1684 if ((s->flags & SEC_LINKER_CREATED) == 0)
1685 continue;
1686
1687 /* It's OK to base decisions on the section name, because none
1688 of the dynobj section names depend upon the input files. */
1689 name = bfd_section_name (s);
1690
1691 if (startswith (name, ".rela"))
1692 {
1693 if (s->size != 0)
1694 {
1695 if (strcmp (name, ".rela.plt") == 0)
1696 relplt = true;
1697 else if (strcmp (name, ".rela.got") == 0)
1698 relgot = true;
1699
1700 /* We use the reloc_count field as a counter if we need
1701 to copy relocs into the output file. */
1702 s->reloc_count = 0;
1703 }
1704 }
1705 else if (! startswith (name, ".plt.")
1706 && ! startswith (name, ".got.plt.")
1707 && strcmp (name, ".got") != 0
1708 && strcmp (name, ".plt") != 0
1709 && strcmp (name, ".got.plt") != 0
1710 && strcmp (name, ".xt.lit.plt") != 0
1711 && strcmp (name, ".got.loc") != 0)
1712 {
1713 /* It's not one of our sections, so don't allocate space. */
1714 continue;
1715 }
1716
1717 if (s->size == 0)
1718 {
1719 /* If we don't need this section, strip it from the output
1720 file. We must create the ".plt*" and ".got.plt*"
1721 sections in create_dynamic_sections and/or check_relocs
1722 based on a conservative estimate of the PLT relocation
1723 count, because the sections must be created before the
1724 linker maps input sections to output sections. The
1725 linker does that before size_dynamic_sections, where we
1726 compute the exact size of the PLT, so there may be more
1727 of these sections than are actually needed. */
1728 s->flags |= SEC_EXCLUDE;
1729 }
1730 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1731 {
1732 /* Allocate memory for the section contents. */
1733 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1734 if (s->contents == NULL)
1735 return false;
1736 }
1737 }
1738
1739 if (elf_hash_table (info)->dynamic_sections_created)
1740 {
1741 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1742 known until finish_dynamic_sections, but we need to get the relocs
1743 in place before they are sorted. */
1744 for (chunk = 0; chunk < plt_chunks; chunk++)
1745 {
1746 Elf_Internal_Rela irela;
1747 bfd_byte *loc;
1748
1749 irela.r_offset = 0;
1750 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1751 irela.r_addend = 0;
1752
1753 loc = (srelgot->contents
1754 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1755 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1756 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1757 loc + sizeof (Elf32_External_Rela));
1758 srelgot->reloc_count += 2;
1759 }
1760
1761 /* Add some entries to the .dynamic section. We fill in the
1762 values later, in elf_xtensa_finish_dynamic_sections, but we
1763 must add the entries now so that we get the correct size for
1764 the .dynamic section. The DT_DEBUG entry is filled in by the
1765 dynamic linker and used by the debugger. */
1766 #define add_dynamic_entry(TAG, VAL) \
1767 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1768
1769 if (!_bfd_elf_add_dynamic_tags (output_bfd, info,
1770 relplt || relgot))
1771 return false;
1772
1773 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1774 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1775 return false;
1776 }
1777 #undef add_dynamic_entry
1778
1779 return true;
1780 }
1781
1782 static bool
1783 elf_xtensa_always_size_sections (bfd *output_bfd,
1784 struct bfd_link_info *info)
1785 {
1786 struct elf_xtensa_link_hash_table *htab;
1787 asection *tls_sec;
1788
1789 htab = elf_xtensa_hash_table (info);
1790 if (htab == NULL)
1791 return false;
1792
1793 tls_sec = htab->elf.tls_sec;
1794
1795 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1796 {
1797 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1798 struct bfd_link_hash_entry *bh = &tlsbase->root;
1799 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1800
1801 tlsbase->type = STT_TLS;
1802 if (!(_bfd_generic_link_add_one_symbol
1803 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1804 tls_sec, 0, NULL, false,
1805 bed->collect, &bh)))
1806 return false;
1807 tlsbase->def_regular = 1;
1808 tlsbase->other = STV_HIDDEN;
1809 (*bed->elf_backend_hide_symbol) (info, tlsbase, true);
1810 }
1811
1812 return true;
1813 }
1814
1815 \f
1816 /* Return the base VMA address which should be subtracted from real addresses
1817 when resolving @dtpoff relocation.
1818 This is PT_TLS segment p_vaddr. */
1819
1820 static bfd_vma
1821 dtpoff_base (struct bfd_link_info *info)
1822 {
1823 /* If tls_sec is NULL, we should have signalled an error already. */
1824 if (elf_hash_table (info)->tls_sec == NULL)
1825 return 0;
1826 return elf_hash_table (info)->tls_sec->vma;
1827 }
1828
1829 /* Return the relocation value for @tpoff relocation
1830 if STT_TLS virtual address is ADDRESS. */
1831
1832 static bfd_vma
1833 tpoff (struct bfd_link_info *info, bfd_vma address)
1834 {
1835 struct elf_link_hash_table *htab = elf_hash_table (info);
1836 bfd_vma base;
1837
1838 /* If tls_sec is NULL, we should have signalled an error already. */
1839 if (htab->tls_sec == NULL)
1840 return 0;
1841 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1842 return address - htab->tls_sec->vma + base;
1843 }
1844
1845 /* Perform the specified relocation. The instruction at (contents + address)
1846 is modified to set one operand to represent the value in "relocation". The
1847 operand position is determined by the relocation type recorded in the
1848 howto. */
1849
1850 #define CALL_SEGMENT_BITS (30)
1851 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1852
1853 static bfd_reloc_status_type
1854 elf_xtensa_do_reloc (reloc_howto_type *howto,
1855 bfd *abfd,
1856 asection *input_section,
1857 bfd_vma relocation,
1858 bfd_byte *contents,
1859 bfd_vma address,
1860 bool is_weak_undef,
1861 char **error_message)
1862 {
1863 xtensa_format fmt;
1864 xtensa_opcode opcode;
1865 xtensa_isa isa = xtensa_default_isa;
1866 static xtensa_insnbuf ibuff = NULL;
1867 static xtensa_insnbuf sbuff = NULL;
1868 bfd_vma self_address;
1869 bfd_size_type input_size;
1870 int opnd, slot;
1871 uint32 newval;
1872
1873 if (!ibuff)
1874 {
1875 ibuff = xtensa_insnbuf_alloc (isa);
1876 sbuff = xtensa_insnbuf_alloc (isa);
1877 }
1878
1879 input_size = bfd_get_section_limit (abfd, input_section);
1880
1881 /* Calculate the PC address for this instruction. */
1882 self_address = (input_section->output_section->vma
1883 + input_section->output_offset
1884 + address);
1885
1886 switch (howto->type)
1887 {
1888 case R_XTENSA_NONE:
1889 case R_XTENSA_DIFF8:
1890 case R_XTENSA_DIFF16:
1891 case R_XTENSA_DIFF32:
1892 case R_XTENSA_PDIFF8:
1893 case R_XTENSA_PDIFF16:
1894 case R_XTENSA_PDIFF32:
1895 case R_XTENSA_NDIFF8:
1896 case R_XTENSA_NDIFF16:
1897 case R_XTENSA_NDIFF32:
1898 case R_XTENSA_TLS_FUNC:
1899 case R_XTENSA_TLS_ARG:
1900 case R_XTENSA_TLS_CALL:
1901 return bfd_reloc_ok;
1902
1903 case R_XTENSA_ASM_EXPAND:
1904 if (!is_weak_undef)
1905 {
1906 /* Check for windowed CALL across a 1GB boundary. */
1907 opcode = get_expanded_call_opcode (contents + address,
1908 input_size - address, 0);
1909 if (is_windowed_call_opcode (opcode))
1910 {
1911 if ((self_address >> CALL_SEGMENT_BITS)
1912 != (relocation >> CALL_SEGMENT_BITS))
1913 {
1914 *error_message = "windowed longcall crosses 1GB boundary; "
1915 "return may fail";
1916 return bfd_reloc_dangerous;
1917 }
1918 }
1919 }
1920 return bfd_reloc_ok;
1921
1922 case R_XTENSA_ASM_SIMPLIFY:
1923 {
1924 /* Convert the L32R/CALLX to CALL. */
1925 bfd_reloc_status_type retval =
1926 elf_xtensa_do_asm_simplify (contents, address, input_size,
1927 error_message);
1928 if (retval != bfd_reloc_ok)
1929 return bfd_reloc_dangerous;
1930
1931 /* The CALL needs to be relocated. Continue below for that part. */
1932 address += 3;
1933 self_address += 3;
1934 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1935 }
1936 break;
1937
1938 case R_XTENSA_32:
1939 {
1940 bfd_vma x;
1941 x = bfd_get_32 (abfd, contents + address);
1942 x = x + relocation;
1943 bfd_put_32 (abfd, x, contents + address);
1944 }
1945 return bfd_reloc_ok;
1946
1947 case R_XTENSA_32_PCREL:
1948 bfd_put_32 (abfd, relocation - self_address, contents + address);
1949 return bfd_reloc_ok;
1950
1951 case R_XTENSA_PLT:
1952 case R_XTENSA_TLSDESC_FN:
1953 case R_XTENSA_TLSDESC_ARG:
1954 case R_XTENSA_TLS_DTPOFF:
1955 case R_XTENSA_TLS_TPOFF:
1956 bfd_put_32 (abfd, relocation, contents + address);
1957 return bfd_reloc_ok;
1958 }
1959
1960 /* Only instruction slot-specific relocations handled below.... */
1961 slot = get_relocation_slot (howto->type);
1962 if (slot == XTENSA_UNDEFINED)
1963 {
1964 *error_message = "unexpected relocation";
1965 return bfd_reloc_dangerous;
1966 }
1967
1968 if (input_size <= address)
1969 return bfd_reloc_outofrange;
1970 /* Read the instruction into a buffer and decode the opcode. */
1971 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1972 input_size - address);
1973 fmt = xtensa_format_decode (isa, ibuff);
1974 if (fmt == XTENSA_UNDEFINED)
1975 {
1976 *error_message = "cannot decode instruction format";
1977 return bfd_reloc_dangerous;
1978 }
1979
1980 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1981
1982 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1983 if (opcode == XTENSA_UNDEFINED)
1984 {
1985 *error_message = "cannot decode instruction opcode";
1986 return bfd_reloc_dangerous;
1987 }
1988
1989 /* Check for opcode-specific "alternate" relocations. */
1990 if (is_alt_relocation (howto->type))
1991 {
1992 if (opcode == get_l32r_opcode ())
1993 {
1994 /* Handle the special-case of non-PC-relative L32R instructions. */
1995 bfd *output_bfd = input_section->output_section->owner;
1996 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1997 if (!lit4_sec)
1998 {
1999 *error_message = "relocation references missing .lit4 section";
2000 return bfd_reloc_dangerous;
2001 }
2002 self_address = ((lit4_sec->vma & ~0xfff)
2003 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2004 newval = relocation;
2005 opnd = 1;
2006 }
2007 else if (opcode == get_const16_opcode ())
2008 {
2009 /* ALT used for high 16 bits.
2010 Ignore 32-bit overflow. */
2011 newval = (relocation >> 16) & 0xffff;
2012 opnd = 1;
2013 }
2014 else
2015 {
2016 /* No other "alternate" relocations currently defined. */
2017 *error_message = "unexpected relocation";
2018 return bfd_reloc_dangerous;
2019 }
2020 }
2021 else /* Not an "alternate" relocation.... */
2022 {
2023 if (opcode == get_const16_opcode ())
2024 {
2025 newval = relocation & 0xffff;
2026 opnd = 1;
2027 }
2028 else
2029 {
2030 /* ...normal PC-relative relocation.... */
2031
2032 /* Determine which operand is being relocated. */
2033 opnd = get_relocation_opnd (opcode, howto->type);
2034 if (opnd == XTENSA_UNDEFINED)
2035 {
2036 *error_message = "unexpected relocation";
2037 return bfd_reloc_dangerous;
2038 }
2039
2040 if (!howto->pc_relative)
2041 {
2042 *error_message = "expected PC-relative relocation";
2043 return bfd_reloc_dangerous;
2044 }
2045
2046 newval = relocation;
2047 }
2048 }
2049
2050 /* Apply the relocation. */
2051 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2052 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2053 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2054 sbuff, newval))
2055 {
2056 const char *opname = xtensa_opcode_name (isa, opcode);
2057 const char *msg;
2058
2059 msg = "cannot encode";
2060 if (is_direct_call_opcode (opcode))
2061 {
2062 if ((relocation & 0x3) != 0)
2063 msg = "misaligned call target";
2064 else
2065 msg = "call target out of range";
2066 }
2067 else if (opcode == get_l32r_opcode ())
2068 {
2069 if ((relocation & 0x3) != 0)
2070 msg = "misaligned literal target";
2071 else if (is_alt_relocation (howto->type))
2072 msg = "literal target out of range (too many literals)";
2073 else if (self_address > relocation)
2074 msg = "literal target out of range (try using text-section-literals)";
2075 else
2076 msg = "literal placed after use";
2077 }
2078
2079 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2080 return bfd_reloc_dangerous;
2081 }
2082
2083 /* Check for calls across 1GB boundaries. */
2084 if (is_direct_call_opcode (opcode)
2085 && is_windowed_call_opcode (opcode))
2086 {
2087 if ((self_address >> CALL_SEGMENT_BITS)
2088 != (relocation >> CALL_SEGMENT_BITS))
2089 {
2090 *error_message =
2091 "windowed call crosses 1GB boundary; return may fail";
2092 return bfd_reloc_dangerous;
2093 }
2094 }
2095
2096 /* Write the modified instruction back out of the buffer. */
2097 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2098 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2099 input_size - address);
2100 return bfd_reloc_ok;
2101 }
2102
2103
2104 static char *
2105 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2106 {
2107 /* To reduce the size of the memory leak,
2108 we only use a single message buffer. */
2109 static bfd_size_type alloc_size = 0;
2110 static char *message = NULL;
2111 bfd_size_type orig_len, len = 0;
2112 bool is_append;
2113 va_list ap;
2114
2115 va_start (ap, arglen);
2116
2117 is_append = (origmsg == message);
2118
2119 orig_len = strlen (origmsg);
2120 len = orig_len + strlen (fmt) + arglen + 20;
2121 if (len > alloc_size)
2122 {
2123 message = (char *) bfd_realloc_or_free (message, len);
2124 alloc_size = len;
2125 }
2126 if (message != NULL)
2127 {
2128 if (!is_append)
2129 memcpy (message, origmsg, orig_len);
2130 vsprintf (message + orig_len, fmt, ap);
2131 }
2132 va_end (ap);
2133 return message;
2134 }
2135
2136
2137 /* This function is registered as the "special_function" in the
2138 Xtensa howto for handling simplify operations.
2139 bfd_perform_relocation / bfd_install_relocation use it to
2140 perform (install) the specified relocation. Since this replaces the code
2141 in bfd_perform_relocation, it is basically an Xtensa-specific,
2142 stripped-down version of bfd_perform_relocation. */
2143
2144 static bfd_reloc_status_type
2145 bfd_elf_xtensa_reloc (bfd *abfd,
2146 arelent *reloc_entry,
2147 asymbol *symbol,
2148 void *data,
2149 asection *input_section,
2150 bfd *output_bfd,
2151 char **error_message)
2152 {
2153 bfd_vma relocation;
2154 bfd_reloc_status_type flag;
2155 bfd_size_type octets = (reloc_entry->address
2156 * OCTETS_PER_BYTE (abfd, input_section));
2157 bfd_vma output_base = 0;
2158 reloc_howto_type *howto = reloc_entry->howto;
2159 asection *reloc_target_output_section;
2160 bool is_weak_undef;
2161
2162 if (!xtensa_default_isa)
2163 xtensa_default_isa = xtensa_isa_init (0, 0);
2164
2165 /* ELF relocs are against symbols. If we are producing relocatable
2166 output, and the reloc is against an external symbol, the resulting
2167 reloc will also be against the same symbol. In such a case, we
2168 don't want to change anything about the way the reloc is handled,
2169 since it will all be done at final link time. This test is similar
2170 to what bfd_elf_generic_reloc does except that it lets relocs with
2171 howto->partial_inplace go through even if the addend is non-zero.
2172 (The real problem is that partial_inplace is set for XTENSA_32
2173 relocs to begin with, but that's a long story and there's little we
2174 can do about it now....) */
2175
2176 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2177 {
2178 reloc_entry->address += input_section->output_offset;
2179 return bfd_reloc_ok;
2180 }
2181
2182 /* Is the address of the relocation really within the section? */
2183 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2184 return bfd_reloc_outofrange;
2185
2186 /* Work out which section the relocation is targeted at and the
2187 initial relocation command value. */
2188
2189 /* Get symbol value. (Common symbols are special.) */
2190 if (bfd_is_com_section (symbol->section))
2191 relocation = 0;
2192 else
2193 relocation = symbol->value;
2194
2195 reloc_target_output_section = symbol->section->output_section;
2196
2197 /* Convert input-section-relative symbol value to absolute. */
2198 if ((output_bfd && !howto->partial_inplace)
2199 || reloc_target_output_section == NULL)
2200 output_base = 0;
2201 else
2202 output_base = reloc_target_output_section->vma;
2203
2204 relocation += output_base + symbol->section->output_offset;
2205
2206 /* Add in supplied addend. */
2207 relocation += reloc_entry->addend;
2208
2209 /* Here the variable relocation holds the final address of the
2210 symbol we are relocating against, plus any addend. */
2211 if (output_bfd)
2212 {
2213 if (!howto->partial_inplace)
2214 {
2215 /* This is a partial relocation, and we want to apply the relocation
2216 to the reloc entry rather than the raw data. Everything except
2217 relocations against section symbols has already been handled
2218 above. */
2219
2220 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2221 reloc_entry->addend = relocation;
2222 reloc_entry->address += input_section->output_offset;
2223 return bfd_reloc_ok;
2224 }
2225 else
2226 {
2227 reloc_entry->address += input_section->output_offset;
2228 reloc_entry->addend = 0;
2229 }
2230 }
2231
2232 is_weak_undef = (bfd_is_und_section (symbol->section)
2233 && (symbol->flags & BSF_WEAK) != 0);
2234 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2235 (bfd_byte *) data, (bfd_vma) octets,
2236 is_weak_undef, error_message);
2237
2238 if (flag == bfd_reloc_dangerous)
2239 {
2240 /* Add the symbol name to the error message. */
2241 if (! *error_message)
2242 *error_message = "";
2243 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2244 strlen (symbol->name) + 17,
2245 symbol->name,
2246 (unsigned long) reloc_entry->addend);
2247 }
2248
2249 return flag;
2250 }
2251
2252 int xtensa_abi_choice (void)
2253 {
2254 if (elf32xtensa_abi == XTHAL_ABI_UNDEFINED)
2255 return XSHAL_ABI;
2256 else
2257 return elf32xtensa_abi;
2258 }
2259
2260 /* Set up an entry in the procedure linkage table. */
2261
2262 static bfd_vma
2263 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2264 bfd *output_bfd,
2265 unsigned reloc_index)
2266 {
2267 asection *splt, *sgotplt;
2268 bfd_vma plt_base, got_base;
2269 bfd_vma code_offset, lit_offset, abi_offset;
2270 int chunk;
2271 int abi = xtensa_abi_choice ();
2272
2273 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2274 splt = elf_xtensa_get_plt_section (info, chunk);
2275 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2276 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2277
2278 plt_base = splt->output_section->vma + splt->output_offset;
2279 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2280
2281 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2282 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2283
2284 /* Fill in the literal entry. This is the offset of the dynamic
2285 relocation entry. */
2286 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2287 sgotplt->contents + lit_offset);
2288
2289 /* Fill in the entry in the procedure linkage table. */
2290 memcpy (splt->contents + code_offset,
2291 (bfd_big_endian (output_bfd)
2292 ? elf_xtensa_be_plt_entry[abi != XTHAL_ABI_WINDOWED]
2293 : elf_xtensa_le_plt_entry[abi != XTHAL_ABI_WINDOWED]),
2294 PLT_ENTRY_SIZE);
2295 abi_offset = abi == XTHAL_ABI_WINDOWED ? 3 : 0;
2296 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2297 plt_base + code_offset + abi_offset),
2298 splt->contents + code_offset + abi_offset + 1);
2299 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2300 plt_base + code_offset + abi_offset + 3),
2301 splt->contents + code_offset + abi_offset + 4);
2302 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2303 plt_base + code_offset + abi_offset + 6),
2304 splt->contents + code_offset + abi_offset + 7);
2305
2306 return plt_base + code_offset;
2307 }
2308
2309
2310 static bool get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2311
2312 static bool
2313 replace_tls_insn (Elf_Internal_Rela *rel,
2314 bfd *abfd,
2315 asection *input_section,
2316 bfd_byte *contents,
2317 bool is_ld_model,
2318 char **error_message)
2319 {
2320 static xtensa_insnbuf ibuff = NULL;
2321 static xtensa_insnbuf sbuff = NULL;
2322 xtensa_isa isa = xtensa_default_isa;
2323 xtensa_format fmt;
2324 xtensa_opcode old_op, new_op;
2325 bfd_size_type input_size;
2326 int r_type;
2327 unsigned dest_reg, src_reg;
2328
2329 if (ibuff == NULL)
2330 {
2331 ibuff = xtensa_insnbuf_alloc (isa);
2332 sbuff = xtensa_insnbuf_alloc (isa);
2333 }
2334
2335 input_size = bfd_get_section_limit (abfd, input_section);
2336
2337 /* Read the instruction into a buffer and decode the opcode. */
2338 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2339 input_size - rel->r_offset);
2340 fmt = xtensa_format_decode (isa, ibuff);
2341 if (fmt == XTENSA_UNDEFINED)
2342 {
2343 *error_message = "cannot decode instruction format";
2344 return false;
2345 }
2346
2347 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2348 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2349
2350 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2351 if (old_op == XTENSA_UNDEFINED)
2352 {
2353 *error_message = "cannot decode instruction opcode";
2354 return false;
2355 }
2356
2357 r_type = ELF32_R_TYPE (rel->r_info);
2358 switch (r_type)
2359 {
2360 case R_XTENSA_TLS_FUNC:
2361 case R_XTENSA_TLS_ARG:
2362 if (old_op != get_l32r_opcode ()
2363 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2364 sbuff, &dest_reg) != 0)
2365 {
2366 *error_message = "cannot extract L32R destination for TLS access";
2367 return false;
2368 }
2369 break;
2370
2371 case R_XTENSA_TLS_CALL:
2372 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2373 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2374 sbuff, &src_reg) != 0)
2375 {
2376 *error_message = "cannot extract CALLXn operands for TLS access";
2377 return false;
2378 }
2379 break;
2380
2381 default:
2382 abort ();
2383 }
2384
2385 if (is_ld_model)
2386 {
2387 switch (r_type)
2388 {
2389 case R_XTENSA_TLS_FUNC:
2390 case R_XTENSA_TLS_ARG:
2391 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2392 versions of Xtensa). */
2393 new_op = xtensa_opcode_lookup (isa, "nop");
2394 if (new_op == XTENSA_UNDEFINED)
2395 {
2396 new_op = xtensa_opcode_lookup (isa, "or");
2397 if (new_op == XTENSA_UNDEFINED
2398 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2399 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2400 sbuff, 1) != 0
2401 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2402 sbuff, 1) != 0
2403 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2404 sbuff, 1) != 0)
2405 {
2406 *error_message = "cannot encode OR for TLS access";
2407 return false;
2408 }
2409 }
2410 else
2411 {
2412 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2413 {
2414 *error_message = "cannot encode NOP for TLS access";
2415 return false;
2416 }
2417 }
2418 break;
2419
2420 case R_XTENSA_TLS_CALL:
2421 /* Read THREADPTR into the CALLX's return value register. */
2422 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2423 if (new_op == XTENSA_UNDEFINED
2424 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2425 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2426 sbuff, dest_reg + 2) != 0)
2427 {
2428 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2429 return false;
2430 }
2431 break;
2432 }
2433 }
2434 else
2435 {
2436 switch (r_type)
2437 {
2438 case R_XTENSA_TLS_FUNC:
2439 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2440 if (new_op == XTENSA_UNDEFINED
2441 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2442 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2443 sbuff, dest_reg) != 0)
2444 {
2445 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2446 return false;
2447 }
2448 break;
2449
2450 case R_XTENSA_TLS_ARG:
2451 /* Nothing to do. Keep the original L32R instruction. */
2452 return true;
2453
2454 case R_XTENSA_TLS_CALL:
2455 /* Add the CALLX's src register (holding the THREADPTR value)
2456 to the first argument register (holding the offset) and put
2457 the result in the CALLX's return value register. */
2458 new_op = xtensa_opcode_lookup (isa, "add");
2459 if (new_op == XTENSA_UNDEFINED
2460 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2461 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2462 sbuff, dest_reg + 2) != 0
2463 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2464 sbuff, dest_reg + 2) != 0
2465 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2466 sbuff, src_reg) != 0)
2467 {
2468 *error_message = "cannot encode ADD for TLS access";
2469 return false;
2470 }
2471 break;
2472 }
2473 }
2474
2475 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2476 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2477 input_size - rel->r_offset);
2478
2479 return true;
2480 }
2481
2482
2483 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2484 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2485 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2486 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2487 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2488 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2489 || (R_TYPE) == R_XTENSA_TLS_ARG \
2490 || (R_TYPE) == R_XTENSA_TLS_CALL)
2491
2492 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2493 both relocatable and final links. */
2494
2495 static int
2496 elf_xtensa_relocate_section (bfd *output_bfd,
2497 struct bfd_link_info *info,
2498 bfd *input_bfd,
2499 asection *input_section,
2500 bfd_byte *contents,
2501 Elf_Internal_Rela *relocs,
2502 Elf_Internal_Sym *local_syms,
2503 asection **local_sections)
2504 {
2505 struct elf_xtensa_link_hash_table *htab;
2506 Elf_Internal_Shdr *symtab_hdr;
2507 Elf_Internal_Rela *rel;
2508 Elf_Internal_Rela *relend;
2509 struct elf_link_hash_entry **sym_hashes;
2510 property_table_entry *lit_table = 0;
2511 int ltblsize = 0;
2512 char *local_got_tls_types;
2513 char *error_message = NULL;
2514 bfd_size_type input_size;
2515 int tls_type;
2516
2517 if (!xtensa_default_isa)
2518 xtensa_default_isa = xtensa_isa_init (0, 0);
2519
2520 if (!is_xtensa_elf (input_bfd))
2521 {
2522 bfd_set_error (bfd_error_wrong_format);
2523 return false;
2524 }
2525
2526 htab = elf_xtensa_hash_table (info);
2527 if (htab == NULL)
2528 return false;
2529
2530 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2531 sym_hashes = elf_sym_hashes (input_bfd);
2532 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2533
2534 if (elf_hash_table (info)->dynamic_sections_created)
2535 {
2536 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2537 &lit_table, XTENSA_LIT_SEC_NAME,
2538 true);
2539 if (ltblsize < 0)
2540 return false;
2541 }
2542
2543 input_size = bfd_get_section_limit (input_bfd, input_section);
2544
2545 rel = relocs;
2546 relend = relocs + input_section->reloc_count;
2547 for (; rel < relend; rel++)
2548 {
2549 int r_type;
2550 reloc_howto_type *howto;
2551 unsigned long r_symndx;
2552 struct elf_link_hash_entry *h;
2553 Elf_Internal_Sym *sym;
2554 char sym_type;
2555 const char *name;
2556 asection *sec;
2557 bfd_vma relocation;
2558 bfd_reloc_status_type r;
2559 bool is_weak_undef;
2560 bool unresolved_reloc;
2561 bool warned;
2562 bool dynamic_symbol;
2563
2564 r_type = ELF32_R_TYPE (rel->r_info);
2565 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2566 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2567 continue;
2568
2569 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2570 {
2571 bfd_set_error (bfd_error_bad_value);
2572 return false;
2573 }
2574 howto = &elf_howto_table[r_type];
2575
2576 r_symndx = ELF32_R_SYM (rel->r_info);
2577
2578 h = NULL;
2579 sym = NULL;
2580 sec = NULL;
2581 is_weak_undef = false;
2582 unresolved_reloc = false;
2583 warned = false;
2584
2585 if (howto->partial_inplace && !bfd_link_relocatable (info))
2586 {
2587 /* Because R_XTENSA_32 was made partial_inplace to fix some
2588 problems with DWARF info in partial links, there may be
2589 an addend stored in the contents. Take it out of there
2590 and move it back into the addend field of the reloc. */
2591 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2592 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2593 }
2594
2595 if (r_symndx < symtab_hdr->sh_info)
2596 {
2597 sym = local_syms + r_symndx;
2598 sym_type = ELF32_ST_TYPE (sym->st_info);
2599 sec = local_sections[r_symndx];
2600 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2601 }
2602 else
2603 {
2604 bool ignored;
2605
2606 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2607 r_symndx, symtab_hdr, sym_hashes,
2608 h, sec, relocation,
2609 unresolved_reloc, warned, ignored);
2610
2611 if (relocation == 0
2612 && !unresolved_reloc
2613 && h->root.type == bfd_link_hash_undefweak)
2614 is_weak_undef = true;
2615
2616 sym_type = h->type;
2617 }
2618
2619 if (sec != NULL && discarded_section (sec))
2620 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2621 rel, 1, relend, howto, 0, contents);
2622
2623 if (bfd_link_relocatable (info))
2624 {
2625 bfd_vma dest_addr;
2626 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2627
2628 /* This is a relocatable link.
2629 1) If the reloc is against a section symbol, adjust
2630 according to the output section.
2631 2) If there is a new target for this relocation,
2632 the new target will be in the same output section.
2633 We adjust the relocation by the output section
2634 difference. */
2635
2636 if (relaxing_section)
2637 {
2638 /* Check if this references a section in another input file. */
2639 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2640 contents))
2641 return false;
2642 }
2643
2644 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2645 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2646
2647 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2648 {
2649 error_message = NULL;
2650 /* Convert ASM_SIMPLIFY into the simpler relocation
2651 so that they never escape a relaxing link. */
2652 r = contract_asm_expansion (contents, input_size, rel,
2653 &error_message);
2654 if (r != bfd_reloc_ok)
2655 (*info->callbacks->reloc_dangerous)
2656 (info, error_message,
2657 input_bfd, input_section, rel->r_offset);
2658
2659 r_type = ELF32_R_TYPE (rel->r_info);
2660 }
2661
2662 /* This is a relocatable link, so we don't have to change
2663 anything unless the reloc is against a section symbol,
2664 in which case we have to adjust according to where the
2665 section symbol winds up in the output section. */
2666 if (r_symndx < symtab_hdr->sh_info)
2667 {
2668 sym = local_syms + r_symndx;
2669 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2670 {
2671 sec = local_sections[r_symndx];
2672 rel->r_addend += sec->output_offset + sym->st_value;
2673 }
2674 }
2675
2676 /* If there is an addend with a partial_inplace howto,
2677 then move the addend to the contents. This is a hack
2678 to work around problems with DWARF in relocatable links
2679 with some previous version of BFD. Now we can't easily get
2680 rid of the hack without breaking backward compatibility.... */
2681 r = bfd_reloc_ok;
2682 howto = &elf_howto_table[r_type];
2683 if (howto->partial_inplace && rel->r_addend)
2684 {
2685 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2686 rel->r_addend, contents,
2687 rel->r_offset, false,
2688 &error_message);
2689 rel->r_addend = 0;
2690 }
2691 else
2692 {
2693 /* Put the correct bits in the target instruction, even
2694 though the relocation will still be present in the output
2695 file. This makes disassembly clearer, as well as
2696 allowing loadable kernel modules to work without needing
2697 relocations on anything other than calls and l32r's. */
2698
2699 /* If it is not in the same section, there is nothing we can do. */
2700 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2701 sym_sec->output_section == input_section->output_section)
2702 {
2703 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2704 dest_addr, contents,
2705 rel->r_offset, false,
2706 &error_message);
2707 }
2708 }
2709 if (r != bfd_reloc_ok)
2710 (*info->callbacks->reloc_dangerous)
2711 (info, error_message,
2712 input_bfd, input_section, rel->r_offset);
2713
2714 /* Done with work for relocatable link; continue with next reloc. */
2715 continue;
2716 }
2717
2718 /* This is a final link. */
2719
2720 if (relaxing_section)
2721 {
2722 /* Check if this references a section in another input file. */
2723 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2724 &relocation);
2725 }
2726
2727 /* Sanity check the address. */
2728 if (rel->r_offset >= input_size
2729 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2730 {
2731 _bfd_error_handler
2732 /* xgettext:c-format */
2733 (_("%pB(%pA+%#" PRIx64 "): "
2734 "relocation offset out of range (size=%#" PRIx64 ")"),
2735 input_bfd, input_section, (uint64_t) rel->r_offset,
2736 (uint64_t) input_size);
2737 bfd_set_error (bfd_error_bad_value);
2738 return false;
2739 }
2740
2741 if (h != NULL)
2742 name = h->root.root.string;
2743 else
2744 {
2745 name = (bfd_elf_string_from_elf_section
2746 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2747 if (name == NULL || *name == '\0')
2748 name = bfd_section_name (sec);
2749 }
2750
2751 if (r_symndx != STN_UNDEF
2752 && r_type != R_XTENSA_NONE
2753 && (h == NULL
2754 || h->root.type == bfd_link_hash_defined
2755 || h->root.type == bfd_link_hash_defweak)
2756 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2757 {
2758 _bfd_error_handler
2759 ((sym_type == STT_TLS
2760 /* xgettext:c-format */
2761 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2762 /* xgettext:c-format */
2763 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2764 input_bfd,
2765 input_section,
2766 (uint64_t) rel->r_offset,
2767 howto->name,
2768 name);
2769 }
2770
2771 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2772
2773 tls_type = GOT_UNKNOWN;
2774 if (h)
2775 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2776 else if (local_got_tls_types)
2777 tls_type = local_got_tls_types [r_symndx];
2778
2779 switch (r_type)
2780 {
2781 case R_XTENSA_32:
2782 case R_XTENSA_PLT:
2783 if (elf_hash_table (info)->dynamic_sections_created
2784 && (input_section->flags & SEC_ALLOC) != 0
2785 && (dynamic_symbol || bfd_link_pic (info)))
2786 {
2787 Elf_Internal_Rela outrel;
2788 bfd_byte *loc;
2789 asection *srel;
2790
2791 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2792 srel = htab->elf.srelplt;
2793 else
2794 srel = htab->elf.srelgot;
2795
2796 BFD_ASSERT (srel != NULL);
2797
2798 outrel.r_offset =
2799 _bfd_elf_section_offset (output_bfd, info,
2800 input_section, rel->r_offset);
2801
2802 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2803 memset (&outrel, 0, sizeof outrel);
2804 else
2805 {
2806 outrel.r_offset += (input_section->output_section->vma
2807 + input_section->output_offset);
2808
2809 /* Complain if the relocation is in a read-only section
2810 and not in a literal pool. */
2811 if ((input_section->flags & SEC_READONLY) != 0
2812 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2813 outrel.r_offset))
2814 {
2815 error_message =
2816 _("dynamic relocation in read-only section");
2817 (*info->callbacks->reloc_dangerous)
2818 (info, error_message,
2819 input_bfd, input_section, rel->r_offset);
2820 }
2821
2822 if (dynamic_symbol)
2823 {
2824 outrel.r_addend = rel->r_addend;
2825 rel->r_addend = 0;
2826
2827 if (r_type == R_XTENSA_32)
2828 {
2829 outrel.r_info =
2830 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2831 relocation = 0;
2832 }
2833 else /* r_type == R_XTENSA_PLT */
2834 {
2835 outrel.r_info =
2836 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2837
2838 /* Create the PLT entry and set the initial
2839 contents of the literal entry to the address of
2840 the PLT entry. */
2841 relocation =
2842 elf_xtensa_create_plt_entry (info, output_bfd,
2843 srel->reloc_count);
2844 }
2845 unresolved_reloc = false;
2846 }
2847 else if (!is_weak_undef)
2848 {
2849 /* Generate a RELATIVE relocation. */
2850 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2851 outrel.r_addend = 0;
2852 }
2853 else
2854 {
2855 continue;
2856 }
2857 }
2858
2859 loc = (srel->contents
2860 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2861 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2862 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2863 <= srel->size);
2864 }
2865 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2866 {
2867 /* This should only happen for non-PIC code, which is not
2868 supposed to be used on systems with dynamic linking.
2869 Just ignore these relocations. */
2870 continue;
2871 }
2872 break;
2873
2874 case R_XTENSA_TLS_TPOFF:
2875 /* Switch to LE model for local symbols in an executable. */
2876 if (! bfd_link_dll (info) && ! dynamic_symbol)
2877 {
2878 relocation = tpoff (info, relocation);
2879 break;
2880 }
2881 /* fall through */
2882
2883 case R_XTENSA_TLSDESC_FN:
2884 case R_XTENSA_TLSDESC_ARG:
2885 {
2886 if (r_type == R_XTENSA_TLSDESC_FN)
2887 {
2888 if (! bfd_link_dll (info) || (tls_type & GOT_TLS_IE) != 0)
2889 r_type = R_XTENSA_NONE;
2890 }
2891 else if (r_type == R_XTENSA_TLSDESC_ARG)
2892 {
2893 if (bfd_link_dll (info))
2894 {
2895 if ((tls_type & GOT_TLS_IE) != 0)
2896 r_type = R_XTENSA_TLS_TPOFF;
2897 }
2898 else
2899 {
2900 r_type = R_XTENSA_TLS_TPOFF;
2901 if (! dynamic_symbol)
2902 {
2903 relocation = tpoff (info, relocation);
2904 break;
2905 }
2906 }
2907 }
2908
2909 if (r_type == R_XTENSA_NONE)
2910 /* Nothing to do here; skip to the next reloc. */
2911 continue;
2912
2913 if (! elf_hash_table (info)->dynamic_sections_created)
2914 {
2915 error_message =
2916 _("TLS relocation invalid without dynamic sections");
2917 (*info->callbacks->reloc_dangerous)
2918 (info, error_message,
2919 input_bfd, input_section, rel->r_offset);
2920 }
2921 else
2922 {
2923 Elf_Internal_Rela outrel;
2924 bfd_byte *loc;
2925 asection *srel = htab->elf.srelgot;
2926 int indx;
2927
2928 outrel.r_offset = (input_section->output_section->vma
2929 + input_section->output_offset
2930 + rel->r_offset);
2931
2932 /* Complain if the relocation is in a read-only section
2933 and not in a literal pool. */
2934 if ((input_section->flags & SEC_READONLY) != 0
2935 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2936 outrel.r_offset))
2937 {
2938 error_message =
2939 _("dynamic relocation in read-only section");
2940 (*info->callbacks->reloc_dangerous)
2941 (info, error_message,
2942 input_bfd, input_section, rel->r_offset);
2943 }
2944
2945 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2946 if (indx == 0)
2947 outrel.r_addend = relocation - dtpoff_base (info);
2948 else
2949 outrel.r_addend = 0;
2950 rel->r_addend = 0;
2951
2952 outrel.r_info = ELF32_R_INFO (indx, r_type);
2953 relocation = 0;
2954 unresolved_reloc = false;
2955
2956 BFD_ASSERT (srel);
2957 loc = (srel->contents
2958 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2959 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2960 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2961 <= srel->size);
2962 }
2963 }
2964 break;
2965
2966 case R_XTENSA_TLS_DTPOFF:
2967 if (! bfd_link_dll (info))
2968 /* Switch from LD model to LE model. */
2969 relocation = tpoff (info, relocation);
2970 else
2971 relocation -= dtpoff_base (info);
2972 break;
2973
2974 case R_XTENSA_TLS_FUNC:
2975 case R_XTENSA_TLS_ARG:
2976 case R_XTENSA_TLS_CALL:
2977 /* Check if optimizing to IE or LE model. */
2978 if ((tls_type & GOT_TLS_IE) != 0)
2979 {
2980 bool is_ld_model =
2981 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2982 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2983 is_ld_model, &error_message))
2984 (*info->callbacks->reloc_dangerous)
2985 (info, error_message,
2986 input_bfd, input_section, rel->r_offset);
2987
2988 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2989 {
2990 /* Skip subsequent relocations on the same instruction. */
2991 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2992 rel++;
2993 }
2994 }
2995 continue;
2996
2997 default:
2998 if (elf_hash_table (info)->dynamic_sections_created
2999 && dynamic_symbol && (is_operand_relocation (r_type)
3000 || r_type == R_XTENSA_32_PCREL))
3001 {
3002 error_message =
3003 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3004 strlen (name) + 2, name);
3005 (*info->callbacks->reloc_dangerous)
3006 (info, error_message, input_bfd, input_section, rel->r_offset);
3007 continue;
3008 }
3009 break;
3010 }
3011
3012 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3013 because such sections are not SEC_ALLOC and thus ld.so will
3014 not process them. */
3015 if (unresolved_reloc
3016 && !((input_section->flags & SEC_DEBUGGING) != 0
3017 && h->def_dynamic)
3018 && _bfd_elf_section_offset (output_bfd, info, input_section,
3019 rel->r_offset) != (bfd_vma) -1)
3020 {
3021 _bfd_error_handler
3022 /* xgettext:c-format */
3023 (_("%pB(%pA+%#" PRIx64 "): "
3024 "unresolvable %s relocation against symbol `%s'"),
3025 input_bfd,
3026 input_section,
3027 (uint64_t) rel->r_offset,
3028 howto->name,
3029 name);
3030 return false;
3031 }
3032
3033 /* TLS optimizations may have changed r_type; update "howto". */
3034 howto = &elf_howto_table[r_type];
3035
3036 /* There's no point in calling bfd_perform_relocation here.
3037 Just go directly to our "special function". */
3038 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3039 relocation + rel->r_addend,
3040 contents, rel->r_offset, is_weak_undef,
3041 &error_message);
3042
3043 if (r != bfd_reloc_ok && !warned)
3044 {
3045 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3046 BFD_ASSERT (error_message != NULL);
3047
3048 if (rel->r_addend == 0)
3049 error_message = vsprint_msg (error_message, ": %s",
3050 strlen (name) + 2, name);
3051 else
3052 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3053 strlen (name) + 22,
3054 name, (int) rel->r_addend);
3055
3056 (*info->callbacks->reloc_dangerous)
3057 (info, error_message, input_bfd, input_section, rel->r_offset);
3058 }
3059 }
3060
3061 free (lit_table);
3062 input_section->reloc_done = true;
3063
3064 return true;
3065 }
3066
3067
3068 /* Finish up dynamic symbol handling. There's not much to do here since
3069 the PLT and GOT entries are all set up by relocate_section. */
3070
3071 static bool
3072 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3073 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3074 struct elf_link_hash_entry *h,
3075 Elf_Internal_Sym *sym)
3076 {
3077 if (h->needs_plt && !h->def_regular)
3078 {
3079 /* Mark the symbol as undefined, rather than as defined in
3080 the .plt section. Leave the value alone. */
3081 sym->st_shndx = SHN_UNDEF;
3082 /* If the symbol is weak, we do need to clear the value.
3083 Otherwise, the PLT entry would provide a definition for
3084 the symbol even if the symbol wasn't defined anywhere,
3085 and so the symbol would never be NULL. */
3086 if (!h->ref_regular_nonweak)
3087 sym->st_value = 0;
3088 }
3089
3090 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3091 if (h == elf_hash_table (info)->hdynamic
3092 || h == elf_hash_table (info)->hgot)
3093 sym->st_shndx = SHN_ABS;
3094
3095 return true;
3096 }
3097
3098
3099 /* Combine adjacent literal table entries in the output. Adjacent
3100 entries within each input section may have been removed during
3101 relaxation, but we repeat the process here, even though it's too late
3102 to shrink the output section, because it's important to minimize the
3103 number of literal table entries to reduce the start-up work for the
3104 runtime linker. Returns the number of remaining table entries or -1
3105 on error. */
3106
3107 static int
3108 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3109 asection *sxtlit,
3110 asection *sgotloc)
3111 {
3112 bfd_byte *contents;
3113 property_table_entry *table;
3114 bfd_size_type section_size, sgotloc_size;
3115 bfd_vma offset;
3116 int n, m, num;
3117
3118 section_size = sxtlit->size;
3119 if (section_size == 0)
3120 return 0;
3121
3122 BFD_ASSERT (section_size % 8 == 0);
3123 num = section_size / 8;
3124
3125 sgotloc_size = sgotloc->size;
3126 if (sgotloc_size != section_size)
3127 {
3128 _bfd_error_handler
3129 (_("internal inconsistency in size of .got.loc section"));
3130 return -1;
3131 }
3132
3133 table = bfd_malloc (num * sizeof (property_table_entry));
3134 if (table == 0)
3135 return -1;
3136
3137 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3138 propagates to the output section, where it doesn't really apply and
3139 where it breaks the following call to bfd_malloc_and_get_section. */
3140 sxtlit->flags &= ~SEC_IN_MEMORY;
3141
3142 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3143 {
3144 free (contents);
3145 free (table);
3146 return -1;
3147 }
3148
3149 /* There should never be any relocations left at this point, so this
3150 is quite a bit easier than what is done during relaxation. */
3151
3152 /* Copy the raw contents into a property table array and sort it. */
3153 offset = 0;
3154 for (n = 0; n < num; n++)
3155 {
3156 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3157 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3158 offset += 8;
3159 }
3160 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3161
3162 for (n = 0; n < num; n++)
3163 {
3164 bool remove_entry = false;
3165
3166 if (table[n].size == 0)
3167 remove_entry = true;
3168 else if (n > 0
3169 && (table[n-1].address + table[n-1].size == table[n].address))
3170 {
3171 table[n-1].size += table[n].size;
3172 remove_entry = true;
3173 }
3174
3175 if (remove_entry)
3176 {
3177 for (m = n; m < num - 1; m++)
3178 {
3179 table[m].address = table[m+1].address;
3180 table[m].size = table[m+1].size;
3181 }
3182
3183 n--;
3184 num--;
3185 }
3186 }
3187
3188 /* Copy the data back to the raw contents. */
3189 offset = 0;
3190 for (n = 0; n < num; n++)
3191 {
3192 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3193 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3194 offset += 8;
3195 }
3196
3197 /* Clear the removed bytes. */
3198 if ((bfd_size_type) (num * 8) < section_size)
3199 memset (&contents[num * 8], 0, section_size - num * 8);
3200
3201 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3202 section_size))
3203 return -1;
3204
3205 /* Copy the contents to ".got.loc". */
3206 memcpy (sgotloc->contents, contents, section_size);
3207
3208 free (contents);
3209 free (table);
3210 return num;
3211 }
3212
3213
3214 /* Finish up the dynamic sections. */
3215
3216 static bool
3217 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3218 struct bfd_link_info *info)
3219 {
3220 struct elf_xtensa_link_hash_table *htab;
3221 bfd *dynobj;
3222 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
3223 Elf32_External_Dyn *dyncon, *dynconend;
3224 int num_xtlit_entries = 0;
3225
3226 if (! elf_hash_table (info)->dynamic_sections_created)
3227 return true;
3228
3229 htab = elf_xtensa_hash_table (info);
3230 if (htab == NULL)
3231 return false;
3232
3233 dynobj = elf_hash_table (info)->dynobj;
3234 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3235 BFD_ASSERT (sdyn != NULL);
3236
3237 /* Set the first entry in the global offset table to the address of
3238 the dynamic section. */
3239 sgot = htab->elf.sgot;
3240 if (sgot)
3241 {
3242 BFD_ASSERT (sgot->size == 4);
3243 if (sdyn == NULL)
3244 bfd_put_32 (output_bfd, 0, sgot->contents);
3245 else
3246 bfd_put_32 (output_bfd,
3247 sdyn->output_section->vma + sdyn->output_offset,
3248 sgot->contents);
3249 }
3250
3251 srelplt = htab->elf.srelplt;
3252 srelgot = htab->elf.srelgot;
3253 if (srelplt && srelplt->size != 0)
3254 {
3255 asection *sgotplt, *spltlittbl;
3256 int chunk, plt_chunks, plt_entries;
3257 Elf_Internal_Rela irela;
3258 bfd_byte *loc;
3259 unsigned rtld_reloc;
3260
3261 spltlittbl = htab->spltlittbl;
3262 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3263
3264 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3265 of them follow immediately after.... */
3266 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3267 {
3268 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3269 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3270 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3271 break;
3272 }
3273 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3274
3275 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3276 plt_chunks =
3277 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3278
3279 for (chunk = 0; chunk < plt_chunks; chunk++)
3280 {
3281 int chunk_entries = 0;
3282
3283 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3284 BFD_ASSERT (sgotplt != NULL);
3285
3286 /* Emit special RTLD relocations for the first two entries in
3287 each chunk of the .got.plt section. */
3288
3289 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3290 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3291 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3292 irela.r_offset = (sgotplt->output_section->vma
3293 + sgotplt->output_offset);
3294 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3295 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3296 rtld_reloc += 1;
3297 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3298
3299 /* Next literal immediately follows the first. */
3300 loc += sizeof (Elf32_External_Rela);
3301 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3302 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3303 irela.r_offset = (sgotplt->output_section->vma
3304 + sgotplt->output_offset + 4);
3305 /* Tell rtld to set value to object's link map. */
3306 irela.r_addend = 2;
3307 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3308 rtld_reloc += 1;
3309 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3310
3311 /* Fill in the literal table. */
3312 if (chunk < plt_chunks - 1)
3313 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3314 else
3315 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3316
3317 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3318 bfd_put_32 (output_bfd,
3319 sgotplt->output_section->vma + sgotplt->output_offset,
3320 spltlittbl->contents + (chunk * 8) + 0);
3321 bfd_put_32 (output_bfd,
3322 8 + (chunk_entries * 4),
3323 spltlittbl->contents + (chunk * 8) + 4);
3324 }
3325
3326 /* The .xt.lit.plt section has just been modified. This must
3327 happen before the code below which combines adjacent literal
3328 table entries, and the .xt.lit.plt contents have to be forced to
3329 the output here. */
3330 if (! bfd_set_section_contents (output_bfd,
3331 spltlittbl->output_section,
3332 spltlittbl->contents,
3333 spltlittbl->output_offset,
3334 spltlittbl->size))
3335 return false;
3336 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3337 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3338 }
3339
3340 /* All the dynamic relocations have been emitted at this point.
3341 Make sure the relocation sections are the correct size. */
3342 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3343 * srelgot->reloc_count))
3344 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3345 * srelplt->reloc_count)))
3346 abort ();
3347
3348 /* Combine adjacent literal table entries. */
3349 BFD_ASSERT (! bfd_link_relocatable (info));
3350 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3351 sgotloc = htab->sgotloc;
3352 BFD_ASSERT (sgotloc);
3353 if (sxtlit)
3354 {
3355 num_xtlit_entries =
3356 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3357 if (num_xtlit_entries < 0)
3358 return false;
3359 }
3360
3361 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3362 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3363 for (; dyncon < dynconend; dyncon++)
3364 {
3365 Elf_Internal_Dyn dyn;
3366
3367 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3368
3369 switch (dyn.d_tag)
3370 {
3371 default:
3372 break;
3373
3374 case DT_XTENSA_GOT_LOC_SZ:
3375 dyn.d_un.d_val = num_xtlit_entries;
3376 break;
3377
3378 case DT_XTENSA_GOT_LOC_OFF:
3379 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3380 + htab->sgotloc->output_offset);
3381 break;
3382
3383 case DT_PLTGOT:
3384 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3385 + htab->elf.sgot->output_offset);
3386 break;
3387
3388 case DT_JMPREL:
3389 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3390 + htab->elf.srelplt->output_offset);
3391 break;
3392
3393 case DT_PLTRELSZ:
3394 dyn.d_un.d_val = htab->elf.srelplt->size;
3395 break;
3396 }
3397
3398 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3399 }
3400
3401 return true;
3402 }
3403
3404 \f
3405 /* Functions for dealing with the e_flags field. */
3406
3407 /* Merge backend specific data from an object file to the output
3408 object file when linking. */
3409
3410 static bool
3411 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3412 {
3413 bfd *obfd = info->output_bfd;
3414 unsigned out_mach, in_mach;
3415 flagword out_flag, in_flag;
3416
3417 /* Check if we have the same endianness. */
3418 if (!_bfd_generic_verify_endian_match (ibfd, info))
3419 return false;
3420
3421 /* Don't even pretend to support mixed-format linking. */
3422 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3423 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3424 return false;
3425
3426 out_flag = elf_elfheader (obfd)->e_flags;
3427 in_flag = elf_elfheader (ibfd)->e_flags;
3428
3429 out_mach = out_flag & EF_XTENSA_MACH;
3430 in_mach = in_flag & EF_XTENSA_MACH;
3431 if (out_mach != in_mach)
3432 {
3433 _bfd_error_handler
3434 /* xgettext:c-format */
3435 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3436 ibfd, out_mach, in_mach);
3437 bfd_set_error (bfd_error_wrong_format);
3438 return false;
3439 }
3440
3441 if (! elf_flags_init (obfd))
3442 {
3443 elf_flags_init (obfd) = true;
3444 elf_elfheader (obfd)->e_flags = in_flag;
3445
3446 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3447 && bfd_get_arch_info (obfd)->the_default)
3448 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3449 bfd_get_mach (ibfd));
3450
3451 return true;
3452 }
3453
3454 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3455 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3456
3457 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3458 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3459
3460 return true;
3461 }
3462
3463
3464 static bool
3465 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3466 {
3467 BFD_ASSERT (!elf_flags_init (abfd)
3468 || elf_elfheader (abfd)->e_flags == flags);
3469
3470 elf_elfheader (abfd)->e_flags |= flags;
3471 elf_flags_init (abfd) = true;
3472
3473 return true;
3474 }
3475
3476
3477 static bool
3478 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3479 {
3480 FILE *f = (FILE *) farg;
3481 flagword e_flags = elf_elfheader (abfd)->e_flags;
3482
3483 fprintf (f, "\nXtensa header:\n");
3484 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3485 fprintf (f, "\nMachine = Base\n");
3486 else
3487 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3488
3489 fprintf (f, "Insn tables = %s\n",
3490 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3491
3492 fprintf (f, "Literal tables = %s\n",
3493 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3494
3495 return _bfd_elf_print_private_bfd_data (abfd, farg);
3496 }
3497
3498
3499 /* Set the right machine number for an Xtensa ELF file. */
3500
3501 static bool
3502 elf_xtensa_object_p (bfd *abfd)
3503 {
3504 int mach;
3505 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3506
3507 switch (arch)
3508 {
3509 case E_XTENSA_MACH:
3510 mach = bfd_mach_xtensa;
3511 break;
3512 default:
3513 return false;
3514 }
3515
3516 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3517 return true;
3518 }
3519
3520
3521 /* The final processing done just before writing out an Xtensa ELF object
3522 file. This gets the Xtensa architecture right based on the machine
3523 number. */
3524
3525 static bool
3526 elf_xtensa_final_write_processing (bfd *abfd)
3527 {
3528 int mach;
3529 unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3530
3531 switch (mach = bfd_get_mach (abfd))
3532 {
3533 case bfd_mach_xtensa:
3534 val = E_XTENSA_MACH;
3535 break;
3536 default:
3537 break;
3538 }
3539
3540 elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH;
3541 elf_elfheader (abfd)->e_flags |= val;
3542 return _bfd_elf_final_write_processing (abfd);
3543 }
3544
3545
3546 static enum elf_reloc_type_class
3547 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3548 const asection *rel_sec ATTRIBUTE_UNUSED,
3549 const Elf_Internal_Rela *rela)
3550 {
3551 switch ((int) ELF32_R_TYPE (rela->r_info))
3552 {
3553 case R_XTENSA_RELATIVE:
3554 return reloc_class_relative;
3555 case R_XTENSA_JMP_SLOT:
3556 return reloc_class_plt;
3557 default:
3558 return reloc_class_normal;
3559 }
3560 }
3561
3562 \f
3563 static bool
3564 elf_xtensa_discard_info_for_section (bfd *abfd,
3565 struct elf_reloc_cookie *cookie,
3566 struct bfd_link_info *info,
3567 asection *sec)
3568 {
3569 bfd_byte *contents;
3570 bfd_vma offset, actual_offset;
3571 bfd_size_type removed_bytes = 0;
3572 bfd_size_type entry_size;
3573
3574 if (sec->output_section
3575 && bfd_is_abs_section (sec->output_section))
3576 return false;
3577
3578 if (xtensa_is_proptable_section (sec))
3579 entry_size = 12;
3580 else
3581 entry_size = 8;
3582
3583 if (sec->size == 0 || sec->size % entry_size != 0)
3584 return false;
3585
3586 contents = retrieve_contents (abfd, sec, info->keep_memory);
3587 if (!contents)
3588 return false;
3589
3590 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3591 if (!cookie->rels)
3592 {
3593 release_contents (sec, contents);
3594 return false;
3595 }
3596
3597 /* Sort the relocations. They should already be in order when
3598 relaxation is enabled, but it might not be. */
3599 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3600 internal_reloc_compare);
3601
3602 cookie->rel = cookie->rels;
3603 cookie->relend = cookie->rels + sec->reloc_count;
3604
3605 for (offset = 0; offset < sec->size; offset += entry_size)
3606 {
3607 actual_offset = offset - removed_bytes;
3608
3609 /* The ...symbol_deleted_p function will skip over relocs but it
3610 won't adjust their offsets, so do that here. */
3611 while (cookie->rel < cookie->relend
3612 && cookie->rel->r_offset < offset)
3613 {
3614 cookie->rel->r_offset -= removed_bytes;
3615 cookie->rel++;
3616 }
3617
3618 while (cookie->rel < cookie->relend
3619 && cookie->rel->r_offset == offset)
3620 {
3621 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3622 {
3623 /* Remove the table entry. (If the reloc type is NONE, then
3624 the entry has already been merged with another and deleted
3625 during relaxation.) */
3626 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3627 {
3628 /* Shift the contents up. */
3629 if (offset + entry_size < sec->size)
3630 memmove (&contents[actual_offset],
3631 &contents[actual_offset + entry_size],
3632 sec->size - offset - entry_size);
3633 removed_bytes += entry_size;
3634 }
3635
3636 /* Remove this relocation. */
3637 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3638 }
3639
3640 /* Adjust the relocation offset for previous removals. This
3641 should not be done before calling ...symbol_deleted_p
3642 because it might mess up the offset comparisons there.
3643 Make sure the offset doesn't underflow in the case where
3644 the first entry is removed. */
3645 if (cookie->rel->r_offset >= removed_bytes)
3646 cookie->rel->r_offset -= removed_bytes;
3647 else
3648 cookie->rel->r_offset = 0;
3649
3650 cookie->rel++;
3651 }
3652 }
3653
3654 if (removed_bytes != 0)
3655 {
3656 /* Adjust any remaining relocs (shouldn't be any). */
3657 for (; cookie->rel < cookie->relend; cookie->rel++)
3658 {
3659 if (cookie->rel->r_offset >= removed_bytes)
3660 cookie->rel->r_offset -= removed_bytes;
3661 else
3662 cookie->rel->r_offset = 0;
3663 }
3664
3665 /* Clear the removed bytes. */
3666 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3667
3668 pin_contents (sec, contents);
3669 pin_internal_relocs (sec, cookie->rels);
3670
3671 /* Shrink size. */
3672 if (sec->rawsize == 0)
3673 sec->rawsize = sec->size;
3674 sec->size -= removed_bytes;
3675
3676 if (xtensa_is_littable_section (sec))
3677 {
3678 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3679 if (sgotloc)
3680 sgotloc->size -= removed_bytes;
3681 }
3682 }
3683 else
3684 {
3685 release_contents (sec, contents);
3686 release_internal_relocs (sec, cookie->rels);
3687 }
3688
3689 return (removed_bytes != 0);
3690 }
3691
3692
3693 static bool
3694 elf_xtensa_discard_info (bfd *abfd,
3695 struct elf_reloc_cookie *cookie,
3696 struct bfd_link_info *info)
3697 {
3698 asection *sec;
3699 bool changed = false;
3700
3701 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3702 {
3703 if (xtensa_is_property_section (sec))
3704 {
3705 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3706 changed = true;
3707 }
3708 }
3709
3710 return changed;
3711 }
3712
3713
3714 static bool
3715 elf_xtensa_ignore_discarded_relocs (asection *sec)
3716 {
3717 return xtensa_is_property_section (sec);
3718 }
3719
3720
3721 static unsigned int
3722 elf_xtensa_action_discarded (asection *sec)
3723 {
3724 if (strcmp (".xt_except_table", sec->name) == 0)
3725 return 0;
3726
3727 if (strcmp (".xt_except_desc", sec->name) == 0)
3728 return 0;
3729
3730 return _bfd_elf_default_action_discarded (sec);
3731 }
3732
3733 \f
3734 /* Support for core dump NOTE sections. */
3735
3736 static bool
3737 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3738 {
3739 int offset;
3740 unsigned int size;
3741
3742 if (elf_tdata (abfd) == NULL
3743 || elf_tdata (abfd)->core == NULL)
3744 return false;
3745
3746 /* The size for Xtensa is variable, so don't try to recognize the format
3747 based on the size. Just assume this is GNU/Linux. */
3748 if (note == NULL || note->descsz < 28)
3749 return false;
3750
3751 /* pr_cursig */
3752 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3753
3754 /* pr_pid */
3755 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3756
3757 /* pr_reg */
3758 offset = 72;
3759 size = note->descsz - offset - 4;
3760
3761 /* Make a ".reg/999" section. */
3762 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3763 size, note->descpos + offset);
3764 }
3765
3766 static bool
3767 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3768 {
3769 switch (note->descsz)
3770 {
3771 default:
3772 return false;
3773
3774 case 128: /* GNU/Linux elf_prpsinfo */
3775 elf_tdata (abfd)->core->program
3776 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3777 elf_tdata (abfd)->core->command
3778 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3779 }
3780
3781 /* Note that for some reason, a spurious space is tacked
3782 onto the end of the args in some (at least one anyway)
3783 implementations, so strip it off if it exists. */
3784
3785 {
3786 char *command = elf_tdata (abfd)->core->command;
3787 int n = strlen (command);
3788
3789 if (0 < n && command[n - 1] == ' ')
3790 command[n - 1] = '\0';
3791 }
3792
3793 return true;
3794 }
3795
3796 \f
3797 /* Generic Xtensa configurability stuff. */
3798
3799 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3800 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3801 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3802 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3803 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3804 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3805 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3806 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3807
3808 static void
3809 init_call_opcodes (void)
3810 {
3811 if (callx0_op == XTENSA_UNDEFINED)
3812 {
3813 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3814 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3815 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3816 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3817 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3818 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3819 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3820 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3821 }
3822 }
3823
3824
3825 static bool
3826 is_indirect_call_opcode (xtensa_opcode opcode)
3827 {
3828 init_call_opcodes ();
3829 return (opcode == callx0_op
3830 || opcode == callx4_op
3831 || opcode == callx8_op
3832 || opcode == callx12_op);
3833 }
3834
3835
3836 static bool
3837 is_direct_call_opcode (xtensa_opcode opcode)
3838 {
3839 init_call_opcodes ();
3840 return (opcode == call0_op
3841 || opcode == call4_op
3842 || opcode == call8_op
3843 || opcode == call12_op);
3844 }
3845
3846
3847 static bool
3848 is_windowed_call_opcode (xtensa_opcode opcode)
3849 {
3850 init_call_opcodes ();
3851 return (opcode == call4_op
3852 || opcode == call8_op
3853 || opcode == call12_op
3854 || opcode == callx4_op
3855 || opcode == callx8_op
3856 || opcode == callx12_op);
3857 }
3858
3859
3860 static bool
3861 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3862 {
3863 unsigned dst = (unsigned) -1;
3864
3865 init_call_opcodes ();
3866 if (opcode == callx0_op)
3867 dst = 0;
3868 else if (opcode == callx4_op)
3869 dst = 4;
3870 else if (opcode == callx8_op)
3871 dst = 8;
3872 else if (opcode == callx12_op)
3873 dst = 12;
3874
3875 if (dst == (unsigned) -1)
3876 return false;
3877
3878 *pdst = dst;
3879 return true;
3880 }
3881
3882
3883 static xtensa_opcode
3884 get_const16_opcode (void)
3885 {
3886 static bool done_lookup = false;
3887 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3888 if (!done_lookup)
3889 {
3890 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3891 done_lookup = true;
3892 }
3893 return const16_opcode;
3894 }
3895
3896
3897 static xtensa_opcode
3898 get_l32r_opcode (void)
3899 {
3900 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3901 static bool done_lookup = false;
3902
3903 if (!done_lookup)
3904 {
3905 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3906 done_lookup = true;
3907 }
3908 return l32r_opcode;
3909 }
3910
3911
3912 static bfd_vma
3913 l32r_offset (bfd_vma addr, bfd_vma pc)
3914 {
3915 bfd_vma offset;
3916
3917 offset = addr - ((pc+3) & -4);
3918 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3919 offset = (signed int) offset >> 2;
3920 BFD_ASSERT ((signed int) offset >> 16 == -1);
3921 return offset;
3922 }
3923
3924
3925 static xtensa_opcode
3926 get_rsr_lend_opcode (void)
3927 {
3928 static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED;
3929 static bool done_lookup = false;
3930 if (!done_lookup)
3931 {
3932 rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend");
3933 done_lookup = true;
3934 }
3935 return rsr_lend_opcode;
3936 }
3937
3938 static xtensa_opcode
3939 get_wsr_lbeg_opcode (void)
3940 {
3941 static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED;
3942 static bool done_lookup = false;
3943 if (!done_lookup)
3944 {
3945 wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg");
3946 done_lookup = true;
3947 }
3948 return wsr_lbeg_opcode;
3949 }
3950
3951
3952 static int
3953 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3954 {
3955 xtensa_isa isa = xtensa_default_isa;
3956 int last_immed, last_opnd, opi;
3957
3958 if (opcode == XTENSA_UNDEFINED)
3959 return XTENSA_UNDEFINED;
3960
3961 /* Find the last visible PC-relative immediate operand for the opcode.
3962 If there are no PC-relative immediates, then choose the last visible
3963 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3964 last_immed = XTENSA_UNDEFINED;
3965 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3966 for (opi = last_opnd - 1; opi >= 0; opi--)
3967 {
3968 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3969 continue;
3970 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3971 {
3972 last_immed = opi;
3973 break;
3974 }
3975 if (last_immed == XTENSA_UNDEFINED
3976 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3977 last_immed = opi;
3978 }
3979 if (last_immed < 0)
3980 return XTENSA_UNDEFINED;
3981
3982 /* If the operand number was specified in an old-style relocation,
3983 check for consistency with the operand computed above. */
3984 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3985 {
3986 int reloc_opnd = r_type - R_XTENSA_OP0;
3987 if (reloc_opnd != last_immed)
3988 return XTENSA_UNDEFINED;
3989 }
3990
3991 return last_immed;
3992 }
3993
3994
3995 int
3996 get_relocation_slot (int r_type)
3997 {
3998 switch (r_type)
3999 {
4000 case R_XTENSA_OP0:
4001 case R_XTENSA_OP1:
4002 case R_XTENSA_OP2:
4003 return 0;
4004
4005 default:
4006 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4007 return r_type - R_XTENSA_SLOT0_OP;
4008 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4009 return r_type - R_XTENSA_SLOT0_ALT;
4010 break;
4011 }
4012
4013 return XTENSA_UNDEFINED;
4014 }
4015
4016
4017 /* Get the opcode for a relocation. */
4018
4019 static xtensa_opcode
4020 get_relocation_opcode (bfd *abfd,
4021 asection *sec,
4022 bfd_byte *contents,
4023 Elf_Internal_Rela *irel)
4024 {
4025 static xtensa_insnbuf ibuff = NULL;
4026 static xtensa_insnbuf sbuff = NULL;
4027 xtensa_isa isa = xtensa_default_isa;
4028 xtensa_format fmt;
4029 int slot;
4030
4031 if (contents == NULL)
4032 return XTENSA_UNDEFINED;
4033
4034 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4035 return XTENSA_UNDEFINED;
4036
4037 if (ibuff == NULL)
4038 {
4039 ibuff = xtensa_insnbuf_alloc (isa);
4040 sbuff = xtensa_insnbuf_alloc (isa);
4041 }
4042
4043 /* Decode the instruction. */
4044 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4045 sec->size - irel->r_offset);
4046 fmt = xtensa_format_decode (isa, ibuff);
4047 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4048 if (slot == XTENSA_UNDEFINED)
4049 return XTENSA_UNDEFINED;
4050 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4051 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4052 }
4053
4054
4055 bool
4056 is_l32r_relocation (bfd *abfd,
4057 asection *sec,
4058 bfd_byte *contents,
4059 Elf_Internal_Rela *irel)
4060 {
4061 xtensa_opcode opcode;
4062 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4063 return false;
4064 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4065 return (opcode == get_l32r_opcode ());
4066 }
4067
4068
4069 static bfd_size_type
4070 get_asm_simplify_size (bfd_byte *contents,
4071 bfd_size_type content_len,
4072 bfd_size_type offset)
4073 {
4074 bfd_size_type insnlen, size = 0;
4075
4076 /* Decode the size of the next two instructions. */
4077 insnlen = insn_decode_len (contents, content_len, offset);
4078 if (insnlen == 0)
4079 return 0;
4080
4081 size += insnlen;
4082
4083 insnlen = insn_decode_len (contents, content_len, offset + size);
4084 if (insnlen == 0)
4085 return 0;
4086
4087 size += insnlen;
4088 return size;
4089 }
4090
4091
4092 bool
4093 is_alt_relocation (int r_type)
4094 {
4095 return (r_type >= R_XTENSA_SLOT0_ALT
4096 && r_type <= R_XTENSA_SLOT14_ALT);
4097 }
4098
4099
4100 bool
4101 is_operand_relocation (int r_type)
4102 {
4103 switch (r_type)
4104 {
4105 case R_XTENSA_OP0:
4106 case R_XTENSA_OP1:
4107 case R_XTENSA_OP2:
4108 return true;
4109
4110 default:
4111 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4112 return true;
4113 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4114 return true;
4115 break;
4116 }
4117
4118 return false;
4119 }
4120
4121
4122 #define MIN_INSN_LENGTH 2
4123
4124 /* Return 0 if it fails to decode. */
4125
4126 bfd_size_type
4127 insn_decode_len (bfd_byte *contents,
4128 bfd_size_type content_len,
4129 bfd_size_type offset)
4130 {
4131 int insn_len;
4132 xtensa_isa isa = xtensa_default_isa;
4133 xtensa_format fmt;
4134 static xtensa_insnbuf ibuff = NULL;
4135
4136 if (offset + MIN_INSN_LENGTH > content_len)
4137 return 0;
4138
4139 if (ibuff == NULL)
4140 ibuff = xtensa_insnbuf_alloc (isa);
4141 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4142 content_len - offset);
4143 fmt = xtensa_format_decode (isa, ibuff);
4144 if (fmt == XTENSA_UNDEFINED)
4145 return 0;
4146 insn_len = xtensa_format_length (isa, fmt);
4147 if (insn_len == XTENSA_UNDEFINED)
4148 return 0;
4149 return insn_len;
4150 }
4151
4152 int
4153 insn_num_slots (bfd_byte *contents,
4154 bfd_size_type content_len,
4155 bfd_size_type offset)
4156 {
4157 xtensa_isa isa = xtensa_default_isa;
4158 xtensa_format fmt;
4159 static xtensa_insnbuf ibuff = NULL;
4160
4161 if (offset + MIN_INSN_LENGTH > content_len)
4162 return XTENSA_UNDEFINED;
4163
4164 if (ibuff == NULL)
4165 ibuff = xtensa_insnbuf_alloc (isa);
4166 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4167 content_len - offset);
4168 fmt = xtensa_format_decode (isa, ibuff);
4169 if (fmt == XTENSA_UNDEFINED)
4170 return XTENSA_UNDEFINED;
4171 return xtensa_format_num_slots (isa, fmt);
4172 }
4173
4174
4175 /* Decode the opcode for a single slot instruction.
4176 Return 0 if it fails to decode or the instruction is multi-slot. */
4177
4178 xtensa_opcode
4179 insn_decode_opcode (bfd_byte *contents,
4180 bfd_size_type content_len,
4181 bfd_size_type offset,
4182 int slot)
4183 {
4184 xtensa_isa isa = xtensa_default_isa;
4185 xtensa_format fmt;
4186 static xtensa_insnbuf insnbuf = NULL;
4187 static xtensa_insnbuf slotbuf = NULL;
4188
4189 if (offset + MIN_INSN_LENGTH > content_len)
4190 return XTENSA_UNDEFINED;
4191
4192 if (insnbuf == NULL)
4193 {
4194 insnbuf = xtensa_insnbuf_alloc (isa);
4195 slotbuf = xtensa_insnbuf_alloc (isa);
4196 }
4197
4198 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4199 content_len - offset);
4200 fmt = xtensa_format_decode (isa, insnbuf);
4201 if (fmt == XTENSA_UNDEFINED)
4202 return XTENSA_UNDEFINED;
4203
4204 if (slot >= xtensa_format_num_slots (isa, fmt))
4205 return XTENSA_UNDEFINED;
4206
4207 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4208 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4209 }
4210
4211
4212 /* The offset is the offset in the contents.
4213 The address is the address of that offset. */
4214
4215 static bool
4216 check_branch_target_aligned (bfd_byte *contents,
4217 bfd_size_type content_length,
4218 bfd_vma offset,
4219 bfd_vma address)
4220 {
4221 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4222 if (insn_len == 0)
4223 return false;
4224 return check_branch_target_aligned_address (address, insn_len);
4225 }
4226
4227
4228 static bool
4229 check_loop_aligned (bfd_byte *contents,
4230 bfd_size_type content_length,
4231 bfd_vma offset,
4232 bfd_vma address)
4233 {
4234 bfd_size_type loop_len, insn_len;
4235 xtensa_opcode opcode;
4236
4237 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4238 if (opcode == XTENSA_UNDEFINED
4239 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4240 {
4241 BFD_ASSERT (false);
4242 return false;
4243 }
4244
4245 loop_len = insn_decode_len (contents, content_length, offset);
4246 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4247 if (loop_len == 0 || insn_len == 0)
4248 {
4249 BFD_ASSERT (false);
4250 return false;
4251 }
4252
4253 /* If this is relaxed loop, analyze first instruction of the actual loop
4254 body. It must be at offset 27 from the loop instruction address. */
4255 if (insn_len == 3
4256 && insn_num_slots (contents, content_length, offset + loop_len) == 1
4257 && insn_decode_opcode (contents, content_length,
4258 offset + loop_len, 0) == get_rsr_lend_opcode()
4259 && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3
4260 && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1
4261 && insn_decode_opcode (contents, content_length,
4262 offset + loop_len + 3, 0) == get_wsr_lbeg_opcode())
4263 {
4264 loop_len = 27;
4265 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4266 }
4267 return check_branch_target_aligned_address (address + loop_len, insn_len);
4268 }
4269
4270
4271 static bool
4272 check_branch_target_aligned_address (bfd_vma addr, int len)
4273 {
4274 if (len == 8)
4275 return (addr % 8 == 0);
4276 return ((addr >> 2) == ((addr + len - 1) >> 2));
4277 }
4278
4279 \f
4280 /* Instruction widening and narrowing. */
4281
4282 /* When FLIX is available we need to access certain instructions only
4283 when they are 16-bit or 24-bit instructions. This table caches
4284 information about such instructions by walking through all the
4285 opcodes and finding the smallest single-slot format into which each
4286 can be encoded. */
4287
4288 static xtensa_format *op_single_fmt_table = NULL;
4289
4290
4291 static void
4292 init_op_single_format_table (void)
4293 {
4294 xtensa_isa isa = xtensa_default_isa;
4295 xtensa_insnbuf ibuf;
4296 xtensa_opcode opcode;
4297 xtensa_format fmt;
4298 int num_opcodes;
4299
4300 if (op_single_fmt_table)
4301 return;
4302
4303 ibuf = xtensa_insnbuf_alloc (isa);
4304 num_opcodes = xtensa_isa_num_opcodes (isa);
4305
4306 op_single_fmt_table = (xtensa_format *)
4307 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4308 for (opcode = 0; opcode < num_opcodes; opcode++)
4309 {
4310 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4311 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4312 {
4313 if (xtensa_format_num_slots (isa, fmt) == 1
4314 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4315 {
4316 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4317 int fmt_length = xtensa_format_length (isa, fmt);
4318 if (old_fmt == XTENSA_UNDEFINED
4319 || fmt_length < xtensa_format_length (isa, old_fmt))
4320 op_single_fmt_table[opcode] = fmt;
4321 }
4322 }
4323 }
4324 xtensa_insnbuf_free (isa, ibuf);
4325 }
4326
4327
4328 static xtensa_format
4329 get_single_format (xtensa_opcode opcode)
4330 {
4331 init_op_single_format_table ();
4332 return op_single_fmt_table[opcode];
4333 }
4334
4335
4336 /* For the set of narrowable instructions we do NOT include the
4337 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4338 involved during linker relaxation that may require these to
4339 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4340 requires special case code to ensure it only works when op1 == op2. */
4341
4342 struct string_pair
4343 {
4344 const char *wide;
4345 const char *narrow;
4346 };
4347
4348 const struct string_pair narrowable[] =
4349 {
4350 { "add", "add.n" },
4351 { "addi", "addi.n" },
4352 { "addmi", "addi.n" },
4353 { "l32i", "l32i.n" },
4354 { "movi", "movi.n" },
4355 { "ret", "ret.n" },
4356 { "retw", "retw.n" },
4357 { "s32i", "s32i.n" },
4358 { "or", "mov.n" } /* special case only when op1 == op2 */
4359 };
4360
4361 const struct string_pair widenable[] =
4362 {
4363 { "add", "add.n" },
4364 { "addi", "addi.n" },
4365 { "addmi", "addi.n" },
4366 { "beqz", "beqz.n" },
4367 { "bnez", "bnez.n" },
4368 { "l32i", "l32i.n" },
4369 { "movi", "movi.n" },
4370 { "ret", "ret.n" },
4371 { "retw", "retw.n" },
4372 { "s32i", "s32i.n" },
4373 { "or", "mov.n" } /* special case only when op1 == op2 */
4374 };
4375
4376
4377 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4378 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4379 return the instruction buffer holding the narrow instruction. Otherwise,
4380 return 0. The set of valid narrowing are specified by a string table
4381 but require some special case operand checks in some cases. */
4382
4383 static xtensa_insnbuf
4384 can_narrow_instruction (xtensa_insnbuf slotbuf,
4385 xtensa_format fmt,
4386 xtensa_opcode opcode)
4387 {
4388 xtensa_isa isa = xtensa_default_isa;
4389 xtensa_format o_fmt;
4390 unsigned opi;
4391
4392 static xtensa_insnbuf o_insnbuf = NULL;
4393 static xtensa_insnbuf o_slotbuf = NULL;
4394
4395 if (o_insnbuf == NULL)
4396 {
4397 o_insnbuf = xtensa_insnbuf_alloc (isa);
4398 o_slotbuf = xtensa_insnbuf_alloc (isa);
4399 }
4400
4401 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4402 {
4403 bool is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4404
4405 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4406 {
4407 uint32 value, newval;
4408 int i, operand_count, o_operand_count;
4409 xtensa_opcode o_opcode;
4410
4411 /* Address does not matter in this case. We might need to
4412 fix it to handle branches/jumps. */
4413 bfd_vma self_address = 0;
4414
4415 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4416 if (o_opcode == XTENSA_UNDEFINED)
4417 return 0;
4418 o_fmt = get_single_format (o_opcode);
4419 if (o_fmt == XTENSA_UNDEFINED)
4420 return 0;
4421
4422 if (xtensa_format_length (isa, fmt) != 3
4423 || xtensa_format_length (isa, o_fmt) != 2)
4424 return 0;
4425
4426 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4427 operand_count = xtensa_opcode_num_operands (isa, opcode);
4428 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4429
4430 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4431 return 0;
4432
4433 if (!is_or)
4434 {
4435 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4436 return 0;
4437 }
4438 else
4439 {
4440 uint32 rawval0, rawval1, rawval2;
4441
4442 if (o_operand_count + 1 != operand_count
4443 || xtensa_operand_get_field (isa, opcode, 0,
4444 fmt, 0, slotbuf, &rawval0) != 0
4445 || xtensa_operand_get_field (isa, opcode, 1,
4446 fmt, 0, slotbuf, &rawval1) != 0
4447 || xtensa_operand_get_field (isa, opcode, 2,
4448 fmt, 0, slotbuf, &rawval2) != 0
4449 || rawval1 != rawval2
4450 || rawval0 == rawval1 /* it is a nop */)
4451 return 0;
4452 }
4453
4454 for (i = 0; i < o_operand_count; ++i)
4455 {
4456 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4457 slotbuf, &value)
4458 || xtensa_operand_decode (isa, opcode, i, &value))
4459 return 0;
4460
4461 /* PC-relative branches need adjustment, but
4462 the PC-rel operand will always have a relocation. */
4463 newval = value;
4464 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4465 self_address)
4466 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4467 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4468 o_slotbuf, newval))
4469 return 0;
4470 }
4471
4472 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4473 return 0;
4474
4475 return o_insnbuf;
4476 }
4477 }
4478 return 0;
4479 }
4480
4481
4482 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4483 the action in-place directly into the contents and return TRUE. Otherwise,
4484 the return value is FALSE and the contents are not modified. */
4485
4486 static bool
4487 narrow_instruction (bfd_byte *contents,
4488 bfd_size_type content_length,
4489 bfd_size_type offset)
4490 {
4491 xtensa_opcode opcode;
4492 bfd_size_type insn_len;
4493 xtensa_isa isa = xtensa_default_isa;
4494 xtensa_format fmt;
4495 xtensa_insnbuf o_insnbuf;
4496
4497 static xtensa_insnbuf insnbuf = NULL;
4498 static xtensa_insnbuf slotbuf = NULL;
4499
4500 if (insnbuf == NULL)
4501 {
4502 insnbuf = xtensa_insnbuf_alloc (isa);
4503 slotbuf = xtensa_insnbuf_alloc (isa);
4504 }
4505
4506 BFD_ASSERT (offset < content_length);
4507
4508 if (content_length < 2)
4509 return false;
4510
4511 /* We will hand-code a few of these for a little while.
4512 These have all been specified in the assembler aleady. */
4513 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4514 content_length - offset);
4515 fmt = xtensa_format_decode (isa, insnbuf);
4516 if (xtensa_format_num_slots (isa, fmt) != 1)
4517 return false;
4518
4519 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4520 return false;
4521
4522 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4523 if (opcode == XTENSA_UNDEFINED)
4524 return false;
4525 insn_len = xtensa_format_length (isa, fmt);
4526 if (insn_len > content_length)
4527 return false;
4528
4529 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4530 if (o_insnbuf)
4531 {
4532 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4533 content_length - offset);
4534 return true;
4535 }
4536
4537 return false;
4538 }
4539
4540
4541 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4542 "density" instruction to a standard 3-byte instruction. If it is valid,
4543 return the instruction buffer holding the wide instruction. Otherwise,
4544 return 0. The set of valid widenings are specified by a string table
4545 but require some special case operand checks in some cases. */
4546
4547 static xtensa_insnbuf
4548 can_widen_instruction (xtensa_insnbuf slotbuf,
4549 xtensa_format fmt,
4550 xtensa_opcode opcode)
4551 {
4552 xtensa_isa isa = xtensa_default_isa;
4553 xtensa_format o_fmt;
4554 unsigned opi;
4555
4556 static xtensa_insnbuf o_insnbuf = NULL;
4557 static xtensa_insnbuf o_slotbuf = NULL;
4558
4559 if (o_insnbuf == NULL)
4560 {
4561 o_insnbuf = xtensa_insnbuf_alloc (isa);
4562 o_slotbuf = xtensa_insnbuf_alloc (isa);
4563 }
4564
4565 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4566 {
4567 bool is_or = (strcmp ("or", widenable[opi].wide) == 0);
4568 bool is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4569 || strcmp ("bnez", widenable[opi].wide) == 0);
4570
4571 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4572 {
4573 uint32 value, newval;
4574 int i, operand_count, o_operand_count, check_operand_count;
4575 xtensa_opcode o_opcode;
4576
4577 /* Address does not matter in this case. We might need to fix it
4578 to handle branches/jumps. */
4579 bfd_vma self_address = 0;
4580
4581 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4582 if (o_opcode == XTENSA_UNDEFINED)
4583 return 0;
4584 o_fmt = get_single_format (o_opcode);
4585 if (o_fmt == XTENSA_UNDEFINED)
4586 return 0;
4587
4588 if (xtensa_format_length (isa, fmt) != 2
4589 || xtensa_format_length (isa, o_fmt) != 3)
4590 return 0;
4591
4592 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4593 operand_count = xtensa_opcode_num_operands (isa, opcode);
4594 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4595 check_operand_count = o_operand_count;
4596
4597 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4598 return 0;
4599
4600 if (!is_or)
4601 {
4602 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4603 return 0;
4604 }
4605 else
4606 {
4607 uint32 rawval0, rawval1;
4608
4609 if (o_operand_count != operand_count + 1
4610 || xtensa_operand_get_field (isa, opcode, 0,
4611 fmt, 0, slotbuf, &rawval0) != 0
4612 || xtensa_operand_get_field (isa, opcode, 1,
4613 fmt, 0, slotbuf, &rawval1) != 0
4614 || rawval0 == rawval1 /* it is a nop */)
4615 return 0;
4616 }
4617 if (is_branch)
4618 check_operand_count--;
4619
4620 for (i = 0; i < check_operand_count; i++)
4621 {
4622 int new_i = i;
4623 if (is_or && i == o_operand_count - 1)
4624 new_i = i - 1;
4625 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4626 slotbuf, &value)
4627 || xtensa_operand_decode (isa, opcode, new_i, &value))
4628 return 0;
4629
4630 /* PC-relative branches need adjustment, but
4631 the PC-rel operand will always have a relocation. */
4632 newval = value;
4633 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4634 self_address)
4635 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4636 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4637 o_slotbuf, newval))
4638 return 0;
4639 }
4640
4641 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4642 return 0;
4643
4644 return o_insnbuf;
4645 }
4646 }
4647 return 0;
4648 }
4649
4650
4651 /* Attempt to widen an instruction. If the widening is valid, perform
4652 the action in-place directly into the contents and return TRUE. Otherwise,
4653 the return value is FALSE and the contents are not modified. */
4654
4655 static bool
4656 widen_instruction (bfd_byte *contents,
4657 bfd_size_type content_length,
4658 bfd_size_type offset)
4659 {
4660 xtensa_opcode opcode;
4661 bfd_size_type insn_len;
4662 xtensa_isa isa = xtensa_default_isa;
4663 xtensa_format fmt;
4664 xtensa_insnbuf o_insnbuf;
4665
4666 static xtensa_insnbuf insnbuf = NULL;
4667 static xtensa_insnbuf slotbuf = NULL;
4668
4669 if (insnbuf == NULL)
4670 {
4671 insnbuf = xtensa_insnbuf_alloc (isa);
4672 slotbuf = xtensa_insnbuf_alloc (isa);
4673 }
4674
4675 BFD_ASSERT (offset < content_length);
4676
4677 if (content_length < 2)
4678 return false;
4679
4680 /* We will hand-code a few of these for a little while.
4681 These have all been specified in the assembler aleady. */
4682 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4683 content_length - offset);
4684 fmt = xtensa_format_decode (isa, insnbuf);
4685 if (xtensa_format_num_slots (isa, fmt) != 1)
4686 return false;
4687
4688 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4689 return false;
4690
4691 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4692 if (opcode == XTENSA_UNDEFINED)
4693 return false;
4694 insn_len = xtensa_format_length (isa, fmt);
4695 if (insn_len > content_length)
4696 return false;
4697
4698 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4699 if (o_insnbuf)
4700 {
4701 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4702 content_length - offset);
4703 return true;
4704 }
4705 return false;
4706 }
4707
4708 \f
4709 /* Code for transforming CALLs at link-time. */
4710
4711 static bfd_reloc_status_type
4712 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4713 bfd_vma address,
4714 bfd_vma content_length,
4715 char **error_message)
4716 {
4717 static xtensa_insnbuf insnbuf = NULL;
4718 static xtensa_insnbuf slotbuf = NULL;
4719 xtensa_format core_format = XTENSA_UNDEFINED;
4720 xtensa_opcode opcode;
4721 xtensa_opcode direct_call_opcode;
4722 xtensa_isa isa = xtensa_default_isa;
4723 bfd_byte *chbuf = contents + address;
4724 int opn;
4725
4726 if (insnbuf == NULL)
4727 {
4728 insnbuf = xtensa_insnbuf_alloc (isa);
4729 slotbuf = xtensa_insnbuf_alloc (isa);
4730 }
4731
4732 if (content_length < address)
4733 {
4734 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4735 return bfd_reloc_other;
4736 }
4737
4738 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4739 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4740 if (direct_call_opcode == XTENSA_UNDEFINED)
4741 {
4742 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4743 return bfd_reloc_other;
4744 }
4745
4746 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4747 core_format = xtensa_format_lookup (isa, "x24");
4748 opcode = xtensa_opcode_lookup (isa, "or");
4749 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4750 for (opn = 0; opn < 3; opn++)
4751 {
4752 uint32 regno = 1;
4753 xtensa_operand_encode (isa, opcode, opn, &regno);
4754 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4755 slotbuf, regno);
4756 }
4757 xtensa_format_encode (isa, core_format, insnbuf);
4758 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4759 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4760
4761 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4762 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4763 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4764
4765 xtensa_format_encode (isa, core_format, insnbuf);
4766 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4767 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4768 content_length - address - 3);
4769
4770 return bfd_reloc_ok;
4771 }
4772
4773
4774 static bfd_reloc_status_type
4775 contract_asm_expansion (bfd_byte *contents,
4776 bfd_vma content_length,
4777 Elf_Internal_Rela *irel,
4778 char **error_message)
4779 {
4780 bfd_reloc_status_type retval =
4781 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4782 error_message);
4783
4784 if (retval != bfd_reloc_ok)
4785 return bfd_reloc_dangerous;
4786
4787 /* Update the irel->r_offset field so that the right immediate and
4788 the right instruction are modified during the relocation. */
4789 irel->r_offset += 3;
4790 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4791 return bfd_reloc_ok;
4792 }
4793
4794
4795 static xtensa_opcode
4796 swap_callx_for_call_opcode (xtensa_opcode opcode)
4797 {
4798 init_call_opcodes ();
4799
4800 if (opcode == callx0_op) return call0_op;
4801 if (opcode == callx4_op) return call4_op;
4802 if (opcode == callx8_op) return call8_op;
4803 if (opcode == callx12_op) return call12_op;
4804
4805 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4806 return XTENSA_UNDEFINED;
4807 }
4808
4809
4810 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4811 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4812 If not, return XTENSA_UNDEFINED. */
4813
4814 #define L32R_TARGET_REG_OPERAND 0
4815 #define CONST16_TARGET_REG_OPERAND 0
4816 #define CALLN_SOURCE_OPERAND 0
4817
4818 static xtensa_opcode
4819 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bool *p_uses_l32r)
4820 {
4821 static xtensa_insnbuf insnbuf = NULL;
4822 static xtensa_insnbuf slotbuf = NULL;
4823 xtensa_format fmt;
4824 xtensa_opcode opcode;
4825 xtensa_isa isa = xtensa_default_isa;
4826 uint32 regno, const16_regno, call_regno;
4827 int offset = 0;
4828
4829 if (insnbuf == NULL)
4830 {
4831 insnbuf = xtensa_insnbuf_alloc (isa);
4832 slotbuf = xtensa_insnbuf_alloc (isa);
4833 }
4834
4835 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4836 fmt = xtensa_format_decode (isa, insnbuf);
4837 if (fmt == XTENSA_UNDEFINED
4838 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4839 return XTENSA_UNDEFINED;
4840
4841 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4842 if (opcode == XTENSA_UNDEFINED)
4843 return XTENSA_UNDEFINED;
4844
4845 if (opcode == get_l32r_opcode ())
4846 {
4847 if (p_uses_l32r)
4848 *p_uses_l32r = true;
4849 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4850 fmt, 0, slotbuf, &regno)
4851 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4852 &regno))
4853 return XTENSA_UNDEFINED;
4854 }
4855 else if (opcode == get_const16_opcode ())
4856 {
4857 if (p_uses_l32r)
4858 *p_uses_l32r = false;
4859 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4860 fmt, 0, slotbuf, &regno)
4861 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4862 &regno))
4863 return XTENSA_UNDEFINED;
4864
4865 /* Check that the next instruction is also CONST16. */
4866 offset += xtensa_format_length (isa, fmt);
4867 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4868 fmt = xtensa_format_decode (isa, insnbuf);
4869 if (fmt == XTENSA_UNDEFINED
4870 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4871 return XTENSA_UNDEFINED;
4872 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4873 if (opcode != get_const16_opcode ())
4874 return XTENSA_UNDEFINED;
4875
4876 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4877 fmt, 0, slotbuf, &const16_regno)
4878 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4879 &const16_regno)
4880 || const16_regno != regno)
4881 return XTENSA_UNDEFINED;
4882 }
4883 else
4884 return XTENSA_UNDEFINED;
4885
4886 /* Next instruction should be an CALLXn with operand 0 == regno. */
4887 offset += xtensa_format_length (isa, fmt);
4888 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4889 fmt = xtensa_format_decode (isa, insnbuf);
4890 if (fmt == XTENSA_UNDEFINED
4891 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4892 return XTENSA_UNDEFINED;
4893 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4894 if (opcode == XTENSA_UNDEFINED
4895 || !is_indirect_call_opcode (opcode))
4896 return XTENSA_UNDEFINED;
4897
4898 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4899 fmt, 0, slotbuf, &call_regno)
4900 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4901 &call_regno))
4902 return XTENSA_UNDEFINED;
4903
4904 if (call_regno != regno)
4905 return XTENSA_UNDEFINED;
4906
4907 return opcode;
4908 }
4909
4910 \f
4911 /* Data structures used during relaxation. */
4912
4913 /* r_reloc: relocation values. */
4914
4915 /* Through the relaxation process, we need to keep track of the values
4916 that will result from evaluating relocations. The standard ELF
4917 relocation structure is not sufficient for this purpose because we're
4918 operating on multiple input files at once, so we need to know which
4919 input file a relocation refers to. The r_reloc structure thus
4920 records both the input file (bfd) and ELF relocation.
4921
4922 For efficiency, an r_reloc also contains a "target_offset" field to
4923 cache the target-section-relative offset value that is represented by
4924 the relocation.
4925
4926 The r_reloc also contains a virtual offset that allows multiple
4927 inserted literals to be placed at the same "address" with
4928 different offsets. */
4929
4930 typedef struct r_reloc_struct r_reloc;
4931
4932 struct r_reloc_struct
4933 {
4934 bfd *abfd;
4935 Elf_Internal_Rela rela;
4936 bfd_vma target_offset;
4937 bfd_vma virtual_offset;
4938 };
4939
4940
4941 /* The r_reloc structure is included by value in literal_value, but not
4942 every literal_value has an associated relocation -- some are simple
4943 constants. In such cases, we set all the fields in the r_reloc
4944 struct to zero. The r_reloc_is_const function should be used to
4945 detect this case. */
4946
4947 static bool
4948 r_reloc_is_const (const r_reloc *r_rel)
4949 {
4950 return (r_rel->abfd == NULL);
4951 }
4952
4953
4954 static bfd_vma
4955 r_reloc_get_target_offset (const r_reloc *r_rel)
4956 {
4957 bfd_vma target_offset;
4958 unsigned long r_symndx;
4959
4960 BFD_ASSERT (!r_reloc_is_const (r_rel));
4961 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4962 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4963 return (target_offset + r_rel->rela.r_addend);
4964 }
4965
4966
4967 static struct elf_link_hash_entry *
4968 r_reloc_get_hash_entry (const r_reloc *r_rel)
4969 {
4970 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4971 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4972 }
4973
4974
4975 static asection *
4976 r_reloc_get_section (const r_reloc *r_rel)
4977 {
4978 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4979 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4980 }
4981
4982
4983 static bool
4984 r_reloc_is_defined (const r_reloc *r_rel)
4985 {
4986 asection *sec;
4987 if (r_rel == NULL)
4988 return false;
4989
4990 sec = r_reloc_get_section (r_rel);
4991 if (sec == bfd_abs_section_ptr
4992 || sec == bfd_com_section_ptr
4993 || sec == bfd_und_section_ptr)
4994 return false;
4995 return true;
4996 }
4997
4998
4999 static void
5000 r_reloc_init (r_reloc *r_rel,
5001 bfd *abfd,
5002 Elf_Internal_Rela *irel,
5003 bfd_byte *contents,
5004 bfd_size_type content_length)
5005 {
5006 int r_type;
5007 reloc_howto_type *howto;
5008
5009 if (irel)
5010 {
5011 r_rel->rela = *irel;
5012 r_rel->abfd = abfd;
5013 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
5014 r_rel->virtual_offset = 0;
5015 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
5016 howto = &elf_howto_table[r_type];
5017 if (howto->partial_inplace)
5018 {
5019 bfd_vma inplace_val;
5020 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5021
5022 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5023 r_rel->target_offset += inplace_val;
5024 }
5025 }
5026 else
5027 memset (r_rel, 0, sizeof (r_reloc));
5028 }
5029
5030
5031 #if DEBUG
5032
5033 static void
5034 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5035 {
5036 if (r_reloc_is_defined (r_rel))
5037 {
5038 asection *sec = r_reloc_get_section (r_rel);
5039 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5040 }
5041 else if (r_reloc_get_hash_entry (r_rel))
5042 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5043 else
5044 fprintf (fp, " ?? + ");
5045
5046 fprintf (fp, "%" PRIx64, (uint64_t) r_rel->target_offset);
5047 if (r_rel->virtual_offset)
5048 fprintf (fp, " + %" PRIx64, (uint64_t) r_rel->virtual_offset);
5049
5050 fprintf (fp, ")");
5051 }
5052
5053 #endif /* DEBUG */
5054
5055 \f
5056 /* source_reloc: relocations that reference literals. */
5057
5058 /* To determine whether literals can be coalesced, we need to first
5059 record all the relocations that reference the literals. The
5060 source_reloc structure below is used for this purpose. The
5061 source_reloc entries are kept in a per-literal-section array, sorted
5062 by offset within the literal section (i.e., target offset).
5063
5064 The source_sec and r_rel.rela.r_offset fields identify the source of
5065 the relocation. The r_rel field records the relocation value, i.e.,
5066 the offset of the literal being referenced. The opnd field is needed
5067 to determine the range of the immediate field to which the relocation
5068 applies, so we can determine whether another literal with the same
5069 value is within range. The is_null field is true when the relocation
5070 is being removed (e.g., when an L32R is being removed due to a CALLX
5071 that is converted to a direct CALL). */
5072
5073 typedef struct source_reloc_struct source_reloc;
5074
5075 struct source_reloc_struct
5076 {
5077 asection *source_sec;
5078 r_reloc r_rel;
5079 xtensa_opcode opcode;
5080 int opnd;
5081 bool is_null;
5082 bool is_abs_literal;
5083 };
5084
5085
5086 static void
5087 init_source_reloc (source_reloc *reloc,
5088 asection *source_sec,
5089 const r_reloc *r_rel,
5090 xtensa_opcode opcode,
5091 int opnd,
5092 bool is_abs_literal)
5093 {
5094 reloc->source_sec = source_sec;
5095 reloc->r_rel = *r_rel;
5096 reloc->opcode = opcode;
5097 reloc->opnd = opnd;
5098 reloc->is_null = false;
5099 reloc->is_abs_literal = is_abs_literal;
5100 }
5101
5102
5103 /* Find the source_reloc for a particular source offset and relocation
5104 type. Note that the array is sorted by _target_ offset, so this is
5105 just a linear search. */
5106
5107 static source_reloc *
5108 find_source_reloc (source_reloc *src_relocs,
5109 int src_count,
5110 asection *sec,
5111 Elf_Internal_Rela *irel)
5112 {
5113 int i;
5114
5115 for (i = 0; i < src_count; i++)
5116 {
5117 if (src_relocs[i].source_sec == sec
5118 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5119 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5120 == ELF32_R_TYPE (irel->r_info)))
5121 return &src_relocs[i];
5122 }
5123
5124 return NULL;
5125 }
5126
5127
5128 static int
5129 source_reloc_compare (const void *ap, const void *bp)
5130 {
5131 const source_reloc *a = (const source_reloc *) ap;
5132 const source_reloc *b = (const source_reloc *) bp;
5133
5134 if (a->r_rel.target_offset != b->r_rel.target_offset)
5135 return (a->r_rel.target_offset - b->r_rel.target_offset);
5136
5137 /* We don't need to sort on these criteria for correctness,
5138 but enforcing a more strict ordering prevents unstable qsort
5139 from behaving differently with different implementations.
5140 Without the code below we get correct but different results
5141 on Solaris 2.7 and 2.8. We would like to always produce the
5142 same results no matter the host. */
5143
5144 if ((!a->is_null) - (!b->is_null))
5145 return ((!a->is_null) - (!b->is_null));
5146 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5147 }
5148
5149 \f
5150 /* Literal values and value hash tables. */
5151
5152 /* Literals with the same value can be coalesced. The literal_value
5153 structure records the value of a literal: the "r_rel" field holds the
5154 information from the relocation on the literal (if there is one) and
5155 the "value" field holds the contents of the literal word itself.
5156
5157 The value_map structure records a literal value along with the
5158 location of a literal holding that value. The value_map hash table
5159 is indexed by the literal value, so that we can quickly check if a
5160 particular literal value has been seen before and is thus a candidate
5161 for coalescing. */
5162
5163 typedef struct literal_value_struct literal_value;
5164 typedef struct value_map_struct value_map;
5165 typedef struct value_map_hash_table_struct value_map_hash_table;
5166
5167 struct literal_value_struct
5168 {
5169 r_reloc r_rel;
5170 unsigned long value;
5171 bool is_abs_literal;
5172 };
5173
5174 struct value_map_struct
5175 {
5176 literal_value val; /* The literal value. */
5177 r_reloc loc; /* Location of the literal. */
5178 value_map *next;
5179 };
5180
5181 struct value_map_hash_table_struct
5182 {
5183 unsigned bucket_count;
5184 value_map **buckets;
5185 unsigned count;
5186 bool has_last_loc;
5187 r_reloc last_loc;
5188 };
5189
5190
5191 static void
5192 init_literal_value (literal_value *lit,
5193 const r_reloc *r_rel,
5194 unsigned long value,
5195 bool is_abs_literal)
5196 {
5197 lit->r_rel = *r_rel;
5198 lit->value = value;
5199 lit->is_abs_literal = is_abs_literal;
5200 }
5201
5202
5203 static bool
5204 literal_value_equal (const literal_value *src1,
5205 const literal_value *src2,
5206 bool final_static_link)
5207 {
5208 struct elf_link_hash_entry *h1, *h2;
5209
5210 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5211 return false;
5212
5213 if (r_reloc_is_const (&src1->r_rel))
5214 return (src1->value == src2->value);
5215
5216 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5217 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5218 return false;
5219
5220 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5221 return false;
5222
5223 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5224 return false;
5225
5226 if (src1->value != src2->value)
5227 return false;
5228
5229 /* Now check for the same section (if defined) or the same elf_hash
5230 (if undefined or weak). */
5231 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5232 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5233
5234 /* Keep start_stop literals always unique to avoid dropping it due to them
5235 having late initialization.
5236 Now they are equal because initialized with zeroed values. */
5237 if (h2 && h2->start_stop)
5238 return false;
5239
5240 if (r_reloc_is_defined (&src1->r_rel)
5241 && (final_static_link
5242 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5243 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5244 {
5245 if (r_reloc_get_section (&src1->r_rel)
5246 != r_reloc_get_section (&src2->r_rel))
5247 return false;
5248 }
5249 else
5250 {
5251 /* Require that the hash entries (i.e., symbols) be identical. */
5252 if (h1 != h2 || h1 == 0)
5253 return false;
5254 }
5255
5256 if (src1->is_abs_literal != src2->is_abs_literal)
5257 return false;
5258
5259 return true;
5260 }
5261
5262
5263 /* Must be power of 2. */
5264 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5265
5266 static value_map_hash_table *
5267 value_map_hash_table_init (void)
5268 {
5269 value_map_hash_table *values;
5270
5271 values = (value_map_hash_table *)
5272 bfd_zmalloc (sizeof (value_map_hash_table));
5273 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5274 values->count = 0;
5275 values->buckets = (value_map **)
5276 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5277 if (values->buckets == NULL)
5278 {
5279 free (values);
5280 return NULL;
5281 }
5282 values->has_last_loc = false;
5283
5284 return values;
5285 }
5286
5287
5288 static void
5289 value_map_hash_table_delete (value_map_hash_table *table)
5290 {
5291 free (table->buckets);
5292 free (table);
5293 }
5294
5295
5296 static unsigned
5297 hash_bfd_vma (bfd_vma val)
5298 {
5299 return (val >> 2) + (val >> 10);
5300 }
5301
5302
5303 static unsigned
5304 literal_value_hash (const literal_value *src)
5305 {
5306 unsigned hash_val;
5307
5308 hash_val = hash_bfd_vma (src->value);
5309 if (!r_reloc_is_const (&src->r_rel))
5310 {
5311 void *sec_or_hash;
5312
5313 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5314 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5315 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5316
5317 /* Now check for the same section and the same elf_hash. */
5318 if (r_reloc_is_defined (&src->r_rel))
5319 sec_or_hash = r_reloc_get_section (&src->r_rel);
5320 else
5321 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5322 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5323 }
5324 return hash_val;
5325 }
5326
5327
5328 /* Check if the specified literal_value has been seen before. */
5329
5330 static value_map *
5331 value_map_get_cached_value (value_map_hash_table *map,
5332 const literal_value *val,
5333 bool final_static_link)
5334 {
5335 value_map *map_e;
5336 value_map *bucket;
5337 unsigned idx;
5338
5339 idx = literal_value_hash (val);
5340 idx = idx & (map->bucket_count - 1);
5341 bucket = map->buckets[idx];
5342 for (map_e = bucket; map_e; map_e = map_e->next)
5343 {
5344 if (literal_value_equal (&map_e->val, val, final_static_link))
5345 return map_e;
5346 }
5347 return NULL;
5348 }
5349
5350
5351 /* Record a new literal value. It is illegal to call this if VALUE
5352 already has an entry here. */
5353
5354 static value_map *
5355 add_value_map (value_map_hash_table *map,
5356 const literal_value *val,
5357 const r_reloc *loc,
5358 bool final_static_link)
5359 {
5360 value_map **bucket_p;
5361 unsigned idx;
5362
5363 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5364 if (val_e == NULL)
5365 {
5366 bfd_set_error (bfd_error_no_memory);
5367 return NULL;
5368 }
5369
5370 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5371 val_e->val = *val;
5372 val_e->loc = *loc;
5373
5374 idx = literal_value_hash (val);
5375 idx = idx & (map->bucket_count - 1);
5376 bucket_p = &map->buckets[idx];
5377
5378 val_e->next = *bucket_p;
5379 *bucket_p = val_e;
5380 map->count++;
5381 /* FIXME: Consider resizing the hash table if we get too many entries. */
5382
5383 return val_e;
5384 }
5385
5386 \f
5387 /* Lists of text actions (ta_) for narrowing, widening, longcall
5388 conversion, space fill, code & literal removal, etc. */
5389
5390 /* The following text actions are generated:
5391
5392 "ta_remove_insn" remove an instruction or instructions
5393 "ta_remove_longcall" convert longcall to call
5394 "ta_convert_longcall" convert longcall to nop/call
5395 "ta_narrow_insn" narrow a wide instruction
5396 "ta_widen" widen a narrow instruction
5397 "ta_fill" add fill or remove fill
5398 removed < 0 is a fill; branches to the fill address will be
5399 changed to address + fill size (e.g., address - removed)
5400 removed >= 0 branches to the fill address will stay unchanged
5401 "ta_remove_literal" remove a literal; this action is
5402 indicated when a literal is removed
5403 or replaced.
5404 "ta_add_literal" insert a new literal; this action is
5405 indicated when a literal has been moved.
5406 It may use a virtual_offset because
5407 multiple literals can be placed at the
5408 same location.
5409
5410 For each of these text actions, we also record the number of bytes
5411 removed by performing the text action. In the case of a "ta_widen"
5412 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5413
5414 typedef struct text_action_struct text_action;
5415 typedef struct text_action_list_struct text_action_list;
5416 typedef enum text_action_enum_t text_action_t;
5417
5418 enum text_action_enum_t
5419 {
5420 ta_none,
5421 ta_remove_insn, /* removed = -size */
5422 ta_remove_longcall, /* removed = -size */
5423 ta_convert_longcall, /* removed = 0 */
5424 ta_narrow_insn, /* removed = -1 */
5425 ta_widen_insn, /* removed = +1 */
5426 ta_fill, /* removed = +size */
5427 ta_remove_literal,
5428 ta_add_literal
5429 };
5430
5431
5432 /* Structure for a text action record. */
5433 struct text_action_struct
5434 {
5435 text_action_t action;
5436 asection *sec; /* Optional */
5437 bfd_vma offset;
5438 bfd_vma virtual_offset; /* Zero except for adding literals. */
5439 int removed_bytes;
5440 literal_value value; /* Only valid when adding literals. */
5441 };
5442
5443 struct removal_by_action_entry_struct
5444 {
5445 bfd_vma offset;
5446 int removed;
5447 int eq_removed;
5448 int eq_removed_before_fill;
5449 };
5450 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5451
5452 struct removal_by_action_map_struct
5453 {
5454 unsigned n_entries;
5455 removal_by_action_entry *entry;
5456 };
5457 typedef struct removal_by_action_map_struct removal_by_action_map;
5458
5459
5460 /* List of all of the actions taken on a text section. */
5461 struct text_action_list_struct
5462 {
5463 unsigned count;
5464 splay_tree tree;
5465 removal_by_action_map map;
5466 };
5467
5468
5469 static text_action *
5470 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5471 {
5472 text_action a;
5473
5474 /* It is not necessary to fill at the end of a section. */
5475 if (sec->size == offset)
5476 return NULL;
5477
5478 a.offset = offset;
5479 a.action = ta_fill;
5480
5481 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5482 if (node)
5483 return (text_action *)node->value;
5484 return NULL;
5485 }
5486
5487
5488 static int
5489 compute_removed_action_diff (const text_action *ta,
5490 asection *sec,
5491 bfd_vma offset,
5492 int removed,
5493 int removable_space)
5494 {
5495 int new_removed;
5496 int current_removed = 0;
5497
5498 if (ta)
5499 current_removed = ta->removed_bytes;
5500
5501 BFD_ASSERT (ta == NULL || ta->offset == offset);
5502 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5503
5504 /* It is not necessary to fill at the end of a section. Clean this up. */
5505 if (sec->size == offset)
5506 new_removed = removable_space - 0;
5507 else
5508 {
5509 int space;
5510 int added = -removed - current_removed;
5511 /* Ignore multiples of the section alignment. */
5512 added = ((1 << sec->alignment_power) - 1) & added;
5513 new_removed = (-added);
5514
5515 /* Modify for removable. */
5516 space = removable_space - new_removed;
5517 new_removed = (removable_space
5518 - (((1 << sec->alignment_power) - 1) & space));
5519 }
5520 return (new_removed - current_removed);
5521 }
5522
5523
5524 static void
5525 adjust_fill_action (text_action *ta, int fill_diff)
5526 {
5527 ta->removed_bytes += fill_diff;
5528 }
5529
5530
5531 static int
5532 text_action_compare (splay_tree_key a, splay_tree_key b)
5533 {
5534 text_action *pa = (text_action *)a;
5535 text_action *pb = (text_action *)b;
5536 static const int action_priority[] =
5537 {
5538 [ta_fill] = 0,
5539 [ta_none] = 1,
5540 [ta_convert_longcall] = 2,
5541 [ta_narrow_insn] = 3,
5542 [ta_remove_insn] = 4,
5543 [ta_remove_longcall] = 5,
5544 [ta_remove_literal] = 6,
5545 [ta_widen_insn] = 7,
5546 [ta_add_literal] = 8,
5547 };
5548
5549 if (pa->offset == pb->offset)
5550 {
5551 if (pa->action == pb->action)
5552 return 0;
5553 return action_priority[pa->action] - action_priority[pb->action];
5554 }
5555 else
5556 return pa->offset < pb->offset ? -1 : 1;
5557 }
5558
5559 static text_action *
5560 action_first (text_action_list *action_list)
5561 {
5562 splay_tree_node node = splay_tree_min (action_list->tree);
5563 return node ? (text_action *)node->value : NULL;
5564 }
5565
5566 static text_action *
5567 action_next (text_action_list *action_list, text_action *action)
5568 {
5569 splay_tree_node node = splay_tree_successor (action_list->tree,
5570 (splay_tree_key)action);
5571 return node ? (text_action *)node->value : NULL;
5572 }
5573
5574 /* Add a modification action to the text. For the case of adding or
5575 removing space, modify any current fill and assume that
5576 "unreachable_space" bytes can be freely contracted. Note that a
5577 negative removed value is a fill. */
5578
5579 static void
5580 text_action_add (text_action_list *l,
5581 text_action_t action,
5582 asection *sec,
5583 bfd_vma offset,
5584 int removed)
5585 {
5586 text_action *ta;
5587 text_action a;
5588
5589 /* It is not necessary to fill at the end of a section. */
5590 if (action == ta_fill && sec->size == offset)
5591 return;
5592
5593 /* It is not necessary to fill 0 bytes. */
5594 if (action == ta_fill && removed == 0)
5595 return;
5596
5597 a.action = action;
5598 a.offset = offset;
5599
5600 if (action == ta_fill)
5601 {
5602 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5603
5604 if (node)
5605 {
5606 ta = (text_action *)node->value;
5607 ta->removed_bytes += removed;
5608 return;
5609 }
5610 }
5611 else
5612 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5613
5614 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5615 ta->action = action;
5616 ta->sec = sec;
5617 ta->offset = offset;
5618 ta->removed_bytes = removed;
5619 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5620 ++l->count;
5621 }
5622
5623
5624 static void
5625 text_action_add_literal (text_action_list *l,
5626 text_action_t action,
5627 const r_reloc *loc,
5628 const literal_value *value,
5629 int removed)
5630 {
5631 text_action *ta;
5632 asection *sec = r_reloc_get_section (loc);
5633 bfd_vma offset = loc->target_offset;
5634 bfd_vma virtual_offset = loc->virtual_offset;
5635
5636 BFD_ASSERT (action == ta_add_literal);
5637
5638 /* Create a new record and fill it up. */
5639 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5640 ta->action = action;
5641 ta->sec = sec;
5642 ta->offset = offset;
5643 ta->virtual_offset = virtual_offset;
5644 ta->value = *value;
5645 ta->removed_bytes = removed;
5646
5647 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5648 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5649 ++l->count;
5650 }
5651
5652
5653 /* Find the total offset adjustment for the relaxations specified by
5654 text_actions, beginning from a particular starting action. This is
5655 typically used from offset_with_removed_text to search an entire list of
5656 actions, but it may also be called directly when adjusting adjacent offsets
5657 so that each search may begin where the previous one left off. */
5658
5659 static int
5660 removed_by_actions (text_action_list *action_list,
5661 text_action **p_start_action,
5662 bfd_vma offset,
5663 bool before_fill)
5664 {
5665 text_action *r;
5666 int removed = 0;
5667
5668 r = *p_start_action;
5669 if (r)
5670 {
5671 splay_tree_node node = splay_tree_lookup (action_list->tree,
5672 (splay_tree_key)r);
5673 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5674 }
5675
5676 while (r)
5677 {
5678 if (r->offset > offset)
5679 break;
5680
5681 if (r->offset == offset
5682 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5683 break;
5684
5685 removed += r->removed_bytes;
5686
5687 r = action_next (action_list, r);
5688 }
5689
5690 *p_start_action = r;
5691 return removed;
5692 }
5693
5694
5695 static bfd_vma
5696 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5697 {
5698 text_action *r = action_first (action_list);
5699
5700 return offset - removed_by_actions (action_list, &r, offset, false);
5701 }
5702
5703
5704 static unsigned
5705 action_list_count (text_action_list *action_list)
5706 {
5707 return action_list->count;
5708 }
5709
5710 typedef struct map_action_fn_context_struct map_action_fn_context;
5711 struct map_action_fn_context_struct
5712 {
5713 int removed;
5714 removal_by_action_map map;
5715 bool eq_complete;
5716 };
5717
5718 static int
5719 map_action_fn (splay_tree_node node, void *p)
5720 {
5721 map_action_fn_context *ctx = p;
5722 text_action *r = (text_action *)node->value;
5723 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5724
5725 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5726 {
5727 --ientry;
5728 }
5729 else
5730 {
5731 ++ctx->map.n_entries;
5732 ctx->eq_complete = false;
5733 ientry->offset = r->offset;
5734 ientry->eq_removed_before_fill = ctx->removed;
5735 }
5736
5737 if (!ctx->eq_complete)
5738 {
5739 if (r->action != ta_fill || r->removed_bytes >= 0)
5740 {
5741 ientry->eq_removed = ctx->removed;
5742 ctx->eq_complete = true;
5743 }
5744 else
5745 ientry->eq_removed = ctx->removed + r->removed_bytes;
5746 }
5747
5748 ctx->removed += r->removed_bytes;
5749 ientry->removed = ctx->removed;
5750 return 0;
5751 }
5752
5753 static void
5754 map_removal_by_action (text_action_list *action_list)
5755 {
5756 map_action_fn_context ctx;
5757
5758 ctx.removed = 0;
5759 ctx.map.n_entries = 0;
5760 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5761 sizeof (removal_by_action_entry));
5762 ctx.eq_complete = false;
5763
5764 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5765 action_list->map = ctx.map;
5766 }
5767
5768 static int
5769 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5770 bool before_fill)
5771 {
5772 unsigned a, b;
5773
5774 if (!action_list->map.entry)
5775 map_removal_by_action (action_list);
5776
5777 if (!action_list->map.n_entries)
5778 return 0;
5779
5780 a = 0;
5781 b = action_list->map.n_entries;
5782
5783 while (b - a > 1)
5784 {
5785 unsigned c = (a + b) / 2;
5786
5787 if (action_list->map.entry[c].offset <= offset)
5788 a = c;
5789 else
5790 b = c;
5791 }
5792
5793 if (action_list->map.entry[a].offset < offset)
5794 {
5795 return action_list->map.entry[a].removed;
5796 }
5797 else if (action_list->map.entry[a].offset == offset)
5798 {
5799 return before_fill ?
5800 action_list->map.entry[a].eq_removed_before_fill :
5801 action_list->map.entry[a].eq_removed;
5802 }
5803 else
5804 {
5805 return 0;
5806 }
5807 }
5808
5809 static bfd_vma
5810 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5811 {
5812 int removed = removed_by_actions_map (action_list, offset, false);
5813 return offset - removed;
5814 }
5815
5816
5817 /* The find_insn_action routine will only find non-fill actions. */
5818
5819 static text_action *
5820 find_insn_action (text_action_list *action_list, bfd_vma offset)
5821 {
5822 static const text_action_t action[] =
5823 {
5824 ta_convert_longcall,
5825 ta_remove_longcall,
5826 ta_widen_insn,
5827 ta_narrow_insn,
5828 ta_remove_insn,
5829 };
5830 text_action a;
5831 unsigned i;
5832
5833 a.offset = offset;
5834 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5835 {
5836 splay_tree_node node;
5837
5838 a.action = action[i];
5839 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5840 if (node)
5841 return (text_action *)node->value;
5842 }
5843 return NULL;
5844 }
5845
5846
5847 #if DEBUG
5848
5849 static void
5850 print_action (FILE *fp, text_action *r)
5851 {
5852 const char *t = "unknown";
5853 switch (r->action)
5854 {
5855 case ta_remove_insn:
5856 t = "remove_insn"; break;
5857 case ta_remove_longcall:
5858 t = "remove_longcall"; break;
5859 case ta_convert_longcall:
5860 t = "convert_longcall"; break;
5861 case ta_narrow_insn:
5862 t = "narrow_insn"; break;
5863 case ta_widen_insn:
5864 t = "widen_insn"; break;
5865 case ta_fill:
5866 t = "fill"; break;
5867 case ta_none:
5868 t = "none"; break;
5869 case ta_remove_literal:
5870 t = "remove_literal"; break;
5871 case ta_add_literal:
5872 t = "add_literal"; break;
5873 }
5874
5875 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5876 r->sec->owner->filename,
5877 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5878 }
5879
5880 static int
5881 print_action_list_fn (splay_tree_node node, void *p)
5882 {
5883 text_action *r = (text_action *)node->value;
5884
5885 print_action (p, r);
5886 return 0;
5887 }
5888
5889 static void
5890 print_action_list (FILE *fp, text_action_list *action_list)
5891 {
5892 fprintf (fp, "Text Action\n");
5893 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5894 }
5895
5896 #endif /* DEBUG */
5897
5898 \f
5899 /* Lists of literals being coalesced or removed. */
5900
5901 /* In the usual case, the literal identified by "from" is being
5902 coalesced with another literal identified by "to". If the literal is
5903 unused and is being removed altogether, "to.abfd" will be NULL.
5904 The removed_literal entries are kept on a per-section list, sorted
5905 by the "from" offset field. */
5906
5907 typedef struct removed_literal_struct removed_literal;
5908 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5909 typedef struct removed_literal_list_struct removed_literal_list;
5910
5911 struct removed_literal_struct
5912 {
5913 r_reloc from;
5914 r_reloc to;
5915 removed_literal *next;
5916 };
5917
5918 struct removed_literal_map_entry_struct
5919 {
5920 bfd_vma addr;
5921 removed_literal *literal;
5922 };
5923
5924 struct removed_literal_list_struct
5925 {
5926 removed_literal *head;
5927 removed_literal *tail;
5928
5929 unsigned n_map;
5930 removed_literal_map_entry *map;
5931 };
5932
5933
5934 /* Record that the literal at "from" is being removed. If "to" is not
5935 NULL, the "from" literal is being coalesced with the "to" literal. */
5936
5937 static void
5938 add_removed_literal (removed_literal_list *removed_list,
5939 const r_reloc *from,
5940 const r_reloc *to)
5941 {
5942 removed_literal *r, *new_r, *next_r;
5943
5944 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5945
5946 new_r->from = *from;
5947 if (to)
5948 new_r->to = *to;
5949 else
5950 new_r->to.abfd = NULL;
5951 new_r->next = NULL;
5952
5953 r = removed_list->head;
5954 if (r == NULL)
5955 {
5956 removed_list->head = new_r;
5957 removed_list->tail = new_r;
5958 }
5959 /* Special check for common case of append. */
5960 else if (removed_list->tail->from.target_offset < from->target_offset)
5961 {
5962 removed_list->tail->next = new_r;
5963 removed_list->tail = new_r;
5964 }
5965 else
5966 {
5967 while (r->from.target_offset < from->target_offset && r->next)
5968 {
5969 r = r->next;
5970 }
5971 next_r = r->next;
5972 r->next = new_r;
5973 new_r->next = next_r;
5974 if (next_r == NULL)
5975 removed_list->tail = new_r;
5976 }
5977 }
5978
5979 static void
5980 map_removed_literal (removed_literal_list *removed_list)
5981 {
5982 unsigned n_map = 0;
5983 unsigned i;
5984 removed_literal_map_entry *map = NULL;
5985 removed_literal *r = removed_list->head;
5986
5987 for (i = 0; r; ++i, r = r->next)
5988 {
5989 if (i == n_map)
5990 {
5991 n_map = (n_map * 2) + 2;
5992 map = bfd_realloc (map, n_map * sizeof (*map));
5993 }
5994 map[i].addr = r->from.target_offset;
5995 map[i].literal = r;
5996 }
5997 removed_list->map = map;
5998 removed_list->n_map = i;
5999 }
6000
6001 static int
6002 removed_literal_compare (const void *a, const void *b)
6003 {
6004 const bfd_vma *key = a;
6005 const removed_literal_map_entry *memb = b;
6006
6007 if (*key == memb->addr)
6008 return 0;
6009 else
6010 return *key < memb->addr ? -1 : 1;
6011 }
6012
6013 /* Check if the list of removed literals contains an entry for the
6014 given address. Return the entry if found. */
6015
6016 static removed_literal *
6017 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
6018 {
6019 removed_literal_map_entry *p;
6020 removed_literal *r = NULL;
6021
6022 if (removed_list->map == NULL)
6023 map_removed_literal (removed_list);
6024
6025 if (removed_list->map != NULL)
6026 {
6027 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6028 sizeof (*removed_list->map), removed_literal_compare);
6029 if (p)
6030 {
6031 while (p != removed_list->map && (p - 1)->addr == addr)
6032 --p;
6033 r = p->literal;
6034 }
6035 }
6036 return r;
6037 }
6038
6039
6040 #if DEBUG
6041
6042 static void
6043 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
6044 {
6045 removed_literal *r;
6046 r = removed_list->head;
6047 if (r)
6048 fprintf (fp, "Removed Literals\n");
6049 for (; r != NULL; r = r->next)
6050 {
6051 print_r_reloc (fp, &r->from);
6052 fprintf (fp, " => ");
6053 if (r->to.abfd == NULL)
6054 fprintf (fp, "REMOVED");
6055 else
6056 print_r_reloc (fp, &r->to);
6057 fprintf (fp, "\n");
6058 }
6059 }
6060
6061 #endif /* DEBUG */
6062
6063 \f
6064 /* Per-section data for relaxation. */
6065
6066 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6067
6068 struct xtensa_relax_info_struct
6069 {
6070 bool is_relaxable_literal_section;
6071 bool is_relaxable_asm_section;
6072 int visited; /* Number of times visited. */
6073
6074 source_reloc *src_relocs; /* Array[src_count]. */
6075 int src_count;
6076 int src_next; /* Next src_relocs entry to assign. */
6077
6078 removed_literal_list removed_list;
6079 text_action_list action_list;
6080
6081 reloc_bfd_fix *fix_list;
6082 reloc_bfd_fix *fix_array;
6083 unsigned fix_array_count;
6084
6085 /* Support for expanding the reloc array that is stored
6086 in the section structure. If the relocations have been
6087 reallocated, the newly allocated relocations will be referenced
6088 here along with the actual size allocated. The relocation
6089 count will always be found in the section structure. */
6090 Elf_Internal_Rela *allocated_relocs;
6091 unsigned relocs_count;
6092 unsigned allocated_relocs_count;
6093 };
6094
6095 struct elf_xtensa_section_data
6096 {
6097 struct bfd_elf_section_data elf;
6098 xtensa_relax_info relax_info;
6099 };
6100
6101
6102 static bool
6103 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6104 {
6105 if (!sec->used_by_bfd)
6106 {
6107 struct elf_xtensa_section_data *sdata;
6108 size_t amt = sizeof (*sdata);
6109
6110 sdata = bfd_zalloc (abfd, amt);
6111 if (sdata == NULL)
6112 return false;
6113 sec->used_by_bfd = sdata;
6114 }
6115
6116 return _bfd_elf_new_section_hook (abfd, sec);
6117 }
6118
6119
6120 static xtensa_relax_info *
6121 get_xtensa_relax_info (asection *sec)
6122 {
6123 struct elf_xtensa_section_data *section_data;
6124
6125 /* No info available if no section or if it is an output section. */
6126 if (!sec || sec == sec->output_section)
6127 return NULL;
6128
6129 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6130 return &section_data->relax_info;
6131 }
6132
6133
6134 static void
6135 init_xtensa_relax_info (asection *sec)
6136 {
6137 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6138
6139 relax_info->is_relaxable_literal_section = false;
6140 relax_info->is_relaxable_asm_section = false;
6141 relax_info->visited = 0;
6142
6143 relax_info->src_relocs = NULL;
6144 relax_info->src_count = 0;
6145 relax_info->src_next = 0;
6146
6147 relax_info->removed_list.head = NULL;
6148 relax_info->removed_list.tail = NULL;
6149
6150 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6151 NULL, NULL);
6152 relax_info->action_list.map.n_entries = 0;
6153 relax_info->action_list.map.entry = NULL;
6154
6155 relax_info->fix_list = NULL;
6156 relax_info->fix_array = NULL;
6157 relax_info->fix_array_count = 0;
6158
6159 relax_info->allocated_relocs = NULL;
6160 relax_info->relocs_count = 0;
6161 relax_info->allocated_relocs_count = 0;
6162 }
6163
6164 \f
6165 /* Coalescing literals may require a relocation to refer to a section in
6166 a different input file, but the standard relocation information
6167 cannot express that. Instead, the reloc_bfd_fix structures are used
6168 to "fix" the relocations that refer to sections in other input files.
6169 These structures are kept on per-section lists. The "src_type" field
6170 records the relocation type in case there are multiple relocations on
6171 the same location. FIXME: This is ugly; an alternative might be to
6172 add new symbols with the "owner" field to some other input file. */
6173
6174 struct reloc_bfd_fix_struct
6175 {
6176 asection *src_sec;
6177 bfd_vma src_offset;
6178 unsigned src_type; /* Relocation type. */
6179
6180 asection *target_sec;
6181 bfd_vma target_offset;
6182 bool translated;
6183
6184 reloc_bfd_fix *next;
6185 };
6186
6187
6188 static reloc_bfd_fix *
6189 reloc_bfd_fix_init (asection *src_sec,
6190 bfd_vma src_offset,
6191 unsigned src_type,
6192 asection *target_sec,
6193 bfd_vma target_offset,
6194 bool translated)
6195 {
6196 reloc_bfd_fix *fix;
6197
6198 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6199 fix->src_sec = src_sec;
6200 fix->src_offset = src_offset;
6201 fix->src_type = src_type;
6202 fix->target_sec = target_sec;
6203 fix->target_offset = target_offset;
6204 fix->translated = translated;
6205
6206 return fix;
6207 }
6208
6209
6210 static void
6211 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6212 {
6213 xtensa_relax_info *relax_info;
6214
6215 relax_info = get_xtensa_relax_info (src_sec);
6216 fix->next = relax_info->fix_list;
6217 relax_info->fix_list = fix;
6218 }
6219
6220
6221 static int
6222 fix_compare (const void *ap, const void *bp)
6223 {
6224 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6225 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6226
6227 if (a->src_offset != b->src_offset)
6228 return (a->src_offset - b->src_offset);
6229 return (a->src_type - b->src_type);
6230 }
6231
6232
6233 static void
6234 cache_fix_array (asection *sec)
6235 {
6236 unsigned i, count = 0;
6237 reloc_bfd_fix *r;
6238 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6239
6240 if (relax_info == NULL)
6241 return;
6242 if (relax_info->fix_list == NULL)
6243 return;
6244
6245 for (r = relax_info->fix_list; r != NULL; r = r->next)
6246 count++;
6247
6248 relax_info->fix_array =
6249 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6250 relax_info->fix_array_count = count;
6251
6252 r = relax_info->fix_list;
6253 for (i = 0; i < count; i++, r = r->next)
6254 {
6255 relax_info->fix_array[count - 1 - i] = *r;
6256 relax_info->fix_array[count - 1 - i].next = NULL;
6257 }
6258
6259 qsort (relax_info->fix_array, relax_info->fix_array_count,
6260 sizeof (reloc_bfd_fix), fix_compare);
6261 }
6262
6263
6264 static reloc_bfd_fix *
6265 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6266 {
6267 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6268 reloc_bfd_fix *rv;
6269 reloc_bfd_fix key;
6270
6271 if (relax_info == NULL)
6272 return NULL;
6273 if (relax_info->fix_list == NULL)
6274 return NULL;
6275
6276 if (relax_info->fix_array == NULL)
6277 cache_fix_array (sec);
6278
6279 key.src_offset = offset;
6280 key.src_type = type;
6281 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6282 sizeof (reloc_bfd_fix), fix_compare);
6283 return rv;
6284 }
6285
6286 \f
6287 /* Section caching. */
6288
6289 typedef struct section_cache_struct section_cache_t;
6290
6291 struct section_cache_struct
6292 {
6293 asection *sec;
6294
6295 bfd_byte *contents; /* Cache of the section contents. */
6296 bfd_size_type content_length;
6297
6298 property_table_entry *ptbl; /* Cache of the section property table. */
6299 unsigned pte_count;
6300
6301 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6302 unsigned reloc_count;
6303 };
6304
6305
6306 static void
6307 init_section_cache (section_cache_t *sec_cache)
6308 {
6309 memset (sec_cache, 0, sizeof (*sec_cache));
6310 }
6311
6312
6313 static void
6314 free_section_cache (section_cache_t *sec_cache)
6315 {
6316 if (sec_cache->sec)
6317 {
6318 release_contents (sec_cache->sec, sec_cache->contents);
6319 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6320 free (sec_cache->ptbl);
6321 }
6322 }
6323
6324
6325 static bool
6326 section_cache_section (section_cache_t *sec_cache,
6327 asection *sec,
6328 struct bfd_link_info *link_info)
6329 {
6330 bfd *abfd;
6331 property_table_entry *prop_table = NULL;
6332 int ptblsize = 0;
6333 bfd_byte *contents = NULL;
6334 Elf_Internal_Rela *internal_relocs = NULL;
6335 bfd_size_type sec_size;
6336
6337 if (sec == NULL)
6338 return false;
6339 if (sec == sec_cache->sec)
6340 return true;
6341
6342 abfd = sec->owner;
6343 sec_size = bfd_get_section_limit (abfd, sec);
6344
6345 /* Get the contents. */
6346 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6347 if (contents == NULL && sec_size != 0)
6348 goto err;
6349
6350 /* Get the relocations. */
6351 internal_relocs = retrieve_internal_relocs (abfd, sec,
6352 link_info->keep_memory);
6353
6354 /* Get the entry table. */
6355 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6356 XTENSA_PROP_SEC_NAME, false);
6357 if (ptblsize < 0)
6358 goto err;
6359
6360 /* Fill in the new section cache. */
6361 free_section_cache (sec_cache);
6362 init_section_cache (sec_cache);
6363
6364 sec_cache->sec = sec;
6365 sec_cache->contents = contents;
6366 sec_cache->content_length = sec_size;
6367 sec_cache->relocs = internal_relocs;
6368 sec_cache->reloc_count = sec->reloc_count;
6369 sec_cache->pte_count = ptblsize;
6370 sec_cache->ptbl = prop_table;
6371
6372 return true;
6373
6374 err:
6375 release_contents (sec, contents);
6376 release_internal_relocs (sec, internal_relocs);
6377 free (prop_table);
6378 return false;
6379 }
6380
6381 \f
6382 /* Extended basic blocks. */
6383
6384 /* An ebb_struct represents an Extended Basic Block. Within this
6385 range, we guarantee that all instructions are decodable, the
6386 property table entries are contiguous, and no property table
6387 specifies a segment that cannot have instructions moved. This
6388 structure contains caches of the contents, property table and
6389 relocations for the specified section for easy use. The range is
6390 specified by ranges of indices for the byte offset, property table
6391 offsets and relocation offsets. These must be consistent. */
6392
6393 typedef struct ebb_struct ebb_t;
6394
6395 struct ebb_struct
6396 {
6397 asection *sec;
6398
6399 bfd_byte *contents; /* Cache of the section contents. */
6400 bfd_size_type content_length;
6401
6402 property_table_entry *ptbl; /* Cache of the section property table. */
6403 unsigned pte_count;
6404
6405 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6406 unsigned reloc_count;
6407
6408 bfd_vma start_offset; /* Offset in section. */
6409 unsigned start_ptbl_idx; /* Offset in the property table. */
6410 unsigned start_reloc_idx; /* Offset in the relocations. */
6411
6412 bfd_vma end_offset;
6413 unsigned end_ptbl_idx;
6414 unsigned end_reloc_idx;
6415
6416 bool ends_section; /* Is this the last ebb in a section? */
6417
6418 /* The unreachable property table at the end of this set of blocks;
6419 NULL if the end is not an unreachable block. */
6420 property_table_entry *ends_unreachable;
6421 };
6422
6423
6424 enum ebb_target_enum
6425 {
6426 EBB_NO_ALIGN = 0,
6427 EBB_DESIRE_TGT_ALIGN,
6428 EBB_REQUIRE_TGT_ALIGN,
6429 EBB_REQUIRE_LOOP_ALIGN,
6430 EBB_REQUIRE_ALIGN
6431 };
6432
6433
6434 /* proposed_action_struct is similar to the text_action_struct except
6435 that is represents a potential transformation, not one that will
6436 occur. We build a list of these for an extended basic block
6437 and use them to compute the actual actions desired. We must be
6438 careful that the entire set of actual actions we perform do not
6439 break any relocations that would fit if the actions were not
6440 performed. */
6441
6442 typedef struct proposed_action_struct proposed_action;
6443
6444 struct proposed_action_struct
6445 {
6446 enum ebb_target_enum align_type; /* for the target alignment */
6447 bfd_vma alignment_pow;
6448 text_action_t action;
6449 bfd_vma offset;
6450 int removed_bytes;
6451 bool do_action; /* If false, then we will not perform the action. */
6452 };
6453
6454
6455 /* The ebb_constraint_struct keeps a set of proposed actions for an
6456 extended basic block. */
6457
6458 typedef struct ebb_constraint_struct ebb_constraint;
6459
6460 struct ebb_constraint_struct
6461 {
6462 ebb_t ebb;
6463 bool start_movable;
6464
6465 /* Bytes of extra space at the beginning if movable. */
6466 int start_extra_space;
6467
6468 enum ebb_target_enum start_align;
6469
6470 bool end_movable;
6471
6472 /* Bytes of extra space at the end if movable. */
6473 int end_extra_space;
6474
6475 unsigned action_count;
6476 unsigned action_allocated;
6477
6478 /* Array of proposed actions. */
6479 proposed_action *actions;
6480
6481 /* Action alignments -- one for each proposed action. */
6482 enum ebb_target_enum *action_aligns;
6483 };
6484
6485
6486 static void
6487 init_ebb_constraint (ebb_constraint *c)
6488 {
6489 memset (c, 0, sizeof (ebb_constraint));
6490 }
6491
6492
6493 static void
6494 free_ebb_constraint (ebb_constraint *c)
6495 {
6496 free (c->actions);
6497 }
6498
6499
6500 static void
6501 init_ebb (ebb_t *ebb,
6502 asection *sec,
6503 bfd_byte *contents,
6504 bfd_size_type content_length,
6505 property_table_entry *prop_table,
6506 unsigned ptblsize,
6507 Elf_Internal_Rela *internal_relocs,
6508 unsigned reloc_count)
6509 {
6510 memset (ebb, 0, sizeof (ebb_t));
6511 ebb->sec = sec;
6512 ebb->contents = contents;
6513 ebb->content_length = content_length;
6514 ebb->ptbl = prop_table;
6515 ebb->pte_count = ptblsize;
6516 ebb->relocs = internal_relocs;
6517 ebb->reloc_count = reloc_count;
6518 ebb->start_offset = 0;
6519 ebb->end_offset = ebb->content_length - 1;
6520 ebb->start_ptbl_idx = 0;
6521 ebb->end_ptbl_idx = ptblsize;
6522 ebb->start_reloc_idx = 0;
6523 ebb->end_reloc_idx = reloc_count;
6524 }
6525
6526
6527 /* Extend the ebb to all decodable contiguous sections. The algorithm
6528 for building a basic block around an instruction is to push it
6529 forward until we hit the end of a section, an unreachable block or
6530 a block that cannot be transformed. Then we push it backwards
6531 searching for similar conditions. */
6532
6533 static bool extend_ebb_bounds_forward (ebb_t *);
6534 static bool extend_ebb_bounds_backward (ebb_t *);
6535 static bfd_size_type insn_block_decodable_len
6536 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6537
6538 static bool
6539 extend_ebb_bounds (ebb_t *ebb)
6540 {
6541 if (!extend_ebb_bounds_forward (ebb))
6542 return false;
6543 if (!extend_ebb_bounds_backward (ebb))
6544 return false;
6545 return true;
6546 }
6547
6548
6549 static bool
6550 extend_ebb_bounds_forward (ebb_t *ebb)
6551 {
6552 property_table_entry *the_entry, *new_entry;
6553
6554 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6555
6556 /* Stop when (1) we cannot decode an instruction, (2) we are at
6557 the end of the property tables, (3) we hit a non-contiguous property
6558 table entry, (4) we hit a NO_TRANSFORM region. */
6559
6560 while (1)
6561 {
6562 bfd_vma entry_end;
6563 bfd_size_type insn_block_len;
6564
6565 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6566 insn_block_len =
6567 insn_block_decodable_len (ebb->contents, ebb->content_length,
6568 ebb->end_offset,
6569 entry_end - ebb->end_offset);
6570 if (insn_block_len != (entry_end - ebb->end_offset))
6571 {
6572 _bfd_error_handler
6573 /* xgettext:c-format */
6574 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6575 "possible configuration mismatch"),
6576 ebb->sec->owner, ebb->sec,
6577 (uint64_t) (ebb->end_offset + insn_block_len));
6578 return false;
6579 }
6580 ebb->end_offset += insn_block_len;
6581
6582 if (ebb->end_offset == ebb->sec->size)
6583 ebb->ends_section = true;
6584
6585 /* Update the reloc counter. */
6586 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6587 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6588 < ebb->end_offset))
6589 {
6590 ebb->end_reloc_idx++;
6591 }
6592
6593 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6594 return true;
6595
6596 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6597 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6598 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6599 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6600 break;
6601
6602 if (the_entry->address + the_entry->size != new_entry->address)
6603 break;
6604
6605 the_entry = new_entry;
6606 ebb->end_ptbl_idx++;
6607 }
6608
6609 /* Quick check for an unreachable or end of file just at the end. */
6610 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6611 {
6612 if (ebb->end_offset == ebb->content_length)
6613 ebb->ends_section = true;
6614 }
6615 else
6616 {
6617 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6618 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6619 && the_entry->address + the_entry->size == new_entry->address)
6620 ebb->ends_unreachable = new_entry;
6621 }
6622
6623 /* Any other ending requires exact alignment. */
6624 return true;
6625 }
6626
6627
6628 static bool
6629 extend_ebb_bounds_backward (ebb_t *ebb)
6630 {
6631 property_table_entry *the_entry, *new_entry;
6632
6633 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6634
6635 /* Stop when (1) we cannot decode the instructions in the current entry.
6636 (2) we are at the beginning of the property tables, (3) we hit a
6637 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6638
6639 while (1)
6640 {
6641 bfd_vma block_begin;
6642 bfd_size_type insn_block_len;
6643
6644 block_begin = the_entry->address - ebb->sec->vma;
6645 insn_block_len =
6646 insn_block_decodable_len (ebb->contents, ebb->content_length,
6647 block_begin,
6648 ebb->start_offset - block_begin);
6649 if (insn_block_len != ebb->start_offset - block_begin)
6650 {
6651 _bfd_error_handler
6652 /* xgettext:c-format */
6653 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6654 "possible configuration mismatch"),
6655 ebb->sec->owner, ebb->sec,
6656 (uint64_t) (ebb->end_offset + insn_block_len));
6657 return false;
6658 }
6659 ebb->start_offset -= insn_block_len;
6660
6661 /* Update the reloc counter. */
6662 while (ebb->start_reloc_idx > 0
6663 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6664 >= ebb->start_offset))
6665 {
6666 ebb->start_reloc_idx--;
6667 }
6668
6669 if (ebb->start_ptbl_idx == 0)
6670 return true;
6671
6672 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6673 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6674 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6675 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6676 return true;
6677 if (new_entry->address + new_entry->size != the_entry->address)
6678 return true;
6679
6680 the_entry = new_entry;
6681 ebb->start_ptbl_idx--;
6682 }
6683 return true;
6684 }
6685
6686
6687 static bfd_size_type
6688 insn_block_decodable_len (bfd_byte *contents,
6689 bfd_size_type content_len,
6690 bfd_vma block_offset,
6691 bfd_size_type block_len)
6692 {
6693 bfd_vma offset = block_offset;
6694
6695 while (offset < block_offset + block_len)
6696 {
6697 bfd_size_type insn_len = 0;
6698
6699 insn_len = insn_decode_len (contents, content_len, offset);
6700 if (insn_len == 0)
6701 return (offset - block_offset);
6702 offset += insn_len;
6703 }
6704 return (offset - block_offset);
6705 }
6706
6707
6708 static void
6709 ebb_propose_action (ebb_constraint *c,
6710 enum ebb_target_enum align_type,
6711 bfd_vma alignment_pow,
6712 text_action_t action,
6713 bfd_vma offset,
6714 int removed_bytes,
6715 bool do_action)
6716 {
6717 proposed_action *act;
6718
6719 if (c->action_allocated <= c->action_count)
6720 {
6721 unsigned new_allocated, i;
6722 proposed_action *new_actions;
6723
6724 new_allocated = (c->action_count + 2) * 2;
6725 new_actions = (proposed_action *)
6726 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6727
6728 for (i = 0; i < c->action_count; i++)
6729 new_actions[i] = c->actions[i];
6730 free (c->actions);
6731 c->actions = new_actions;
6732 c->action_allocated = new_allocated;
6733 }
6734
6735 act = &c->actions[c->action_count];
6736 act->align_type = align_type;
6737 act->alignment_pow = alignment_pow;
6738 act->action = action;
6739 act->offset = offset;
6740 act->removed_bytes = removed_bytes;
6741 act->do_action = do_action;
6742
6743 c->action_count++;
6744 }
6745
6746 \f
6747 /* Access to internal relocations, section contents and symbols. */
6748
6749 /* During relaxation, we need to modify relocations, section contents,
6750 and symbol definitions, and we need to keep the original values from
6751 being reloaded from the input files, i.e., we need to "pin" the
6752 modified values in memory. We also want to continue to observe the
6753 setting of the "keep-memory" flag. The following functions wrap the
6754 standard BFD functions to take care of this for us. */
6755
6756 static Elf_Internal_Rela *
6757 retrieve_internal_relocs (bfd *abfd, asection *sec, bool keep_memory)
6758 {
6759 Elf_Internal_Rela *internal_relocs;
6760
6761 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6762 return NULL;
6763
6764 internal_relocs = elf_section_data (sec)->relocs;
6765 if (internal_relocs == NULL)
6766 internal_relocs = (_bfd_elf_link_read_relocs
6767 (abfd, sec, NULL, NULL, keep_memory));
6768 return internal_relocs;
6769 }
6770
6771
6772 static void
6773 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6774 {
6775 elf_section_data (sec)->relocs = internal_relocs;
6776 }
6777
6778
6779 static void
6780 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6781 {
6782 if (elf_section_data (sec)->relocs != internal_relocs)
6783 free (internal_relocs);
6784 }
6785
6786
6787 static bfd_byte *
6788 retrieve_contents (bfd *abfd, asection *sec, bool keep_memory)
6789 {
6790 bfd_byte *contents;
6791 bfd_size_type sec_size;
6792
6793 sec_size = bfd_get_section_limit (abfd, sec);
6794 contents = elf_section_data (sec)->this_hdr.contents;
6795
6796 if (contents == NULL && sec_size != 0)
6797 {
6798 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6799 {
6800 free (contents);
6801 return NULL;
6802 }
6803 if (keep_memory)
6804 elf_section_data (sec)->this_hdr.contents = contents;
6805 }
6806 return contents;
6807 }
6808
6809
6810 static void
6811 pin_contents (asection *sec, bfd_byte *contents)
6812 {
6813 elf_section_data (sec)->this_hdr.contents = contents;
6814 }
6815
6816
6817 static void
6818 release_contents (asection *sec, bfd_byte *contents)
6819 {
6820 if (elf_section_data (sec)->this_hdr.contents != contents)
6821 free (contents);
6822 }
6823
6824
6825 static Elf_Internal_Sym *
6826 retrieve_local_syms (bfd *input_bfd)
6827 {
6828 Elf_Internal_Shdr *symtab_hdr;
6829 Elf_Internal_Sym *isymbuf;
6830 size_t locsymcount;
6831
6832 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6833 locsymcount = symtab_hdr->sh_info;
6834
6835 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6836 if (isymbuf == NULL && locsymcount != 0)
6837 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6838 NULL, NULL, NULL);
6839
6840 /* Save the symbols for this input file so they won't be read again. */
6841 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6842 symtab_hdr->contents = (unsigned char *) isymbuf;
6843
6844 return isymbuf;
6845 }
6846
6847 \f
6848 /* Code for link-time relaxation. */
6849
6850 /* Initialization for relaxation: */
6851 static bool analyze_relocations (struct bfd_link_info *);
6852 static bool find_relaxable_sections
6853 (bfd *, asection *, struct bfd_link_info *, bool *);
6854 static bool collect_source_relocs
6855 (bfd *, asection *, struct bfd_link_info *);
6856 static bool is_resolvable_asm_expansion
6857 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6858 bool *);
6859 static Elf_Internal_Rela *find_associated_l32r_irel
6860 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6861 static bool compute_text_actions
6862 (bfd *, asection *, struct bfd_link_info *);
6863 static bool compute_ebb_proposed_actions (ebb_constraint *);
6864 static bool compute_ebb_actions (ebb_constraint *);
6865 typedef struct reloc_range_list_struct reloc_range_list;
6866 static bool check_section_ebb_pcrels_fit
6867 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6868 reloc_range_list *, const ebb_constraint *,
6869 const xtensa_opcode *);
6870 static bool check_section_ebb_reduces (const ebb_constraint *);
6871 static void text_action_add_proposed
6872 (text_action_list *, const ebb_constraint *, asection *);
6873
6874 /* First pass: */
6875 static bool compute_removed_literals
6876 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6877 static Elf_Internal_Rela *get_irel_at_offset
6878 (asection *, Elf_Internal_Rela *, bfd_vma);
6879 static bool is_removable_literal
6880 (const source_reloc *, int, const source_reloc *, int, asection *,
6881 property_table_entry *, int);
6882 static bool remove_dead_literal
6883 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6884 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6885 static bool identify_literal_placement
6886 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6887 value_map_hash_table *, bool *, Elf_Internal_Rela *, int,
6888 source_reloc *, property_table_entry *, int, section_cache_t *,
6889 bool);
6890 static bool relocations_reach (source_reloc *, int, const r_reloc *);
6891 static bool coalesce_shared_literal
6892 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6893 static bool move_shared_literal
6894 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6895 int, const r_reloc *, const literal_value *, section_cache_t *);
6896
6897 /* Second pass: */
6898 static bool relax_section (bfd *, asection *, struct bfd_link_info *);
6899 static bool translate_section_fixes (asection *);
6900 static bool translate_reloc_bfd_fix (reloc_bfd_fix *);
6901 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6902 static void shrink_dynamic_reloc_sections
6903 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6904 static bool move_literal
6905 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6906 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6907 static bool relax_property_section
6908 (bfd *, asection *, struct bfd_link_info *);
6909
6910 /* Third pass: */
6911 static bool relax_section_symbols (bfd *, asection *);
6912
6913
6914 static bool
6915 elf_xtensa_relax_section (bfd *abfd,
6916 asection *sec,
6917 struct bfd_link_info *link_info,
6918 bool *again)
6919 {
6920 static value_map_hash_table *values = NULL;
6921 static bool relocations_analyzed = false;
6922 xtensa_relax_info *relax_info;
6923
6924 if (!relocations_analyzed)
6925 {
6926 /* Do some overall initialization for relaxation. */
6927 values = value_map_hash_table_init ();
6928 if (values == NULL)
6929 return false;
6930 relaxing_section = true;
6931 if (!analyze_relocations (link_info))
6932 return false;
6933 relocations_analyzed = true;
6934 }
6935 *again = false;
6936
6937 /* Don't mess with linker-created sections. */
6938 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6939 return true;
6940
6941 relax_info = get_xtensa_relax_info (sec);
6942 BFD_ASSERT (relax_info != NULL);
6943
6944 switch (relax_info->visited)
6945 {
6946 case 0:
6947 /* Note: It would be nice to fold this pass into
6948 analyze_relocations, but it is important for this step that the
6949 sections be examined in link order. */
6950 if (!compute_removed_literals (abfd, sec, link_info, values))
6951 return false;
6952 *again = true;
6953 break;
6954
6955 case 1:
6956 if (values)
6957 value_map_hash_table_delete (values);
6958 values = NULL;
6959 if (!relax_section (abfd, sec, link_info))
6960 return false;
6961 *again = true;
6962 break;
6963
6964 case 2:
6965 if (!relax_section_symbols (abfd, sec))
6966 return false;
6967 break;
6968 }
6969
6970 relax_info->visited++;
6971 return true;
6972 }
6973
6974 \f
6975 /* Initialization for relaxation. */
6976
6977 /* This function is called once at the start of relaxation. It scans
6978 all the input sections and marks the ones that are relaxable (i.e.,
6979 literal sections with L32R relocations against them), and then
6980 collects source_reloc information for all the relocations against
6981 those relaxable sections. During this process, it also detects
6982 longcalls, i.e., calls relaxed by the assembler into indirect
6983 calls, that can be optimized back into direct calls. Within each
6984 extended basic block (ebb) containing an optimized longcall, it
6985 computes a set of "text actions" that can be performed to remove
6986 the L32R associated with the longcall while optionally preserving
6987 branch target alignments. */
6988
6989 static bool
6990 analyze_relocations (struct bfd_link_info *link_info)
6991 {
6992 bfd *abfd;
6993 asection *sec;
6994 bool is_relaxable = false;
6995
6996 /* Initialize the per-section relaxation info. */
6997 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6998 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6999 {
7000 init_xtensa_relax_info (sec);
7001 }
7002
7003 /* Mark relaxable sections (and count relocations against each one). */
7004 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7005 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7006 {
7007 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
7008 return false;
7009 }
7010
7011 /* Bail out if there are no relaxable sections. */
7012 if (!is_relaxable)
7013 return true;
7014
7015 /* Allocate space for source_relocs. */
7016 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7017 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7018 {
7019 xtensa_relax_info *relax_info;
7020
7021 relax_info = get_xtensa_relax_info (sec);
7022 if (relax_info->is_relaxable_literal_section
7023 || relax_info->is_relaxable_asm_section)
7024 {
7025 relax_info->src_relocs = (source_reloc *)
7026 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7027 }
7028 else
7029 relax_info->src_count = 0;
7030 }
7031
7032 /* Collect info on relocations against each relaxable section. */
7033 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7034 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7035 {
7036 if (!collect_source_relocs (abfd, sec, link_info))
7037 return false;
7038 }
7039
7040 /* Compute the text actions. */
7041 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7042 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7043 {
7044 if (!compute_text_actions (abfd, sec, link_info))
7045 return false;
7046 }
7047
7048 return true;
7049 }
7050
7051
7052 /* Find all the sections that might be relaxed. The motivation for
7053 this pass is that collect_source_relocs() needs to record _all_ the
7054 relocations that target each relaxable section. That is expensive
7055 and unnecessary unless the target section is actually going to be
7056 relaxed. This pass identifies all such sections by checking if
7057 they have L32Rs pointing to them. In the process, the total number
7058 of relocations targeting each section is also counted so that we
7059 know how much space to allocate for source_relocs against each
7060 relaxable literal section. */
7061
7062 static bool
7063 find_relaxable_sections (bfd *abfd,
7064 asection *sec,
7065 struct bfd_link_info *link_info,
7066 bool *is_relaxable_p)
7067 {
7068 Elf_Internal_Rela *internal_relocs;
7069 bfd_byte *contents;
7070 bool ok = true;
7071 unsigned i;
7072 xtensa_relax_info *source_relax_info;
7073 bool is_l32r_reloc;
7074
7075 internal_relocs = retrieve_internal_relocs (abfd, sec,
7076 link_info->keep_memory);
7077 if (internal_relocs == NULL)
7078 return ok;
7079
7080 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7081 if (contents == NULL && sec->size != 0)
7082 {
7083 ok = false;
7084 goto error_return;
7085 }
7086
7087 source_relax_info = get_xtensa_relax_info (sec);
7088 for (i = 0; i < sec->reloc_count; i++)
7089 {
7090 Elf_Internal_Rela *irel = &internal_relocs[i];
7091 r_reloc r_rel;
7092 asection *target_sec;
7093 xtensa_relax_info *target_relax_info;
7094
7095 /* If this section has not already been marked as "relaxable", and
7096 if it contains any ASM_EXPAND relocations (marking expanded
7097 longcalls) that can be optimized into direct calls, then mark
7098 the section as "relaxable". */
7099 if (source_relax_info
7100 && !source_relax_info->is_relaxable_asm_section
7101 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7102 {
7103 bool is_reachable = false;
7104 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7105 link_info, &is_reachable)
7106 && is_reachable)
7107 {
7108 source_relax_info->is_relaxable_asm_section = true;
7109 *is_relaxable_p = true;
7110 }
7111 }
7112
7113 r_reloc_init (&r_rel, abfd, irel, contents,
7114 bfd_get_section_limit (abfd, sec));
7115
7116 target_sec = r_reloc_get_section (&r_rel);
7117 target_relax_info = get_xtensa_relax_info (target_sec);
7118 if (!target_relax_info)
7119 continue;
7120
7121 /* Count PC-relative operand relocations against the target section.
7122 Note: The conditions tested here must match the conditions under
7123 which init_source_reloc is called in collect_source_relocs(). */
7124 is_l32r_reloc = false;
7125 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7126 {
7127 xtensa_opcode opcode =
7128 get_relocation_opcode (abfd, sec, contents, irel);
7129 if (opcode != XTENSA_UNDEFINED)
7130 {
7131 is_l32r_reloc = (opcode == get_l32r_opcode ());
7132 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7133 || is_l32r_reloc)
7134 target_relax_info->src_count++;
7135 }
7136 }
7137
7138 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7139 {
7140 /* Mark the target section as relaxable. */
7141 target_relax_info->is_relaxable_literal_section = true;
7142 *is_relaxable_p = true;
7143 }
7144 }
7145
7146 error_return:
7147 release_contents (sec, contents);
7148 release_internal_relocs (sec, internal_relocs);
7149 return ok;
7150 }
7151
7152
7153 /* Record _all_ the relocations that point to relaxable sections, and
7154 get rid of ASM_EXPAND relocs by either converting them to
7155 ASM_SIMPLIFY or by removing them. */
7156
7157 static bool
7158 collect_source_relocs (bfd *abfd,
7159 asection *sec,
7160 struct bfd_link_info *link_info)
7161 {
7162 Elf_Internal_Rela *internal_relocs;
7163 bfd_byte *contents;
7164 bool ok = true;
7165 unsigned i;
7166 bfd_size_type sec_size;
7167
7168 internal_relocs = retrieve_internal_relocs (abfd, sec,
7169 link_info->keep_memory);
7170 if (internal_relocs == NULL)
7171 return ok;
7172
7173 sec_size = bfd_get_section_limit (abfd, sec);
7174 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7175 if (contents == NULL && sec_size != 0)
7176 {
7177 ok = false;
7178 goto error_return;
7179 }
7180
7181 /* Record relocations against relaxable literal sections. */
7182 for (i = 0; i < sec->reloc_count; i++)
7183 {
7184 Elf_Internal_Rela *irel = &internal_relocs[i];
7185 r_reloc r_rel;
7186 asection *target_sec;
7187 xtensa_relax_info *target_relax_info;
7188
7189 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7190
7191 target_sec = r_reloc_get_section (&r_rel);
7192 target_relax_info = get_xtensa_relax_info (target_sec);
7193
7194 if (target_relax_info
7195 && (target_relax_info->is_relaxable_literal_section
7196 || target_relax_info->is_relaxable_asm_section))
7197 {
7198 xtensa_opcode opcode = XTENSA_UNDEFINED;
7199 int opnd = -1;
7200 bool is_abs_literal = false;
7201
7202 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7203 {
7204 /* None of the current alternate relocs are PC-relative,
7205 and only PC-relative relocs matter here. However, we
7206 still need to record the opcode for literal
7207 coalescing. */
7208 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7209 if (opcode == get_l32r_opcode ())
7210 {
7211 is_abs_literal = true;
7212 opnd = 1;
7213 }
7214 else
7215 opcode = XTENSA_UNDEFINED;
7216 }
7217 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7218 {
7219 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7220 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7221 }
7222
7223 if (opcode != XTENSA_UNDEFINED)
7224 {
7225 int src_next = target_relax_info->src_next++;
7226 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7227
7228 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7229 is_abs_literal);
7230 }
7231 }
7232 }
7233
7234 /* Now get rid of ASM_EXPAND relocations. At this point, the
7235 src_relocs array for the target literal section may still be
7236 incomplete, but it must at least contain the entries for the L32R
7237 relocations associated with ASM_EXPANDs because they were just
7238 added in the preceding loop over the relocations. */
7239
7240 for (i = 0; i < sec->reloc_count; i++)
7241 {
7242 Elf_Internal_Rela *irel = &internal_relocs[i];
7243 bool is_reachable;
7244
7245 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7246 &is_reachable))
7247 continue;
7248
7249 if (is_reachable)
7250 {
7251 Elf_Internal_Rela *l32r_irel;
7252 r_reloc r_rel;
7253 asection *target_sec;
7254 xtensa_relax_info *target_relax_info;
7255
7256 /* Mark the source_reloc for the L32R so that it will be
7257 removed in compute_removed_literals(), along with the
7258 associated literal. */
7259 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7260 irel, internal_relocs);
7261 if (l32r_irel == NULL)
7262 continue;
7263
7264 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7265
7266 target_sec = r_reloc_get_section (&r_rel);
7267 target_relax_info = get_xtensa_relax_info (target_sec);
7268
7269 if (target_relax_info
7270 && (target_relax_info->is_relaxable_literal_section
7271 || target_relax_info->is_relaxable_asm_section))
7272 {
7273 source_reloc *s_reloc;
7274
7275 /* Search the source_relocs for the entry corresponding to
7276 the l32r_irel. Note: The src_relocs array is not yet
7277 sorted, but it wouldn't matter anyway because we're
7278 searching by source offset instead of target offset. */
7279 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7280 target_relax_info->src_next,
7281 sec, l32r_irel);
7282 BFD_ASSERT (s_reloc);
7283 s_reloc->is_null = true;
7284 }
7285
7286 /* Convert this reloc to ASM_SIMPLIFY. */
7287 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7288 R_XTENSA_ASM_SIMPLIFY);
7289 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7290
7291 pin_internal_relocs (sec, internal_relocs);
7292 }
7293 else
7294 {
7295 /* It is resolvable but doesn't reach. We resolve now
7296 by eliminating the relocation -- the call will remain
7297 expanded into L32R/CALLX. */
7298 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7299 pin_internal_relocs (sec, internal_relocs);
7300 }
7301 }
7302
7303 error_return:
7304 release_contents (sec, contents);
7305 release_internal_relocs (sec, internal_relocs);
7306 return ok;
7307 }
7308
7309
7310 /* Return TRUE if the asm expansion can be resolved. Generally it can
7311 be resolved on a final link or when a partial link locates it in the
7312 same section as the target. Set "is_reachable" flag if the target of
7313 the call is within the range of a direct call, given the current VMA
7314 for this section and the target section. */
7315
7316 bool
7317 is_resolvable_asm_expansion (bfd *abfd,
7318 asection *sec,
7319 bfd_byte *contents,
7320 Elf_Internal_Rela *irel,
7321 struct bfd_link_info *link_info,
7322 bool *is_reachable_p)
7323 {
7324 asection *target_sec;
7325 asection *s;
7326 bfd_vma first_vma;
7327 bfd_vma last_vma;
7328 unsigned int first_align;
7329 unsigned int adjust;
7330 bfd_vma target_offset;
7331 r_reloc r_rel;
7332 xtensa_opcode opcode, direct_call_opcode;
7333 bfd_vma self_address;
7334 bfd_vma dest_address;
7335 bool uses_l32r;
7336 bfd_size_type sec_size;
7337
7338 *is_reachable_p = false;
7339
7340 if (contents == NULL)
7341 return false;
7342
7343 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7344 return false;
7345
7346 sec_size = bfd_get_section_limit (abfd, sec);
7347 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7348 sec_size - irel->r_offset, &uses_l32r);
7349 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7350 if (!uses_l32r)
7351 return false;
7352
7353 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7354 if (direct_call_opcode == XTENSA_UNDEFINED)
7355 return false;
7356
7357 /* Check and see that the target resolves. */
7358 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7359 if (!r_reloc_is_defined (&r_rel))
7360 return false;
7361
7362 target_sec = r_reloc_get_section (&r_rel);
7363 target_offset = r_rel.target_offset;
7364
7365 /* If the target is in a shared library, then it doesn't reach. This
7366 isn't supposed to come up because the compiler should never generate
7367 non-PIC calls on systems that use shared libraries, but the linker
7368 shouldn't crash regardless. */
7369 if (!target_sec->output_section)
7370 return false;
7371
7372 /* For relocatable sections, we can only simplify when the output
7373 section of the target is the same as the output section of the
7374 source. */
7375 if (bfd_link_relocatable (link_info)
7376 && (target_sec->output_section != sec->output_section
7377 || is_reloc_sym_weak (abfd, irel)))
7378 return false;
7379
7380 if (target_sec->output_section != sec->output_section)
7381 {
7382 /* If the two sections are sufficiently far away that relaxation
7383 might take the call out of range, we can't simplify. For
7384 example, a positive displacement call into another memory
7385 could get moved to a lower address due to literal removal,
7386 but the destination won't move, and so the displacment might
7387 get larger.
7388
7389 If the displacement is negative, assume the destination could
7390 move as far back as the start of the output section. The
7391 self_address will be at least as far into the output section
7392 as it is prior to relaxation.
7393
7394 If the displacement is postive, assume the destination will be in
7395 it's pre-relaxed location (because relaxation only makes sections
7396 smaller). The self_address could go all the way to the beginning
7397 of the output section. */
7398
7399 dest_address = target_sec->output_section->vma;
7400 self_address = sec->output_section->vma;
7401
7402 if (sec->output_section->vma > target_sec->output_section->vma)
7403 self_address += sec->output_offset + irel->r_offset + 3;
7404 else
7405 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7406 /* Call targets should be four-byte aligned. */
7407 dest_address = (dest_address + 3) & ~3;
7408 }
7409 else
7410 {
7411
7412 self_address = (sec->output_section->vma
7413 + sec->output_offset + irel->r_offset + 3);
7414 dest_address = (target_sec->output_section->vma
7415 + target_sec->output_offset + target_offset);
7416 }
7417
7418 /* Adjust addresses with alignments for the worst case to see if call insn
7419 can fit. Don't relax l32r + callx to call if the target can be out of
7420 range due to alignment.
7421 Caller and target addresses are highest and lowest address.
7422 Search all sections between caller and target, looking for max alignment.
7423 The adjustment is max alignment bytes. If the alignment at the lowest
7424 address is less than the adjustment, apply the adjustment to highest
7425 address. */
7426
7427 /* Start from lowest address.
7428 Lowest address aligmnet is from input section.
7429 Initial alignment (adjust) is from input section. */
7430 if (dest_address > self_address)
7431 {
7432 s = sec->output_section;
7433 last_vma = dest_address;
7434 first_align = sec->alignment_power;
7435 adjust = target_sec->alignment_power;
7436 }
7437 else
7438 {
7439 s = target_sec->output_section;
7440 last_vma = self_address;
7441 first_align = target_sec->alignment_power;
7442 adjust = sec->alignment_power;
7443 }
7444
7445 first_vma = s->vma;
7446
7447 /* Find the largest alignment in output section list. */
7448 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7449 {
7450 if (s->alignment_power > adjust)
7451 adjust = s->alignment_power;
7452 }
7453
7454 if (adjust > first_align)
7455 {
7456 /* Alignment may enlarge the range, adjust highest address. */
7457 adjust = 1 << adjust;
7458 if (dest_address > self_address)
7459 {
7460 dest_address += adjust;
7461 }
7462 else
7463 {
7464 self_address += adjust;
7465 }
7466 }
7467
7468 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7469 self_address, dest_address);
7470
7471 if ((self_address >> CALL_SEGMENT_BITS) !=
7472 (dest_address >> CALL_SEGMENT_BITS))
7473 return false;
7474
7475 return true;
7476 }
7477
7478
7479 static Elf_Internal_Rela *
7480 find_associated_l32r_irel (bfd *abfd,
7481 asection *sec,
7482 bfd_byte *contents,
7483 Elf_Internal_Rela *other_irel,
7484 Elf_Internal_Rela *internal_relocs)
7485 {
7486 unsigned i;
7487
7488 for (i = 0; i < sec->reloc_count; i++)
7489 {
7490 Elf_Internal_Rela *irel = &internal_relocs[i];
7491
7492 if (irel == other_irel)
7493 continue;
7494 if (irel->r_offset != other_irel->r_offset)
7495 continue;
7496 if (is_l32r_relocation (abfd, sec, contents, irel))
7497 return irel;
7498 }
7499
7500 return NULL;
7501 }
7502
7503
7504 static xtensa_opcode *
7505 build_reloc_opcodes (bfd *abfd,
7506 asection *sec,
7507 bfd_byte *contents,
7508 Elf_Internal_Rela *internal_relocs)
7509 {
7510 unsigned i;
7511 xtensa_opcode *reloc_opcodes =
7512 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7513 for (i = 0; i < sec->reloc_count; i++)
7514 {
7515 Elf_Internal_Rela *irel = &internal_relocs[i];
7516 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7517 }
7518 return reloc_opcodes;
7519 }
7520
7521 struct reloc_range_struct
7522 {
7523 bfd_vma addr;
7524 bool add; /* TRUE if start of a range, FALSE otherwise. */
7525 /* Original irel index in the array of relocations for a section. */
7526 unsigned irel_index;
7527 };
7528 typedef struct reloc_range_struct reloc_range;
7529
7530 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7531 struct reloc_range_list_entry_struct
7532 {
7533 reloc_range_list_entry *next;
7534 reloc_range_list_entry *prev;
7535 Elf_Internal_Rela *irel;
7536 xtensa_opcode opcode;
7537 int opnum;
7538 };
7539
7540 struct reloc_range_list_struct
7541 {
7542 /* The rest of the structure is only meaningful when ok is TRUE. */
7543 bool ok;
7544
7545 unsigned n_range; /* Number of range markers. */
7546 reloc_range *range; /* Sorted range markers. */
7547
7548 unsigned first; /* Index of a first range element in the list. */
7549 unsigned last; /* One past index of a last range element in the list. */
7550
7551 unsigned n_list; /* Number of list elements. */
7552 reloc_range_list_entry *reloc; /* */
7553 reloc_range_list_entry list_root;
7554 };
7555
7556 static int
7557 reloc_range_compare (const void *a, const void *b)
7558 {
7559 const reloc_range *ra = a;
7560 const reloc_range *rb = b;
7561
7562 if (ra->addr != rb->addr)
7563 return ra->addr < rb->addr ? -1 : 1;
7564 if (ra->add != rb->add)
7565 return ra->add ? -1 : 1;
7566 return 0;
7567 }
7568
7569 static void
7570 build_reloc_ranges (bfd *abfd, asection *sec,
7571 bfd_byte *contents,
7572 Elf_Internal_Rela *internal_relocs,
7573 xtensa_opcode *reloc_opcodes,
7574 reloc_range_list *list)
7575 {
7576 unsigned i;
7577 size_t n = 0;
7578 size_t max_n = 0;
7579 reloc_range *ranges = NULL;
7580 reloc_range_list_entry *reloc =
7581 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7582
7583 memset (list, 0, sizeof (*list));
7584 list->ok = true;
7585
7586 for (i = 0; i < sec->reloc_count; i++)
7587 {
7588 Elf_Internal_Rela *irel = &internal_relocs[i];
7589 int r_type = ELF32_R_TYPE (irel->r_info);
7590 reloc_howto_type *howto = &elf_howto_table[r_type];
7591 r_reloc r_rel;
7592
7593 if (r_type == R_XTENSA_ASM_SIMPLIFY
7594 || r_type == R_XTENSA_32_PCREL
7595 || !howto->pc_relative)
7596 continue;
7597
7598 r_reloc_init (&r_rel, abfd, irel, contents,
7599 bfd_get_section_limit (abfd, sec));
7600
7601 if (r_reloc_get_section (&r_rel) != sec)
7602 continue;
7603
7604 if (n + 2 > max_n)
7605 {
7606 max_n = (max_n + 2) * 2;
7607 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7608 }
7609
7610 ranges[n].addr = irel->r_offset;
7611 ranges[n + 1].addr = r_rel.target_offset;
7612
7613 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7614 ranges[n + 1].add = !ranges[n].add;
7615
7616 ranges[n].irel_index = i;
7617 ranges[n + 1].irel_index = i;
7618
7619 n += 2;
7620
7621 reloc[i].irel = irel;
7622
7623 /* Every relocation won't possibly be checked in the optimized version of
7624 check_section_ebb_pcrels_fit, so this needs to be done here. */
7625 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7626 {
7627 /* None of the current alternate relocs are PC-relative,
7628 and only PC-relative relocs matter here. */
7629 }
7630 else
7631 {
7632 xtensa_opcode opcode;
7633 int opnum;
7634
7635 if (reloc_opcodes)
7636 opcode = reloc_opcodes[i];
7637 else
7638 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7639
7640 if (opcode == XTENSA_UNDEFINED)
7641 {
7642 list->ok = false;
7643 break;
7644 }
7645
7646 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7647 if (opnum == XTENSA_UNDEFINED)
7648 {
7649 list->ok = false;
7650 break;
7651 }
7652
7653 /* Record relocation opcode and opnum as we've calculated them
7654 anyway and they won't change. */
7655 reloc[i].opcode = opcode;
7656 reloc[i].opnum = opnum;
7657 }
7658 }
7659
7660 if (list->ok)
7661 {
7662 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7663 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7664
7665 list->n_range = n;
7666 list->range = ranges;
7667 list->reloc = reloc;
7668 list->list_root.prev = &list->list_root;
7669 list->list_root.next = &list->list_root;
7670 }
7671 else
7672 {
7673 free (ranges);
7674 free (reloc);
7675 }
7676 }
7677
7678 static void reloc_range_list_append (reloc_range_list *list,
7679 unsigned irel_index)
7680 {
7681 reloc_range_list_entry *entry = list->reloc + irel_index;
7682
7683 entry->prev = list->list_root.prev;
7684 entry->next = &list->list_root;
7685 entry->prev->next = entry;
7686 entry->next->prev = entry;
7687 ++list->n_list;
7688 }
7689
7690 static void reloc_range_list_remove (reloc_range_list *list,
7691 unsigned irel_index)
7692 {
7693 reloc_range_list_entry *entry = list->reloc + irel_index;
7694
7695 entry->next->prev = entry->prev;
7696 entry->prev->next = entry->next;
7697 --list->n_list;
7698 }
7699
7700 /* Update relocation list object so that it lists all relocations that cross
7701 [first; last] range. Range bounds should not decrease with successive
7702 invocations. */
7703 static void reloc_range_list_update_range (reloc_range_list *list,
7704 bfd_vma first, bfd_vma last)
7705 {
7706 /* This should not happen: EBBs are iterated from lower addresses to higher.
7707 But even if that happens there's no need to break: just flush current list
7708 and start from scratch. */
7709 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7710 (list->first > 0 && list->range[list->first - 1].addr >= first))
7711 {
7712 list->first = 0;
7713 list->last = 0;
7714 list->n_list = 0;
7715 list->list_root.next = &list->list_root;
7716 list->list_root.prev = &list->list_root;
7717 fprintf (stderr, "%s: move backwards requested\n", __func__);
7718 }
7719
7720 for (; list->last < list->n_range &&
7721 list->range[list->last].addr <= last; ++list->last)
7722 if (list->range[list->last].add)
7723 reloc_range_list_append (list, list->range[list->last].irel_index);
7724
7725 for (; list->first < list->n_range &&
7726 list->range[list->first].addr < first; ++list->first)
7727 if (!list->range[list->first].add)
7728 reloc_range_list_remove (list, list->range[list->first].irel_index);
7729 }
7730
7731 static void free_reloc_range_list (reloc_range_list *list)
7732 {
7733 free (list->range);
7734 free (list->reloc);
7735 }
7736
7737 /* The compute_text_actions function will build a list of potential
7738 transformation actions for code in the extended basic block of each
7739 longcall that is optimized to a direct call. From this list we
7740 generate a set of actions to actually perform that optimizes for
7741 space and, if not using size_opt, maintains branch target
7742 alignments.
7743
7744 These actions to be performed are placed on a per-section list.
7745 The actual changes are performed by relax_section() in the second
7746 pass. */
7747
7748 bool
7749 compute_text_actions (bfd *abfd,
7750 asection *sec,
7751 struct bfd_link_info *link_info)
7752 {
7753 xtensa_opcode *reloc_opcodes = NULL;
7754 xtensa_relax_info *relax_info;
7755 bfd_byte *contents;
7756 Elf_Internal_Rela *internal_relocs;
7757 bool ok = true;
7758 unsigned i;
7759 property_table_entry *prop_table = 0;
7760 int ptblsize = 0;
7761 bfd_size_type sec_size;
7762 reloc_range_list relevant_relocs;
7763
7764 relax_info = get_xtensa_relax_info (sec);
7765 BFD_ASSERT (relax_info);
7766 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7767
7768 /* Do nothing if the section contains no optimized longcalls. */
7769 if (!relax_info->is_relaxable_asm_section)
7770 return ok;
7771
7772 internal_relocs = retrieve_internal_relocs (abfd, sec,
7773 link_info->keep_memory);
7774
7775 if (internal_relocs)
7776 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7777 internal_reloc_compare);
7778
7779 sec_size = bfd_get_section_limit (abfd, sec);
7780 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7781 if (contents == NULL && sec_size != 0)
7782 {
7783 ok = false;
7784 goto error_return;
7785 }
7786
7787 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7788 XTENSA_PROP_SEC_NAME, false);
7789 if (ptblsize < 0)
7790 {
7791 ok = false;
7792 goto error_return;
7793 }
7794
7795 /* Precompute the opcode for each relocation. */
7796 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7797
7798 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7799 &relevant_relocs);
7800
7801 for (i = 0; i < sec->reloc_count; i++)
7802 {
7803 Elf_Internal_Rela *irel = &internal_relocs[i];
7804 bfd_vma r_offset;
7805 property_table_entry *the_entry;
7806 int ptbl_idx;
7807 ebb_t *ebb;
7808 ebb_constraint ebb_table;
7809 bfd_size_type simplify_size;
7810
7811 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7812 continue;
7813 r_offset = irel->r_offset;
7814
7815 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7816 if (simplify_size == 0)
7817 {
7818 _bfd_error_handler
7819 /* xgettext:c-format */
7820 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7821 "XTENSA_ASM_SIMPLIFY relocation; "
7822 "possible configuration mismatch"),
7823 sec->owner, sec, (uint64_t) r_offset);
7824 continue;
7825 }
7826
7827 /* If the instruction table is not around, then don't do this
7828 relaxation. */
7829 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7830 sec->vma + irel->r_offset);
7831 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7832 {
7833 text_action_add (&relax_info->action_list,
7834 ta_convert_longcall, sec, r_offset,
7835 0);
7836 continue;
7837 }
7838
7839 /* If the next longcall happens to be at the same address as an
7840 unreachable section of size 0, then skip forward. */
7841 ptbl_idx = the_entry - prop_table;
7842 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7843 && the_entry->size == 0
7844 && ptbl_idx + 1 < ptblsize
7845 && (prop_table[ptbl_idx + 1].address
7846 == prop_table[ptbl_idx].address))
7847 {
7848 ptbl_idx++;
7849 the_entry++;
7850 }
7851
7852 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7853 /* NO_REORDER is OK */
7854 continue;
7855
7856 init_ebb_constraint (&ebb_table);
7857 ebb = &ebb_table.ebb;
7858 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7859 internal_relocs, sec->reloc_count);
7860 ebb->start_offset = r_offset + simplify_size;
7861 ebb->end_offset = r_offset + simplify_size;
7862 ebb->start_ptbl_idx = ptbl_idx;
7863 ebb->end_ptbl_idx = ptbl_idx;
7864 ebb->start_reloc_idx = i;
7865 ebb->end_reloc_idx = i;
7866
7867 if (!extend_ebb_bounds (ebb)
7868 || !compute_ebb_proposed_actions (&ebb_table)
7869 || !compute_ebb_actions (&ebb_table)
7870 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7871 internal_relocs,
7872 &relevant_relocs,
7873 &ebb_table, reloc_opcodes)
7874 || !check_section_ebb_reduces (&ebb_table))
7875 {
7876 /* If anything goes wrong or we get unlucky and something does
7877 not fit, with our plan because of expansion between
7878 critical branches, just convert to a NOP. */
7879
7880 text_action_add (&relax_info->action_list,
7881 ta_convert_longcall, sec, r_offset, 0);
7882 i = ebb_table.ebb.end_reloc_idx;
7883 free_ebb_constraint (&ebb_table);
7884 continue;
7885 }
7886
7887 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7888
7889 /* Update the index so we do not go looking at the relocations
7890 we have already processed. */
7891 i = ebb_table.ebb.end_reloc_idx;
7892 free_ebb_constraint (&ebb_table);
7893 }
7894
7895 free_reloc_range_list (&relevant_relocs);
7896
7897 #if DEBUG
7898 if (action_list_count (&relax_info->action_list))
7899 print_action_list (stderr, &relax_info->action_list);
7900 #endif
7901
7902 error_return:
7903 release_contents (sec, contents);
7904 release_internal_relocs (sec, internal_relocs);
7905 free (prop_table);
7906 free (reloc_opcodes);
7907
7908 return ok;
7909 }
7910
7911
7912 /* Do not widen an instruction if it is preceeded by a
7913 loop opcode. It might cause misalignment. */
7914
7915 static bool
7916 prev_instr_is_a_loop (bfd_byte *contents,
7917 bfd_size_type content_length,
7918 bfd_size_type offset)
7919 {
7920 xtensa_opcode prev_opcode;
7921
7922 if (offset < 3)
7923 return false;
7924 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7925 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7926 }
7927
7928
7929 /* Find all of the possible actions for an extended basic block. */
7930
7931 bool
7932 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7933 {
7934 const ebb_t *ebb = &ebb_table->ebb;
7935 unsigned rel_idx = ebb->start_reloc_idx;
7936 property_table_entry *entry, *start_entry, *end_entry;
7937 bfd_vma offset = 0;
7938 xtensa_isa isa = xtensa_default_isa;
7939 xtensa_format fmt;
7940 static xtensa_insnbuf insnbuf = NULL;
7941 static xtensa_insnbuf slotbuf = NULL;
7942
7943 if (insnbuf == NULL)
7944 {
7945 insnbuf = xtensa_insnbuf_alloc (isa);
7946 slotbuf = xtensa_insnbuf_alloc (isa);
7947 }
7948
7949 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7950 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7951
7952 for (entry = start_entry; entry <= end_entry; entry++)
7953 {
7954 bfd_vma start_offset, end_offset;
7955 bfd_size_type insn_len;
7956
7957 start_offset = entry->address - ebb->sec->vma;
7958 end_offset = entry->address + entry->size - ebb->sec->vma;
7959
7960 if (entry == start_entry)
7961 start_offset = ebb->start_offset;
7962 if (entry == end_entry)
7963 end_offset = ebb->end_offset;
7964 offset = start_offset;
7965
7966 if (offset == entry->address - ebb->sec->vma
7967 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7968 {
7969 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7970 BFD_ASSERT (offset != end_offset);
7971 if (offset == end_offset)
7972 return false;
7973
7974 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7975 offset);
7976 if (insn_len == 0)
7977 goto decode_error;
7978
7979 if (check_branch_target_aligned_address (offset, insn_len))
7980 align_type = EBB_REQUIRE_TGT_ALIGN;
7981
7982 ebb_propose_action (ebb_table, align_type, 0,
7983 ta_none, offset, 0, true);
7984 }
7985
7986 while (offset != end_offset)
7987 {
7988 Elf_Internal_Rela *irel;
7989 xtensa_opcode opcode;
7990
7991 while (rel_idx < ebb->end_reloc_idx
7992 && (ebb->relocs[rel_idx].r_offset < offset
7993 || (ebb->relocs[rel_idx].r_offset == offset
7994 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7995 != R_XTENSA_ASM_SIMPLIFY))))
7996 rel_idx++;
7997
7998 /* Check for longcall. */
7999 irel = &ebb->relocs[rel_idx];
8000 if (irel->r_offset == offset
8001 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
8002 {
8003 bfd_size_type simplify_size;
8004
8005 simplify_size = get_asm_simplify_size (ebb->contents,
8006 ebb->content_length,
8007 irel->r_offset);
8008 if (simplify_size == 0)
8009 goto decode_error;
8010
8011 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8012 ta_convert_longcall, offset, 0, true);
8013
8014 offset += simplify_size;
8015 continue;
8016 }
8017
8018 if (offset + MIN_INSN_LENGTH > ebb->content_length)
8019 goto decode_error;
8020 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
8021 ebb->content_length - offset);
8022 fmt = xtensa_format_decode (isa, insnbuf);
8023 if (fmt == XTENSA_UNDEFINED)
8024 goto decode_error;
8025 insn_len = xtensa_format_length (isa, fmt);
8026 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
8027 goto decode_error;
8028
8029 if (xtensa_format_num_slots (isa, fmt) != 1)
8030 {
8031 offset += insn_len;
8032 continue;
8033 }
8034
8035 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
8036 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
8037 if (opcode == XTENSA_UNDEFINED)
8038 goto decode_error;
8039
8040 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
8041 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
8042 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
8043 {
8044 /* Add an instruction narrow action. */
8045 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8046 ta_narrow_insn, offset, 0, false);
8047 }
8048 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
8049 && can_widen_instruction (slotbuf, fmt, opcode) != 0
8050 && ! prev_instr_is_a_loop (ebb->contents,
8051 ebb->content_length, offset))
8052 {
8053 /* Add an instruction widen action. */
8054 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8055 ta_widen_insn, offset, 0, false);
8056 }
8057 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
8058 {
8059 /* Check for branch targets. */
8060 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
8061 ta_none, offset, 0, true);
8062 }
8063
8064 offset += insn_len;
8065 }
8066 }
8067
8068 if (ebb->ends_unreachable)
8069 {
8070 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8071 ta_fill, ebb->end_offset, 0, true);
8072 }
8073
8074 return true;
8075
8076 decode_error:
8077 _bfd_error_handler
8078 /* xgettext:c-format */
8079 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
8080 "possible configuration mismatch"),
8081 ebb->sec->owner, ebb->sec, (uint64_t) offset);
8082 return false;
8083 }
8084
8085
8086 /* After all of the information has collected about the
8087 transformations possible in an EBB, compute the appropriate actions
8088 here in compute_ebb_actions. We still must check later to make
8089 sure that the actions do not break any relocations. The algorithm
8090 used here is pretty greedy. Basically, it removes as many no-ops
8091 as possible so that the end of the EBB has the same alignment
8092 characteristics as the original. First, it uses narrowing, then
8093 fill space at the end of the EBB, and finally widenings. If that
8094 does not work, it tries again with one fewer no-op removed. The
8095 optimization will only be performed if all of the branch targets
8096 that were aligned before transformation are also aligned after the
8097 transformation.
8098
8099 When the size_opt flag is set, ignore the branch target alignments,
8100 narrow all wide instructions, and remove all no-ops unless the end
8101 of the EBB prevents it. */
8102
8103 bool
8104 compute_ebb_actions (ebb_constraint *ebb_table)
8105 {
8106 unsigned i = 0;
8107 unsigned j;
8108 int removed_bytes = 0;
8109 ebb_t *ebb = &ebb_table->ebb;
8110 unsigned seg_idx_start = 0;
8111 unsigned seg_idx_end = 0;
8112
8113 /* We perform this like the assembler relaxation algorithm: Start by
8114 assuming all instructions are narrow and all no-ops removed; then
8115 walk through.... */
8116
8117 /* For each segment of this that has a solid constraint, check to
8118 see if there are any combinations that will keep the constraint.
8119 If so, use it. */
8120 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8121 {
8122 bool requires_text_end_align = false;
8123 unsigned longcall_count = 0;
8124 unsigned longcall_convert_count = 0;
8125 unsigned narrowable_count = 0;
8126 unsigned narrowable_convert_count = 0;
8127 unsigned widenable_count = 0;
8128 unsigned widenable_convert_count = 0;
8129
8130 proposed_action *action = NULL;
8131 int align = (1 << ebb_table->ebb.sec->alignment_power);
8132
8133 seg_idx_start = seg_idx_end;
8134
8135 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8136 {
8137 action = &ebb_table->actions[i];
8138 if (action->action == ta_convert_longcall)
8139 longcall_count++;
8140 if (action->action == ta_narrow_insn)
8141 narrowable_count++;
8142 if (action->action == ta_widen_insn)
8143 widenable_count++;
8144 if (action->action == ta_fill)
8145 break;
8146 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8147 break;
8148 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8149 && !elf32xtensa_size_opt)
8150 break;
8151 }
8152 seg_idx_end = i;
8153
8154 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8155 requires_text_end_align = true;
8156
8157 if (elf32xtensa_size_opt && !requires_text_end_align
8158 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8159 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8160 {
8161 longcall_convert_count = longcall_count;
8162 narrowable_convert_count = narrowable_count;
8163 widenable_convert_count = 0;
8164 }
8165 else
8166 {
8167 /* There is a constraint. Convert the max number of longcalls. */
8168 narrowable_convert_count = 0;
8169 longcall_convert_count = 0;
8170 widenable_convert_count = 0;
8171
8172 for (j = 0; j < longcall_count; j++)
8173 {
8174 int removed = (longcall_count - j) * 3 & (align - 1);
8175 unsigned desire_narrow = (align - removed) & (align - 1);
8176 unsigned desire_widen = removed;
8177 if (desire_narrow <= narrowable_count)
8178 {
8179 narrowable_convert_count = desire_narrow;
8180 narrowable_convert_count +=
8181 (align * ((narrowable_count - narrowable_convert_count)
8182 / align));
8183 longcall_convert_count = (longcall_count - j);
8184 widenable_convert_count = 0;
8185 break;
8186 }
8187 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8188 {
8189 narrowable_convert_count = 0;
8190 longcall_convert_count = longcall_count - j;
8191 widenable_convert_count = desire_widen;
8192 break;
8193 }
8194 }
8195 }
8196
8197 /* Now the number of conversions are saved. Do them. */
8198 for (i = seg_idx_start; i < seg_idx_end; i++)
8199 {
8200 action = &ebb_table->actions[i];
8201 switch (action->action)
8202 {
8203 case ta_convert_longcall:
8204 if (longcall_convert_count != 0)
8205 {
8206 action->action = ta_remove_longcall;
8207 action->do_action = true;
8208 action->removed_bytes += 3;
8209 longcall_convert_count--;
8210 }
8211 break;
8212 case ta_narrow_insn:
8213 if (narrowable_convert_count != 0)
8214 {
8215 action->do_action = true;
8216 action->removed_bytes += 1;
8217 narrowable_convert_count--;
8218 }
8219 break;
8220 case ta_widen_insn:
8221 if (widenable_convert_count != 0)
8222 {
8223 action->do_action = true;
8224 action->removed_bytes -= 1;
8225 widenable_convert_count--;
8226 }
8227 break;
8228 default:
8229 break;
8230 }
8231 }
8232 }
8233
8234 /* Now we move on to some local opts. Try to remove each of the
8235 remaining longcalls. */
8236
8237 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8238 {
8239 removed_bytes = 0;
8240 for (i = 0; i < ebb_table->action_count; i++)
8241 {
8242 int old_removed_bytes = removed_bytes;
8243 proposed_action *action = &ebb_table->actions[i];
8244
8245 if (action->do_action && action->action == ta_convert_longcall)
8246 {
8247 bool bad_alignment = false;
8248 removed_bytes += 3;
8249 for (j = i + 1; j < ebb_table->action_count; j++)
8250 {
8251 proposed_action *new_action = &ebb_table->actions[j];
8252 bfd_vma offset = new_action->offset;
8253 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8254 {
8255 if (!check_branch_target_aligned
8256 (ebb_table->ebb.contents,
8257 ebb_table->ebb.content_length,
8258 offset, offset - removed_bytes))
8259 {
8260 bad_alignment = true;
8261 break;
8262 }
8263 }
8264 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8265 {
8266 if (!check_loop_aligned (ebb_table->ebb.contents,
8267 ebb_table->ebb.content_length,
8268 offset,
8269 offset - removed_bytes))
8270 {
8271 bad_alignment = true;
8272 break;
8273 }
8274 }
8275 if (new_action->action == ta_narrow_insn
8276 && !new_action->do_action
8277 && ebb_table->ebb.sec->alignment_power == 2)
8278 {
8279 /* Narrow an instruction and we are done. */
8280 new_action->do_action = true;
8281 new_action->removed_bytes += 1;
8282 bad_alignment = false;
8283 break;
8284 }
8285 if (new_action->action == ta_widen_insn
8286 && new_action->do_action
8287 && ebb_table->ebb.sec->alignment_power == 2)
8288 {
8289 /* Narrow an instruction and we are done. */
8290 new_action->do_action = false;
8291 new_action->removed_bytes += 1;
8292 bad_alignment = false;
8293 break;
8294 }
8295 if (new_action->do_action)
8296 removed_bytes += new_action->removed_bytes;
8297 }
8298 if (!bad_alignment)
8299 {
8300 action->removed_bytes += 3;
8301 action->action = ta_remove_longcall;
8302 action->do_action = true;
8303 }
8304 }
8305 removed_bytes = old_removed_bytes;
8306 if (action->do_action)
8307 removed_bytes += action->removed_bytes;
8308 }
8309 }
8310
8311 removed_bytes = 0;
8312 for (i = 0; i < ebb_table->action_count; ++i)
8313 {
8314 proposed_action *action = &ebb_table->actions[i];
8315 if (action->do_action)
8316 removed_bytes += action->removed_bytes;
8317 }
8318
8319 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8320 && ebb->ends_unreachable)
8321 {
8322 proposed_action *action;
8323 int br;
8324 int extra_space;
8325
8326 BFD_ASSERT (ebb_table->action_count != 0);
8327 action = &ebb_table->actions[ebb_table->action_count - 1];
8328 BFD_ASSERT (action->action == ta_fill);
8329 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8330
8331 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
8332 br = action->removed_bytes + removed_bytes + extra_space;
8333 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8334
8335 action->removed_bytes = extra_space - br;
8336 }
8337 return true;
8338 }
8339
8340
8341 /* The xlate_map is a sorted array of address mappings designed to
8342 answer the offset_with_removed_text() query with a binary search instead
8343 of a linear search through the section's action_list. */
8344
8345 typedef struct xlate_map_entry xlate_map_entry_t;
8346 typedef struct xlate_map xlate_map_t;
8347
8348 struct xlate_map_entry
8349 {
8350 bfd_vma orig_address;
8351 bfd_vma new_address;
8352 unsigned size;
8353 };
8354
8355 struct xlate_map
8356 {
8357 unsigned entry_count;
8358 xlate_map_entry_t *entry;
8359 };
8360
8361
8362 static int
8363 xlate_compare (const void *a_v, const void *b_v)
8364 {
8365 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8366 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8367 if (a->orig_address < b->orig_address)
8368 return -1;
8369 if (a->orig_address > (b->orig_address + b->size - 1))
8370 return 1;
8371 return 0;
8372 }
8373
8374
8375 static bfd_vma
8376 xlate_offset_with_removed_text (const xlate_map_t *map,
8377 text_action_list *action_list,
8378 bfd_vma offset)
8379 {
8380 void *r;
8381 xlate_map_entry_t *e;
8382 struct xlate_map_entry se;
8383
8384 if (map == NULL)
8385 return offset_with_removed_text (action_list, offset);
8386
8387 if (map->entry_count == 0)
8388 return offset;
8389
8390 se.orig_address = offset;
8391 r = bsearch (&se, map->entry, map->entry_count,
8392 sizeof (xlate_map_entry_t), &xlate_compare);
8393 e = (xlate_map_entry_t *) r;
8394
8395 /* There could be a jump past the end of the section,
8396 allow it using the last xlate map entry to translate its address. */
8397 if (e == NULL)
8398 {
8399 e = map->entry + map->entry_count - 1;
8400 if (xlate_compare (&se, e) <= 0)
8401 e = NULL;
8402 }
8403 BFD_ASSERT (e != NULL);
8404 if (e == NULL)
8405 return offset;
8406 return e->new_address - e->orig_address + offset;
8407 }
8408
8409 typedef struct xlate_map_context_struct xlate_map_context;
8410 struct xlate_map_context_struct
8411 {
8412 xlate_map_t *map;
8413 xlate_map_entry_t *current_entry;
8414 int removed;
8415 };
8416
8417 static int
8418 xlate_map_fn (splay_tree_node node, void *p)
8419 {
8420 text_action *r = (text_action *)node->value;
8421 xlate_map_context *ctx = p;
8422 unsigned orig_size = 0;
8423
8424 switch (r->action)
8425 {
8426 case ta_none:
8427 case ta_remove_insn:
8428 case ta_convert_longcall:
8429 case ta_remove_literal:
8430 case ta_add_literal:
8431 break;
8432 case ta_remove_longcall:
8433 orig_size = 6;
8434 break;
8435 case ta_narrow_insn:
8436 orig_size = 3;
8437 break;
8438 case ta_widen_insn:
8439 orig_size = 2;
8440 break;
8441 case ta_fill:
8442 break;
8443 }
8444 ctx->current_entry->size =
8445 r->offset + orig_size - ctx->current_entry->orig_address;
8446 if (ctx->current_entry->size != 0)
8447 {
8448 ctx->current_entry++;
8449 ctx->map->entry_count++;
8450 }
8451 ctx->current_entry->orig_address = r->offset + orig_size;
8452 ctx->removed += r->removed_bytes;
8453 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8454 ctx->current_entry->size = 0;
8455 return 0;
8456 }
8457
8458 /* Build a binary searchable offset translation map from a section's
8459 action list. */
8460
8461 static xlate_map_t *
8462 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8463 {
8464 text_action_list *action_list = &relax_info->action_list;
8465 unsigned num_actions = 0;
8466 xlate_map_context ctx;
8467
8468 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8469
8470 if (ctx.map == NULL)
8471 return NULL;
8472
8473 num_actions = action_list_count (action_list);
8474 ctx.map->entry = (xlate_map_entry_t *)
8475 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8476 if (ctx.map->entry == NULL)
8477 {
8478 free (ctx.map);
8479 return NULL;
8480 }
8481 ctx.map->entry_count = 0;
8482
8483 ctx.removed = 0;
8484 ctx.current_entry = &ctx.map->entry[0];
8485
8486 ctx.current_entry->orig_address = 0;
8487 ctx.current_entry->new_address = 0;
8488 ctx.current_entry->size = 0;
8489
8490 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8491
8492 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8493 - ctx.current_entry->orig_address);
8494 if (ctx.current_entry->size != 0)
8495 ctx.map->entry_count++;
8496
8497 return ctx.map;
8498 }
8499
8500
8501 /* Free an offset translation map. */
8502
8503 static void
8504 free_xlate_map (xlate_map_t *map)
8505 {
8506 if (map)
8507 {
8508 free (map->entry);
8509 free (map);
8510 }
8511 }
8512
8513
8514 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8515 relocations in a section will fit if a proposed set of actions
8516 are performed. */
8517
8518 static bool
8519 check_section_ebb_pcrels_fit (bfd *abfd,
8520 asection *sec,
8521 bfd_byte *contents,
8522 Elf_Internal_Rela *internal_relocs,
8523 reloc_range_list *relevant_relocs,
8524 const ebb_constraint *constraint,
8525 const xtensa_opcode *reloc_opcodes)
8526 {
8527 unsigned i, j;
8528 unsigned n = sec->reloc_count;
8529 Elf_Internal_Rela *irel;
8530 xlate_map_t *xmap = NULL;
8531 bool ok = true;
8532 xtensa_relax_info *relax_info;
8533 reloc_range_list_entry *entry = NULL;
8534
8535 relax_info = get_xtensa_relax_info (sec);
8536
8537 if (relax_info && sec->reloc_count > 100)
8538 {
8539 xmap = build_xlate_map (sec, relax_info);
8540 /* NULL indicates out of memory, but the slow version
8541 can still be used. */
8542 }
8543
8544 if (relevant_relocs && constraint->action_count)
8545 {
8546 if (!relevant_relocs->ok)
8547 {
8548 ok = false;
8549 n = 0;
8550 }
8551 else
8552 {
8553 bfd_vma min_offset, max_offset;
8554 min_offset = max_offset = constraint->actions[0].offset;
8555
8556 for (i = 1; i < constraint->action_count; ++i)
8557 {
8558 proposed_action *action = &constraint->actions[i];
8559 bfd_vma offset = action->offset;
8560
8561 if (offset < min_offset)
8562 min_offset = offset;
8563 if (offset > max_offset)
8564 max_offset = offset;
8565 }
8566 reloc_range_list_update_range (relevant_relocs, min_offset,
8567 max_offset);
8568 n = relevant_relocs->n_list;
8569 entry = &relevant_relocs->list_root;
8570 }
8571 }
8572 else
8573 {
8574 relevant_relocs = NULL;
8575 }
8576
8577 for (i = 0; i < n; i++)
8578 {
8579 r_reloc r_rel;
8580 bfd_vma orig_self_offset, orig_target_offset;
8581 bfd_vma self_offset, target_offset;
8582 int r_type;
8583 reloc_howto_type *howto;
8584 int self_removed_bytes, target_removed_bytes;
8585
8586 if (relevant_relocs)
8587 {
8588 entry = entry->next;
8589 irel = entry->irel;
8590 }
8591 else
8592 {
8593 irel = internal_relocs + i;
8594 }
8595 r_type = ELF32_R_TYPE (irel->r_info);
8596
8597 howto = &elf_howto_table[r_type];
8598 /* We maintain the required invariant: PC-relative relocations
8599 that fit before linking must fit after linking. Thus we only
8600 need to deal with relocations to the same section that are
8601 PC-relative. */
8602 if (r_type == R_XTENSA_ASM_SIMPLIFY
8603 || r_type == R_XTENSA_32_PCREL
8604 || !howto->pc_relative)
8605 continue;
8606
8607 r_reloc_init (&r_rel, abfd, irel, contents,
8608 bfd_get_section_limit (abfd, sec));
8609
8610 if (r_reloc_get_section (&r_rel) != sec)
8611 continue;
8612
8613 orig_self_offset = irel->r_offset;
8614 orig_target_offset = r_rel.target_offset;
8615
8616 self_offset = orig_self_offset;
8617 target_offset = orig_target_offset;
8618
8619 if (relax_info)
8620 {
8621 self_offset =
8622 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8623 orig_self_offset);
8624 target_offset =
8625 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8626 orig_target_offset);
8627 }
8628
8629 self_removed_bytes = 0;
8630 target_removed_bytes = 0;
8631
8632 for (j = 0; j < constraint->action_count; ++j)
8633 {
8634 proposed_action *action = &constraint->actions[j];
8635 bfd_vma offset = action->offset;
8636 int removed_bytes = action->removed_bytes;
8637 if (offset < orig_self_offset
8638 || (offset == orig_self_offset && action->action == ta_fill
8639 && action->removed_bytes < 0))
8640 self_removed_bytes += removed_bytes;
8641 if (offset < orig_target_offset
8642 || (offset == orig_target_offset && action->action == ta_fill
8643 && action->removed_bytes < 0))
8644 target_removed_bytes += removed_bytes;
8645 }
8646 self_offset -= self_removed_bytes;
8647 target_offset -= target_removed_bytes;
8648
8649 /* Try to encode it. Get the operand and check. */
8650 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8651 {
8652 /* None of the current alternate relocs are PC-relative,
8653 and only PC-relative relocs matter here. */
8654 }
8655 else
8656 {
8657 xtensa_opcode opcode;
8658 int opnum;
8659
8660 if (relevant_relocs)
8661 {
8662 opcode = entry->opcode;
8663 opnum = entry->opnum;
8664 }
8665 else
8666 {
8667 if (reloc_opcodes)
8668 opcode = reloc_opcodes[relevant_relocs ?
8669 (unsigned)(entry - relevant_relocs->reloc) : i];
8670 else
8671 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8672 if (opcode == XTENSA_UNDEFINED)
8673 {
8674 ok = false;
8675 break;
8676 }
8677
8678 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8679 if (opnum == XTENSA_UNDEFINED)
8680 {
8681 ok = false;
8682 break;
8683 }
8684 }
8685
8686 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8687 {
8688 ok = false;
8689 break;
8690 }
8691 }
8692 }
8693
8694 free_xlate_map (xmap);
8695
8696 return ok;
8697 }
8698
8699
8700 static bool
8701 check_section_ebb_reduces (const ebb_constraint *constraint)
8702 {
8703 int removed = 0;
8704 unsigned i;
8705
8706 for (i = 0; i < constraint->action_count; i++)
8707 {
8708 const proposed_action *action = &constraint->actions[i];
8709 if (action->do_action)
8710 removed += action->removed_bytes;
8711 }
8712 if (removed < 0)
8713 return false;
8714
8715 return true;
8716 }
8717
8718
8719 void
8720 text_action_add_proposed (text_action_list *l,
8721 const ebb_constraint *ebb_table,
8722 asection *sec)
8723 {
8724 unsigned i;
8725
8726 for (i = 0; i < ebb_table->action_count; i++)
8727 {
8728 proposed_action *action = &ebb_table->actions[i];
8729
8730 if (!action->do_action)
8731 continue;
8732 switch (action->action)
8733 {
8734 case ta_remove_insn:
8735 case ta_remove_longcall:
8736 case ta_convert_longcall:
8737 case ta_narrow_insn:
8738 case ta_widen_insn:
8739 case ta_fill:
8740 case ta_remove_literal:
8741 text_action_add (l, action->action, sec, action->offset,
8742 action->removed_bytes);
8743 break;
8744 case ta_none:
8745 break;
8746 default:
8747 BFD_ASSERT (0);
8748 break;
8749 }
8750 }
8751 }
8752
8753
8754 int
8755 xtensa_compute_fill_extra_space (property_table_entry *entry)
8756 {
8757 int fill_extra_space;
8758
8759 if (!entry)
8760 return 0;
8761
8762 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8763 return 0;
8764
8765 fill_extra_space = entry->size;
8766 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8767 {
8768 /* Fill bytes for alignment:
8769 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8770 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8771 int nsm = (1 << pow) - 1;
8772 bfd_vma addr = entry->address + entry->size;
8773 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8774 fill_extra_space += align_fill;
8775 }
8776 return fill_extra_space;
8777 }
8778
8779 \f
8780 /* First relaxation pass. */
8781
8782 /* If the section contains relaxable literals, check each literal to
8783 see if it has the same value as another literal that has already
8784 been seen, either in the current section or a previous one. If so,
8785 add an entry to the per-section list of removed literals. The
8786 actual changes are deferred until the next pass. */
8787
8788 static bool
8789 compute_removed_literals (bfd *abfd,
8790 asection *sec,
8791 struct bfd_link_info *link_info,
8792 value_map_hash_table *values)
8793 {
8794 xtensa_relax_info *relax_info;
8795 bfd_byte *contents;
8796 Elf_Internal_Rela *internal_relocs;
8797 source_reloc *src_relocs, *rel;
8798 bool ok = true;
8799 property_table_entry *prop_table = NULL;
8800 int ptblsize;
8801 int i, prev_i;
8802 bool last_loc_is_prev = false;
8803 bfd_vma last_target_offset = 0;
8804 section_cache_t target_sec_cache;
8805 bfd_size_type sec_size;
8806
8807 init_section_cache (&target_sec_cache);
8808
8809 /* Do nothing if it is not a relaxable literal section. */
8810 relax_info = get_xtensa_relax_info (sec);
8811 BFD_ASSERT (relax_info);
8812 if (!relax_info->is_relaxable_literal_section)
8813 return ok;
8814
8815 internal_relocs = retrieve_internal_relocs (abfd, sec,
8816 link_info->keep_memory);
8817
8818 sec_size = bfd_get_section_limit (abfd, sec);
8819 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8820 if (contents == NULL && sec_size != 0)
8821 {
8822 ok = false;
8823 goto error_return;
8824 }
8825
8826 /* Sort the source_relocs by target offset. */
8827 src_relocs = relax_info->src_relocs;
8828 qsort (src_relocs, relax_info->src_count,
8829 sizeof (source_reloc), source_reloc_compare);
8830 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8831 internal_reloc_compare);
8832
8833 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8834 XTENSA_PROP_SEC_NAME, false);
8835 if (ptblsize < 0)
8836 {
8837 ok = false;
8838 goto error_return;
8839 }
8840
8841 prev_i = -1;
8842 for (i = 0; i < relax_info->src_count; i++)
8843 {
8844 Elf_Internal_Rela *irel = NULL;
8845
8846 rel = &src_relocs[i];
8847 if (get_l32r_opcode () != rel->opcode)
8848 continue;
8849 irel = get_irel_at_offset (sec, internal_relocs,
8850 rel->r_rel.target_offset);
8851
8852 /* If the relocation on this is not a simple R_XTENSA_32 or
8853 R_XTENSA_PLT then do not consider it. This may happen when
8854 the difference of two symbols is used in a literal. */
8855 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8856 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8857 continue;
8858
8859 /* If the target_offset for this relocation is the same as the
8860 previous relocation, then we've already considered whether the
8861 literal can be coalesced. Skip to the next one.... */
8862 if (i != 0 && prev_i != -1
8863 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8864 continue;
8865 prev_i = i;
8866
8867 if (last_loc_is_prev &&
8868 last_target_offset + 4 != rel->r_rel.target_offset)
8869 last_loc_is_prev = false;
8870
8871 /* Check if the relocation was from an L32R that is being removed
8872 because a CALLX was converted to a direct CALL, and check if
8873 there are no other relocations to the literal. */
8874 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8875 sec, prop_table, ptblsize))
8876 {
8877 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8878 irel, rel, prop_table, ptblsize))
8879 {
8880 ok = false;
8881 goto error_return;
8882 }
8883 last_target_offset = rel->r_rel.target_offset;
8884 continue;
8885 }
8886
8887 if (!identify_literal_placement (abfd, sec, contents, link_info,
8888 values,
8889 &last_loc_is_prev, irel,
8890 relax_info->src_count - i, rel,
8891 prop_table, ptblsize,
8892 &target_sec_cache, rel->is_abs_literal))
8893 {
8894 ok = false;
8895 goto error_return;
8896 }
8897 last_target_offset = rel->r_rel.target_offset;
8898 }
8899
8900 #if DEBUG
8901 print_removed_literals (stderr, &relax_info->removed_list);
8902 print_action_list (stderr, &relax_info->action_list);
8903 #endif /* DEBUG */
8904
8905 error_return:
8906 free (prop_table);
8907 free_section_cache (&target_sec_cache);
8908
8909 release_contents (sec, contents);
8910 release_internal_relocs (sec, internal_relocs);
8911 return ok;
8912 }
8913
8914
8915 static Elf_Internal_Rela *
8916 get_irel_at_offset (asection *sec,
8917 Elf_Internal_Rela *internal_relocs,
8918 bfd_vma offset)
8919 {
8920 unsigned i;
8921 Elf_Internal_Rela *irel;
8922 unsigned r_type;
8923 Elf_Internal_Rela key;
8924
8925 if (!internal_relocs)
8926 return NULL;
8927
8928 key.r_offset = offset;
8929 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8930 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8931 if (!irel)
8932 return NULL;
8933
8934 /* bsearch does not guarantee which will be returned if there are
8935 multiple matches. We need the first that is not an alignment. */
8936 i = irel - internal_relocs;
8937 while (i > 0)
8938 {
8939 if (internal_relocs[i-1].r_offset != offset)
8940 break;
8941 i--;
8942 }
8943 for ( ; i < sec->reloc_count; i++)
8944 {
8945 irel = &internal_relocs[i];
8946 r_type = ELF32_R_TYPE (irel->r_info);
8947 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8948 return irel;
8949 }
8950
8951 return NULL;
8952 }
8953
8954
8955 bool
8956 is_removable_literal (const source_reloc *rel,
8957 int i,
8958 const source_reloc *src_relocs,
8959 int src_count,
8960 asection *sec,
8961 property_table_entry *prop_table,
8962 int ptblsize)
8963 {
8964 const source_reloc *curr_rel;
8965 property_table_entry *entry;
8966
8967 if (!rel->is_null)
8968 return false;
8969
8970 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8971 sec->vma + rel->r_rel.target_offset);
8972 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8973 return false;
8974
8975 for (++i; i < src_count; ++i)
8976 {
8977 curr_rel = &src_relocs[i];
8978 /* If all others have the same target offset.... */
8979 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8980 return true;
8981
8982 if (!curr_rel->is_null
8983 && !xtensa_is_property_section (curr_rel->source_sec)
8984 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8985 return false;
8986 }
8987 return true;
8988 }
8989
8990
8991 bool
8992 remove_dead_literal (bfd *abfd,
8993 asection *sec,
8994 struct bfd_link_info *link_info,
8995 Elf_Internal_Rela *internal_relocs,
8996 Elf_Internal_Rela *irel,
8997 source_reloc *rel,
8998 property_table_entry *prop_table,
8999 int ptblsize)
9000 {
9001 property_table_entry *entry;
9002 xtensa_relax_info *relax_info;
9003
9004 relax_info = get_xtensa_relax_info (sec);
9005 if (!relax_info)
9006 return false;
9007
9008 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9009 sec->vma + rel->r_rel.target_offset);
9010
9011 /* Mark the unused literal so that it will be removed. */
9012 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
9013
9014 text_action_add (&relax_info->action_list,
9015 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9016
9017 /* If the section is 4-byte aligned, do not add fill. */
9018 if (sec->alignment_power > 2)
9019 {
9020 int fill_extra_space;
9021 bfd_vma entry_sec_offset;
9022 text_action *fa;
9023 property_table_entry *the_add_entry;
9024 int removed_diff;
9025
9026 if (entry)
9027 entry_sec_offset = entry->address - sec->vma + entry->size;
9028 else
9029 entry_sec_offset = rel->r_rel.target_offset + 4;
9030
9031 /* If the literal range is at the end of the section,
9032 do not add fill. */
9033 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9034 entry_sec_offset);
9035 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
9036
9037 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9038 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9039 -4, fill_extra_space);
9040 if (fa)
9041 adjust_fill_action (fa, removed_diff);
9042 else
9043 text_action_add (&relax_info->action_list,
9044 ta_fill, sec, entry_sec_offset, removed_diff);
9045 }
9046
9047 /* Zero out the relocation on this literal location. */
9048 if (irel)
9049 {
9050 if (elf_hash_table (link_info)->dynamic_sections_created)
9051 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9052
9053 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9054 pin_internal_relocs (sec, internal_relocs);
9055 }
9056
9057 /* Do not modify "last_loc_is_prev". */
9058 return true;
9059 }
9060
9061
9062 bool
9063 identify_literal_placement (bfd *abfd,
9064 asection *sec,
9065 bfd_byte *contents,
9066 struct bfd_link_info *link_info,
9067 value_map_hash_table *values,
9068 bool *last_loc_is_prev_p,
9069 Elf_Internal_Rela *irel,
9070 int remaining_src_rels,
9071 source_reloc *rel,
9072 property_table_entry *prop_table,
9073 int ptblsize,
9074 section_cache_t *target_sec_cache,
9075 bool is_abs_literal)
9076 {
9077 literal_value val;
9078 value_map *val_map;
9079 xtensa_relax_info *relax_info;
9080 bool literal_placed = false;
9081 r_reloc r_rel;
9082 unsigned long value;
9083 bool final_static_link;
9084 bfd_size_type sec_size;
9085
9086 relax_info = get_xtensa_relax_info (sec);
9087 if (!relax_info)
9088 return false;
9089
9090 sec_size = bfd_get_section_limit (abfd, sec);
9091
9092 final_static_link =
9093 (!bfd_link_relocatable (link_info)
9094 && !elf_hash_table (link_info)->dynamic_sections_created);
9095
9096 /* The placement algorithm first checks to see if the literal is
9097 already in the value map. If so and the value map is reachable
9098 from all uses, then the literal is moved to that location. If
9099 not, then we identify the last location where a fresh literal was
9100 placed. If the literal can be safely moved there, then we do so.
9101 If not, then we assume that the literal is not to move and leave
9102 the literal where it is, marking it as the last literal
9103 location. */
9104
9105 /* Find the literal value. */
9106 value = 0;
9107 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9108 if (!irel)
9109 {
9110 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9111 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9112 }
9113 init_literal_value (&val, &r_rel, value, is_abs_literal);
9114
9115 /* Check if we've seen another literal with the same value that
9116 is in the same output section. */
9117 val_map = value_map_get_cached_value (values, &val, final_static_link);
9118
9119 if (val_map
9120 && (r_reloc_get_section (&val_map->loc)->output_section
9121 == sec->output_section)
9122 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9123 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9124 {
9125 /* No change to last_loc_is_prev. */
9126 literal_placed = true;
9127 }
9128
9129 /* For relocatable links, do not try to move literals. To do it
9130 correctly might increase the number of relocations in an input
9131 section making the default relocatable linking fail. */
9132 if (!bfd_link_relocatable (link_info) && !literal_placed
9133 && values->has_last_loc && !(*last_loc_is_prev_p))
9134 {
9135 asection *target_sec = r_reloc_get_section (&values->last_loc);
9136 if (target_sec && target_sec->output_section == sec->output_section)
9137 {
9138 /* Increment the virtual offset. */
9139 r_reloc try_loc = values->last_loc;
9140 try_loc.virtual_offset += 4;
9141
9142 /* There is a last loc that was in the same output section. */
9143 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9144 && move_shared_literal (sec, link_info, rel,
9145 prop_table, ptblsize,
9146 &try_loc, &val, target_sec_cache))
9147 {
9148 values->last_loc.virtual_offset += 4;
9149 literal_placed = true;
9150 if (!val_map)
9151 val_map = add_value_map (values, &val, &try_loc,
9152 final_static_link);
9153 else
9154 val_map->loc = try_loc;
9155 }
9156 }
9157 }
9158
9159 if (!literal_placed)
9160 {
9161 /* Nothing worked, leave the literal alone but update the last loc. */
9162 values->has_last_loc = true;
9163 values->last_loc = rel->r_rel;
9164 if (!val_map)
9165 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9166 else
9167 val_map->loc = rel->r_rel;
9168 *last_loc_is_prev_p = true;
9169 }
9170
9171 return true;
9172 }
9173
9174
9175 /* Check if the original relocations (presumably on L32R instructions)
9176 identified by reloc[0..N] can be changed to reference the literal
9177 identified by r_rel. If r_rel is out of range for any of the
9178 original relocations, then we don't want to coalesce the original
9179 literal with the one at r_rel. We only check reloc[0..N], where the
9180 offsets are all the same as for reloc[0] (i.e., they're all
9181 referencing the same literal) and where N is also bounded by the
9182 number of remaining entries in the "reloc" array. The "reloc" array
9183 is sorted by target offset so we know all the entries for the same
9184 literal will be contiguous. */
9185
9186 static bool
9187 relocations_reach (source_reloc *reloc,
9188 int remaining_relocs,
9189 const r_reloc *r_rel)
9190 {
9191 bfd_vma from_offset, source_address, dest_address;
9192 asection *sec;
9193 int i;
9194
9195 if (!r_reloc_is_defined (r_rel))
9196 return false;
9197
9198 sec = r_reloc_get_section (r_rel);
9199 from_offset = reloc[0].r_rel.target_offset;
9200
9201 for (i = 0; i < remaining_relocs; i++)
9202 {
9203 if (reloc[i].r_rel.target_offset != from_offset)
9204 break;
9205
9206 /* Ignore relocations that have been removed. */
9207 if (reloc[i].is_null)
9208 continue;
9209
9210 /* The original and new output section for these must be the same
9211 in order to coalesce. */
9212 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9213 != sec->output_section)
9214 return false;
9215
9216 /* Absolute literals in the same output section can always be
9217 combined. */
9218 if (reloc[i].is_abs_literal)
9219 continue;
9220
9221 /* A literal with no PC-relative relocations can be moved anywhere. */
9222 if (reloc[i].opnd != -1)
9223 {
9224 /* Otherwise, check to see that it fits. */
9225 source_address = (reloc[i].source_sec->output_section->vma
9226 + reloc[i].source_sec->output_offset
9227 + reloc[i].r_rel.rela.r_offset);
9228 dest_address = (sec->output_section->vma
9229 + sec->output_offset
9230 + r_rel->target_offset);
9231
9232 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9233 source_address, dest_address))
9234 return false;
9235 }
9236 }
9237
9238 return true;
9239 }
9240
9241
9242 /* Move a literal to another literal location because it is
9243 the same as the other literal value. */
9244
9245 static bool
9246 coalesce_shared_literal (asection *sec,
9247 source_reloc *rel,
9248 property_table_entry *prop_table,
9249 int ptblsize,
9250 value_map *val_map)
9251 {
9252 property_table_entry *entry;
9253 text_action *fa;
9254 property_table_entry *the_add_entry;
9255 int removed_diff;
9256 xtensa_relax_info *relax_info;
9257
9258 relax_info = get_xtensa_relax_info (sec);
9259 if (!relax_info)
9260 return false;
9261
9262 entry = elf_xtensa_find_property_entry
9263 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9264 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9265 return true;
9266
9267 /* Mark that the literal will be coalesced. */
9268 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9269
9270 text_action_add (&relax_info->action_list,
9271 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9272
9273 /* If the section is 4-byte aligned, do not add fill. */
9274 if (sec->alignment_power > 2)
9275 {
9276 int fill_extra_space;
9277 bfd_vma entry_sec_offset;
9278
9279 if (entry)
9280 entry_sec_offset = entry->address - sec->vma + entry->size;
9281 else
9282 entry_sec_offset = rel->r_rel.target_offset + 4;
9283
9284 /* If the literal range is at the end of the section,
9285 do not add fill. */
9286 fill_extra_space = 0;
9287 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9288 entry_sec_offset);
9289 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9290 fill_extra_space = the_add_entry->size;
9291
9292 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9293 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9294 -4, fill_extra_space);
9295 if (fa)
9296 adjust_fill_action (fa, removed_diff);
9297 else
9298 text_action_add (&relax_info->action_list,
9299 ta_fill, sec, entry_sec_offset, removed_diff);
9300 }
9301
9302 return true;
9303 }
9304
9305
9306 /* Move a literal to another location. This may actually increase the
9307 total amount of space used because of alignments so we need to do
9308 this carefully. Also, it may make a branch go out of range. */
9309
9310 static bool
9311 move_shared_literal (asection *sec,
9312 struct bfd_link_info *link_info,
9313 source_reloc *rel,
9314 property_table_entry *prop_table,
9315 int ptblsize,
9316 const r_reloc *target_loc,
9317 const literal_value *lit_value,
9318 section_cache_t *target_sec_cache)
9319 {
9320 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9321 text_action *fa, *target_fa;
9322 int removed_diff;
9323 xtensa_relax_info *relax_info, *target_relax_info;
9324 asection *target_sec;
9325 ebb_t *ebb;
9326 ebb_constraint ebb_table;
9327 bool relocs_fit;
9328
9329 /* If this routine always returns FALSE, the literals that cannot be
9330 coalesced will not be moved. */
9331 if (elf32xtensa_no_literal_movement)
9332 return false;
9333
9334 relax_info = get_xtensa_relax_info (sec);
9335 if (!relax_info)
9336 return false;
9337
9338 target_sec = r_reloc_get_section (target_loc);
9339 target_relax_info = get_xtensa_relax_info (target_sec);
9340
9341 /* Literals to undefined sections may not be moved because they
9342 must report an error. */
9343 if (bfd_is_und_section (target_sec))
9344 return false;
9345
9346 src_entry = elf_xtensa_find_property_entry
9347 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9348
9349 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9350 return false;
9351
9352 target_entry = elf_xtensa_find_property_entry
9353 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9354 target_sec->vma + target_loc->target_offset);
9355
9356 if (!target_entry)
9357 return false;
9358
9359 /* Make sure that we have not broken any branches. */
9360 relocs_fit = false;
9361
9362 init_ebb_constraint (&ebb_table);
9363 ebb = &ebb_table.ebb;
9364 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9365 target_sec_cache->content_length,
9366 target_sec_cache->ptbl, target_sec_cache->pte_count,
9367 target_sec_cache->relocs, target_sec_cache->reloc_count);
9368
9369 /* Propose to add 4 bytes + worst-case alignment size increase to
9370 destination. */
9371 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9372 ta_fill, target_loc->target_offset,
9373 -4 - (1 << target_sec->alignment_power), true);
9374
9375 /* Check all of the PC-relative relocations to make sure they still fit. */
9376 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9377 target_sec_cache->contents,
9378 target_sec_cache->relocs, NULL,
9379 &ebb_table, NULL);
9380
9381 if (!relocs_fit)
9382 return false;
9383
9384 text_action_add_literal (&target_relax_info->action_list,
9385 ta_add_literal, target_loc, lit_value, -4);
9386
9387 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9388 {
9389 /* May need to add or remove some fill to maintain alignment. */
9390 int fill_extra_space;
9391 bfd_vma entry_sec_offset;
9392
9393 entry_sec_offset =
9394 target_entry->address - target_sec->vma + target_entry->size;
9395
9396 /* If the literal range is at the end of the section,
9397 do not add fill. */
9398 fill_extra_space = 0;
9399 the_add_entry =
9400 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9401 target_sec_cache->pte_count,
9402 entry_sec_offset);
9403 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9404 fill_extra_space = the_add_entry->size;
9405
9406 target_fa = find_fill_action (&target_relax_info->action_list,
9407 target_sec, entry_sec_offset);
9408 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9409 entry_sec_offset, 4,
9410 fill_extra_space);
9411 if (target_fa)
9412 adjust_fill_action (target_fa, removed_diff);
9413 else
9414 text_action_add (&target_relax_info->action_list,
9415 ta_fill, target_sec, entry_sec_offset, removed_diff);
9416 }
9417
9418 /* Mark that the literal will be moved to the new location. */
9419 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9420
9421 /* Remove the literal. */
9422 text_action_add (&relax_info->action_list,
9423 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9424
9425 /* If the section is 4-byte aligned, do not add fill. */
9426 if (sec->alignment_power > 2 && target_entry != src_entry)
9427 {
9428 int fill_extra_space;
9429 bfd_vma entry_sec_offset;
9430
9431 if (src_entry)
9432 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9433 else
9434 entry_sec_offset = rel->r_rel.target_offset+4;
9435
9436 /* If the literal range is at the end of the section,
9437 do not add fill. */
9438 fill_extra_space = 0;
9439 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9440 entry_sec_offset);
9441 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9442 fill_extra_space = the_add_entry->size;
9443
9444 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9445 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9446 -4, fill_extra_space);
9447 if (fa)
9448 adjust_fill_action (fa, removed_diff);
9449 else
9450 text_action_add (&relax_info->action_list,
9451 ta_fill, sec, entry_sec_offset, removed_diff);
9452 }
9453
9454 return true;
9455 }
9456
9457 \f
9458 /* Second relaxation pass. */
9459
9460 static int
9461 action_remove_bytes_fn (splay_tree_node node, void *p)
9462 {
9463 bfd_size_type *final_size = p;
9464 text_action *action = (text_action *)node->value;
9465
9466 *final_size -= action->removed_bytes;
9467 return 0;
9468 }
9469
9470 /* Modify all of the relocations to point to the right spot, and if this
9471 is a relaxable section, delete the unwanted literals and fix the
9472 section size. */
9473
9474 bool
9475 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9476 {
9477 Elf_Internal_Rela *internal_relocs;
9478 xtensa_relax_info *relax_info;
9479 bfd_byte *contents;
9480 bool ok = true;
9481 unsigned i;
9482 bool rv = false;
9483 bool virtual_action;
9484 bfd_size_type sec_size;
9485
9486 sec_size = bfd_get_section_limit (abfd, sec);
9487 relax_info = get_xtensa_relax_info (sec);
9488 BFD_ASSERT (relax_info);
9489
9490 /* First translate any of the fixes that have been added already. */
9491 translate_section_fixes (sec);
9492
9493 /* Handle property sections (e.g., literal tables) specially. */
9494 if (xtensa_is_property_section (sec))
9495 {
9496 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9497 return relax_property_section (abfd, sec, link_info);
9498 }
9499
9500 internal_relocs = retrieve_internal_relocs (abfd, sec,
9501 link_info->keep_memory);
9502 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9503 return true;
9504
9505 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9506 if (contents == NULL && sec_size != 0)
9507 {
9508 ok = false;
9509 goto error_return;
9510 }
9511
9512 if (internal_relocs)
9513 {
9514 for (i = 0; i < sec->reloc_count; i++)
9515 {
9516 Elf_Internal_Rela *irel;
9517 xtensa_relax_info *target_relax_info;
9518 bfd_vma source_offset, old_source_offset;
9519 r_reloc r_rel;
9520 unsigned r_type;
9521 asection *target_sec;
9522
9523 /* Locally change the source address.
9524 Translate the target to the new target address.
9525 If it points to this section and has been removed,
9526 NULLify it.
9527 Write it back. */
9528
9529 irel = &internal_relocs[i];
9530 source_offset = irel->r_offset;
9531 old_source_offset = source_offset;
9532
9533 r_type = ELF32_R_TYPE (irel->r_info);
9534 r_reloc_init (&r_rel, abfd, irel, contents,
9535 bfd_get_section_limit (abfd, sec));
9536
9537 /* If this section could have changed then we may need to
9538 change the relocation's offset. */
9539
9540 if (relax_info->is_relaxable_literal_section
9541 || relax_info->is_relaxable_asm_section)
9542 {
9543 pin_internal_relocs (sec, internal_relocs);
9544
9545 if (r_type != R_XTENSA_NONE
9546 && find_removed_literal (&relax_info->removed_list,
9547 irel->r_offset))
9548 {
9549 /* Remove this relocation. */
9550 if (elf_hash_table (link_info)->dynamic_sections_created)
9551 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9552 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9553 irel->r_offset = offset_with_removed_text_map
9554 (&relax_info->action_list, irel->r_offset);
9555 continue;
9556 }
9557
9558 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9559 {
9560 text_action *action =
9561 find_insn_action (&relax_info->action_list,
9562 irel->r_offset);
9563 if (action && (action->action == ta_convert_longcall
9564 || action->action == ta_remove_longcall))
9565 {
9566 bfd_reloc_status_type retval;
9567 char *error_message = NULL;
9568
9569 retval = contract_asm_expansion (contents, sec_size,
9570 irel, &error_message);
9571 if (retval != bfd_reloc_ok)
9572 {
9573 (*link_info->callbacks->reloc_dangerous)
9574 (link_info, error_message, abfd, sec,
9575 irel->r_offset);
9576 goto error_return;
9577 }
9578 /* Update the action so that the code that moves
9579 the contents will do the right thing. */
9580 /* ta_remove_longcall and ta_remove_insn actions are
9581 grouped together in the tree as well as
9582 ta_convert_longcall and ta_none, so that changes below
9583 can be done w/o removing and reinserting action into
9584 the tree. */
9585
9586 if (action->action == ta_remove_longcall)
9587 action->action = ta_remove_insn;
9588 else
9589 action->action = ta_none;
9590 /* Refresh the info in the r_rel. */
9591 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9592 r_type = ELF32_R_TYPE (irel->r_info);
9593 }
9594 }
9595
9596 source_offset = offset_with_removed_text_map
9597 (&relax_info->action_list, irel->r_offset);
9598 irel->r_offset = source_offset;
9599 }
9600
9601 /* If the target section could have changed then
9602 we may need to change the relocation's target offset. */
9603
9604 target_sec = r_reloc_get_section (&r_rel);
9605
9606 /* For a reference to a discarded section from a DWARF section,
9607 i.e., where action_discarded is PRETEND, the symbol will
9608 eventually be modified to refer to the kept section (at least if
9609 the kept and discarded sections are the same size). Anticipate
9610 that here and adjust things accordingly. */
9611 if (! elf_xtensa_ignore_discarded_relocs (sec)
9612 && elf_xtensa_action_discarded (sec) == PRETEND
9613 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9614 && target_sec != NULL
9615 && discarded_section (target_sec))
9616 {
9617 /* It would be natural to call _bfd_elf_check_kept_section
9618 here, but it's not exported from elflink.c. It's also a
9619 fairly expensive check. Adjusting the relocations to the
9620 discarded section is fairly harmless; it will only adjust
9621 some addends and difference values. If it turns out that
9622 _bfd_elf_check_kept_section fails later, it won't matter,
9623 so just compare the section names to find the right group
9624 member. */
9625 asection *kept = target_sec->kept_section;
9626 if (kept != NULL)
9627 {
9628 if ((kept->flags & SEC_GROUP) != 0)
9629 {
9630 asection *first = elf_next_in_group (kept);
9631 asection *s = first;
9632
9633 kept = NULL;
9634 while (s != NULL)
9635 {
9636 if (strcmp (s->name, target_sec->name) == 0)
9637 {
9638 kept = s;
9639 break;
9640 }
9641 s = elf_next_in_group (s);
9642 if (s == first)
9643 break;
9644 }
9645 }
9646 }
9647 if (kept != NULL
9648 && ((target_sec->rawsize != 0
9649 ? target_sec->rawsize : target_sec->size)
9650 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9651 target_sec = kept;
9652 }
9653
9654 target_relax_info = get_xtensa_relax_info (target_sec);
9655 if (target_relax_info
9656 && (target_relax_info->is_relaxable_literal_section
9657 || target_relax_info->is_relaxable_asm_section))
9658 {
9659 r_reloc new_reloc;
9660 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9661
9662 if (r_type == R_XTENSA_DIFF8
9663 || r_type == R_XTENSA_DIFF16
9664 || r_type == R_XTENSA_DIFF32
9665 || r_type == R_XTENSA_PDIFF8
9666 || r_type == R_XTENSA_PDIFF16
9667 || r_type == R_XTENSA_PDIFF32
9668 || r_type == R_XTENSA_NDIFF8
9669 || r_type == R_XTENSA_NDIFF16
9670 || r_type == R_XTENSA_NDIFF32)
9671 {
9672 bfd_signed_vma diff_value = 0;
9673 bfd_vma new_end_offset, diff_mask = 0;
9674
9675 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9676 {
9677 (*link_info->callbacks->reloc_dangerous)
9678 (link_info, _("invalid relocation address"),
9679 abfd, sec, old_source_offset);
9680 goto error_return;
9681 }
9682
9683 switch (r_type)
9684 {
9685 case R_XTENSA_DIFF8:
9686 diff_mask = 0x7f;
9687 diff_value =
9688 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9689 break;
9690 case R_XTENSA_DIFF16:
9691 diff_mask = 0x7fff;
9692 diff_value =
9693 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9694 break;
9695 case R_XTENSA_DIFF32:
9696 diff_mask = 0x7fffffff;
9697 diff_value =
9698 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9699 break;
9700 case R_XTENSA_PDIFF8:
9701 case R_XTENSA_NDIFF8:
9702 diff_mask = 0xff;
9703 diff_value =
9704 bfd_get_8 (abfd, &contents[old_source_offset]);
9705 break;
9706 case R_XTENSA_PDIFF16:
9707 case R_XTENSA_NDIFF16:
9708 diff_mask = 0xffff;
9709 diff_value =
9710 bfd_get_16 (abfd, &contents[old_source_offset]);
9711 break;
9712 case R_XTENSA_PDIFF32:
9713 case R_XTENSA_NDIFF32:
9714 diff_mask = 0xffffffff;
9715 diff_value =
9716 bfd_get_32 (abfd, &contents[old_source_offset]);
9717 break;
9718 }
9719
9720 if (r_type >= R_XTENSA_NDIFF8
9721 && r_type <= R_XTENSA_NDIFF32
9722 && diff_value)
9723 diff_value |= ~diff_mask;
9724
9725 new_end_offset = offset_with_removed_text_map
9726 (&target_relax_info->action_list,
9727 r_rel.target_offset + diff_value);
9728 diff_value = new_end_offset - new_reloc.target_offset;
9729
9730 switch (r_type)
9731 {
9732 case R_XTENSA_DIFF8:
9733 bfd_put_signed_8 (abfd, diff_value,
9734 &contents[old_source_offset]);
9735 break;
9736 case R_XTENSA_DIFF16:
9737 bfd_put_signed_16 (abfd, diff_value,
9738 &contents[old_source_offset]);
9739 break;
9740 case R_XTENSA_DIFF32:
9741 bfd_put_signed_32 (abfd, diff_value,
9742 &contents[old_source_offset]);
9743 break;
9744 case R_XTENSA_PDIFF8:
9745 case R_XTENSA_NDIFF8:
9746 bfd_put_8 (abfd, diff_value,
9747 &contents[old_source_offset]);
9748 break;
9749 case R_XTENSA_PDIFF16:
9750 case R_XTENSA_NDIFF16:
9751 bfd_put_16 (abfd, diff_value,
9752 &contents[old_source_offset]);
9753 break;
9754 case R_XTENSA_PDIFF32:
9755 case R_XTENSA_NDIFF32:
9756 bfd_put_32 (abfd, diff_value,
9757 &contents[old_source_offset]);
9758 break;
9759 }
9760
9761 /* Check for overflow. Sign bits must be all zeroes or
9762 all ones. When sign bits are all ones diff_value
9763 may not be zero. */
9764 if (((diff_value & ~diff_mask) != 0
9765 && (diff_value & ~diff_mask) != ~diff_mask)
9766 || (diff_value && (bfd_vma) diff_value == ~diff_mask))
9767 {
9768 (*link_info->callbacks->reloc_dangerous)
9769 (link_info, _("overflow after relaxation"),
9770 abfd, sec, old_source_offset);
9771 goto error_return;
9772 }
9773
9774 pin_contents (sec, contents);
9775 }
9776
9777 /* If the relocation still references a section in the same
9778 input file, modify the relocation directly instead of
9779 adding a "fix" record. */
9780 if (target_sec->owner == abfd)
9781 {
9782 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9783 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9784 irel->r_addend = new_reloc.rela.r_addend;
9785 pin_internal_relocs (sec, internal_relocs);
9786 }
9787 else
9788 {
9789 bfd_vma addend_displacement;
9790 reloc_bfd_fix *fix;
9791
9792 addend_displacement =
9793 new_reloc.target_offset + new_reloc.virtual_offset;
9794 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9795 target_sec,
9796 addend_displacement, true);
9797 add_fix (sec, fix);
9798 }
9799 }
9800 }
9801 }
9802
9803 if ((relax_info->is_relaxable_literal_section
9804 || relax_info->is_relaxable_asm_section)
9805 && action_list_count (&relax_info->action_list))
9806 {
9807 /* Walk through the planned actions and build up a table
9808 of move, copy and fill records. Use the move, copy and
9809 fill records to perform the actions once. */
9810
9811 bfd_size_type final_size, copy_size, orig_insn_size;
9812 bfd_byte *scratch = NULL;
9813 bfd_byte *dup_contents = NULL;
9814 bfd_size_type orig_size = sec->size;
9815 bfd_vma orig_dot = 0;
9816 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9817 orig dot in physical memory. */
9818 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9819 bfd_vma dup_dot = 0;
9820
9821 text_action *action;
9822
9823 final_size = sec->size;
9824
9825 splay_tree_foreach (relax_info->action_list.tree,
9826 action_remove_bytes_fn, &final_size);
9827 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9828 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9829
9830 /* The dot is the current fill location. */
9831 #if DEBUG
9832 print_action_list (stderr, &relax_info->action_list);
9833 #endif
9834
9835 for (action = action_first (&relax_info->action_list); action;
9836 action = action_next (&relax_info->action_list, action))
9837 {
9838 virtual_action = false;
9839 if (action->offset > orig_dot)
9840 {
9841 orig_dot += orig_dot_copied;
9842 orig_dot_copied = 0;
9843 orig_dot_vo = 0;
9844 /* Out of the virtual world. */
9845 }
9846
9847 if (action->offset > orig_dot)
9848 {
9849 copy_size = action->offset - orig_dot;
9850 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9851 orig_dot += copy_size;
9852 dup_dot += copy_size;
9853 BFD_ASSERT (action->offset == orig_dot);
9854 }
9855 else if (action->offset < orig_dot)
9856 {
9857 if (action->action == ta_fill
9858 && action->offset - action->removed_bytes == orig_dot)
9859 {
9860 /* This is OK because the fill only effects the dup_dot. */
9861 }
9862 else if (action->action == ta_add_literal)
9863 {
9864 /* TBD. Might need to handle this. */
9865 }
9866 }
9867 if (action->offset == orig_dot)
9868 {
9869 if (action->virtual_offset > orig_dot_vo)
9870 {
9871 if (orig_dot_vo == 0)
9872 {
9873 /* Need to copy virtual_offset bytes. Probably four. */
9874 copy_size = action->virtual_offset - orig_dot_vo;
9875 memmove (&dup_contents[dup_dot],
9876 &contents[orig_dot], copy_size);
9877 orig_dot_copied = copy_size;
9878 dup_dot += copy_size;
9879 }
9880 virtual_action = true;
9881 }
9882 else
9883 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9884 }
9885 switch (action->action)
9886 {
9887 case ta_remove_literal:
9888 case ta_remove_insn:
9889 BFD_ASSERT (action->removed_bytes >= 0);
9890 orig_dot += action->removed_bytes;
9891 break;
9892
9893 case ta_narrow_insn:
9894 orig_insn_size = 3;
9895 copy_size = 2;
9896 memmove (scratch, &contents[orig_dot], orig_insn_size);
9897 BFD_ASSERT (action->removed_bytes == 1);
9898 rv = narrow_instruction (scratch, final_size, 0);
9899 BFD_ASSERT (rv);
9900 memmove (&dup_contents[dup_dot], scratch, copy_size);
9901 orig_dot += orig_insn_size;
9902 dup_dot += copy_size;
9903 break;
9904
9905 case ta_fill:
9906 if (action->removed_bytes >= 0)
9907 orig_dot += action->removed_bytes;
9908 else
9909 {
9910 /* Already zeroed in dup_contents. Just bump the
9911 counters. */
9912 dup_dot += (-action->removed_bytes);
9913 }
9914 break;
9915
9916 case ta_none:
9917 BFD_ASSERT (action->removed_bytes == 0);
9918 break;
9919
9920 case ta_convert_longcall:
9921 case ta_remove_longcall:
9922 /* These will be removed or converted before we get here. */
9923 BFD_ASSERT (0);
9924 break;
9925
9926 case ta_widen_insn:
9927 orig_insn_size = 2;
9928 copy_size = 3;
9929 memmove (scratch, &contents[orig_dot], orig_insn_size);
9930 BFD_ASSERT (action->removed_bytes == -1);
9931 rv = widen_instruction (scratch, final_size, 0);
9932 BFD_ASSERT (rv);
9933 memmove (&dup_contents[dup_dot], scratch, copy_size);
9934 orig_dot += orig_insn_size;
9935 dup_dot += copy_size;
9936 break;
9937
9938 case ta_add_literal:
9939 orig_insn_size = 0;
9940 copy_size = 4;
9941 BFD_ASSERT (action->removed_bytes == -4);
9942 /* TBD -- place the literal value here and insert
9943 into the table. */
9944 memset (&dup_contents[dup_dot], 0, 4);
9945 pin_internal_relocs (sec, internal_relocs);
9946 pin_contents (sec, contents);
9947
9948 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9949 relax_info, &internal_relocs, &action->value))
9950 goto error_return;
9951
9952 if (virtual_action)
9953 orig_dot_vo += copy_size;
9954
9955 orig_dot += orig_insn_size;
9956 dup_dot += copy_size;
9957 break;
9958
9959 default:
9960 /* Not implemented yet. */
9961 BFD_ASSERT (0);
9962 break;
9963 }
9964
9965 BFD_ASSERT (dup_dot <= final_size);
9966 BFD_ASSERT (orig_dot <= orig_size);
9967 }
9968
9969 orig_dot += orig_dot_copied;
9970 orig_dot_copied = 0;
9971
9972 if (orig_dot != orig_size)
9973 {
9974 copy_size = orig_size - orig_dot;
9975 BFD_ASSERT (orig_size > orig_dot);
9976 BFD_ASSERT (dup_dot + copy_size == final_size);
9977 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9978 orig_dot += copy_size;
9979 dup_dot += copy_size;
9980 }
9981 BFD_ASSERT (orig_size == orig_dot);
9982 BFD_ASSERT (final_size == dup_dot);
9983
9984 /* Move the dup_contents back. */
9985 if (final_size > orig_size)
9986 {
9987 /* Contents need to be reallocated. Swap the dup_contents into
9988 contents. */
9989 sec->contents = dup_contents;
9990 free (contents);
9991 contents = dup_contents;
9992 pin_contents (sec, contents);
9993 }
9994 else
9995 {
9996 BFD_ASSERT (final_size <= orig_size);
9997 memset (contents, 0, orig_size);
9998 memcpy (contents, dup_contents, final_size);
9999 free (dup_contents);
10000 }
10001 free (scratch);
10002 pin_contents (sec, contents);
10003
10004 if (sec->rawsize == 0)
10005 sec->rawsize = sec->size;
10006 sec->size = final_size;
10007 }
10008
10009 error_return:
10010 release_internal_relocs (sec, internal_relocs);
10011 release_contents (sec, contents);
10012 return ok;
10013 }
10014
10015
10016 static bool
10017 translate_section_fixes (asection *sec)
10018 {
10019 xtensa_relax_info *relax_info;
10020 reloc_bfd_fix *r;
10021
10022 relax_info = get_xtensa_relax_info (sec);
10023 if (!relax_info)
10024 return true;
10025
10026 for (r = relax_info->fix_list; r != NULL; r = r->next)
10027 if (!translate_reloc_bfd_fix (r))
10028 return false;
10029
10030 return true;
10031 }
10032
10033
10034 /* Translate a fix given the mapping in the relax info for the target
10035 section. If it has already been translated, no work is required. */
10036
10037 static bool
10038 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
10039 {
10040 reloc_bfd_fix new_fix;
10041 asection *sec;
10042 xtensa_relax_info *relax_info;
10043 removed_literal *removed;
10044 bfd_vma new_offset, target_offset;
10045
10046 if (fix->translated)
10047 return true;
10048
10049 sec = fix->target_sec;
10050 target_offset = fix->target_offset;
10051
10052 relax_info = get_xtensa_relax_info (sec);
10053 if (!relax_info)
10054 {
10055 fix->translated = true;
10056 return true;
10057 }
10058
10059 new_fix = *fix;
10060
10061 /* The fix does not need to be translated if the section cannot change. */
10062 if (!relax_info->is_relaxable_literal_section
10063 && !relax_info->is_relaxable_asm_section)
10064 {
10065 fix->translated = true;
10066 return true;
10067 }
10068
10069 /* If the literal has been moved and this relocation was on an
10070 opcode, then the relocation should move to the new literal
10071 location. Otherwise, the relocation should move within the
10072 section. */
10073
10074 removed = false;
10075 if (is_operand_relocation (fix->src_type))
10076 {
10077 /* Check if the original relocation is against a literal being
10078 removed. */
10079 removed = find_removed_literal (&relax_info->removed_list,
10080 target_offset);
10081 }
10082
10083 if (removed)
10084 {
10085 asection *new_sec;
10086
10087 /* The fact that there is still a relocation to this literal indicates
10088 that the literal is being coalesced, not simply removed. */
10089 BFD_ASSERT (removed->to.abfd != NULL);
10090
10091 /* This was moved to some other address (possibly another section). */
10092 new_sec = r_reloc_get_section (&removed->to);
10093 if (new_sec != sec)
10094 {
10095 sec = new_sec;
10096 relax_info = get_xtensa_relax_info (sec);
10097 if (!relax_info ||
10098 (!relax_info->is_relaxable_literal_section
10099 && !relax_info->is_relaxable_asm_section))
10100 {
10101 target_offset = removed->to.target_offset;
10102 new_fix.target_sec = new_sec;
10103 new_fix.target_offset = target_offset;
10104 new_fix.translated = true;
10105 *fix = new_fix;
10106 return true;
10107 }
10108 }
10109 target_offset = removed->to.target_offset;
10110 new_fix.target_sec = new_sec;
10111 }
10112
10113 /* The target address may have been moved within its section. */
10114 new_offset = offset_with_removed_text (&relax_info->action_list,
10115 target_offset);
10116
10117 new_fix.target_offset = new_offset;
10118 new_fix.target_offset = new_offset;
10119 new_fix.translated = true;
10120 *fix = new_fix;
10121 return true;
10122 }
10123
10124
10125 /* Fix up a relocation to take account of removed literals. */
10126
10127 static asection *
10128 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
10129 {
10130 xtensa_relax_info *relax_info;
10131 removed_literal *removed;
10132 bfd_vma target_offset, base_offset;
10133
10134 *new_rel = *orig_rel;
10135
10136 if (!r_reloc_is_defined (orig_rel))
10137 return sec ;
10138
10139 relax_info = get_xtensa_relax_info (sec);
10140 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10141 || relax_info->is_relaxable_asm_section));
10142
10143 target_offset = orig_rel->target_offset;
10144
10145 removed = false;
10146 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10147 {
10148 /* Check if the original relocation is against a literal being
10149 removed. */
10150 removed = find_removed_literal (&relax_info->removed_list,
10151 target_offset);
10152 }
10153 if (removed && removed->to.abfd)
10154 {
10155 asection *new_sec;
10156
10157 /* The fact that there is still a relocation to this literal indicates
10158 that the literal is being coalesced, not simply removed. */
10159 BFD_ASSERT (removed->to.abfd != NULL);
10160
10161 /* This was moved to some other address
10162 (possibly in another section). */
10163 *new_rel = removed->to;
10164 new_sec = r_reloc_get_section (new_rel);
10165 if (new_sec != sec)
10166 {
10167 sec = new_sec;
10168 relax_info = get_xtensa_relax_info (sec);
10169 if (!relax_info
10170 || (!relax_info->is_relaxable_literal_section
10171 && !relax_info->is_relaxable_asm_section))
10172 return sec;
10173 }
10174 target_offset = new_rel->target_offset;
10175 }
10176
10177 /* Find the base offset of the reloc symbol, excluding any addend from the
10178 reloc or from the section contents (for a partial_inplace reloc). Then
10179 find the adjusted values of the offsets due to relaxation. The base
10180 offset is needed to determine the change to the reloc's addend; the reloc
10181 addend should not be adjusted due to relaxations located before the base
10182 offset. */
10183
10184 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10185 if (base_offset <= target_offset)
10186 {
10187 int base_removed = removed_by_actions_map (&relax_info->action_list,
10188 base_offset, false);
10189 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10190 target_offset, false) -
10191 base_removed;
10192
10193 new_rel->target_offset = target_offset - base_removed - addend_removed;
10194 new_rel->rela.r_addend -= addend_removed;
10195 }
10196 else
10197 {
10198 /* Handle a negative addend. The base offset comes first. */
10199 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10200 target_offset, false);
10201 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10202 base_offset, false) -
10203 tgt_removed;
10204
10205 new_rel->target_offset = target_offset - tgt_removed;
10206 new_rel->rela.r_addend += addend_removed;
10207 }
10208
10209 return sec;
10210 }
10211
10212
10213 /* For dynamic links, there may be a dynamic relocation for each
10214 literal. The number of dynamic relocations must be computed in
10215 size_dynamic_sections, which occurs before relaxation. When a
10216 literal is removed, this function checks if there is a corresponding
10217 dynamic relocation and shrinks the size of the appropriate dynamic
10218 relocation section accordingly. At this point, the contents of the
10219 dynamic relocation sections have not yet been filled in, so there's
10220 nothing else that needs to be done. */
10221
10222 static void
10223 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10224 bfd *abfd,
10225 asection *input_section,
10226 Elf_Internal_Rela *rel)
10227 {
10228 struct elf_xtensa_link_hash_table *htab;
10229 Elf_Internal_Shdr *symtab_hdr;
10230 struct elf_link_hash_entry **sym_hashes;
10231 unsigned long r_symndx;
10232 int r_type;
10233 struct elf_link_hash_entry *h;
10234 bool dynamic_symbol;
10235
10236 htab = elf_xtensa_hash_table (info);
10237 if (htab == NULL)
10238 return;
10239
10240 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10241 sym_hashes = elf_sym_hashes (abfd);
10242
10243 r_type = ELF32_R_TYPE (rel->r_info);
10244 r_symndx = ELF32_R_SYM (rel->r_info);
10245
10246 if (r_symndx < symtab_hdr->sh_info)
10247 h = NULL;
10248 else
10249 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10250
10251 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10252
10253 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10254 && (input_section->flags & SEC_ALLOC) != 0
10255 && (dynamic_symbol
10256 || (bfd_link_pic (info)
10257 && (!h || h->root.type != bfd_link_hash_undefweak))))
10258 {
10259 asection *srel;
10260 bool is_plt = false;
10261
10262 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10263 {
10264 srel = htab->elf.srelplt;
10265 is_plt = true;
10266 }
10267 else
10268 srel = htab->elf.srelgot;
10269
10270 /* Reduce size of the .rela.* section by one reloc. */
10271 BFD_ASSERT (srel != NULL);
10272 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10273 srel->size -= sizeof (Elf32_External_Rela);
10274
10275 if (is_plt)
10276 {
10277 asection *splt, *sgotplt, *srelgot;
10278 int reloc_index, chunk;
10279
10280 /* Find the PLT reloc index of the entry being removed. This
10281 is computed from the size of ".rela.plt". It is needed to
10282 figure out which PLT chunk to resize. Usually "last index
10283 = size - 1" since the index starts at zero, but in this
10284 context, the size has just been decremented so there's no
10285 need to subtract one. */
10286 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10287
10288 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10289 splt = elf_xtensa_get_plt_section (info, chunk);
10290 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10291 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10292
10293 /* Check if an entire PLT chunk has just been eliminated. */
10294 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10295 {
10296 /* The two magic GOT entries for that chunk can go away. */
10297 srelgot = htab->elf.srelgot;
10298 BFD_ASSERT (srelgot != NULL);
10299 srelgot->reloc_count -= 2;
10300 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10301 sgotplt->size -= 8;
10302
10303 /* There should be only one entry left (and it will be
10304 removed below). */
10305 BFD_ASSERT (sgotplt->size == 4);
10306 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10307 }
10308
10309 BFD_ASSERT (sgotplt->size >= 4);
10310 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10311
10312 sgotplt->size -= 4;
10313 splt->size -= PLT_ENTRY_SIZE;
10314 }
10315 }
10316 }
10317
10318
10319 /* Take an r_rel and move it to another section. This usually
10320 requires extending the interal_relocation array and pinning it. If
10321 the original r_rel is from the same BFD, we can complete this here.
10322 Otherwise, we add a fix record to let the final link fix the
10323 appropriate address. Contents and internal relocations for the
10324 section must be pinned after calling this routine. */
10325
10326 static bool
10327 move_literal (bfd *abfd,
10328 struct bfd_link_info *link_info,
10329 asection *sec,
10330 bfd_vma offset,
10331 bfd_byte *contents,
10332 xtensa_relax_info *relax_info,
10333 Elf_Internal_Rela **internal_relocs_p,
10334 const literal_value *lit)
10335 {
10336 Elf_Internal_Rela *new_relocs = NULL;
10337 size_t new_relocs_count = 0;
10338 Elf_Internal_Rela this_rela;
10339 const r_reloc *r_rel;
10340
10341 r_rel = &lit->r_rel;
10342 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10343
10344 if (r_reloc_is_const (r_rel))
10345 bfd_put_32 (abfd, lit->value, contents + offset);
10346 else
10347 {
10348 int r_type;
10349 unsigned i;
10350 reloc_bfd_fix *fix;
10351 unsigned insert_at;
10352
10353 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10354
10355 /* This is the difficult case. We have to create a fix up. */
10356 this_rela.r_offset = offset;
10357 this_rela.r_info = ELF32_R_INFO (0, r_type);
10358 this_rela.r_addend =
10359 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10360 bfd_put_32 (abfd, lit->value, contents + offset);
10361
10362 /* Currently, we cannot move relocations during a relocatable link. */
10363 BFD_ASSERT (!bfd_link_relocatable (link_info));
10364 fix = reloc_bfd_fix_init (sec, offset, r_type,
10365 r_reloc_get_section (r_rel),
10366 r_rel->target_offset + r_rel->virtual_offset,
10367 false);
10368 /* We also need to mark that relocations are needed here. */
10369 sec->flags |= SEC_RELOC;
10370
10371 translate_reloc_bfd_fix (fix);
10372 /* This fix has not yet been translated. */
10373 add_fix (sec, fix);
10374
10375 /* Add the relocation. If we have already allocated our own
10376 space for the relocations and we have room for more, then use
10377 it. Otherwise, allocate new space and move the literals. */
10378 insert_at = sec->reloc_count;
10379 for (i = 0; i < sec->reloc_count; ++i)
10380 {
10381 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10382 {
10383 insert_at = i;
10384 break;
10385 }
10386 }
10387
10388 if (*internal_relocs_p != relax_info->allocated_relocs
10389 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10390 {
10391 BFD_ASSERT (relax_info->allocated_relocs == NULL
10392 || sec->reloc_count == relax_info->relocs_count);
10393
10394 if (relax_info->allocated_relocs_count == 0)
10395 new_relocs_count = (sec->reloc_count + 2) * 2;
10396 else
10397 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10398
10399 new_relocs = (Elf_Internal_Rela *)
10400 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10401 if (!new_relocs)
10402 return false;
10403
10404 /* We could handle this more quickly by finding the split point. */
10405 if (insert_at != 0)
10406 memcpy (new_relocs, *internal_relocs_p,
10407 insert_at * sizeof (Elf_Internal_Rela));
10408
10409 new_relocs[insert_at] = this_rela;
10410
10411 if (insert_at != sec->reloc_count)
10412 memcpy (new_relocs + insert_at + 1,
10413 (*internal_relocs_p) + insert_at,
10414 (sec->reloc_count - insert_at)
10415 * sizeof (Elf_Internal_Rela));
10416
10417 if (*internal_relocs_p != relax_info->allocated_relocs)
10418 {
10419 /* The first time we re-allocate, we can only free the
10420 old relocs if they were allocated with bfd_malloc.
10421 This is not true when keep_memory is in effect. */
10422 if (!link_info->keep_memory)
10423 free (*internal_relocs_p);
10424 }
10425 else
10426 free (*internal_relocs_p);
10427 relax_info->allocated_relocs = new_relocs;
10428 relax_info->allocated_relocs_count = new_relocs_count;
10429 elf_section_data (sec)->relocs = new_relocs;
10430 sec->reloc_count++;
10431 relax_info->relocs_count = sec->reloc_count;
10432 *internal_relocs_p = new_relocs;
10433 }
10434 else
10435 {
10436 if (insert_at != sec->reloc_count)
10437 {
10438 unsigned idx;
10439 for (idx = sec->reloc_count; idx > insert_at; idx--)
10440 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10441 }
10442 (*internal_relocs_p)[insert_at] = this_rela;
10443 sec->reloc_count++;
10444 if (relax_info->allocated_relocs)
10445 relax_info->relocs_count = sec->reloc_count;
10446 }
10447 }
10448 return true;
10449 }
10450
10451
10452 /* This is similar to relax_section except that when a target is moved,
10453 we shift addresses up. We also need to modify the size. This
10454 algorithm does NOT allow for relocations into the middle of the
10455 property sections. */
10456
10457 static bool
10458 relax_property_section (bfd *abfd,
10459 asection *sec,
10460 struct bfd_link_info *link_info)
10461 {
10462 Elf_Internal_Rela *internal_relocs;
10463 bfd_byte *contents;
10464 unsigned i;
10465 bool ok = true;
10466 bool is_full_prop_section;
10467 size_t last_zfill_target_offset = 0;
10468 asection *last_zfill_target_sec = NULL;
10469 bfd_size_type sec_size;
10470 bfd_size_type entry_size;
10471
10472 sec_size = bfd_get_section_limit (abfd, sec);
10473 internal_relocs = retrieve_internal_relocs (abfd, sec,
10474 link_info->keep_memory);
10475 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10476 if (contents == NULL && sec_size != 0)
10477 {
10478 ok = false;
10479 goto error_return;
10480 }
10481
10482 is_full_prop_section = xtensa_is_proptable_section (sec);
10483 if (is_full_prop_section)
10484 entry_size = 12;
10485 else
10486 entry_size = 8;
10487
10488 if (internal_relocs)
10489 {
10490 for (i = 0; i < sec->reloc_count; i++)
10491 {
10492 Elf_Internal_Rela *irel;
10493 xtensa_relax_info *target_relax_info;
10494 unsigned r_type;
10495 asection *target_sec;
10496 literal_value val;
10497 bfd_byte *size_p, *flags_p;
10498
10499 /* Locally change the source address.
10500 Translate the target to the new target address.
10501 If it points to this section and has been removed, MOVE IT.
10502 Also, don't forget to modify the associated SIZE at
10503 (offset + 4). */
10504
10505 irel = &internal_relocs[i];
10506 r_type = ELF32_R_TYPE (irel->r_info);
10507 if (r_type == R_XTENSA_NONE)
10508 continue;
10509
10510 /* Find the literal value. */
10511 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10512 size_p = &contents[irel->r_offset + 4];
10513 flags_p = NULL;
10514 if (is_full_prop_section)
10515 flags_p = &contents[irel->r_offset + 8];
10516 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10517
10518 target_sec = r_reloc_get_section (&val.r_rel);
10519 target_relax_info = get_xtensa_relax_info (target_sec);
10520
10521 if (target_relax_info
10522 && (target_relax_info->is_relaxable_literal_section
10523 || target_relax_info->is_relaxable_asm_section ))
10524 {
10525 /* Translate the relocation's destination. */
10526 bfd_vma old_offset = val.r_rel.target_offset;
10527 bfd_vma new_offset;
10528 long old_size, new_size;
10529 int removed_by_old_offset =
10530 removed_by_actions_map (&target_relax_info->action_list,
10531 old_offset, false);
10532 new_offset = old_offset - removed_by_old_offset;
10533
10534 /* Assert that we are not out of bounds. */
10535 old_size = bfd_get_32 (abfd, size_p);
10536 new_size = old_size;
10537
10538 if (old_size == 0)
10539 {
10540 /* Only the first zero-sized unreachable entry is
10541 allowed to expand. In this case the new offset
10542 should be the offset before the fill and the new
10543 size is the expansion size. For other zero-sized
10544 entries the resulting size should be zero with an
10545 offset before or after the fill address depending
10546 on whether the expanding unreachable entry
10547 preceeds it. */
10548 if (last_zfill_target_sec == 0
10549 || last_zfill_target_sec != target_sec
10550 || last_zfill_target_offset != old_offset)
10551 {
10552 bfd_vma new_end_offset = new_offset;
10553
10554 /* Recompute the new_offset, but this time don't
10555 include any fill inserted by relaxation. */
10556 removed_by_old_offset =
10557 removed_by_actions_map (&target_relax_info->action_list,
10558 old_offset, true);
10559 new_offset = old_offset - removed_by_old_offset;
10560
10561 /* If it is not unreachable and we have not yet
10562 seen an unreachable at this address, place it
10563 before the fill address. */
10564 if (flags_p && (bfd_get_32 (abfd, flags_p)
10565 & XTENSA_PROP_UNREACHABLE) != 0)
10566 {
10567 new_size = new_end_offset - new_offset;
10568
10569 last_zfill_target_sec = target_sec;
10570 last_zfill_target_offset = old_offset;
10571 }
10572 }
10573 }
10574 else
10575 {
10576 int removed_by_old_offset_size =
10577 removed_by_actions_map (&target_relax_info->action_list,
10578 old_offset + old_size, true);
10579 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10580 }
10581
10582 if (new_size != old_size)
10583 {
10584 bfd_put_32 (abfd, new_size, size_p);
10585 pin_contents (sec, contents);
10586 }
10587
10588 if (new_offset != old_offset)
10589 {
10590 bfd_vma diff = new_offset - old_offset;
10591 irel->r_addend += diff;
10592 pin_internal_relocs (sec, internal_relocs);
10593 }
10594 }
10595 }
10596 }
10597
10598 /* Combine adjacent property table entries. This is also done in
10599 finish_dynamic_sections() but at that point it's too late to
10600 reclaim the space in the output section, so we do this twice. */
10601
10602 if (internal_relocs && (!bfd_link_relocatable (link_info)
10603 || xtensa_is_littable_section (sec)))
10604 {
10605 Elf_Internal_Rela *last_irel = NULL;
10606 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10607 int removed_bytes = 0;
10608 bfd_vma offset;
10609 flagword predef_flags;
10610
10611 predef_flags = xtensa_get_property_predef_flags (sec);
10612
10613 /* Walk over memory and relocations at the same time.
10614 This REQUIRES that the internal_relocs be sorted by offset. */
10615 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10616 internal_reloc_compare);
10617
10618 pin_internal_relocs (sec, internal_relocs);
10619 pin_contents (sec, contents);
10620
10621 next_rel = internal_relocs;
10622 rel_end = internal_relocs + sec->reloc_count;
10623
10624 BFD_ASSERT (sec->size % entry_size == 0);
10625
10626 for (offset = 0; offset < sec->size; offset += entry_size)
10627 {
10628 Elf_Internal_Rela *offset_rel, *extra_rel;
10629 bfd_vma bytes_to_remove, size, actual_offset;
10630 bool remove_this_rel;
10631 flagword flags;
10632
10633 /* Find the first relocation for the entry at the current offset.
10634 Adjust the offsets of any extra relocations for the previous
10635 entry. */
10636 offset_rel = NULL;
10637 if (next_rel)
10638 {
10639 for (irel = next_rel; irel < rel_end; irel++)
10640 {
10641 if ((irel->r_offset == offset
10642 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10643 || irel->r_offset > offset)
10644 {
10645 offset_rel = irel;
10646 break;
10647 }
10648 irel->r_offset -= removed_bytes;
10649 }
10650 }
10651
10652 /* Find the next relocation (if there are any left). */
10653 extra_rel = NULL;
10654 if (offset_rel)
10655 {
10656 for (irel = offset_rel + 1; irel < rel_end; irel++)
10657 {
10658 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10659 {
10660 extra_rel = irel;
10661 break;
10662 }
10663 }
10664 }
10665
10666 /* Check if there are relocations on the current entry. There
10667 should usually be a relocation on the offset field. If there
10668 are relocations on the size or flags, then we can't optimize
10669 this entry. Also, find the next relocation to examine on the
10670 next iteration. */
10671 if (offset_rel)
10672 {
10673 if (offset_rel->r_offset >= offset + entry_size)
10674 {
10675 next_rel = offset_rel;
10676 /* There are no relocations on the current entry, but we
10677 might still be able to remove it if the size is zero. */
10678 offset_rel = NULL;
10679 }
10680 else if (offset_rel->r_offset > offset
10681 || (extra_rel
10682 && extra_rel->r_offset < offset + entry_size))
10683 {
10684 /* There is a relocation on the size or flags, so we can't
10685 do anything with this entry. Continue with the next. */
10686 next_rel = offset_rel;
10687 continue;
10688 }
10689 else
10690 {
10691 BFD_ASSERT (offset_rel->r_offset == offset);
10692 offset_rel->r_offset -= removed_bytes;
10693 next_rel = offset_rel + 1;
10694 }
10695 }
10696 else
10697 next_rel = NULL;
10698
10699 remove_this_rel = false;
10700 bytes_to_remove = 0;
10701 actual_offset = offset - removed_bytes;
10702 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10703
10704 if (is_full_prop_section)
10705 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10706 else
10707 flags = predef_flags;
10708
10709 if (size == 0
10710 && (flags & XTENSA_PROP_ALIGN) == 0
10711 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10712 {
10713 /* Always remove entries with zero size and no alignment. */
10714 bytes_to_remove = entry_size;
10715 if (offset_rel)
10716 remove_this_rel = true;
10717 }
10718 else if (offset_rel
10719 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10720 {
10721 if (last_irel)
10722 {
10723 flagword old_flags;
10724 bfd_vma old_size =
10725 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10726 bfd_vma old_address =
10727 (last_irel->r_addend
10728 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10729 bfd_vma new_address =
10730 (offset_rel->r_addend
10731 + bfd_get_32 (abfd, &contents[actual_offset]));
10732 if (is_full_prop_section)
10733 old_flags = bfd_get_32
10734 (abfd, &contents[last_irel->r_offset + 8]);
10735 else
10736 old_flags = predef_flags;
10737
10738 if ((ELF32_R_SYM (offset_rel->r_info)
10739 == ELF32_R_SYM (last_irel->r_info))
10740 && old_address + old_size == new_address
10741 && old_flags == flags
10742 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10743 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10744 {
10745 /* Fix the old size. */
10746 bfd_put_32 (abfd, old_size + size,
10747 &contents[last_irel->r_offset + 4]);
10748 bytes_to_remove = entry_size;
10749 remove_this_rel = true;
10750 }
10751 else
10752 last_irel = offset_rel;
10753 }
10754 else
10755 last_irel = offset_rel;
10756 }
10757
10758 if (remove_this_rel)
10759 {
10760 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10761 offset_rel->r_offset = 0;
10762 }
10763
10764 if (bytes_to_remove != 0)
10765 {
10766 removed_bytes += bytes_to_remove;
10767 if (offset + bytes_to_remove < sec->size)
10768 memmove (&contents[actual_offset],
10769 &contents[actual_offset + bytes_to_remove],
10770 sec->size - offset - bytes_to_remove);
10771 }
10772 }
10773
10774 if (removed_bytes)
10775 {
10776 /* Fix up any extra relocations on the last entry. */
10777 for (irel = next_rel; irel < rel_end; irel++)
10778 irel->r_offset -= removed_bytes;
10779
10780 /* Clear the removed bytes. */
10781 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10782
10783 if (sec->rawsize == 0)
10784 sec->rawsize = sec->size;
10785 sec->size -= removed_bytes;
10786
10787 if (xtensa_is_littable_section (sec))
10788 {
10789 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10790 if (sgotloc)
10791 sgotloc->size -= removed_bytes;
10792 }
10793 }
10794 }
10795
10796 error_return:
10797 release_internal_relocs (sec, internal_relocs);
10798 release_contents (sec, contents);
10799 return ok;
10800 }
10801
10802 \f
10803 /* Third relaxation pass. */
10804
10805 /* Change symbol values to account for removed literals. */
10806
10807 bool
10808 relax_section_symbols (bfd *abfd, asection *sec)
10809 {
10810 xtensa_relax_info *relax_info;
10811 unsigned int sec_shndx;
10812 Elf_Internal_Shdr *symtab_hdr;
10813 Elf_Internal_Sym *isymbuf;
10814 unsigned i, num_syms, num_locals;
10815
10816 relax_info = get_xtensa_relax_info (sec);
10817 BFD_ASSERT (relax_info);
10818
10819 if (!relax_info->is_relaxable_literal_section
10820 && !relax_info->is_relaxable_asm_section)
10821 return true;
10822
10823 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10824
10825 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10826 isymbuf = retrieve_local_syms (abfd);
10827
10828 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10829 num_locals = symtab_hdr->sh_info;
10830
10831 /* Adjust the local symbols defined in this section. */
10832 for (i = 0; i < num_locals; i++)
10833 {
10834 Elf_Internal_Sym *isym = &isymbuf[i];
10835
10836 if (isym->st_shndx == sec_shndx)
10837 {
10838 bfd_vma orig_addr = isym->st_value;
10839 int removed = removed_by_actions_map (&relax_info->action_list,
10840 orig_addr, false);
10841
10842 isym->st_value -= removed;
10843 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10844 isym->st_size -=
10845 removed_by_actions_map (&relax_info->action_list,
10846 orig_addr + isym->st_size, false) -
10847 removed;
10848 }
10849 }
10850
10851 /* Now adjust the global symbols defined in this section. */
10852 for (i = 0; i < (num_syms - num_locals); i++)
10853 {
10854 struct elf_link_hash_entry *sym_hash;
10855
10856 sym_hash = elf_sym_hashes (abfd)[i];
10857
10858 if (sym_hash->root.type == bfd_link_hash_warning)
10859 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10860
10861 if ((sym_hash->root.type == bfd_link_hash_defined
10862 || sym_hash->root.type == bfd_link_hash_defweak)
10863 && sym_hash->root.u.def.section == sec)
10864 {
10865 bfd_vma orig_addr = sym_hash->root.u.def.value;
10866 int removed = removed_by_actions_map (&relax_info->action_list,
10867 orig_addr, false);
10868
10869 sym_hash->root.u.def.value -= removed;
10870
10871 if (sym_hash->type == STT_FUNC)
10872 sym_hash->size -=
10873 removed_by_actions_map (&relax_info->action_list,
10874 orig_addr + sym_hash->size, false) -
10875 removed;
10876 }
10877 }
10878
10879 return true;
10880 }
10881
10882 \f
10883 /* "Fix" handling functions, called while performing relocations. */
10884
10885 static bool
10886 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10887 bfd *input_bfd,
10888 asection *input_section,
10889 bfd_byte *contents)
10890 {
10891 r_reloc r_rel;
10892 asection *sec, *old_sec;
10893 bfd_vma old_offset;
10894 int r_type = ELF32_R_TYPE (rel->r_info);
10895 reloc_bfd_fix *fix;
10896
10897 if (r_type == R_XTENSA_NONE)
10898 return true;
10899
10900 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10901 if (!fix)
10902 return true;
10903
10904 r_reloc_init (&r_rel, input_bfd, rel, contents,
10905 bfd_get_section_limit (input_bfd, input_section));
10906 old_sec = r_reloc_get_section (&r_rel);
10907 old_offset = r_rel.target_offset;
10908
10909 if (!old_sec || !r_reloc_is_defined (&r_rel))
10910 {
10911 if (r_type != R_XTENSA_ASM_EXPAND)
10912 {
10913 _bfd_error_handler
10914 /* xgettext:c-format */
10915 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10916 input_bfd, input_section, (uint64_t) rel->r_offset,
10917 elf_howto_table[r_type].name);
10918 return false;
10919 }
10920 /* Leave it be. Resolution will happen in a later stage. */
10921 }
10922 else
10923 {
10924 sec = fix->target_sec;
10925 rel->r_addend += ((sec->output_offset + fix->target_offset)
10926 - (old_sec->output_offset + old_offset));
10927 }
10928 return true;
10929 }
10930
10931
10932 static void
10933 do_fix_for_final_link (Elf_Internal_Rela *rel,
10934 bfd *input_bfd,
10935 asection *input_section,
10936 bfd_byte *contents,
10937 bfd_vma *relocationp)
10938 {
10939 asection *sec;
10940 int r_type = ELF32_R_TYPE (rel->r_info);
10941 reloc_bfd_fix *fix;
10942 bfd_vma fixup_diff;
10943
10944 if (r_type == R_XTENSA_NONE)
10945 return;
10946
10947 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10948 if (!fix)
10949 return;
10950
10951 sec = fix->target_sec;
10952
10953 fixup_diff = rel->r_addend;
10954 if (elf_howto_table[fix->src_type].partial_inplace)
10955 {
10956 bfd_vma inplace_val;
10957 BFD_ASSERT (fix->src_offset
10958 < bfd_get_section_limit (input_bfd, input_section));
10959 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10960 fixup_diff += inplace_val;
10961 }
10962
10963 *relocationp = (sec->output_section->vma
10964 + sec->output_offset
10965 + fix->target_offset - fixup_diff);
10966 }
10967
10968 \f
10969 /* Miscellaneous utility functions.... */
10970
10971 static asection *
10972 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10973 {
10974 bfd *dynobj;
10975 char plt_name[17];
10976
10977 if (chunk == 0)
10978 return elf_hash_table (info)->splt;
10979
10980 dynobj = elf_hash_table (info)->dynobj;
10981 sprintf (plt_name, ".plt.%u", chunk);
10982 return bfd_get_linker_section (dynobj, plt_name);
10983 }
10984
10985
10986 static asection *
10987 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10988 {
10989 bfd *dynobj;
10990 char got_name[21];
10991
10992 if (chunk == 0)
10993 return elf_hash_table (info)->sgotplt;
10994
10995 dynobj = elf_hash_table (info)->dynobj;
10996 sprintf (got_name, ".got.plt.%u", chunk);
10997 return bfd_get_linker_section (dynobj, got_name);
10998 }
10999
11000
11001 /* Get the input section for a given symbol index.
11002 If the symbol is:
11003 . a section symbol, return the section;
11004 . a common symbol, return the common section;
11005 . an undefined symbol, return the undefined section;
11006 . an indirect symbol, follow the links;
11007 . an absolute value, return the absolute section. */
11008
11009 static asection *
11010 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
11011 {
11012 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11013 asection *target_sec = NULL;
11014 if (r_symndx < symtab_hdr->sh_info)
11015 {
11016 Elf_Internal_Sym *isymbuf;
11017 unsigned int section_index;
11018
11019 isymbuf = retrieve_local_syms (abfd);
11020 section_index = isymbuf[r_symndx].st_shndx;
11021
11022 if (section_index == SHN_UNDEF)
11023 target_sec = bfd_und_section_ptr;
11024 else if (section_index == SHN_ABS)
11025 target_sec = bfd_abs_section_ptr;
11026 else if (section_index == SHN_COMMON)
11027 target_sec = bfd_com_section_ptr;
11028 else
11029 target_sec = bfd_section_from_elf_index (abfd, section_index);
11030 }
11031 else
11032 {
11033 unsigned long indx = r_symndx - symtab_hdr->sh_info;
11034 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
11035
11036 while (h->root.type == bfd_link_hash_indirect
11037 || h->root.type == bfd_link_hash_warning)
11038 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11039
11040 switch (h->root.type)
11041 {
11042 case bfd_link_hash_defined:
11043 case bfd_link_hash_defweak:
11044 target_sec = h->root.u.def.section;
11045 break;
11046 case bfd_link_hash_common:
11047 target_sec = bfd_com_section_ptr;
11048 break;
11049 case bfd_link_hash_undefined:
11050 case bfd_link_hash_undefweak:
11051 target_sec = bfd_und_section_ptr;
11052 break;
11053 default: /* New indirect warning. */
11054 target_sec = bfd_und_section_ptr;
11055 break;
11056 }
11057 }
11058 return target_sec;
11059 }
11060
11061
11062 static struct elf_link_hash_entry *
11063 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
11064 {
11065 unsigned long indx;
11066 struct elf_link_hash_entry *h;
11067 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11068
11069 if (r_symndx < symtab_hdr->sh_info)
11070 return NULL;
11071
11072 indx = r_symndx - symtab_hdr->sh_info;
11073 h = elf_sym_hashes (abfd)[indx];
11074 while (h->root.type == bfd_link_hash_indirect
11075 || h->root.type == bfd_link_hash_warning)
11076 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11077 return h;
11078 }
11079
11080
11081 /* Get the section-relative offset for a symbol number. */
11082
11083 static bfd_vma
11084 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
11085 {
11086 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11087 bfd_vma offset = 0;
11088
11089 if (r_symndx < symtab_hdr->sh_info)
11090 {
11091 Elf_Internal_Sym *isymbuf;
11092 isymbuf = retrieve_local_syms (abfd);
11093 offset = isymbuf[r_symndx].st_value;
11094 }
11095 else
11096 {
11097 unsigned long indx = r_symndx - symtab_hdr->sh_info;
11098 struct elf_link_hash_entry *h =
11099 elf_sym_hashes (abfd)[indx];
11100
11101 while (h->root.type == bfd_link_hash_indirect
11102 || h->root.type == bfd_link_hash_warning)
11103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11104 if (h->root.type == bfd_link_hash_defined
11105 || h->root.type == bfd_link_hash_defweak)
11106 offset = h->root.u.def.value;
11107 }
11108 return offset;
11109 }
11110
11111
11112 static bool
11113 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
11114 {
11115 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
11116 struct elf_link_hash_entry *h;
11117
11118 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
11119 if (h && h->root.type == bfd_link_hash_defweak)
11120 return true;
11121 return false;
11122 }
11123
11124
11125 static bool
11126 pcrel_reloc_fits (xtensa_opcode opc,
11127 int opnd,
11128 bfd_vma self_address,
11129 bfd_vma dest_address)
11130 {
11131 xtensa_isa isa = xtensa_default_isa;
11132 uint32 valp = dest_address;
11133 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
11134 || xtensa_operand_encode (isa, opc, opnd, &valp))
11135 return false;
11136 return true;
11137 }
11138
11139
11140 static bool
11141 xtensa_is_property_section (asection *sec)
11142 {
11143 if (xtensa_is_insntable_section (sec)
11144 || xtensa_is_littable_section (sec)
11145 || xtensa_is_proptable_section (sec))
11146 return true;
11147
11148 return false;
11149 }
11150
11151
11152 static bool
11153 xtensa_is_insntable_section (asection *sec)
11154 {
11155 if (startswith (sec->name, XTENSA_INSN_SEC_NAME)
11156 || startswith (sec->name, ".gnu.linkonce.x."))
11157 return true;
11158
11159 return false;
11160 }
11161
11162
11163 static bool
11164 xtensa_is_littable_section (asection *sec)
11165 {
11166 if (startswith (sec->name, XTENSA_LIT_SEC_NAME)
11167 || startswith (sec->name, ".gnu.linkonce.p."))
11168 return true;
11169
11170 return false;
11171 }
11172
11173
11174 static bool
11175 xtensa_is_proptable_section (asection *sec)
11176 {
11177 if (startswith (sec->name, XTENSA_PROP_SEC_NAME)
11178 || startswith (sec->name, ".gnu.linkonce.prop."))
11179 return true;
11180
11181 return false;
11182 }
11183
11184
11185 static int
11186 internal_reloc_compare (const void *ap, const void *bp)
11187 {
11188 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11189 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11190
11191 if (a->r_offset != b->r_offset)
11192 return (a->r_offset - b->r_offset);
11193
11194 /* We don't need to sort on these criteria for correctness,
11195 but enforcing a more strict ordering prevents unstable qsort
11196 from behaving differently with different implementations.
11197 Without the code below we get correct but different results
11198 on Solaris 2.7 and 2.8. We would like to always produce the
11199 same results no matter the host. */
11200
11201 if (a->r_info != b->r_info)
11202 return (a->r_info - b->r_info);
11203
11204 return (a->r_addend - b->r_addend);
11205 }
11206
11207
11208 static int
11209 internal_reloc_matches (const void *ap, const void *bp)
11210 {
11211 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11212 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11213
11214 /* Check if one entry overlaps with the other; this shouldn't happen
11215 except when searching for a match. */
11216 return (a->r_offset - b->r_offset);
11217 }
11218
11219
11220 /* Predicate function used to look up a section in a particular group. */
11221
11222 static bool
11223 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11224 {
11225 const char *gname = inf;
11226 const char *group_name = elf_group_name (sec);
11227
11228 return (group_name == gname
11229 || (group_name != NULL
11230 && gname != NULL
11231 && strcmp (group_name, gname) == 0));
11232 }
11233
11234
11235 static char *
11236 xtensa_add_names (const char *base, const char *suffix)
11237 {
11238 if (suffix)
11239 {
11240 size_t base_len = strlen (base);
11241 size_t suffix_len = strlen (suffix);
11242 char *str = bfd_malloc (base_len + suffix_len + 1);
11243
11244 memcpy (str, base, base_len);
11245 memcpy (str + base_len, suffix, suffix_len + 1);
11246 return str;
11247 }
11248 else
11249 {
11250 return strdup (base);
11251 }
11252 }
11253
11254 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11255
11256 static char *
11257 xtensa_property_section_name (asection *sec, const char *base_name,
11258 bool separate_sections)
11259 {
11260 const char *suffix, *group_name;
11261 char *prop_sec_name;
11262
11263 group_name = elf_group_name (sec);
11264 if (group_name)
11265 {
11266 suffix = strrchr (sec->name, '.');
11267 if (suffix == sec->name)
11268 suffix = 0;
11269 prop_sec_name = xtensa_add_names (base_name, suffix);
11270 }
11271 else if (startswith (sec->name, ".gnu.linkonce."))
11272 {
11273 char *linkonce_kind = 0;
11274
11275 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11276 linkonce_kind = "x.";
11277 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11278 linkonce_kind = "p.";
11279 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11280 linkonce_kind = "prop.";
11281 else
11282 abort ();
11283
11284 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11285 + strlen (linkonce_kind) + 1);
11286 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11287 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11288
11289 suffix = sec->name + linkonce_len;
11290 /* For backward compatibility, replace "t." instead of inserting
11291 the new linkonce_kind (but not for "prop" sections). */
11292 if (startswith (suffix, "t.") && linkonce_kind[1] == '.')
11293 suffix += 2;
11294 strcat (prop_sec_name + linkonce_len, suffix);
11295 }
11296 else
11297 {
11298 prop_sec_name = xtensa_add_names (base_name,
11299 separate_sections ? sec->name : NULL);
11300 }
11301
11302 return prop_sec_name;
11303 }
11304
11305
11306 static asection *
11307 xtensa_get_separate_property_section (asection *sec, const char *base_name,
11308 bool separate_section)
11309 {
11310 char *prop_sec_name;
11311 asection *prop_sec;
11312
11313 prop_sec_name = xtensa_property_section_name (sec, base_name,
11314 separate_section);
11315 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11316 match_section_group,
11317 (void *) elf_group_name (sec));
11318 free (prop_sec_name);
11319 return prop_sec;
11320 }
11321
11322 static asection *
11323 xtensa_get_property_section (asection *sec, const char *base_name)
11324 {
11325 asection *prop_sec;
11326
11327 /* Try individual property section first. */
11328 prop_sec = xtensa_get_separate_property_section (sec, base_name, true);
11329
11330 /* Refer to a common property section if individual is not present. */
11331 if (!prop_sec)
11332 prop_sec = xtensa_get_separate_property_section (sec, base_name, false);
11333
11334 return prop_sec;
11335 }
11336
11337
11338 asection *
11339 xtensa_make_property_section (asection *sec, const char *base_name)
11340 {
11341 char *prop_sec_name;
11342 asection *prop_sec;
11343
11344 /* Check if the section already exists. */
11345 prop_sec_name = xtensa_property_section_name (sec, base_name,
11346 elf32xtensa_separate_props);
11347 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11348 match_section_group,
11349 (void *) elf_group_name (sec));
11350 /* If not, create it. */
11351 if (! prop_sec)
11352 {
11353 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11354 flags |= (bfd_section_flags (sec)
11355 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11356
11357 prop_sec = bfd_make_section_anyway_with_flags
11358 (sec->owner, strdup (prop_sec_name), flags);
11359 if (! prop_sec)
11360 return 0;
11361
11362 elf_group_name (prop_sec) = elf_group_name (sec);
11363 }
11364
11365 free (prop_sec_name);
11366 return prop_sec;
11367 }
11368
11369
11370 flagword
11371 xtensa_get_property_predef_flags (asection *sec)
11372 {
11373 if (xtensa_is_insntable_section (sec))
11374 return (XTENSA_PROP_INSN
11375 | XTENSA_PROP_NO_TRANSFORM
11376 | XTENSA_PROP_INSN_NO_REORDER);
11377
11378 if (xtensa_is_littable_section (sec))
11379 return (XTENSA_PROP_LITERAL
11380 | XTENSA_PROP_NO_TRANSFORM
11381 | XTENSA_PROP_INSN_NO_REORDER);
11382
11383 return 0;
11384 }
11385
11386 \f
11387 /* Other functions called directly by the linker. */
11388
11389 bool
11390 xtensa_callback_required_dependence (bfd *abfd,
11391 asection *sec,
11392 struct bfd_link_info *link_info,
11393 deps_callback_t callback,
11394 void *closure)
11395 {
11396 Elf_Internal_Rela *internal_relocs;
11397 bfd_byte *contents;
11398 unsigned i;
11399 bool ok = true;
11400 bfd_size_type sec_size;
11401
11402 sec_size = bfd_get_section_limit (abfd, sec);
11403
11404 /* ".plt*" sections have no explicit relocations but they contain L32R
11405 instructions that reference the corresponding ".got.plt*" sections. */
11406 if ((sec->flags & SEC_LINKER_CREATED) != 0
11407 && startswith (sec->name, ".plt"))
11408 {
11409 asection *sgotplt;
11410
11411 /* Find the corresponding ".got.plt*" section. */
11412 if (sec->name[4] == '\0')
11413 sgotplt = elf_hash_table (link_info)->sgotplt;
11414 else
11415 {
11416 char got_name[14];
11417 int chunk = 0;
11418
11419 BFD_ASSERT (sec->name[4] == '.');
11420 chunk = strtol (&sec->name[5], NULL, 10);
11421
11422 sprintf (got_name, ".got.plt.%u", chunk);
11423 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11424 }
11425 BFD_ASSERT (sgotplt);
11426
11427 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11428 section referencing a literal at the very beginning of
11429 ".got.plt". This is very close to the real dependence, anyway. */
11430 (*callback) (sec, sec_size, sgotplt, 0, closure);
11431 }
11432
11433 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11434 when building uclibc, which runs "ld -b binary /dev/null". */
11435 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11436 return ok;
11437
11438 internal_relocs = retrieve_internal_relocs (abfd, sec,
11439 link_info->keep_memory);
11440 if (internal_relocs == NULL
11441 || sec->reloc_count == 0)
11442 return ok;
11443
11444 /* Cache the contents for the duration of this scan. */
11445 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11446 if (contents == NULL && sec_size != 0)
11447 {
11448 ok = false;
11449 goto error_return;
11450 }
11451
11452 if (!xtensa_default_isa)
11453 xtensa_default_isa = xtensa_isa_init (0, 0);
11454
11455 for (i = 0; i < sec->reloc_count; i++)
11456 {
11457 Elf_Internal_Rela *irel = &internal_relocs[i];
11458 if (is_l32r_relocation (abfd, sec, contents, irel))
11459 {
11460 r_reloc l32r_rel;
11461 asection *target_sec;
11462 bfd_vma target_offset;
11463
11464 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11465 target_sec = NULL;
11466 target_offset = 0;
11467 /* L32Rs must be local to the input file. */
11468 if (r_reloc_is_defined (&l32r_rel))
11469 {
11470 target_sec = r_reloc_get_section (&l32r_rel);
11471 target_offset = l32r_rel.target_offset;
11472 }
11473 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11474 closure);
11475 }
11476 }
11477
11478 error_return:
11479 release_internal_relocs (sec, internal_relocs);
11480 release_contents (sec, contents);
11481 return ok;
11482 }
11483
11484 /* The default literal sections should always be marked as "code" (i.e.,
11485 SHF_EXECINSTR). This is particularly important for the Linux kernel
11486 module loader so that the literals are not placed after the text. */
11487 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11488 {
11489 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11490 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11491 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11492 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11493 { NULL, 0, 0, 0, 0 }
11494 };
11495 \f
11496 #define ELF_TARGET_ID XTENSA_ELF_DATA
11497 #ifndef ELF_ARCH
11498 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11499 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11500 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11501 #define TARGET_BIG_NAME "elf32-xtensa-be"
11502 #define ELF_ARCH bfd_arch_xtensa
11503
11504 #define ELF_MACHINE_CODE EM_XTENSA
11505 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11506
11507 #define ELF_MAXPAGESIZE 0x1000
11508 #endif /* ELF_ARCH */
11509
11510 #define elf_backend_can_gc_sections 1
11511 #define elf_backend_can_refcount 1
11512 #define elf_backend_plt_readonly 1
11513 #define elf_backend_got_header_size 4
11514 #define elf_backend_want_dynbss 0
11515 #define elf_backend_want_got_plt 1
11516 #define elf_backend_dtrel_excludes_plt 1
11517
11518 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11519
11520 #define bfd_elf32_mkobject elf_xtensa_mkobject
11521
11522 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11523 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11524 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11525 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11526 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11527 #define bfd_elf32_bfd_reloc_name_lookup \
11528 elf_xtensa_reloc_name_lookup
11529 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11530 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11531
11532 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11533 #define elf_backend_check_relocs elf_xtensa_check_relocs
11534 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11535 #define elf_backend_discard_info elf_xtensa_discard_info
11536 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11537 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11538 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11539 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11540 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11541 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11542 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11543 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11544 #define elf_backend_object_p elf_xtensa_object_p
11545 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11546 #define elf_backend_relocate_section elf_xtensa_relocate_section
11547 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11548 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11549 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11550 #define elf_backend_special_sections elf_xtensa_special_sections
11551 #define elf_backend_action_discarded elf_xtensa_action_discarded
11552 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11553
11554 #include "elf32-target.h"