Remove path name from test case
[binutils-gdb.git] / bfd / elfxx-x86.c
1 /* x86 specific support for ELF
2 Copyright (C) 2017-2023 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "elfxx-x86.h"
22 #include "elf-vxworks.h"
23 #include "objalloc.h"
24
25 /* The name of the dynamic interpreter. This is put in the .interp
26 section. */
27
28 #define ELF32_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
29 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
30 #define ELFX32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
31
32 bool
33 _bfd_x86_elf_mkobject (bfd *abfd)
34 {
35 return bfd_elf_allocate_object (abfd,
36 sizeof (struct elf_x86_obj_tdata),
37 get_elf_backend_data (abfd)->target_id);
38 }
39
40 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
41 executables. Rather than setting it to the beginning of the TLS
42 section, we have to set it to the end. This function may be called
43 multiple times, it is idempotent. */
44
45 void
46 _bfd_x86_elf_set_tls_module_base (struct bfd_link_info *info)
47 {
48 struct elf_x86_link_hash_table *htab;
49 struct bfd_link_hash_entry *base;
50 const struct elf_backend_data *bed;
51
52 if (!bfd_link_executable (info))
53 return;
54
55 bed = get_elf_backend_data (info->output_bfd);
56 htab = elf_x86_hash_table (info, bed->target_id);
57 if (htab == NULL)
58 return;
59
60 base = htab->tls_module_base;
61 if (base == NULL)
62 return;
63
64 base->u.def.value = htab->elf.tls_size;
65 }
66
67 /* Return the base VMA address which should be subtracted from real addresses
68 when resolving @dtpoff relocation.
69 This is PT_TLS segment p_vaddr. */
70
71 bfd_vma
72 _bfd_x86_elf_dtpoff_base (struct bfd_link_info *info)
73 {
74 /* If tls_sec is NULL, we should have signalled an error already. */
75 if (elf_hash_table (info)->tls_sec == NULL)
76 return 0;
77 return elf_hash_table (info)->tls_sec->vma;
78 }
79
80 /* Allocate space in .plt, .got and associated reloc sections for
81 dynamic relocs. */
82
83 static bool
84 elf_x86_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
85 {
86 struct bfd_link_info *info;
87 struct elf_x86_link_hash_table *htab;
88 struct elf_x86_link_hash_entry *eh;
89 struct elf_dyn_relocs *p;
90 unsigned int plt_entry_size;
91 bool resolved_to_zero;
92 const struct elf_backend_data *bed;
93
94 if (h->root.type == bfd_link_hash_indirect)
95 return true;
96
97 eh = (struct elf_x86_link_hash_entry *) h;
98
99 info = (struct bfd_link_info *) inf;
100 bed = get_elf_backend_data (info->output_bfd);
101 htab = elf_x86_hash_table (info, bed->target_id);
102 if (htab == NULL)
103 return false;
104
105 plt_entry_size = htab->plt.plt_entry_size;
106
107 resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh);
108
109 /* We can't use the GOT PLT if pointer equality is needed since
110 finish_dynamic_symbol won't clear symbol value and the dynamic
111 linker won't update the GOT slot. We will get into an infinite
112 loop at run-time. */
113 if (htab->plt_got != NULL
114 && h->type != STT_GNU_IFUNC
115 && !h->pointer_equality_needed
116 && h->plt.refcount > 0
117 && h->got.refcount > 0)
118 {
119 /* Don't use the regular PLT if there are both GOT and GOTPLT
120 reloctions. */
121 h->plt.offset = (bfd_vma) -1;
122
123 /* Use the GOT PLT. */
124 eh->plt_got.refcount = 1;
125 }
126
127 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
128 here if it is defined and referenced in a non-shared object. */
129 if (h->type == STT_GNU_IFUNC
130 && h->def_regular)
131 {
132 /* GOTOFF relocation needs PLT. */
133 if (eh->gotoff_ref)
134 h->plt.refcount = 1;
135
136 if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h, &h->dyn_relocs,
137 plt_entry_size,
138 (htab->plt.has_plt0
139 * plt_entry_size),
140 htab->got_entry_size,
141 true))
142 {
143 asection *s = htab->plt_second;
144 if (h->plt.offset != (bfd_vma) -1 && s != NULL)
145 {
146 /* Use the second PLT section if it is created. */
147 eh->plt_second.offset = s->size;
148
149 /* Make room for this entry in the second PLT section. */
150 s->size += htab->non_lazy_plt->plt_entry_size;
151 }
152
153 return true;
154 }
155 else
156 return false;
157 }
158 /* Don't create the PLT entry if there are only function pointer
159 relocations which can be resolved at run-time. */
160 else if (htab->elf.dynamic_sections_created
161 && (h->plt.refcount > 0
162 || eh->plt_got.refcount > 0))
163 {
164 bool use_plt_got = eh->plt_got.refcount > 0;
165
166 /* Make sure this symbol is output as a dynamic symbol.
167 Undefined weak syms won't yet be marked as dynamic. */
168 if (h->dynindx == -1
169 && !h->forced_local
170 && !resolved_to_zero
171 && h->root.type == bfd_link_hash_undefweak)
172 {
173 if (! bfd_elf_link_record_dynamic_symbol (info, h))
174 return false;
175 }
176
177 if (bfd_link_pic (info)
178 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
179 {
180 asection *s = htab->elf.splt;
181 asection *second_s = htab->plt_second;
182 asection *got_s = htab->plt_got;
183 bool use_plt;
184
185 /* If this is the first .plt entry, make room for the special
186 first entry. The .plt section is used by prelink to undo
187 prelinking for dynamic relocations. */
188 if (s->size == 0)
189 s->size = htab->plt.has_plt0 * plt_entry_size;
190
191 if (use_plt_got)
192 eh->plt_got.offset = got_s->size;
193 else
194 {
195 h->plt.offset = s->size;
196 if (second_s)
197 eh->plt_second.offset = second_s->size;
198 }
199
200 /* If this symbol is not defined in a regular file, and we are
201 generating PDE, then set the symbol to this location in the
202 .plt. This is required to make function pointers compare
203 as equal between PDE and the shared library.
204
205 NB: If PLT is PC-relative, we can use the .plt in PIE for
206 function address. */
207 if (h->def_regular)
208 use_plt = false;
209 else if (htab->pcrel_plt)
210 use_plt = ! bfd_link_dll (info);
211 else
212 use_plt = bfd_link_pde (info);
213 if (use_plt)
214 {
215 if (use_plt_got)
216 {
217 /* We need to make a call to the entry of the GOT PLT
218 instead of regular PLT entry. */
219 h->root.u.def.section = got_s;
220 h->root.u.def.value = eh->plt_got.offset;
221 }
222 else
223 {
224 if (second_s)
225 {
226 /* We need to make a call to the entry of the
227 second PLT instead of regular PLT entry. */
228 h->root.u.def.section = second_s;
229 h->root.u.def.value = eh->plt_second.offset;
230 }
231 else
232 {
233 h->root.u.def.section = s;
234 h->root.u.def.value = h->plt.offset;
235 }
236 }
237 }
238
239 /* Make room for this entry. */
240 if (use_plt_got)
241 got_s->size += htab->non_lazy_plt->plt_entry_size;
242 else
243 {
244 s->size += plt_entry_size;
245 if (second_s)
246 second_s->size += htab->non_lazy_plt->plt_entry_size;
247
248 /* We also need to make an entry in the .got.plt section,
249 which will be placed in the .got section by the linker
250 script. */
251 htab->elf.sgotplt->size += htab->got_entry_size;
252
253 /* There should be no PLT relocation against resolved
254 undefined weak symbol in executable. */
255 if (!resolved_to_zero)
256 {
257 /* We also need to make an entry in the .rel.plt
258 section. */
259 htab->elf.srelplt->size += htab->sizeof_reloc;
260 htab->elf.srelplt->reloc_count++;
261 }
262 }
263
264 if (htab->elf.target_os == is_vxworks && !bfd_link_pic (info))
265 {
266 /* VxWorks has a second set of relocations for each PLT entry
267 in executables. They go in a separate relocation section,
268 which is processed by the kernel loader. */
269
270 /* There are two relocations for the initial PLT entry: an
271 R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 4 and an
272 R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 8. */
273
274 asection *srelplt2 = htab->srelplt2;
275 if (h->plt.offset == plt_entry_size)
276 srelplt2->size += (htab->sizeof_reloc * 2);
277
278 /* There are two extra relocations for each subsequent PLT entry:
279 an R_386_32 relocation for the GOT entry, and an R_386_32
280 relocation for the PLT entry. */
281
282 srelplt2->size += (htab->sizeof_reloc * 2);
283 }
284 }
285 else
286 {
287 eh->plt_got.offset = (bfd_vma) -1;
288 h->plt.offset = (bfd_vma) -1;
289 h->needs_plt = 0;
290 }
291 }
292 else
293 {
294 eh->plt_got.offset = (bfd_vma) -1;
295 h->plt.offset = (bfd_vma) -1;
296 h->needs_plt = 0;
297 }
298
299 eh->tlsdesc_got = (bfd_vma) -1;
300
301 /* For i386, if R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the
302 binary, make it a R_386_TLS_LE_32 requiring no TLS entry. For
303 x86-64, if R_X86_64_GOTTPOFF symbol is now local to the binary,
304 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
305 if (h->got.refcount > 0
306 && bfd_link_executable (info)
307 && h->dynindx == -1
308 && (elf_x86_hash_entry (h)->tls_type & GOT_TLS_IE))
309 h->got.offset = (bfd_vma) -1;
310 else if (h->got.refcount > 0)
311 {
312 asection *s;
313 bool dyn;
314 int tls_type = elf_x86_hash_entry (h)->tls_type;
315
316 /* Make sure this symbol is output as a dynamic symbol.
317 Undefined weak syms won't yet be marked as dynamic. */
318 if (h->dynindx == -1
319 && !h->forced_local
320 && !resolved_to_zero
321 && h->root.type == bfd_link_hash_undefweak)
322 {
323 if (! bfd_elf_link_record_dynamic_symbol (info, h))
324 return false;
325 }
326
327 s = htab->elf.sgot;
328 if (GOT_TLS_GDESC_P (tls_type))
329 {
330 eh->tlsdesc_got = htab->elf.sgotplt->size
331 - elf_x86_compute_jump_table_size (htab);
332 htab->elf.sgotplt->size += 2 * htab->got_entry_size;
333 h->got.offset = (bfd_vma) -2;
334 }
335 if (! GOT_TLS_GDESC_P (tls_type)
336 || GOT_TLS_GD_P (tls_type))
337 {
338 h->got.offset = s->size;
339 s->size += htab->got_entry_size;
340 /* R_386_TLS_GD and R_X86_64_TLSGD need 2 consecutive GOT
341 slots. */
342 if (GOT_TLS_GD_P (tls_type) || tls_type == GOT_TLS_IE_BOTH)
343 s->size += htab->got_entry_size;
344 }
345 dyn = htab->elf.dynamic_sections_created;
346 /* R_386_TLS_IE_32 needs one dynamic relocation,
347 R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation,
348 (but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we
349 need two), R_386_TLS_GD and R_X86_64_TLSGD need one if local
350 symbol and two if global. No dynamic relocation against
351 resolved undefined weak symbol in executable. No dynamic
352 relocation against non-preemptible absolute symbol. */
353 if (tls_type == GOT_TLS_IE_BOTH)
354 htab->elf.srelgot->size += 2 * htab->sizeof_reloc;
355 else if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
356 || (tls_type & GOT_TLS_IE))
357 htab->elf.srelgot->size += htab->sizeof_reloc;
358 else if (GOT_TLS_GD_P (tls_type))
359 htab->elf.srelgot->size += 2 * htab->sizeof_reloc;
360 else if (! GOT_TLS_GDESC_P (tls_type)
361 && ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
362 && !resolved_to_zero)
363 || h->root.type != bfd_link_hash_undefweak)
364 && ((bfd_link_pic (info)
365 && !(h->dynindx == -1
366 && ABS_SYMBOL_P (h)))
367 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
368 htab->elf.srelgot->size += htab->sizeof_reloc;
369 if (GOT_TLS_GDESC_P (tls_type))
370 {
371 htab->elf.srelplt->size += htab->sizeof_reloc;
372 if (bed->target_id == X86_64_ELF_DATA)
373 htab->elf.tlsdesc_plt = (bfd_vma) -1;
374 }
375 }
376 else
377 h->got.offset = (bfd_vma) -1;
378
379 if (h->dyn_relocs == NULL)
380 return true;
381
382 /* In the shared -Bsymbolic case, discard space allocated for
383 dynamic pc-relative relocs against symbols which turn out to be
384 defined in regular objects. For the normal shared case, discard
385 space for pc-relative relocs that have become local due to symbol
386 visibility changes. */
387
388 if (bfd_link_pic (info))
389 {
390 /* Relocs that use pc_count are those that appear on a call
391 insn, or certain REL relocs that can generated via assembly.
392 We want calls to protected symbols to resolve directly to the
393 function rather than going via the plt. If people want
394 function pointer comparisons to work as expected then they
395 should avoid writing weird assembly. */
396 if (SYMBOL_CALLS_LOCAL (info, h))
397 {
398 struct elf_dyn_relocs **pp;
399
400 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
401 {
402 p->count -= p->pc_count;
403 p->pc_count = 0;
404 if (p->count == 0)
405 *pp = p->next;
406 else
407 pp = &p->next;
408 }
409 }
410
411 if (htab->elf.target_os == is_vxworks)
412 {
413 struct elf_dyn_relocs **pp;
414 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
415 {
416 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
417 *pp = p->next;
418 else
419 pp = &p->next;
420 }
421 }
422
423 /* Also discard relocs on undefined weak syms with non-default
424 visibility or in PIE. */
425 if (h->dyn_relocs != NULL)
426 {
427 if (h->root.type == bfd_link_hash_undefweak)
428 {
429 /* Undefined weak symbol is never bound locally in shared
430 library. */
431 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
432 || resolved_to_zero)
433 {
434 if (bed->target_id == I386_ELF_DATA
435 && h->non_got_ref)
436 {
437 /* Keep dynamic non-GOT/non-PLT relocation so
438 that we can branch to 0 without PLT. */
439 struct elf_dyn_relocs **pp;
440
441 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
442 if (p->pc_count == 0)
443 *pp = p->next;
444 else
445 {
446 /* Remove non-R_386_PC32 relocation. */
447 p->count = p->pc_count;
448 pp = &p->next;
449 }
450
451 /* Make sure undefined weak symbols are output
452 as dynamic symbols in PIEs for dynamic non-GOT
453 non-PLT reloations. */
454 if (h->dyn_relocs != NULL
455 && !bfd_elf_link_record_dynamic_symbol (info, h))
456 return false;
457 }
458 else
459 h->dyn_relocs = NULL;
460 }
461 else if (h->dynindx == -1
462 && !h->forced_local
463 && !bfd_elf_link_record_dynamic_symbol (info, h))
464 return false;
465 }
466 else if (bfd_link_executable (info)
467 && (h->needs_copy || eh->needs_copy)
468 && h->def_dynamic
469 && !h->def_regular)
470 {
471 /* NB: needs_copy is set only for x86-64. For PIE,
472 discard space for pc-relative relocs against symbols
473 which turn out to need copy relocs. */
474 struct elf_dyn_relocs **pp;
475
476 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
477 {
478 if (p->pc_count != 0)
479 *pp = p->next;
480 else
481 pp = &p->next;
482 }
483 }
484 }
485 }
486 else if (ELIMINATE_COPY_RELOCS)
487 {
488 /* For the non-shared case, discard space for relocs against
489 symbols which turn out to need copy relocs or are not
490 dynamic. Keep dynamic relocations for run-time function
491 pointer initialization. */
492
493 if ((!h->non_got_ref
494 || (h->root.type == bfd_link_hash_undefweak
495 && !resolved_to_zero))
496 && ((h->def_dynamic
497 && !h->def_regular)
498 || (htab->elf.dynamic_sections_created
499 && (h->root.type == bfd_link_hash_undefweak
500 || h->root.type == bfd_link_hash_undefined))))
501 {
502 /* Make sure this symbol is output as a dynamic symbol.
503 Undefined weak syms won't yet be marked as dynamic. */
504 if (h->dynindx == -1
505 && !h->forced_local
506 && !resolved_to_zero
507 && h->root.type == bfd_link_hash_undefweak
508 && ! bfd_elf_link_record_dynamic_symbol (info, h))
509 return false;
510
511 /* If that succeeded, we know we'll be keeping all the
512 relocs. */
513 if (h->dynindx != -1)
514 goto keep;
515 }
516
517 h->dyn_relocs = NULL;
518
519 keep: ;
520 }
521
522 /* Finally, allocate space. */
523 for (p = h->dyn_relocs; p != NULL; p = p->next)
524 {
525 asection *sreloc;
526
527 if (eh->def_protected && bfd_link_executable (info))
528 {
529 /* Disallow copy relocation against non-copyable protected
530 symbol. */
531 asection *s = p->sec->output_section;
532 if (s != NULL && (s->flags & SEC_READONLY) != 0)
533 {
534 info->callbacks->einfo
535 /* xgettext:c-format */
536 (_("%F%P: %pB: copy relocation against non-copyable "
537 "protected symbol `%s' in %pB\n"),
538 p->sec->owner, h->root.root.string,
539 h->root.u.def.section->owner);
540 return false;
541 }
542 }
543
544 sreloc = elf_section_data (p->sec)->sreloc;
545
546 BFD_ASSERT (sreloc != NULL);
547 sreloc->size += p->count * htab->sizeof_reloc;
548 }
549
550 return true;
551 }
552
553 /* Allocate space in .plt, .got and associated reloc sections for
554 local dynamic relocs. */
555
556 static int
557 elf_x86_allocate_local_dynreloc (void **slot, void *inf)
558 {
559 struct elf_link_hash_entry *h
560 = (struct elf_link_hash_entry *) *slot;
561
562 if (h->type != STT_GNU_IFUNC
563 || !h->def_regular
564 || !h->ref_regular
565 || !h->forced_local
566 || h->root.type != bfd_link_hash_defined)
567 abort ();
568
569 return elf_x86_allocate_dynrelocs (h, inf);
570 }
571
572 /* Find and/or create a hash entry for local symbol. */
573
574 struct elf_link_hash_entry *
575 _bfd_elf_x86_get_local_sym_hash (struct elf_x86_link_hash_table *htab,
576 bfd *abfd, const Elf_Internal_Rela *rel,
577 bool create)
578 {
579 struct elf_x86_link_hash_entry e, *ret;
580 asection *sec = abfd->sections;
581 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
582 htab->r_sym (rel->r_info));
583 void **slot;
584
585 e.elf.indx = sec->id;
586 e.elf.dynstr_index = htab->r_sym (rel->r_info);
587 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
588 create ? INSERT : NO_INSERT);
589
590 if (!slot)
591 return NULL;
592
593 if (*slot)
594 {
595 ret = (struct elf_x86_link_hash_entry *) *slot;
596 return &ret->elf;
597 }
598
599 ret = (struct elf_x86_link_hash_entry *)
600 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
601 sizeof (struct elf_x86_link_hash_entry));
602 if (ret)
603 {
604 memset (ret, 0, sizeof (*ret));
605 ret->elf.indx = sec->id;
606 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
607 ret->elf.dynindx = -1;
608 ret->plt_got.offset = (bfd_vma) -1;
609 *slot = ret;
610 }
611 return &ret->elf;
612 }
613
614 /* Create an entry in a x86 ELF linker hash table. NB: THIS MUST BE IN
615 SYNC WITH _bfd_elf_link_hash_newfunc. */
616
617 struct bfd_hash_entry *
618 _bfd_x86_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
619 struct bfd_hash_table *table,
620 const char *string)
621 {
622 /* Allocate the structure if it has not already been allocated by a
623 subclass. */
624 if (entry == NULL)
625 {
626 entry = (struct bfd_hash_entry *)
627 bfd_hash_allocate (table,
628 sizeof (struct elf_x86_link_hash_entry));
629 if (entry == NULL)
630 return entry;
631 }
632
633 /* Call the allocation method of the superclass. */
634 entry = _bfd_link_hash_newfunc (entry, table, string);
635 if (entry != NULL)
636 {
637 struct elf_x86_link_hash_entry *eh
638 = (struct elf_x86_link_hash_entry *) entry;
639 struct elf_link_hash_table *htab
640 = (struct elf_link_hash_table *) table;
641
642 memset (&eh->elf.size, 0,
643 (sizeof (struct elf_x86_link_hash_entry)
644 - offsetof (struct elf_link_hash_entry, size)));
645 /* Set local fields. */
646 eh->elf.indx = -1;
647 eh->elf.dynindx = -1;
648 eh->elf.got = htab->init_got_refcount;
649 eh->elf.plt = htab->init_plt_refcount;
650 /* Assume that we have been called by a non-ELF symbol reader.
651 This flag is then reset by the code which reads an ELF input
652 file. This ensures that a symbol created by a non-ELF symbol
653 reader will have the flag set correctly. */
654 eh->elf.non_elf = 1;
655 eh->plt_second.offset = (bfd_vma) -1;
656 eh->plt_got.offset = (bfd_vma) -1;
657 eh->tlsdesc_got = (bfd_vma) -1;
658 eh->zero_undefweak = 1;
659 }
660
661 return entry;
662 }
663
664 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
665 for local symbol so that we can handle local STT_GNU_IFUNC symbols
666 as global symbol. We reuse indx and dynstr_index for local symbol
667 hash since they aren't used by global symbols in this backend. */
668
669 hashval_t
670 _bfd_x86_elf_local_htab_hash (const void *ptr)
671 {
672 struct elf_link_hash_entry *h
673 = (struct elf_link_hash_entry *) ptr;
674 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
675 }
676
677 /* Compare local hash entries. */
678
679 int
680 _bfd_x86_elf_local_htab_eq (const void *ptr1, const void *ptr2)
681 {
682 struct elf_link_hash_entry *h1
683 = (struct elf_link_hash_entry *) ptr1;
684 struct elf_link_hash_entry *h2
685 = (struct elf_link_hash_entry *) ptr2;
686
687 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
688 }
689
690 /* Destroy an x86 ELF linker hash table. */
691
692 static void
693 elf_x86_link_hash_table_free (bfd *obfd)
694 {
695 struct elf_x86_link_hash_table *htab
696 = (struct elf_x86_link_hash_table *) obfd->link.hash;
697
698 if (htab->loc_hash_table)
699 htab_delete (htab->loc_hash_table);
700 if (htab->loc_hash_memory)
701 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
702 _bfd_elf_link_hash_table_free (obfd);
703 }
704
705 static bool
706 elf_i386_is_reloc_section (const char *secname)
707 {
708 return startswith (secname, ".rel");
709 }
710
711 static bool
712 elf_x86_64_is_reloc_section (const char *secname)
713 {
714 return startswith (secname, ".rela");
715 }
716
717 /* Create an x86 ELF linker hash table. */
718
719 struct bfd_link_hash_table *
720 _bfd_x86_elf_link_hash_table_create (bfd *abfd)
721 {
722 struct elf_x86_link_hash_table *ret;
723 const struct elf_backend_data *bed;
724 size_t amt = sizeof (struct elf_x86_link_hash_table);
725
726 ret = (struct elf_x86_link_hash_table *) bfd_zmalloc (amt);
727 if (ret == NULL)
728 return NULL;
729
730 bed = get_elf_backend_data (abfd);
731 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
732 _bfd_x86_elf_link_hash_newfunc,
733 sizeof (struct elf_x86_link_hash_entry),
734 bed->target_id))
735 {
736 free (ret);
737 return NULL;
738 }
739
740 if (bed->target_id == X86_64_ELF_DATA)
741 {
742 ret->is_reloc_section = elf_x86_64_is_reloc_section;
743 ret->got_entry_size = 8;
744 ret->pcrel_plt = true;
745 ret->tls_get_addr = "__tls_get_addr";
746 ret->relative_r_type = R_X86_64_RELATIVE;
747 ret->relative_r_name = "R_X86_64_RELATIVE";
748 ret->elf_append_reloc = elf_append_rela;
749 ret->elf_write_addend_in_got = _bfd_elf64_write_addend;
750 }
751 if (ABI_64_P (abfd))
752 {
753 ret->sizeof_reloc = sizeof (Elf64_External_Rela);
754 ret->pointer_r_type = R_X86_64_64;
755 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
756 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
757 ret->elf_write_addend = _bfd_elf64_write_addend;
758 }
759 else
760 {
761 if (bed->target_id == X86_64_ELF_DATA)
762 {
763 ret->sizeof_reloc = sizeof (Elf32_External_Rela);
764 ret->pointer_r_type = R_X86_64_32;
765 ret->dynamic_interpreter = ELFX32_DYNAMIC_INTERPRETER;
766 ret->dynamic_interpreter_size
767 = sizeof ELFX32_DYNAMIC_INTERPRETER;
768 ret->elf_write_addend = _bfd_elf32_write_addend;
769 }
770 else
771 {
772 ret->is_reloc_section = elf_i386_is_reloc_section;
773 ret->sizeof_reloc = sizeof (Elf32_External_Rel);
774 ret->got_entry_size = 4;
775 ret->pcrel_plt = false;
776 ret->pointer_r_type = R_386_32;
777 ret->relative_r_type = R_386_RELATIVE;
778 ret->relative_r_name = "R_386_RELATIVE";
779 ret->elf_append_reloc = elf_append_rel;
780 ret->elf_write_addend = _bfd_elf32_write_addend;
781 ret->elf_write_addend_in_got = _bfd_elf32_write_addend;
782 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
783 ret->dynamic_interpreter_size
784 = sizeof ELF32_DYNAMIC_INTERPRETER;
785 ret->tls_get_addr = "___tls_get_addr";
786 }
787 }
788
789 ret->loc_hash_table = htab_try_create (1024,
790 _bfd_x86_elf_local_htab_hash,
791 _bfd_x86_elf_local_htab_eq,
792 NULL);
793 ret->loc_hash_memory = objalloc_create ();
794 if (!ret->loc_hash_table || !ret->loc_hash_memory)
795 {
796 elf_x86_link_hash_table_free (abfd);
797 return NULL;
798 }
799 ret->elf.root.hash_table_free = elf_x86_link_hash_table_free;
800
801 return &ret->elf.root;
802 }
803
804 /* Sort relocs into address order. */
805
806 int
807 _bfd_x86_elf_compare_relocs (const void *ap, const void *bp)
808 {
809 const arelent *a = * (const arelent **) ap;
810 const arelent *b = * (const arelent **) bp;
811
812 if (a->address > b->address)
813 return 1;
814 else if (a->address < b->address)
815 return -1;
816 else
817 return 0;
818 }
819
820 /* Mark symbol, NAME, as locally defined by linker if it is referenced
821 and not defined in a relocatable object file. */
822
823 static void
824 elf_x86_linker_defined (struct bfd_link_info *info, const char *name)
825 {
826 struct elf_link_hash_entry *h;
827
828 h = elf_link_hash_lookup (elf_hash_table (info), name,
829 false, false, false);
830 if (h == NULL)
831 return;
832
833 while (h->root.type == bfd_link_hash_indirect)
834 h = (struct elf_link_hash_entry *) h->root.u.i.link;
835
836 if (h->root.type == bfd_link_hash_new
837 || h->root.type == bfd_link_hash_undefined
838 || h->root.type == bfd_link_hash_undefweak
839 || h->root.type == bfd_link_hash_common
840 || (!h->def_regular && h->def_dynamic))
841 {
842 elf_x86_hash_entry (h)->local_ref = 2;
843 elf_x86_hash_entry (h)->linker_def = 1;
844 }
845 }
846
847 /* Hide a linker-defined symbol, NAME, with hidden visibility. */
848
849 static void
850 elf_x86_hide_linker_defined (struct bfd_link_info *info,
851 const char *name)
852 {
853 struct elf_link_hash_entry *h;
854
855 h = elf_link_hash_lookup (elf_hash_table (info), name,
856 false, false, false);
857 if (h == NULL)
858 return;
859
860 while (h->root.type == bfd_link_hash_indirect)
861 h = (struct elf_link_hash_entry *) h->root.u.i.link;
862
863 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
864 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
865 _bfd_elf_link_hash_hide_symbol (info, h, true);
866 }
867
868 bool
869 _bfd_x86_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
870 {
871 if (!bfd_link_relocatable (info))
872 {
873 /* Check for __tls_get_addr reference. */
874 struct elf_x86_link_hash_table *htab;
875 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
876 htab = elf_x86_hash_table (info, bed->target_id);
877 if (htab)
878 {
879 struct elf_link_hash_entry *h;
880
881 h = elf_link_hash_lookup (elf_hash_table (info),
882 htab->tls_get_addr,
883 false, false, false);
884 if (h != NULL)
885 {
886 elf_x86_hash_entry (h)->tls_get_addr = 1;
887
888 /* Check the versioned __tls_get_addr symbol. */
889 while (h->root.type == bfd_link_hash_indirect)
890 {
891 h = (struct elf_link_hash_entry *) h->root.u.i.link;
892 elf_x86_hash_entry (h)->tls_get_addr = 1;
893 }
894 }
895
896 /* "__ehdr_start" will be defined by linker as a hidden symbol
897 later if it is referenced and not defined. */
898 elf_x86_linker_defined (info, "__ehdr_start");
899
900 if (bfd_link_executable (info))
901 {
902 /* References to __bss_start, _end and _edata should be
903 locally resolved within executables. */
904 elf_x86_linker_defined (info, "__bss_start");
905 elf_x86_linker_defined (info, "_end");
906 elf_x86_linker_defined (info, "_edata");
907 }
908 else
909 {
910 /* Hide hidden __bss_start, _end and _edata in shared
911 libraries. */
912 elf_x86_hide_linker_defined (info, "__bss_start");
913 elf_x86_hide_linker_defined (info, "_end");
914 elf_x86_hide_linker_defined (info, "_edata");
915 }
916 }
917 }
918
919 /* Invoke the regular ELF backend linker to do all the work. */
920 return _bfd_elf_link_check_relocs (abfd, info);
921 }
922
923 /* Look through the relocs for a section before allocation to make the
924 dynamic reloc section. */
925
926 bool
927 _bfd_x86_elf_check_relocs (bfd *abfd,
928 struct bfd_link_info *info,
929 asection *sec,
930 const Elf_Internal_Rela *relocs)
931 {
932 struct elf_x86_link_hash_table *htab;
933 Elf_Internal_Shdr *symtab_hdr;
934 struct elf_link_hash_entry **sym_hashes;
935 const Elf_Internal_Rela *rel;
936 const Elf_Internal_Rela *rel_end;
937 asection *sreloc;
938 const struct elf_backend_data *bed;
939 bool is_x86_64;
940
941 if (bfd_link_relocatable (info))
942 return true;
943
944 bed = get_elf_backend_data (abfd);
945 htab = elf_x86_hash_table (info, bed->target_id);
946 if (htab == NULL)
947 {
948 sec->check_relocs_failed = 1;
949 return false;
950 }
951
952 is_x86_64 = bed->target_id == X86_64_ELF_DATA;
953
954 symtab_hdr = &elf_symtab_hdr (abfd);
955 sym_hashes = elf_sym_hashes (abfd);
956
957 rel_end = relocs + sec->reloc_count;
958 for (rel = relocs; rel < rel_end; rel++)
959 {
960 unsigned int r_type;
961 unsigned int r_symndx;
962 struct elf_link_hash_entry *h;
963
964 r_symndx = htab->r_sym (rel->r_info);
965 r_type = ELF32_R_TYPE (rel->r_info);
966
967 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
968 {
969 /* xgettext:c-format */
970 _bfd_error_handler (_("%pB: bad symbol index: %d"),
971 abfd, r_symndx);
972 goto error_return;
973 }
974
975 if (r_symndx < symtab_hdr->sh_info)
976 h = NULL;
977 else
978 {
979 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
980 while (h->root.type == bfd_link_hash_indirect
981 || h->root.type == bfd_link_hash_warning)
982 h = (struct elf_link_hash_entry *) h->root.u.i.link;
983 }
984
985 if (X86_NEED_DYNAMIC_RELOC_TYPE_P (is_x86_64, r_type)
986 && NEED_DYNAMIC_RELOCATION_P (is_x86_64, info, true, h, sec,
987 r_type, htab->pointer_r_type))
988 {
989 /* We may copy these reloc types into the output file.
990 Create a reloc section in dynobj and make room for
991 this reloc. */
992 sreloc = _bfd_elf_make_dynamic_reloc_section
993 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
994 abfd, sec->use_rela_p);
995
996 if (sreloc != NULL)
997 return true;
998
999 error_return:
1000 sec->check_relocs_failed = 1;
1001 return false;
1002 }
1003 }
1004
1005 return true;
1006 }
1007
1008 /* Add an entry to the relative reloc record. */
1009
1010 static bool
1011 elf_x86_relative_reloc_record_add
1012 (struct bfd_link_info *info,
1013 struct elf_x86_relative_reloc_data *relative_reloc,
1014 Elf_Internal_Rela *rel, asection *sec,
1015 asection *sym_sec, struct elf_link_hash_entry *h,
1016 Elf_Internal_Sym *sym, bfd_vma offset, bool *keep_symbuf_p)
1017 {
1018 bfd_size_type newidx;
1019
1020 if (relative_reloc->data == NULL)
1021 {
1022 relative_reloc->data = bfd_malloc
1023 (sizeof (struct elf_x86_relative_reloc_record));
1024 relative_reloc->count = 0;
1025 relative_reloc->size = 1;
1026 }
1027
1028 newidx = relative_reloc->count++;
1029
1030 if (relative_reloc->count > relative_reloc->size)
1031 {
1032 relative_reloc->size <<= 1;
1033 relative_reloc->data = bfd_realloc
1034 (relative_reloc->data,
1035 (relative_reloc->size
1036 * sizeof (struct elf_x86_relative_reloc_record)));
1037 }
1038
1039 if (relative_reloc->data == NULL)
1040 {
1041 info->callbacks->einfo
1042 /* xgettext:c-format */
1043 (_("%F%P: %pB: failed to allocate relative reloc record\n"),
1044 info->output_bfd);
1045 return false;
1046 }
1047
1048 relative_reloc->data[newidx].rel = *rel;
1049 relative_reloc->data[newidx].sec = sec;
1050 if (h != NULL)
1051 {
1052 /* Set SYM to NULL to indicate a global symbol. */
1053 relative_reloc->data[newidx].sym = NULL;
1054 relative_reloc->data[newidx].u.h = h;
1055 }
1056 else
1057 {
1058 relative_reloc->data[newidx].sym = sym;
1059 relative_reloc->data[newidx].u.sym_sec = sym_sec;
1060 /* We must keep the symbol buffer since SYM will be used later. */
1061 *keep_symbuf_p = true;
1062 }
1063 relative_reloc->data[newidx].offset = offset;
1064 relative_reloc->data[newidx].address = 0;
1065 return true;
1066 }
1067
1068 /* After input sections have been mapped to output sections and
1069 addresses of output sections are set initiallly, scan input
1070 relocations with the same logic in relocate_section to determine
1071 if a relative relocation should be generated. Save the relative
1072 relocation candidate information for sizing the DT_RELR section
1073 later after all symbols addresses can be determined. */
1074
1075 bool
1076 _bfd_x86_elf_link_relax_section (bfd *abfd ATTRIBUTE_UNUSED,
1077 asection *input_section,
1078 struct bfd_link_info *info,
1079 bool *again)
1080 {
1081 Elf_Internal_Shdr *symtab_hdr;
1082 Elf_Internal_Rela *internal_relocs;
1083 Elf_Internal_Rela *irel, *irelend;
1084 Elf_Internal_Sym *isymbuf = NULL;
1085 struct elf_link_hash_entry **sym_hashes;
1086 const struct elf_backend_data *bed;
1087 struct elf_x86_link_hash_table *htab;
1088 bfd_vma *local_got_offsets;
1089 bool is_x86_64;
1090 bool unaligned_section;
1091 bool return_status = false;
1092 bool keep_symbuf = false;
1093
1094 if (bfd_link_relocatable (info))
1095 return true;
1096
1097 /* Assume we're not going to change any sizes, and we'll only need
1098 one pass. */
1099 *again = false;
1100
1101 bed = get_elf_backend_data (abfd);
1102 htab = elf_x86_hash_table (info, bed->target_id);
1103 if (htab == NULL)
1104 return true;
1105
1106 /* Nothing to do if there are no relocations or relative relocations
1107 have been packed. */
1108 if (input_section == htab->elf.srelrdyn
1109 || input_section->relative_reloc_packed
1110 || ((input_section->flags & (SEC_RELOC | SEC_ALLOC))
1111 != (SEC_RELOC | SEC_ALLOC))
1112 || (input_section->flags & SEC_DEBUGGING) != 0
1113 || input_section->reloc_count == 0)
1114 return true;
1115
1116 /* Skip if the section isn't aligned. */
1117 unaligned_section = input_section->alignment_power == 0;
1118
1119 is_x86_64 = bed->target_id == X86_64_ELF_DATA;
1120
1121 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1122 sym_hashes = elf_sym_hashes (abfd);
1123 local_got_offsets = elf_local_got_offsets (abfd);
1124
1125 /* Load the relocations for this section. */
1126 internal_relocs =
1127 _bfd_elf_link_info_read_relocs (abfd, info, input_section, NULL,
1128 (Elf_Internal_Rela *) NULL,
1129 info->keep_memory);
1130 if (internal_relocs == NULL)
1131 return false;
1132
1133 irelend = internal_relocs + input_section->reloc_count;
1134 for (irel = internal_relocs; irel < irelend; irel++)
1135 {
1136 unsigned int r_type;
1137 unsigned int r_symndx;
1138 Elf_Internal_Sym *isym;
1139 struct elf_link_hash_entry *h;
1140 struct elf_x86_link_hash_entry *eh;
1141 bfd_vma offset;
1142 bool resolved_to_zero;
1143 bool need_copy_reloc_in_pie;
1144 bool pc32_reloc;
1145 asection *sec;
1146 /* Offset must be a multiple of 2. */
1147 bool unaligned_offset = (irel->r_offset & 1) != 0;
1148 /* True if there is a relative relocation against a dynamic
1149 symbol. */
1150 bool dynamic_relative_reloc_p;
1151
1152 /* Get the value of the symbol referred to by the reloc. */
1153 r_symndx = htab->r_sym (irel->r_info);
1154
1155 r_type = ELF32_R_TYPE (irel->r_info);
1156 /* Clear the R_X86_64_converted_reloc_bit bit. */
1157 r_type &= ~R_X86_64_converted_reloc_bit;
1158
1159 sec = NULL;
1160 h = NULL;
1161 dynamic_relative_reloc_p = false;
1162
1163 if (r_symndx < symtab_hdr->sh_info)
1164 {
1165 /* Read this BFD's local symbols. */
1166 if (isymbuf == NULL)
1167 {
1168 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1169 if (isymbuf == NULL)
1170 {
1171 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1172 symtab_hdr->sh_info,
1173 0, NULL, NULL, NULL);
1174 if (isymbuf == NULL)
1175 goto error_return;
1176 }
1177 }
1178
1179 isym = isymbuf + r_symndx;
1180 switch (isym->st_shndx)
1181 {
1182 case SHN_ABS:
1183 sec = bfd_abs_section_ptr;
1184 break;
1185 case SHN_COMMON:
1186 sec = bfd_com_section_ptr;
1187 break;
1188 case SHN_X86_64_LCOMMON:
1189 if (!is_x86_64)
1190 abort ();
1191 sec = &_bfd_elf_large_com_section;
1192 break;
1193 default:
1194 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1195 break;
1196 }
1197
1198 /* Skip relocation against local STT_GNU_IFUNC symbol. */
1199 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1200 continue;
1201
1202 eh = (struct elf_x86_link_hash_entry *) h;
1203 resolved_to_zero = false;
1204 }
1205 else
1206 {
1207 /* Get H and SEC for GENERATE_DYNAMIC_RELOCATION_P below. */
1208 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1209 while (h->root.type == bfd_link_hash_indirect
1210 || h->root.type == bfd_link_hash_warning)
1211 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1212
1213 if (h->root.type == bfd_link_hash_defined
1214 || h->root.type == bfd_link_hash_defweak)
1215 sec = h->root.u.def.section;
1216
1217 /* Skip relocation against STT_GNU_IFUNC symbol. */
1218 if (h->type == STT_GNU_IFUNC)
1219 continue;
1220
1221 eh = (struct elf_x86_link_hash_entry *) h;
1222 resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh);
1223
1224 /* NB: See how elf_backend_finish_dynamic_symbol is called
1225 from elf_link_output_extsym. */
1226 if ((h->dynindx != -1 || h->forced_local)
1227 && ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1228 || h->root.type != bfd_link_hash_undefweak)
1229 || !h->forced_local)
1230 && h->got.offset != (bfd_vma) -1
1231 && ! GOT_TLS_GD_ANY_P (elf_x86_hash_entry (h)->tls_type)
1232 && elf_x86_hash_entry (h)->tls_type != GOT_TLS_IE
1233 && !resolved_to_zero
1234 && SYMBOL_REFERENCES_LOCAL_P (info, h)
1235 && SYMBOL_DEFINED_NON_SHARED_P (h))
1236 dynamic_relative_reloc_p = true;
1237
1238 isym = NULL;
1239 }
1240
1241 if (X86_GOT_TYPE_P (is_x86_64, r_type))
1242 {
1243 /* Pack GOT relative relocations. There should be only a
1244 single R_*_RELATIVE relocation in GOT. */
1245 if (eh != NULL)
1246 {
1247 if (eh->got_relative_reloc_done)
1248 continue;
1249
1250 if (!(dynamic_relative_reloc_p
1251 || (RESOLVED_LOCALLY_P (info, h, htab)
1252 && GENERATE_RELATIVE_RELOC_P (info, h))))
1253 continue;
1254
1255 if (!dynamic_relative_reloc_p)
1256 eh->no_finish_dynamic_symbol = 1;
1257 eh->got_relative_reloc_done = 1;
1258 offset = h->got.offset;
1259 }
1260 else
1261 {
1262 if (elf_x86_relative_reloc_done (abfd)[r_symndx])
1263 continue;
1264
1265 if (!X86_LOCAL_GOT_RELATIVE_RELOC_P (is_x86_64, info,
1266 isym))
1267 continue;
1268
1269 elf_x86_relative_reloc_done (abfd)[r_symndx] = 1;
1270 offset = local_got_offsets[r_symndx];
1271 }
1272
1273 if (!elf_x86_relative_reloc_record_add (info,
1274 &htab->relative_reloc,
1275 irel, htab->elf.sgot,
1276 sec, h, isym, offset,
1277 &keep_symbuf))
1278 goto error_return;
1279
1280 continue;
1281 }
1282
1283 if (is_x86_64
1284 && irel->r_addend == 0
1285 && !ABI_64_P (info->output_bfd))
1286 {
1287 /* For x32, if addend is zero, treat R_X86_64_64 like
1288 R_X86_64_32 and R_X86_64_SIZE64 like R_X86_64_SIZE32. */
1289 if (r_type == R_X86_64_64)
1290 r_type = R_X86_64_32;
1291 else if (r_type == R_X86_64_SIZE64)
1292 r_type = R_X86_64_SIZE32;
1293 }
1294
1295 if (!X86_RELATIVE_RELOC_TYPE_P (is_x86_64, r_type))
1296 continue;
1297
1298 /* Pack non-GOT relative relocations. */
1299 if (is_x86_64)
1300 {
1301 need_copy_reloc_in_pie =
1302 (bfd_link_pie (info)
1303 && h != NULL
1304 && (h->needs_copy
1305 || eh->needs_copy
1306 || (h->root.type == bfd_link_hash_undefined))
1307 && (X86_PCREL_TYPE_P (true, r_type)
1308 || X86_SIZE_TYPE_P (true, r_type)));
1309 pc32_reloc = false;
1310 }
1311 else
1312 {
1313 need_copy_reloc_in_pie = false;
1314 pc32_reloc = r_type == R_386_PC32;
1315 }
1316
1317 if (GENERATE_DYNAMIC_RELOCATION_P (is_x86_64, info, eh, r_type,
1318 sec, need_copy_reloc_in_pie,
1319 resolved_to_zero, pc32_reloc))
1320 {
1321 /* When generating a shared object, these relocations
1322 are copied into the output file to be resolved at run
1323 time. */
1324 offset = _bfd_elf_section_offset (info->output_bfd, info,
1325 input_section,
1326 irel->r_offset);
1327 if (offset == (bfd_vma) -1
1328 || offset == (bfd_vma) -2
1329 || COPY_INPUT_RELOC_P (is_x86_64, info, h, r_type))
1330 continue;
1331
1332 /* This symbol is local, or marked to become local. When
1333 relocation overflow check is disabled, we convert
1334 R_X86_64_32 to dynamic R_X86_64_RELATIVE. */
1335 if (is_x86_64
1336 && !(r_type == htab->pointer_r_type
1337 || (r_type == R_X86_64_32
1338 && htab->params->no_reloc_overflow_check)))
1339 continue;
1340
1341 if (!elf_x86_relative_reloc_record_add
1342 (info,
1343 ((unaligned_section || unaligned_offset)
1344 ? &htab->unaligned_relative_reloc
1345 : &htab->relative_reloc),
1346 irel, input_section, sec, h, isym, offset,
1347 &keep_symbuf))
1348 goto error_return;
1349 }
1350 }
1351
1352 input_section->relative_reloc_packed = 1;
1353
1354 return_status = true;
1355
1356 error_return:
1357 if ((unsigned char *) isymbuf != symtab_hdr->contents)
1358 {
1359 /* Cache the symbol buffer if it must be kept. */
1360 if (keep_symbuf)
1361 symtab_hdr->contents = (unsigned char *) isymbuf;
1362 else
1363 free (isymbuf);
1364 }
1365 if (elf_section_data (input_section)->relocs != internal_relocs)
1366 free (internal_relocs);
1367 return return_status;
1368 }
1369
1370 /* Add an entry to the 64-bit DT_RELR bitmap. */
1371
1372 static void
1373 elf64_dt_relr_bitmap_add
1374 (struct bfd_link_info *info, struct elf_dt_relr_bitmap *bitmap,
1375 uint64_t entry)
1376 {
1377 bfd_size_type newidx;
1378
1379 if (bitmap->u.elf64 == NULL)
1380 {
1381 bitmap->u.elf64 = bfd_malloc (sizeof (uint64_t));
1382 bitmap->count = 0;
1383 bitmap->size = 1;
1384 }
1385
1386 newidx = bitmap->count++;
1387
1388 if (bitmap->count > bitmap->size)
1389 {
1390 bitmap->size <<= 1;
1391 bitmap->u.elf64 = bfd_realloc (bitmap->u.elf64,
1392 (bitmap->size * sizeof (uint64_t)));
1393 }
1394
1395 if (bitmap->u.elf64 == NULL)
1396 {
1397 info->callbacks->einfo
1398 /* xgettext:c-format */
1399 (_("%F%P: %pB: failed to allocate 64-bit DT_RELR bitmap\n"),
1400 info->output_bfd);
1401 }
1402
1403 bitmap->u.elf64[newidx] = entry;
1404 }
1405
1406 /* Add an entry to the 32-bit DT_RELR bitmap. */
1407
1408 static void
1409 elf32_dt_relr_bitmap_add
1410 (struct bfd_link_info *info, struct elf_dt_relr_bitmap *bitmap,
1411 uint32_t entry)
1412 {
1413 bfd_size_type newidx;
1414
1415 if (bitmap->u.elf32 == NULL)
1416 {
1417 bitmap->u.elf32 = bfd_malloc (sizeof (uint32_t));
1418 bitmap->count = 0;
1419 bitmap->size = 1;
1420 }
1421
1422 newidx = bitmap->count++;
1423
1424 if (bitmap->count > bitmap->size)
1425 {
1426 bitmap->size <<= 1;
1427 bitmap->u.elf32 = bfd_realloc (bitmap->u.elf32,
1428 (bitmap->size * sizeof (uint32_t)));
1429 }
1430
1431 if (bitmap->u.elf32 == NULL)
1432 {
1433 info->callbacks->einfo
1434 /* xgettext:c-format */
1435 (_("%F%P: %pB: failed to allocate 32-bit DT_RELR bitmap\n"),
1436 info->output_bfd);
1437 }
1438
1439 bitmap->u.elf32[newidx] = entry;
1440 }
1441
1442 void
1443 _bfd_elf32_write_addend (bfd *abfd, uint64_t value, void *addr)
1444 {
1445 bfd_put_32 (abfd, value, addr);
1446 }
1447
1448 void
1449 _bfd_elf64_write_addend (bfd *abfd, uint64_t value, void *addr)
1450 {
1451 bfd_put_64 (abfd, value, addr);
1452 }
1453
1454 /* Size or finish relative relocations to determine the run-time
1455 addresses for DT_RELR bitmap computation later. OUTREL is set
1456 to NULL in the sizing phase and non-NULL in the finising phase
1457 where the regular relative relocations will be written out. */
1458
1459 static void
1460 elf_x86_size_or_finish_relative_reloc
1461 (bool is_x86_64, struct bfd_link_info *info,
1462 struct elf_x86_link_hash_table *htab, bool unaligned,
1463 Elf_Internal_Rela *outrel)
1464 {
1465 unsigned int align_mask;
1466 bfd_size_type i, count;
1467 asection *sec, *srel;
1468 struct elf_link_hash_entry *h;
1469 bfd_vma offset;
1470 Elf_Internal_Sym *sym;
1471 asection *sym_sec;
1472 asection *sgot = htab->elf.sgot;
1473 asection *srelgot = htab->elf.srelgot;
1474 struct elf_x86_relative_reloc_data *relative_reloc;
1475
1476 if (unaligned)
1477 {
1478 align_mask = 0;
1479 relative_reloc = &htab->unaligned_relative_reloc;
1480 }
1481 else
1482 {
1483 align_mask = 1;
1484 relative_reloc = &htab->relative_reloc;
1485 }
1486
1487 count = relative_reloc->count;
1488 for (i = 0; i < count; i++)
1489 {
1490 sec = relative_reloc->data[i].sec;
1491 sym = relative_reloc->data[i].sym;
1492
1493 /* If SYM is NULL, it must be a global symbol. */
1494 if (sym == NULL)
1495 h = relative_reloc->data[i].u.h;
1496 else
1497 h = NULL;
1498
1499 if (is_x86_64)
1500 {
1501 bfd_vma relocation;
1502 /* This function may be called more than once and REL may be
1503 updated by _bfd_elf_rela_local_sym below. */
1504 Elf_Internal_Rela rel = relative_reloc->data[i].rel;
1505
1506 if (h != NULL)
1507 {
1508 if (h->root.type == bfd_link_hash_defined
1509 || h->root.type == bfd_link_hash_defweak)
1510 {
1511 sym_sec = h->root.u.def.section;
1512 relocation = (h->root.u.def.value
1513 + sym_sec->output_section->vma
1514 + sym_sec->output_offset);
1515 }
1516 else
1517 {
1518 /* Allow undefined symbol only at the sizing phase.
1519 Otherwise skip undefined symbol here. Undefined
1520 symbol will be reported by relocate_section. */
1521 if (outrel == NULL)
1522 relocation = 0;
1523 else
1524 continue;
1525 }
1526 }
1527 else
1528 {
1529 sym_sec = relative_reloc->data[i].u.sym_sec;
1530 relocation = _bfd_elf_rela_local_sym
1531 (info->output_bfd, sym, &sym_sec, &rel);
1532 }
1533
1534 if (outrel != NULL)
1535 {
1536 outrel->r_addend = relocation;
1537 if (sec == sgot)
1538 {
1539 if (h != NULL && h->needs_plt)
1540 abort ();
1541 }
1542 else
1543 outrel->r_addend += rel.r_addend;
1544
1545 /* Write the implicit addend if ALIGN_MASK isn't 0. */
1546 if (align_mask)
1547 {
1548 if (sec == sgot)
1549 {
1550 if (relative_reloc->data[i].offset >= sec->size)
1551 abort ();
1552 htab->elf_write_addend_in_got
1553 (info->output_bfd, outrel->r_addend,
1554 sec->contents + relative_reloc->data[i].offset);
1555 }
1556 else
1557 {
1558 bfd_byte *contents;
1559
1560 if (rel.r_offset >= sec->size)
1561 abort ();
1562
1563 if (elf_section_data (sec)->this_hdr.contents
1564 != NULL)
1565 contents
1566 = elf_section_data (sec)->this_hdr.contents;
1567 else
1568 {
1569 if (!bfd_malloc_and_get_section (sec->owner,
1570 sec,
1571 &contents))
1572 info->callbacks->einfo
1573 /* xgettext:c-format */
1574 (_("%F%P: %pB: failed to allocate memory for section `%pA'\n"),
1575 info->output_bfd, sec);
1576
1577 /* Cache the section contents for
1578 elf_link_input_bfd. */
1579 elf_section_data (sec)->this_hdr.contents
1580 = contents;
1581 }
1582 htab->elf_write_addend
1583 (info->output_bfd, outrel->r_addend,
1584 contents + rel.r_offset);
1585 }
1586 }
1587 }
1588 }
1589
1590 if (sec == sgot)
1591 srel = srelgot;
1592 else
1593 srel = elf_section_data (sec)->sreloc;
1594 offset = (sec->output_section->vma + sec->output_offset
1595 + relative_reloc->data[i].offset);
1596 relative_reloc->data[i].address = offset;
1597 if (outrel != NULL)
1598 {
1599 outrel->r_offset = offset;
1600
1601 if ((outrel->r_offset & align_mask) != 0)
1602 abort ();
1603
1604 if (htab->params->report_relative_reloc)
1605 _bfd_x86_elf_link_report_relative_reloc
1606 (info, sec, h, sym, htab->relative_r_name, outrel);
1607
1608 /* Generate regular relative relocation if ALIGN_MASK is 0. */
1609 if (align_mask == 0)
1610 htab->elf_append_reloc (info->output_bfd, srel, outrel);
1611 }
1612 }
1613 }
1614
1615 /* Compute the DT_RELR section size. Set NEED_PLAYOUT to true if
1616 the DT_RELR section size has been increased. */
1617
1618 static void
1619 elf_x86_compute_dl_relr_bitmap
1620 (struct bfd_link_info *info, struct elf_x86_link_hash_table *htab,
1621 bool *need_layout)
1622 {
1623 bfd_vma base;
1624 bfd_size_type i, count, new_count;
1625 struct elf_x86_relative_reloc_data *relative_reloc =
1626 &htab->relative_reloc;
1627 /* Save the old DT_RELR bitmap count. Don't shrink the DT_RELR bitmap
1628 if the new DT_RELR bitmap count is smaller than the old one. Pad
1629 with trailing 1s which won't be decoded to more relocations. */
1630 bfd_size_type dt_relr_bitmap_count = htab->dt_relr_bitmap.count;
1631
1632 /* Clear the DT_RELR bitmap count. */
1633 htab->dt_relr_bitmap.count = 0;
1634
1635 count = relative_reloc->count;
1636
1637 if (ABI_64_P (info->output_bfd))
1638 {
1639 /* Compute the 64-bit DT_RELR bitmap. */
1640 i = 0;
1641 while (i < count)
1642 {
1643 if ((relative_reloc->data[i].address % 1) != 0)
1644 abort ();
1645
1646 elf64_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap,
1647 relative_reloc->data[i].address);
1648
1649 base = relative_reloc->data[i].address + 8;
1650 i++;
1651
1652 while (i < count)
1653 {
1654 uint64_t bitmap = 0;
1655 for (; i < count; i++)
1656 {
1657 bfd_vma delta = (relative_reloc->data[i].address
1658 - base);
1659 /* Stop if it is too far from base. */
1660 if (delta >= 63 * 8)
1661 break;
1662 /* Stop if it isn't a multiple of 8. */
1663 if ((delta % 8) != 0)
1664 break;
1665 bitmap |= 1ULL << (delta / 8);
1666 }
1667
1668 if (bitmap == 0)
1669 break;
1670
1671 elf64_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap,
1672 (bitmap << 1) | 1);
1673
1674 base += 63 * 8;
1675 }
1676 }
1677
1678 new_count = htab->dt_relr_bitmap.count;
1679 if (dt_relr_bitmap_count > new_count)
1680 {
1681 /* Don't shrink the DT_RELR section size to avoid section
1682 layout oscillation. Instead, pad the DT_RELR bitmap with
1683 1s which do not decode to more relocations. */
1684
1685 htab->dt_relr_bitmap.count = dt_relr_bitmap_count;
1686 count = dt_relr_bitmap_count - new_count;
1687 for (i = 0; i < count; i++)
1688 htab->dt_relr_bitmap.u.elf64[new_count + i] = 1;
1689 }
1690 }
1691 else
1692 {
1693 /* Compute the 32-bit DT_RELR bitmap. */
1694 i = 0;
1695 while (i < count)
1696 {
1697 if ((relative_reloc->data[i].address % 1) != 0)
1698 abort ();
1699
1700 elf32_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap,
1701 relative_reloc->data[i].address);
1702
1703 base = relative_reloc->data[i].address + 4;
1704 i++;
1705
1706 while (i < count)
1707 {
1708 uint32_t bitmap = 0;
1709 for (; i < count; i++)
1710 {
1711 bfd_vma delta = (relative_reloc->data[i].address
1712 - base);
1713 /* Stop if it is too far from base. */
1714 if (delta >= 31 * 4)
1715 break;
1716 /* Stop if it isn't a multiple of 4. */
1717 if ((delta % 4) != 0)
1718 break;
1719 bitmap |= 1ULL << (delta / 4);
1720 }
1721
1722 if (bitmap == 0)
1723 break;
1724
1725 elf32_dt_relr_bitmap_add (info, &htab->dt_relr_bitmap,
1726 (bitmap << 1) | 1);
1727
1728 base += 31 * 4;
1729 }
1730 }
1731
1732 new_count = htab->dt_relr_bitmap.count;
1733 if (dt_relr_bitmap_count > new_count)
1734 {
1735 /* Don't shrink the DT_RELR section size to avoid section
1736 layout oscillation. Instead, pad the DT_RELR bitmap with
1737 1s which do not decode to more relocations. */
1738
1739 htab->dt_relr_bitmap.count = dt_relr_bitmap_count;
1740 count = dt_relr_bitmap_count - new_count;
1741 for (i = 0; i < count; i++)
1742 htab->dt_relr_bitmap.u.elf32[new_count + i] = 1;
1743 }
1744 }
1745
1746 if (htab->dt_relr_bitmap.count != dt_relr_bitmap_count)
1747 {
1748 if (need_layout)
1749 {
1750 /* The .relr.dyn section size is changed. Update the section
1751 size and tell linker to layout sections again. */
1752 htab->elf.srelrdyn->size =
1753 (htab->dt_relr_bitmap.count
1754 * (ABI_64_P (info->output_bfd) ? 8 : 4));
1755
1756 *need_layout = true;
1757 }
1758 else
1759 info->callbacks->einfo
1760 /* xgettext:c-format */
1761 (_("%F%P: %pB: size of compact relative reloc section is "
1762 "changed: new (%lu) != old (%lu)\n"),
1763 info->output_bfd, htab->dt_relr_bitmap.count,
1764 dt_relr_bitmap_count);
1765 }
1766 }
1767
1768 /* Write out the DT_RELR section. */
1769
1770 static void
1771 elf_x86_write_dl_relr_bitmap (struct bfd_link_info *info,
1772 struct elf_x86_link_hash_table *htab)
1773 {
1774 asection *sec = htab->elf.srelrdyn;
1775 bfd_size_type size = sec->size;
1776 bfd_size_type i;
1777 unsigned char *contents;
1778
1779 contents = (unsigned char *) bfd_alloc (sec->owner, size);
1780 if (contents == NULL)
1781 info->callbacks->einfo
1782 /* xgettext:c-format */
1783 (_("%F%P: %pB: failed to allocate compact relative reloc section\n"),
1784 info->output_bfd);
1785
1786 /* Cache the section contents for elf_link_input_bfd. */
1787 sec->contents = contents;
1788
1789 if (ABI_64_P (info->output_bfd))
1790 for (i = 0; i < htab->dt_relr_bitmap.count; i++, contents += 8)
1791 bfd_put_64 (info->output_bfd, htab->dt_relr_bitmap.u.elf64[i],
1792 contents);
1793 else
1794 for (i = 0; i < htab->dt_relr_bitmap.count; i++, contents += 4)
1795 bfd_put_32 (info->output_bfd, htab->dt_relr_bitmap.u.elf32[i],
1796 contents);
1797 }
1798
1799 /* Sort relative relocations by address. */
1800
1801 static int
1802 elf_x86_relative_reloc_compare (const void *pa, const void *pb)
1803 {
1804 struct elf_x86_relative_reloc_record *a =
1805 (struct elf_x86_relative_reloc_record *) pa;
1806 struct elf_x86_relative_reloc_record *b =
1807 (struct elf_x86_relative_reloc_record *) pb;
1808 if (a->address < b->address)
1809 return -1;
1810 if (a->address > b->address)
1811 return 1;
1812 return 0;
1813 }
1814
1815 enum dynobj_sframe_plt_type
1816 {
1817 SFRAME_PLT = 1,
1818 SFRAME_PLT_SEC = 2
1819 };
1820
1821 /* Create SFrame stack trace info for the plt entries in the .plt section
1822 of type PLT_SEC_TYPE. */
1823
1824 static bool
1825 _bfd_x86_elf_create_sframe_plt (bfd *output_bfd,
1826 struct bfd_link_info *info,
1827 unsigned int plt_sec_type)
1828 {
1829 struct elf_x86_link_hash_table *htab;
1830 const struct elf_backend_data *bed;
1831
1832 bool plt0_generated_p;
1833 unsigned int plt0_entry_size;
1834 unsigned char func_info;
1835 uint32_t fre_type;
1836 /* The dynamic plt section for which .sframe stack trace information is being
1837 created. */
1838 asection *dpltsec;
1839
1840 int err = 0;
1841
1842 sframe_encoder_ctx **ectx = NULL;
1843 unsigned plt_entry_size = 0;
1844 unsigned int num_pltn_fres = 0;
1845 unsigned int num_pltn_entries = 0;
1846
1847 bed = get_elf_backend_data (output_bfd);
1848 htab = elf_x86_hash_table (info, bed->target_id);
1849 /* Whether SFrame stack trace info for plt0 is to be generated. */
1850 plt0_generated_p = htab->plt.has_plt0;
1851 plt0_entry_size
1852 = (plt0_generated_p) ? htab->sframe_plt->plt0_entry_size : 0;
1853
1854 switch (plt_sec_type)
1855 {
1856 case SFRAME_PLT:
1857 {
1858 ectx = &htab->plt_cfe_ctx;
1859 dpltsec = htab->elf.splt;
1860
1861 plt_entry_size = htab->plt.plt_entry_size;
1862 num_pltn_fres = htab->sframe_plt->pltn_num_fres;
1863 num_pltn_entries
1864 = (htab->elf.splt->size - plt0_entry_size) / plt_entry_size;
1865
1866 break;
1867 }
1868 case SFRAME_PLT_SEC:
1869 {
1870 ectx = &htab->plt_second_cfe_ctx;
1871 /* FIXME - this or htab->plt_second_sframe ? */
1872 dpltsec = htab->plt_second_eh_frame;
1873
1874 plt_entry_size = htab->sframe_plt->sec_pltn_entry_size;
1875 num_pltn_fres = htab->sframe_plt->sec_pltn_num_fres;
1876 num_pltn_entries
1877 = htab->plt_second_eh_frame->size / plt_entry_size;
1878 break;
1879 }
1880 default:
1881 /* No other value is possible. */
1882 return false;
1883 break;
1884 }
1885
1886 *ectx = sframe_encode (SFRAME_VERSION_2,
1887 0,
1888 SFRAME_ABI_AMD64_ENDIAN_LITTLE,
1889 SFRAME_CFA_FIXED_FP_INVALID,
1890 -8, /* Fixed RA offset. */
1891 &err);
1892
1893 /* FRE type is dependent on the size of the function. */
1894 fre_type = sframe_calc_fre_type (dpltsec->size);
1895 func_info = sframe_fde_create_func_info (fre_type, SFRAME_FDE_TYPE_PCINC);
1896
1897 /* Add SFrame FDE and the associated FREs for plt0 if plt0 has been
1898 generated. */
1899 if (plt0_generated_p)
1900 {
1901 /* Add SFrame FDE for plt0, the function start address is updated later
1902 at _bfd_elf_merge_section_sframe time. */
1903 sframe_encoder_add_funcdesc_v2 (*ectx,
1904 0, /* func start addr. */
1905 plt0_entry_size,
1906 func_info,
1907 16,
1908 0 /* Num FREs. */);
1909 sframe_frame_row_entry plt0_fre;
1910 unsigned int num_plt0_fres = htab->sframe_plt->plt0_num_fres;
1911 for (unsigned int j = 0; j < num_plt0_fres; j++)
1912 {
1913 plt0_fre = *(htab->sframe_plt->plt0_fres[j]);
1914 sframe_encoder_add_fre (*ectx, 0, &plt0_fre);
1915 }
1916 }
1917
1918
1919 if (num_pltn_entries)
1920 {
1921 /* pltn entries use an SFrame FDE of type
1922 SFRAME_FDE_TYPE_PCMASK to exploit the repetitive
1923 pattern of the instructions in these entries. Using this SFrame FDE
1924 type helps in keeping the SFrame stack trace info for pltn entries
1925 compact. */
1926 func_info = sframe_fde_create_func_info (fre_type,
1927 SFRAME_FDE_TYPE_PCMASK);
1928 /* Add the SFrame FDE for all PCs starting at the first pltn entry (hence,
1929 function start address = plt0_entry_size. As usual, this will be
1930 updated later at _bfd_elf_merge_section_sframe, by when the
1931 sections are relocated. */
1932 sframe_encoder_add_funcdesc_v2 (*ectx,
1933 plt0_entry_size, /* func start addr. */
1934 dpltsec->size - plt0_entry_size,
1935 func_info,
1936 16,
1937 0 /* Num FREs. */);
1938
1939 sframe_frame_row_entry pltn_fre;
1940 /* Now add the FREs for pltn. Simply adding the two FREs suffices due
1941 to the usage of SFRAME_FDE_TYPE_PCMASK above. */
1942 for (unsigned int j = 0; j < num_pltn_fres; j++)
1943 {
1944 pltn_fre = *(htab->sframe_plt->pltn_fres[j]);
1945 sframe_encoder_add_fre (*ectx, 1, &pltn_fre);
1946 }
1947 }
1948
1949 return true;
1950 }
1951
1952 /* Put contents of the .sframe section corresponding to the specified
1953 PLT_SEC_TYPE. */
1954
1955 static bool
1956 _bfd_x86_elf_write_sframe_plt (bfd *output_bfd,
1957 struct bfd_link_info *info,
1958 unsigned int plt_sec_type)
1959 {
1960 struct elf_x86_link_hash_table *htab;
1961 const struct elf_backend_data *bed;
1962 sframe_encoder_ctx *ectx;
1963 size_t sec_size;
1964 asection *sec;
1965 bfd *dynobj;
1966
1967 int err = 0;
1968
1969 bed = get_elf_backend_data (output_bfd);
1970 htab = elf_x86_hash_table (info, bed->target_id);
1971 dynobj = htab->elf.dynobj;
1972
1973 switch (plt_sec_type)
1974 {
1975 case SFRAME_PLT:
1976 ectx = htab->plt_cfe_ctx;
1977 sec = htab->plt_sframe;
1978 break;
1979 case SFRAME_PLT_SEC:
1980 ectx = htab->plt_second_cfe_ctx;
1981 sec = htab->plt_second_sframe;
1982 break;
1983 default:
1984 /* No other value is possible. */
1985 return false;
1986 break;
1987 }
1988
1989 BFD_ASSERT (ectx);
1990
1991 void *contents = sframe_encoder_write (ectx, &sec_size, &err);
1992
1993 sec->size = (bfd_size_type) sec_size;
1994 sec->contents = (unsigned char *) bfd_zalloc (dynobj, sec->size);
1995 memcpy (sec->contents, contents, sec_size);
1996
1997 sframe_encoder_free (&ectx);
1998
1999 return true;
2000 }
2001
2002 bool
2003 _bfd_elf_x86_size_relative_relocs (struct bfd_link_info *info,
2004 bool *need_layout)
2005 {
2006 struct elf_x86_link_hash_table *htab;
2007 const struct elf_backend_data *bed;
2008 bool is_x86_64;
2009 bfd_size_type i, count, unaligned_count;
2010 asection *sec, *srel;
2011
2012 /* Do nothing for ld -r. */
2013 if (bfd_link_relocatable (info))
2014 return true;
2015
2016 bed = get_elf_backend_data (info->output_bfd);
2017 htab = elf_x86_hash_table (info, bed->target_id);
2018 if (htab == NULL)
2019 return false;
2020
2021 count = htab->relative_reloc.count;
2022 unaligned_count = htab->unaligned_relative_reloc.count;
2023 if (count == 0)
2024 {
2025 if (htab->generate_relative_reloc_pass == 0
2026 && htab->elf.srelrdyn != NULL)
2027 {
2028 /* Remove the empty .relr.dyn sections now. */
2029 if (!bfd_is_abs_section (htab->elf.srelrdyn->output_section))
2030 {
2031 bfd_section_list_remove
2032 (info->output_bfd, htab->elf.srelrdyn->output_section);
2033 info->output_bfd->section_count--;
2034 }
2035 bfd_section_list_remove (htab->elf.srelrdyn->owner,
2036 htab->elf.srelrdyn);
2037 htab->elf.srelrdyn->owner->section_count--;
2038 }
2039 if (unaligned_count == 0)
2040 {
2041 htab->generate_relative_reloc_pass++;
2042 return true;
2043 }
2044 }
2045
2046 is_x86_64 = bed->target_id == X86_64_ELF_DATA;
2047
2048 /* Size relative relocations. */
2049 if (htab->generate_relative_reloc_pass)
2050 {
2051 /* Reset the regular relative relocation count. */
2052 for (i = 0; i < unaligned_count; i++)
2053 {
2054 sec = htab->unaligned_relative_reloc.data[i].sec;
2055 srel = elf_section_data (sec)->sreloc;
2056 srel->reloc_count = 0;
2057 }
2058 }
2059 else
2060 {
2061 /* Remove the reserved space for compact relative relocations. */
2062 if (count)
2063 {
2064 asection *sgot = htab->elf.sgot;
2065 asection *srelgot = htab->elf.srelgot;
2066
2067 for (i = 0; i < count; i++)
2068 {
2069 sec = htab->relative_reloc.data[i].sec;
2070 if (sec == sgot)
2071 srel = srelgot;
2072 else
2073 srel = elf_section_data (sec)->sreloc;
2074 srel->size -= htab->sizeof_reloc;
2075 }
2076 }
2077 }
2078
2079 /* Size unaligned relative relocations. */
2080 if (unaligned_count)
2081 elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab,
2082 true, NULL);
2083
2084 if (count)
2085 {
2086 elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab,
2087 false, NULL);
2088
2089 /* Sort relative relocations by addresses. We only need to
2090 sort them in the first pass since the relative positions
2091 won't change. */
2092 if (htab->generate_relative_reloc_pass == 0)
2093 qsort (htab->relative_reloc.data, count,
2094 sizeof (struct elf_x86_relative_reloc_record),
2095 elf_x86_relative_reloc_compare);
2096
2097 elf_x86_compute_dl_relr_bitmap (info, htab, need_layout);
2098 }
2099
2100 htab->generate_relative_reloc_pass++;
2101
2102 return true;
2103 }
2104
2105 bool
2106 _bfd_elf_x86_finish_relative_relocs (struct bfd_link_info *info)
2107 {
2108 struct elf_x86_link_hash_table *htab;
2109 const struct elf_backend_data *bed;
2110 Elf_Internal_Rela outrel;
2111 bool is_x86_64;
2112 bfd_size_type count;
2113
2114 /* Do nothing for ld -r. */
2115 if (bfd_link_relocatable (info))
2116 return true;
2117
2118 bed = get_elf_backend_data (info->output_bfd);
2119 htab = elf_x86_hash_table (info, bed->target_id);
2120 if (htab == NULL)
2121 return false;
2122
2123 is_x86_64 = bed->target_id == X86_64_ELF_DATA;
2124
2125 outrel.r_info = htab->r_info (0, htab->relative_r_type);
2126
2127 if (htab->unaligned_relative_reloc.count)
2128 elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab,
2129 true, &outrel);
2130
2131 count = htab->relative_reloc.count;
2132 if (count)
2133 {
2134 elf_x86_size_or_finish_relative_reloc (is_x86_64, info, htab,
2135 false, &outrel);
2136
2137 elf_x86_compute_dl_relr_bitmap (info, htab, NULL);
2138
2139 elf_x86_write_dl_relr_bitmap (info, htab);
2140 }
2141
2142 return true;
2143 }
2144
2145 bool
2146 _bfd_elf_x86_valid_reloc_p (asection *input_section,
2147 struct bfd_link_info *info,
2148 struct elf_x86_link_hash_table *htab,
2149 const Elf_Internal_Rela *rel,
2150 struct elf_link_hash_entry *h,
2151 Elf_Internal_Sym *sym,
2152 Elf_Internal_Shdr *symtab_hdr,
2153 bool *no_dynreloc_p)
2154 {
2155 bool valid_p = true;
2156
2157 *no_dynreloc_p = false;
2158
2159 /* Check If relocation against non-preemptible absolute symbol is
2160 valid in PIC. FIXME: Can't use SYMBOL_REFERENCES_LOCAL_P since
2161 it may call _bfd_elf_link_hide_sym_by_version and result in
2162 ld-elfvers/ vers21 test failure. */
2163 if (bfd_link_pic (info)
2164 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
2165 {
2166 const struct elf_backend_data *bed;
2167 unsigned int r_type;
2168 Elf_Internal_Rela irel;
2169
2170 /* Skip non-absolute symbol. */
2171 if (h)
2172 {
2173 if (!ABS_SYMBOL_P (h))
2174 return valid_p;
2175 }
2176 else if (sym->st_shndx != SHN_ABS)
2177 return valid_p;
2178
2179 bed = get_elf_backend_data (input_section->owner);
2180 r_type = ELF32_R_TYPE (rel->r_info);
2181 irel = *rel;
2182
2183 /* Only allow relocations against absolute symbol, which can be
2184 resolved as absolute value + addend. GOTPCREL and GOT32
2185 relocations are allowed since absolute value + addend is
2186 stored in the GOT slot. */
2187 if (bed->target_id == X86_64_ELF_DATA)
2188 {
2189 r_type &= ~R_X86_64_converted_reloc_bit;
2190 valid_p = (r_type == R_X86_64_64
2191 || r_type == R_X86_64_32
2192 || r_type == R_X86_64_32S
2193 || r_type == R_X86_64_16
2194 || r_type == R_X86_64_8
2195 || r_type == R_X86_64_GOTPCREL
2196 || r_type == R_X86_64_GOTPCRELX
2197 || r_type == R_X86_64_REX_GOTPCRELX);
2198 if (!valid_p)
2199 {
2200 unsigned int r_symndx = htab->r_sym (rel->r_info);
2201 irel.r_info = htab->r_info (r_symndx, r_type);
2202 }
2203 }
2204 else
2205 valid_p = (r_type == R_386_32
2206 || r_type == R_386_16
2207 || r_type == R_386_8
2208 || r_type == R_386_GOT32
2209 || r_type == R_386_GOT32X);
2210
2211 if (valid_p)
2212 *no_dynreloc_p = true;
2213 else
2214 {
2215 const char *name;
2216 arelent internal_reloc;
2217
2218 if (!bed->elf_info_to_howto (input_section->owner,
2219 &internal_reloc, &irel)
2220 || internal_reloc.howto == NULL)
2221 abort ();
2222
2223 if (h)
2224 name = h->root.root.string;
2225 else
2226 name = bfd_elf_sym_name (input_section->owner, symtab_hdr,
2227 sym, NULL);
2228 info->callbacks->einfo
2229 /* xgettext:c-format */
2230 (_("%F%P: %pB: relocation %s against absolute symbol "
2231 "`%s' in section `%pA' is disallowed\n"),
2232 input_section->owner, internal_reloc.howto->name, name,
2233 input_section);
2234 bfd_set_error (bfd_error_bad_value);
2235 }
2236 }
2237
2238 return valid_p;
2239 }
2240
2241 /* Set the sizes of the dynamic sections. */
2242
2243 bool
2244 _bfd_x86_elf_size_dynamic_sections (bfd *output_bfd,
2245 struct bfd_link_info *info)
2246 {
2247 struct elf_x86_link_hash_table *htab;
2248 bfd *dynobj;
2249 asection *s;
2250 bool relocs;
2251 bfd *ibfd;
2252 const struct elf_backend_data *bed
2253 = get_elf_backend_data (output_bfd);
2254
2255 htab = elf_x86_hash_table (info, bed->target_id);
2256 if (htab == NULL)
2257 return false;
2258 dynobj = htab->elf.dynobj;
2259 if (dynobj == NULL)
2260 abort ();
2261
2262 /* Set up .got offsets for local syms, and space for local dynamic
2263 relocs. */
2264 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2265 {
2266 bfd_signed_vma *local_got;
2267 bfd_signed_vma *end_local_got;
2268 char *local_tls_type;
2269 bfd_vma *local_tlsdesc_gotent;
2270 bfd_size_type locsymcount;
2271 Elf_Internal_Shdr *symtab_hdr;
2272 asection *srel;
2273
2274 if (! is_x86_elf (ibfd, htab))
2275 continue;
2276
2277 for (s = ibfd->sections; s != NULL; s = s->next)
2278 {
2279 struct elf_dyn_relocs *p;
2280
2281 for (p = ((struct elf_dyn_relocs *)
2282 elf_section_data (s)->local_dynrel);
2283 p != NULL;
2284 p = p->next)
2285 {
2286 if (!bfd_is_abs_section (p->sec)
2287 && bfd_is_abs_section (p->sec->output_section))
2288 {
2289 /* Input section has been discarded, either because
2290 it is a copy of a linkonce section or due to
2291 linker script /DISCARD/, so we'll be discarding
2292 the relocs too. */
2293 }
2294 else if (htab->elf.target_os == is_vxworks
2295 && strcmp (p->sec->output_section->name,
2296 ".tls_vars") == 0)
2297 {
2298 /* Relocations in vxworks .tls_vars sections are
2299 handled specially by the loader. */
2300 }
2301 else if (p->count != 0)
2302 {
2303 srel = elf_section_data (p->sec)->sreloc;
2304 srel->size += p->count * htab->sizeof_reloc;
2305 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2306 && (info->flags & DF_TEXTREL) == 0)
2307 {
2308 info->flags |= DF_TEXTREL;
2309 if (bfd_link_textrel_check (info))
2310 /* xgettext:c-format */
2311 info->callbacks->einfo
2312 (_("%P: %pB: warning: relocation "
2313 "in read-only section `%pA'\n"),
2314 p->sec->owner, p->sec);
2315 }
2316 }
2317 }
2318 }
2319
2320 local_got = elf_local_got_refcounts (ibfd);
2321 if (!local_got)
2322 continue;
2323
2324 symtab_hdr = &elf_symtab_hdr (ibfd);
2325 locsymcount = symtab_hdr->sh_info;
2326 end_local_got = local_got + locsymcount;
2327 local_tls_type = elf_x86_local_got_tls_type (ibfd);
2328 local_tlsdesc_gotent = elf_x86_local_tlsdesc_gotent (ibfd);
2329 s = htab->elf.sgot;
2330 srel = htab->elf.srelgot;
2331 for (; local_got < end_local_got;
2332 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2333 {
2334 *local_tlsdesc_gotent = (bfd_vma) -1;
2335 if (*local_got > 0)
2336 {
2337 if (GOT_TLS_GDESC_P (*local_tls_type))
2338 {
2339 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2340 - elf_x86_compute_jump_table_size (htab);
2341 htab->elf.sgotplt->size += 2 * htab->got_entry_size;
2342 *local_got = (bfd_vma) -2;
2343 }
2344 if (! GOT_TLS_GDESC_P (*local_tls_type)
2345 || GOT_TLS_GD_P (*local_tls_type))
2346 {
2347 *local_got = s->size;
2348 s->size += htab->got_entry_size;
2349 if (GOT_TLS_GD_P (*local_tls_type)
2350 || *local_tls_type == GOT_TLS_IE_BOTH)
2351 s->size += htab->got_entry_size;
2352 }
2353 if ((bfd_link_pic (info) && *local_tls_type != GOT_ABS)
2354 || GOT_TLS_GD_ANY_P (*local_tls_type)
2355 || (*local_tls_type & GOT_TLS_IE))
2356 {
2357 if (*local_tls_type == GOT_TLS_IE_BOTH)
2358 srel->size += 2 * htab->sizeof_reloc;
2359 else if (GOT_TLS_GD_P (*local_tls_type)
2360 || ! GOT_TLS_GDESC_P (*local_tls_type))
2361 srel->size += htab->sizeof_reloc;
2362 if (GOT_TLS_GDESC_P (*local_tls_type))
2363 {
2364 htab->elf.srelplt->size += htab->sizeof_reloc;
2365 if (bed->target_id == X86_64_ELF_DATA)
2366 htab->elf.tlsdesc_plt = (bfd_vma) -1;
2367 }
2368 }
2369 }
2370 else
2371 *local_got = (bfd_vma) -1;
2372 }
2373 }
2374
2375 if (htab->tls_ld_or_ldm_got.refcount > 0)
2376 {
2377 /* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM
2378 or R_X86_64_TLSLD relocs. */
2379 htab->tls_ld_or_ldm_got.offset = htab->elf.sgot->size;
2380 htab->elf.sgot->size += 2 * htab->got_entry_size;
2381 htab->elf.srelgot->size += htab->sizeof_reloc;
2382 }
2383 else
2384 htab->tls_ld_or_ldm_got.offset = -1;
2385
2386 /* Allocate global sym .plt and .got entries, and space for global
2387 sym dynamic relocs. */
2388 elf_link_hash_traverse (&htab->elf, elf_x86_allocate_dynrelocs,
2389 info);
2390
2391 /* Allocate .plt and .got entries, and space for local symbols. */
2392 htab_traverse (htab->loc_hash_table, elf_x86_allocate_local_dynreloc,
2393 info);
2394
2395 /* For every jump slot reserved in the sgotplt, reloc_count is
2396 incremented. However, when we reserve space for TLS descriptors,
2397 it's not incremented, so in order to compute the space reserved
2398 for them, it suffices to multiply the reloc count by the jump
2399 slot size.
2400
2401 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2402 so that R_{386,X86_64}_IRELATIVE entries come last. */
2403 if (htab->elf.srelplt)
2404 {
2405 htab->next_tls_desc_index = htab->elf.srelplt->reloc_count;
2406 htab->sgotplt_jump_table_size
2407 = elf_x86_compute_jump_table_size (htab);
2408 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2409 }
2410 else if (htab->elf.irelplt)
2411 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2412
2413 if (htab->elf.tlsdesc_plt)
2414 {
2415 /* NB: tlsdesc_plt is set only for x86-64. If we're not using
2416 lazy TLS relocations, don't generate the PLT and GOT entries
2417 they require. */
2418 if ((info->flags & DF_BIND_NOW))
2419 htab->elf.tlsdesc_plt = 0;
2420 else
2421 {
2422 htab->elf.tlsdesc_got = htab->elf.sgot->size;
2423 htab->elf.sgot->size += htab->got_entry_size;
2424 /* Reserve room for the initial entry.
2425 FIXME: we could probably do away with it in this case. */
2426 if (htab->elf.splt->size == 0)
2427 htab->elf.splt->size = htab->plt.plt_entry_size;
2428 htab->elf.tlsdesc_plt = htab->elf.splt->size;
2429 htab->elf.splt->size += htab->plt.plt_entry_size;
2430 }
2431 }
2432
2433 if (htab->elf.sgotplt)
2434 {
2435 /* Don't allocate .got.plt section if there are no GOT nor PLT
2436 entries and there is no reference to _GLOBAL_OFFSET_TABLE_. */
2437 if ((htab->elf.hgot == NULL
2438 || !htab->got_referenced)
2439 && (htab->elf.sgotplt->size == bed->got_header_size)
2440 && (htab->elf.splt == NULL
2441 || htab->elf.splt->size == 0)
2442 && (htab->elf.sgot == NULL
2443 || htab->elf.sgot->size == 0)
2444 && (htab->elf.iplt == NULL
2445 || htab->elf.iplt->size == 0)
2446 && (htab->elf.igotplt == NULL
2447 || htab->elf.igotplt->size == 0))
2448 {
2449 htab->elf.sgotplt->size = 0;
2450 /* Solaris requires to keep _GLOBAL_OFFSET_TABLE_ even if it
2451 isn't used. */
2452 if (htab->elf.hgot != NULL
2453 && htab->elf.target_os != is_solaris)
2454 {
2455 /* Remove the unused _GLOBAL_OFFSET_TABLE_ from symbol
2456 table. */
2457 htab->elf.hgot->root.type = bfd_link_hash_undefined;
2458 htab->elf.hgot->root.u.undef.abfd
2459 = htab->elf.hgot->root.u.def.section->owner;
2460 htab->elf.hgot->root.linker_def = 0;
2461 htab->elf.hgot->ref_regular = 0;
2462 htab->elf.hgot->def_regular = 0;
2463 }
2464 }
2465 }
2466
2467 if (_bfd_elf_eh_frame_present (info))
2468 {
2469 if (htab->plt_eh_frame != NULL
2470 && htab->elf.splt != NULL
2471 && htab->elf.splt->size != 0
2472 && !bfd_is_abs_section (htab->elf.splt->output_section))
2473 htab->plt_eh_frame->size = htab->plt.eh_frame_plt_size;
2474
2475 if (htab->plt_got_eh_frame != NULL
2476 && htab->plt_got != NULL
2477 && htab->plt_got->size != 0
2478 && !bfd_is_abs_section (htab->plt_got->output_section))
2479 htab->plt_got_eh_frame->size
2480 = htab->non_lazy_plt->eh_frame_plt_size;
2481
2482 /* Unwind info for the second PLT and .plt.got sections are
2483 identical. */
2484 if (htab->plt_second_eh_frame != NULL
2485 && htab->plt_second != NULL
2486 && htab->plt_second->size != 0
2487 && !bfd_is_abs_section (htab->plt_second->output_section))
2488 htab->plt_second_eh_frame->size
2489 = htab->non_lazy_plt->eh_frame_plt_size;
2490 }
2491
2492 /* No need to size the .sframe section explicitly because the write-out
2493 mechanism is different. Simply prep up the FDE/FRE for the
2494 .plt section. */
2495 if (_bfd_elf_sframe_present (info))
2496 {
2497 if (htab->plt_sframe != NULL
2498 && htab->elf.splt != NULL
2499 && htab->elf.splt->size != 0
2500 && !bfd_is_abs_section (htab->elf.splt->output_section))
2501 {
2502 _bfd_x86_elf_create_sframe_plt (output_bfd, info, SFRAME_PLT);
2503 /* FIXME - Dirty Hack. Set the size to something non-zero for now,
2504 so that the section does not get stripped out below. The precise
2505 size of this section is known only when the contents are
2506 serialized in _bfd_x86_elf_write_sframe_plt. */
2507 htab->plt_sframe->size = sizeof (sframe_header) + 1;
2508 }
2509
2510 /* FIXME - generate for .got.plt ? */
2511
2512 /* Unwind info for the second PLT. */
2513 if (htab->plt_second_sframe != NULL
2514 && htab->plt_second != NULL
2515 && htab->plt_second->size != 0
2516 && !bfd_is_abs_section (htab->plt_second->output_section))
2517 {
2518 _bfd_x86_elf_create_sframe_plt (output_bfd, info,
2519 SFRAME_PLT_SEC);
2520 /* FIXME - Dirty Hack. Set the size to something non-zero for now,
2521 so that the section does not get stripped out below. The precise
2522 size of this section is known only when the contents are
2523 serialized in _bfd_x86_elf_write_sframe_plt. */
2524 htab->plt_second_sframe->size = sizeof (sframe_header) + 1;
2525 }
2526 }
2527
2528 asection *resolved_plt = NULL;
2529
2530 if (htab->params->mark_plt && htab->elf.dynamic_sections_created)
2531 {
2532 if (htab->plt_second != NULL)
2533 resolved_plt = htab->plt_second;
2534 else
2535 resolved_plt = htab->elf.splt;
2536
2537 if (resolved_plt != NULL && resolved_plt->size == 0)
2538 resolved_plt = NULL;
2539 }
2540
2541 /* We now have determined the sizes of the various dynamic sections.
2542 Allocate memory for them. */
2543 relocs = false;
2544 for (s = dynobj->sections; s != NULL; s = s->next)
2545 {
2546 bool strip_section = true;
2547
2548 if ((s->flags & SEC_LINKER_CREATED) == 0)
2549 continue;
2550
2551 /* The .relr.dyn section for compact relative relocation will
2552 be filled later. */
2553 if (s == htab->elf.srelrdyn)
2554 continue;
2555
2556 if (s == htab->elf.splt
2557 || s == htab->elf.sgot)
2558 {
2559 /* Strip this section if we don't need it; see the
2560 comment below. */
2561 /* We'd like to strip these sections if they aren't needed, but if
2562 we've exported dynamic symbols from them we must leave them.
2563 It's too late to tell BFD to get rid of the symbols. */
2564
2565 if (htab->elf.hplt != NULL)
2566 strip_section = false;
2567 }
2568 else if (s == htab->elf.sgotplt
2569 || s == htab->elf.iplt
2570 || s == htab->elf.igotplt
2571 || s == htab->plt_second
2572 || s == htab->plt_got
2573 || s == htab->plt_eh_frame
2574 || s == htab->plt_got_eh_frame
2575 || s == htab->plt_second_eh_frame
2576 || s == htab->plt_sframe
2577 || s == htab->plt_second_sframe
2578 || s == htab->elf.sdynbss
2579 || s == htab->elf.sdynrelro)
2580 {
2581 /* Strip these too. */
2582 }
2583 else if (htab->is_reloc_section (bfd_section_name (s)))
2584 {
2585 if (s->size != 0
2586 && s != htab->elf.srelplt
2587 && s != htab->srelplt2)
2588 relocs = true;
2589
2590 /* We use the reloc_count field as a counter if we need
2591 to copy relocs into the output file. */
2592 if (s != htab->elf.srelplt)
2593 s->reloc_count = 0;
2594 }
2595 else
2596 {
2597 /* It's not one of our sections, so don't allocate space. */
2598 continue;
2599 }
2600
2601 if (s->size == 0)
2602 {
2603 /* If we don't need this section, strip it from the
2604 output file. This is mostly to handle .rel.bss and
2605 .rel.plt. We must create both sections in
2606 create_dynamic_sections, because they must be created
2607 before the linker maps input sections to output
2608 sections. The linker does that before
2609 adjust_dynamic_symbol is called, and it is that
2610 function which decides whether anything needs to go
2611 into these sections. */
2612 if (strip_section)
2613 s->flags |= SEC_EXCLUDE;
2614 continue;
2615 }
2616
2617 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2618 continue;
2619
2620 /* Skip allocating contents for .sframe section as it is written
2621 out differently. See below. */
2622 if ((s == htab->plt_sframe) || (s == htab->plt_second_sframe))
2623 continue;
2624
2625 /* NB: Initially, the iplt section has minimal alignment to
2626 avoid moving dot of the following section backwards when
2627 it is empty. Update its section alignment now since it
2628 is non-empty. */
2629 if (s == htab->elf.iplt)
2630 bfd_set_section_alignment (s, htab->plt.iplt_alignment);
2631
2632 /* Allocate memory for the section contents. We use bfd_zalloc
2633 here in case unused entries are not reclaimed before the
2634 section's contents are written out. This should not happen,
2635 but this way if it does, we get a R_386_NONE or R_X86_64_NONE
2636 reloc instead of garbage. */
2637 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
2638 if (s->contents == NULL)
2639 return false;
2640 }
2641
2642 if (htab->plt_eh_frame != NULL
2643 && htab->plt_eh_frame->contents != NULL)
2644 {
2645 memcpy (htab->plt_eh_frame->contents,
2646 htab->plt.eh_frame_plt,
2647 htab->plt_eh_frame->size);
2648 bfd_put_32 (dynobj, htab->elf.splt->size,
2649 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2650 }
2651
2652 if (htab->plt_got_eh_frame != NULL
2653 && htab->plt_got_eh_frame->contents != NULL)
2654 {
2655 memcpy (htab->plt_got_eh_frame->contents,
2656 htab->non_lazy_plt->eh_frame_plt,
2657 htab->plt_got_eh_frame->size);
2658 bfd_put_32 (dynobj, htab->plt_got->size,
2659 (htab->plt_got_eh_frame->contents
2660 + PLT_FDE_LEN_OFFSET));
2661 }
2662
2663 if (htab->plt_second_eh_frame != NULL
2664 && htab->plt_second_eh_frame->contents != NULL)
2665 {
2666 memcpy (htab->plt_second_eh_frame->contents,
2667 htab->non_lazy_plt->eh_frame_plt,
2668 htab->plt_second_eh_frame->size);
2669 bfd_put_32 (dynobj, htab->plt_second->size,
2670 (htab->plt_second_eh_frame->contents
2671 + PLT_FDE_LEN_OFFSET));
2672 }
2673
2674 if (_bfd_elf_sframe_present (info))
2675 {
2676 if (htab->plt_sframe != NULL
2677 && htab->elf.splt != NULL
2678 && htab->elf.splt->size != 0
2679 && htab->plt_sframe->contents == NULL)
2680 _bfd_x86_elf_write_sframe_plt (output_bfd, info, SFRAME_PLT);
2681
2682 if (htab->plt_second_sframe != NULL
2683 && htab->elf.splt != NULL
2684 && htab->elf.splt->size != 0
2685 && htab->plt_second_sframe->contents == NULL)
2686 _bfd_x86_elf_write_sframe_plt (output_bfd, info, SFRAME_PLT_SEC);
2687 }
2688
2689 if (resolved_plt != NULL
2690 && (!_bfd_elf_add_dynamic_entry (info, DT_X86_64_PLT, 0)
2691 || !_bfd_elf_add_dynamic_entry (info, DT_X86_64_PLTSZ, 0)
2692 || !_bfd_elf_add_dynamic_entry (info, DT_X86_64_PLTENT, 0)))
2693 return false;
2694
2695 return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info,
2696 relocs);
2697 }
2698
2699 /* Finish up the x86 dynamic sections. */
2700
2701 struct elf_x86_link_hash_table *
2702 _bfd_x86_elf_finish_dynamic_sections (bfd *output_bfd,
2703 struct bfd_link_info *info)
2704 {
2705 struct elf_x86_link_hash_table *htab;
2706 const struct elf_backend_data *bed;
2707 bfd *dynobj;
2708 asection *sdyn;
2709 bfd_byte *dyncon, *dynconend;
2710 bfd_size_type sizeof_dyn;
2711
2712 bed = get_elf_backend_data (output_bfd);
2713 htab = elf_x86_hash_table (info, bed->target_id);
2714 if (htab == NULL)
2715 return htab;
2716
2717 dynobj = htab->elf.dynobj;
2718 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2719
2720 /* GOT is always created in setup_gnu_properties. But it may not be
2721 needed. .got.plt section may be needed for static IFUNC. */
2722 if (htab->elf.sgotplt && htab->elf.sgotplt->size > 0)
2723 {
2724 bfd_vma dynamic_addr;
2725
2726 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
2727 {
2728 _bfd_error_handler
2729 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
2730 return NULL;
2731 }
2732
2733 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize
2734 = htab->got_entry_size;
2735
2736 dynamic_addr = (sdyn == NULL
2737 ? (bfd_vma) 0
2738 : sdyn->output_section->vma + sdyn->output_offset);
2739
2740 /* Set the first entry in the global offset table to the address
2741 of the dynamic section. Write GOT[1] and GOT[2], needed for
2742 the dynamic linker. */
2743 if (htab->got_entry_size == 8)
2744 {
2745 bfd_put_64 (output_bfd, dynamic_addr,
2746 htab->elf.sgotplt->contents);
2747 bfd_put_64 (output_bfd, (bfd_vma) 0,
2748 htab->elf.sgotplt->contents + 8);
2749 bfd_put_64 (output_bfd, (bfd_vma) 0,
2750 htab->elf.sgotplt->contents + 8*2);
2751 }
2752 else
2753 {
2754 bfd_put_32 (output_bfd, dynamic_addr,
2755 htab->elf.sgotplt->contents);
2756 bfd_put_32 (output_bfd, 0,
2757 htab->elf.sgotplt->contents + 4);
2758 bfd_put_32 (output_bfd, 0,
2759 htab->elf.sgotplt->contents + 4*2);
2760 }
2761 }
2762
2763 if (!htab->elf.dynamic_sections_created)
2764 return htab;
2765
2766 if (sdyn == NULL || htab->elf.sgot == NULL)
2767 abort ();
2768
2769 asection *resolved_plt;
2770 if (htab->plt_second != NULL)
2771 resolved_plt = htab->plt_second;
2772 else
2773 resolved_plt = htab->elf.splt;
2774
2775 sizeof_dyn = bed->s->sizeof_dyn;
2776 dyncon = sdyn->contents;
2777 dynconend = sdyn->contents + sdyn->size;
2778 for (; dyncon < dynconend; dyncon += sizeof_dyn)
2779 {
2780 Elf_Internal_Dyn dyn;
2781 asection *s;
2782
2783 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
2784
2785 switch (dyn.d_tag)
2786 {
2787 default:
2788 if (htab->elf.target_os == is_vxworks
2789 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
2790 break;
2791 continue;
2792
2793 case DT_PLTGOT:
2794 s = htab->elf.sgotplt;
2795 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2796 break;
2797
2798 case DT_JMPREL:
2799 s = htab->elf.srelplt;
2800 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2801 break;
2802
2803 case DT_PLTRELSZ:
2804 s = htab->elf.srelplt;
2805 dyn.d_un.d_val = s->size;
2806 break;
2807
2808 case DT_TLSDESC_PLT:
2809 s = htab->elf.splt;
2810 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
2811 + htab->elf.tlsdesc_plt;
2812 break;
2813
2814 case DT_TLSDESC_GOT:
2815 s = htab->elf.sgot;
2816 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
2817 + htab->elf.tlsdesc_got;
2818 break;
2819
2820 case DT_X86_64_PLT:
2821 s = resolved_plt->output_section;
2822 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2823 break;
2824
2825 case DT_X86_64_PLTSZ:
2826 dyn.d_un.d_val = resolved_plt->size;
2827 break;
2828
2829 case DT_X86_64_PLTENT:
2830 dyn.d_un.d_ptr = htab->plt.plt_entry_size;
2831 break;
2832 }
2833
2834 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
2835 }
2836
2837 if (htab->plt_got != NULL && htab->plt_got->size > 0)
2838 elf_section_data (htab->plt_got->output_section)
2839 ->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size;
2840
2841 if (htab->plt_second != NULL && htab->plt_second->size > 0)
2842 elf_section_data (htab->plt_second->output_section)
2843 ->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size;
2844
2845 /* Adjust .eh_frame for .plt section. */
2846 if (htab->plt_eh_frame != NULL
2847 && htab->plt_eh_frame->contents != NULL)
2848 {
2849 if (htab->elf.splt != NULL
2850 && htab->elf.splt->size != 0
2851 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
2852 && htab->elf.splt->output_section != NULL
2853 && htab->plt_eh_frame->output_section != NULL)
2854 {
2855 bfd_vma plt_start = htab->elf.splt->output_section->vma;
2856 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
2857 + htab->plt_eh_frame->output_offset
2858 + PLT_FDE_START_OFFSET;
2859 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
2860 htab->plt_eh_frame->contents
2861 + PLT_FDE_START_OFFSET);
2862 }
2863
2864 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
2865 {
2866 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
2867 htab->plt_eh_frame,
2868 htab->plt_eh_frame->contents))
2869 return NULL;
2870 }
2871 }
2872
2873 /* Adjust .eh_frame for .plt.got section. */
2874 if (htab->plt_got_eh_frame != NULL
2875 && htab->plt_got_eh_frame->contents != NULL)
2876 {
2877 if (htab->plt_got != NULL
2878 && htab->plt_got->size != 0
2879 && (htab->plt_got->flags & SEC_EXCLUDE) == 0
2880 && htab->plt_got->output_section != NULL
2881 && htab->plt_got_eh_frame->output_section != NULL)
2882 {
2883 bfd_vma plt_start = htab->plt_got->output_section->vma;
2884 bfd_vma eh_frame_start = htab->plt_got_eh_frame->output_section->vma
2885 + htab->plt_got_eh_frame->output_offset
2886 + PLT_FDE_START_OFFSET;
2887 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
2888 htab->plt_got_eh_frame->contents
2889 + PLT_FDE_START_OFFSET);
2890 }
2891 if (htab->plt_got_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
2892 {
2893 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
2894 htab->plt_got_eh_frame,
2895 htab->plt_got_eh_frame->contents))
2896 return NULL;
2897 }
2898 }
2899
2900 /* Adjust .eh_frame for the second PLT section. */
2901 if (htab->plt_second_eh_frame != NULL
2902 && htab->plt_second_eh_frame->contents != NULL)
2903 {
2904 if (htab->plt_second != NULL
2905 && htab->plt_second->size != 0
2906 && (htab->plt_second->flags & SEC_EXCLUDE) == 0
2907 && htab->plt_second->output_section != NULL
2908 && htab->plt_second_eh_frame->output_section != NULL)
2909 {
2910 bfd_vma plt_start = htab->plt_second->output_section->vma;
2911 bfd_vma eh_frame_start
2912 = (htab->plt_second_eh_frame->output_section->vma
2913 + htab->plt_second_eh_frame->output_offset
2914 + PLT_FDE_START_OFFSET);
2915 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
2916 htab->plt_second_eh_frame->contents
2917 + PLT_FDE_START_OFFSET);
2918 }
2919 if (htab->plt_second_eh_frame->sec_info_type
2920 == SEC_INFO_TYPE_EH_FRAME)
2921 {
2922 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
2923 htab->plt_second_eh_frame,
2924 htab->plt_second_eh_frame->contents))
2925 return NULL;
2926 }
2927 }
2928
2929 /* Make any adjustment if necessary and merge .sframe section to
2930 create the final .sframe section for output_bfd. */
2931 if (htab->plt_sframe != NULL
2932 && htab->plt_sframe->contents != NULL)
2933 {
2934 if (htab->elf.splt != NULL
2935 && htab->elf.splt->size != 0
2936 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
2937 && htab->elf.splt->output_section != NULL
2938 && htab->plt_sframe->output_section != NULL)
2939 {
2940 bfd_vma plt_start = htab->elf.splt->output_section->vma;
2941 bfd_vma sframe_start = htab->plt_sframe->output_section->vma
2942 + htab->plt_sframe->output_offset
2943 + PLT_SFRAME_FDE_START_OFFSET;
2944 #if 0 /* FIXME Testing only. Remove before review. */
2945 bfd_vma test_value = (plt_start - sframe_start)
2946 + htab->plt_sframe->output_section->vma
2947 + htab->plt_sframe->output_offset
2948 + PLT_SFRAME_FDE_START_OFFSET;
2949 bfd_put_signed_32 (dynobj, test_value,
2950 #endif
2951 bfd_put_signed_32 (dynobj, plt_start - sframe_start,
2952 htab->plt_sframe->contents
2953 + PLT_SFRAME_FDE_START_OFFSET);
2954 }
2955 if (htab->plt_sframe->sec_info_type == SEC_INFO_TYPE_SFRAME)
2956 {
2957 if (! _bfd_elf_merge_section_sframe (output_bfd, info,
2958 htab->plt_sframe,
2959 htab->plt_sframe->contents))
2960 return NULL;
2961 }
2962 }
2963
2964 if (htab->plt_second_sframe != NULL
2965 && htab->plt_second_sframe->contents != NULL)
2966 {
2967 if (htab->plt_second != NULL
2968 && htab->plt_second->size != 0
2969 && (htab->plt_second->flags & SEC_EXCLUDE) == 0
2970 && htab->plt_second->output_section != NULL
2971 && htab->plt_second_sframe->output_section != NULL)
2972 {
2973 bfd_vma plt_start = htab->plt_second->output_section->vma;
2974 bfd_vma sframe_start
2975 = (htab->plt_second_sframe->output_section->vma
2976 + htab->plt_second_sframe->output_offset
2977 + PLT_SFRAME_FDE_START_OFFSET);
2978 #if 0 /* FIXME Testing only. Remove before review. */
2979 bfd_vma test_value = (plt_start - sframe_start)
2980 + htab->plt_second_sframe->output_section->vma
2981 + htab->plt_second_sframe->output_offset
2982 + PLT_SFRAME_FDE_START_OFFSET;
2983 bfd_put_signed_32 (dynobj, test_value,
2984 #endif
2985 bfd_put_signed_32 (dynobj, plt_start - sframe_start,
2986 htab->plt_second_sframe->contents
2987 + PLT_SFRAME_FDE_START_OFFSET);
2988 }
2989 if (htab->plt_second_sframe->sec_info_type == SEC_INFO_TYPE_SFRAME)
2990 {
2991 if (! _bfd_elf_merge_section_sframe (output_bfd, info,
2992 htab->plt_second_sframe,
2993 htab->plt_second_sframe->contents))
2994 return NULL;
2995 }
2996 }
2997 if (htab->elf.sgot && htab->elf.sgot->size > 0)
2998 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
2999 = htab->got_entry_size;
3000
3001 return htab;
3002 }
3003
3004
3005 bool
3006 _bfd_x86_elf_always_size_sections (bfd *output_bfd,
3007 struct bfd_link_info *info)
3008 {
3009 asection *tls_sec = elf_hash_table (info)->tls_sec;
3010
3011 if (tls_sec && !bfd_link_relocatable (info))
3012 {
3013 struct elf_link_hash_entry *tlsbase;
3014
3015 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3016 "_TLS_MODULE_BASE_",
3017 false, false, false);
3018
3019 if (tlsbase && tlsbase->type == STT_TLS)
3020 {
3021 struct elf_x86_link_hash_table *htab;
3022 struct bfd_link_hash_entry *bh = NULL;
3023 const struct elf_backend_data *bed
3024 = get_elf_backend_data (output_bfd);
3025
3026 htab = elf_x86_hash_table (info, bed->target_id);
3027 if (htab == NULL)
3028 return false;
3029
3030 if (!(_bfd_generic_link_add_one_symbol
3031 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3032 tls_sec, 0, NULL, false,
3033 bed->collect, &bh)))
3034 return false;
3035
3036 htab->tls_module_base = bh;
3037
3038 tlsbase = (struct elf_link_hash_entry *)bh;
3039 tlsbase->def_regular = 1;
3040 tlsbase->other = STV_HIDDEN;
3041 tlsbase->root.linker_def = 1;
3042 (*bed->elf_backend_hide_symbol) (info, tlsbase, true);
3043 }
3044 }
3045
3046 return true;
3047 }
3048
3049 void
3050 _bfd_x86_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
3051 unsigned int st_other,
3052 bool definition,
3053 bool dynamic ATTRIBUTE_UNUSED)
3054 {
3055 if (definition)
3056 {
3057 struct elf_x86_link_hash_entry *eh
3058 = (struct elf_x86_link_hash_entry *) h;
3059 eh->def_protected = ELF_ST_VISIBILITY (st_other) == STV_PROTECTED;
3060 }
3061 }
3062
3063 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3064
3065 void
3066 _bfd_x86_elf_copy_indirect_symbol (struct bfd_link_info *info,
3067 struct elf_link_hash_entry *dir,
3068 struct elf_link_hash_entry *ind)
3069 {
3070 struct elf_x86_link_hash_entry *edir, *eind;
3071
3072 edir = (struct elf_x86_link_hash_entry *) dir;
3073 eind = (struct elf_x86_link_hash_entry *) ind;
3074
3075 if (ind->root.type == bfd_link_hash_indirect
3076 && dir->got.refcount <= 0)
3077 {
3078 edir->tls_type = eind->tls_type;
3079 eind->tls_type = GOT_UNKNOWN;
3080 }
3081
3082 /* Copy gotoff_ref so that elf_i386_adjust_dynamic_symbol will
3083 generate a R_386_COPY reloc. */
3084 edir->gotoff_ref |= eind->gotoff_ref;
3085
3086 edir->zero_undefweak |= eind->zero_undefweak;
3087
3088 if (ELIMINATE_COPY_RELOCS
3089 && ind->root.type != bfd_link_hash_indirect
3090 && dir->dynamic_adjusted)
3091 {
3092 /* If called to transfer flags for a weakdef during processing
3093 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
3094 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3095 if (dir->versioned != versioned_hidden)
3096 dir->ref_dynamic |= ind->ref_dynamic;
3097 dir->ref_regular |= ind->ref_regular;
3098 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
3099 dir->needs_plt |= ind->needs_plt;
3100 dir->pointer_equality_needed |= ind->pointer_equality_needed;
3101 }
3102 else
3103 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3104 }
3105
3106 /* Remove undefined weak symbol from the dynamic symbol table if it
3107 is resolved to 0. */
3108
3109 bool
3110 _bfd_x86_elf_fixup_symbol (struct bfd_link_info *info,
3111 struct elf_link_hash_entry *h)
3112 {
3113 if (h->dynindx != -1
3114 && UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, elf_x86_hash_entry (h)))
3115 {
3116 h->dynindx = -1;
3117 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
3118 h->dynstr_index);
3119 }
3120 return true;
3121 }
3122
3123 /* Change the STT_GNU_IFUNC symbol defined in position-dependent
3124 executable into the normal function symbol and set its address
3125 to its PLT entry, which should be resolved by R_*_IRELATIVE at
3126 run-time. */
3127
3128 void
3129 _bfd_x86_elf_link_fixup_ifunc_symbol (struct bfd_link_info *info,
3130 struct elf_x86_link_hash_table *htab,
3131 struct elf_link_hash_entry *h,
3132 Elf_Internal_Sym *sym)
3133 {
3134 if (bfd_link_pde (info)
3135 && h->def_regular
3136 && h->dynindx != -1
3137 && h->plt.offset != (bfd_vma) -1
3138 && h->type == STT_GNU_IFUNC)
3139 {
3140 asection *plt_s;
3141 bfd_vma plt_offset;
3142 bfd *output_bfd = info->output_bfd;
3143
3144 if (htab->plt_second)
3145 {
3146 struct elf_x86_link_hash_entry *eh
3147 = (struct elf_x86_link_hash_entry *) h;
3148
3149 plt_s = htab->plt_second;
3150 plt_offset = eh->plt_second.offset;
3151 }
3152 else
3153 {
3154 plt_s = htab->elf.splt;
3155 plt_offset = h->plt.offset;
3156 }
3157
3158 sym->st_size = 0;
3159 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
3160 sym->st_shndx
3161 = _bfd_elf_section_from_bfd_section (output_bfd,
3162 plt_s->output_section);
3163 sym->st_value = (plt_s->output_section->vma
3164 + plt_s->output_offset + plt_offset);
3165 }
3166 }
3167
3168 /* Report relative relocation. */
3169
3170 void
3171 _bfd_x86_elf_link_report_relative_reloc
3172 (struct bfd_link_info *info, asection *asect,
3173 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym,
3174 const char *reloc_name, const void *reloc)
3175 {
3176 const char *name;
3177 bfd *abfd;
3178 const Elf_Internal_Rela *rel = (const Elf_Internal_Rela *) reloc;
3179
3180 /* Use the output BFD for linker created sections. */
3181 if ((asect->flags & SEC_LINKER_CREATED) != 0)
3182 abfd = info->output_bfd;
3183 else
3184 abfd = asect->owner;
3185
3186 if (h != NULL && h->root.root.string != NULL)
3187 name = h->root.root.string;
3188 else
3189 name = bfd_elf_sym_name (abfd, &elf_symtab_hdr (abfd), sym, NULL);
3190
3191 if (asect->use_rela_p)
3192 info->callbacks->einfo
3193 (_("%pB: %s (offset: 0x%v, info: 0x%v, addend: 0x%v) against "
3194 "'%s' " "for section '%pA' in %pB\n"),
3195 info->output_bfd, reloc_name, rel->r_offset, rel->r_info,
3196 rel->r_addend, name, asect, abfd);
3197 else
3198 info->callbacks->einfo
3199 (_("%pB: %s (offset: 0x%v, info: 0x%v) against '%s' for section "
3200 "'%pA' in %pB\n"),
3201 info->output_bfd, reloc_name, rel->r_offset, rel->r_info, name,
3202 asect, abfd);
3203 }
3204
3205 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3206
3207 bool
3208 _bfd_x86_elf_hash_symbol (struct elf_link_hash_entry *h)
3209 {
3210 if (h->plt.offset != (bfd_vma) -1
3211 && !h->def_regular
3212 && !h->pointer_equality_needed)
3213 return false;
3214
3215 return _bfd_elf_hash_symbol (h);
3216 }
3217
3218 /* Adjust a symbol defined by a dynamic object and referenced by a
3219 regular object. The current definition is in some section of the
3220 dynamic object, but we're not including those sections. We have to
3221 change the definition to something the rest of the link can
3222 understand. */
3223
3224 bool
3225 _bfd_x86_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
3226 struct elf_link_hash_entry *h)
3227 {
3228 struct elf_x86_link_hash_table *htab;
3229 asection *s, *srel;
3230 struct elf_x86_link_hash_entry *eh;
3231 struct elf_dyn_relocs *p;
3232 const struct elf_backend_data *bed
3233 = get_elf_backend_data (info->output_bfd);
3234
3235 eh = (struct elf_x86_link_hash_entry *) h;
3236
3237 /* Clear GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS if it is turned
3238 on by an input relocatable file and there is a non-GOT/non-PLT
3239 reference from another relocatable file without it.
3240 NB: There can be non-GOT reference in data sections in input with
3241 GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS. */
3242 if (eh->non_got_ref_without_indirect_extern_access
3243 && info->indirect_extern_access == 1
3244 && bfd_link_executable (info))
3245 {
3246 unsigned int needed_1;
3247 info->indirect_extern_access = 0;
3248 /* Turn off nocopyreloc if implied by indirect_extern_access. */
3249 if (info->nocopyreloc == 2)
3250 info->nocopyreloc = 0;
3251 needed_1 = bfd_h_get_32 (info->output_bfd, info->needed_1_p);
3252 needed_1 &= ~GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS;
3253 bfd_h_put_32 (info->output_bfd, needed_1, info->needed_1_p);
3254 }
3255
3256 /* STT_GNU_IFUNC symbol must go through PLT. */
3257 if (h->type == STT_GNU_IFUNC)
3258 {
3259 /* All local STT_GNU_IFUNC references must be treate as local
3260 calls via local PLT. */
3261 if (h->ref_regular
3262 && SYMBOL_CALLS_LOCAL (info, h))
3263 {
3264 bfd_size_type pc_count = 0, count = 0;
3265 struct elf_dyn_relocs **pp;
3266
3267 eh = (struct elf_x86_link_hash_entry *) h;
3268 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
3269 {
3270 pc_count += p->pc_count;
3271 p->count -= p->pc_count;
3272 p->pc_count = 0;
3273 count += p->count;
3274 if (p->count == 0)
3275 *pp = p->next;
3276 else
3277 pp = &p->next;
3278 }
3279
3280 if (pc_count || count)
3281 {
3282 h->non_got_ref = 1;
3283 if (pc_count)
3284 {
3285 /* Increment PLT reference count only for PC-relative
3286 references. */
3287 h->needs_plt = 1;
3288 if (h->plt.refcount <= 0)
3289 h->plt.refcount = 1;
3290 else
3291 h->plt.refcount += 1;
3292 }
3293 }
3294
3295 /* GOTOFF relocation needs PLT. */
3296 if (eh->gotoff_ref)
3297 h->plt.refcount = 1;
3298 }
3299
3300 if (h->plt.refcount <= 0)
3301 {
3302 h->plt.offset = (bfd_vma) -1;
3303 h->needs_plt = 0;
3304 }
3305 return true;
3306 }
3307
3308 /* If this is a function, put it in the procedure linkage table. We
3309 will fill in the contents of the procedure linkage table later,
3310 when we know the address of the .got section. */
3311 if (h->type == STT_FUNC
3312 || h->needs_plt)
3313 {
3314 if (h->plt.refcount <= 0
3315 || SYMBOL_CALLS_LOCAL (info, h)
3316 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3317 && h->root.type == bfd_link_hash_undefweak))
3318 {
3319 /* This case can occur if we saw a PLT32 reloc in an input
3320 file, but the symbol was never referred to by a dynamic
3321 object, or if all references were garbage collected. In
3322 such a case, we don't actually need to build a procedure
3323 linkage table, and we can just do a PC32 reloc instead. */
3324 h->plt.offset = (bfd_vma) -1;
3325 h->needs_plt = 0;
3326 }
3327
3328 return true;
3329 }
3330 else
3331 /* It's possible that we incorrectly decided a .plt reloc was needed
3332 * for an R_386_PC32/R_X86_64_PC32 reloc to a non-function sym in
3333 check_relocs. We can't decide accurately between function and
3334 non-function syms in check-relocs; Objects loaded later in
3335 the link may change h->type. So fix it now. */
3336 h->plt.offset = (bfd_vma) -1;
3337
3338 /* If this is a weak symbol, and there is a real definition, the
3339 processor independent code will have arranged for us to see the
3340 real definition first, and we can just use the same value. */
3341 if (h->is_weakalias)
3342 {
3343 struct elf_link_hash_entry *def = weakdef (h);
3344 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
3345 h->root.u.def.section = def->root.u.def.section;
3346 h->root.u.def.value = def->root.u.def.value;
3347 if (ELIMINATE_COPY_RELOCS
3348 || info->nocopyreloc
3349 || SYMBOL_NO_COPYRELOC (info, eh))
3350 {
3351 /* NB: needs_copy is always 0 for i386. */
3352 h->non_got_ref = def->non_got_ref;
3353 eh->needs_copy = def->needs_copy;
3354 }
3355 return true;
3356 }
3357
3358 /* This is a reference to a symbol defined by a dynamic object which
3359 is not a function. */
3360
3361 /* If we are creating a shared library, we must presume that the
3362 only references to the symbol are via the global offset table.
3363 For such cases we need not do anything here; the relocations will
3364 be handled correctly by relocate_section. */
3365 if (!bfd_link_executable (info))
3366 return true;
3367
3368 /* If there are no references to this symbol that do not use the
3369 GOT nor R_386_GOTOFF relocation, we don't need to generate a copy
3370 reloc. NB: gotoff_ref is always 0 for x86-64. */
3371 if (!h->non_got_ref && !eh->gotoff_ref)
3372 return true;
3373
3374 /* If -z nocopyreloc was given, we won't generate them either. */
3375 if (info->nocopyreloc || SYMBOL_NO_COPYRELOC (info, eh))
3376 {
3377 h->non_got_ref = 0;
3378 return true;
3379 }
3380
3381 htab = elf_x86_hash_table (info, bed->target_id);
3382 if (htab == NULL)
3383 return false;
3384
3385 /* If there aren't any dynamic relocs in read-only sections nor
3386 R_386_GOTOFF relocation, then we can keep the dynamic relocs and
3387 avoid the copy reloc. This doesn't work on VxWorks, where we can
3388 not have dynamic relocations (other than copy and jump slot
3389 relocations) in an executable. */
3390 if (ELIMINATE_COPY_RELOCS
3391 && (bed->target_id == X86_64_ELF_DATA
3392 || (!eh->gotoff_ref
3393 && htab->elf.target_os != is_vxworks)))
3394 {
3395 /* If we don't find any dynamic relocs in read-only sections,
3396 then we'll be keeping the dynamic relocs and avoiding the copy
3397 reloc. */
3398 if (!_bfd_elf_readonly_dynrelocs (h))
3399 {
3400 h->non_got_ref = 0;
3401 return true;
3402 }
3403 }
3404
3405 /* We must allocate the symbol in our .dynbss section, which will
3406 become part of the .bss section of the executable. There will be
3407 an entry for this symbol in the .dynsym section. The dynamic
3408 object will contain position independent code, so all references
3409 from the dynamic object to this symbol will go through the global
3410 offset table. The dynamic linker will use the .dynsym entry to
3411 determine the address it must put in the global offset table, so
3412 both the dynamic object and the regular object will refer to the
3413 same memory location for the variable. */
3414
3415 /* We must generate a R_386_COPY/R_X86_64_COPY reloc to tell the
3416 dynamic linker to copy the initial value out of the dynamic object
3417 and into the runtime process image. */
3418 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
3419 {
3420 s = htab->elf.sdynrelro;
3421 srel = htab->elf.sreldynrelro;
3422 }
3423 else
3424 {
3425 s = htab->elf.sdynbss;
3426 srel = htab->elf.srelbss;
3427 }
3428 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3429 {
3430 if (eh->def_protected && bfd_link_executable (info))
3431 for (p = h->dyn_relocs; p != NULL; p = p->next)
3432 {
3433 /* Disallow copy relocation against non-copyable protected
3434 symbol. */
3435 s = p->sec->output_section;
3436 if (s != NULL && (s->flags & SEC_READONLY) != 0)
3437 {
3438 info->callbacks->einfo
3439 /* xgettext:c-format */
3440 (_("%F%P: %pB: copy relocation against non-copyable "
3441 "protected symbol `%s' in %pB\n"),
3442 p->sec->owner, h->root.root.string,
3443 h->root.u.def.section->owner);
3444 return false;
3445 }
3446 }
3447
3448 srel->size += htab->sizeof_reloc;
3449 h->needs_copy = 1;
3450 }
3451
3452 return _bfd_elf_adjust_dynamic_copy (info, h, s);
3453 }
3454
3455 void
3456 _bfd_x86_elf_hide_symbol (struct bfd_link_info *info,
3457 struct elf_link_hash_entry *h,
3458 bool force_local)
3459 {
3460 if (h->root.type == bfd_link_hash_undefweak
3461 && info->nointerp
3462 && bfd_link_pie (info))
3463 {
3464 /* When there is no dynamic interpreter in PIE, make the undefined
3465 weak symbol dynamic so that PC relative branch to the undefined
3466 weak symbol will land to address 0. */
3467 struct elf_x86_link_hash_entry *eh = elf_x86_hash_entry (h);
3468 if (h->plt.refcount > 0
3469 || eh->plt_got.refcount > 0)
3470 return;
3471 }
3472
3473 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
3474 }
3475
3476 /* Return TRUE if a symbol is referenced locally. It is similar to
3477 SYMBOL_REFERENCES_LOCAL, but it also checks version script. It
3478 works in check_relocs. */
3479
3480 bool
3481 _bfd_x86_elf_link_symbol_references_local (struct bfd_link_info *info,
3482 struct elf_link_hash_entry *h)
3483 {
3484 struct elf_x86_link_hash_entry *eh = elf_x86_hash_entry (h);
3485 struct elf_x86_link_hash_table *htab
3486 = (struct elf_x86_link_hash_table *) info->hash;
3487
3488 if (eh->local_ref > 1)
3489 return true;
3490
3491 if (eh->local_ref == 1)
3492 return false;
3493
3494 /* Unversioned symbols defined in regular objects can be forced local
3495 by linker version script. A weak undefined symbol is forced local
3496 if
3497 1. It has non-default visibility. Or
3498 2. When building executable, there is no dynamic linker. Or
3499 3. or "-z nodynamic-undefined-weak" is used.
3500 */
3501 if (_bfd_elf_symbol_refs_local_p (h, info, 1)
3502 || (h->root.type == bfd_link_hash_undefweak
3503 && (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3504 || (bfd_link_executable (info)
3505 && htab->interp == NULL)
3506 || info->dynamic_undefined_weak == 0))
3507 || ((h->def_regular || ELF_COMMON_DEF_P (h))
3508 && info->version_info != NULL
3509 && _bfd_elf_link_hide_sym_by_version (info, h)))
3510 {
3511 eh->local_ref = 2;
3512 return true;
3513 }
3514
3515 eh->local_ref = 1;
3516 return false;
3517 }
3518
3519 /* Return the section that should be marked against GC for a given
3520 relocation. */
3521
3522 asection *
3523 _bfd_x86_elf_gc_mark_hook (asection *sec,
3524 struct bfd_link_info *info,
3525 Elf_Internal_Rela *rel,
3526 struct elf_link_hash_entry *h,
3527 Elf_Internal_Sym *sym)
3528 {
3529 /* Compiler should optimize this out. */
3530 if (((unsigned int) R_X86_64_GNU_VTINHERIT
3531 != (unsigned int) R_386_GNU_VTINHERIT)
3532 || ((unsigned int) R_X86_64_GNU_VTENTRY
3533 != (unsigned int) R_386_GNU_VTENTRY))
3534 abort ();
3535
3536 if (h != NULL)
3537 switch (ELF32_R_TYPE (rel->r_info))
3538 {
3539 case R_X86_64_GNU_VTINHERIT:
3540 case R_X86_64_GNU_VTENTRY:
3541 return NULL;
3542 }
3543
3544 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
3545 }
3546
3547 static bfd_vma
3548 elf_i386_get_plt_got_vma (struct elf_x86_plt *plt_p ATTRIBUTE_UNUSED,
3549 bfd_vma off,
3550 bfd_vma offset ATTRIBUTE_UNUSED,
3551 bfd_vma got_addr)
3552 {
3553 return got_addr + off;
3554 }
3555
3556 static bfd_vma
3557 elf_x86_64_get_plt_got_vma (struct elf_x86_plt *plt_p,
3558 bfd_vma off,
3559 bfd_vma offset,
3560 bfd_vma got_addr ATTRIBUTE_UNUSED)
3561 {
3562 return plt_p->sec->vma + offset + off + plt_p->plt_got_insn_size;
3563 }
3564
3565 static bool
3566 elf_i386_valid_plt_reloc_p (unsigned int type)
3567 {
3568 return (type == R_386_JUMP_SLOT
3569 || type == R_386_GLOB_DAT
3570 || type == R_386_IRELATIVE);
3571 }
3572
3573 static bool
3574 elf_x86_64_valid_plt_reloc_p (unsigned int type)
3575 {
3576 return (type == R_X86_64_JUMP_SLOT
3577 || type == R_X86_64_GLOB_DAT
3578 || type == R_X86_64_IRELATIVE);
3579 }
3580
3581 long
3582 _bfd_x86_elf_get_synthetic_symtab (bfd *abfd,
3583 long count,
3584 long relsize,
3585 bfd_vma got_addr,
3586 struct elf_x86_plt plts[],
3587 asymbol **dynsyms,
3588 asymbol **ret)
3589 {
3590 long size, i, n, len;
3591 int j;
3592 unsigned int plt_got_offset, plt_entry_size;
3593 asymbol *s;
3594 bfd_byte *plt_contents;
3595 long dynrelcount;
3596 arelent **dynrelbuf, *p;
3597 char *names;
3598 const struct elf_backend_data *bed;
3599 bfd_vma (*get_plt_got_vma) (struct elf_x86_plt *, bfd_vma, bfd_vma,
3600 bfd_vma);
3601 bool (*valid_plt_reloc_p) (unsigned int);
3602 unsigned int jump_slot_reloc;
3603
3604 dynrelbuf = NULL;
3605 if (count == 0)
3606 goto bad_return;
3607
3608 dynrelbuf = (arelent **) bfd_malloc (relsize);
3609 if (dynrelbuf == NULL)
3610 goto bad_return;
3611
3612 dynrelcount = bfd_canonicalize_dynamic_reloc (abfd, dynrelbuf,
3613 dynsyms);
3614 if (dynrelcount <= 0)
3615 goto bad_return;
3616
3617 /* Sort the relocs by address. */
3618 qsort (dynrelbuf, dynrelcount, sizeof (arelent *),
3619 _bfd_x86_elf_compare_relocs);
3620
3621 size = count * sizeof (asymbol);
3622
3623 /* Allocate space for @plt suffixes. */
3624 n = 0;
3625 for (i = 0; i < dynrelcount; i++)
3626 {
3627 p = dynrelbuf[i];
3628 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3629 if (p->addend != 0)
3630 size += sizeof ("+0x") - 1 + 8 + 8 * ABI_64_P (abfd);
3631 }
3632
3633 s = *ret = (asymbol *) bfd_zmalloc (size);
3634 if (s == NULL)
3635 goto bad_return;
3636
3637 bed = get_elf_backend_data (abfd);
3638
3639 if (bed->target_id == X86_64_ELF_DATA)
3640 {
3641 get_plt_got_vma = elf_x86_64_get_plt_got_vma;
3642 valid_plt_reloc_p = elf_x86_64_valid_plt_reloc_p;
3643 jump_slot_reloc = R_X86_64_JUMP_SLOT;
3644 }
3645 else
3646 {
3647 get_plt_got_vma = elf_i386_get_plt_got_vma;
3648 valid_plt_reloc_p = elf_i386_valid_plt_reloc_p;
3649 jump_slot_reloc = R_386_JUMP_SLOT;
3650 if (got_addr)
3651 {
3652 /* Check .got.plt and then .got to get the _GLOBAL_OFFSET_TABLE_
3653 address. */
3654 asection *sec = bfd_get_section_by_name (abfd, ".got.plt");
3655 if (sec != NULL)
3656 got_addr = sec->vma;
3657 else
3658 {
3659 sec = bfd_get_section_by_name (abfd, ".got");
3660 if (sec != NULL)
3661 got_addr = sec->vma;
3662 }
3663
3664 if (got_addr == (bfd_vma) -1)
3665 goto bad_return;
3666 }
3667 }
3668
3669 /* Check for each PLT section. */
3670 names = (char *) (s + count);
3671 size = 0;
3672 n = 0;
3673 for (j = 0; plts[j].name != NULL; j++)
3674 if ((plt_contents = plts[j].contents) != NULL)
3675 {
3676 long k;
3677 bfd_vma offset;
3678 asection *plt;
3679 struct elf_x86_plt *plt_p = &plts[j];
3680
3681 plt_got_offset = plt_p->plt_got_offset;
3682 plt_entry_size = plt_p->plt_entry_size;
3683
3684 plt = plt_p->sec;
3685
3686 if ((plt_p->type & plt_lazy))
3687 {
3688 /* Skip PLT0 in lazy PLT. */
3689 k = 1;
3690 offset = plt_entry_size;
3691 }
3692 else
3693 {
3694 k = 0;
3695 offset = 0;
3696 }
3697
3698 /* Check each PLT entry against dynamic relocations. */
3699 for (; k < plt_p->count; k++)
3700 {
3701 int off;
3702 bfd_vma got_vma;
3703 long min, max, mid;
3704
3705 /* Get the GOT offset for i386 or the PC-relative offset
3706 for x86-64, a signed 32-bit integer. */
3707 off = H_GET_32 (abfd, (plt_contents + offset
3708 + plt_got_offset));
3709 got_vma = get_plt_got_vma (plt_p, off, offset, got_addr);
3710
3711 /* Binary search. */
3712 p = dynrelbuf[0];
3713 min = 0;
3714 max = dynrelcount;
3715 while ((min + 1) < max)
3716 {
3717 arelent *r;
3718
3719 mid = (min + max) / 2;
3720 r = dynrelbuf[mid];
3721 if (got_vma > r->address)
3722 min = mid;
3723 else if (got_vma < r->address)
3724 max = mid;
3725 else
3726 {
3727 p = r;
3728 break;
3729 }
3730 }
3731
3732 /* Skip unknown relocation. PR 17512: file: bc9d6cf5. */
3733 if (got_vma == p->address
3734 && p->howto != NULL
3735 && valid_plt_reloc_p (p->howto->type))
3736 {
3737 *s = **p->sym_ptr_ptr;
3738 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL
3739 set. Since we are defining a symbol, ensure one
3740 of them is set. */
3741 if ((s->flags & BSF_LOCAL) == 0)
3742 s->flags |= BSF_GLOBAL;
3743 s->flags |= BSF_SYNTHETIC;
3744 /* This is no longer a section symbol. */
3745 s->flags &= ~BSF_SECTION_SYM;
3746 s->section = plt;
3747 s->the_bfd = plt->owner;
3748 s->value = offset;
3749 s->udata.p = NULL;
3750 s->name = names;
3751 len = strlen ((*p->sym_ptr_ptr)->name);
3752 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3753 names += len;
3754 /* There may be JUMP_SLOT and IRELATIVE relocations.
3755 JUMP_SLOT r_addend should be ignored. */
3756 if (p->addend != 0 && p->howto->type != jump_slot_reloc)
3757 {
3758 char buf[30], *a;
3759
3760 memcpy (names, "+0x", sizeof ("+0x") - 1);
3761 names += sizeof ("+0x") - 1;
3762 bfd_sprintf_vma (abfd, buf, p->addend);
3763 for (a = buf; *a == '0'; ++a)
3764 ;
3765 size = strlen (a);
3766 memcpy (names, a, size);
3767 names += size;
3768 }
3769 memcpy (names, "@plt", sizeof ("@plt"));
3770 names += sizeof ("@plt");
3771 n++;
3772 s++;
3773 /* There should be only one entry in PLT for a given
3774 symbol. Set howto to NULL after processing a PLT
3775 entry to guard against corrupted PLT. */
3776 p->howto = NULL;
3777 }
3778 offset += plt_entry_size;
3779 }
3780 }
3781
3782 /* PLT entries with R_386_TLS_DESC relocations are skipped. */
3783 if (n == 0)
3784 {
3785 bad_return:
3786 count = -1;
3787 }
3788 else
3789 count = n;
3790
3791 for (j = 0; plts[j].name != NULL; j++)
3792 free (plts[j].contents);
3793
3794 free (dynrelbuf);
3795
3796 return count;
3797 }
3798
3799 /* Parse x86 GNU properties. */
3800
3801 enum elf_property_kind
3802 _bfd_x86_elf_parse_gnu_properties (bfd *abfd, unsigned int type,
3803 bfd_byte *ptr, unsigned int datasz)
3804 {
3805 elf_property *prop;
3806
3807 if (type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED
3808 || type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED
3809 || (type >= GNU_PROPERTY_X86_UINT32_AND_LO
3810 && type <= GNU_PROPERTY_X86_UINT32_AND_HI)
3811 || (type >= GNU_PROPERTY_X86_UINT32_OR_LO
3812 && type <= GNU_PROPERTY_X86_UINT32_OR_HI)
3813 || (type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO
3814 && type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI))
3815 {
3816 if (datasz != 4)
3817 {
3818 _bfd_error_handler
3819 (_("error: %pB: <corrupt x86 property (0x%x) size: 0x%x>"),
3820 abfd, type, datasz);
3821 return property_corrupt;
3822 }
3823 prop = _bfd_elf_get_property (abfd, type, datasz);
3824 prop->u.number |= bfd_h_get_32 (abfd, ptr);
3825 prop->pr_kind = property_number;
3826 return property_number;
3827 }
3828
3829 return property_ignored;
3830 }
3831
3832 /* Merge x86 GNU property BPROP with APROP. If APROP isn't NULL,
3833 return TRUE if APROP is updated. Otherwise, return TRUE if BPROP
3834 should be merged with ABFD. */
3835
3836 bool
3837 _bfd_x86_elf_merge_gnu_properties (struct bfd_link_info *info,
3838 bfd *abfd ATTRIBUTE_UNUSED,
3839 bfd *bbfd ATTRIBUTE_UNUSED,
3840 elf_property *aprop,
3841 elf_property *bprop)
3842 {
3843 unsigned int number, features;
3844 bool updated = false;
3845 const struct elf_backend_data *bed;
3846 struct elf_x86_link_hash_table *htab;
3847 unsigned int pr_type = aprop != NULL ? aprop->pr_type : bprop->pr_type;
3848
3849 if (pr_type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED
3850 || (pr_type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO
3851 && pr_type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI))
3852 {
3853 if (aprop == NULL || bprop == NULL)
3854 {
3855 /* Only one of APROP and BPROP can be NULL. */
3856 if (aprop != NULL)
3857 {
3858 /* Remove this property since the other input file doesn't
3859 have it. */
3860 aprop->pr_kind = property_remove;
3861 updated = true;
3862 }
3863 }
3864 else
3865 {
3866 number = aprop->u.number;
3867 aprop->u.number = number | bprop->u.number;
3868 updated = number != (unsigned int) aprop->u.number;
3869 }
3870 return updated;
3871 }
3872 else if (pr_type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED
3873 || (pr_type >= GNU_PROPERTY_X86_UINT32_OR_LO
3874 && pr_type <= GNU_PROPERTY_X86_UINT32_OR_HI))
3875 {
3876 features = 0;
3877 if (pr_type == GNU_PROPERTY_X86_ISA_1_NEEDED)
3878 {
3879 bed = get_elf_backend_data (info->output_bfd);
3880 htab = elf_x86_hash_table (info, bed->target_id);
3881 switch (htab->params->isa_level)
3882 {
3883 case 0:
3884 break;
3885 case 2:
3886 features = GNU_PROPERTY_X86_ISA_1_V2;
3887 break;
3888 case 3:
3889 features = GNU_PROPERTY_X86_ISA_1_V3;
3890 break;
3891 case 4:
3892 features = GNU_PROPERTY_X86_ISA_1_V4;
3893 break;
3894 default:
3895 abort ();
3896 }
3897 }
3898 if (aprop != NULL && bprop != NULL)
3899 {
3900 number = aprop->u.number;
3901 aprop->u.number = number | bprop->u.number | features;
3902 /* Remove the property if all bits are empty. */
3903 if (aprop->u.number == 0)
3904 {
3905 aprop->pr_kind = property_remove;
3906 updated = true;
3907 }
3908 else
3909 updated = number != (unsigned int) aprop->u.number;
3910 }
3911 else
3912 {
3913 /* Only one of APROP and BPROP can be NULL. */
3914 if (aprop != NULL)
3915 {
3916 aprop->u.number |= features;
3917 if (aprop->u.number == 0)
3918 {
3919 /* Remove APROP if all bits are empty. */
3920 aprop->pr_kind = property_remove;
3921 updated = true;
3922 }
3923 }
3924 else
3925 {
3926 /* Return TRUE if APROP is NULL and all bits of BPROP
3927 aren't empty to indicate that BPROP should be added
3928 to ABFD. */
3929 bprop->u.number |= features;
3930 updated = bprop->u.number != 0;
3931 }
3932 }
3933 return updated;
3934 }
3935 else if (pr_type >= GNU_PROPERTY_X86_UINT32_AND_LO
3936 && pr_type <= GNU_PROPERTY_X86_UINT32_AND_HI)
3937 {
3938 /* Only one of APROP and BPROP can be NULL:
3939 1. APROP & BPROP when both APROP and BPROP aren't NULL.
3940 2. If APROP is NULL, remove x86 feature.
3941 3. Otherwise, do nothing.
3942 */
3943 bed = get_elf_backend_data (info->output_bfd);
3944 htab = elf_x86_hash_table (info, bed->target_id);
3945 if (!htab)
3946 abort ();
3947 if (aprop != NULL && bprop != NULL)
3948 {
3949 number = aprop->u.number;
3950 aprop->u.number = number & bprop->u.number;
3951 if (pr_type == GNU_PROPERTY_X86_FEATURE_1_AND)
3952 {
3953 features = 0;
3954 if (htab->params->ibt)
3955 features = GNU_PROPERTY_X86_FEATURE_1_IBT;
3956 if (htab->params->shstk)
3957 features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK;
3958 if (htab->params->lam_u48)
3959 features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48
3960 | GNU_PROPERTY_X86_FEATURE_1_LAM_U57);
3961 else if (htab->params->lam_u57)
3962 features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57;
3963 /* Add GNU_PROPERTY_X86_FEATURE_1_IBT,
3964 GNU_PROPERTY_X86_FEATURE_1_SHSTK,
3965 GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and
3966 GNU_PROPERTY_X86_FEATURE_1_LAM_U57. */
3967 aprop->u.number |= features;
3968 }
3969 updated = number != (unsigned int) aprop->u.number;
3970 /* Remove the property if all feature bits are cleared. */
3971 if (aprop->u.number == 0)
3972 aprop->pr_kind = property_remove;
3973 }
3974 else
3975 {
3976 /* There should be no AND properties since some input doesn't
3977 have them. Set IBT and SHSTK properties for -z ibt and -z
3978 shstk if needed. */
3979 features = 0;
3980 if (pr_type == GNU_PROPERTY_X86_FEATURE_1_AND)
3981 {
3982 if (htab->params->ibt)
3983 features = GNU_PROPERTY_X86_FEATURE_1_IBT;
3984 if (htab->params->shstk)
3985 features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK;
3986 if (htab->params->lam_u48)
3987 features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48
3988 | GNU_PROPERTY_X86_FEATURE_1_LAM_U57);
3989 else if (htab->params->lam_u57)
3990 features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57;
3991 }
3992 if (features)
3993 {
3994 if (aprop != NULL)
3995 {
3996 updated = features != (unsigned int) aprop->u.number;
3997 aprop->u.number = features;
3998 }
3999 else
4000 {
4001 updated = true;
4002 bprop->u.number = features;
4003 }
4004 }
4005 else if (aprop != NULL)
4006 {
4007 aprop->pr_kind = property_remove;
4008 updated = true;
4009 }
4010 }
4011 return updated;
4012 }
4013 else
4014 {
4015 /* Never should happen. */
4016 abort ();
4017 }
4018
4019 return updated;
4020 }
4021
4022 /* Set up x86 GNU properties. Return the first relocatable ELF input
4023 with GNU properties if found. Otherwise, return NULL. */
4024
4025 bfd *
4026 _bfd_x86_elf_link_setup_gnu_properties
4027 (struct bfd_link_info *info, struct elf_x86_init_table *init_table)
4028 {
4029 bool normal_target;
4030 bool lazy_plt;
4031 asection *sec, *pltsec;
4032 bfd *dynobj;
4033 bool use_ibt_plt;
4034 unsigned int plt_alignment, features, isa_level;
4035 struct elf_x86_link_hash_table *htab;
4036 bfd *pbfd;
4037 bfd *ebfd = NULL;
4038 elf_property *prop;
4039 const struct elf_backend_data *bed;
4040 unsigned int class_align = ABI_64_P (info->output_bfd) ? 3 : 2;
4041 unsigned int got_align;
4042
4043 /* Find a normal input file with GNU property note. */
4044 for (pbfd = info->input_bfds;
4045 pbfd != NULL;
4046 pbfd = pbfd->link.next)
4047 if (bfd_get_flavour (pbfd) == bfd_target_elf_flavour
4048 && bfd_count_sections (pbfd) != 0)
4049 {
4050 ebfd = pbfd;
4051
4052 if (elf_properties (pbfd) != NULL)
4053 break;
4054 }
4055
4056 bed = get_elf_backend_data (info->output_bfd);
4057
4058 htab = elf_x86_hash_table (info, bed->target_id);
4059 if (htab == NULL)
4060 return pbfd;
4061
4062 features = 0;
4063 if (htab->params->ibt)
4064 {
4065 features = GNU_PROPERTY_X86_FEATURE_1_IBT;
4066 htab->params->cet_report &= ~prop_report_ibt;
4067 }
4068 if (htab->params->shstk)
4069 {
4070 features |= GNU_PROPERTY_X86_FEATURE_1_SHSTK;
4071 htab->params->cet_report &= ~prop_report_shstk;
4072 }
4073 if (!(htab->params->cet_report & (prop_report_ibt | prop_report_shstk)))
4074 htab->params->cet_report = prop_report_none;
4075 if (htab->params->lam_u48)
4076 {
4077 features |= (GNU_PROPERTY_X86_FEATURE_1_LAM_U48
4078 | GNU_PROPERTY_X86_FEATURE_1_LAM_U57);
4079 htab->params->lam_u48_report = prop_report_none;
4080 htab->params->lam_u57_report = prop_report_none;
4081 }
4082 else if (htab->params->lam_u57)
4083 {
4084 features |= GNU_PROPERTY_X86_FEATURE_1_LAM_U57;
4085 htab->params->lam_u57_report = prop_report_none;
4086 }
4087
4088 switch (htab->params->isa_level)
4089 {
4090 case 0:
4091 isa_level = 0;
4092 break;
4093 case 1:
4094 isa_level = GNU_PROPERTY_X86_ISA_1_BASELINE;
4095 break;
4096 case 2:
4097 isa_level = GNU_PROPERTY_X86_ISA_1_V2;
4098 break;
4099 case 3:
4100 isa_level = GNU_PROPERTY_X86_ISA_1_V3;
4101 break;
4102 case 4:
4103 isa_level = GNU_PROPERTY_X86_ISA_1_V4;
4104 break;
4105 default:
4106 abort ();
4107 }
4108
4109 if (ebfd != NULL)
4110 {
4111 prop = NULL;
4112 if (features)
4113 {
4114 /* If features is set, add GNU_PROPERTY_X86_FEATURE_1_IBT,
4115 GNU_PROPERTY_X86_FEATURE_1_SHSTK,
4116 GNU_PROPERTY_X86_FEATURE_1_LAM_U48 and
4117 GNU_PROPERTY_X86_FEATURE_1_LAM_U57. */
4118 prop = _bfd_elf_get_property (ebfd,
4119 GNU_PROPERTY_X86_FEATURE_1_AND,
4120 4);
4121 prop->u.number |= features;
4122 prop->pr_kind = property_number;
4123 }
4124
4125 if (isa_level)
4126 {
4127 /* If ISA level is set, add GNU_PROPERTY_X86_ISA_1_NEEDED. */
4128 prop = _bfd_elf_get_property (ebfd,
4129 GNU_PROPERTY_X86_ISA_1_NEEDED,
4130 4);
4131 prop->u.number |= isa_level;
4132 prop->pr_kind = property_number;
4133 }
4134
4135 /* Create the GNU property note section if needed. */
4136 if (prop != NULL && pbfd == NULL)
4137 {
4138 sec = bfd_make_section_with_flags (ebfd,
4139 NOTE_GNU_PROPERTY_SECTION_NAME,
4140 (SEC_ALLOC
4141 | SEC_LOAD
4142 | SEC_IN_MEMORY
4143 | SEC_READONLY
4144 | SEC_HAS_CONTENTS
4145 | SEC_DATA));
4146 if (sec == NULL)
4147 info->callbacks->einfo (_("%F%P: failed to create GNU property section\n"));
4148
4149 if (!bfd_set_section_alignment (sec, class_align))
4150 {
4151 error_alignment:
4152 info->callbacks->einfo (_("%F%pA: failed to align section\n"),
4153 sec);
4154 }
4155
4156 elf_section_type (sec) = SHT_NOTE;
4157 }
4158 }
4159
4160 if (htab->params->cet_report
4161 || htab->params->lam_u48_report
4162 || htab->params->lam_u57_report)
4163 {
4164 /* Report missing IBT, SHSTK and LAM properties. */
4165 bfd *abfd;
4166 const char *warning_msg = _("%P: %pB: warning: missing %s\n");
4167 const char *error_msg = _("%X%P: %pB: error: missing %s\n");
4168 const char *cet_msg = NULL;
4169 const char *lam_u48_msg = NULL;
4170 const char *lam_u57_msg = NULL;
4171 const char *missing;
4172 elf_property_list *p;
4173 bool missing_ibt, missing_shstk;
4174 bool missing_lam_u48, missing_lam_u57;
4175 bool check_ibt
4176 = (htab->params->cet_report
4177 && (htab->params->cet_report & prop_report_ibt));
4178 bool check_shstk
4179 = (htab->params->cet_report
4180 && (htab->params->cet_report & prop_report_shstk));
4181
4182 if (htab->params->cet_report)
4183 {
4184 if ((htab->params->cet_report & prop_report_warning))
4185 cet_msg = warning_msg;
4186 else
4187 cet_msg = error_msg;
4188 }
4189 if (htab->params->lam_u48_report)
4190 {
4191 if ((htab->params->lam_u48_report & prop_report_warning))
4192 lam_u48_msg = warning_msg;
4193 else
4194 lam_u48_msg = error_msg;
4195 }
4196 if (htab->params->lam_u57_report)
4197 {
4198 if ((htab->params->lam_u57_report & prop_report_warning))
4199 lam_u57_msg = warning_msg;
4200 else
4201 lam_u57_msg = error_msg;
4202 }
4203
4204 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
4205 if (!(abfd->flags & (DYNAMIC | BFD_PLUGIN | BFD_LINKER_CREATED))
4206 && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
4207 {
4208 for (p = elf_properties (abfd); p; p = p->next)
4209 if (p->property.pr_type == GNU_PROPERTY_X86_FEATURE_1_AND)
4210 break;
4211
4212 missing_ibt = check_ibt;
4213 missing_shstk = check_shstk;
4214 missing_lam_u48 = !!lam_u48_msg;
4215 missing_lam_u57 = !!lam_u57_msg;
4216 if (p)
4217 {
4218 missing_ibt &= !(p->property.u.number
4219 & GNU_PROPERTY_X86_FEATURE_1_IBT);
4220 missing_shstk &= !(p->property.u.number
4221 & GNU_PROPERTY_X86_FEATURE_1_SHSTK);
4222 missing_lam_u48 &= !(p->property.u.number
4223 & GNU_PROPERTY_X86_FEATURE_1_LAM_U48);
4224 missing_lam_u57 &= !(p->property.u.number
4225 & GNU_PROPERTY_X86_FEATURE_1_LAM_U57);
4226 }
4227 if (missing_ibt || missing_shstk)
4228 {
4229 if (missing_ibt && missing_shstk)
4230 missing = _("IBT and SHSTK properties");
4231 else if (missing_ibt)
4232 missing = _("IBT property");
4233 else
4234 missing = _("SHSTK property");
4235 info->callbacks->einfo (cet_msg, abfd, missing);
4236 }
4237 if (missing_lam_u48)
4238 {
4239 missing = _("LAM_U48 property");
4240 info->callbacks->einfo (lam_u48_msg, abfd, missing);
4241 }
4242 if (missing_lam_u57)
4243 {
4244 missing = _("LAM_U57 property");
4245 info->callbacks->einfo (lam_u57_msg, abfd, missing);
4246 }
4247 }
4248 }
4249
4250 pbfd = _bfd_elf_link_setup_gnu_properties (info);
4251
4252 htab->r_info = init_table->r_info;
4253 htab->r_sym = init_table->r_sym;
4254
4255 if (bfd_link_relocatable (info))
4256 return pbfd;
4257
4258 htab->plt0_pad_byte = init_table->plt0_pad_byte;
4259
4260 use_ibt_plt = htab->params->ibtplt || htab->params->ibt;
4261 if (!use_ibt_plt && pbfd != NULL)
4262 {
4263 /* Check if GNU_PROPERTY_X86_FEATURE_1_IBT is on. */
4264 elf_property_list *p;
4265
4266 /* The property list is sorted in order of type. */
4267 for (p = elf_properties (pbfd); p; p = p->next)
4268 {
4269 if (GNU_PROPERTY_X86_FEATURE_1_AND == p->property.pr_type)
4270 {
4271 use_ibt_plt = !!(p->property.u.number
4272 & GNU_PROPERTY_X86_FEATURE_1_IBT);
4273 break;
4274 }
4275 else if (GNU_PROPERTY_X86_FEATURE_1_AND < p->property.pr_type)
4276 break;
4277 }
4278 }
4279
4280 dynobj = htab->elf.dynobj;
4281
4282 /* Set htab->elf.dynobj here so that there is no need to check and
4283 set it in check_relocs. */
4284 if (dynobj == NULL)
4285 {
4286 if (pbfd != NULL)
4287 {
4288 htab->elf.dynobj = pbfd;
4289 dynobj = pbfd;
4290 }
4291 else
4292 {
4293 bfd *abfd;
4294
4295 /* Find a normal input file to hold linker created
4296 sections. */
4297 for (abfd = info->input_bfds;
4298 abfd != NULL;
4299 abfd = abfd->link.next)
4300 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
4301 && (abfd->flags
4302 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
4303 && bed->relocs_compatible (abfd->xvec,
4304 info->output_bfd->xvec))
4305 {
4306 htab->elf.dynobj = abfd;
4307 dynobj = abfd;
4308 break;
4309 }
4310 }
4311 }
4312
4313 /* Return if there are no normal input files. */
4314 if (dynobj == NULL)
4315 return pbfd;
4316
4317 /* Even when lazy binding is disabled by "-z now", the PLT0 entry may
4318 still be used with LD_AUDIT or LD_PROFILE if PLT entry is used for
4319 canonical function address. */
4320 htab->plt.has_plt0 = 1;
4321 htab->plt.plt_indirect_branch_offset = 0;
4322 normal_target = htab->elf.target_os == is_normal;
4323
4324 if (normal_target)
4325 {
4326 if (use_ibt_plt)
4327 {
4328 htab->lazy_plt = init_table->lazy_ibt_plt;
4329 htab->non_lazy_plt = init_table->non_lazy_ibt_plt;
4330 htab->plt.plt_indirect_branch_offset = 4;
4331 }
4332 else
4333 {
4334 htab->lazy_plt = init_table->lazy_plt;
4335 htab->non_lazy_plt = init_table->non_lazy_plt;
4336 }
4337 }
4338 else
4339 {
4340 htab->lazy_plt = init_table->lazy_plt;
4341 htab->non_lazy_plt = NULL;
4342 }
4343
4344 pltsec = htab->elf.splt;
4345
4346 if (htab->non_lazy_plt != NULL
4347 && (!htab->plt.has_plt0 || pltsec == NULL))
4348 lazy_plt = false;
4349 else
4350 lazy_plt = true;
4351
4352 if (normal_target)
4353 {
4354 if (use_ibt_plt)
4355 {
4356 if (lazy_plt)
4357 htab->sframe_plt = init_table->sframe_lazy_ibt_plt;
4358 else
4359 htab->sframe_plt = init_table->sframe_non_lazy_ibt_plt;
4360 }
4361 else
4362 {
4363 if (lazy_plt)
4364 htab->sframe_plt = init_table->sframe_lazy_plt;
4365 else
4366 htab->sframe_plt = init_table->sframe_non_lazy_plt;
4367 }
4368 }
4369 else
4370 htab->sframe_plt = NULL;
4371
4372 /* If the non-lazy PLT is available, use it for all PLT entries if
4373 there are no PLT0 or no .plt section. */
4374 if (!lazy_plt)
4375 {
4376 if (bfd_link_pic (info))
4377 htab->plt.plt_entry = htab->non_lazy_plt->pic_plt_entry;
4378 else
4379 htab->plt.plt_entry = htab->non_lazy_plt->plt_entry;
4380 htab->plt.plt_entry_size = htab->non_lazy_plt->plt_entry_size;
4381 htab->plt.plt_got_offset = htab->non_lazy_plt->plt_got_offset;
4382 htab->plt.plt_got_insn_size
4383 = htab->non_lazy_plt->plt_got_insn_size;
4384 htab->plt.eh_frame_plt_size
4385 = htab->non_lazy_plt->eh_frame_plt_size;
4386 htab->plt.eh_frame_plt = htab->non_lazy_plt->eh_frame_plt;
4387 }
4388 else
4389 {
4390 if (bfd_link_pic (info))
4391 {
4392 htab->plt.plt0_entry = htab->lazy_plt->pic_plt0_entry;
4393 htab->plt.plt_entry = htab->lazy_plt->pic_plt_entry;
4394 }
4395 else
4396 {
4397 htab->plt.plt0_entry = htab->lazy_plt->plt0_entry;
4398 htab->plt.plt_entry = htab->lazy_plt->plt_entry;
4399 }
4400 htab->plt.plt_entry_size = htab->lazy_plt->plt_entry_size;
4401 htab->plt.plt_got_offset = htab->lazy_plt->plt_got_offset;
4402 htab->plt.plt_got_insn_size
4403 = htab->lazy_plt->plt_got_insn_size;
4404 htab->plt.eh_frame_plt_size
4405 = htab->lazy_plt->eh_frame_plt_size;
4406 htab->plt.eh_frame_plt = htab->lazy_plt->eh_frame_plt;
4407 }
4408
4409 if (htab->elf.target_os == is_vxworks
4410 && !elf_vxworks_create_dynamic_sections (dynobj, info,
4411 &htab->srelplt2))
4412 {
4413 info->callbacks->einfo (_("%F%P: failed to create VxWorks dynamic sections\n"));
4414 return pbfd;
4415 }
4416
4417 /* Since create_dynamic_sections isn't always called, but GOT
4418 relocations need GOT relocations, create them here so that we
4419 don't need to do it in check_relocs. */
4420 if (htab->elf.sgot == NULL
4421 && !_bfd_elf_create_got_section (dynobj, info))
4422 info->callbacks->einfo (_("%F%P: failed to create GOT sections\n"));
4423
4424 got_align = (bed->target_id == X86_64_ELF_DATA) ? 3 : 2;
4425
4426 /* Align .got and .got.plt sections to their entry size. Do it here
4427 instead of in create_dynamic_sections so that they are always
4428 properly aligned even if create_dynamic_sections isn't called. */
4429 sec = htab->elf.sgot;
4430 if (!bfd_set_section_alignment (sec, got_align))
4431 goto error_alignment;
4432
4433 sec = htab->elf.sgotplt;
4434 if (!bfd_set_section_alignment (sec, got_align))
4435 goto error_alignment;
4436
4437 /* Create the ifunc sections here so that check_relocs can be
4438 simplified. */
4439 if (!_bfd_elf_create_ifunc_sections (dynobj, info))
4440 info->callbacks->einfo (_("%F%P: failed to create ifunc sections\n"));
4441
4442 plt_alignment = bfd_log2 (htab->plt.plt_entry_size);
4443
4444 if (pltsec != NULL)
4445 {
4446 /* Whe creating executable, set the contents of the .interp
4447 section to the interpreter. */
4448 if (bfd_link_executable (info) && !info->nointerp)
4449 {
4450 asection *s = bfd_get_linker_section (dynobj, ".interp");
4451 if (s == NULL)
4452 abort ();
4453 s->size = htab->dynamic_interpreter_size;
4454 s->contents = (unsigned char *) htab->dynamic_interpreter;
4455 htab->interp = s;
4456 }
4457
4458 if (normal_target)
4459 {
4460 flagword pltflags = (bed->dynamic_sec_flags
4461 | SEC_ALLOC
4462 | SEC_CODE
4463 | SEC_LOAD
4464 | SEC_READONLY);
4465 unsigned int non_lazy_plt_alignment
4466 = bfd_log2 (htab->non_lazy_plt->plt_entry_size);
4467
4468 sec = pltsec;
4469 if (!bfd_set_section_alignment (sec, plt_alignment))
4470 goto error_alignment;
4471
4472 /* Create the GOT procedure linkage table. */
4473 sec = bfd_make_section_anyway_with_flags (dynobj,
4474 ".plt.got",
4475 pltflags);
4476 if (sec == NULL)
4477 info->callbacks->einfo (_("%F%P: failed to create GOT PLT section\n"));
4478
4479 if (!bfd_set_section_alignment (sec, non_lazy_plt_alignment))
4480 goto error_alignment;
4481
4482 htab->plt_got = sec;
4483
4484 if (lazy_plt)
4485 {
4486 sec = NULL;
4487
4488 if (use_ibt_plt)
4489 {
4490 /* Create the second PLT for Intel IBT support. IBT
4491 PLT is needed only for lazy binding. */
4492 sec = bfd_make_section_anyway_with_flags (dynobj,
4493 ".plt.sec",
4494 pltflags);
4495 if (sec == NULL)
4496 info->callbacks->einfo (_("%F%P: failed to create IBT-enabled PLT section\n"));
4497
4498 if (!bfd_set_section_alignment (sec, plt_alignment))
4499 goto error_alignment;
4500 }
4501
4502 htab->plt_second = sec;
4503 }
4504 }
4505
4506 if (!info->no_ld_generated_unwind_info)
4507 {
4508 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4509 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4510 | SEC_LINKER_CREATED);
4511
4512 sec = bfd_make_section_anyway_with_flags (dynobj,
4513 ".eh_frame",
4514 flags);
4515 if (sec == NULL)
4516 info->callbacks->einfo (_("%F%P: failed to create PLT .eh_frame section\n"));
4517
4518 if (!bfd_set_section_alignment (sec, class_align))
4519 goto error_alignment;
4520
4521 htab->plt_eh_frame = sec;
4522
4523 if (htab->plt_got != NULL)
4524 {
4525 sec = bfd_make_section_anyway_with_flags (dynobj,
4526 ".eh_frame",
4527 flags);
4528 if (sec == NULL)
4529 info->callbacks->einfo (_("%F%P: failed to create GOT PLT .eh_frame section\n"));
4530
4531 if (!bfd_set_section_alignment (sec, class_align))
4532 goto error_alignment;
4533
4534 htab->plt_got_eh_frame = sec;
4535 }
4536
4537 if (htab->plt_second != NULL)
4538 {
4539 sec = bfd_make_section_anyway_with_flags (dynobj,
4540 ".eh_frame",
4541 flags);
4542 if (sec == NULL)
4543 info->callbacks->einfo (_("%F%P: failed to create the second PLT .eh_frame section\n"));
4544
4545 if (!bfd_set_section_alignment (sec, class_align))
4546 goto error_alignment;
4547
4548 htab->plt_second_eh_frame = sec;
4549 }
4550 }
4551
4552 /* .sframe sections are emitted for AMD64 ABI only. */
4553 if (ABI_64_P (info->output_bfd) && !info->no_ld_generated_unwind_info)
4554 {
4555 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4556 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4557 | SEC_LINKER_CREATED);
4558
4559 sec = bfd_make_section_anyway_with_flags (dynobj,
4560 ".sframe",
4561 flags);
4562 if (sec == NULL)
4563 info->callbacks->einfo (_("%F%P: failed to create PLT .sframe section\n"));
4564
4565 // FIXME check this
4566 // if (!bfd_set_section_alignment (sec, class_align))
4567 // goto error_alignment;
4568
4569 htab->plt_sframe = sec;
4570
4571 /* Second PLT is generated for Intel IBT + lazy plt. */
4572 if (htab->plt_second != NULL)
4573 {
4574 sec = bfd_make_section_anyway_with_flags (dynobj,
4575 ".sframe",
4576 flags);
4577 if (sec == NULL)
4578 info->callbacks->einfo (_("%F%P: failed to create second PLT .sframe section\n"));
4579
4580 htab->plt_second_sframe = sec;
4581 }
4582 /* FIXME - add later for plt_got. */
4583 }
4584 }
4585
4586 /* The .iplt section is used for IFUNC symbols in static
4587 executables. */
4588 sec = htab->elf.iplt;
4589 if (sec != NULL)
4590 {
4591 /* NB: Delay setting its alignment until we know it is non-empty.
4592 Otherwise an empty iplt section may change vma and lma of the
4593 following sections, which triggers moving dot of the following
4594 section backwards, resulting in a warning and section lma not
4595 being set properly. It later leads to a "File truncated"
4596 error. */
4597 if (!bfd_set_section_alignment (sec, 0))
4598 goto error_alignment;
4599
4600 htab->plt.iplt_alignment = (normal_target
4601 ? plt_alignment
4602 : bed->plt_alignment);
4603 }
4604
4605 if (bfd_link_executable (info)
4606 && !info->nointerp
4607 && !htab->params->has_dynamic_linker
4608 && htab->params->static_before_all_inputs)
4609 {
4610 /* Report error for dynamic input objects if -static is passed at
4611 command-line before all input files without --dynamic-linker
4612 unless --no-dynamic-linker is used. */
4613 bfd *abfd;
4614
4615 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
4616 if ((abfd->flags & DYNAMIC))
4617 info->callbacks->einfo
4618 (_("%X%P: attempted static link of dynamic object `%pB'\n"),
4619 abfd);
4620 }
4621
4622 return pbfd;
4623 }
4624
4625 /* Fix up x86 GNU properties. */
4626
4627 void
4628 _bfd_x86_elf_link_fixup_gnu_properties
4629 (struct bfd_link_info *info, elf_property_list **listp)
4630 {
4631 elf_property_list *p;
4632
4633 for (p = *listp; p; p = p->next)
4634 {
4635 unsigned int type = p->property.pr_type;
4636 if (type == GNU_PROPERTY_X86_COMPAT_ISA_1_USED
4637 || type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED
4638 || (type >= GNU_PROPERTY_X86_UINT32_AND_LO
4639 && type <= GNU_PROPERTY_X86_UINT32_AND_HI)
4640 || (type >= GNU_PROPERTY_X86_UINT32_OR_LO
4641 && type <= GNU_PROPERTY_X86_UINT32_OR_HI)
4642 || (type >= GNU_PROPERTY_X86_UINT32_OR_AND_LO
4643 && type <= GNU_PROPERTY_X86_UINT32_OR_AND_HI))
4644 {
4645 if (p->property.u.number == 0
4646 && (type == GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED
4647 || (type >= GNU_PROPERTY_X86_UINT32_AND_LO
4648 && type <= GNU_PROPERTY_X86_UINT32_AND_HI)
4649 || (type >= GNU_PROPERTY_X86_UINT32_OR_LO
4650 && type <= GNU_PROPERTY_X86_UINT32_OR_HI)))
4651 {
4652 /* Remove empty property. */
4653 *listp = p->next;
4654 continue;
4655 }
4656
4657 /* Keep LAM features only for 64-bit output. */
4658 if (type == GNU_PROPERTY_X86_FEATURE_1_AND
4659 && !ABI_64_P (info->output_bfd))
4660 p->property.u.number &= ~(GNU_PROPERTY_X86_FEATURE_1_LAM_U48
4661 | GNU_PROPERTY_X86_FEATURE_1_LAM_U57);
4662
4663 listp = &p->next;
4664 }
4665 else if (type > GNU_PROPERTY_HIPROC)
4666 {
4667 /* The property list is sorted in order of type. */
4668 break;
4669 }
4670 }
4671 }
4672
4673 void
4674 _bfd_elf_linker_x86_set_options (struct bfd_link_info * info,
4675 struct elf_linker_x86_params *params)
4676 {
4677 const struct elf_backend_data *bed
4678 = get_elf_backend_data (info->output_bfd);
4679 struct elf_x86_link_hash_table *htab
4680 = elf_x86_hash_table (info, bed->target_id);
4681 if (htab != NULL)
4682 htab->params = params;
4683 }