wrap QSPI exploration in SYSCON check for QSPI
[ls2.git] / coldboot / coldboot.c
1 #include <stdint.h>
2 #include <stdbool.h>
3
4 #include "console.h"
5 #include "microwatt_soc.h"
6 #include "io.h"
7
8 #include <stdlib.h>
9 #include <stdint.h>
10 #include <gram.h>
11
12 #include "elf64.h"
13
14 static inline void mtspr(int sprnum, unsigned long val)
15 {
16 __asm__ volatile("mtspr %0,%1" : : "i" (sprnum), "r" (val));
17 }
18
19 static inline uint32_t read32(const void *addr)
20 {
21 return *(volatile uint32_t *)addr;
22 }
23
24 static inline void write32(void *addr, uint32_t value)
25 {
26 *(volatile uint32_t *)addr = value;
27 }
28
29 struct uart_regs {
30 uint32_t divisor;
31 uint32_t rx_data;
32 uint32_t rx_rdy;
33 uint32_t rx_err;
34 uint32_t tx_data;
35 uint32_t tx_rdy;
36 uint32_t zero0; // reserved
37 uint32_t zero1; // reserved
38 uint32_t ev_status;
39 uint32_t ev_pending;
40 uint32_t ev_enable;
41 };
42
43 void uart_writeuint32(uint32_t val) {
44 const char lut[] = { '0', '1', '2', '3', '4', '5', '6', '7',
45 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
46 uint8_t *val_arr = (uint8_t*)(&val);
47 size_t i;
48
49 for (i = 0; i < 4; i++) {
50 putchar(lut[(val_arr[3-i] >> 4) & 0xF]);
51 putchar(lut[val_arr[3-i] & 0xF]);
52 }
53 }
54
55 void memcpy(void *dest, void *src, size_t n) {
56 int i;
57 //cast src and dest to char*
58 char *src_char = (char *)src;
59 char *dest_char = (char *)dest;
60 for (i=0; i<n; i++) {
61 #if 1
62 if ((i % 4096) == 0) {
63 puts("memcpy ");
64 uart_writeuint32(i);
65 puts("\r\n");
66 }
67 #endif
68 dest_char[i] = src_char[i]; //copy contents byte by byte
69 }
70 }
71
72 void isr(void) {
73
74 }
75
76 // WARNING
77 // KESTREL SPECIFIC
78 #define TERCEL_SPI_REG_SYS_PHY_CFG1 0x10
79 #define TERCEL_SPI_REG_SYS_FLASH_CFG5 0x24
80 #define TERCEL_SPI_PHY_CLOCK_DIVISOR_MASK 0xff
81 #define TERCEL_SPI_PHY_CLOCK_DIVISOR_SHIFT 0
82 #define TERCEL_SPI_FLASH_EN_MULTCYC_READ_MASK 0x1
83 #define TERCEL_SPI_FLASH_EN_MULTCYC_READ_SHIFT 0
84 static inline uint32_t read_tercel_register(uint8_t reg)
85 {
86 return readl((unsigned long)(SPI_FCTRL_BASE+reg));
87 }
88
89 static inline void write_tercel_register(uint8_t reg, uint32_t value)
90 {
91 writel(value, (unsigned long)(SPI_FCTRL_BASE+reg));
92 }
93
94 // TODO: need to use this
95 // https://gitlab.raptorengineering.com/kestrel-collaboration/kestrel-firmware/bare-metal-firmware/-/blob/master/main.c#L2328
96
97 /* this is a "level 1" speed-up, which gets an initial improvement of 10-50x
98 * over the default speed (which is a scant 100 bytes per second).
99 */
100 static void crank_up_qspi_level1(void)
101 {
102 // WARNING: KESTREL SPECIFIC
103 // Set SPI clock cycle divider to 1
104 uint32_t dword;
105 dword = read_tercel_register(TERCEL_SPI_REG_SYS_PHY_CFG1);
106 dword &= ~(TERCEL_SPI_PHY_CLOCK_DIVISOR_MASK <<
107 TERCEL_SPI_PHY_CLOCK_DIVISOR_SHIFT);
108 dword |= ((1 & TERCEL_SPI_PHY_CLOCK_DIVISOR_MASK) <<
109 TERCEL_SPI_PHY_CLOCK_DIVISOR_SHIFT);
110 write_tercel_register(TERCEL_SPI_REG_SYS_PHY_CFG1, dword);
111 // Enable read merging
112 dword = read_tercel_register(TERCEL_SPI_REG_SYS_FLASH_CFG5);
113 dword |= (TERCEL_SPI_FLASH_EN_MULTCYC_READ_MASK <<
114 TERCEL_SPI_FLASH_EN_MULTCYC_READ_SHIFT);
115 write_tercel_register(TERCEL_SPI_REG_SYS_FLASH_CFG5, dword);
116 }
117
118 static bool fl_read(void *dst, uint32_t offset, uint32_t size)
119 {
120 uint8_t *d = dst;
121 memcpy(d, (void *)(unsigned long)(SPI_FLASH_BASE + offset), size);
122 return true;
123 }
124
125 static unsigned long copy_flash(unsigned int offset, unsigned int dst_offs)
126 {
127 Elf64_Ehdr ehdr;
128 Elf64_Phdr ph;
129 unsigned int i, poff, size, off;
130 void *addr;
131
132 puts("Trying flash...\r\n");
133 if (!fl_read(&ehdr, offset, sizeof(ehdr)))
134 return -1ul;
135 if (!IS_ELF(ehdr) || ehdr.e_ident[EI_CLASS] != ELFCLASS64) {
136 puts("Doesn't look like an elf64\r\n");
137 goto dump;
138 }
139 if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB ||
140 ehdr.e_machine != EM_PPC64) {
141 puts("Not a ppc64le binary\r\n");
142 goto dump;
143 }
144
145 poff = offset + ehdr.e_phoff;
146 for (i = 0; i < ehdr.e_phnum; i++) {
147 if (!fl_read(&ph, poff, sizeof(ph)))
148 goto dump;
149 if (ph.p_type != PT_LOAD)
150 continue;
151
152 /* XXX Add bound checking ! */
153 size = ph.p_filesz;
154 addr = (void *)ph.p_vaddr;
155 off = offset + ph.p_offset;
156 //printf("Copy segment %d (0x%x bytes) to %p\n", i, size, addr);
157 puts("Copy segment ");
158 uart_writeuint32(i);
159 puts(" size ");
160 uart_writeuint32(size);
161 puts(" addr ");
162 uart_writeuint32((uint32_t)(unsigned long)addr);
163 puts("\r\n");
164 fl_read(addr+dst_offs, off, size);
165 poff += ehdr.e_phentsize;
166 }
167
168 puts("Booting from DRAM at");
169 uart_writeuint32((unsigned int)(dst_offs+ehdr.e_entry));
170 puts("\r\n");
171
172 puts("Dump DRAM\r\n");
173 for (i = 0; i < 64; i++) {
174 uart_writeuint32(readl(dst_offs+ehdr.e_entry+(i*4)));
175 puts(" ");
176 if ((i & 7) == 7) puts("\r\n");
177 }
178 puts("\r\n");
179
180 //flush_cpu_icache();
181 return dst_offs+ehdr.e_entry;
182 dump:
183 puts("HDR: \r\n");
184 for (i = 0; i < 8; i++) {
185 uart_writeuint32(ehdr.e_ident[i]);
186 puts("\r\n");
187 }
188
189 return -1ul;
190 }
191
192
193 // XXX
194 // Defining gram_[read|write] allows a trace of all register
195 // accesses to be dumped to console for debugging purposes.
196 // To use, define GRAM_RW_FUNC in gram.h
197 uint32_t gram_read(const struct gramCtx *ctx, void *addr) {
198 uint32_t dword;
199
200 puts("gram_read: ");
201 uart_writeuint32((unsigned long)addr);
202 dword = readl((unsigned long)addr);
203 puts(": ");
204 uart_writeuint32((unsigned long)dword);
205 puts("\n");
206
207 return dword;
208 }
209
210 int gram_write(const struct gramCtx *ctx, void *addr, uint32_t value) {
211 puts("gram_write: ");
212 uart_writeuint32((unsigned long)addr);
213 puts(": ");
214 uart_writeuint32((unsigned long)value);
215 writel(value, (unsigned long)addr);
216 puts("\n");
217
218 return 0;
219 }
220
221 int main(void) {
222 const int kNumIterations = 14;
223 int res, failcnt = 0;
224 uint32_t tmp;
225 unsigned long ftr, spi_offs=0x0;
226 volatile uint32_t *ram = (uint32_t*)MEMORY_BASE;
227
228 console_init();
229 //puts("Firmware launched...\n");
230
231 #if 1
232 puts(" Soc signature: ");
233 tmp = readl(SYSCON_BASE + SYS_REG_SIGNATURE);
234 uart_writeuint32(tmp);
235 puts(" Soc features: ");
236 ftr = readl(SYSCON_BASE + SYS_REG_INFO);
237 if (ftr & SYS_REG_INFO_HAS_UART)
238 puts("UART ");
239 if (ftr & SYS_REG_INFO_HAS_DRAM)
240 puts("DRAM ");
241 if (ftr & SYS_REG_INFO_HAS_BRAM)
242 puts("BRAM ");
243 if (ftr & SYS_REG_INFO_HAS_SPI_FLASH)
244 puts("SPIFLASH ");
245 if (ftr & SYS_REG_INFO_HAS_LITEETH)
246 puts("ETHERNET ");
247 puts("\r\n");
248
249 if (ftr & SYS_REG_INFO_HAS_SPI_FLASH) {
250 // speed up the QSPI to at least a sane level
251 crank_up_qspi_level1();
252
253 puts("SPI Offset: ");
254 spi_offs = readl(SYSCON_BASE + SYS_REG_SPI_INFO);
255 uart_writeuint32(spi_offs);
256 puts("\r\n");
257 }
258
259 #endif
260
261 #if 1
262 #if 1
263 if (ftr & SYS_REG_INFO_HAS_SPI_FLASH) {
264 // print out configuration parameters for QSPI
265 volatile uint32_t *qspi_cfg = (uint32_t*)SPI_FCTRL_BASE;
266 for (int k=0; k < 2; k++) {
267 tmp = readl((unsigned long)&(qspi_cfg[k]));
268 puts("cfg");
269 uart_writeuint32(k);
270 puts(" ");
271 uart_writeuint32(tmp);
272 puts("\n");
273 }
274 }
275 #endif
276 if (ftr & SYS_REG_INFO_HAS_SPI_FLASH) {
277 volatile uint32_t *qspi = (uint32_t*)SPI_FLASH_BASE+0x600000;
278 //volatile uint8_t *qspi_bytes = (uint8_t*)spi_offs;
279 // let's not, eh? writel(0xDEAF0123, (unsigned long)&(qspi[0]));
280 // tmp = readl((unsigned long)&(qspi[0]));
281 for (int i=0;i<256;i++) {
282 tmp = readl((unsigned long)&(qspi[i]));
283 uart_writeuint32(tmp);
284 puts(" ");
285 if ((i & 0x7) == 0x7) puts("\r\n");
286 }
287 puts("\r\n");
288 /*
289 for (i=0;i<256;i++) {
290 tmp = readb((unsigned long)&(qspi_bytes[i]));
291 uart_writeuint32(tmp);
292 puts(" ");
293 }
294 */
295 #if 0
296 while (1) {
297 // quick read
298 tmp = readl((unsigned long)&(qspi[0x1000/4]));
299 puts("read 0x1000");
300 uart_writeuint32(tmp);
301 putchar(10);
302 }
303 while (1) {
304 unsigned char c = getchar();
305 putchar(c);
306 if (c == 13) { // if CR send LF
307
308 // quick read
309 tmp = readl((unsigned long)&(qspi[1<<i]));
310 puts("read ");
311 uart_writeuint32(1<<i);
312 puts(" ");
313 uart_writeuint32(tmp);
314 putchar(10);
315 i++;
316 }
317 }
318
319 return 0;
320 #endif
321 }
322 #endif
323 #if 0
324 volatile uint32_t *hyperram = (uint32_t*)0xa0000000;
325 writel(0xDEAF0123, (unsigned long)&(hyperram[0]));
326 tmp = readl((unsigned long)&(hyperram[0]));
327 while (1) {
328 unsigned char c = getchar();
329 putchar(c);
330 if (c == 13) { // if CR send LF
331
332 // quick write/read
333 writel(0xDEAF0123+i, (unsigned long)&(hyperram[1<<i]));
334 tmp = readl((unsigned long)&(hyperram[1<<i]));
335 puts("read ");
336 uart_writeuint32(1<<i);
337 puts(" ");
338 uart_writeuint32(tmp);
339 putchar(10);
340 i++;
341 }
342 }
343
344 return 0;
345 #endif
346
347 // init DRAM only if SYSCON says it exists (duh)
348 if (ftr & SYS_REG_INFO_HAS_DRAM)
349 {
350 puts("DRAM init... ");
351
352 struct gramCtx ctx;
353 #if 1
354 struct gramProfile profile = {
355 .mode_registers = {
356 0xb20, 0x806, 0x200, 0x0
357 },
358 .rdly_p0 = 2,
359 .rdly_p1 = 2,
360 };
361 #endif
362 #if 0
363 struct gramProfile profile = {
364 .mode_registers = {
365 0x0320, 0x0006, 0x0200, 0x0000
366 },
367 .rdly_p0 = 1,
368 .rdly_p1 = 1,
369 };
370 #endif
371 struct gramProfile profile2;
372 gram_init(&ctx, &profile, (void*)MEMORY_BASE,
373 (void*)DRAM_CTRL_BASE,
374 (void*)DRAM_INIT_BASE);
375 puts("done\n");
376
377 puts("MR profile: ");
378 uart_writeuint32(profile.mode_registers[0]);
379 puts(" ");
380 uart_writeuint32(profile.mode_registers[1]);
381 puts(" ");
382 uart_writeuint32(profile.mode_registers[2]);
383 puts(" ");
384 uart_writeuint32(profile.mode_registers[3]);
385 puts("\n");
386
387 // FIXME
388 // Early read test for WB access sim
389 //uart_writeuint32(*ram);
390
391 #if 1
392 puts("Rdly\np0: ");
393 for (size_t i = 0; i < 8; i++) {
394 profile2.rdly_p0 = i;
395 gram_load_calibration(&ctx, &profile2);
396 gram_reset_burstdet(&ctx);
397
398 for (size_t j = 0; j < 128; j++) {
399 tmp = readl((unsigned long)&(ram[i]));
400 }
401 if (gram_read_burstdet(&ctx, 0)) {
402 puts("1");
403 } else {
404 puts("0");
405 }
406 }
407 puts("\n");
408
409 puts("Rdly\np1: ");
410 for (size_t i = 0; i < 8; i++) {
411 profile2.rdly_p1 = i;
412 gram_load_calibration(&ctx, &profile2);
413 gram_reset_burstdet(&ctx);
414 for (size_t j = 0; j < 128; j++) {
415 tmp = readl((unsigned long)&(ram[i]));
416 }
417 if (gram_read_burstdet(&ctx, 1)) {
418 puts("1");
419 } else {
420 puts("0");
421 }
422 }
423 puts("\n");
424
425 puts("Auto calibrating... ");
426 res = gram_generate_calibration(&ctx, &profile2);
427 if (res != GRAM_ERR_NONE) {
428 puts("failed\n");
429 gram_load_calibration(&ctx, &profile);
430 } else {
431 gram_load_calibration(&ctx, &profile2);
432 }
433 puts("done\n");
434
435 puts("Auto calibration profile:");
436 puts("p0 rdly:");
437 uart_writeuint32(profile2.rdly_p0);
438 puts(" p1 rdly:");
439 uart_writeuint32(profile2.rdly_p1);
440 puts("\n");
441 #endif
442
443 puts("Reloading built-in calibration profile...");
444 gram_load_calibration(&ctx, &profile);
445
446 puts("DRAM test... \n");
447 for (size_t i = 0; i < kNumIterations; i++) {
448 writel(0xDEAF0000 | i*4, (unsigned long)&(ram[i]));
449 }
450
451 #if 0
452 for (int dly = 0; dly < 8; dly++) {
453 failcnt = 0;
454 profile2.rdly_p0 = dly;
455 profile2.rdly_p1 = dly;
456 puts("p0 rdly:");
457 uart_writeuint32(profile2.rdly_p0);
458 puts(" p1 rdly:");
459 uart_writeuint32(profile2.rdly_p1);
460 gram_load_calibration(&ctx, &profile2);
461 for (size_t i = 0; i < kNumIterations; i++) {
462 if (readl((unsigned long)&(ram[i])) != (0xDEAF0000 | i*4)) {
463 puts("fail : *(0x");
464 uart_writeuint32((unsigned long)(&ram[i]));
465 puts(") = ");
466 uart_writeuint32(readl((unsigned long)&(ram[i])));
467 puts("\n");
468 failcnt++;
469
470 if (failcnt > 10) {
471 puts("Test canceled (more than 10 errors)\n");
472 break;
473 }
474 }
475 }
476 }
477 #else
478 failcnt = 0;
479 for (size_t i = 0; i < kNumIterations; i++) {
480 if (readl((unsigned long)&(ram[i])) != (0xDEAF0000 | i*4)) {
481 puts("fail : *(0x");
482 uart_writeuint32((unsigned long)(&ram[i]));
483 puts(") = ");
484 uart_writeuint32(readl((unsigned long)&(ram[i])));
485 puts("\n");
486 failcnt++;
487
488 if (failcnt > 10) {
489 puts("Test canceled (more than 10 errors)\n");
490 break;
491 }
492 }
493 }
494 }
495 #endif
496 puts("done\n");
497
498 #if 0 // ooo, annoying: won't work. no idea why
499 // temporary hard-hack: boot directly from QSPI. really
500 // should do something like detect at least... something
501 if ((ftr & SYS_REG_INFO_HAS_SPI_FLASH))
502 {
503 // jump to absolute address
504 mtspr(8, SPI_FLASH_BASE); // move address to LR
505 __asm__ volatile("blr");
506 return 0;
507 }
508 #endif
509
510 // memcpy from SPI Flash then boot
511 if ((ftr & SYS_REG_INFO_HAS_SPI_FLASH) &&
512 (failcnt == 0))
513 {
514 /*
515 puts("ELF @ QSPI\n");
516 // identify ELF, copy if present, and get the start address
517 unsigned long faddr = copy_flash(spi_offs,
518 0x600000); // hack!
519 if (faddr != -1ul) {
520 // jump to absolute address
521 mtspr(8, faddr); // move address to LR
522 __asm__ volatile("blr");
523
524 // works with head.S which copies r3 into ctr then does bctr
525 return faddr;
526 }
527 puts("copy QSPI\n");
528 */
529 // another terrible hack: copy from flash at offset 0x600000
530 // a block of size 0x600000 into mem address 0x600000, then
531 // jump to it. this allows a dtb image to be executed
532 puts("copy QSPI\n");
533 volatile uint32_t *mem = (uint32_t*)0x600000;
534 fl_read(mem, 0x600000, 0x600000); // shorter (testing) 0x8000);
535 puts("dump mem\n");
536 for (int i=0;i<256;i++) {
537 tmp = readl((unsigned long)&(mem[i]));
538 uart_writeuint32(tmp);
539 puts(" ");
540 if ((i & 0x7) == 0x7) puts("\r\n");
541 }
542 puts("\r\n");
543 mtspr(8, 0x600000); // move address to LR
544 __asm__ volatile("blr");
545 }
546
547 return 0;
548 }
549