Daily bump.
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2021 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
43
44 /* The aliasing API provided here solves related but different problems:
45
46 Say there exists (in c)
47
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
52
53 struct Y y2, *py;
54 struct Z z2, *pz;
55
56
57 py = &x1.y1;
58 px2 = &x1;
59
60 Consider the four questions:
61
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
66
67 The answer to these questions can be yes, yes, yes, and maybe.
68
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
71 a store through a pointer to an X can overwrite any field that is
72 contained (recursively) in an X (unless we know that px1 != px2).
73
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
81
82 The pass ipa-type-escape does this analysis for the types whose
83 instances do not escape across the compilation boundary.
84
85 Historically in GCC, these two problems were combined and a single
86 data structure that was used to represent the solution to these
87 problems. We now have two similar but different data structures,
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
92 */
93
94 /* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
98
99 struct S { int i; double d; };
100
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
105 struct S
106 / \
107 / \
108 |/_ _\|
109 int double
110
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
114
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
117 past immediate descendants, however, since we propagate all
118 grandchildren up one level.
119
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
123
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125
126 struct GTY(()) alias_set_entry {
127 /* The alias set number, as stored in MEM_ALIAS_SET. */
128 alias_set_type alias_set;
129
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
140
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
143
144 struct T { struct S s; float f; }
145
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
149 };
150
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx,
163 HOST_WIDE_INT * = NULL);
164
165 static void memory_modified_1 (rtx, const_rtx, void *);
166
167 /* Query statistics for the different low-level disambiguators.
168 A high-level query may trigger multiple of them. */
169
170 static struct {
171 unsigned long long num_alias_zero;
172 unsigned long long num_same_alias_set;
173 unsigned long long num_same_objects;
174 unsigned long long num_volatile;
175 unsigned long long num_dag;
176 unsigned long long num_universal;
177 unsigned long long num_disambiguated;
178 } alias_stats;
179
180
181 /* Set up all info needed to perform alias analysis on memory references. */
182
183 /* Returns the size in bytes of the mode of X. */
184 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
185
186 /* Cap the number of passes we make over the insns propagating alias
187 information through set chains.
188 ??? 10 is a completely arbitrary choice. This should be based on the
189 maximum loop depth in the CFG, but we do not have this information
190 available (even if current_loops _is_ available). */
191 #define MAX_ALIAS_LOOP_PASSES 10
192
193 /* reg_base_value[N] gives an address to which register N is related.
194 If all sets after the first add or subtract to the current value
195 or otherwise modify it so it does not point to a different top level
196 object, reg_base_value[N] is equal to the address part of the source
197 of the first set.
198
199 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
200 expressions represent three types of base:
201
202 1. incoming arguments. There is just one ADDRESS to represent all
203 arguments, since we do not know at this level whether accesses
204 based on different arguments can alias. The ADDRESS has id 0.
205
206 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
207 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
208 Each of these rtxes has a separate ADDRESS associated with it,
209 each with a negative id.
210
211 GCC is (and is required to be) precise in which register it
212 chooses to access a particular region of stack. We can therefore
213 assume that accesses based on one of these rtxes do not alias
214 accesses based on another of these rtxes.
215
216 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
217 Each such piece of memory has a separate ADDRESS associated
218 with it, each with an id greater than 0.
219
220 Accesses based on one ADDRESS do not alias accesses based on other
221 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
222 alias globals either; the ADDRESSes have Pmode to indicate this.
223 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
224 indicate this. */
225
226 static GTY(()) vec<rtx, va_gc> *reg_base_value;
227 static rtx *new_reg_base_value;
228
229 /* The single VOIDmode ADDRESS that represents all argument bases.
230 It has id 0. */
231 static GTY(()) rtx arg_base_value;
232
233 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
234 static int unique_id;
235
236 /* We preserve the copy of old array around to avoid amount of garbage
237 produced. About 8% of garbage produced were attributed to this
238 array. */
239 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
240
241 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
242 registers. */
243 #define UNIQUE_BASE_VALUE_SP -1
244 #define UNIQUE_BASE_VALUE_ARGP -2
245 #define UNIQUE_BASE_VALUE_FP -3
246 #define UNIQUE_BASE_VALUE_HFP -4
247
248 #define static_reg_base_value \
249 (this_target_rtl->x_static_reg_base_value)
250
251 #define REG_BASE_VALUE(X) \
252 (REGNO (X) < vec_safe_length (reg_base_value) \
253 ? (*reg_base_value)[REGNO (X)] : 0)
254
255 /* Vector indexed by N giving the initial (unchanging) value known for
256 pseudo-register N. This vector is initialized in init_alias_analysis,
257 and does not change until end_alias_analysis is called. */
258 static GTY(()) vec<rtx, va_gc> *reg_known_value;
259
260 /* Vector recording for each reg_known_value whether it is due to a
261 REG_EQUIV note. Future passes (viz., reload) may replace the
262 pseudo with the equivalent expression and so we account for the
263 dependences that would be introduced if that happens.
264
265 The REG_EQUIV notes created in assign_parms may mention the arg
266 pointer, and there are explicit insns in the RTL that modify the
267 arg pointer. Thus we must ensure that such insns don't get
268 scheduled across each other because that would invalidate the
269 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
270 wrong, but solving the problem in the scheduler will likely give
271 better code, so we do it here. */
272 static sbitmap reg_known_equiv_p;
273
274 /* True when scanning insns from the start of the rtl to the
275 NOTE_INSN_FUNCTION_BEG note. */
276 static bool copying_arguments;
277
278
279 /* The splay-tree used to store the various alias set entries. */
280 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
281 \f
282 /* Build a decomposed reference object for querying the alias-oracle
283 from the MEM rtx and store it in *REF.
284 Returns false if MEM is not suitable for the alias-oracle. */
285
286 static bool
287 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
288 {
289 tree expr = MEM_EXPR (mem);
290 tree base;
291
292 if (!expr)
293 return false;
294
295 ao_ref_init (ref, expr);
296
297 /* Get the base of the reference and see if we have to reject or
298 adjust it. */
299 base = ao_ref_base (ref);
300 if (base == NULL_TREE)
301 return false;
302
303 /* The tree oracle doesn't like bases that are neither decls
304 nor indirect references of SSA names. */
305 if (!(DECL_P (base)
306 || (TREE_CODE (base) == MEM_REF
307 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
308 || (TREE_CODE (base) == TARGET_MEM_REF
309 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
310 return false;
311
312 ref->ref_alias_set = MEM_ALIAS_SET (mem);
313
314 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
315 is conservative, so trust it. */
316 if (!MEM_OFFSET_KNOWN_P (mem)
317 || !MEM_SIZE_KNOWN_P (mem))
318 return true;
319
320 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
321 drop ref->ref. */
322 if (maybe_lt (MEM_OFFSET (mem), 0)
323 || (ref->max_size_known_p ()
324 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
325 ref->max_size)))
326 ref->ref = NULL_TREE;
327
328 /* Refine size and offset we got from analyzing MEM_EXPR by using
329 MEM_SIZE and MEM_OFFSET. */
330
331 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
332 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
333
334 /* The MEM may extend into adjacent fields, so adjust max_size if
335 necessary. */
336 if (ref->max_size_known_p ())
337 ref->max_size = upper_bound (ref->max_size, ref->size);
338
339 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
340 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
341 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
342 && (maybe_lt (ref->offset, 0)
343 || (DECL_P (ref->base)
344 && (DECL_SIZE (ref->base) == NULL_TREE
345 || !poly_int_tree_p (DECL_SIZE (ref->base))
346 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
347 ref->offset + ref->size)))))
348 return false;
349
350 return true;
351 }
352
353 /* Query the alias-oracle on whether the two memory rtx X and MEM may
354 alias. If TBAA_P is set also apply TBAA. Returns true if the
355 two rtxen may alias, false otherwise. */
356
357 static bool
358 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
359 {
360 ao_ref ref1, ref2;
361
362 if (!ao_ref_from_mem (&ref1, x)
363 || !ao_ref_from_mem (&ref2, mem))
364 return true;
365
366 return refs_may_alias_p_1 (&ref1, &ref2,
367 tbaa_p
368 && MEM_ALIAS_SET (x) != 0
369 && MEM_ALIAS_SET (mem) != 0);
370 }
371
372 /* Return true if the ref EARLIER behaves the same as LATER with respect
373 to TBAA for every memory reference that might follow LATER. */
374
375 bool
376 refs_same_for_tbaa_p (tree earlier, tree later)
377 {
378 ao_ref earlier_ref, later_ref;
379 ao_ref_init (&earlier_ref, earlier);
380 ao_ref_init (&later_ref, later);
381 alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref);
382 alias_set_type later_set = ao_ref_alias_set (&later_ref);
383 if (!(earlier_set == later_set
384 || alias_set_subset_of (later_set, earlier_set)))
385 return false;
386 alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref);
387 alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref);
388 return (earlier_base_set == later_base_set
389 || alias_set_subset_of (later_base_set, earlier_base_set));
390 }
391
392 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
393 such an entry, or NULL otherwise. */
394
395 static inline alias_set_entry *
396 get_alias_set_entry (alias_set_type alias_set)
397 {
398 return (*alias_sets)[alias_set];
399 }
400
401 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
402 the two MEMs cannot alias each other. */
403
404 static inline int
405 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
406 {
407 return (flag_strict_aliasing
408 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
409 MEM_ALIAS_SET (mem2)));
410 }
411
412 /* Return true if the first alias set is a subset of the second. */
413
414 bool
415 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
416 {
417 alias_set_entry *ase2;
418
419 /* Disable TBAA oracle with !flag_strict_aliasing. */
420 if (!flag_strict_aliasing)
421 return true;
422
423 /* Everything is a subset of the "aliases everything" set. */
424 if (set2 == 0)
425 return true;
426
427 /* Check if set1 is a subset of set2. */
428 ase2 = get_alias_set_entry (set2);
429 if (ase2 != 0
430 && (ase2->has_zero_child
431 || (ase2->children && ase2->children->get (set1))))
432 return true;
433
434 /* As a special case we consider alias set of "void *" to be both subset
435 and superset of every alias set of a pointer. This extra symmetry does
436 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
437 to return true on the following testcase:
438
439 void *ptr;
440 char **ptr2=(char **)&ptr;
441 *ptr2 = ...
442
443 Additionally if a set contains universal pointer, we consider every pointer
444 to be a subset of it, but we do not represent this explicitely - doing so
445 would require us to update transitive closure each time we introduce new
446 pointer type. This makes aliasing_component_refs_p to return true
447 on the following testcase:
448
449 struct a {void *ptr;}
450 char **ptr = (char **)&a.ptr;
451 ptr = ...
452
453 This makes void * truly universal pointer type. See pointer handling in
454 get_alias_set for more details. */
455 if (ase2 && ase2->has_pointer)
456 {
457 alias_set_entry *ase1 = get_alias_set_entry (set1);
458
459 if (ase1 && ase1->is_pointer)
460 {
461 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
462 /* If one is ptr_type_node and other is pointer, then we consider
463 them subset of each other. */
464 if (set1 == voidptr_set || set2 == voidptr_set)
465 return true;
466 /* If SET2 contains universal pointer's alias set, then we consdier
467 every (non-universal) pointer. */
468 if (ase2->children && set1 != voidptr_set
469 && ase2->children->get (voidptr_set))
470 return true;
471 }
472 }
473 return false;
474 }
475
476 /* Return 1 if the two specified alias sets may conflict. */
477
478 int
479 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
480 {
481 alias_set_entry *ase1;
482 alias_set_entry *ase2;
483
484 /* The easy case. */
485 if (alias_sets_must_conflict_p (set1, set2))
486 return 1;
487
488 /* See if the first alias set is a subset of the second. */
489 ase1 = get_alias_set_entry (set1);
490 if (ase1 != 0
491 && ase1->children && ase1->children->get (set2))
492 {
493 ++alias_stats.num_dag;
494 return 1;
495 }
496
497 /* Now do the same, but with the alias sets reversed. */
498 ase2 = get_alias_set_entry (set2);
499 if (ase2 != 0
500 && ase2->children && ase2->children->get (set1))
501 {
502 ++alias_stats.num_dag;
503 return 1;
504 }
505
506 /* We want void * to be compatible with any other pointer without
507 really dropping it to alias set 0. Doing so would make it
508 compatible with all non-pointer types too.
509
510 This is not strictly necessary by the C/C++ language
511 standards, but avoids common type punning mistakes. In
512 addition to that, we need the existence of such universal
513 pointer to implement Fortran's C_PTR type (which is defined as
514 type compatible with all C pointers). */
515 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
516 {
517 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
518
519 /* If one of the sets corresponds to universal pointer,
520 we consider it to conflict with anything that is
521 or contains pointer. */
522 if (set1 == voidptr_set || set2 == voidptr_set)
523 {
524 ++alias_stats.num_universal;
525 return true;
526 }
527 /* If one of sets is (non-universal) pointer and the other
528 contains universal pointer, we also get conflict. */
529 if (ase1->is_pointer && set2 != voidptr_set
530 && ase2->children && ase2->children->get (voidptr_set))
531 {
532 ++alias_stats.num_universal;
533 return true;
534 }
535 if (ase2->is_pointer && set1 != voidptr_set
536 && ase1->children && ase1->children->get (voidptr_set))
537 {
538 ++alias_stats.num_universal;
539 return true;
540 }
541 }
542
543 ++alias_stats.num_disambiguated;
544
545 /* The two alias sets are distinct and neither one is the
546 child of the other. Therefore, they cannot conflict. */
547 return 0;
548 }
549
550 /* Return 1 if the two specified alias sets will always conflict. */
551
552 int
553 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
554 {
555 /* Disable TBAA oracle with !flag_strict_aliasing. */
556 if (!flag_strict_aliasing)
557 return 1;
558 if (set1 == 0 || set2 == 0)
559 {
560 ++alias_stats.num_alias_zero;
561 return 1;
562 }
563 if (set1 == set2)
564 {
565 ++alias_stats.num_same_alias_set;
566 return 1;
567 }
568
569 return 0;
570 }
571
572 /* Return 1 if any MEM object of type T1 will always conflict (using the
573 dependency routines in this file) with any MEM object of type T2.
574 This is used when allocating temporary storage. If T1 and/or T2 are
575 NULL_TREE, it means we know nothing about the storage. */
576
577 int
578 objects_must_conflict_p (tree t1, tree t2)
579 {
580 alias_set_type set1, set2;
581
582 /* If neither has a type specified, we don't know if they'll conflict
583 because we may be using them to store objects of various types, for
584 example the argument and local variables areas of inlined functions. */
585 if (t1 == 0 && t2 == 0)
586 return 0;
587
588 /* If they are the same type, they must conflict. */
589 if (t1 == t2)
590 {
591 ++alias_stats.num_same_objects;
592 return 1;
593 }
594 /* Likewise if both are volatile. */
595 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
596 {
597 ++alias_stats.num_volatile;
598 return 1;
599 }
600
601 set1 = t1 ? get_alias_set (t1) : 0;
602 set2 = t2 ? get_alias_set (t2) : 0;
603
604 /* We can't use alias_sets_conflict_p because we must make sure
605 that every subtype of t1 will conflict with every subtype of
606 t2 for which a pair of subobjects of these respective subtypes
607 overlaps on the stack. */
608 return alias_sets_must_conflict_p (set1, set2);
609 }
610 \f
611 /* Return true if T is an end of the access path which can be used
612 by type based alias oracle. */
613
614 bool
615 ends_tbaa_access_path_p (const_tree t)
616 {
617 switch (TREE_CODE (t))
618 {
619 case COMPONENT_REF:
620 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
621 return true;
622 /* Permit type-punning when accessing a union, provided the access
623 is directly through the union. For example, this code does not
624 permit taking the address of a union member and then storing
625 through it. Even the type-punning allowed here is a GCC
626 extension, albeit a common and useful one; the C standard says
627 that such accesses have implementation-defined behavior. */
628 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
629 return true;
630 break;
631
632 case ARRAY_REF:
633 case ARRAY_RANGE_REF:
634 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
635 return true;
636 break;
637
638 case REALPART_EXPR:
639 case IMAGPART_EXPR:
640 break;
641
642 case BIT_FIELD_REF:
643 case VIEW_CONVERT_EXPR:
644 /* Bitfields and casts are never addressable. */
645 return true;
646 break;
647
648 default:
649 gcc_unreachable ();
650 }
651 return false;
652 }
653
654 /* Return the outermost parent of component present in the chain of
655 component references handled by get_inner_reference in T with the
656 following property:
657 - the component is non-addressable
658 or NULL_TREE if no such parent exists. In the former cases, the alias
659 set of this parent is the alias set that must be used for T itself. */
660
661 tree
662 component_uses_parent_alias_set_from (const_tree t)
663 {
664 const_tree found = NULL_TREE;
665
666 while (handled_component_p (t))
667 {
668 if (ends_tbaa_access_path_p (t))
669 found = t;
670
671 t = TREE_OPERAND (t, 0);
672 }
673
674 if (found)
675 return TREE_OPERAND (found, 0);
676
677 return NULL_TREE;
678 }
679
680
681 /* Return whether the pointer-type T effective for aliasing may
682 access everything and thus the reference has to be assigned
683 alias-set zero. */
684
685 static bool
686 ref_all_alias_ptr_type_p (const_tree t)
687 {
688 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
689 || TYPE_REF_CAN_ALIAS_ALL (t));
690 }
691
692 /* Return the alias set for the memory pointed to by T, which may be
693 either a type or an expression. Return -1 if there is nothing
694 special about dereferencing T. */
695
696 static alias_set_type
697 get_deref_alias_set_1 (tree t)
698 {
699 /* All we care about is the type. */
700 if (! TYPE_P (t))
701 t = TREE_TYPE (t);
702
703 /* If we have an INDIRECT_REF via a void pointer, we don't
704 know anything about what that might alias. Likewise if the
705 pointer is marked that way. */
706 if (ref_all_alias_ptr_type_p (t))
707 return 0;
708
709 return -1;
710 }
711
712 /* Return the alias set for the memory pointed to by T, which may be
713 either a type or an expression. */
714
715 alias_set_type
716 get_deref_alias_set (tree t)
717 {
718 /* If we're not doing any alias analysis, just assume everything
719 aliases everything else. */
720 if (!flag_strict_aliasing)
721 return 0;
722
723 alias_set_type set = get_deref_alias_set_1 (t);
724
725 /* Fall back to the alias-set of the pointed-to type. */
726 if (set == -1)
727 {
728 if (! TYPE_P (t))
729 t = TREE_TYPE (t);
730 set = get_alias_set (TREE_TYPE (t));
731 }
732
733 return set;
734 }
735
736 /* Return the pointer-type relevant for TBAA purposes from the
737 memory reference tree *T or NULL_TREE in which case *T is
738 adjusted to point to the outermost component reference that
739 can be used for assigning an alias set. */
740
741 tree
742 reference_alias_ptr_type_1 (tree *t)
743 {
744 tree inner;
745
746 /* Get the base object of the reference. */
747 inner = *t;
748 while (handled_component_p (inner))
749 {
750 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
751 the type of any component references that wrap it to
752 determine the alias-set. */
753 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
754 *t = TREE_OPERAND (inner, 0);
755 inner = TREE_OPERAND (inner, 0);
756 }
757
758 /* Handle pointer dereferences here, they can override the
759 alias-set. */
760 if (INDIRECT_REF_P (inner)
761 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
762 return TREE_TYPE (TREE_OPERAND (inner, 0));
763 else if (TREE_CODE (inner) == TARGET_MEM_REF)
764 return TREE_TYPE (TMR_OFFSET (inner));
765 else if (TREE_CODE (inner) == MEM_REF
766 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
767 return TREE_TYPE (TREE_OPERAND (inner, 1));
768
769 /* If the innermost reference is a MEM_REF that has a
770 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
771 using the memory access type for determining the alias-set. */
772 if (TREE_CODE (inner) == MEM_REF
773 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
774 != TYPE_MAIN_VARIANT
775 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
776 return TREE_TYPE (TREE_OPERAND (inner, 1));
777
778 /* Otherwise, pick up the outermost object that we could have
779 a pointer to. */
780 tree tem = component_uses_parent_alias_set_from (*t);
781 if (tem)
782 *t = tem;
783
784 return NULL_TREE;
785 }
786
787 /* Return the pointer-type relevant for TBAA purposes from the
788 gimple memory reference tree T. This is the type to be used for
789 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
790 and guarantees that get_alias_set will return the same alias
791 set for T and the replacement. */
792
793 tree
794 reference_alias_ptr_type (tree t)
795 {
796 /* If the frontend assigns this alias-set zero, preserve that. */
797 if (lang_hooks.get_alias_set (t) == 0)
798 return ptr_type_node;
799
800 tree ptype = reference_alias_ptr_type_1 (&t);
801 /* If there is a given pointer type for aliasing purposes, return it. */
802 if (ptype != NULL_TREE)
803 return ptype;
804
805 /* Otherwise build one from the outermost component reference we
806 may use. */
807 if (TREE_CODE (t) == MEM_REF
808 || TREE_CODE (t) == TARGET_MEM_REF)
809 return TREE_TYPE (TREE_OPERAND (t, 1));
810 else
811 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
812 }
813
814 /* Return whether the pointer-types T1 and T2 used to determine
815 two alias sets of two references will yield the same answer
816 from get_deref_alias_set. */
817
818 bool
819 alias_ptr_types_compatible_p (tree t1, tree t2)
820 {
821 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
822 return true;
823
824 if (ref_all_alias_ptr_type_p (t1)
825 || ref_all_alias_ptr_type_p (t2))
826 return false;
827
828 /* This function originally abstracts from simply comparing
829 get_deref_alias_set so that we are sure this still computes
830 the same result after LTO type merging is applied.
831 When in LTO type merging is done we can actually do this compare.
832 */
833 if (in_lto_p)
834 return get_deref_alias_set (t1) == get_deref_alias_set (t2);
835 else
836 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
837 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
838 }
839
840 /* Create emptry alias set entry. */
841
842 alias_set_entry *
843 init_alias_set_entry (alias_set_type set)
844 {
845 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
846 ase->alias_set = set;
847 ase->children = NULL;
848 ase->has_zero_child = false;
849 ase->is_pointer = false;
850 ase->has_pointer = false;
851 gcc_checking_assert (!get_alias_set_entry (set));
852 (*alias_sets)[set] = ase;
853 return ase;
854 }
855
856 /* Return the alias set for T, which may be either a type or an
857 expression. Call language-specific routine for help, if needed. */
858
859 alias_set_type
860 get_alias_set (tree t)
861 {
862 alias_set_type set;
863
864 /* We cannot give up with -fno-strict-aliasing because we need to build
865 proper type representations for possible functions which are built with
866 -fstrict-aliasing. */
867
868 /* return 0 if this or its type is an error. */
869 if (t == error_mark_node
870 || (! TYPE_P (t)
871 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
872 return 0;
873
874 /* We can be passed either an expression or a type. This and the
875 language-specific routine may make mutually-recursive calls to each other
876 to figure out what to do. At each juncture, we see if this is a tree
877 that the language may need to handle specially. First handle things that
878 aren't types. */
879 if (! TYPE_P (t))
880 {
881 /* Give the language a chance to do something with this tree
882 before we look at it. */
883 STRIP_NOPS (t);
884 set = lang_hooks.get_alias_set (t);
885 if (set != -1)
886 return set;
887
888 /* Get the alias pointer-type to use or the outermost object
889 that we could have a pointer to. */
890 tree ptype = reference_alias_ptr_type_1 (&t);
891 if (ptype != NULL)
892 return get_deref_alias_set (ptype);
893
894 /* If we've already determined the alias set for a decl, just return
895 it. This is necessary for C++ anonymous unions, whose component
896 variables don't look like union members (boo!). */
897 if (VAR_P (t)
898 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
899 return MEM_ALIAS_SET (DECL_RTL (t));
900
901 /* Now all we care about is the type. */
902 t = TREE_TYPE (t);
903 }
904
905 /* Variant qualifiers don't affect the alias set, so get the main
906 variant. */
907 t = TYPE_MAIN_VARIANT (t);
908
909 if (AGGREGATE_TYPE_P (t)
910 && TYPE_TYPELESS_STORAGE (t))
911 return 0;
912
913 /* Always use the canonical type as well. If this is a type that
914 requires structural comparisons to identify compatible types
915 use alias set zero. */
916 if (TYPE_STRUCTURAL_EQUALITY_P (t))
917 {
918 /* Allow the language to specify another alias set for this
919 type. */
920 set = lang_hooks.get_alias_set (t);
921 if (set != -1)
922 return set;
923 /* Handle structure type equality for pointer types, arrays and vectors.
924 This is easy to do, because the code below ignores canonical types on
925 these anyway. This is important for LTO, where TYPE_CANONICAL for
926 pointers cannot be meaningfully computed by the frontend. */
927 if (canonical_type_used_p (t))
928 {
929 /* In LTO we set canonical types for all types where it makes
930 sense to do so. Double check we did not miss some type. */
931 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
932 return 0;
933 }
934 }
935 else
936 {
937 t = TYPE_CANONICAL (t);
938 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
939 }
940
941 /* If this is a type with a known alias set, return it. */
942 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
943 if (TYPE_ALIAS_SET_KNOWN_P (t))
944 return TYPE_ALIAS_SET (t);
945
946 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
947 if (!COMPLETE_TYPE_P (t))
948 {
949 /* For arrays with unknown size the conservative answer is the
950 alias set of the element type. */
951 if (TREE_CODE (t) == ARRAY_TYPE)
952 return get_alias_set (TREE_TYPE (t));
953
954 /* But return zero as a conservative answer for incomplete types. */
955 return 0;
956 }
957
958 /* See if the language has special handling for this type. */
959 set = lang_hooks.get_alias_set (t);
960 if (set != -1)
961 return set;
962
963 /* There are no objects of FUNCTION_TYPE, so there's no point in
964 using up an alias set for them. (There are, of course, pointers
965 and references to functions, but that's different.) */
966 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
967 set = 0;
968
969 /* Unless the language specifies otherwise, let vector types alias
970 their components. This avoids some nasty type punning issues in
971 normal usage. And indeed lets vectors be treated more like an
972 array slice. */
973 else if (TREE_CODE (t) == VECTOR_TYPE)
974 set = get_alias_set (TREE_TYPE (t));
975
976 /* Unless the language specifies otherwise, treat array types the
977 same as their components. This avoids the asymmetry we get
978 through recording the components. Consider accessing a
979 character(kind=1) through a reference to a character(kind=1)[1:1].
980 Or consider if we want to assign integer(kind=4)[0:D.1387] and
981 integer(kind=4)[4] the same alias set or not.
982 Just be pragmatic here and make sure the array and its element
983 type get the same alias set assigned. */
984 else if (TREE_CODE (t) == ARRAY_TYPE
985 && (!TYPE_NONALIASED_COMPONENT (t)
986 || TYPE_STRUCTURAL_EQUALITY_P (t)))
987 set = get_alias_set (TREE_TYPE (t));
988
989 /* From the former common C and C++ langhook implementation:
990
991 Unfortunately, there is no canonical form of a pointer type.
992 In particular, if we have `typedef int I', then `int *', and
993 `I *' are different types. So, we have to pick a canonical
994 representative. We do this below.
995
996 Technically, this approach is actually more conservative that
997 it needs to be. In particular, `const int *' and `int *'
998 should be in different alias sets, according to the C and C++
999 standard, since their types are not the same, and so,
1000 technically, an `int **' and `const int **' cannot point at
1001 the same thing.
1002
1003 But, the standard is wrong. In particular, this code is
1004 legal C++:
1005
1006 int *ip;
1007 int **ipp = &ip;
1008 const int* const* cipp = ipp;
1009 And, it doesn't make sense for that to be legal unless you
1010 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
1011 the pointed-to types. This issue has been reported to the
1012 C++ committee.
1013
1014 For this reason go to canonical type of the unqalified pointer type.
1015 Until GCC 6 this code set all pointers sets to have alias set of
1016 ptr_type_node but that is a bad idea, because it prevents disabiguations
1017 in between pointers. For Firefox this accounts about 20% of all
1018 disambiguations in the program. */
1019 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1020 {
1021 tree p;
1022 auto_vec <bool, 8> reference;
1023
1024 /* Unnest all pointers and references.
1025 We also want to make pointer to array/vector equivalent to pointer to
1026 its element (see the reasoning above). Skip all those types, too. */
1027 for (p = t; POINTER_TYPE_P (p)
1028 || (TREE_CODE (p) == ARRAY_TYPE
1029 && (!TYPE_NONALIASED_COMPONENT (p)
1030 || !COMPLETE_TYPE_P (p)
1031 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1032 || TREE_CODE (p) == VECTOR_TYPE;
1033 p = TREE_TYPE (p))
1034 {
1035 /* Ada supports recursive pointers. Instead of doing recursion
1036 check, just give up once the preallocated space of 8 elements
1037 is up. In this case just punt to void * alias set. */
1038 if (reference.length () == 8)
1039 {
1040 p = ptr_type_node;
1041 break;
1042 }
1043 if (TREE_CODE (p) == REFERENCE_TYPE)
1044 /* In LTO we want languages that use references to be compatible
1045 with languages that use pointers. */
1046 reference.safe_push (true && !in_lto_p);
1047 if (TREE_CODE (p) == POINTER_TYPE)
1048 reference.safe_push (false);
1049 }
1050 p = TYPE_MAIN_VARIANT (p);
1051
1052 /* In LTO for C++ programs we can turn incomplete types to complete
1053 using ODR name lookup. */
1054 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1055 {
1056 p = prevailing_odr_type (p);
1057 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1058 }
1059
1060 /* Make void * compatible with char * and also void **.
1061 Programs are commonly violating TBAA by this.
1062
1063 We also make void * to conflict with every pointer
1064 (see record_component_aliases) and thus it is safe it to use it for
1065 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1066 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1067 set = get_alias_set (ptr_type_node);
1068 else
1069 {
1070 /* Rebuild pointer type starting from canonical types using
1071 unqualified pointers and references only. This way all such
1072 pointers will have the same alias set and will conflict with
1073 each other.
1074
1075 Most of time we already have pointers or references of a given type.
1076 If not we build new one just to be sure that if someone later
1077 (probably only middle-end can, as we should assign all alias
1078 classes only after finishing translation unit) builds the pointer
1079 type, the canonical type will match. */
1080 p = TYPE_CANONICAL (p);
1081 while (!reference.is_empty ())
1082 {
1083 if (reference.pop ())
1084 p = build_reference_type (p);
1085 else
1086 p = build_pointer_type (p);
1087 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1088 /* build_pointer_type should always return the canonical type.
1089 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1090 them. Be sure that frontends do not glob canonical types of
1091 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1092 in all other cases. */
1093 gcc_checking_assert (!TYPE_CANONICAL (p)
1094 || p == TYPE_CANONICAL (p));
1095 }
1096
1097 /* Assign the alias set to both p and t.
1098 We cannot call get_alias_set (p) here as that would trigger
1099 infinite recursion when p == t. In other cases it would just
1100 trigger unnecesary legwork of rebuilding the pointer again. */
1101 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1102 if (TYPE_ALIAS_SET_KNOWN_P (p))
1103 set = TYPE_ALIAS_SET (p);
1104 else
1105 {
1106 set = new_alias_set ();
1107 TYPE_ALIAS_SET (p) = set;
1108 }
1109 }
1110 }
1111 /* Alias set of ptr_type_node is special and serve as universal pointer which
1112 is TBAA compatible with every other pointer type. Be sure we have the
1113 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1114 of pointer types NULL. */
1115 else if (t == ptr_type_node)
1116 set = new_alias_set ();
1117
1118 /* Otherwise make a new alias set for this type. */
1119 else
1120 {
1121 /* Each canonical type gets its own alias set, so canonical types
1122 shouldn't form a tree. It doesn't really matter for types
1123 we handle specially above, so only check it where it possibly
1124 would result in a bogus alias set. */
1125 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1126
1127 set = new_alias_set ();
1128 }
1129
1130 TYPE_ALIAS_SET (t) = set;
1131
1132 /* If this is an aggregate type or a complex type, we must record any
1133 component aliasing information. */
1134 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1135 record_component_aliases (t);
1136
1137 /* We treat pointer types specially in alias_set_subset_of. */
1138 if (POINTER_TYPE_P (t) && set)
1139 {
1140 alias_set_entry *ase = get_alias_set_entry (set);
1141 if (!ase)
1142 ase = init_alias_set_entry (set);
1143 ase->is_pointer = true;
1144 ase->has_pointer = true;
1145 }
1146
1147 return set;
1148 }
1149
1150 /* Return a brand-new alias set. */
1151
1152 alias_set_type
1153 new_alias_set (void)
1154 {
1155 if (alias_sets == 0)
1156 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1157 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1158 return alias_sets->length () - 1;
1159 }
1160
1161 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1162 not everything that aliases SUPERSET also aliases SUBSET. For example,
1163 in C, a store to an `int' can alias a load of a structure containing an
1164 `int', and vice versa. But it can't alias a load of a 'double' member
1165 of the same structure. Here, the structure would be the SUPERSET and
1166 `int' the SUBSET. This relationship is also described in the comment at
1167 the beginning of this file.
1168
1169 This function should be called only once per SUPERSET/SUBSET pair.
1170
1171 It is illegal for SUPERSET to be zero; everything is implicitly a
1172 subset of alias set zero. */
1173
1174 void
1175 record_alias_subset (alias_set_type superset, alias_set_type subset)
1176 {
1177 alias_set_entry *superset_entry;
1178 alias_set_entry *subset_entry;
1179
1180 /* It is possible in complex type situations for both sets to be the same,
1181 in which case we can ignore this operation. */
1182 if (superset == subset)
1183 return;
1184
1185 gcc_assert (superset);
1186
1187 superset_entry = get_alias_set_entry (superset);
1188 if (superset_entry == 0)
1189 {
1190 /* Create an entry for the SUPERSET, so that we have a place to
1191 attach the SUBSET. */
1192 superset_entry = init_alias_set_entry (superset);
1193 }
1194
1195 if (subset == 0)
1196 superset_entry->has_zero_child = 1;
1197 else
1198 {
1199 if (!superset_entry->children)
1200 superset_entry->children
1201 = hash_map<alias_set_hash, int>::create_ggc (64);
1202
1203 /* Enter the SUBSET itself as a child of the SUPERSET. If it was
1204 already there we're done. */
1205 if (superset_entry->children->put (subset, 0))
1206 return;
1207
1208 subset_entry = get_alias_set_entry (subset);
1209 /* If there is an entry for the subset, enter all of its children
1210 (if they are not already present) as children of the SUPERSET. */
1211 if (subset_entry)
1212 {
1213 if (subset_entry->has_zero_child)
1214 superset_entry->has_zero_child = true;
1215 if (subset_entry->has_pointer)
1216 superset_entry->has_pointer = true;
1217
1218 if (subset_entry->children)
1219 {
1220 hash_map<alias_set_hash, int>::iterator iter
1221 = subset_entry->children->begin ();
1222 for (; iter != subset_entry->children->end (); ++iter)
1223 superset_entry->children->put ((*iter).first, (*iter).second);
1224 }
1225 }
1226 }
1227 }
1228
1229 /* Record that component types of TYPE, if any, are part of SUPERSET for
1230 aliasing purposes. For record types, we only record component types
1231 for fields that are not marked non-addressable. For array types, we
1232 only record the component type if it is not marked non-aliased. */
1233
1234 void
1235 record_component_aliases (tree type, alias_set_type superset)
1236 {
1237 tree field;
1238
1239 if (superset == 0)
1240 return;
1241
1242 switch (TREE_CODE (type))
1243 {
1244 case RECORD_TYPE:
1245 case UNION_TYPE:
1246 case QUAL_UNION_TYPE:
1247 {
1248 /* LTO non-ODR type merging does not make any difference between
1249 component pointer types. We may have
1250
1251 struct foo {int *a;};
1252
1253 as TYPE_CANONICAL of
1254
1255 struct bar {float *a;};
1256
1257 Because accesses to int * and float * do not alias, we would get
1258 false negative when accessing the same memory location by
1259 float ** and bar *. We thus record the canonical type as:
1260
1261 struct {void *a;};
1262
1263 void * is special cased and works as a universal pointer type.
1264 Accesses to it conflicts with accesses to any other pointer
1265 type. */
1266 bool void_pointers = in_lto_p
1267 && (!odr_type_p (type)
1268 || !odr_based_tbaa_p (type));
1269 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1270 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1271 {
1272 tree t = TREE_TYPE (field);
1273 if (void_pointers)
1274 {
1275 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1276 element type and that type has to be normalized to void *,
1277 too, in the case it is a pointer. */
1278 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1279 {
1280 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1281 t = TREE_TYPE (t);
1282 }
1283 if (POINTER_TYPE_P (t))
1284 t = ptr_type_node;
1285 else if (flag_checking)
1286 gcc_checking_assert (get_alias_set (t)
1287 == get_alias_set (TREE_TYPE (field)));
1288 }
1289
1290 alias_set_type set = get_alias_set (t);
1291 record_alias_subset (superset, set);
1292 /* If the field has alias-set zero make sure to still record
1293 any componets of it. This makes sure that for
1294 struct A {
1295 struct B {
1296 int i;
1297 char c[4];
1298 } b;
1299 };
1300 in C++ even though 'B' has alias-set zero because
1301 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1302 'int' as subset. */
1303 if (set == 0)
1304 record_component_aliases (t, superset);
1305 }
1306 }
1307 break;
1308
1309 case COMPLEX_TYPE:
1310 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1311 break;
1312
1313 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1314 element type. */
1315
1316 default:
1317 break;
1318 }
1319 }
1320
1321 /* Record that component types of TYPE, if any, are part of that type for
1322 aliasing purposes. For record types, we only record component types
1323 for fields that are not marked non-addressable. For array types, we
1324 only record the component type if it is not marked non-aliased. */
1325
1326 void
1327 record_component_aliases (tree type)
1328 {
1329 alias_set_type superset = get_alias_set (type);
1330 record_component_aliases (type, superset);
1331 }
1332
1333
1334 /* Allocate an alias set for use in storing and reading from the varargs
1335 spill area. */
1336
1337 static GTY(()) alias_set_type varargs_set = -1;
1338
1339 alias_set_type
1340 get_varargs_alias_set (void)
1341 {
1342 #if 1
1343 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1344 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1345 consistently use the varargs alias set for loads from the varargs
1346 area. So don't use it anywhere. */
1347 return 0;
1348 #else
1349 if (varargs_set == -1)
1350 varargs_set = new_alias_set ();
1351
1352 return varargs_set;
1353 #endif
1354 }
1355
1356 /* Likewise, but used for the fixed portions of the frame, e.g., register
1357 save areas. */
1358
1359 static GTY(()) alias_set_type frame_set = -1;
1360
1361 alias_set_type
1362 get_frame_alias_set (void)
1363 {
1364 if (frame_set == -1)
1365 frame_set = new_alias_set ();
1366
1367 return frame_set;
1368 }
1369
1370 /* Create a new, unique base with id ID. */
1371
1372 static rtx
1373 unique_base_value (HOST_WIDE_INT id)
1374 {
1375 return gen_rtx_ADDRESS (Pmode, id);
1376 }
1377
1378 /* Return true if accesses based on any other base value cannot alias
1379 those based on X. */
1380
1381 static bool
1382 unique_base_value_p (rtx x)
1383 {
1384 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1385 }
1386
1387 /* Return true if X is known to be a base value. */
1388
1389 static bool
1390 known_base_value_p (rtx x)
1391 {
1392 switch (GET_CODE (x))
1393 {
1394 case LABEL_REF:
1395 case SYMBOL_REF:
1396 return true;
1397
1398 case ADDRESS:
1399 /* Arguments may or may not be bases; we don't know for sure. */
1400 return GET_MODE (x) != VOIDmode;
1401
1402 default:
1403 return false;
1404 }
1405 }
1406
1407 /* Inside SRC, the source of a SET, find a base address. */
1408
1409 static rtx
1410 find_base_value (rtx src)
1411 {
1412 unsigned int regno;
1413 scalar_int_mode int_mode;
1414
1415 #if defined (FIND_BASE_TERM)
1416 /* Try machine-dependent ways to find the base term. */
1417 src = FIND_BASE_TERM (src);
1418 #endif
1419
1420 switch (GET_CODE (src))
1421 {
1422 case SYMBOL_REF:
1423 case LABEL_REF:
1424 return src;
1425
1426 case REG:
1427 regno = REGNO (src);
1428 /* At the start of a function, argument registers have known base
1429 values which may be lost later. Returning an ADDRESS
1430 expression here allows optimization based on argument values
1431 even when the argument registers are used for other purposes. */
1432 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1433 return new_reg_base_value[regno];
1434
1435 /* If a pseudo has a known base value, return it. Do not do this
1436 for non-fixed hard regs since it can result in a circular
1437 dependency chain for registers which have values at function entry.
1438
1439 The test above is not sufficient because the scheduler may move
1440 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1441 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1442 && regno < vec_safe_length (reg_base_value))
1443 {
1444 /* If we're inside init_alias_analysis, use new_reg_base_value
1445 to reduce the number of relaxation iterations. */
1446 if (new_reg_base_value && new_reg_base_value[regno]
1447 && DF_REG_DEF_COUNT (regno) == 1)
1448 return new_reg_base_value[regno];
1449
1450 if ((*reg_base_value)[regno])
1451 return (*reg_base_value)[regno];
1452 }
1453
1454 return 0;
1455
1456 case MEM:
1457 /* Check for an argument passed in memory. Only record in the
1458 copying-arguments block; it is too hard to track changes
1459 otherwise. */
1460 if (copying_arguments
1461 && (XEXP (src, 0) == arg_pointer_rtx
1462 || (GET_CODE (XEXP (src, 0)) == PLUS
1463 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1464 return arg_base_value;
1465 return 0;
1466
1467 case CONST:
1468 src = XEXP (src, 0);
1469 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1470 break;
1471
1472 /* fall through */
1473
1474 case PLUS:
1475 case MINUS:
1476 {
1477 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1478
1479 /* If either operand is a REG that is a known pointer, then it
1480 is the base. */
1481 if (REG_P (src_0) && REG_POINTER (src_0))
1482 return find_base_value (src_0);
1483 if (REG_P (src_1) && REG_POINTER (src_1))
1484 return find_base_value (src_1);
1485
1486 /* If either operand is a REG, then see if we already have
1487 a known value for it. */
1488 if (REG_P (src_0))
1489 {
1490 temp = find_base_value (src_0);
1491 if (temp != 0)
1492 src_0 = temp;
1493 }
1494
1495 if (REG_P (src_1))
1496 {
1497 temp = find_base_value (src_1);
1498 if (temp!= 0)
1499 src_1 = temp;
1500 }
1501
1502 /* If either base is named object or a special address
1503 (like an argument or stack reference), then use it for the
1504 base term. */
1505 if (src_0 != 0 && known_base_value_p (src_0))
1506 return src_0;
1507
1508 if (src_1 != 0 && known_base_value_p (src_1))
1509 return src_1;
1510
1511 /* Guess which operand is the base address:
1512 If either operand is a symbol, then it is the base. If
1513 either operand is a CONST_INT, then the other is the base. */
1514 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1515 return find_base_value (src_0);
1516 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1517 return find_base_value (src_1);
1518
1519 return 0;
1520 }
1521
1522 case LO_SUM:
1523 /* The standard form is (lo_sum reg sym) so look only at the
1524 second operand. */
1525 return find_base_value (XEXP (src, 1));
1526
1527 case AND:
1528 /* Look through aligning ANDs. And AND with zero or one with
1529 the LSB set isn't one (see for example PR92462). */
1530 if (CONST_INT_P (XEXP (src, 1))
1531 && INTVAL (XEXP (src, 1)) != 0
1532 && (INTVAL (XEXP (src, 1)) & 1) == 0)
1533 return find_base_value (XEXP (src, 0));
1534 return 0;
1535
1536 case TRUNCATE:
1537 /* As we do not know which address space the pointer is referring to, we can
1538 handle this only if the target does not support different pointer or
1539 address modes depending on the address space. */
1540 if (!target_default_pointer_address_modes_p ())
1541 break;
1542 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1543 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1544 break;
1545 /* Fall through. */
1546 case HIGH:
1547 case PRE_INC:
1548 case PRE_DEC:
1549 case POST_INC:
1550 case POST_DEC:
1551 case PRE_MODIFY:
1552 case POST_MODIFY:
1553 return find_base_value (XEXP (src, 0));
1554
1555 case ZERO_EXTEND:
1556 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1557 /* As we do not know which address space the pointer is referring to, we can
1558 handle this only if the target does not support different pointer or
1559 address modes depending on the address space. */
1560 if (!target_default_pointer_address_modes_p ())
1561 break;
1562
1563 {
1564 rtx temp = find_base_value (XEXP (src, 0));
1565
1566 if (temp != 0 && CONSTANT_P (temp))
1567 temp = convert_memory_address (Pmode, temp);
1568
1569 return temp;
1570 }
1571
1572 default:
1573 break;
1574 }
1575
1576 return 0;
1577 }
1578
1579 /* Called from init_alias_analysis indirectly through note_stores,
1580 or directly if DEST is a register with a REG_NOALIAS note attached.
1581 SET is null in the latter case. */
1582
1583 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1584 register N has been set in this function. */
1585 static sbitmap reg_seen;
1586
1587 static void
1588 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1589 {
1590 unsigned regno;
1591 rtx src;
1592 int n;
1593
1594 if (!REG_P (dest))
1595 return;
1596
1597 regno = REGNO (dest);
1598
1599 gcc_checking_assert (regno < reg_base_value->length ());
1600
1601 n = REG_NREGS (dest);
1602 if (n != 1)
1603 {
1604 while (--n >= 0)
1605 {
1606 bitmap_set_bit (reg_seen, regno + n);
1607 new_reg_base_value[regno + n] = 0;
1608 }
1609 return;
1610 }
1611
1612 if (set)
1613 {
1614 /* A CLOBBER wipes out any old value but does not prevent a previously
1615 unset register from acquiring a base address (i.e. reg_seen is not
1616 set). */
1617 if (GET_CODE (set) == CLOBBER)
1618 {
1619 new_reg_base_value[regno] = 0;
1620 return;
1621 }
1622
1623 src = SET_SRC (set);
1624 }
1625 else
1626 {
1627 /* There's a REG_NOALIAS note against DEST. */
1628 if (bitmap_bit_p (reg_seen, regno))
1629 {
1630 new_reg_base_value[regno] = 0;
1631 return;
1632 }
1633 bitmap_set_bit (reg_seen, regno);
1634 new_reg_base_value[regno] = unique_base_value (unique_id++);
1635 return;
1636 }
1637
1638 /* If this is not the first set of REGNO, see whether the new value
1639 is related to the old one. There are two cases of interest:
1640
1641 (1) The register might be assigned an entirely new value
1642 that has the same base term as the original set.
1643
1644 (2) The set might be a simple self-modification that
1645 cannot change REGNO's base value.
1646
1647 If neither case holds, reject the original base value as invalid.
1648 Note that the following situation is not detected:
1649
1650 extern int x, y; int *p = &x; p += (&y-&x);
1651
1652 ANSI C does not allow computing the difference of addresses
1653 of distinct top level objects. */
1654 if (new_reg_base_value[regno] != 0
1655 && find_base_value (src) != new_reg_base_value[regno])
1656 switch (GET_CODE (src))
1657 {
1658 case LO_SUM:
1659 case MINUS:
1660 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1661 new_reg_base_value[regno] = 0;
1662 break;
1663 case PLUS:
1664 /* If the value we add in the PLUS is also a valid base value,
1665 this might be the actual base value, and the original value
1666 an index. */
1667 {
1668 rtx other = NULL_RTX;
1669
1670 if (XEXP (src, 0) == dest)
1671 other = XEXP (src, 1);
1672 else if (XEXP (src, 1) == dest)
1673 other = XEXP (src, 0);
1674
1675 if (! other || find_base_value (other))
1676 new_reg_base_value[regno] = 0;
1677 break;
1678 }
1679 case AND:
1680 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1681 new_reg_base_value[regno] = 0;
1682 break;
1683 default:
1684 new_reg_base_value[regno] = 0;
1685 break;
1686 }
1687 /* If this is the first set of a register, record the value. */
1688 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1689 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1690 new_reg_base_value[regno] = find_base_value (src);
1691
1692 bitmap_set_bit (reg_seen, regno);
1693 }
1694
1695 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1696 using hard registers with non-null REG_BASE_VALUE for renaming. */
1697 rtx
1698 get_reg_base_value (unsigned int regno)
1699 {
1700 return (*reg_base_value)[regno];
1701 }
1702
1703 /* If a value is known for REGNO, return it. */
1704
1705 rtx
1706 get_reg_known_value (unsigned int regno)
1707 {
1708 if (regno >= FIRST_PSEUDO_REGISTER)
1709 {
1710 regno -= FIRST_PSEUDO_REGISTER;
1711 if (regno < vec_safe_length (reg_known_value))
1712 return (*reg_known_value)[regno];
1713 }
1714 return NULL;
1715 }
1716
1717 /* Set it. */
1718
1719 static void
1720 set_reg_known_value (unsigned int regno, rtx val)
1721 {
1722 if (regno >= FIRST_PSEUDO_REGISTER)
1723 {
1724 regno -= FIRST_PSEUDO_REGISTER;
1725 if (regno < vec_safe_length (reg_known_value))
1726 (*reg_known_value)[regno] = val;
1727 }
1728 }
1729
1730 /* Similarly for reg_known_equiv_p. */
1731
1732 bool
1733 get_reg_known_equiv_p (unsigned int regno)
1734 {
1735 if (regno >= FIRST_PSEUDO_REGISTER)
1736 {
1737 regno -= FIRST_PSEUDO_REGISTER;
1738 if (regno < vec_safe_length (reg_known_value))
1739 return bitmap_bit_p (reg_known_equiv_p, regno);
1740 }
1741 return false;
1742 }
1743
1744 static void
1745 set_reg_known_equiv_p (unsigned int regno, bool val)
1746 {
1747 if (regno >= FIRST_PSEUDO_REGISTER)
1748 {
1749 regno -= FIRST_PSEUDO_REGISTER;
1750 if (regno < vec_safe_length (reg_known_value))
1751 {
1752 if (val)
1753 bitmap_set_bit (reg_known_equiv_p, regno);
1754 else
1755 bitmap_clear_bit (reg_known_equiv_p, regno);
1756 }
1757 }
1758 }
1759
1760
1761 /* Returns a canonical version of X, from the point of view alias
1762 analysis. (For example, if X is a MEM whose address is a register,
1763 and the register has a known value (say a SYMBOL_REF), then a MEM
1764 whose address is the SYMBOL_REF is returned.) */
1765
1766 rtx
1767 canon_rtx (rtx x)
1768 {
1769 /* Recursively look for equivalences. */
1770 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1771 {
1772 rtx t = get_reg_known_value (REGNO (x));
1773 if (t == x)
1774 return x;
1775 if (t)
1776 return canon_rtx (t);
1777 }
1778
1779 if (GET_CODE (x) == PLUS)
1780 {
1781 rtx x0 = canon_rtx (XEXP (x, 0));
1782 rtx x1 = canon_rtx (XEXP (x, 1));
1783
1784 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1785 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1786 }
1787
1788 /* This gives us much better alias analysis when called from
1789 the loop optimizer. Note we want to leave the original
1790 MEM alone, but need to return the canonicalized MEM with
1791 all the flags with their original values. */
1792 else if (MEM_P (x))
1793 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1794
1795 return x;
1796 }
1797
1798 /* Return 1 if X and Y are identical-looking rtx's.
1799 Expect that X and Y has been already canonicalized.
1800
1801 We use the data in reg_known_value above to see if two registers with
1802 different numbers are, in fact, equivalent. */
1803
1804 static int
1805 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1806 {
1807 int i;
1808 int j;
1809 enum rtx_code code;
1810 const char *fmt;
1811
1812 if (x == 0 && y == 0)
1813 return 1;
1814 if (x == 0 || y == 0)
1815 return 0;
1816
1817 if (x == y)
1818 return 1;
1819
1820 code = GET_CODE (x);
1821 /* Rtx's of different codes cannot be equal. */
1822 if (code != GET_CODE (y))
1823 return 0;
1824
1825 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1826 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1827
1828 if (GET_MODE (x) != GET_MODE (y))
1829 return 0;
1830
1831 /* Some RTL can be compared without a recursive examination. */
1832 switch (code)
1833 {
1834 case REG:
1835 return REGNO (x) == REGNO (y);
1836
1837 case LABEL_REF:
1838 return label_ref_label (x) == label_ref_label (y);
1839
1840 case SYMBOL_REF:
1841 {
1842 HOST_WIDE_INT distance = 0;
1843 return (compare_base_symbol_refs (x, y, &distance) == 1
1844 && distance == 0);
1845 }
1846
1847 case ENTRY_VALUE:
1848 /* This is magic, don't go through canonicalization et al. */
1849 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1850
1851 case VALUE:
1852 CASE_CONST_UNIQUE:
1853 /* Pointer equality guarantees equality for these nodes. */
1854 return 0;
1855
1856 default:
1857 break;
1858 }
1859
1860 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1861 if (code == PLUS)
1862 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1863 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1864 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1865 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1866 /* For commutative operations, the RTX match if the operand match in any
1867 order. Also handle the simple binary and unary cases without a loop. */
1868 if (COMMUTATIVE_P (x))
1869 {
1870 rtx xop0 = canon_rtx (XEXP (x, 0));
1871 rtx yop0 = canon_rtx (XEXP (y, 0));
1872 rtx yop1 = canon_rtx (XEXP (y, 1));
1873
1874 return ((rtx_equal_for_memref_p (xop0, yop0)
1875 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1876 || (rtx_equal_for_memref_p (xop0, yop1)
1877 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1878 }
1879 else if (NON_COMMUTATIVE_P (x))
1880 {
1881 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1882 canon_rtx (XEXP (y, 0)))
1883 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1884 canon_rtx (XEXP (y, 1))));
1885 }
1886 else if (UNARY_P (x))
1887 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1888 canon_rtx (XEXP (y, 0)));
1889
1890 /* Compare the elements. If any pair of corresponding elements
1891 fail to match, return 0 for the whole things.
1892
1893 Limit cases to types which actually appear in addresses. */
1894
1895 fmt = GET_RTX_FORMAT (code);
1896 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1897 {
1898 switch (fmt[i])
1899 {
1900 case 'i':
1901 if (XINT (x, i) != XINT (y, i))
1902 return 0;
1903 break;
1904
1905 case 'p':
1906 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1907 return 0;
1908 break;
1909
1910 case 'E':
1911 /* Two vectors must have the same length. */
1912 if (XVECLEN (x, i) != XVECLEN (y, i))
1913 return 0;
1914
1915 /* And the corresponding elements must match. */
1916 for (j = 0; j < XVECLEN (x, i); j++)
1917 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1918 canon_rtx (XVECEXP (y, i, j))) == 0)
1919 return 0;
1920 break;
1921
1922 case 'e':
1923 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1924 canon_rtx (XEXP (y, i))) == 0)
1925 return 0;
1926 break;
1927
1928 /* This can happen for asm operands. */
1929 case 's':
1930 if (strcmp (XSTR (x, i), XSTR (y, i)))
1931 return 0;
1932 break;
1933
1934 /* This can happen for an asm which clobbers memory. */
1935 case '0':
1936 break;
1937
1938 /* It is believed that rtx's at this level will never
1939 contain anything but integers and other rtx's,
1940 except for within LABEL_REFs and SYMBOL_REFs. */
1941 default:
1942 gcc_unreachable ();
1943 }
1944 }
1945 return 1;
1946 }
1947
1948 static rtx
1949 find_base_term (rtx x, vec<std::pair<cselib_val *,
1950 struct elt_loc_list *> > &visited_vals)
1951 {
1952 cselib_val *val;
1953 struct elt_loc_list *l, *f;
1954 rtx ret;
1955 scalar_int_mode int_mode;
1956
1957 #if defined (FIND_BASE_TERM)
1958 /* Try machine-dependent ways to find the base term. */
1959 x = FIND_BASE_TERM (x);
1960 #endif
1961
1962 switch (GET_CODE (x))
1963 {
1964 case REG:
1965 return REG_BASE_VALUE (x);
1966
1967 case TRUNCATE:
1968 /* As we do not know which address space the pointer is referring to, we can
1969 handle this only if the target does not support different pointer or
1970 address modes depending on the address space. */
1971 if (!target_default_pointer_address_modes_p ())
1972 return 0;
1973 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1974 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1975 return 0;
1976 /* Fall through. */
1977 case HIGH:
1978 case PRE_INC:
1979 case PRE_DEC:
1980 case POST_INC:
1981 case POST_DEC:
1982 case PRE_MODIFY:
1983 case POST_MODIFY:
1984 return find_base_term (XEXP (x, 0), visited_vals);
1985
1986 case ZERO_EXTEND:
1987 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1988 /* As we do not know which address space the pointer is referring to, we can
1989 handle this only if the target does not support different pointer or
1990 address modes depending on the address space. */
1991 if (!target_default_pointer_address_modes_p ())
1992 return 0;
1993
1994 {
1995 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1996
1997 if (temp != 0 && CONSTANT_P (temp))
1998 temp = convert_memory_address (Pmode, temp);
1999
2000 return temp;
2001 }
2002
2003 case VALUE:
2004 val = CSELIB_VAL_PTR (x);
2005 ret = NULL_RTX;
2006
2007 if (!val)
2008 return ret;
2009
2010 if (cselib_sp_based_value_p (val))
2011 return static_reg_base_value[STACK_POINTER_REGNUM];
2012
2013 if (visited_vals.length () > (unsigned) param_max_find_base_term_values)
2014 return ret;
2015
2016 f = val->locs;
2017 /* Reset val->locs to avoid infinite recursion. */
2018 if (f)
2019 visited_vals.safe_push (std::make_pair (val, f));
2020 val->locs = NULL;
2021
2022 for (l = f; l; l = l->next)
2023 if (GET_CODE (l->loc) == VALUE
2024 && CSELIB_VAL_PTR (l->loc)->locs
2025 && !CSELIB_VAL_PTR (l->loc)->locs->next
2026 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
2027 continue;
2028 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
2029 break;
2030
2031 return ret;
2032
2033 case LO_SUM:
2034 /* The standard form is (lo_sum reg sym) so look only at the
2035 second operand. */
2036 return find_base_term (XEXP (x, 1), visited_vals);
2037
2038 case CONST:
2039 x = XEXP (x, 0);
2040 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
2041 return 0;
2042 /* Fall through. */
2043 case PLUS:
2044 case MINUS:
2045 {
2046 rtx tmp1 = XEXP (x, 0);
2047 rtx tmp2 = XEXP (x, 1);
2048
2049 /* This is a little bit tricky since we have to determine which of
2050 the two operands represents the real base address. Otherwise this
2051 routine may return the index register instead of the base register.
2052
2053 That may cause us to believe no aliasing was possible, when in
2054 fact aliasing is possible.
2055
2056 We use a few simple tests to guess the base register. Additional
2057 tests can certainly be added. For example, if one of the operands
2058 is a shift or multiply, then it must be the index register and the
2059 other operand is the base register. */
2060
2061 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2062 return find_base_term (tmp2, visited_vals);
2063
2064 /* If either operand is known to be a pointer, then prefer it
2065 to determine the base term. */
2066 if (REG_P (tmp1) && REG_POINTER (tmp1))
2067 ;
2068 else if (REG_P (tmp2) && REG_POINTER (tmp2))
2069 std::swap (tmp1, tmp2);
2070 /* If second argument is constant which has base term, prefer it
2071 over variable tmp1. See PR64025. */
2072 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2073 std::swap (tmp1, tmp2);
2074
2075 /* Go ahead and find the base term for both operands. If either base
2076 term is from a pointer or is a named object or a special address
2077 (like an argument or stack reference), then use it for the
2078 base term. */
2079 rtx base = find_base_term (tmp1, visited_vals);
2080 if (base != NULL_RTX
2081 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2082 || known_base_value_p (base)))
2083 return base;
2084 base = find_base_term (tmp2, visited_vals);
2085 if (base != NULL_RTX
2086 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2087 || known_base_value_p (base)))
2088 return base;
2089
2090 /* We could not determine which of the two operands was the
2091 base register and which was the index. So we can determine
2092 nothing from the base alias check. */
2093 return 0;
2094 }
2095
2096 case AND:
2097 /* Look through aligning ANDs. And AND with zero or one with
2098 the LSB set isn't one (see for example PR92462). */
2099 if (CONST_INT_P (XEXP (x, 1))
2100 && INTVAL (XEXP (x, 1)) != 0
2101 && (INTVAL (XEXP (x, 1)) & 1) == 0)
2102 return find_base_term (XEXP (x, 0), visited_vals);
2103 return 0;
2104
2105 case SYMBOL_REF:
2106 case LABEL_REF:
2107 return x;
2108
2109 default:
2110 return 0;
2111 }
2112 }
2113
2114 /* Wrapper around the worker above which removes locs from visited VALUEs
2115 to avoid visiting them multiple times. We unwind that changes here. */
2116
2117 static rtx
2118 find_base_term (rtx x)
2119 {
2120 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2121 rtx res = find_base_term (x, visited_vals);
2122 for (unsigned i = 0; i < visited_vals.length (); ++i)
2123 visited_vals[i].first->locs = visited_vals[i].second;
2124 return res;
2125 }
2126
2127 /* Return true if accesses to address X may alias accesses based
2128 on the stack pointer. */
2129
2130 bool
2131 may_be_sp_based_p (rtx x)
2132 {
2133 rtx base = find_base_term (x);
2134 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2135 }
2136
2137 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2138 if they refer to different objects and -1 if we cannot decide. */
2139
2140 int
2141 compare_base_decls (tree base1, tree base2)
2142 {
2143 int ret;
2144 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2145 if (base1 == base2)
2146 return 1;
2147
2148 /* If we have two register decls with register specification we
2149 cannot decide unless their assembler names are the same. */
2150 if (VAR_P (base1)
2151 && VAR_P (base2)
2152 && DECL_HARD_REGISTER (base1)
2153 && DECL_HARD_REGISTER (base2)
2154 && DECL_ASSEMBLER_NAME_SET_P (base1)
2155 && DECL_ASSEMBLER_NAME_SET_P (base2))
2156 {
2157 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2158 return 1;
2159 return -1;
2160 }
2161
2162 /* Declarations of non-automatic variables may have aliases. All other
2163 decls are unique. */
2164 if (!decl_in_symtab_p (base1)
2165 || !decl_in_symtab_p (base2))
2166 return 0;
2167
2168 /* Don't cause symbols to be inserted by the act of checking. */
2169 symtab_node *node1 = symtab_node::get (base1);
2170 if (!node1)
2171 return 0;
2172 symtab_node *node2 = symtab_node::get (base2);
2173 if (!node2)
2174 return 0;
2175
2176 ret = node1->equal_address_to (node2, true);
2177 return ret;
2178 }
2179
2180 /* Compare SYMBOL_REFs X_BASE and Y_BASE.
2181
2182 - Return 1 if Y_BASE - X_BASE is constant, adding that constant
2183 to *DISTANCE if DISTANCE is nonnull.
2184
2185 - Return 0 if no accesses based on X_BASE can alias Y_BASE.
2186
2187 - Return -1 if one of the two results applies, but we can't tell
2188 which at compile time. Update DISTANCE in the same way as
2189 for a return value of 1, for the case in which that holds. */
2190
2191 static int
2192 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base,
2193 HOST_WIDE_INT *distance)
2194 {
2195 tree x_decl = SYMBOL_REF_DECL (x_base);
2196 tree y_decl = SYMBOL_REF_DECL (y_base);
2197 bool binds_def = true;
2198
2199 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2200 return 1;
2201 if (x_decl && y_decl)
2202 return compare_base_decls (x_decl, y_decl);
2203 if (x_decl || y_decl)
2204 {
2205 if (!x_decl)
2206 {
2207 std::swap (x_decl, y_decl);
2208 std::swap (x_base, y_base);
2209 }
2210 /* We handle specially only section anchors. Other symbols are
2211 either equal (via aliasing) or refer to different objects. */
2212 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2213 return -1;
2214 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2215 to ignore CONST_DECLs because they are readonly. */
2216 if (!VAR_P (x_decl)
2217 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2218 return 0;
2219
2220 symtab_node *x_node = symtab_node::get_create (x_decl)
2221 ->ultimate_alias_target ();
2222 /* External variable cannot be in section anchor. */
2223 if (!x_node->definition)
2224 return 0;
2225 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2226 /* If not in anchor, we can disambiguate. */
2227 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2228 return 0;
2229
2230 /* We have an alias of anchored variable. If it can be interposed;
2231 we must assume it may or may not alias its anchor. */
2232 binds_def = decl_binds_to_current_def_p (x_decl);
2233 }
2234 /* If we have variable in section anchor, we can compare by offset. */
2235 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2236 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2237 {
2238 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2239 return 0;
2240 if (distance)
2241 *distance += (SYMBOL_REF_BLOCK_OFFSET (y_base)
2242 - SYMBOL_REF_BLOCK_OFFSET (x_base));
2243 return binds_def ? 1 : -1;
2244 }
2245 /* Either the symbols are equal (via aliasing) or they refer to
2246 different objects. */
2247 return -1;
2248 }
2249
2250 /* Return 0 if the addresses X and Y are known to point to different
2251 objects, 1 if they might be pointers to the same object. */
2252
2253 static int
2254 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2255 machine_mode x_mode, machine_mode y_mode)
2256 {
2257 /* If the address itself has no known base see if a known equivalent
2258 value has one. If either address still has no known base, nothing
2259 is known about aliasing. */
2260 if (x_base == 0)
2261 {
2262 rtx x_c;
2263
2264 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2265 return 1;
2266
2267 x_base = find_base_term (x_c);
2268 if (x_base == 0)
2269 return 1;
2270 }
2271
2272 if (y_base == 0)
2273 {
2274 rtx y_c;
2275 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2276 return 1;
2277
2278 y_base = find_base_term (y_c);
2279 if (y_base == 0)
2280 return 1;
2281 }
2282
2283 /* If the base addresses are equal nothing is known about aliasing. */
2284 if (rtx_equal_p (x_base, y_base))
2285 return 1;
2286
2287 /* The base addresses are different expressions. If they are not accessed
2288 via AND, there is no conflict. We can bring knowledge of object
2289 alignment into play here. For example, on alpha, "char a, b;" can
2290 alias one another, though "char a; long b;" cannot. AND addresses may
2291 implicitly alias surrounding objects; i.e. unaligned access in DImode
2292 via AND address can alias all surrounding object types except those
2293 with aligment 8 or higher. */
2294 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2295 return 1;
2296 if (GET_CODE (x) == AND
2297 && (!CONST_INT_P (XEXP (x, 1))
2298 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2299 return 1;
2300 if (GET_CODE (y) == AND
2301 && (!CONST_INT_P (XEXP (y, 1))
2302 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2303 return 1;
2304
2305 /* Differing symbols not accessed via AND never alias. */
2306 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2307 return compare_base_symbol_refs (x_base, y_base) != 0;
2308
2309 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2310 return 0;
2311
2312 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2313 return 0;
2314
2315 return 1;
2316 }
2317
2318 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2319 (or equal to) that of V. */
2320
2321 static bool
2322 refs_newer_value_p (const_rtx expr, rtx v)
2323 {
2324 int minuid = CSELIB_VAL_PTR (v)->uid;
2325 subrtx_iterator::array_type array;
2326 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2327 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2328 return true;
2329 return false;
2330 }
2331
2332 /* Convert the address X into something we can use. This is done by returning
2333 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2334 we call cselib to get a more useful rtx. */
2335
2336 rtx
2337 get_addr (rtx x)
2338 {
2339 cselib_val *v;
2340 struct elt_loc_list *l;
2341
2342 if (GET_CODE (x) != VALUE)
2343 {
2344 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2345 && GET_CODE (XEXP (x, 0)) == VALUE
2346 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2347 {
2348 rtx op0 = get_addr (XEXP (x, 0));
2349 if (op0 != XEXP (x, 0))
2350 {
2351 poly_int64 c;
2352 if (GET_CODE (x) == PLUS
2353 && poly_int_rtx_p (XEXP (x, 1), &c))
2354 return plus_constant (GET_MODE (x), op0, c);
2355 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2356 op0, XEXP (x, 1));
2357 }
2358 }
2359 return x;
2360 }
2361 v = CSELIB_VAL_PTR (x);
2362 if (v)
2363 {
2364 bool have_equivs = cselib_have_permanent_equivalences ();
2365 if (have_equivs)
2366 v = canonical_cselib_val (v);
2367 for (l = v->locs; l; l = l->next)
2368 if (CONSTANT_P (l->loc))
2369 return l->loc;
2370 for (l = v->locs; l; l = l->next)
2371 if (!REG_P (l->loc) && !MEM_P (l->loc)
2372 /* Avoid infinite recursion when potentially dealing with
2373 var-tracking artificial equivalences, by skipping the
2374 equivalences themselves, and not choosing expressions
2375 that refer to newer VALUEs. */
2376 && (!have_equivs
2377 || (GET_CODE (l->loc) != VALUE
2378 && !refs_newer_value_p (l->loc, x))))
2379 return l->loc;
2380 if (have_equivs)
2381 {
2382 for (l = v->locs; l; l = l->next)
2383 if (REG_P (l->loc)
2384 || (GET_CODE (l->loc) != VALUE
2385 && !refs_newer_value_p (l->loc, x)))
2386 return l->loc;
2387 /* Return the canonical value. */
2388 return v->val_rtx;
2389 }
2390 if (v->locs)
2391 return v->locs->loc;
2392 }
2393 return x;
2394 }
2395
2396 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2397 where SIZE is the size in bytes of the memory reference. If ADDR
2398 is not modified by the memory reference then ADDR is returned. */
2399
2400 static rtx
2401 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2402 {
2403 poly_int64 offset = 0;
2404
2405 switch (GET_CODE (addr))
2406 {
2407 case PRE_INC:
2408 offset = (n_refs + 1) * size;
2409 break;
2410 case PRE_DEC:
2411 offset = -(n_refs + 1) * size;
2412 break;
2413 case POST_INC:
2414 offset = n_refs * size;
2415 break;
2416 case POST_DEC:
2417 offset = -n_refs * size;
2418 break;
2419
2420 default:
2421 return addr;
2422 }
2423
2424 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2425 addr = canon_rtx (addr);
2426
2427 return addr;
2428 }
2429
2430 /* Return TRUE if an object X sized at XSIZE bytes and another object
2431 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2432 any of the sizes is zero, assume an overlap, otherwise use the
2433 absolute value of the sizes as the actual sizes. */
2434
2435 static inline bool
2436 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2437 {
2438 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2439 return true;
2440
2441 if (maybe_ge (c, 0))
2442 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2443 else
2444 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2445 }
2446
2447 /* Return one if X and Y (memory addresses) reference the
2448 same location in memory or if the references overlap.
2449 Return zero if they do not overlap, else return
2450 minus one in which case they still might reference the same location.
2451
2452 C is an offset accumulator. When
2453 C is nonzero, we are testing aliases between X and Y + C.
2454 XSIZE is the size in bytes of the X reference,
2455 similarly YSIZE is the size in bytes for Y.
2456 Expect that canon_rtx has been already called for X and Y.
2457
2458 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2459 referenced (the reference was BLKmode), so make the most pessimistic
2460 assumptions.
2461
2462 If XSIZE or YSIZE is negative, we may access memory outside the object
2463 being referenced as a side effect. This can happen when using AND to
2464 align memory references, as is done on the Alpha.
2465
2466 Nice to notice that varying addresses cannot conflict with fp if no
2467 local variables had their addresses taken, but that's too hard now.
2468
2469 ??? Contrary to the tree alias oracle this does not return
2470 one for X + non-constant and Y + non-constant when X and Y are equal.
2471 If that is fixed the TBAA hack for union type-punning can be removed. */
2472
2473 static int
2474 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2475 poly_int64 c)
2476 {
2477 if (GET_CODE (x) == VALUE)
2478 {
2479 if (REG_P (y))
2480 {
2481 struct elt_loc_list *l = NULL;
2482 if (CSELIB_VAL_PTR (x))
2483 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2484 l; l = l->next)
2485 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2486 break;
2487 if (l)
2488 x = y;
2489 else
2490 x = get_addr (x);
2491 }
2492 /* Don't call get_addr if y is the same VALUE. */
2493 else if (x != y)
2494 x = get_addr (x);
2495 }
2496 if (GET_CODE (y) == VALUE)
2497 {
2498 if (REG_P (x))
2499 {
2500 struct elt_loc_list *l = NULL;
2501 if (CSELIB_VAL_PTR (y))
2502 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2503 l; l = l->next)
2504 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2505 break;
2506 if (l)
2507 y = x;
2508 else
2509 y = get_addr (y);
2510 }
2511 /* Don't call get_addr if x is the same VALUE. */
2512 else if (y != x)
2513 y = get_addr (y);
2514 }
2515 if (GET_CODE (x) == HIGH)
2516 x = XEXP (x, 0);
2517 else if (GET_CODE (x) == LO_SUM)
2518 x = XEXP (x, 1);
2519 else
2520 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2521 if (GET_CODE (y) == HIGH)
2522 y = XEXP (y, 0);
2523 else if (GET_CODE (y) == LO_SUM)
2524 y = XEXP (y, 1);
2525 else
2526 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2527
2528 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2529 {
2530 HOST_WIDE_INT distance = 0;
2531 int cmp = compare_base_symbol_refs (x, y, &distance);
2532
2533 /* If both decls are the same, decide by offsets. */
2534 if (cmp == 1)
2535 return offset_overlap_p (c + distance, xsize, ysize);
2536 /* Assume a potential overlap for symbolic addresses that went
2537 through alignment adjustments (i.e., that have negative
2538 sizes), because we can't know how far they are from each
2539 other. */
2540 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2541 return -1;
2542 /* If decls are different or we know by offsets that there is no overlap,
2543 we win. */
2544 if (!cmp || !offset_overlap_p (c + distance, xsize, ysize))
2545 return 0;
2546 /* Decls may or may not be different and offsets overlap....*/
2547 return -1;
2548 }
2549 else if (rtx_equal_for_memref_p (x, y))
2550 {
2551 return offset_overlap_p (c, xsize, ysize);
2552 }
2553
2554 /* This code used to check for conflicts involving stack references and
2555 globals but the base address alias code now handles these cases. */
2556
2557 if (GET_CODE (x) == PLUS)
2558 {
2559 /* The fact that X is canonicalized means that this
2560 PLUS rtx is canonicalized. */
2561 rtx x0 = XEXP (x, 0);
2562 rtx x1 = XEXP (x, 1);
2563
2564 /* However, VALUEs might end up in different positions even in
2565 canonical PLUSes. Comparing their addresses is enough. */
2566 if (x0 == y)
2567 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2568 else if (x1 == y)
2569 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2570
2571 poly_int64 cx1, cy1;
2572 if (GET_CODE (y) == PLUS)
2573 {
2574 /* The fact that Y is canonicalized means that this
2575 PLUS rtx is canonicalized. */
2576 rtx y0 = XEXP (y, 0);
2577 rtx y1 = XEXP (y, 1);
2578
2579 if (x0 == y1)
2580 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2581 if (x1 == y0)
2582 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2583
2584 if (rtx_equal_for_memref_p (x1, y1))
2585 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2586 if (rtx_equal_for_memref_p (x0, y0))
2587 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2588 if (poly_int_rtx_p (x1, &cx1))
2589 {
2590 if (poly_int_rtx_p (y1, &cy1))
2591 return memrefs_conflict_p (xsize, x0, ysize, y0,
2592 c - cx1 + cy1);
2593 else
2594 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2595 }
2596 else if (poly_int_rtx_p (y1, &cy1))
2597 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2598
2599 return -1;
2600 }
2601 else if (poly_int_rtx_p (x1, &cx1))
2602 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2603 }
2604 else if (GET_CODE (y) == PLUS)
2605 {
2606 /* The fact that Y is canonicalized means that this
2607 PLUS rtx is canonicalized. */
2608 rtx y0 = XEXP (y, 0);
2609 rtx y1 = XEXP (y, 1);
2610
2611 if (x == y0)
2612 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2613 if (x == y1)
2614 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2615
2616 poly_int64 cy1;
2617 if (poly_int_rtx_p (y1, &cy1))
2618 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2619 else
2620 return -1;
2621 }
2622
2623 if (GET_CODE (x) == GET_CODE (y))
2624 switch (GET_CODE (x))
2625 {
2626 case MULT:
2627 {
2628 /* Handle cases where we expect the second operands to be the
2629 same, and check only whether the first operand would conflict
2630 or not. */
2631 rtx x0, y0;
2632 rtx x1 = canon_rtx (XEXP (x, 1));
2633 rtx y1 = canon_rtx (XEXP (y, 1));
2634 if (! rtx_equal_for_memref_p (x1, y1))
2635 return -1;
2636 x0 = canon_rtx (XEXP (x, 0));
2637 y0 = canon_rtx (XEXP (y, 0));
2638 if (rtx_equal_for_memref_p (x0, y0))
2639 return offset_overlap_p (c, xsize, ysize);
2640
2641 /* Can't properly adjust our sizes. */
2642 poly_int64 c1;
2643 if (!poly_int_rtx_p (x1, &c1)
2644 || !can_div_trunc_p (xsize, c1, &xsize)
2645 || !can_div_trunc_p (ysize, c1, &ysize)
2646 || !can_div_trunc_p (c, c1, &c))
2647 return -1;
2648 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2649 }
2650
2651 default:
2652 break;
2653 }
2654
2655 /* Deal with alignment ANDs by adjusting offset and size so as to
2656 cover the maximum range, without taking any previously known
2657 alignment into account. Make a size negative after such an
2658 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2659 assume a potential overlap, because they may end up in contiguous
2660 memory locations and the stricter-alignment access may span over
2661 part of both. */
2662 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2663 {
2664 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2665 unsigned HOST_WIDE_INT uc = sc;
2666 if (sc < 0 && pow2_or_zerop (-uc))
2667 {
2668 if (maybe_gt (xsize, 0))
2669 xsize = -xsize;
2670 if (maybe_ne (xsize, 0))
2671 xsize += sc + 1;
2672 c -= sc + 1;
2673 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2674 ysize, y, c);
2675 }
2676 }
2677 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2678 {
2679 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2680 unsigned HOST_WIDE_INT uc = sc;
2681 if (sc < 0 && pow2_or_zerop (-uc))
2682 {
2683 if (maybe_gt (ysize, 0))
2684 ysize = -ysize;
2685 if (maybe_ne (ysize, 0))
2686 ysize += sc + 1;
2687 c += sc + 1;
2688 return memrefs_conflict_p (xsize, x,
2689 ysize, canon_rtx (XEXP (y, 0)), c);
2690 }
2691 }
2692
2693 if (CONSTANT_P (x))
2694 {
2695 poly_int64 cx, cy;
2696 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2697 {
2698 c += cy - cx;
2699 return offset_overlap_p (c, xsize, ysize);
2700 }
2701
2702 if (GET_CODE (x) == CONST)
2703 {
2704 if (GET_CODE (y) == CONST)
2705 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2706 ysize, canon_rtx (XEXP (y, 0)), c);
2707 else
2708 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2709 ysize, y, c);
2710 }
2711 if (GET_CODE (y) == CONST)
2712 return memrefs_conflict_p (xsize, x, ysize,
2713 canon_rtx (XEXP (y, 0)), c);
2714
2715 /* Assume a potential overlap for symbolic addresses that went
2716 through alignment adjustments (i.e., that have negative
2717 sizes), because we can't know how far they are from each
2718 other. */
2719 if (CONSTANT_P (y))
2720 return (maybe_lt (xsize, 0)
2721 || maybe_lt (ysize, 0)
2722 || offset_overlap_p (c, xsize, ysize));
2723
2724 return -1;
2725 }
2726
2727 return -1;
2728 }
2729
2730 /* Functions to compute memory dependencies.
2731
2732 Since we process the insns in execution order, we can build tables
2733 to keep track of what registers are fixed (and not aliased), what registers
2734 are varying in known ways, and what registers are varying in unknown
2735 ways.
2736
2737 If both memory references are volatile, then there must always be a
2738 dependence between the two references, since their order cannot be
2739 changed. A volatile and non-volatile reference can be interchanged
2740 though.
2741
2742 We also must allow AND addresses, because they may generate accesses
2743 outside the object being referenced. This is used to generate aligned
2744 addresses from unaligned addresses, for instance, the alpha
2745 storeqi_unaligned pattern. */
2746
2747 /* Read dependence: X is read after read in MEM takes place. There can
2748 only be a dependence here if both reads are volatile, or if either is
2749 an explicit barrier. */
2750
2751 int
2752 read_dependence (const_rtx mem, const_rtx x)
2753 {
2754 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2755 return true;
2756 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2757 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2758 return true;
2759 return false;
2760 }
2761
2762 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2763
2764 static tree
2765 decl_for_component_ref (tree x)
2766 {
2767 do
2768 {
2769 x = TREE_OPERAND (x, 0);
2770 }
2771 while (x && TREE_CODE (x) == COMPONENT_REF);
2772
2773 return x && DECL_P (x) ? x : NULL_TREE;
2774 }
2775
2776 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2777 for the offset of the field reference. *KNOWN_P says whether the
2778 offset is known. */
2779
2780 static void
2781 adjust_offset_for_component_ref (tree x, bool *known_p,
2782 poly_int64 *offset)
2783 {
2784 if (!*known_p)
2785 return;
2786 do
2787 {
2788 tree xoffset = component_ref_field_offset (x);
2789 tree field = TREE_OPERAND (x, 1);
2790 if (!poly_int_tree_p (xoffset))
2791 {
2792 *known_p = false;
2793 return;
2794 }
2795
2796 poly_offset_int woffset
2797 = (wi::to_poly_offset (xoffset)
2798 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2799 >> LOG2_BITS_PER_UNIT)
2800 + *offset);
2801 if (!woffset.to_shwi (offset))
2802 {
2803 *known_p = false;
2804 return;
2805 }
2806
2807 x = TREE_OPERAND (x, 0);
2808 }
2809 while (x && TREE_CODE (x) == COMPONENT_REF);
2810 }
2811
2812 /* Return nonzero if we can determine the exprs corresponding to memrefs
2813 X and Y and they do not overlap.
2814 If LOOP_VARIANT is set, skip offset-based disambiguation */
2815
2816 int
2817 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2818 {
2819 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2820 rtx rtlx, rtly;
2821 rtx basex, basey;
2822 bool moffsetx_known_p, moffsety_known_p;
2823 poly_int64 moffsetx = 0, moffsety = 0;
2824 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2825
2826 /* Unless both have exprs, we can't tell anything. */
2827 if (exprx == 0 || expry == 0)
2828 return 0;
2829
2830 /* For spill-slot accesses make sure we have valid offsets. */
2831 if ((exprx == get_spill_slot_decl (false)
2832 && ! MEM_OFFSET_KNOWN_P (x))
2833 || (expry == get_spill_slot_decl (false)
2834 && ! MEM_OFFSET_KNOWN_P (y)))
2835 return 0;
2836
2837 /* If the field reference test failed, look at the DECLs involved. */
2838 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2839 if (moffsetx_known_p)
2840 moffsetx = MEM_OFFSET (x);
2841 if (TREE_CODE (exprx) == COMPONENT_REF)
2842 {
2843 tree t = decl_for_component_ref (exprx);
2844 if (! t)
2845 return 0;
2846 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2847 exprx = t;
2848 }
2849
2850 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2851 if (moffsety_known_p)
2852 moffsety = MEM_OFFSET (y);
2853 if (TREE_CODE (expry) == COMPONENT_REF)
2854 {
2855 tree t = decl_for_component_ref (expry);
2856 if (! t)
2857 return 0;
2858 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2859 expry = t;
2860 }
2861
2862 if (! DECL_P (exprx) || ! DECL_P (expry))
2863 return 0;
2864
2865 /* If we refer to different gimple registers, or one gimple register
2866 and one non-gimple-register, we know they can't overlap. First,
2867 gimple registers don't have their addresses taken. Now, there
2868 could be more than one stack slot for (different versions of) the
2869 same gimple register, but we can presumably tell they don't
2870 overlap based on offsets from stack base addresses elsewhere.
2871 It's important that we don't proceed to DECL_RTL, because gimple
2872 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2873 able to do anything about them since no SSA information will have
2874 remained to guide it. */
2875 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2876 return exprx != expry
2877 || (moffsetx_known_p && moffsety_known_p
2878 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2879 && !offset_overlap_p (moffsety - moffsetx,
2880 MEM_SIZE (x), MEM_SIZE (y)));
2881
2882 /* With invalid code we can end up storing into the constant pool.
2883 Bail out to avoid ICEing when creating RTL for this.
2884 See gfortran.dg/lto/20091028-2_0.f90. */
2885 if (TREE_CODE (exprx) == CONST_DECL
2886 || TREE_CODE (expry) == CONST_DECL)
2887 return 1;
2888
2889 /* If one decl is known to be a function or label in a function and
2890 the other is some kind of data, they can't overlap. */
2891 if ((TREE_CODE (exprx) == FUNCTION_DECL
2892 || TREE_CODE (exprx) == LABEL_DECL)
2893 != (TREE_CODE (expry) == FUNCTION_DECL
2894 || TREE_CODE (expry) == LABEL_DECL))
2895 return 1;
2896
2897 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2898 living in multiple places), we can't tell anything. Exception
2899 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2900 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2901 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2902 return 0;
2903
2904 rtlx = DECL_RTL (exprx);
2905 rtly = DECL_RTL (expry);
2906
2907 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2908 can't overlap unless they are the same because we never reuse that part
2909 of the stack frame used for locals for spilled pseudos. */
2910 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2911 && ! rtx_equal_p (rtlx, rtly))
2912 return 1;
2913
2914 /* If we have MEMs referring to different address spaces (which can
2915 potentially overlap), we cannot easily tell from the addresses
2916 whether the references overlap. */
2917 if (MEM_P (rtlx) && MEM_P (rtly)
2918 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2919 return 0;
2920
2921 /* Get the base and offsets of both decls. If either is a register, we
2922 know both are and are the same, so use that as the base. The only
2923 we can avoid overlap is if we can deduce that they are nonoverlapping
2924 pieces of that decl, which is very rare. */
2925 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2926 basex = strip_offset_and_add (basex, &offsetx);
2927
2928 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2929 basey = strip_offset_and_add (basey, &offsety);
2930
2931 /* If the bases are different, we know they do not overlap if both
2932 are constants or if one is a constant and the other a pointer into the
2933 stack frame. Otherwise a different base means we can't tell if they
2934 overlap or not. */
2935 if (compare_base_decls (exprx, expry) == 0)
2936 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2937 || (CONSTANT_P (basex) && REG_P (basey)
2938 && REGNO_PTR_FRAME_P (REGNO (basey)))
2939 || (CONSTANT_P (basey) && REG_P (basex)
2940 && REGNO_PTR_FRAME_P (REGNO (basex))));
2941
2942 /* Offset based disambiguation not appropriate for loop invariant */
2943 if (loop_invariant)
2944 return 0;
2945
2946 /* Offset based disambiguation is OK even if we do not know that the
2947 declarations are necessarily different
2948 (i.e. compare_base_decls (exprx, expry) == -1) */
2949
2950 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2951 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2952 : -1);
2953 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2954 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2955 : -1);
2956
2957 /* If we have an offset for either memref, it can update the values computed
2958 above. */
2959 if (moffsetx_known_p)
2960 offsetx += moffsetx, sizex -= moffsetx;
2961 if (moffsety_known_p)
2962 offsety += moffsety, sizey -= moffsety;
2963
2964 /* If a memref has both a size and an offset, we can use the smaller size.
2965 We can't do this if the offset isn't known because we must view this
2966 memref as being anywhere inside the DECL's MEM. */
2967 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2968 sizex = MEM_SIZE (x);
2969 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2970 sizey = MEM_SIZE (y);
2971
2972 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2973 }
2974
2975 /* Helper for true_dependence and canon_true_dependence.
2976 Checks for true dependence: X is read after store in MEM takes place.
2977
2978 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2979 NULL_RTX, and the canonical addresses of MEM and X are both computed
2980 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2981
2982 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2983
2984 Returns 1 if there is a true dependence, 0 otherwise. */
2985
2986 static int
2987 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2988 const_rtx x, rtx x_addr, bool mem_canonicalized)
2989 {
2990 rtx true_mem_addr;
2991 rtx base;
2992 int ret;
2993
2994 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2995 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2996
2997 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2998 return 1;
2999
3000 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3001 This is used in epilogue deallocation functions, and in cselib. */
3002 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3003 return 1;
3004 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3005 return 1;
3006 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3007 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3008 return 1;
3009
3010 if (! x_addr)
3011 x_addr = XEXP (x, 0);
3012 x_addr = get_addr (x_addr);
3013
3014 if (! mem_addr)
3015 {
3016 mem_addr = XEXP (mem, 0);
3017 if (mem_mode == VOIDmode)
3018 mem_mode = GET_MODE (mem);
3019 }
3020 true_mem_addr = get_addr (mem_addr);
3021
3022 /* Read-only memory is by definition never modified, and therefore can't
3023 conflict with anything. However, don't assume anything when AND
3024 addresses are involved and leave to the code below to determine
3025 dependence. We don't expect to find read-only set on MEM, but
3026 stupid user tricks can produce them, so don't die. */
3027 if (MEM_READONLY_P (x)
3028 && GET_CODE (x_addr) != AND
3029 && GET_CODE (true_mem_addr) != AND)
3030 return 0;
3031
3032 /* If we have MEMs referring to different address spaces (which can
3033 potentially overlap), we cannot easily tell from the addresses
3034 whether the references overlap. */
3035 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3036 return 1;
3037
3038 base = find_base_term (x_addr);
3039 if (base && (GET_CODE (base) == LABEL_REF
3040 || (GET_CODE (base) == SYMBOL_REF
3041 && CONSTANT_POOL_ADDRESS_P (base))))
3042 return 0;
3043
3044 rtx mem_base = find_base_term (true_mem_addr);
3045 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
3046 GET_MODE (x), mem_mode))
3047 return 0;
3048
3049 x_addr = canon_rtx (x_addr);
3050 if (!mem_canonicalized)
3051 mem_addr = canon_rtx (true_mem_addr);
3052
3053 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
3054 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
3055 return ret;
3056
3057 if (mems_in_disjoint_alias_sets_p (x, mem))
3058 return 0;
3059
3060 if (nonoverlapping_memrefs_p (mem, x, false))
3061 return 0;
3062
3063 return rtx_refs_may_alias_p (x, mem, true);
3064 }
3065
3066 /* True dependence: X is read after store in MEM takes place. */
3067
3068 int
3069 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
3070 {
3071 return true_dependence_1 (mem, mem_mode, NULL_RTX,
3072 x, NULL_RTX, /*mem_canonicalized=*/false);
3073 }
3074
3075 /* Canonical true dependence: X is read after store in MEM takes place.
3076 Variant of true_dependence which assumes MEM has already been
3077 canonicalized (hence we no longer do that here).
3078 The mem_addr argument has been added, since true_dependence_1 computed
3079 this value prior to canonicalizing. */
3080
3081 int
3082 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3083 const_rtx x, rtx x_addr)
3084 {
3085 return true_dependence_1 (mem, mem_mode, mem_addr,
3086 x, x_addr, /*mem_canonicalized=*/true);
3087 }
3088
3089 /* Returns nonzero if a write to X might alias a previous read from
3090 (or, if WRITEP is true, a write to) MEM.
3091 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3092 and X_MODE the mode for that access.
3093 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3094
3095 static int
3096 write_dependence_p (const_rtx mem,
3097 const_rtx x, machine_mode x_mode, rtx x_addr,
3098 bool mem_canonicalized, bool x_canonicalized, bool writep)
3099 {
3100 rtx mem_addr;
3101 rtx true_mem_addr, true_x_addr;
3102 rtx base;
3103 int ret;
3104
3105 gcc_checking_assert (x_canonicalized
3106 ? (x_addr != NULL_RTX
3107 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3108 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3109
3110 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3111 return 1;
3112
3113 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3114 This is used in epilogue deallocation functions. */
3115 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3116 return 1;
3117 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3118 return 1;
3119 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3120 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3121 return 1;
3122
3123 if (!x_addr)
3124 x_addr = XEXP (x, 0);
3125 true_x_addr = get_addr (x_addr);
3126
3127 mem_addr = XEXP (mem, 0);
3128 true_mem_addr = get_addr (mem_addr);
3129
3130 /* A read from read-only memory can't conflict with read-write memory.
3131 Don't assume anything when AND addresses are involved and leave to
3132 the code below to determine dependence. */
3133 if (!writep
3134 && MEM_READONLY_P (mem)
3135 && GET_CODE (true_x_addr) != AND
3136 && GET_CODE (true_mem_addr) != AND)
3137 return 0;
3138
3139 /* If we have MEMs referring to different address spaces (which can
3140 potentially overlap), we cannot easily tell from the addresses
3141 whether the references overlap. */
3142 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3143 return 1;
3144
3145 base = find_base_term (true_mem_addr);
3146 if (! writep
3147 && base
3148 && (GET_CODE (base) == LABEL_REF
3149 || (GET_CODE (base) == SYMBOL_REF
3150 && CONSTANT_POOL_ADDRESS_P (base))))
3151 return 0;
3152
3153 rtx x_base = find_base_term (true_x_addr);
3154 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3155 GET_MODE (x), GET_MODE (mem)))
3156 return 0;
3157
3158 if (!x_canonicalized)
3159 {
3160 x_addr = canon_rtx (true_x_addr);
3161 x_mode = GET_MODE (x);
3162 }
3163 if (!mem_canonicalized)
3164 mem_addr = canon_rtx (true_mem_addr);
3165
3166 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3167 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3168 return ret;
3169
3170 if (nonoverlapping_memrefs_p (x, mem, false))
3171 return 0;
3172
3173 return rtx_refs_may_alias_p (x, mem, false);
3174 }
3175
3176 /* Anti dependence: X is written after read in MEM takes place. */
3177
3178 int
3179 anti_dependence (const_rtx mem, const_rtx x)
3180 {
3181 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3182 /*mem_canonicalized=*/false,
3183 /*x_canonicalized*/false, /*writep=*/false);
3184 }
3185
3186 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3187 Also, consider X in X_MODE (which might be from an enclosing
3188 STRICT_LOW_PART / ZERO_EXTRACT).
3189 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3190
3191 int
3192 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3193 const_rtx x, machine_mode x_mode, rtx x_addr)
3194 {
3195 return write_dependence_p (mem, x, x_mode, x_addr,
3196 mem_canonicalized, /*x_canonicalized=*/true,
3197 /*writep=*/false);
3198 }
3199
3200 /* Output dependence: X is written after store in MEM takes place. */
3201
3202 int
3203 output_dependence (const_rtx mem, const_rtx x)
3204 {
3205 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3206 /*mem_canonicalized=*/false,
3207 /*x_canonicalized*/false, /*writep=*/true);
3208 }
3209
3210 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3211 Also, consider X in X_MODE (which might be from an enclosing
3212 STRICT_LOW_PART / ZERO_EXTRACT).
3213 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3214
3215 int
3216 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3217 const_rtx x, machine_mode x_mode, rtx x_addr)
3218 {
3219 return write_dependence_p (mem, x, x_mode, x_addr,
3220 mem_canonicalized, /*x_canonicalized=*/true,
3221 /*writep=*/true);
3222 }
3223 \f
3224
3225
3226 /* Check whether X may be aliased with MEM. Don't do offset-based
3227 memory disambiguation & TBAA. */
3228 int
3229 may_alias_p (const_rtx mem, const_rtx x)
3230 {
3231 rtx x_addr, mem_addr;
3232
3233 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3234 return 1;
3235
3236 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3237 This is used in epilogue deallocation functions. */
3238 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3239 return 1;
3240 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3241 return 1;
3242 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3243 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3244 return 1;
3245
3246 x_addr = XEXP (x, 0);
3247 x_addr = get_addr (x_addr);
3248
3249 mem_addr = XEXP (mem, 0);
3250 mem_addr = get_addr (mem_addr);
3251
3252 /* Read-only memory is by definition never modified, and therefore can't
3253 conflict with anything. However, don't assume anything when AND
3254 addresses are involved and leave to the code below to determine
3255 dependence. We don't expect to find read-only set on MEM, but
3256 stupid user tricks can produce them, so don't die. */
3257 if (MEM_READONLY_P (x)
3258 && GET_CODE (x_addr) != AND
3259 && GET_CODE (mem_addr) != AND)
3260 return 0;
3261
3262 /* If we have MEMs referring to different address spaces (which can
3263 potentially overlap), we cannot easily tell from the addresses
3264 whether the references overlap. */
3265 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3266 return 1;
3267
3268 rtx x_base = find_base_term (x_addr);
3269 rtx mem_base = find_base_term (mem_addr);
3270 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3271 GET_MODE (x), GET_MODE (mem_addr)))
3272 return 0;
3273
3274 if (nonoverlapping_memrefs_p (mem, x, true))
3275 return 0;
3276
3277 /* TBAA not valid for loop_invarint */
3278 return rtx_refs_may_alias_p (x, mem, false);
3279 }
3280
3281 void
3282 init_alias_target (void)
3283 {
3284 int i;
3285
3286 if (!arg_base_value)
3287 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3288
3289 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3290
3291 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3292 /* Check whether this register can hold an incoming pointer
3293 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3294 numbers, so translate if necessary due to register windows. */
3295 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3296 && targetm.hard_regno_mode_ok (i, Pmode))
3297 static_reg_base_value[i] = arg_base_value;
3298
3299 /* RTL code is required to be consistent about whether it uses the
3300 stack pointer, the frame pointer or the argument pointer to
3301 access a given area of the frame. We can therefore use the
3302 base address to distinguish between the different areas. */
3303 static_reg_base_value[STACK_POINTER_REGNUM]
3304 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3305 static_reg_base_value[ARG_POINTER_REGNUM]
3306 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3307 static_reg_base_value[FRAME_POINTER_REGNUM]
3308 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3309
3310 /* The above rules extend post-reload, with eliminations applying
3311 consistently to each of the three pointers. Cope with cases in
3312 which the frame pointer is eliminated to the hard frame pointer
3313 rather than the stack pointer. */
3314 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3315 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3316 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3317 }
3318
3319 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3320 to be memory reference. */
3321 static bool memory_modified;
3322 static void
3323 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3324 {
3325 if (MEM_P (x))
3326 {
3327 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3328 memory_modified = true;
3329 }
3330 }
3331
3332
3333 /* Return true when INSN possibly modify memory contents of MEM
3334 (i.e. address can be modified). */
3335 bool
3336 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3337 {
3338 if (!INSN_P (insn))
3339 return false;
3340 /* Conservatively assume all non-readonly MEMs might be modified in
3341 calls. */
3342 if (CALL_P (insn))
3343 return true;
3344 memory_modified = false;
3345 note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3346 CONST_CAST_RTX(mem));
3347 return memory_modified;
3348 }
3349
3350 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3351 array. */
3352
3353 void
3354 init_alias_analysis (void)
3355 {
3356 unsigned int maxreg = max_reg_num ();
3357 int changed, pass;
3358 int i;
3359 unsigned int ui;
3360 rtx_insn *insn;
3361 rtx val;
3362 int rpo_cnt;
3363 int *rpo;
3364
3365 timevar_push (TV_ALIAS_ANALYSIS);
3366
3367 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER,
3368 true);
3369 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3370 bitmap_clear (reg_known_equiv_p);
3371
3372 /* If we have memory allocated from the previous run, use it. */
3373 if (old_reg_base_value)
3374 reg_base_value = old_reg_base_value;
3375
3376 if (reg_base_value)
3377 reg_base_value->truncate (0);
3378
3379 vec_safe_grow_cleared (reg_base_value, maxreg, true);
3380
3381 new_reg_base_value = XNEWVEC (rtx, maxreg);
3382 reg_seen = sbitmap_alloc (maxreg);
3383
3384 /* The basic idea is that each pass through this loop will use the
3385 "constant" information from the previous pass to propagate alias
3386 information through another level of assignments.
3387
3388 The propagation is done on the CFG in reverse post-order, to propagate
3389 things forward as far as possible in each iteration.
3390
3391 This could get expensive if the assignment chains are long. Maybe
3392 we should throttle the number of iterations, possibly based on
3393 the optimization level or flag_expensive_optimizations.
3394
3395 We could propagate more information in the first pass by making use
3396 of DF_REG_DEF_COUNT to determine immediately that the alias information
3397 for a pseudo is "constant".
3398
3399 A program with an uninitialized variable can cause an infinite loop
3400 here. Instead of doing a full dataflow analysis to detect such problems
3401 we just cap the number of iterations for the loop.
3402
3403 The state of the arrays for the set chain in question does not matter
3404 since the program has undefined behavior. */
3405
3406 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3407 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3408
3409 /* The prologue/epilogue insns are not threaded onto the
3410 insn chain until after reload has completed. Thus,
3411 there is no sense wasting time checking if INSN is in
3412 the prologue/epilogue until after reload has completed. */
3413 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3414 || targetm.have_epilogue ())
3415 && reload_completed);
3416
3417 pass = 0;
3418 do
3419 {
3420 /* Assume nothing will change this iteration of the loop. */
3421 changed = 0;
3422
3423 /* We want to assign the same IDs each iteration of this loop, so
3424 start counting from one each iteration of the loop. */
3425 unique_id = 1;
3426
3427 /* We're at the start of the function each iteration through the
3428 loop, so we're copying arguments. */
3429 copying_arguments = true;
3430
3431 /* Wipe the potential alias information clean for this pass. */
3432 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3433
3434 /* Wipe the reg_seen array clean. */
3435 bitmap_clear (reg_seen);
3436
3437 /* Initialize the alias information for this pass. */
3438 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3439 if (static_reg_base_value[i]
3440 /* Don't treat the hard frame pointer as special if we
3441 eliminated the frame pointer to the stack pointer instead. */
3442 && !(i == HARD_FRAME_POINTER_REGNUM
3443 && reload_completed
3444 && !frame_pointer_needed
3445 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3446 STACK_POINTER_REGNUM)))
3447 {
3448 new_reg_base_value[i] = static_reg_base_value[i];
3449 bitmap_set_bit (reg_seen, i);
3450 }
3451
3452 /* Walk the insns adding values to the new_reg_base_value array. */
3453 for (i = 0; i < rpo_cnt; i++)
3454 {
3455 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3456 FOR_BB_INSNS (bb, insn)
3457 {
3458 if (NONDEBUG_INSN_P (insn))
3459 {
3460 rtx note, set;
3461
3462 if (could_be_prologue_epilogue
3463 && prologue_epilogue_contains (insn))
3464 continue;
3465
3466 /* If this insn has a noalias note, process it, Otherwise,
3467 scan for sets. A simple set will have no side effects
3468 which could change the base value of any other register. */
3469
3470 if (GET_CODE (PATTERN (insn)) == SET
3471 && REG_NOTES (insn) != 0
3472 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3473 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3474 else
3475 note_stores (insn, record_set, NULL);
3476
3477 set = single_set (insn);
3478
3479 if (set != 0
3480 && REG_P (SET_DEST (set))
3481 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3482 {
3483 unsigned int regno = REGNO (SET_DEST (set));
3484 rtx src = SET_SRC (set);
3485 rtx t;
3486
3487 note = find_reg_equal_equiv_note (insn);
3488 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3489 && DF_REG_DEF_COUNT (regno) != 1)
3490 note = NULL_RTX;
3491
3492 poly_int64 offset;
3493 if (note != NULL_RTX
3494 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3495 && ! rtx_varies_p (XEXP (note, 0), 1)
3496 && ! reg_overlap_mentioned_p (SET_DEST (set),
3497 XEXP (note, 0)))
3498 {
3499 set_reg_known_value (regno, XEXP (note, 0));
3500 set_reg_known_equiv_p (regno,
3501 REG_NOTE_KIND (note) == REG_EQUIV);
3502 }
3503 else if (DF_REG_DEF_COUNT (regno) == 1
3504 && GET_CODE (src) == PLUS
3505 && REG_P (XEXP (src, 0))
3506 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3507 && poly_int_rtx_p (XEXP (src, 1), &offset))
3508 {
3509 t = plus_constant (GET_MODE (src), t, offset);
3510 set_reg_known_value (regno, t);
3511 set_reg_known_equiv_p (regno, false);
3512 }
3513 else if (DF_REG_DEF_COUNT (regno) == 1
3514 && ! rtx_varies_p (src, 1))
3515 {
3516 set_reg_known_value (regno, src);
3517 set_reg_known_equiv_p (regno, false);
3518 }
3519 }
3520 }
3521 else if (NOTE_P (insn)
3522 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3523 copying_arguments = false;
3524 }
3525 }
3526
3527 /* Now propagate values from new_reg_base_value to reg_base_value. */
3528 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3529
3530 for (ui = 0; ui < maxreg; ui++)
3531 {
3532 if (new_reg_base_value[ui]
3533 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3534 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3535 {
3536 (*reg_base_value)[ui] = new_reg_base_value[ui];
3537 changed = 1;
3538 }
3539 }
3540 }
3541 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3542 XDELETEVEC (rpo);
3543
3544 /* Fill in the remaining entries. */
3545 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3546 {
3547 int regno = i + FIRST_PSEUDO_REGISTER;
3548 if (! val)
3549 set_reg_known_value (regno, regno_reg_rtx[regno]);
3550 }
3551
3552 /* Clean up. */
3553 free (new_reg_base_value);
3554 new_reg_base_value = 0;
3555 sbitmap_free (reg_seen);
3556 reg_seen = 0;
3557 timevar_pop (TV_ALIAS_ANALYSIS);
3558 }
3559
3560 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3561 Special API for var-tracking pass purposes. */
3562
3563 void
3564 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3565 {
3566 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3567 }
3568
3569 void
3570 end_alias_analysis (void)
3571 {
3572 old_reg_base_value = reg_base_value;
3573 vec_free (reg_known_value);
3574 sbitmap_free (reg_known_equiv_p);
3575 }
3576
3577 void
3578 dump_alias_stats_in_alias_c (FILE *s)
3579 {
3580 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3581 " %llu are in alias set 0\n"
3582 " %llu queries asked about the same object\n"
3583 " %llu queries asked about the same alias set\n"
3584 " %llu access volatile\n"
3585 " %llu are dependent in the DAG\n"
3586 " %llu are aritificially in conflict with void *\n",
3587 alias_stats.num_disambiguated,
3588 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3589 + alias_stats.num_same_objects + alias_stats.num_volatile
3590 + alias_stats.num_dag + alias_stats.num_disambiguated
3591 + alias_stats.num_universal,
3592 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3593 alias_stats.num_same_objects, alias_stats.num_volatile,
3594 alias_stats.num_dag, alias_stats.num_universal);
3595 }
3596 #include "gt-alias.h"