Daily bump.
[gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
34
35 static void flow_loops_cfg_dump (FILE *);
36 \f
37 /* Dump loop related CFG information. */
38
39 static void
40 flow_loops_cfg_dump (FILE *file)
41 {
42 basic_block bb;
43
44 if (!file)
45 return;
46
47 FOR_EACH_BB_FN (bb, cfun)
48 {
49 edge succ;
50 edge_iterator ei;
51
52 fprintf (file, ";; %d succs { ", bb->index);
53 FOR_EACH_EDGE (succ, ei, bb->succs)
54 fprintf (file, "%d ", succ->dest->index);
55 fprintf (file, "}\n");
56 }
57 }
58
59 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
60
61 bool
62 flow_loop_nested_p (const class loop *outer, const class loop *loop)
63 {
64 unsigned odepth = loop_depth (outer);
65
66 return (loop_depth (loop) > odepth
67 && (*loop->superloops)[odepth] == outer);
68 }
69
70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
71 loops within LOOP. */
72
73 class loop *
74 superloop_at_depth (class loop *loop, unsigned depth)
75 {
76 unsigned ldepth = loop_depth (loop);
77
78 gcc_assert (depth <= ldepth);
79
80 if (depth == ldepth)
81 return loop;
82
83 return (*loop->superloops)[depth];
84 }
85
86 /* Returns the list of the latch edges of LOOP. */
87
88 static vec<edge>
89 get_loop_latch_edges (const class loop *loop)
90 {
91 edge_iterator ei;
92 edge e;
93 vec<edge> ret = vNULL;
94
95 FOR_EACH_EDGE (e, ei, loop->header->preds)
96 {
97 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
98 ret.safe_push (e);
99 }
100
101 return ret;
102 }
103
104 /* Dump the loop information specified by LOOP to the stream FILE
105 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
106
107 void
108 flow_loop_dump (const class loop *loop, FILE *file,
109 void (*loop_dump_aux) (const class loop *, FILE *, int),
110 int verbose)
111 {
112 basic_block *bbs;
113 unsigned i;
114 vec<edge> latches;
115 edge e;
116
117 if (! loop || ! loop->header)
118 return;
119
120 fprintf (file, ";;\n;; Loop %d\n", loop->num);
121
122 fprintf (file, ";; header %d, ", loop->header->index);
123 if (loop->latch)
124 fprintf (file, "latch %d\n", loop->latch->index);
125 else
126 {
127 fprintf (file, "multiple latches:");
128 latches = get_loop_latch_edges (loop);
129 FOR_EACH_VEC_ELT (latches, i, e)
130 fprintf (file, " %d", e->src->index);
131 latches.release ();
132 fprintf (file, "\n");
133 }
134
135 fprintf (file, ";; depth %d, outer %ld\n",
136 loop_depth (loop), (long) (loop_outer (loop)
137 ? loop_outer (loop)->num : -1));
138
139 if (loop->latch)
140 {
141 bool read_profile_p;
142 gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p);
143 if (read_profile_p && !loop->any_estimate)
144 fprintf (file, ";; profile-based iteration count: %" PRIu64 "\n",
145 (uint64_t) nit);
146 }
147
148 fprintf (file, ";; nodes:");
149 bbs = get_loop_body (loop);
150 for (i = 0; i < loop->num_nodes; i++)
151 fprintf (file, " %d", bbs[i]->index);
152 free (bbs);
153 fprintf (file, "\n");
154
155 if (loop_dump_aux)
156 loop_dump_aux (loop, file, verbose);
157 }
158
159 /* Dump the loop information about loops to the stream FILE,
160 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
161
162 void
163 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const class loop *, FILE *, int), int verbose)
164 {
165 class loop *loop;
166
167 if (!current_loops || ! file)
168 return;
169
170 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
171
172 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
173 {
174 flow_loop_dump (loop, file, loop_dump_aux, verbose);
175 }
176
177 if (verbose)
178 flow_loops_cfg_dump (file);
179 }
180
181 /* Free data allocated for LOOP. */
182
183 void
184 flow_loop_free (class loop *loop)
185 {
186 struct loop_exit *exit, *next;
187
188 vec_free (loop->superloops);
189
190 /* Break the list of the loop exit records. They will be freed when the
191 corresponding edge is rescanned or removed, and this avoids
192 accessing the (already released) head of the list stored in the
193 loop structure. */
194 for (exit = loop->exits->next; exit != loop->exits; exit = next)
195 {
196 next = exit->next;
197 exit->next = exit;
198 exit->prev = exit;
199 }
200
201 ggc_free (loop->exits);
202 ggc_free (loop);
203 }
204
205 /* Free all the memory allocated for LOOPS. */
206
207 void
208 flow_loops_free (struct loops *loops)
209 {
210 if (loops->larray)
211 {
212 unsigned i;
213 loop_p loop;
214
215 /* Free the loop descriptors. */
216 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
217 {
218 if (!loop)
219 continue;
220
221 flow_loop_free (loop);
222 }
223
224 vec_free (loops->larray);
225 }
226 }
227
228 /* Find the nodes contained within the LOOP with header HEADER.
229 Return the number of nodes within the loop. */
230
231 int
232 flow_loop_nodes_find (basic_block header, class loop *loop)
233 {
234 vec<basic_block> stack = vNULL;
235 int num_nodes = 1;
236 edge latch;
237 edge_iterator latch_ei;
238
239 header->loop_father = loop;
240
241 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
242 {
243 if (latch->src->loop_father == loop
244 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
245 continue;
246
247 num_nodes++;
248 stack.safe_push (latch->src);
249 latch->src->loop_father = loop;
250
251 while (!stack.is_empty ())
252 {
253 basic_block node;
254 edge e;
255 edge_iterator ei;
256
257 node = stack.pop ();
258
259 FOR_EACH_EDGE (e, ei, node->preds)
260 {
261 basic_block ancestor = e->src;
262
263 if (ancestor->loop_father != loop)
264 {
265 ancestor->loop_father = loop;
266 num_nodes++;
267 stack.safe_push (ancestor);
268 }
269 }
270 }
271 }
272 stack.release ();
273
274 return num_nodes;
275 }
276
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
279
280 static void
281 establish_preds (class loop *loop, class loop *father)
282 {
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
286
287 loop->superloops = 0;
288 vec_alloc (loop->superloops, depth);
289 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
290 loop->superloops->quick_push (ploop);
291 loop->superloops->quick_push (father);
292
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
295 }
296
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. If AFTER is non-null
300 then it's expected it's a pointer into FATHERs inner sibling
301 list and LOOP is added behind AFTER, otherwise it's added in front
302 of FATHERs siblings. */
303
304 void
305 flow_loop_tree_node_add (class loop *father, class loop *loop,
306 class loop *after)
307 {
308 if (after)
309 {
310 loop->next = after->next;
311 after->next = loop;
312 }
313 else
314 {
315 loop->next = father->inner;
316 father->inner = loop;
317 }
318
319 establish_preds (loop, father);
320 }
321
322 /* Remove LOOP from the loop hierarchy tree. */
323
324 void
325 flow_loop_tree_node_remove (class loop *loop)
326 {
327 class loop *prev, *father;
328
329 father = loop_outer (loop);
330
331 /* Remove loop from the list of sons. */
332 if (father->inner == loop)
333 father->inner = loop->next;
334 else
335 {
336 for (prev = father->inner; prev->next != loop; prev = prev->next)
337 continue;
338 prev->next = loop->next;
339 }
340
341 loop->superloops = NULL;
342 }
343
344 /* Allocates and returns new loop structure. */
345
346 class loop *
347 alloc_loop (void)
348 {
349 class loop *loop = ggc_cleared_alloc<class loop> ();
350
351 loop->exits = ggc_cleared_alloc<loop_exit> ();
352 loop->exits->next = loop->exits->prev = loop->exits;
353 loop->can_be_parallel = false;
354 loop->constraints = 0;
355 loop->nb_iterations_upper_bound = 0;
356 loop->nb_iterations_likely_upper_bound = 0;
357 loop->nb_iterations_estimate = 0;
358 return loop;
359 }
360
361 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
362 (including the root of the loop tree). */
363
364 void
365 init_loops_structure (struct function *fn,
366 struct loops *loops, unsigned num_loops)
367 {
368 class loop *root;
369
370 memset (loops, 0, sizeof *loops);
371 vec_alloc (loops->larray, num_loops);
372
373 /* Dummy loop containing whole function. */
374 root = alloc_loop ();
375 root->num_nodes = n_basic_blocks_for_fn (fn);
376 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
377 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
378 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
379 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
380
381 loops->larray->quick_push (root);
382 loops->tree_root = root;
383 }
384
385 /* Returns whether HEADER is a loop header. */
386
387 bool
388 bb_loop_header_p (basic_block header)
389 {
390 edge_iterator ei;
391 edge e;
392
393 /* If we have an abnormal predecessor, do not consider the
394 loop (not worth the problems). */
395 if (bb_has_abnormal_pred (header))
396 return false;
397
398 /* Look for back edges where a predecessor is dominated
399 by this block. A natural loop has a single entry
400 node (header) that dominates all the nodes in the
401 loop. It also has single back edge to the header
402 from a latch node. */
403 FOR_EACH_EDGE (e, ei, header->preds)
404 {
405 basic_block latch = e->src;
406 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
407 && dominated_by_p (CDI_DOMINATORS, latch, header))
408 return true;
409 }
410
411 return false;
412 }
413
414 /* Find all the natural loops in the function and save in LOOPS structure and
415 recalculate loop_father information in basic block structures.
416 If LOOPS is non-NULL then the loop structures for already recorded loops
417 will be re-used and their number will not change. We assume that no
418 stale loops exist in LOOPS.
419 When LOOPS is NULL it is allocated and re-built from scratch.
420 Return the built LOOPS structure. */
421
422 struct loops *
423 flow_loops_find (struct loops *loops)
424 {
425 bool from_scratch = (loops == NULL);
426 int *rc_order;
427 int b;
428 unsigned i;
429
430 /* Ensure that the dominators are computed. */
431 calculate_dominance_info (CDI_DOMINATORS);
432
433 if (!loops)
434 {
435 loops = ggc_cleared_alloc<struct loops> ();
436 init_loops_structure (cfun, loops, 1);
437 }
438
439 /* Ensure that loop exits were released. */
440 gcc_assert (loops->exits == NULL);
441
442 /* Taking care of this degenerate case makes the rest of
443 this code simpler. */
444 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
445 return loops;
446
447 /* The root loop node contains all basic-blocks. */
448 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
449
450 /* Compute depth first search order of the CFG so that outer
451 natural loops will be found before inner natural loops. */
452 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
453 pre_and_rev_post_order_compute (NULL, rc_order, false);
454
455 /* Gather all loop headers in reverse completion order and allocate
456 loop structures for loops that are not already present. */
457 auto_vec<loop_p> larray (loops->larray->length ());
458 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
459 {
460 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
461 if (bb_loop_header_p (header))
462 {
463 class loop *loop;
464
465 /* The current active loop tree has valid loop-fathers for
466 header blocks. */
467 if (!from_scratch
468 && header->loop_father->header == header)
469 {
470 loop = header->loop_father;
471 /* If we found an existing loop remove it from the
472 loop tree. It is going to be inserted again
473 below. */
474 flow_loop_tree_node_remove (loop);
475 }
476 else
477 {
478 /* Otherwise allocate a new loop structure for the loop. */
479 loop = alloc_loop ();
480 /* ??? We could re-use unused loop slots here. */
481 loop->num = loops->larray->length ();
482 vec_safe_push (loops->larray, loop);
483 loop->header = header;
484
485 if (!from_scratch
486 && dump_file && (dump_flags & TDF_DETAILS))
487 fprintf (dump_file, "flow_loops_find: discovered new "
488 "loop %d with header %d\n",
489 loop->num, header->index);
490 }
491 /* Reset latch, we recompute it below. */
492 loop->latch = NULL;
493 larray.safe_push (loop);
494 }
495
496 /* Make blocks part of the loop root node at start. */
497 header->loop_father = loops->tree_root;
498 }
499
500 free (rc_order);
501
502 /* Now iterate over the loops found, insert them into the loop tree
503 and assign basic-block ownership. */
504 for (i = 0; i < larray.length (); ++i)
505 {
506 class loop *loop = larray[i];
507 basic_block header = loop->header;
508 edge_iterator ei;
509 edge e;
510
511 flow_loop_tree_node_add (header->loop_father, loop);
512 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
513
514 /* Look for the latch for this header block, if it has just a
515 single one. */
516 FOR_EACH_EDGE (e, ei, header->preds)
517 {
518 basic_block latch = e->src;
519
520 if (flow_bb_inside_loop_p (loop, latch))
521 {
522 if (loop->latch != NULL)
523 {
524 /* More than one latch edge. */
525 loop->latch = NULL;
526 break;
527 }
528 loop->latch = latch;
529 }
530 }
531 }
532
533 return loops;
534 }
535
536 /* qsort helper for sort_sibling_loops. */
537
538 static int *sort_sibling_loops_cmp_rpo;
539 static int
540 sort_sibling_loops_cmp (const void *la_, const void *lb_)
541 {
542 const class loop *la = *(const class loop * const *)la_;
543 const class loop *lb = *(const class loop * const *)lb_;
544 return (sort_sibling_loops_cmp_rpo[la->header->index]
545 - sort_sibling_loops_cmp_rpo[lb->header->index]);
546 }
547
548 /* Sort sibling loops in RPO order. */
549
550 void
551 sort_sibling_loops (function *fn)
552 {
553 /* Match flow_loops_find in the order we sort sibling loops. */
554 sort_sibling_loops_cmp_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
555 int *rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
556 pre_and_rev_post_order_compute_fn (fn, NULL, rc_order, false);
557 for (int i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; ++i)
558 sort_sibling_loops_cmp_rpo[rc_order[i]] = i;
559 free (rc_order);
560
561 auto_vec<loop_p, 3> siblings;
562 loop_p loop;
563 FOR_EACH_LOOP_FN (fn, loop, LI_INCLUDE_ROOT)
564 if (loop->inner && loop->inner->next)
565 {
566 loop_p sibling = loop->inner;
567 do
568 {
569 siblings.safe_push (sibling);
570 sibling = sibling->next;
571 }
572 while (sibling);
573 siblings.qsort (sort_sibling_loops_cmp);
574 loop_p *siblingp = &loop->inner;
575 for (unsigned i = 0; i < siblings.length (); ++i)
576 {
577 *siblingp = siblings[i];
578 siblingp = &(*siblingp)->next;
579 }
580 *siblingp = NULL;
581 siblings.truncate (0);
582 }
583
584 free (sort_sibling_loops_cmp_rpo);
585 sort_sibling_loops_cmp_rpo = NULL;
586 }
587
588 /* Ratio of frequencies of edges so that one of more latch edges is
589 considered to belong to inner loop with same header. */
590 #define HEAVY_EDGE_RATIO 8
591
592 /* Minimum number of samples for that we apply
593 find_subloop_latch_edge_by_profile heuristics. */
594 #define HEAVY_EDGE_MIN_SAMPLES 10
595
596 /* If the profile info is available, finds an edge in LATCHES that much more
597 frequent than the remaining edges. Returns such an edge, or NULL if we do
598 not find one.
599
600 We do not use guessed profile here, only the measured one. The guessed
601 profile is usually too flat and unreliable for this (and it is mostly based
602 on the loop structure of the program, so it does not make much sense to
603 derive the loop structure from it). */
604
605 static edge
606 find_subloop_latch_edge_by_profile (vec<edge> latches)
607 {
608 unsigned i;
609 edge e, me = NULL;
610 profile_count mcount = profile_count::zero (), tcount = profile_count::zero ();
611
612 FOR_EACH_VEC_ELT (latches, i, e)
613 {
614 if (e->count ()> mcount)
615 {
616 me = e;
617 mcount = e->count();
618 }
619 tcount += e->count();
620 }
621
622 if (!tcount.initialized_p () || !(tcount.ipa () > HEAVY_EDGE_MIN_SAMPLES)
623 || (tcount - mcount).apply_scale (HEAVY_EDGE_RATIO, 1) > tcount)
624 return NULL;
625
626 if (dump_file)
627 fprintf (dump_file,
628 "Found latch edge %d -> %d using profile information.\n",
629 me->src->index, me->dest->index);
630 return me;
631 }
632
633 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
634 on the structure of induction variables. Returns this edge, or NULL if we
635 do not find any.
636
637 We are quite conservative, and look just for an obvious simple innermost
638 loop (which is the case where we would lose the most performance by not
639 disambiguating the loop). More precisely, we look for the following
640 situation: The source of the chosen latch edge dominates sources of all
641 the other latch edges. Additionally, the header does not contain a phi node
642 such that the argument from the chosen edge is equal to the argument from
643 another edge. */
644
645 static edge
646 find_subloop_latch_edge_by_ivs (class loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
647 {
648 edge e, latch = latches[0];
649 unsigned i;
650 gphi *phi;
651 gphi_iterator psi;
652 tree lop;
653 basic_block bb;
654
655 /* Find the candidate for the latch edge. */
656 for (i = 1; latches.iterate (i, &e); i++)
657 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
658 latch = e;
659
660 /* Verify that it dominates all the latch edges. */
661 FOR_EACH_VEC_ELT (latches, i, e)
662 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
663 return NULL;
664
665 /* Check for a phi node that would deny that this is a latch edge of
666 a subloop. */
667 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
668 {
669 phi = psi.phi ();
670 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
671
672 /* Ignore the values that are not changed inside the subloop. */
673 if (TREE_CODE (lop) != SSA_NAME
674 || SSA_NAME_DEF_STMT (lop) == phi)
675 continue;
676 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
677 if (!bb || !flow_bb_inside_loop_p (loop, bb))
678 continue;
679
680 FOR_EACH_VEC_ELT (latches, i, e)
681 if (e != latch
682 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
683 return NULL;
684 }
685
686 if (dump_file)
687 fprintf (dump_file,
688 "Found latch edge %d -> %d using iv structure.\n",
689 latch->src->index, latch->dest->index);
690 return latch;
691 }
692
693 /* If we can determine that one of the several latch edges of LOOP behaves
694 as a latch edge of a separate subloop, returns this edge. Otherwise
695 returns NULL. */
696
697 static edge
698 find_subloop_latch_edge (class loop *loop)
699 {
700 vec<edge> latches = get_loop_latch_edges (loop);
701 edge latch = NULL;
702
703 if (latches.length () > 1)
704 {
705 latch = find_subloop_latch_edge_by_profile (latches);
706
707 if (!latch
708 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
709 should use cfghook for this, but it is hard to imagine it would
710 be useful elsewhere. */
711 && current_ir_type () == IR_GIMPLE)
712 latch = find_subloop_latch_edge_by_ivs (loop, latches);
713 }
714
715 latches.release ();
716 return latch;
717 }
718
719 /* Callback for make_forwarder_block. Returns true if the edge E is marked
720 in the set MFB_REIS_SET. */
721
722 static hash_set<edge> *mfb_reis_set;
723 static bool
724 mfb_redirect_edges_in_set (edge e)
725 {
726 return mfb_reis_set->contains (e);
727 }
728
729 /* Creates a subloop of LOOP with latch edge LATCH. */
730
731 static void
732 form_subloop (class loop *loop, edge latch)
733 {
734 edge_iterator ei;
735 edge e, new_entry;
736 class loop *new_loop;
737
738 mfb_reis_set = new hash_set<edge>;
739 FOR_EACH_EDGE (e, ei, loop->header->preds)
740 {
741 if (e != latch)
742 mfb_reis_set->add (e);
743 }
744 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
745 NULL);
746 delete mfb_reis_set;
747
748 loop->header = new_entry->src;
749
750 /* Find the blocks and subloops that belong to the new loop, and add it to
751 the appropriate place in the loop tree. */
752 new_loop = alloc_loop ();
753 new_loop->header = new_entry->dest;
754 new_loop->latch = latch->src;
755 add_loop (new_loop, loop);
756 }
757
758 /* Make all the latch edges of LOOP to go to a single forwarder block --
759 a new latch of LOOP. */
760
761 static void
762 merge_latch_edges (class loop *loop)
763 {
764 vec<edge> latches = get_loop_latch_edges (loop);
765 edge latch, e;
766 unsigned i;
767
768 gcc_assert (latches.length () > 0);
769
770 if (latches.length () == 1)
771 loop->latch = latches[0]->src;
772 else
773 {
774 if (dump_file)
775 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
776
777 mfb_reis_set = new hash_set<edge>;
778 FOR_EACH_VEC_ELT (latches, i, e)
779 mfb_reis_set->add (e);
780 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
781 NULL);
782 delete mfb_reis_set;
783
784 loop->header = latch->dest;
785 loop->latch = latch->src;
786 }
787
788 latches.release ();
789 }
790
791 /* LOOP may have several latch edges. Transform it into (possibly several)
792 loops with single latch edge. */
793
794 static void
795 disambiguate_multiple_latches (class loop *loop)
796 {
797 edge e;
798
799 /* We eliminate the multiple latches by splitting the header to the forwarder
800 block F and the rest R, and redirecting the edges. There are two cases:
801
802 1) If there is a latch edge E that corresponds to a subloop (we guess
803 that based on profile -- if it is taken much more often than the
804 remaining edges; and on trees, using the information about induction
805 variables of the loops), we redirect E to R, all the remaining edges to
806 F, then rescan the loops and try again for the outer loop.
807 2) If there is no such edge, we redirect all latch edges to F, and the
808 entry edges to R, thus making F the single latch of the loop. */
809
810 if (dump_file)
811 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
812 loop->num);
813
814 /* During latch merging, we may need to redirect the entry edges to a new
815 block. This would cause problems if the entry edge was the one from the
816 entry block. To avoid having to handle this case specially, split
817 such entry edge. */
818 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
819 if (e)
820 split_edge (e);
821
822 while (1)
823 {
824 e = find_subloop_latch_edge (loop);
825 if (!e)
826 break;
827
828 form_subloop (loop, e);
829 }
830
831 merge_latch_edges (loop);
832 }
833
834 /* Split loops with multiple latch edges. */
835
836 void
837 disambiguate_loops_with_multiple_latches (void)
838 {
839 class loop *loop;
840
841 FOR_EACH_LOOP (loop, 0)
842 {
843 if (!loop->latch)
844 disambiguate_multiple_latches (loop);
845 }
846 }
847
848 /* Return nonzero if basic block BB belongs to LOOP. */
849 bool
850 flow_bb_inside_loop_p (const class loop *loop, const_basic_block bb)
851 {
852 class loop *source_loop;
853
854 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
855 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
856 return 0;
857
858 source_loop = bb->loop_father;
859 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
860 }
861
862 /* Enumeration predicate for get_loop_body_with_size. */
863 static bool
864 glb_enum_p (const_basic_block bb, const void *glb_loop)
865 {
866 const class loop *const loop = (const class loop *) glb_loop;
867 return (bb != loop->header
868 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
869 }
870
871 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
872 order against direction of edges from latch. Specially, if
873 header != latch, latch is the 1-st block. LOOP cannot be the fake
874 loop tree root, and its size must be at most MAX_SIZE. The blocks
875 in the LOOP body are stored to BODY, and the size of the LOOP is
876 returned. */
877
878 unsigned
879 get_loop_body_with_size (const class loop *loop, basic_block *body,
880 unsigned max_size)
881 {
882 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
883 body, max_size, loop);
884 }
885
886 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
887 order against direction of edges from latch. Specially, if
888 header != latch, latch is the 1-st block. */
889
890 basic_block *
891 get_loop_body (const class loop *loop)
892 {
893 basic_block *body, bb;
894 unsigned tv = 0;
895
896 gcc_assert (loop->num_nodes);
897
898 body = XNEWVEC (basic_block, loop->num_nodes);
899
900 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
901 {
902 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
903 special-case the fake loop that contains the whole function. */
904 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
905 body[tv++] = loop->header;
906 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
907 FOR_EACH_BB_FN (bb, cfun)
908 body[tv++] = bb;
909 }
910 else
911 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
912
913 gcc_assert (tv == loop->num_nodes);
914 return body;
915 }
916
917 /* Fills dominance descendants inside LOOP of the basic block BB into
918 array TOVISIT from index *TV. */
919
920 static void
921 fill_sons_in_loop (const class loop *loop, basic_block bb,
922 basic_block *tovisit, int *tv)
923 {
924 basic_block son, postpone = NULL;
925
926 tovisit[(*tv)++] = bb;
927 for (son = first_dom_son (CDI_DOMINATORS, bb);
928 son;
929 son = next_dom_son (CDI_DOMINATORS, son))
930 {
931 if (!flow_bb_inside_loop_p (loop, son))
932 continue;
933
934 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
935 {
936 postpone = son;
937 continue;
938 }
939 fill_sons_in_loop (loop, son, tovisit, tv);
940 }
941
942 if (postpone)
943 fill_sons_in_loop (loop, postpone, tovisit, tv);
944 }
945
946 /* Gets body of a LOOP (that must be different from the outermost loop)
947 sorted by dominance relation. Additionally, if a basic block s dominates
948 the latch, then only blocks dominated by s are be after it. */
949
950 basic_block *
951 get_loop_body_in_dom_order (const class loop *loop)
952 {
953 basic_block *tovisit;
954 int tv;
955
956 gcc_assert (loop->num_nodes);
957
958 tovisit = XNEWVEC (basic_block, loop->num_nodes);
959
960 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
961
962 tv = 0;
963 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
964
965 gcc_assert (tv == (int) loop->num_nodes);
966
967 return tovisit;
968 }
969
970 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
971
972 basic_block *
973 get_loop_body_in_custom_order (const class loop *loop,
974 int (*bb_comparator) (const void *, const void *))
975 {
976 basic_block *bbs = get_loop_body (loop);
977
978 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
979
980 return bbs;
981 }
982
983 /* Same as above, but use gcc_sort_r instead of qsort. */
984
985 basic_block *
986 get_loop_body_in_custom_order (const class loop *loop, void *data,
987 int (*bb_comparator) (const void *, const void *, void *))
988 {
989 basic_block *bbs = get_loop_body (loop);
990
991 gcc_sort_r (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator, data);
992
993 return bbs;
994 }
995
996 /* Get body of a LOOP in breadth first sort order. */
997
998 basic_block *
999 get_loop_body_in_bfs_order (const class loop *loop)
1000 {
1001 basic_block *blocks;
1002 basic_block bb;
1003 unsigned int i = 1;
1004 unsigned int vc = 0;
1005
1006 gcc_assert (loop->num_nodes);
1007 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1008
1009 blocks = XNEWVEC (basic_block, loop->num_nodes);
1010 auto_bitmap visited;
1011 blocks[0] = loop->header;
1012 bitmap_set_bit (visited, loop->header->index);
1013 while (i < loop->num_nodes)
1014 {
1015 edge e;
1016 edge_iterator ei;
1017 gcc_assert (i > vc);
1018 bb = blocks[vc++];
1019
1020 FOR_EACH_EDGE (e, ei, bb->succs)
1021 {
1022 if (flow_bb_inside_loop_p (loop, e->dest))
1023 {
1024 /* This bb is now visited. */
1025 if (bitmap_set_bit (visited, e->dest->index))
1026 blocks[i++] = e->dest;
1027 }
1028 }
1029 }
1030
1031 return blocks;
1032 }
1033
1034 /* Hash function for struct loop_exit. */
1035
1036 hashval_t
1037 loop_exit_hasher::hash (loop_exit *exit)
1038 {
1039 return htab_hash_pointer (exit->e);
1040 }
1041
1042 /* Equality function for struct loop_exit. Compares with edge. */
1043
1044 bool
1045 loop_exit_hasher::equal (loop_exit *exit, edge e)
1046 {
1047 return exit->e == e;
1048 }
1049
1050 /* Frees the list of loop exit descriptions EX. */
1051
1052 void
1053 loop_exit_hasher::remove (loop_exit *exit)
1054 {
1055 loop_exit *next;
1056 for (; exit; exit = next)
1057 {
1058 next = exit->next_e;
1059
1060 exit->next->prev = exit->prev;
1061 exit->prev->next = exit->next;
1062
1063 ggc_free (exit);
1064 }
1065 }
1066
1067 /* Returns the list of records for E as an exit of a loop. */
1068
1069 static struct loop_exit *
1070 get_exit_descriptions (edge e)
1071 {
1072 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
1073 }
1074
1075 /* Updates the lists of loop exits in that E appears.
1076 If REMOVED is true, E is being removed, and we
1077 just remove it from the lists of exits.
1078 If NEW_EDGE is true and E is not a loop exit, we
1079 do not try to remove it from loop exit lists. */
1080
1081 void
1082 rescan_loop_exit (edge e, bool new_edge, bool removed)
1083 {
1084 struct loop_exit *exits = NULL, *exit;
1085 class loop *aloop, *cloop;
1086
1087 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1088 return;
1089
1090 if (!removed
1091 && e->src->loop_father != NULL
1092 && e->dest->loop_father != NULL
1093 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1094 {
1095 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1096 for (aloop = e->src->loop_father;
1097 aloop != cloop;
1098 aloop = loop_outer (aloop))
1099 {
1100 exit = ggc_alloc<loop_exit> ();
1101 exit->e = e;
1102
1103 exit->next = aloop->exits->next;
1104 exit->prev = aloop->exits;
1105 exit->next->prev = exit;
1106 exit->prev->next = exit;
1107
1108 exit->next_e = exits;
1109 exits = exit;
1110 }
1111 }
1112
1113 if (!exits && new_edge)
1114 return;
1115
1116 loop_exit **slot
1117 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1118 exits ? INSERT : NO_INSERT);
1119 if (!slot)
1120 return;
1121
1122 if (exits)
1123 {
1124 if (*slot)
1125 loop_exit_hasher::remove (*slot);
1126 *slot = exits;
1127 }
1128 else
1129 current_loops->exits->clear_slot (slot);
1130 }
1131
1132 /* For each loop, record list of exit edges, and start maintaining these
1133 lists. */
1134
1135 void
1136 record_loop_exits (void)
1137 {
1138 basic_block bb;
1139 edge_iterator ei;
1140 edge e;
1141
1142 if (!current_loops)
1143 return;
1144
1145 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1146 return;
1147 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1148
1149 gcc_assert (current_loops->exits == NULL);
1150 current_loops->exits
1151 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1152
1153 FOR_EACH_BB_FN (bb, cfun)
1154 {
1155 FOR_EACH_EDGE (e, ei, bb->succs)
1156 {
1157 rescan_loop_exit (e, true, false);
1158 }
1159 }
1160 }
1161
1162 /* Dumps information about the exit in *SLOT to FILE.
1163 Callback for htab_traverse. */
1164
1165 int
1166 dump_recorded_exit (loop_exit **slot, FILE *file)
1167 {
1168 struct loop_exit *exit = *slot;
1169 unsigned n = 0;
1170 edge e = exit->e;
1171
1172 for (; exit != NULL; exit = exit->next_e)
1173 n++;
1174
1175 fprintf (file, "Edge %d->%d exits %u loops\n",
1176 e->src->index, e->dest->index, n);
1177
1178 return 1;
1179 }
1180
1181 /* Dumps the recorded exits of loops to FILE. */
1182
1183 extern void dump_recorded_exits (FILE *);
1184 void
1185 dump_recorded_exits (FILE *file)
1186 {
1187 if (!current_loops->exits)
1188 return;
1189 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1190 }
1191
1192 /* Releases lists of loop exits. */
1193
1194 void
1195 release_recorded_exits (function *fn)
1196 {
1197 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1198 loops_for_fn (fn)->exits->empty ();
1199 loops_for_fn (fn)->exits = NULL;
1200 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1201 }
1202
1203 /* Returns the list of the exit edges of a LOOP. */
1204
1205 auto_vec<edge>
1206 get_loop_exit_edges (const class loop *loop, basic_block *body)
1207 {
1208 auto_vec<edge> edges;
1209 edge e;
1210 unsigned i;
1211 edge_iterator ei;
1212 struct loop_exit *exit;
1213
1214 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1215
1216 /* If we maintain the lists of exits, use them. Otherwise we must
1217 scan the body of the loop. */
1218 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1219 {
1220 for (exit = loop->exits->next; exit->e; exit = exit->next)
1221 edges.safe_push (exit->e);
1222 }
1223 else
1224 {
1225 bool body_from_caller = true;
1226 if (!body)
1227 {
1228 body = get_loop_body (loop);
1229 body_from_caller = false;
1230 }
1231 for (i = 0; i < loop->num_nodes; i++)
1232 FOR_EACH_EDGE (e, ei, body[i]->succs)
1233 {
1234 if (!flow_bb_inside_loop_p (loop, e->dest))
1235 edges.safe_push (e);
1236 }
1237 if (!body_from_caller)
1238 free (body);
1239 }
1240
1241 return edges;
1242 }
1243
1244 /* Counts the number of conditional branches inside LOOP. */
1245
1246 unsigned
1247 num_loop_branches (const class loop *loop)
1248 {
1249 unsigned i, n;
1250 basic_block * body;
1251
1252 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1253
1254 body = get_loop_body (loop);
1255 n = 0;
1256 for (i = 0; i < loop->num_nodes; i++)
1257 if (EDGE_COUNT (body[i]->succs) >= 2)
1258 n++;
1259 free (body);
1260
1261 return n;
1262 }
1263
1264 /* Adds basic block BB to LOOP. */
1265 void
1266 add_bb_to_loop (basic_block bb, class loop *loop)
1267 {
1268 unsigned i;
1269 loop_p ploop;
1270 edge_iterator ei;
1271 edge e;
1272
1273 gcc_assert (bb->loop_father == NULL);
1274 bb->loop_father = loop;
1275 loop->num_nodes++;
1276 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1277 ploop->num_nodes++;
1278
1279 FOR_EACH_EDGE (e, ei, bb->succs)
1280 {
1281 rescan_loop_exit (e, true, false);
1282 }
1283 FOR_EACH_EDGE (e, ei, bb->preds)
1284 {
1285 rescan_loop_exit (e, true, false);
1286 }
1287 }
1288
1289 /* Remove basic block BB from loops. */
1290 void
1291 remove_bb_from_loops (basic_block bb)
1292 {
1293 unsigned i;
1294 class loop *loop = bb->loop_father;
1295 loop_p ploop;
1296 edge_iterator ei;
1297 edge e;
1298
1299 gcc_assert (loop != NULL);
1300 loop->num_nodes--;
1301 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1302 ploop->num_nodes--;
1303 bb->loop_father = NULL;
1304
1305 FOR_EACH_EDGE (e, ei, bb->succs)
1306 {
1307 rescan_loop_exit (e, false, true);
1308 }
1309 FOR_EACH_EDGE (e, ei, bb->preds)
1310 {
1311 rescan_loop_exit (e, false, true);
1312 }
1313 }
1314
1315 /* Finds nearest common ancestor in loop tree for given loops. */
1316 class loop *
1317 find_common_loop (class loop *loop_s, class loop *loop_d)
1318 {
1319 unsigned sdepth, ddepth;
1320
1321 if (!loop_s) return loop_d;
1322 if (!loop_d) return loop_s;
1323
1324 sdepth = loop_depth (loop_s);
1325 ddepth = loop_depth (loop_d);
1326
1327 if (sdepth < ddepth)
1328 loop_d = (*loop_d->superloops)[sdepth];
1329 else if (sdepth > ddepth)
1330 loop_s = (*loop_s->superloops)[ddepth];
1331
1332 while (loop_s != loop_d)
1333 {
1334 loop_s = loop_outer (loop_s);
1335 loop_d = loop_outer (loop_d);
1336 }
1337 return loop_s;
1338 }
1339
1340 /* Removes LOOP from structures and frees its data. */
1341
1342 void
1343 delete_loop (class loop *loop)
1344 {
1345 /* Remove the loop from structure. */
1346 flow_loop_tree_node_remove (loop);
1347
1348 /* Remove loop from loops array. */
1349 (*current_loops->larray)[loop->num] = NULL;
1350
1351 /* Free loop data. */
1352 flow_loop_free (loop);
1353 }
1354
1355 /* Cancels the LOOP; it must be innermost one. */
1356
1357 static void
1358 cancel_loop (class loop *loop)
1359 {
1360 basic_block *bbs;
1361 unsigned i;
1362 class loop *outer = loop_outer (loop);
1363
1364 gcc_assert (!loop->inner);
1365
1366 /* Move blocks up one level (they should be removed as soon as possible). */
1367 bbs = get_loop_body (loop);
1368 for (i = 0; i < loop->num_nodes; i++)
1369 bbs[i]->loop_father = outer;
1370
1371 free (bbs);
1372 delete_loop (loop);
1373 }
1374
1375 /* Cancels LOOP and all its subloops. */
1376 void
1377 cancel_loop_tree (class loop *loop)
1378 {
1379 while (loop->inner)
1380 cancel_loop_tree (loop->inner);
1381 cancel_loop (loop);
1382 }
1383
1384 /* Disable warnings about missing quoting in GCC diagnostics for
1385 the verification errors. Their format strings don't follow GCC
1386 diagnostic conventions and the calls are ultimately followed by
1387 a deliberate ICE triggered by a failed assertion. */
1388 #if __GNUC__ >= 10
1389 # pragma GCC diagnostic push
1390 # pragma GCC diagnostic ignored "-Wformat-diag"
1391 #endif
1392
1393 /* Checks that information about loops is correct
1394 -- sizes of loops are all right
1395 -- results of get_loop_body really belong to the loop
1396 -- loop header have just single entry edge and single latch edge
1397 -- loop latches have only single successor that is header of their loop
1398 -- irreducible loops are correctly marked
1399 -- the cached loop depth and loop father of each bb is correct
1400 */
1401 DEBUG_FUNCTION void
1402 verify_loop_structure (void)
1403 {
1404 unsigned *sizes, i, j;
1405 basic_block bb, *bbs;
1406 class loop *loop;
1407 int err = 0;
1408 edge e;
1409 unsigned num = number_of_loops (cfun);
1410 struct loop_exit *exit, *mexit;
1411 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1412
1413 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1414 {
1415 error ("loop verification on loop tree that needs fixup");
1416 err = 1;
1417 }
1418
1419 /* We need up-to-date dominators, compute or verify them. */
1420 if (!dom_available)
1421 calculate_dominance_info (CDI_DOMINATORS);
1422 else
1423 verify_dominators (CDI_DOMINATORS);
1424
1425 /* Check the loop tree root. */
1426 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1427 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1428 || (current_loops->tree_root->num_nodes
1429 != (unsigned) n_basic_blocks_for_fn (cfun)))
1430 {
1431 error ("corrupt loop tree root");
1432 err = 1;
1433 }
1434
1435 /* Check the headers. */
1436 FOR_EACH_BB_FN (bb, cfun)
1437 if (bb_loop_header_p (bb))
1438 {
1439 if (bb->loop_father->header == NULL)
1440 {
1441 error ("loop with header %d marked for removal", bb->index);
1442 err = 1;
1443 }
1444 else if (bb->loop_father->header != bb)
1445 {
1446 error ("loop with header %d not in loop tree", bb->index);
1447 err = 1;
1448 }
1449 }
1450 else if (bb->loop_father->header == bb)
1451 {
1452 error ("non-loop with header %d not marked for removal", bb->index);
1453 err = 1;
1454 }
1455
1456 /* Check the recorded loop father and sizes of loops. */
1457 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1458 bitmap_clear (visited);
1459 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1460 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1461 {
1462 unsigned n;
1463
1464 if (loop->header == NULL)
1465 {
1466 error ("removed loop %d in loop tree", loop->num);
1467 err = 1;
1468 continue;
1469 }
1470
1471 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1472 if (loop->num_nodes != n)
1473 {
1474 error ("size of loop %d should be %d, not %d",
1475 loop->num, n, loop->num_nodes);
1476 err = 1;
1477 }
1478
1479 for (j = 0; j < n; j++)
1480 {
1481 bb = bbs[j];
1482
1483 if (!flow_bb_inside_loop_p (loop, bb))
1484 {
1485 error ("bb %d does not belong to loop %d",
1486 bb->index, loop->num);
1487 err = 1;
1488 }
1489
1490 /* Ignore this block if it is in an inner loop. */
1491 if (bitmap_bit_p (visited, bb->index))
1492 continue;
1493 bitmap_set_bit (visited, bb->index);
1494
1495 if (bb->loop_father != loop)
1496 {
1497 error ("bb %d has father loop %d, should be loop %d",
1498 bb->index, bb->loop_father->num, loop->num);
1499 err = 1;
1500 }
1501 }
1502 }
1503 free (bbs);
1504
1505 /* Check headers and latches. */
1506 FOR_EACH_LOOP (loop, 0)
1507 {
1508 i = loop->num;
1509 if (loop->header == NULL)
1510 continue;
1511 if (!bb_loop_header_p (loop->header))
1512 {
1513 error ("loop %d%'s header is not a loop header", i);
1514 err = 1;
1515 }
1516 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1517 && EDGE_COUNT (loop->header->preds) != 2)
1518 {
1519 error ("loop %d%'s header does not have exactly 2 entries", i);
1520 err = 1;
1521 }
1522 if (loop->latch)
1523 {
1524 if (!find_edge (loop->latch, loop->header))
1525 {
1526 error ("loop %d%'s latch does not have an edge to its header", i);
1527 err = 1;
1528 }
1529 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1530 {
1531 error ("loop %d%'s latch is not dominated by its header", i);
1532 err = 1;
1533 }
1534 }
1535 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1536 {
1537 if (!single_succ_p (loop->latch))
1538 {
1539 error ("loop %d%'s latch does not have exactly 1 successor", i);
1540 err = 1;
1541 }
1542 if (single_succ (loop->latch) != loop->header)
1543 {
1544 error ("loop %d%'s latch does not have header as successor", i);
1545 err = 1;
1546 }
1547 if (loop->latch->loop_father != loop)
1548 {
1549 error ("loop %d%'s latch does not belong directly to it", i);
1550 err = 1;
1551 }
1552 }
1553 if (loop->header->loop_father != loop)
1554 {
1555 error ("loop %d%'s header does not belong directly to it", i);
1556 err = 1;
1557 }
1558 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1559 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1560 {
1561 error ("loop %d%'s latch is marked as part of irreducible region", i);
1562 err = 1;
1563 }
1564 }
1565
1566 /* Check irreducible loops. */
1567 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1568 {
1569 auto_edge_flag saved_irr_mask (cfun);
1570 /* Record old info. */
1571 auto_sbitmap irreds (last_basic_block_for_fn (cfun));
1572 FOR_EACH_BB_FN (bb, cfun)
1573 {
1574 edge_iterator ei;
1575 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1576 bitmap_set_bit (irreds, bb->index);
1577 else
1578 bitmap_clear_bit (irreds, bb->index);
1579 FOR_EACH_EDGE (e, ei, bb->succs)
1580 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1581 e->flags |= saved_irr_mask;
1582 }
1583
1584 /* Recount it. */
1585 mark_irreducible_loops ();
1586
1587 /* Compare. */
1588 FOR_EACH_BB_FN (bb, cfun)
1589 {
1590 edge_iterator ei;
1591
1592 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1593 && !bitmap_bit_p (irreds, bb->index))
1594 {
1595 error ("basic block %d should be marked irreducible", bb->index);
1596 err = 1;
1597 }
1598 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1599 && bitmap_bit_p (irreds, bb->index))
1600 {
1601 error ("basic block %d should not be marked irreducible", bb->index);
1602 err = 1;
1603 }
1604 FOR_EACH_EDGE (e, ei, bb->succs)
1605 {
1606 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1607 && !(e->flags & saved_irr_mask))
1608 {
1609 error ("edge from %d to %d should be marked irreducible",
1610 e->src->index, e->dest->index);
1611 err = 1;
1612 }
1613 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1614 && (e->flags & saved_irr_mask))
1615 {
1616 error ("edge from %d to %d should not be marked irreducible",
1617 e->src->index, e->dest->index);
1618 err = 1;
1619 }
1620 e->flags &= ~saved_irr_mask;
1621 }
1622 }
1623 }
1624
1625 /* Check the recorded loop exits. */
1626 FOR_EACH_LOOP (loop, 0)
1627 {
1628 if (!loop->exits || loop->exits->e != NULL)
1629 {
1630 error ("corrupted head of the exits list of loop %d",
1631 loop->num);
1632 err = 1;
1633 }
1634 else
1635 {
1636 /* Check that the list forms a cycle, and all elements except
1637 for the head are nonnull. */
1638 for (mexit = loop->exits, exit = mexit->next, i = 0;
1639 exit->e && exit != mexit;
1640 exit = exit->next)
1641 {
1642 if (i++ & 1)
1643 mexit = mexit->next;
1644 }
1645
1646 if (exit != loop->exits)
1647 {
1648 error ("corrupted exits list of loop %d", loop->num);
1649 err = 1;
1650 }
1651 }
1652
1653 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1654 {
1655 if (loop->exits->next != loop->exits)
1656 {
1657 error ("nonempty exits list of loop %d, but exits are not recorded",
1658 loop->num);
1659 err = 1;
1660 }
1661 }
1662 }
1663
1664 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1665 {
1666 unsigned n_exits = 0, eloops;
1667
1668 sizes = XCNEWVEC (unsigned, num);
1669 memset (sizes, 0, sizeof (unsigned) * num);
1670 FOR_EACH_BB_FN (bb, cfun)
1671 {
1672 edge_iterator ei;
1673 if (bb->loop_father == current_loops->tree_root)
1674 continue;
1675 FOR_EACH_EDGE (e, ei, bb->succs)
1676 {
1677 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1678 continue;
1679
1680 n_exits++;
1681 exit = get_exit_descriptions (e);
1682 if (!exit)
1683 {
1684 error ("exit %d->%d not recorded",
1685 e->src->index, e->dest->index);
1686 err = 1;
1687 }
1688 eloops = 0;
1689 for (; exit; exit = exit->next_e)
1690 eloops++;
1691
1692 for (loop = bb->loop_father;
1693 loop != e->dest->loop_father
1694 /* When a loop exit is also an entry edge which
1695 can happen when avoiding CFG manipulations
1696 then the last loop exited is the outer loop
1697 of the loop entered. */
1698 && loop != loop_outer (e->dest->loop_father);
1699 loop = loop_outer (loop))
1700 {
1701 eloops--;
1702 sizes[loop->num]++;
1703 }
1704
1705 if (eloops != 0)
1706 {
1707 error ("wrong list of exited loops for edge %d->%d",
1708 e->src->index, e->dest->index);
1709 err = 1;
1710 }
1711 }
1712 }
1713
1714 if (n_exits != current_loops->exits->elements ())
1715 {
1716 error ("too many loop exits recorded");
1717 err = 1;
1718 }
1719
1720 FOR_EACH_LOOP (loop, 0)
1721 {
1722 eloops = 0;
1723 for (exit = loop->exits->next; exit->e; exit = exit->next)
1724 eloops++;
1725 if (eloops != sizes[loop->num])
1726 {
1727 error ("%d exits recorded for loop %d (having %d exits)",
1728 eloops, loop->num, sizes[loop->num]);
1729 err = 1;
1730 }
1731 }
1732
1733 free (sizes);
1734 }
1735
1736 gcc_assert (!err);
1737
1738 if (!dom_available)
1739 free_dominance_info (CDI_DOMINATORS);
1740 }
1741
1742 #if __GNUC__ >= 10
1743 # pragma GCC diagnostic pop
1744 #endif
1745
1746 /* Returns latch edge of LOOP. */
1747 edge
1748 loop_latch_edge (const class loop *loop)
1749 {
1750 return find_edge (loop->latch, loop->header);
1751 }
1752
1753 /* Returns preheader edge of LOOP. */
1754 edge
1755 loop_preheader_edge (const class loop *loop)
1756 {
1757 edge e;
1758 edge_iterator ei;
1759
1760 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1761 && ! loops_state_satisfies_p (LOOPS_MAY_HAVE_MULTIPLE_LATCHES));
1762
1763 FOR_EACH_EDGE (e, ei, loop->header->preds)
1764 if (e->src != loop->latch)
1765 break;
1766
1767 if (! e)
1768 {
1769 gcc_assert (! loop_outer (loop));
1770 return single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1771 }
1772
1773 return e;
1774 }
1775
1776 /* Returns true if E is an exit of LOOP. */
1777
1778 bool
1779 loop_exit_edge_p (const class loop *loop, const_edge e)
1780 {
1781 return (flow_bb_inside_loop_p (loop, e->src)
1782 && !flow_bb_inside_loop_p (loop, e->dest));
1783 }
1784
1785 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1786 or more than one exit. If loops do not have the exits recorded, NULL
1787 is returned always. */
1788
1789 edge
1790 single_exit (const class loop *loop)
1791 {
1792 struct loop_exit *exit = loop->exits->next;
1793
1794 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1795 return NULL;
1796
1797 if (exit->e && exit->next == loop->exits)
1798 return exit->e;
1799 else
1800 return NULL;
1801 }
1802
1803 /* Returns true when BB has an incoming edge exiting LOOP. */
1804
1805 bool
1806 loop_exits_to_bb_p (class loop *loop, basic_block bb)
1807 {
1808 edge e;
1809 edge_iterator ei;
1810
1811 FOR_EACH_EDGE (e, ei, bb->preds)
1812 if (loop_exit_edge_p (loop, e))
1813 return true;
1814
1815 return false;
1816 }
1817
1818 /* Returns true when BB has an outgoing edge exiting LOOP. */
1819
1820 bool
1821 loop_exits_from_bb_p (class loop *loop, basic_block bb)
1822 {
1823 edge e;
1824 edge_iterator ei;
1825
1826 FOR_EACH_EDGE (e, ei, bb->succs)
1827 if (loop_exit_edge_p (loop, e))
1828 return true;
1829
1830 return false;
1831 }
1832
1833 /* Return location corresponding to the loop control condition if possible. */
1834
1835 dump_user_location_t
1836 get_loop_location (class loop *loop)
1837 {
1838 rtx_insn *insn = NULL;
1839 class niter_desc *desc = NULL;
1840 edge exit;
1841
1842 /* For a for or while loop, we would like to return the location
1843 of the for or while statement, if possible. To do this, look
1844 for the branch guarding the loop back-edge. */
1845
1846 /* If this is a simple loop with an in_edge, then the loop control
1847 branch is typically at the end of its source. */
1848 desc = get_simple_loop_desc (loop);
1849 if (desc->in_edge)
1850 {
1851 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1852 {
1853 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1854 return insn;
1855 }
1856 }
1857 /* If loop has a single exit, then the loop control branch
1858 must be at the end of its source. */
1859 if ((exit = single_exit (loop)))
1860 {
1861 FOR_BB_INSNS_REVERSE (exit->src, insn)
1862 {
1863 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1864 return insn;
1865 }
1866 }
1867 /* Next check the latch, to see if it is non-empty. */
1868 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1869 {
1870 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1871 return insn;
1872 }
1873 /* Finally, if none of the above identifies the loop control branch,
1874 return the first location in the loop header. */
1875 FOR_BB_INSNS (loop->header, insn)
1876 {
1877 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1878 return insn;
1879 }
1880 /* If all else fails, simply return the current function location. */
1881 return dump_user_location_t::from_function_decl (current_function_decl);
1882 }
1883
1884 /* Records that every statement in LOOP is executed I_BOUND times.
1885 REALISTIC is true if I_BOUND is expected to be close to the real number
1886 of iterations. UPPER is true if we are sure the loop iterates at most
1887 I_BOUND times. */
1888
1889 void
1890 record_niter_bound (class loop *loop, const widest_int &i_bound,
1891 bool realistic, bool upper)
1892 {
1893 /* Update the bounds only when there is no previous estimation, or when the
1894 current estimation is smaller. */
1895 if (upper
1896 && (!loop->any_upper_bound
1897 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1898 {
1899 loop->any_upper_bound = true;
1900 loop->nb_iterations_upper_bound = i_bound;
1901 if (!loop->any_likely_upper_bound)
1902 {
1903 loop->any_likely_upper_bound = true;
1904 loop->nb_iterations_likely_upper_bound = i_bound;
1905 }
1906 }
1907 if (realistic
1908 && (!loop->any_estimate
1909 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1910 {
1911 loop->any_estimate = true;
1912 loop->nb_iterations_estimate = i_bound;
1913 }
1914 if (!realistic
1915 && (!loop->any_likely_upper_bound
1916 || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
1917 {
1918 loop->any_likely_upper_bound = true;
1919 loop->nb_iterations_likely_upper_bound = i_bound;
1920 }
1921
1922 /* If an upper bound is smaller than the realistic estimate of the
1923 number of iterations, use the upper bound instead. */
1924 if (loop->any_upper_bound
1925 && loop->any_estimate
1926 && wi::ltu_p (loop->nb_iterations_upper_bound,
1927 loop->nb_iterations_estimate))
1928 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1929 if (loop->any_upper_bound
1930 && loop->any_likely_upper_bound
1931 && wi::ltu_p (loop->nb_iterations_upper_bound,
1932 loop->nb_iterations_likely_upper_bound))
1933 loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
1934 }
1935
1936 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1937 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1938 on the number of iterations of LOOP could not be derived, returns -1. */
1939
1940 HOST_WIDE_INT
1941 get_estimated_loop_iterations_int (class loop *loop)
1942 {
1943 widest_int nit;
1944 HOST_WIDE_INT hwi_nit;
1945
1946 if (!get_estimated_loop_iterations (loop, &nit))
1947 return -1;
1948
1949 if (!wi::fits_shwi_p (nit))
1950 return -1;
1951 hwi_nit = nit.to_shwi ();
1952
1953 return hwi_nit < 0 ? -1 : hwi_nit;
1954 }
1955
1956 /* Returns an upper bound on the number of executions of statements
1957 in the LOOP. For statements before the loop exit, this exceeds
1958 the number of execution of the latch by one. */
1959
1960 HOST_WIDE_INT
1961 max_stmt_executions_int (class loop *loop)
1962 {
1963 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1964 HOST_WIDE_INT snit;
1965
1966 if (nit == -1)
1967 return -1;
1968
1969 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1970
1971 /* If the computation overflows, return -1. */
1972 return snit < 0 ? -1 : snit;
1973 }
1974
1975 /* Returns an likely upper bound on the number of executions of statements
1976 in the LOOP. For statements before the loop exit, this exceeds
1977 the number of execution of the latch by one. */
1978
1979 HOST_WIDE_INT
1980 likely_max_stmt_executions_int (class loop *loop)
1981 {
1982 HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop);
1983 HOST_WIDE_INT snit;
1984
1985 if (nit == -1)
1986 return -1;
1987
1988 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1989
1990 /* If the computation overflows, return -1. */
1991 return snit < 0 ? -1 : snit;
1992 }
1993
1994 /* Sets NIT to the estimated number of executions of the latch of the
1995 LOOP. If we have no reliable estimate, the function returns false, otherwise
1996 returns true. */
1997
1998 bool
1999 get_estimated_loop_iterations (class loop *loop, widest_int *nit)
2000 {
2001 /* Even if the bound is not recorded, possibly we can derrive one from
2002 profile. */
2003 if (!loop->any_estimate)
2004 {
2005 if (loop->header->count.reliable_p ())
2006 {
2007 *nit = gcov_type_to_wide_int
2008 (expected_loop_iterations_unbounded (loop) + 1);
2009 return true;
2010 }
2011 return false;
2012 }
2013
2014 *nit = loop->nb_iterations_estimate;
2015 return true;
2016 }
2017
2018 /* Sets NIT to an upper bound for the maximum number of executions of the
2019 latch of the LOOP. If we have no reliable estimate, the function returns
2020 false, otherwise returns true. */
2021
2022 bool
2023 get_max_loop_iterations (const class loop *loop, widest_int *nit)
2024 {
2025 if (!loop->any_upper_bound)
2026 return false;
2027
2028 *nit = loop->nb_iterations_upper_bound;
2029 return true;
2030 }
2031
2032 /* Similar to get_max_loop_iterations, but returns the estimate only
2033 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
2034 on the number of iterations of LOOP could not be derived, returns -1. */
2035
2036 HOST_WIDE_INT
2037 get_max_loop_iterations_int (const class loop *loop)
2038 {
2039 widest_int nit;
2040 HOST_WIDE_INT hwi_nit;
2041
2042 if (!get_max_loop_iterations (loop, &nit))
2043 return -1;
2044
2045 if (!wi::fits_shwi_p (nit))
2046 return -1;
2047 hwi_nit = nit.to_shwi ();
2048
2049 return hwi_nit < 0 ? -1 : hwi_nit;
2050 }
2051
2052 /* Sets NIT to an upper bound for the maximum number of executions of the
2053 latch of the LOOP. If we have no reliable estimate, the function returns
2054 false, otherwise returns true. */
2055
2056 bool
2057 get_likely_max_loop_iterations (class loop *loop, widest_int *nit)
2058 {
2059 if (!loop->any_likely_upper_bound)
2060 return false;
2061
2062 *nit = loop->nb_iterations_likely_upper_bound;
2063 return true;
2064 }
2065
2066 /* Similar to get_max_loop_iterations, but returns the estimate only
2067 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
2068 on the number of iterations of LOOP could not be derived, returns -1. */
2069
2070 HOST_WIDE_INT
2071 get_likely_max_loop_iterations_int (class loop *loop)
2072 {
2073 widest_int nit;
2074 HOST_WIDE_INT hwi_nit;
2075
2076 if (!get_likely_max_loop_iterations (loop, &nit))
2077 return -1;
2078
2079 if (!wi::fits_shwi_p (nit))
2080 return -1;
2081 hwi_nit = nit.to_shwi ();
2082
2083 return hwi_nit < 0 ? -1 : hwi_nit;
2084 }
2085
2086 /* Returns the loop depth of the loop BB belongs to. */
2087
2088 int
2089 bb_loop_depth (const_basic_block bb)
2090 {
2091 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
2092 }
2093
2094 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
2095
2096 void
2097 mark_loop_for_removal (loop_p loop)
2098 {
2099 if (loop->header == NULL)
2100 return;
2101 loop->former_header = loop->header;
2102 loop->header = NULL;
2103 loop->latch = NULL;
2104 loops_state_set (LOOPS_NEED_FIXUP);
2105 }