Daily bump.
[gcc.git] / gcc / cfgloopmanip.c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34
35 static void copy_loops_to (class loop **, int,
36 class loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (class loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
44
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
48 {
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
50 }
51
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
53
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
56 {
57 int i;
58
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
61 }
62
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
71 {
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
78 }
79
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
89 {
90 edge e;
91 edge_iterator ei;
92 class loop *loop = current_loops->tree_root, *act;
93
94 FOR_EACH_EDGE (e, ei, bb->succs)
95 {
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
98
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
102
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
105 }
106
107 if (loop == bb->loop_father)
108 return false;
109
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
112
113 return true;
114 }
115
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
120
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
123
124 static bool
125 fix_loop_placement (class loop *loop, bool *irred_invalidated)
126 {
127 unsigned i;
128 edge e;
129 auto_vec<edge> exits = get_loop_exit_edges (loop);
130 class loop *father = current_loops->tree_root, *act;
131 bool ret = false;
132
133 FOR_EACH_VEC_ELT (exits, i, e)
134 {
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
138 }
139
140 if (father != loop_outer (loop))
141 {
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
146
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
150 {
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
155 }
156
157 ret = true;
158 }
159
160 return ret;
161 }
162
163 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
164 enforce condition stated in description of fix_bb_placement. We
165 start from basic block FROM that had some of its successors removed, so that
166 his placement no longer has to be correct, and iteratively fix placement of
167 its predecessors that may change if placement of FROM changed. Also fix
168 placement of subloops of FROM->loop_father, that might also be altered due
169 to this change; the condition for them is similar, except that instead of
170 successors we consider edges coming out of the loops.
171
172 If the changes may invalidate the information about irreducible regions,
173 IRRED_INVALIDATED is set to true.
174
175 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
176 changed loop_father are collected there. */
177
178 static void
179 fix_bb_placements (basic_block from,
180 bool *irred_invalidated,
181 bitmap loop_closed_ssa_invalidated)
182 {
183 basic_block *queue, *qtop, *qbeg, *qend;
184 class loop *base_loop, *target_loop;
185 edge e;
186
187 /* We pass through blocks back-reachable from FROM, testing whether some
188 of their successors moved to outer loop. It may be necessary to
189 iterate several times, but it is finite, as we stop unless we move
190 the basic block up the loop structure. The whole story is a bit
191 more complicated due to presence of subloops, those are moved using
192 fix_loop_placement. */
193
194 base_loop = from->loop_father;
195 /* If we are already in the outermost loop, the basic blocks cannot be moved
196 outside of it. If FROM is the header of the base loop, it cannot be moved
197 outside of it, either. In both cases, we can end now. */
198 if (base_loop == current_loops->tree_root
199 || from == base_loop->header)
200 return;
201
202 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
203 bitmap_clear (in_queue);
204 bitmap_set_bit (in_queue, from->index);
205 /* Prevent us from going out of the base_loop. */
206 bitmap_set_bit (in_queue, base_loop->header->index);
207
208 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
209 qtop = queue + base_loop->num_nodes + 1;
210 qbeg = queue;
211 qend = queue + 1;
212 *qbeg = from;
213
214 while (qbeg != qend)
215 {
216 edge_iterator ei;
217 from = *qbeg;
218 qbeg++;
219 if (qbeg == qtop)
220 qbeg = queue;
221 bitmap_clear_bit (in_queue, from->index);
222
223 if (from->loop_father->header == from)
224 {
225 /* Subloop header, maybe move the loop upward. */
226 if (!fix_loop_placement (from->loop_father, irred_invalidated))
227 continue;
228 target_loop = loop_outer (from->loop_father);
229 if (loop_closed_ssa_invalidated)
230 {
231 basic_block *bbs = get_loop_body (from->loop_father);
232 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
233 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
234 free (bbs);
235 }
236 }
237 else
238 {
239 /* Ordinary basic block. */
240 if (!fix_bb_placement (from))
241 continue;
242 target_loop = from->loop_father;
243 if (loop_closed_ssa_invalidated)
244 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
245 }
246
247 FOR_EACH_EDGE (e, ei, from->succs)
248 {
249 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
250 *irred_invalidated = true;
251 }
252
253 /* Something has changed, insert predecessors into queue. */
254 FOR_EACH_EDGE (e, ei, from->preds)
255 {
256 basic_block pred = e->src;
257 class loop *nca;
258
259 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
260 *irred_invalidated = true;
261
262 if (bitmap_bit_p (in_queue, pred->index))
263 continue;
264
265 /* If it is subloop, then it either was not moved, or
266 the path up the loop tree from base_loop do not contain
267 it. */
268 nca = find_common_loop (pred->loop_father, base_loop);
269 if (pred->loop_father != base_loop
270 && (nca == base_loop
271 || nca != pred->loop_father))
272 pred = pred->loop_father->header;
273 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
274 {
275 /* If PRED is already higher in the loop hierarchy than the
276 TARGET_LOOP to that we moved FROM, the change of the position
277 of FROM does not affect the position of PRED, so there is no
278 point in processing it. */
279 continue;
280 }
281
282 if (bitmap_bit_p (in_queue, pred->index))
283 continue;
284
285 /* Schedule the basic block. */
286 *qend = pred;
287 qend++;
288 if (qend == qtop)
289 qend = queue;
290 bitmap_set_bit (in_queue, pred->index);
291 }
292 }
293 free (queue);
294 }
295
296 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
297 and update loop structures and dominators. Return true if we were able
298 to remove the path, false otherwise (and nothing is affected then). */
299 bool
300 remove_path (edge e, bool *irred_invalidated,
301 bitmap loop_closed_ssa_invalidated)
302 {
303 edge ae;
304 basic_block *rem_bbs, *bord_bbs, from, bb;
305 vec<basic_block> dom_bbs;
306 int i, nrem, n_bord_bbs;
307 bool local_irred_invalidated = false;
308 edge_iterator ei;
309 class loop *l, *f;
310
311 if (! irred_invalidated)
312 irred_invalidated = &local_irred_invalidated;
313
314 if (!can_remove_branch_p (e))
315 return false;
316
317 /* Keep track of whether we need to update information about irreducible
318 regions. This is the case if the removed area is a part of the
319 irreducible region, or if the set of basic blocks that belong to a loop
320 that is inside an irreducible region is changed, or if such a loop is
321 removed. */
322 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
323 *irred_invalidated = true;
324
325 /* We need to check whether basic blocks are dominated by the edge
326 e, but we only have basic block dominators. This is easy to
327 fix -- when e->dest has exactly one predecessor, this corresponds
328 to blocks dominated by e->dest, if not, split the edge. */
329 if (!single_pred_p (e->dest))
330 e = single_pred_edge (split_edge (e));
331
332 /* It may happen that by removing path we remove one or more loops
333 we belong to. In this case first unloop the loops, then proceed
334 normally. We may assume that e->dest is not a header of any loop,
335 as it now has exactly one predecessor. */
336 for (l = e->src->loop_father; loop_outer (l); l = f)
337 {
338 f = loop_outer (l);
339 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
340 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
341 }
342
343 /* Identify the path. */
344 nrem = find_path (e, &rem_bbs);
345
346 n_bord_bbs = 0;
347 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
348 auto_sbitmap seen (last_basic_block_for_fn (cfun));
349 bitmap_clear (seen);
350
351 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
352 for (i = 0; i < nrem; i++)
353 bitmap_set_bit (seen, rem_bbs[i]->index);
354 if (!*irred_invalidated)
355 FOR_EACH_EDGE (ae, ei, e->src->succs)
356 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
357 && !bitmap_bit_p (seen, ae->dest->index)
358 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
359 {
360 *irred_invalidated = true;
361 break;
362 }
363
364 for (i = 0; i < nrem; i++)
365 {
366 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
367 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
368 && !bitmap_bit_p (seen, ae->dest->index))
369 {
370 bitmap_set_bit (seen, ae->dest->index);
371 bord_bbs[n_bord_bbs++] = ae->dest;
372
373 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
374 *irred_invalidated = true;
375 }
376 }
377
378 /* Remove the path. */
379 from = e->src;
380 remove_branch (e);
381 dom_bbs.create (0);
382
383 /* Cancel loops contained in the path. */
384 for (i = 0; i < nrem; i++)
385 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
386 cancel_loop_tree (rem_bbs[i]->loop_father);
387
388 remove_bbs (rem_bbs, nrem);
389 free (rem_bbs);
390
391 /* Find blocks whose dominators may be affected. */
392 bitmap_clear (seen);
393 for (i = 0; i < n_bord_bbs; i++)
394 {
395 basic_block ldom;
396
397 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
398 if (bitmap_bit_p (seen, bb->index))
399 continue;
400 bitmap_set_bit (seen, bb->index);
401
402 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
403 ldom;
404 ldom = next_dom_son (CDI_DOMINATORS, ldom))
405 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
406 dom_bbs.safe_push (ldom);
407 }
408
409 /* Recount dominators. */
410 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
411 dom_bbs.release ();
412 free (bord_bbs);
413
414 /* Fix placements of basic blocks inside loops and the placement of
415 loops in the loop tree. */
416 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
417 fix_loop_placements (from->loop_father, irred_invalidated);
418
419 if (local_irred_invalidated
420 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
421 mark_irreducible_loops ();
422
423 return true;
424 }
425
426 /* Creates place for a new LOOP in loops structure of FN. */
427
428 void
429 place_new_loop (struct function *fn, class loop *loop)
430 {
431 loop->num = number_of_loops (fn);
432 vec_safe_push (loops_for_fn (fn)->larray, loop);
433 }
434
435 /* Given LOOP structure with filled header and latch, find the body of the
436 corresponding loop and add it to loops tree. Insert the LOOP as a son of
437 outer. */
438
439 void
440 add_loop (class loop *loop, class loop *outer)
441 {
442 basic_block *bbs;
443 int i, n;
444 class loop *subloop;
445 edge e;
446 edge_iterator ei;
447
448 /* Add it to loop structure. */
449 place_new_loop (cfun, loop);
450 flow_loop_tree_node_add (outer, loop);
451
452 /* Find its nodes. */
453 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
454 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
455
456 for (i = 0; i < n; i++)
457 {
458 if (bbs[i]->loop_father == outer)
459 {
460 remove_bb_from_loops (bbs[i]);
461 add_bb_to_loop (bbs[i], loop);
462 continue;
463 }
464
465 loop->num_nodes++;
466
467 /* If we find a direct subloop of OUTER, move it to LOOP. */
468 subloop = bbs[i]->loop_father;
469 if (loop_outer (subloop) == outer
470 && subloop->header == bbs[i])
471 {
472 flow_loop_tree_node_remove (subloop);
473 flow_loop_tree_node_add (loop, subloop);
474 }
475 }
476
477 /* Update the information about loop exit edges. */
478 for (i = 0; i < n; i++)
479 {
480 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
481 {
482 rescan_loop_exit (e, false, false);
483 }
484 }
485
486 free (bbs);
487 }
488
489 /* Scale profile of loop by P. */
490
491 void
492 scale_loop_frequencies (class loop *loop, profile_probability p)
493 {
494 basic_block *bbs;
495
496 bbs = get_loop_body (loop);
497 scale_bbs_frequencies (bbs, loop->num_nodes, p);
498 free (bbs);
499 }
500
501 /* Scale profile in LOOP by P.
502 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
503 to iterate too many times.
504 Before caling this function, preheader block profile should be already
505 scaled to final count. This is necessary because loop iterations are
506 determined by comparing header edge count to latch ege count and thus
507 they need to be scaled synchronously. */
508
509 void
510 scale_loop_profile (class loop *loop, profile_probability p,
511 gcov_type iteration_bound)
512 {
513 edge e, preheader_e;
514 edge_iterator ei;
515
516 if (dump_file && (dump_flags & TDF_DETAILS))
517 {
518 fprintf (dump_file, ";; Scaling loop %i with scale ",
519 loop->num);
520 p.dump (dump_file);
521 fprintf (dump_file, " bounding iterations to %i\n",
522 (int)iteration_bound);
523 }
524
525 /* Scale the probabilities. */
526 scale_loop_frequencies (loop, p);
527
528 if (iteration_bound == 0)
529 return;
530
531 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
532
533 if (dump_file && (dump_flags & TDF_DETAILS))
534 {
535 fprintf (dump_file, ";; guessed iterations after scaling %i\n",
536 (int)iterations);
537 }
538
539 /* See if loop is predicted to iterate too many times. */
540 if (iterations <= iteration_bound)
541 return;
542
543 preheader_e = loop_preheader_edge (loop);
544
545 /* We could handle also loops without preheaders, but bounding is
546 currently used only by optimizers that have preheaders constructed. */
547 gcc_checking_assert (preheader_e);
548 profile_count count_in = preheader_e->count ();
549
550 if (count_in > profile_count::zero ()
551 && loop->header->count.initialized_p ())
552 {
553 profile_count count_delta = profile_count::zero ();
554
555 e = single_exit (loop);
556 if (e)
557 {
558 edge other_e;
559 FOR_EACH_EDGE (other_e, ei, e->src->succs)
560 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
561 && e != other_e)
562 break;
563
564 /* Probability of exit must be 1/iterations. */
565 count_delta = e->count ();
566 e->probability = profile_probability::always ()
567 .apply_scale (1, iteration_bound);
568 other_e->probability = e->probability.invert ();
569
570 /* In code below we only handle the following two updates. */
571 if (other_e->dest != loop->header
572 && other_e->dest != loop->latch
573 && (dump_file && (dump_flags & TDF_DETAILS)))
574 {
575 fprintf (dump_file, ";; giving up on update of paths from "
576 "exit condition to latch\n");
577 }
578 }
579 else
580 if (dump_file && (dump_flags & TDF_DETAILS))
581 fprintf (dump_file, ";; Loop has multiple exit edges; "
582 "giving up on exit condition update\n");
583
584 /* Roughly speaking we want to reduce the loop body profile by the
585 difference of loop iterations. We however can do better if
586 we look at the actual profile, if it is available. */
587 p = profile_probability::always ();
588
589 count_in = count_in.apply_scale (iteration_bound, 1);
590 p = count_in.probability_in (loop->header->count);
591 if (!(p > profile_probability::never ()))
592 p = profile_probability::very_unlikely ();
593
594 if (p == profile_probability::always ()
595 || !p.initialized_p ())
596 return;
597
598 /* If latch exists, change its count, since we changed
599 probability of exit. Theoretically we should update everything from
600 source of exit edge to latch, but for vectorizer this is enough. */
601 if (loop->latch && loop->latch != e->src)
602 loop->latch->count += count_delta;
603
604 /* Scale the probabilities. */
605 scale_loop_frequencies (loop, p);
606
607 /* Change latch's count back. */
608 if (loop->latch && loop->latch != e->src)
609 loop->latch->count -= count_delta;
610
611 if (dump_file && (dump_flags & TDF_DETAILS))
612 fprintf (dump_file, ";; guessed iterations are now %i\n",
613 (int)expected_loop_iterations_unbounded (loop, NULL, true));
614 }
615 }
616
617 /* Recompute dominance information for basic blocks outside LOOP. */
618
619 static void
620 update_dominators_in_loop (class loop *loop)
621 {
622 vec<basic_block> dom_bbs = vNULL;
623 basic_block *body;
624 unsigned i;
625
626 auto_sbitmap seen (last_basic_block_for_fn (cfun));
627 bitmap_clear (seen);
628 body = get_loop_body (loop);
629
630 for (i = 0; i < loop->num_nodes; i++)
631 bitmap_set_bit (seen, body[i]->index);
632
633 for (i = 0; i < loop->num_nodes; i++)
634 {
635 basic_block ldom;
636
637 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
638 ldom;
639 ldom = next_dom_son (CDI_DOMINATORS, ldom))
640 if (!bitmap_bit_p (seen, ldom->index))
641 {
642 bitmap_set_bit (seen, ldom->index);
643 dom_bbs.safe_push (ldom);
644 }
645 }
646
647 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
648 free (body);
649 dom_bbs.release ();
650 }
651
652 /* Creates an if region as shown above. CONDITION is used to create
653 the test for the if.
654
655 |
656 | ------------- -------------
657 | | pred_bb | | pred_bb |
658 | ------------- -------------
659 | | |
660 | | | ENTRY_EDGE
661 | | ENTRY_EDGE V
662 | | ====> -------------
663 | | | cond_bb |
664 | | | CONDITION |
665 | | -------------
666 | V / \
667 | ------------- e_false / \ e_true
668 | | succ_bb | V V
669 | ------------- ----------- -----------
670 | | false_bb | | true_bb |
671 | ----------- -----------
672 | \ /
673 | \ /
674 | V V
675 | -------------
676 | | join_bb |
677 | -------------
678 | | exit_edge (result)
679 | V
680 | -----------
681 | | succ_bb |
682 | -----------
683 |
684 */
685
686 edge
687 create_empty_if_region_on_edge (edge entry_edge, tree condition)
688 {
689
690 basic_block cond_bb, true_bb, false_bb, join_bb;
691 edge e_true, e_false, exit_edge;
692 gcond *cond_stmt;
693 tree simple_cond;
694 gimple_stmt_iterator gsi;
695
696 cond_bb = split_edge (entry_edge);
697
698 /* Insert condition in cond_bb. */
699 gsi = gsi_last_bb (cond_bb);
700 simple_cond =
701 force_gimple_operand_gsi (&gsi, condition, true, NULL,
702 false, GSI_NEW_STMT);
703 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
704 gsi = gsi_last_bb (cond_bb);
705 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
706
707 join_bb = split_edge (single_succ_edge (cond_bb));
708
709 e_true = single_succ_edge (cond_bb);
710 true_bb = split_edge (e_true);
711
712 e_false = make_edge (cond_bb, join_bb, 0);
713 false_bb = split_edge (e_false);
714
715 e_true->flags &= ~EDGE_FALLTHRU;
716 e_true->flags |= EDGE_TRUE_VALUE;
717 e_false->flags &= ~EDGE_FALLTHRU;
718 e_false->flags |= EDGE_FALSE_VALUE;
719
720 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
721 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
722 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
723 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
724
725 exit_edge = single_succ_edge (join_bb);
726
727 if (single_pred_p (exit_edge->dest))
728 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
729
730 return exit_edge;
731 }
732
733 /* create_empty_loop_on_edge
734 |
735 | - pred_bb - ------ pred_bb ------
736 | | | | iv0 = initial_value |
737 | -----|----- ---------|-----------
738 | | ______ | entry_edge
739 | | entry_edge / | |
740 | | ====> | -V---V- loop_header -------------
741 | V | | iv_before = phi (iv0, iv_after) |
742 | - succ_bb - | ---|-----------------------------
743 | | | | |
744 | ----------- | ---V--- loop_body ---------------
745 | | | iv_after = iv_before + stride |
746 | | | if (iv_before < upper_bound) |
747 | | ---|--------------\--------------
748 | | | \ exit_e
749 | | V \
750 | | - loop_latch - V- succ_bb -
751 | | | | | |
752 | | /------------- -----------
753 | \ ___ /
754
755 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
756 that is used before the increment of IV. IV_BEFORE should be used for
757 adding code to the body that uses the IV. OUTER is the outer loop in
758 which the new loop should be inserted.
759
760 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
761 inserted on the loop entry edge. This implies that this function
762 should be used only when the UPPER_BOUND expression is a loop
763 invariant. */
764
765 class loop *
766 create_empty_loop_on_edge (edge entry_edge,
767 tree initial_value,
768 tree stride, tree upper_bound,
769 tree iv,
770 tree *iv_before,
771 tree *iv_after,
772 class loop *outer)
773 {
774 basic_block loop_header, loop_latch, succ_bb, pred_bb;
775 class loop *loop;
776 gimple_stmt_iterator gsi;
777 gimple_seq stmts;
778 gcond *cond_expr;
779 tree exit_test;
780 edge exit_e;
781
782 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
783
784 /* Create header, latch and wire up the loop. */
785 pred_bb = entry_edge->src;
786 loop_header = split_edge (entry_edge);
787 loop_latch = split_edge (single_succ_edge (loop_header));
788 succ_bb = single_succ (loop_latch);
789 make_edge (loop_header, succ_bb, 0);
790 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
791
792 /* Set immediate dominator information. */
793 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
794 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
795 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
796
797 /* Initialize a loop structure and put it in a loop hierarchy. */
798 loop = alloc_loop ();
799 loop->header = loop_header;
800 loop->latch = loop_latch;
801 add_loop (loop, outer);
802
803 /* TODO: Fix counts. */
804 scale_loop_frequencies (loop, profile_probability::even ());
805
806 /* Update dominators. */
807 update_dominators_in_loop (loop);
808
809 /* Modify edge flags. */
810 exit_e = single_exit (loop);
811 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
812 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
813
814 /* Construct IV code in loop. */
815 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
816 if (stmts)
817 {
818 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
819 gsi_commit_edge_inserts ();
820 }
821
822 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
823 if (stmts)
824 {
825 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
826 gsi_commit_edge_inserts ();
827 }
828
829 gsi = gsi_last_bb (loop_header);
830 create_iv (initial_value, stride, iv, loop, &gsi, false,
831 iv_before, iv_after);
832
833 /* Insert loop exit condition. */
834 cond_expr = gimple_build_cond
835 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
836
837 exit_test = gimple_cond_lhs (cond_expr);
838 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
839 false, GSI_NEW_STMT);
840 gimple_cond_set_lhs (cond_expr, exit_test);
841 gsi = gsi_last_bb (exit_e->src);
842 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
843
844 split_block_after_labels (loop_header);
845
846 return loop;
847 }
848
849 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
850 latch to header and update loop tree and dominators
851 accordingly. Everything between them plus LATCH_EDGE destination must
852 be dominated by HEADER_EDGE destination, and back-reachable from
853 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
854 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
855 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
856 Returns the newly created loop. Frequencies and counts in the new loop
857 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
858
859 class loop *
860 loopify (edge latch_edge, edge header_edge,
861 basic_block switch_bb, edge true_edge, edge false_edge,
862 bool redirect_all_edges, profile_probability true_scale,
863 profile_probability false_scale)
864 {
865 basic_block succ_bb = latch_edge->dest;
866 basic_block pred_bb = header_edge->src;
867 class loop *loop = alloc_loop ();
868 class loop *outer = loop_outer (succ_bb->loop_father);
869 profile_count cnt;
870
871 loop->header = header_edge->dest;
872 loop->latch = latch_edge->src;
873
874 cnt = header_edge->count ();
875
876 /* Redirect edges. */
877 loop_redirect_edge (latch_edge, loop->header);
878 loop_redirect_edge (true_edge, succ_bb);
879
880 /* During loop versioning, one of the switch_bb edge is already properly
881 set. Do not redirect it again unless redirect_all_edges is true. */
882 if (redirect_all_edges)
883 {
884 loop_redirect_edge (header_edge, switch_bb);
885 loop_redirect_edge (false_edge, loop->header);
886
887 /* Update dominators. */
888 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
889 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
890 }
891
892 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
893
894 /* Compute new loop. */
895 add_loop (loop, outer);
896
897 /* Add switch_bb to appropriate loop. */
898 if (switch_bb->loop_father)
899 remove_bb_from_loops (switch_bb);
900 add_bb_to_loop (switch_bb, outer);
901
902 /* Fix counts. */
903 if (redirect_all_edges)
904 {
905 switch_bb->count = cnt;
906 }
907 scale_loop_frequencies (loop, false_scale);
908 scale_loop_frequencies (succ_bb->loop_father, true_scale);
909 update_dominators_in_loop (loop);
910
911 return loop;
912 }
913
914 /* Remove the latch edge of a LOOP and update loops to indicate that
915 the LOOP was removed. After this function, original loop latch will
916 have no successor, which caller is expected to fix somehow.
917
918 If this may cause the information about irreducible regions to become
919 invalid, IRRED_INVALIDATED is set to true.
920
921 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
922 basic blocks that had non-trivial update on their loop_father.*/
923
924 void
925 unloop (class loop *loop, bool *irred_invalidated,
926 bitmap loop_closed_ssa_invalidated)
927 {
928 basic_block *body;
929 class loop *ploop;
930 unsigned i, n;
931 basic_block latch = loop->latch;
932 bool dummy = false;
933
934 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
935 *irred_invalidated = true;
936
937 /* This is relatively straightforward. The dominators are unchanged, as
938 loop header dominates loop latch, so the only thing we have to care of
939 is the placement of loops and basic blocks inside the loop tree. We
940 move them all to the loop->outer, and then let fix_bb_placements do
941 its work. */
942
943 body = get_loop_body (loop);
944 n = loop->num_nodes;
945 for (i = 0; i < n; i++)
946 if (body[i]->loop_father == loop)
947 {
948 remove_bb_from_loops (body[i]);
949 add_bb_to_loop (body[i], loop_outer (loop));
950 }
951 free (body);
952
953 while (loop->inner)
954 {
955 ploop = loop->inner;
956 flow_loop_tree_node_remove (ploop);
957 flow_loop_tree_node_add (loop_outer (loop), ploop);
958 }
959
960 /* Remove the loop and free its data. */
961 delete_loop (loop);
962
963 remove_edge (single_succ_edge (latch));
964
965 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
966 there is an irreducible region inside the cancelled loop, the flags will
967 be still correct. */
968 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
969 }
970
971 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
972 condition stated in description of fix_loop_placement holds for them.
973 It is used in case when we removed some edges coming out of LOOP, which
974 may cause the right placement of LOOP inside loop tree to change.
975
976 IRRED_INVALIDATED is set to true if a change in the loop structures might
977 invalidate the information about irreducible regions. */
978
979 static void
980 fix_loop_placements (class loop *loop, bool *irred_invalidated)
981 {
982 class loop *outer;
983
984 while (loop_outer (loop))
985 {
986 outer = loop_outer (loop);
987 if (!fix_loop_placement (loop, irred_invalidated))
988 break;
989
990 /* Changing the placement of a loop in the loop tree may alter the
991 validity of condition 2) of the description of fix_bb_placement
992 for its preheader, because the successor is the header and belongs
993 to the loop. So call fix_bb_placements to fix up the placement
994 of the preheader and (possibly) of its predecessors. */
995 fix_bb_placements (loop_preheader_edge (loop)->src,
996 irred_invalidated, NULL);
997 loop = outer;
998 }
999 }
1000
1001 /* Duplicate loop bounds and other information we store about
1002 the loop into its duplicate. */
1003
1004 void
1005 copy_loop_info (class loop *loop, class loop *target)
1006 {
1007 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1008 target->any_upper_bound = loop->any_upper_bound;
1009 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1010 target->any_likely_upper_bound = loop->any_likely_upper_bound;
1011 target->nb_iterations_likely_upper_bound
1012 = loop->nb_iterations_likely_upper_bound;
1013 target->any_estimate = loop->any_estimate;
1014 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1015 target->estimate_state = loop->estimate_state;
1016 target->safelen = loop->safelen;
1017 target->simdlen = loop->simdlen;
1018 target->constraints = loop->constraints;
1019 target->can_be_parallel = loop->can_be_parallel;
1020 target->warned_aggressive_loop_optimizations
1021 |= loop->warned_aggressive_loop_optimizations;
1022 target->dont_vectorize = loop->dont_vectorize;
1023 target->force_vectorize = loop->force_vectorize;
1024 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1025 target->finite_p = loop->finite_p;
1026 target->unroll = loop->unroll;
1027 target->owned_clique = loop->owned_clique;
1028 }
1029
1030 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1031 created loop into loops structure. If AFTER is non-null
1032 the new loop is added at AFTER->next, otherwise in front of TARGETs
1033 sibling list. */
1034 class loop *
1035 duplicate_loop (class loop *loop, class loop *target, class loop *after)
1036 {
1037 class loop *cloop;
1038 cloop = alloc_loop ();
1039 place_new_loop (cfun, cloop);
1040
1041 copy_loop_info (loop, cloop);
1042
1043 /* Mark the new loop as copy of LOOP. */
1044 set_loop_copy (loop, cloop);
1045
1046 /* Add it to target. */
1047 flow_loop_tree_node_add (target, cloop, after);
1048
1049 return cloop;
1050 }
1051
1052 /* Copies structure of subloops of LOOP into TARGET loop, placing
1053 newly created loops into loop tree at the end of TARGETs sibling
1054 list in the original order. */
1055 void
1056 duplicate_subloops (class loop *loop, class loop *target)
1057 {
1058 class loop *aloop, *cloop, *tail;
1059
1060 for (tail = target->inner; tail && tail->next; tail = tail->next)
1061 ;
1062 for (aloop = loop->inner; aloop; aloop = aloop->next)
1063 {
1064 cloop = duplicate_loop (aloop, target, tail);
1065 tail = cloop;
1066 gcc_assert(!tail->next);
1067 duplicate_subloops (aloop, cloop);
1068 }
1069 }
1070
1071 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1072 into TARGET loop, placing newly created loops into loop tree adding
1073 them to TARGETs sibling list at the end in order. */
1074 static void
1075 copy_loops_to (class loop **copied_loops, int n, class loop *target)
1076 {
1077 class loop *aloop, *tail;
1078 int i;
1079
1080 for (tail = target->inner; tail && tail->next; tail = tail->next)
1081 ;
1082 for (i = 0; i < n; i++)
1083 {
1084 aloop = duplicate_loop (copied_loops[i], target, tail);
1085 tail = aloop;
1086 gcc_assert(!tail->next);
1087 duplicate_subloops (copied_loops[i], aloop);
1088 }
1089 }
1090
1091 /* Redirects edge E to basic block DEST. */
1092 static void
1093 loop_redirect_edge (edge e, basic_block dest)
1094 {
1095 if (e->dest == dest)
1096 return;
1097
1098 redirect_edge_and_branch_force (e, dest);
1099 }
1100
1101 /* Check whether LOOP's body can be duplicated. */
1102 bool
1103 can_duplicate_loop_p (const class loop *loop)
1104 {
1105 int ret;
1106 basic_block *bbs = get_loop_body (loop);
1107
1108 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1109 free (bbs);
1110
1111 return ret;
1112 }
1113
1114 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1115 loop structure and dominators (order of inner subloops is retained).
1116 E's destination must be LOOP header for this to work, i.e. it must be entry
1117 or latch edge of this loop; these are unique, as the loops must have
1118 preheaders for this function to work correctly (in case E is latch, the
1119 function unrolls the loop, if E is entry edge, it peels the loop). Store
1120 edges created by copying ORIG edge from copies corresponding to set bits in
1121 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1122 are numbered in order given by control flow through them) into TO_REMOVE
1123 array. Returns false if duplication is
1124 impossible. */
1125
1126 bool
1127 duplicate_loop_to_header_edge (class loop *loop, edge e,
1128 unsigned int ndupl, sbitmap wont_exit,
1129 edge orig, vec<edge> *to_remove,
1130 int flags)
1131 {
1132 class loop *target, *aloop;
1133 class loop **orig_loops;
1134 unsigned n_orig_loops;
1135 basic_block header = loop->header, latch = loop->latch;
1136 basic_block *new_bbs, *bbs, *first_active;
1137 basic_block new_bb, bb, first_active_latch = NULL;
1138 edge ae, latch_edge;
1139 edge spec_edges[2], new_spec_edges[2];
1140 const int SE_LATCH = 0;
1141 const int SE_ORIG = 1;
1142 unsigned i, j, n;
1143 int is_latch = (latch == e->src);
1144 profile_probability *scale_step = NULL;
1145 profile_probability scale_main = profile_probability::always ();
1146 profile_probability scale_act = profile_probability::always ();
1147 profile_count after_exit_num = profile_count::zero (),
1148 after_exit_den = profile_count::zero ();
1149 bool scale_after_exit = false;
1150 int add_irreducible_flag;
1151 basic_block place_after;
1152 bitmap bbs_to_scale = NULL;
1153 bitmap_iterator bi;
1154
1155 gcc_assert (e->dest == loop->header);
1156 gcc_assert (ndupl > 0);
1157
1158 if (orig)
1159 {
1160 /* Orig must be edge out of the loop. */
1161 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1162 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1163 }
1164
1165 n = loop->num_nodes;
1166 bbs = get_loop_body_in_dom_order (loop);
1167 gcc_assert (bbs[0] == loop->header);
1168 gcc_assert (bbs[n - 1] == loop->latch);
1169
1170 /* Check whether duplication is possible. */
1171 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1172 {
1173 free (bbs);
1174 return false;
1175 }
1176 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1177
1178 /* In case we are doing loop peeling and the loop is in the middle of
1179 irreducible region, the peeled copies will be inside it too. */
1180 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1181 gcc_assert (!is_latch || !add_irreducible_flag);
1182
1183 /* Find edge from latch. */
1184 latch_edge = loop_latch_edge (loop);
1185
1186 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1187 {
1188 /* Calculate coefficients by that we have to scale counts
1189 of duplicated loop bodies. */
1190 profile_count count_in = header->count;
1191 profile_count count_le = latch_edge->count ();
1192 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1193 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1194 profile_probability prob_pass_wont_exit =
1195 (count_le + count_out_orig).probability_in (count_in);
1196
1197 if (orig && orig->probability.initialized_p ()
1198 && !(orig->probability == profile_probability::always ()))
1199 {
1200 /* The blocks that are dominated by a removed exit edge ORIG have
1201 frequencies scaled by this. */
1202 if (orig->count ().initialized_p ())
1203 {
1204 after_exit_num = orig->src->count;
1205 after_exit_den = after_exit_num - orig->count ();
1206 scale_after_exit = true;
1207 }
1208 bbs_to_scale = BITMAP_ALLOC (NULL);
1209 for (i = 0; i < n; i++)
1210 {
1211 if (bbs[i] != orig->src
1212 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1213 bitmap_set_bit (bbs_to_scale, i);
1214 }
1215 }
1216
1217 scale_step = XNEWVEC (profile_probability, ndupl);
1218
1219 for (i = 1; i <= ndupl; i++)
1220 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1221 ? prob_pass_wont_exit
1222 : prob_pass_thru;
1223
1224 /* Complete peeling is special as the probability of exit in last
1225 copy becomes 1. */
1226 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1227 {
1228 profile_count wanted_count = e->count ();
1229
1230 gcc_assert (!is_latch);
1231 /* First copy has count of incoming edge. Each subsequent
1232 count should be reduced by prob_pass_wont_exit. Caller
1233 should've managed the flags so all except for original loop
1234 has won't exist set. */
1235 scale_act = wanted_count.probability_in (count_in);
1236 /* Now simulate the duplication adjustments and compute header
1237 frequency of the last copy. */
1238 for (i = 0; i < ndupl; i++)
1239 wanted_count = wanted_count.apply_probability (scale_step [i]);
1240 scale_main = wanted_count.probability_in (count_in);
1241 }
1242 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1243 First iteration will be original loop followed by duplicated bodies.
1244 It is necessary to scale down the original so we get right overall
1245 number of iterations. */
1246 else if (is_latch)
1247 {
1248 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1249 ? prob_pass_wont_exit
1250 : prob_pass_thru;
1251 profile_probability p = prob_pass_main;
1252 profile_count scale_main_den = count_in;
1253 for (i = 0; i < ndupl; i++)
1254 {
1255 scale_main_den += count_in.apply_probability (p);
1256 p = p * scale_step[i];
1257 }
1258 /* If original loop is executed COUNT_IN times, the unrolled
1259 loop will account SCALE_MAIN_DEN times. */
1260 scale_main = count_in.probability_in (scale_main_den);
1261 scale_act = scale_main * prob_pass_main;
1262 }
1263 else
1264 {
1265 profile_count preheader_count = e->count ();
1266 for (i = 0; i < ndupl; i++)
1267 scale_main = scale_main * scale_step[i];
1268 scale_act = preheader_count.probability_in (count_in);
1269 }
1270 }
1271
1272 /* Loop the new bbs will belong to. */
1273 target = e->src->loop_father;
1274
1275 /* Original loops. */
1276 n_orig_loops = 0;
1277 for (aloop = loop->inner; aloop; aloop = aloop->next)
1278 n_orig_loops++;
1279 orig_loops = XNEWVEC (class loop *, n_orig_loops);
1280 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1281 orig_loops[i] = aloop;
1282
1283 set_loop_copy (loop, target);
1284
1285 first_active = XNEWVEC (basic_block, n);
1286 if (is_latch)
1287 {
1288 memcpy (first_active, bbs, n * sizeof (basic_block));
1289 first_active_latch = latch;
1290 }
1291
1292 spec_edges[SE_ORIG] = orig;
1293 spec_edges[SE_LATCH] = latch_edge;
1294
1295 place_after = e->src;
1296 for (j = 0; j < ndupl; j++)
1297 {
1298 /* Copy loops. */
1299 copy_loops_to (orig_loops, n_orig_loops, target);
1300
1301 /* Copy bbs. */
1302 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1303 place_after, true);
1304 place_after = new_spec_edges[SE_LATCH]->src;
1305
1306 if (flags & DLTHE_RECORD_COPY_NUMBER)
1307 for (i = 0; i < n; i++)
1308 {
1309 gcc_assert (!new_bbs[i]->aux);
1310 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1311 }
1312
1313 /* Note whether the blocks and edges belong to an irreducible loop. */
1314 if (add_irreducible_flag)
1315 {
1316 for (i = 0; i < n; i++)
1317 new_bbs[i]->flags |= BB_DUPLICATED;
1318 for (i = 0; i < n; i++)
1319 {
1320 edge_iterator ei;
1321 new_bb = new_bbs[i];
1322 if (new_bb->loop_father == target)
1323 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1324
1325 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1326 if ((ae->dest->flags & BB_DUPLICATED)
1327 && (ae->src->loop_father == target
1328 || ae->dest->loop_father == target))
1329 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1330 }
1331 for (i = 0; i < n; i++)
1332 new_bbs[i]->flags &= ~BB_DUPLICATED;
1333 }
1334
1335 /* Redirect the special edges. */
1336 if (is_latch)
1337 {
1338 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1339 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1340 loop->header);
1341 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1342 latch = loop->latch = new_bbs[n - 1];
1343 e = latch_edge = new_spec_edges[SE_LATCH];
1344 }
1345 else
1346 {
1347 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1348 loop->header);
1349 redirect_edge_and_branch_force (e, new_bbs[0]);
1350 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1351 e = new_spec_edges[SE_LATCH];
1352 }
1353
1354 /* Record exit edge in this copy. */
1355 if (orig && bitmap_bit_p (wont_exit, j + 1))
1356 {
1357 if (to_remove)
1358 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1359 force_edge_cold (new_spec_edges[SE_ORIG], true);
1360
1361 /* Scale the frequencies of the blocks dominated by the exit. */
1362 if (bbs_to_scale && scale_after_exit)
1363 {
1364 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1365 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1366 after_exit_den);
1367 }
1368 }
1369
1370 /* Record the first copy in the control flow order if it is not
1371 the original loop (i.e. in case of peeling). */
1372 if (!first_active_latch)
1373 {
1374 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1375 first_active_latch = new_bbs[n - 1];
1376 }
1377
1378 /* Set counts and frequencies. */
1379 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1380 {
1381 scale_bbs_frequencies (new_bbs, n, scale_act);
1382 scale_act = scale_act * scale_step[j];
1383 }
1384 }
1385 free (new_bbs);
1386 free (orig_loops);
1387
1388 /* Record the exit edge in the original loop body, and update the frequencies. */
1389 if (orig && bitmap_bit_p (wont_exit, 0))
1390 {
1391 if (to_remove)
1392 to_remove->safe_push (orig);
1393 force_edge_cold (orig, true);
1394
1395 /* Scale the frequencies of the blocks dominated by the exit. */
1396 if (bbs_to_scale && scale_after_exit)
1397 {
1398 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1399 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1400 after_exit_den);
1401 }
1402 }
1403
1404 /* Update the original loop. */
1405 if (!is_latch)
1406 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1407 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1408 {
1409 scale_bbs_frequencies (bbs, n, scale_main);
1410 free (scale_step);
1411 }
1412
1413 /* Update dominators of outer blocks if affected. */
1414 for (i = 0; i < n; i++)
1415 {
1416 basic_block dominated, dom_bb;
1417 vec<basic_block> dom_bbs;
1418 unsigned j;
1419
1420 bb = bbs[i];
1421 bb->aux = 0;
1422
1423 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1424 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1425 {
1426 if (flow_bb_inside_loop_p (loop, dominated))
1427 continue;
1428 dom_bb = nearest_common_dominator (
1429 CDI_DOMINATORS, first_active[i], first_active_latch);
1430 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1431 }
1432 dom_bbs.release ();
1433 }
1434 free (first_active);
1435
1436 free (bbs);
1437 BITMAP_FREE (bbs_to_scale);
1438
1439 return true;
1440 }
1441
1442 /* A callback for make_forwarder block, to redirect all edges except for
1443 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1444 whether to redirect it. */
1445
1446 edge mfb_kj_edge;
1447 bool
1448 mfb_keep_just (edge e)
1449 {
1450 return e != mfb_kj_edge;
1451 }
1452
1453 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1454
1455 static bool
1456 has_preds_from_loop (basic_block block, class loop *loop)
1457 {
1458 edge e;
1459 edge_iterator ei;
1460
1461 FOR_EACH_EDGE (e, ei, block->preds)
1462 if (e->src->loop_father == loop)
1463 return true;
1464 return false;
1465 }
1466
1467 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1468 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1469 entry; otherwise we also force preheader block to have only one successor.
1470 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1471 to be a fallthru predecessor to the loop header and to have only
1472 predecessors from outside of the loop.
1473 The function also updates dominators. */
1474
1475 basic_block
1476 create_preheader (class loop *loop, int flags)
1477 {
1478 edge e;
1479 basic_block dummy;
1480 int nentry = 0;
1481 bool irred = false;
1482 bool latch_edge_was_fallthru;
1483 edge one_succ_pred = NULL, single_entry = NULL;
1484 edge_iterator ei;
1485
1486 FOR_EACH_EDGE (e, ei, loop->header->preds)
1487 {
1488 if (e->src == loop->latch)
1489 continue;
1490 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1491 nentry++;
1492 single_entry = e;
1493 if (single_succ_p (e->src))
1494 one_succ_pred = e;
1495 }
1496 gcc_assert (nentry);
1497 if (nentry == 1)
1498 {
1499 bool need_forwarder_block = false;
1500
1501 /* We do not allow entry block to be the loop preheader, since we
1502 cannot emit code there. */
1503 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1504 need_forwarder_block = true;
1505 else
1506 {
1507 /* If we want simple preheaders, also force the preheader to have
1508 just a single successor and a normal edge. */
1509 if ((flags & CP_SIMPLE_PREHEADERS)
1510 && ((single_entry->flags & EDGE_COMPLEX)
1511 || !single_succ_p (single_entry->src)))
1512 need_forwarder_block = true;
1513 /* If we want fallthru preheaders, also create forwarder block when
1514 preheader ends with a jump or has predecessors from loop. */
1515 else if ((flags & CP_FALLTHRU_PREHEADERS)
1516 && (JUMP_P (BB_END (single_entry->src))
1517 || has_preds_from_loop (single_entry->src, loop)))
1518 need_forwarder_block = true;
1519 }
1520 if (! need_forwarder_block)
1521 return NULL;
1522 }
1523
1524 mfb_kj_edge = loop_latch_edge (loop);
1525 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1526 if (nentry == 1
1527 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1528 || (single_entry->flags & EDGE_CROSSING) == 0))
1529 dummy = split_edge (single_entry);
1530 else
1531 {
1532 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1533 dummy = fallthru->src;
1534 loop->header = fallthru->dest;
1535 }
1536
1537 /* Try to be clever in placing the newly created preheader. The idea is to
1538 avoid breaking any "fallthruness" relationship between blocks.
1539
1540 The preheader was created just before the header and all incoming edges
1541 to the header were redirected to the preheader, except the latch edge.
1542 So the only problematic case is when this latch edge was a fallthru
1543 edge: it is not anymore after the preheader creation so we have broken
1544 the fallthruness. We're therefore going to look for a better place. */
1545 if (latch_edge_was_fallthru)
1546 {
1547 if (one_succ_pred)
1548 e = one_succ_pred;
1549 else
1550 e = EDGE_PRED (dummy, 0);
1551
1552 move_block_after (dummy, e->src);
1553 }
1554
1555 if (irred)
1556 {
1557 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1558 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1559 }
1560
1561 if (dump_file)
1562 fprintf (dump_file, "Created preheader block for loop %i\n",
1563 loop->num);
1564
1565 if (flags & CP_FALLTHRU_PREHEADERS)
1566 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1567 && !JUMP_P (BB_END (dummy)));
1568
1569 return dummy;
1570 }
1571
1572 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1573
1574 void
1575 create_preheaders (int flags)
1576 {
1577 class loop *loop;
1578
1579 if (!current_loops)
1580 return;
1581
1582 FOR_EACH_LOOP (loop, 0)
1583 create_preheader (loop, flags);
1584 loops_state_set (LOOPS_HAVE_PREHEADERS);
1585 }
1586
1587 /* Forces all loop latches to have only single successor. */
1588
1589 void
1590 force_single_succ_latches (void)
1591 {
1592 class loop *loop;
1593 edge e;
1594
1595 FOR_EACH_LOOP (loop, 0)
1596 {
1597 if (loop->latch != loop->header && single_succ_p (loop->latch))
1598 continue;
1599
1600 e = find_edge (loop->latch, loop->header);
1601 gcc_checking_assert (e != NULL);
1602
1603 split_edge (e);
1604 }
1605 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1606 }
1607
1608 /* This function is called from loop_version. It splits the entry edge
1609 of the loop we want to version, adds the versioning condition, and
1610 adjust the edges to the two versions of the loop appropriately.
1611 e is an incoming edge. Returns the basic block containing the
1612 condition.
1613
1614 --- edge e ---- > [second_head]
1615
1616 Split it and insert new conditional expression and adjust edges.
1617
1618 --- edge e ---> [cond expr] ---> [first_head]
1619 |
1620 +---------> [second_head]
1621
1622 THEN_PROB is the probability of then branch of the condition.
1623 ELSE_PROB is the probability of else branch. Note that they may be both
1624 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1625 IFN_LOOP_DIST_ALIAS. */
1626
1627 static basic_block
1628 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1629 edge e, void *cond_expr,
1630 profile_probability then_prob,
1631 profile_probability else_prob)
1632 {
1633 basic_block new_head = NULL;
1634 edge e1;
1635
1636 gcc_assert (e->dest == second_head);
1637
1638 /* Split edge 'e'. This will create a new basic block, where we can
1639 insert conditional expr. */
1640 new_head = split_edge (e);
1641
1642 lv_add_condition_to_bb (first_head, second_head, new_head,
1643 cond_expr);
1644
1645 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1646 e = single_succ_edge (new_head);
1647 e1 = make_edge (new_head, first_head,
1648 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1649 e1->probability = then_prob;
1650 e->probability = else_prob;
1651
1652 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1653 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1654
1655 /* Adjust loop header phi nodes. */
1656 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1657
1658 return new_head;
1659 }
1660
1661 /* Main entry point for Loop Versioning transformation.
1662
1663 This transformation given a condition and a loop, creates
1664 -if (condition) { loop_copy1 } else { loop_copy2 },
1665 where loop_copy1 is the loop transformed in one way, and loop_copy2
1666 is the loop transformed in another way (or unchanged). COND_EXPR
1667 may be a run time test for things that were not resolved by static
1668 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1669
1670 If non-NULL, CONDITION_BB is set to the basic block containing the
1671 condition.
1672
1673 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1674 is the ratio by that the frequencies in the original loop should
1675 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1676 new loop should be scaled.
1677
1678 If PLACE_AFTER is true, we place the new loop after LOOP in the
1679 instruction stream, otherwise it is placed before LOOP. */
1680
1681 class loop *
1682 loop_version (class loop *loop,
1683 void *cond_expr, basic_block *condition_bb,
1684 profile_probability then_prob, profile_probability else_prob,
1685 profile_probability then_scale, profile_probability else_scale,
1686 bool place_after)
1687 {
1688 basic_block first_head, second_head;
1689 edge entry, latch_edge, true_edge, false_edge;
1690 int irred_flag;
1691 class loop *nloop;
1692 basic_block cond_bb;
1693
1694 /* Record entry and latch edges for the loop */
1695 entry = loop_preheader_edge (loop);
1696 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1697 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1698
1699 /* Note down head of loop as first_head. */
1700 first_head = entry->dest;
1701
1702 /* Duplicate loop. */
1703 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1704 NULL, NULL, NULL, 0))
1705 {
1706 entry->flags |= irred_flag;
1707 return NULL;
1708 }
1709
1710 /* After duplication entry edge now points to new loop head block.
1711 Note down new head as second_head. */
1712 second_head = entry->dest;
1713
1714 /* Split loop entry edge and insert new block with cond expr. */
1715 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1716 entry, cond_expr, then_prob, else_prob);
1717 if (condition_bb)
1718 *condition_bb = cond_bb;
1719
1720 if (!cond_bb)
1721 {
1722 entry->flags |= irred_flag;
1723 return NULL;
1724 }
1725
1726 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1727
1728 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1729 nloop = loopify (latch_edge,
1730 single_pred_edge (get_bb_copy (loop->header)),
1731 cond_bb, true_edge, false_edge,
1732 false /* Do not redirect all edges. */,
1733 then_scale, else_scale);
1734
1735 copy_loop_info (loop, nloop);
1736
1737 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1738 lv_flush_pending_stmts (latch_edge);
1739
1740 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1741 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1742 lv_flush_pending_stmts (false_edge);
1743 /* Adjust irreducible flag. */
1744 if (irred_flag)
1745 {
1746 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1747 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1748 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1749 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1750 }
1751
1752 if (place_after)
1753 {
1754 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1755 unsigned i;
1756
1757 after = loop->latch;
1758
1759 for (i = 0; i < nloop->num_nodes; i++)
1760 {
1761 move_block_after (bbs[i], after);
1762 after = bbs[i];
1763 }
1764 free (bbs);
1765 }
1766
1767 /* At this point condition_bb is loop preheader with two successors,
1768 first_head and second_head. Make sure that loop preheader has only
1769 one successor. */
1770 split_edge (loop_preheader_edge (loop));
1771 split_edge (loop_preheader_edge (nloop));
1772
1773 return nloop;
1774 }