Daily bump.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107 #include "function-abi.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx_insn *i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 struct reg_stat_type {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn *last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx_insn *last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 };
254
255
256 static vec<reg_stat_type> reg_stat;
257
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
265
266 static unsigned int reg_n_sets_max;
267
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
270
271 static int mem_last_set;
272
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
275
276 static int last_call_luid;
277
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
283
284 static rtx_insn *subst_insn;
285
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
292
293 static int subst_low_luid;
294
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
297
298 static HARD_REG_SET newpat_used_regs;
299
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
302 that location. */
303
304 static rtx_insn *added_links_insn;
305
306 /* And similarly, for notes. */
307
308 static rtx_insn *added_notes_insn;
309
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block;
312 static bool optimize_this_for_speed_p;
313
314 \f
315 /* Length of the currently allocated uid_insn_cost array. */
316
317 static int max_uid_known;
318
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
321
322 static int *uid_insn_cost;
323
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
326
327 struct insn_link {
328 rtx_insn *insn;
329 unsigned int regno;
330 struct insn_link *next;
331 };
332
333 static struct insn_link **uid_log_links;
334
335 static inline int
336 insn_uid_check (const_rtx insn)
337 {
338 int uid = INSN_UID (insn);
339 gcc_checking_assert (uid <= max_uid_known);
340 return uid;
341 }
342
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348
349 /* Links for LOG_LINKS are allocated from this obstack. */
350
351 static struct obstack insn_link_obstack;
352
353 /* Allocate a link. */
354
355 static inline struct insn_link *
356 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 {
358 struct insn_link *l
359 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
360 sizeof (struct insn_link));
361 l->insn = insn;
362 l->regno = regno;
363 l->next = next;
364 return l;
365 }
366
367 /* Incremented for each basic block. */
368
369 static int label_tick;
370
371 /* Reset to label_tick for each extended basic block in scanning order. */
372
373 static int label_tick_ebb_start;
374
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377
378 static scalar_int_mode nonzero_bits_mode;
379
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
384 in a loop. */
385
386 static int nonzero_sign_valid;
387
388 \f
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
391
392 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393
394 struct undo
395 {
396 struct undo *next;
397 enum undo_kind kind;
398 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
399 union { rtx *r; int *i; struct insn_link **l; } where;
400 };
401
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
404
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
407
408 struct undobuf
409 {
410 struct undo *undos;
411 struct undo *frees;
412 rtx_insn *other_insn;
413 };
414
415 static struct undobuf undobuf;
416
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
419
420 static int n_occurrences;
421
422 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
423 scalar_int_mode,
424 unsigned HOST_WIDE_INT *);
425 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
426 scalar_int_mode,
427 unsigned int *);
428 static void do_SUBST (rtx *, rtx);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn *);
432 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
433 static int cant_combine_insn_p (rtx_insn *);
434 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 rtx_insn *, rtx_insn *, rtx *, rtx *);
436 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
437 static int contains_muldiv (rtx);
438 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
439 int *, rtx_insn *);
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx *find_split_point (rtx *, rtx_insn *, bool);
443 static rtx subst (rtx, rtx, rtx, int, int, int);
444 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
445 static rtx simplify_if_then_else (rtx);
446 static rtx simplify_set (rtx);
447 static rtx simplify_logical (rtx);
448 static rtx expand_compound_operation (rtx);
449 static const_rtx expand_field_assignment (const_rtx);
450 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
451 rtx, unsigned HOST_WIDE_INT, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
453 unsigned HOST_WIDE_INT *);
454 static rtx canon_reg_for_combine (rtx, rtx);
455 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
456 scalar_int_mode, unsigned HOST_WIDE_INT, int);
457 static rtx force_to_mode (rtx, machine_mode,
458 unsigned HOST_WIDE_INT, int);
459 static rtx if_then_else_cond (rtx, rtx *, rtx *);
460 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
461 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
462 static rtx make_field_assignment (rtx);
463 static rtx apply_distributive_law (rtx);
464 static rtx distribute_and_simplify_rtx (rtx, int);
465 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
466 unsigned HOST_WIDE_INT);
467 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
470 HOST_WIDE_INT, machine_mode, int *);
471 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
472 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
473 int);
474 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
475 static rtx gen_lowpart_for_combine (machine_mode, rtx);
476 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
477 rtx, rtx *);
478 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
479 static void update_table_tick (rtx);
480 static void record_value_for_reg (rtx, rtx_insn *, rtx);
481 static void check_promoted_subreg (rtx_insn *, rtx);
482 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
483 static void record_dead_and_set_regs (rtx_insn *);
484 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
485 static rtx get_last_value (const_rtx);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
498 \f
499
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
504
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
508
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
511
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
514
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
517
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
519
520 \f
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
526 {
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
530 }
531
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN cannot be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
537
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
540 {
541 rtx_insn *ret;
542 unsigned int nregs;
543
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs, true);
548 return ret;
549 }
550
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
556
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
559 {
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
566
567 switch (code)
568 {
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 return 0;
575
576 case SET:
577 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
578 of a REG that occupies all of the REG, the insn uses DEST if
579 it is mentioned in the destination or the source. Otherwise, we
580 need just check the source. */
581 if (GET_CODE (SET_DEST (x)) != CC0
582 && GET_CODE (SET_DEST (x)) != PC
583 && !REG_P (SET_DEST (x))
584 && ! (GET_CODE (SET_DEST (x)) == SUBREG
585 && REG_P (SUBREG_REG (SET_DEST (x)))
586 && !read_modify_subreg_p (SET_DEST (x))))
587 break;
588
589 return find_single_use_1 (dest, &SET_SRC (x));
590
591 case MEM:
592 case SUBREG:
593 return find_single_use_1 (dest, &XEXP (x, 0));
594
595 default:
596 break;
597 }
598
599 /* If it wasn't one of the common cases above, check each expression and
600 vector of this code. Look for a unique usage of DEST. */
601
602 fmt = GET_RTX_FORMAT (code);
603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 {
605 if (fmt[i] == 'e')
606 {
607 if (dest == XEXP (x, i)
608 || (REG_P (dest) && REG_P (XEXP (x, i))
609 && REGNO (dest) == REGNO (XEXP (x, i))))
610 this_result = loc;
611 else
612 this_result = find_single_use_1 (dest, &XEXP (x, i));
613
614 if (result == NULL)
615 result = this_result;
616 else if (this_result)
617 /* Duplicate usage. */
618 return NULL;
619 }
620 else if (fmt[i] == 'E')
621 {
622 int j;
623
624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 {
626 if (XVECEXP (x, i, j) == dest
627 || (REG_P (dest)
628 && REG_P (XVECEXP (x, i, j))
629 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
630 this_result = loc;
631 else
632 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
633
634 if (result == NULL)
635 result = this_result;
636 else if (this_result)
637 return NULL;
638 }
639 }
640 }
641
642 return result;
643 }
644
645
646 /* See if DEST, produced in INSN, is used only a single time in the
647 sequel. If so, return a pointer to the innermost rtx expression in which
648 it is used.
649
650 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651
652 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
653 care about REG_DEAD notes or LOG_LINKS.
654
655 Otherwise, we find the single use by finding an insn that has a
656 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
657 only referenced once in that insn, we know that it must be the first
658 and last insn referencing DEST. */
659
660 static rtx *
661 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
662 {
663 basic_block bb;
664 rtx_insn *next;
665 rtx *result;
666 struct insn_link *link;
667
668 if (dest == cc0_rtx)
669 {
670 next = NEXT_INSN (insn);
671 if (next == 0
672 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
673 return 0;
674
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (result && ploc)
677 *ploc = next;
678 return result;
679 }
680
681 if (!REG_P (dest))
682 return 0;
683
684 bb = BLOCK_FOR_INSN (insn);
685 for (next = NEXT_INSN (insn);
686 next && BLOCK_FOR_INSN (next) == bb;
687 next = NEXT_INSN (next))
688 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
689 {
690 FOR_EACH_LOG_LINK (link, next)
691 if (link->insn == insn && link->regno == REGNO (dest))
692 break;
693
694 if (link)
695 {
696 result = find_single_use_1 (dest, &PATTERN (next));
697 if (ploc)
698 *ploc = next;
699 return result;
700 }
701 }
702
703 return 0;
704 }
705 \f
706 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
707 insn. The substitution can be undone by undo_all. If INTO is already
708 set to NEWVAL, do not record this change. Because computing NEWVAL might
709 also call SUBST, we have to compute it before we put anything into
710 the undo table. */
711
712 static void
713 do_SUBST (rtx *into, rtx newval)
714 {
715 struct undo *buf;
716 rtx oldval = *into;
717
718 if (oldval == newval)
719 return;
720
721 /* We'd like to catch as many invalid transformations here as
722 possible. Unfortunately, there are way too many mode changes
723 that are perfectly valid, so we'd waste too much effort for
724 little gain doing the checks here. Focus on catching invalid
725 transformations involving integer constants. */
726 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
727 && CONST_INT_P (newval))
728 {
729 /* Sanity check that we're replacing oldval with a CONST_INT
730 that is a valid sign-extension for the original mode. */
731 gcc_assert (INTVAL (newval)
732 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
733
734 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
735 CONST_INT is not valid, because after the replacement, the
736 original mode would be gone. Unfortunately, we can't tell
737 when do_SUBST is called to replace the operand thereof, so we
738 perform this test on oldval instead, checking whether an
739 invalid replacement took place before we got here. */
740 gcc_assert (!(GET_CODE (oldval) == SUBREG
741 && CONST_INT_P (SUBREG_REG (oldval))));
742 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
743 && CONST_INT_P (XEXP (oldval, 0))));
744 }
745
746 if (undobuf.frees)
747 buf = undobuf.frees, undobuf.frees = buf->next;
748 else
749 buf = XNEW (struct undo);
750
751 buf->kind = UNDO_RTX;
752 buf->where.r = into;
753 buf->old_contents.r = oldval;
754 *into = newval;
755
756 buf->next = undobuf.undos, undobuf.undos = buf;
757 }
758
759 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760
761 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
762 for the value of a HOST_WIDE_INT value (including CONST_INT) is
763 not safe. */
764
765 static void
766 do_SUBST_INT (int *into, int newval)
767 {
768 struct undo *buf;
769 int oldval = *into;
770
771 if (oldval == newval)
772 return;
773
774 if (undobuf.frees)
775 buf = undobuf.frees, undobuf.frees = buf->next;
776 else
777 buf = XNEW (struct undo);
778
779 buf->kind = UNDO_INT;
780 buf->where.i = into;
781 buf->old_contents.i = oldval;
782 *into = newval;
783
784 buf->next = undobuf.undos, undobuf.undos = buf;
785 }
786
787 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788
789 /* Similar to SUBST, but just substitute the mode. This is used when
790 changing the mode of a pseudo-register, so that any other
791 references to the entry in the regno_reg_rtx array will change as
792 well. */
793
794 static void
795 do_SUBST_MODE (rtx *into, machine_mode newval)
796 {
797 struct undo *buf;
798 machine_mode oldval = GET_MODE (*into);
799
800 if (oldval == newval)
801 return;
802
803 if (undobuf.frees)
804 buf = undobuf.frees, undobuf.frees = buf->next;
805 else
806 buf = XNEW (struct undo);
807
808 buf->kind = UNDO_MODE;
809 buf->where.r = into;
810 buf->old_contents.m = oldval;
811 adjust_reg_mode (*into, newval);
812
813 buf->next = undobuf.undos, undobuf.undos = buf;
814 }
815
816 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817
818 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
819
820 static void
821 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
822 {
823 struct undo *buf;
824 struct insn_link * oldval = *into;
825
826 if (oldval == newval)
827 return;
828
829 if (undobuf.frees)
830 buf = undobuf.frees, undobuf.frees = buf->next;
831 else
832 buf = XNEW (struct undo);
833
834 buf->kind = UNDO_LINKS;
835 buf->where.l = into;
836 buf->old_contents.l = oldval;
837 *into = newval;
838
839 buf->next = undobuf.undos, undobuf.undos = buf;
840 }
841
842 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 \f
844 /* Subroutine of try_combine. Determine whether the replacement patterns
845 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
846 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
847 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
848 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
849 of all the instructions can be estimated and the replacements are more
850 expensive than the original sequence. */
851
852 static bool
853 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
854 rtx newpat, rtx newi2pat, rtx newotherpat)
855 {
856 int i0_cost, i1_cost, i2_cost, i3_cost;
857 int new_i2_cost, new_i3_cost;
858 int old_cost, new_cost;
859
860 /* Lookup the original insn_costs. */
861 i2_cost = INSN_COST (i2);
862 i3_cost = INSN_COST (i3);
863
864 if (i1)
865 {
866 i1_cost = INSN_COST (i1);
867 if (i0)
868 {
869 i0_cost = INSN_COST (i0);
870 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
871 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
872 }
873 else
874 {
875 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
876 ? i1_cost + i2_cost + i3_cost : 0);
877 i0_cost = 0;
878 }
879 }
880 else
881 {
882 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
883 i1_cost = i0_cost = 0;
884 }
885
886 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
887 correct that. */
888 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
889 old_cost -= i1_cost;
890
891
892 /* Calculate the replacement insn_costs. */
893 rtx tmp = PATTERN (i3);
894 PATTERN (i3) = newpat;
895 int tmpi = INSN_CODE (i3);
896 INSN_CODE (i3) = -1;
897 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
898 PATTERN (i3) = tmp;
899 INSN_CODE (i3) = tmpi;
900 if (newi2pat)
901 {
902 tmp = PATTERN (i2);
903 PATTERN (i2) = newi2pat;
904 tmpi = INSN_CODE (i2);
905 INSN_CODE (i2) = -1;
906 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
907 PATTERN (i2) = tmp;
908 INSN_CODE (i2) = tmpi;
909 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
910 ? new_i2_cost + new_i3_cost : 0;
911 }
912 else
913 {
914 new_cost = new_i3_cost;
915 new_i2_cost = 0;
916 }
917
918 if (undobuf.other_insn)
919 {
920 int old_other_cost, new_other_cost;
921
922 old_other_cost = INSN_COST (undobuf.other_insn);
923 tmp = PATTERN (undobuf.other_insn);
924 PATTERN (undobuf.other_insn) = newotherpat;
925 tmpi = INSN_CODE (undobuf.other_insn);
926 INSN_CODE (undobuf.other_insn) = -1;
927 new_other_cost = insn_cost (undobuf.other_insn,
928 optimize_this_for_speed_p);
929 PATTERN (undobuf.other_insn) = tmp;
930 INSN_CODE (undobuf.other_insn) = tmpi;
931 if (old_other_cost > 0 && new_other_cost > 0)
932 {
933 old_cost += old_other_cost;
934 new_cost += new_other_cost;
935 }
936 else
937 old_cost = 0;
938 }
939
940 /* Disallow this combination if both new_cost and old_cost are greater than
941 zero, and new_cost is greater than old cost. */
942 int reject = old_cost > 0 && new_cost > old_cost;
943
944 if (dump_file)
945 {
946 fprintf (dump_file, "%s combination of insns ",
947 reject ? "rejecting" : "allowing");
948 if (i0)
949 fprintf (dump_file, "%d, ", INSN_UID (i0));
950 if (i1 && INSN_UID (i1) != INSN_UID (i2))
951 fprintf (dump_file, "%d, ", INSN_UID (i1));
952 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
953
954 fprintf (dump_file, "original costs ");
955 if (i0)
956 fprintf (dump_file, "%d + ", i0_cost);
957 if (i1 && INSN_UID (i1) != INSN_UID (i2))
958 fprintf (dump_file, "%d + ", i1_cost);
959 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
960
961 if (newi2pat)
962 fprintf (dump_file, "replacement costs %d + %d = %d\n",
963 new_i2_cost, new_i3_cost, new_cost);
964 else
965 fprintf (dump_file, "replacement cost %d\n", new_cost);
966 }
967
968 if (reject)
969 return false;
970
971 /* Update the uid_insn_cost array with the replacement costs. */
972 INSN_COST (i2) = new_i2_cost;
973 INSN_COST (i3) = new_i3_cost;
974 if (i1)
975 {
976 INSN_COST (i1) = 0;
977 if (i0)
978 INSN_COST (i0) = 0;
979 }
980
981 return true;
982 }
983
984
985 /* Delete any insns that copy a register to itself.
986 Return true if the CFG was changed. */
987
988 static bool
989 delete_noop_moves (void)
990 {
991 rtx_insn *insn, *next;
992 basic_block bb;
993
994 bool edges_deleted = false;
995
996 FOR_EACH_BB_FN (bb, cfun)
997 {
998 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
999 {
1000 next = NEXT_INSN (insn);
1001 if (INSN_P (insn) && noop_move_p (insn))
1002 {
1003 if (dump_file)
1004 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1005
1006 edges_deleted |= delete_insn_and_edges (insn);
1007 }
1008 }
1009 }
1010
1011 return edges_deleted;
1012 }
1013
1014 \f
1015 /* Return false if we do not want to (or cannot) combine DEF. */
1016 static bool
1017 can_combine_def_p (df_ref def)
1018 {
1019 /* Do not consider if it is pre/post modification in MEM. */
1020 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1021 return false;
1022
1023 unsigned int regno = DF_REF_REGNO (def);
1024
1025 /* Do not combine frame pointer adjustments. */
1026 if ((regno == FRAME_POINTER_REGNUM
1027 && (!reload_completed || frame_pointer_needed))
1028 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1029 && regno == HARD_FRAME_POINTER_REGNUM
1030 && (!reload_completed || frame_pointer_needed))
1031 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1032 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1033 return false;
1034
1035 return true;
1036 }
1037
1038 /* Return false if we do not want to (or cannot) combine USE. */
1039 static bool
1040 can_combine_use_p (df_ref use)
1041 {
1042 /* Do not consider the usage of the stack pointer by function call. */
1043 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1044 return false;
1045
1046 return true;
1047 }
1048
1049 /* Fill in log links field for all insns. */
1050
1051 static void
1052 create_log_links (void)
1053 {
1054 basic_block bb;
1055 rtx_insn **next_use;
1056 rtx_insn *insn;
1057 df_ref def, use;
1058
1059 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1060
1061 /* Pass through each block from the end, recording the uses of each
1062 register and establishing log links when def is encountered.
1063 Note that we do not clear next_use array in order to save time,
1064 so we have to test whether the use is in the same basic block as def.
1065
1066 There are a few cases below when we do not consider the definition or
1067 usage -- these are taken from original flow.c did. Don't ask me why it is
1068 done this way; I don't know and if it works, I don't want to know. */
1069
1070 FOR_EACH_BB_FN (bb, cfun)
1071 {
1072 FOR_BB_INSNS_REVERSE (bb, insn)
1073 {
1074 if (!NONDEBUG_INSN_P (insn))
1075 continue;
1076
1077 /* Log links are created only once. */
1078 gcc_assert (!LOG_LINKS (insn));
1079
1080 FOR_EACH_INSN_DEF (def, insn)
1081 {
1082 unsigned int regno = DF_REF_REGNO (def);
1083 rtx_insn *use_insn;
1084
1085 if (!next_use[regno])
1086 continue;
1087
1088 if (!can_combine_def_p (def))
1089 continue;
1090
1091 use_insn = next_use[regno];
1092 next_use[regno] = NULL;
1093
1094 if (BLOCK_FOR_INSN (use_insn) != bb)
1095 continue;
1096
1097 /* flow.c claimed:
1098
1099 We don't build a LOG_LINK for hard registers contained
1100 in ASM_OPERANDs. If these registers get replaced,
1101 we might wind up changing the semantics of the insn,
1102 even if reload can make what appear to be valid
1103 assignments later. */
1104 if (regno < FIRST_PSEUDO_REGISTER
1105 && asm_noperands (PATTERN (use_insn)) >= 0)
1106 continue;
1107
1108 /* Don't add duplicate links between instructions. */
1109 struct insn_link *links;
1110 FOR_EACH_LOG_LINK (links, use_insn)
1111 if (insn == links->insn && regno == links->regno)
1112 break;
1113
1114 if (!links)
1115 LOG_LINKS (use_insn)
1116 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1117 }
1118
1119 FOR_EACH_INSN_USE (use, insn)
1120 if (can_combine_use_p (use))
1121 next_use[DF_REF_REGNO (use)] = insn;
1122 }
1123 }
1124
1125 free (next_use);
1126 }
1127
1128 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1129 true if we found a LOG_LINK that proves that A feeds B. This only works
1130 if there are no instructions between A and B which could have a link
1131 depending on A, since in that case we would not record a link for B.
1132 We also check the implicit dependency created by a cc0 setter/user
1133 pair. */
1134
1135 static bool
1136 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1137 {
1138 struct insn_link *links;
1139 FOR_EACH_LOG_LINK (links, b)
1140 if (links->insn == a)
1141 return true;
1142 if (HAVE_cc0 && sets_cc0_p (a))
1143 return true;
1144 return false;
1145 }
1146 \f
1147 /* Main entry point for combiner. F is the first insn of the function.
1148 NREGS is the first unused pseudo-reg number.
1149
1150 Return nonzero if the CFG was changed (e.g. if the combiner has
1151 turned an indirect jump instruction into a direct jump). */
1152 static int
1153 combine_instructions (rtx_insn *f, unsigned int nregs)
1154 {
1155 rtx_insn *insn, *next;
1156 rtx_insn *prev;
1157 struct insn_link *links, *nextlinks;
1158 rtx_insn *first;
1159 basic_block last_bb;
1160
1161 int new_direct_jump_p = 0;
1162
1163 for (first = f; first && !NONDEBUG_INSN_P (first); )
1164 first = NEXT_INSN (first);
1165 if (!first)
1166 return 0;
1167
1168 combine_attempts = 0;
1169 combine_merges = 0;
1170 combine_extras = 0;
1171 combine_successes = 0;
1172
1173 rtl_hooks = combine_rtl_hooks;
1174
1175 reg_stat.safe_grow_cleared (nregs, true);
1176
1177 init_recog_no_volatile ();
1178
1179 /* Allocate array for insn info. */
1180 max_uid_known = get_max_uid ();
1181 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1182 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1183 gcc_obstack_init (&insn_link_obstack);
1184
1185 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1186
1187 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1188 problems when, for example, we have j <<= 1 in a loop. */
1189
1190 nonzero_sign_valid = 0;
1191 label_tick = label_tick_ebb_start = 1;
1192
1193 /* Scan all SETs and see if we can deduce anything about what
1194 bits are known to be zero for some registers and how many copies
1195 of the sign bit are known to exist for those registers.
1196
1197 Also set any known values so that we can use it while searching
1198 for what bits are known to be set. */
1199
1200 setup_incoming_promotions (first);
1201 /* Allow the entry block and the first block to fall into the same EBB.
1202 Conceptually the incoming promotions are assigned to the entry block. */
1203 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1204
1205 create_log_links ();
1206 FOR_EACH_BB_FN (this_basic_block, cfun)
1207 {
1208 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1209 last_call_luid = 0;
1210 mem_last_set = -1;
1211
1212 label_tick++;
1213 if (!single_pred_p (this_basic_block)
1214 || single_pred (this_basic_block) != last_bb)
1215 label_tick_ebb_start = label_tick;
1216 last_bb = this_basic_block;
1217
1218 FOR_BB_INSNS (this_basic_block, insn)
1219 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1220 {
1221 rtx links;
1222
1223 subst_low_luid = DF_INSN_LUID (insn);
1224 subst_insn = insn;
1225
1226 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1227 record_dead_and_set_regs (insn);
1228
1229 if (AUTO_INC_DEC)
1230 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1231 if (REG_NOTE_KIND (links) == REG_INC)
1232 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1233 insn);
1234
1235 /* Record the current insn_cost of this instruction. */
1236 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1237 if (dump_file)
1238 {
1239 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1240 dump_insn_slim (dump_file, insn);
1241 }
1242 }
1243 }
1244
1245 nonzero_sign_valid = 1;
1246
1247 /* Now scan all the insns in forward order. */
1248 label_tick = label_tick_ebb_start = 1;
1249 init_reg_last ();
1250 setup_incoming_promotions (first);
1251 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1252 int max_combine = param_max_combine_insns;
1253
1254 FOR_EACH_BB_FN (this_basic_block, cfun)
1255 {
1256 rtx_insn *last_combined_insn = NULL;
1257
1258 /* Ignore instruction combination in basic blocks that are going to
1259 be removed as unreachable anyway. See PR82386. */
1260 if (EDGE_COUNT (this_basic_block->preds) == 0)
1261 continue;
1262
1263 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1264 last_call_luid = 0;
1265 mem_last_set = -1;
1266
1267 label_tick++;
1268 if (!single_pred_p (this_basic_block)
1269 || single_pred (this_basic_block) != last_bb)
1270 label_tick_ebb_start = label_tick;
1271 last_bb = this_basic_block;
1272
1273 rtl_profile_for_bb (this_basic_block);
1274 for (insn = BB_HEAD (this_basic_block);
1275 insn != NEXT_INSN (BB_END (this_basic_block));
1276 insn = next ? next : NEXT_INSN (insn))
1277 {
1278 next = 0;
1279 if (!NONDEBUG_INSN_P (insn))
1280 continue;
1281
1282 while (last_combined_insn
1283 && (!NONDEBUG_INSN_P (last_combined_insn)
1284 || last_combined_insn->deleted ()))
1285 last_combined_insn = PREV_INSN (last_combined_insn);
1286 if (last_combined_insn == NULL_RTX
1287 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1288 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1289 last_combined_insn = insn;
1290
1291 /* See if we know about function return values before this
1292 insn based upon SUBREG flags. */
1293 check_promoted_subreg (insn, PATTERN (insn));
1294
1295 /* See if we can find hardregs and subreg of pseudos in
1296 narrower modes. This could help turning TRUNCATEs
1297 into SUBREGs. */
1298 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1299
1300 /* Try this insn with each insn it links back to. */
1301
1302 FOR_EACH_LOG_LINK (links, insn)
1303 if ((next = try_combine (insn, links->insn, NULL,
1304 NULL, &new_direct_jump_p,
1305 last_combined_insn)) != 0)
1306 {
1307 statistics_counter_event (cfun, "two-insn combine", 1);
1308 goto retry;
1309 }
1310
1311 /* Try each sequence of three linked insns ending with this one. */
1312
1313 if (max_combine >= 3)
1314 FOR_EACH_LOG_LINK (links, insn)
1315 {
1316 rtx_insn *link = links->insn;
1317
1318 /* If the linked insn has been replaced by a note, then there
1319 is no point in pursuing this chain any further. */
1320 if (NOTE_P (link))
1321 continue;
1322
1323 FOR_EACH_LOG_LINK (nextlinks, link)
1324 if ((next = try_combine (insn, link, nextlinks->insn,
1325 NULL, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1327 {
1328 statistics_counter_event (cfun, "three-insn combine", 1);
1329 goto retry;
1330 }
1331 }
1332
1333 /* Try to combine a jump insn that uses CC0
1334 with a preceding insn that sets CC0, and maybe with its
1335 logical predecessor as well.
1336 This is how we make decrement-and-branch insns.
1337 We need this special code because data flow connections
1338 via CC0 do not get entered in LOG_LINKS. */
1339
1340 if (HAVE_cc0
1341 && JUMP_P (insn)
1342 && (prev = prev_nonnote_insn (insn)) != 0
1343 && NONJUMP_INSN_P (prev)
1344 && sets_cc0_p (PATTERN (prev)))
1345 {
1346 if ((next = try_combine (insn, prev, NULL, NULL,
1347 &new_direct_jump_p,
1348 last_combined_insn)) != 0)
1349 goto retry;
1350
1351 FOR_EACH_LOG_LINK (nextlinks, prev)
1352 if ((next = try_combine (insn, prev, nextlinks->insn,
1353 NULL, &new_direct_jump_p,
1354 last_combined_insn)) != 0)
1355 goto retry;
1356 }
1357
1358 /* Do the same for an insn that explicitly references CC0. */
1359 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1360 && (prev = prev_nonnote_insn (insn)) != 0
1361 && NONJUMP_INSN_P (prev)
1362 && sets_cc0_p (PATTERN (prev))
1363 && GET_CODE (PATTERN (insn)) == SET
1364 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1365 {
1366 if ((next = try_combine (insn, prev, NULL, NULL,
1367 &new_direct_jump_p,
1368 last_combined_insn)) != 0)
1369 goto retry;
1370
1371 FOR_EACH_LOG_LINK (nextlinks, prev)
1372 if ((next = try_combine (insn, prev, nextlinks->insn,
1373 NULL, &new_direct_jump_p,
1374 last_combined_insn)) != 0)
1375 goto retry;
1376 }
1377
1378 /* Finally, see if any of the insns that this insn links to
1379 explicitly references CC0. If so, try this insn, that insn,
1380 and its predecessor if it sets CC0. */
1381 if (HAVE_cc0)
1382 {
1383 FOR_EACH_LOG_LINK (links, insn)
1384 if (NONJUMP_INSN_P (links->insn)
1385 && GET_CODE (PATTERN (links->insn)) == SET
1386 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1387 && (prev = prev_nonnote_insn (links->insn)) != 0
1388 && NONJUMP_INSN_P (prev)
1389 && sets_cc0_p (PATTERN (prev))
1390 && (next = try_combine (insn, links->insn,
1391 prev, NULL, &new_direct_jump_p,
1392 last_combined_insn)) != 0)
1393 goto retry;
1394 }
1395
1396 /* Try combining an insn with two different insns whose results it
1397 uses. */
1398 if (max_combine >= 3)
1399 FOR_EACH_LOG_LINK (links, insn)
1400 for (nextlinks = links->next; nextlinks;
1401 nextlinks = nextlinks->next)
1402 if ((next = try_combine (insn, links->insn,
1403 nextlinks->insn, NULL,
1404 &new_direct_jump_p,
1405 last_combined_insn)) != 0)
1406
1407 {
1408 statistics_counter_event (cfun, "three-insn combine", 1);
1409 goto retry;
1410 }
1411
1412 /* Try four-instruction combinations. */
1413 if (max_combine >= 4)
1414 FOR_EACH_LOG_LINK (links, insn)
1415 {
1416 struct insn_link *next1;
1417 rtx_insn *link = links->insn;
1418
1419 /* If the linked insn has been replaced by a note, then there
1420 is no point in pursuing this chain any further. */
1421 if (NOTE_P (link))
1422 continue;
1423
1424 FOR_EACH_LOG_LINK (next1, link)
1425 {
1426 rtx_insn *link1 = next1->insn;
1427 if (NOTE_P (link1))
1428 continue;
1429 /* I0 -> I1 -> I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link1)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1435 {
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1438 }
1439 /* I0, I1 -> I2, I2 -> I3. */
1440 for (nextlinks = next1->next; nextlinks;
1441 nextlinks = nextlinks->next)
1442 if ((next = try_combine (insn, link, link1,
1443 nextlinks->insn,
1444 &new_direct_jump_p,
1445 last_combined_insn)) != 0)
1446 {
1447 statistics_counter_event (cfun, "four-insn combine", 1);
1448 goto retry;
1449 }
1450 }
1451
1452 for (next1 = links->next; next1; next1 = next1->next)
1453 {
1454 rtx_insn *link1 = next1->insn;
1455 if (NOTE_P (link1))
1456 continue;
1457 /* I0 -> I2; I1, I2 -> I3. */
1458 FOR_EACH_LOG_LINK (nextlinks, link)
1459 if ((next = try_combine (insn, link, link1,
1460 nextlinks->insn,
1461 &new_direct_jump_p,
1462 last_combined_insn)) != 0)
1463 {
1464 statistics_counter_event (cfun, "four-insn combine", 1);
1465 goto retry;
1466 }
1467 /* I0 -> I1; I1, I2 -> I3. */
1468 FOR_EACH_LOG_LINK (nextlinks, link1)
1469 if ((next = try_combine (insn, link, link1,
1470 nextlinks->insn,
1471 &new_direct_jump_p,
1472 last_combined_insn)) != 0)
1473 {
1474 statistics_counter_event (cfun, "four-insn combine", 1);
1475 goto retry;
1476 }
1477 }
1478 }
1479
1480 /* Try this insn with each REG_EQUAL note it links back to. */
1481 FOR_EACH_LOG_LINK (links, insn)
1482 {
1483 rtx set, note;
1484 rtx_insn *temp = links->insn;
1485 if ((set = single_set (temp)) != 0
1486 && (note = find_reg_equal_equiv_note (temp)) != 0
1487 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1488 && ! side_effects_p (SET_SRC (set))
1489 /* Avoid using a register that may already been marked
1490 dead by an earlier instruction. */
1491 && ! unmentioned_reg_p (note, SET_SRC (set))
1492 && (GET_MODE (note) == VOIDmode
1493 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1494 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1495 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1496 || (GET_MODE (XEXP (SET_DEST (set), 0))
1497 == GET_MODE (note))))))
1498 {
1499 /* Temporarily replace the set's source with the
1500 contents of the REG_EQUAL note. The insn will
1501 be deleted or recognized by try_combine. */
1502 rtx orig_src = SET_SRC (set);
1503 rtx orig_dest = SET_DEST (set);
1504 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1505 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1506 SET_SRC (set) = note;
1507 i2mod = temp;
1508 i2mod_old_rhs = copy_rtx (orig_src);
1509 i2mod_new_rhs = copy_rtx (note);
1510 next = try_combine (insn, i2mod, NULL, NULL,
1511 &new_direct_jump_p,
1512 last_combined_insn);
1513 i2mod = NULL;
1514 if (next)
1515 {
1516 statistics_counter_event (cfun, "insn-with-note combine", 1);
1517 goto retry;
1518 }
1519 SET_SRC (set) = orig_src;
1520 SET_DEST (set) = orig_dest;
1521 }
1522 }
1523
1524 if (!NOTE_P (insn))
1525 record_dead_and_set_regs (insn);
1526
1527 retry:
1528 ;
1529 }
1530 }
1531
1532 default_rtl_profile ();
1533 clear_bb_flags ();
1534 new_direct_jump_p |= purge_all_dead_edges ();
1535 new_direct_jump_p |= delete_noop_moves ();
1536
1537 /* Clean up. */
1538 obstack_free (&insn_link_obstack, NULL);
1539 free (uid_log_links);
1540 free (uid_insn_cost);
1541 reg_stat.release ();
1542
1543 {
1544 struct undo *undo, *next;
1545 for (undo = undobuf.frees; undo; undo = next)
1546 {
1547 next = undo->next;
1548 free (undo);
1549 }
1550 undobuf.frees = 0;
1551 }
1552
1553 total_attempts += combine_attempts;
1554 total_merges += combine_merges;
1555 total_extras += combine_extras;
1556 total_successes += combine_successes;
1557
1558 nonzero_sign_valid = 0;
1559 rtl_hooks = general_rtl_hooks;
1560
1561 /* Make recognizer allow volatile MEMs again. */
1562 init_recog ();
1563
1564 return new_direct_jump_p;
1565 }
1566
1567 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1568
1569 static void
1570 init_reg_last (void)
1571 {
1572 unsigned int i;
1573 reg_stat_type *p;
1574
1575 FOR_EACH_VEC_ELT (reg_stat, i, p)
1576 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1577 }
1578 \f
1579 /* Set up any promoted values for incoming argument registers. */
1580
1581 static void
1582 setup_incoming_promotions (rtx_insn *first)
1583 {
1584 tree arg;
1585 bool strictly_local = false;
1586
1587 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1588 arg = DECL_CHAIN (arg))
1589 {
1590 rtx x, reg = DECL_INCOMING_RTL (arg);
1591 int uns1, uns3;
1592 machine_mode mode1, mode2, mode3, mode4;
1593
1594 /* Only continue if the incoming argument is in a register. */
1595 if (!REG_P (reg))
1596 continue;
1597
1598 /* Determine, if possible, whether all call sites of the current
1599 function lie within the current compilation unit. (This does
1600 take into account the exporting of a function via taking its
1601 address, and so forth.) */
1602 strictly_local
1603 = cgraph_node::local_info_node (current_function_decl)->local;
1604
1605 /* The mode and signedness of the argument before any promotions happen
1606 (equal to the mode of the pseudo holding it at that stage). */
1607 mode1 = TYPE_MODE (TREE_TYPE (arg));
1608 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1609
1610 /* The mode and signedness of the argument after any source language and
1611 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1612 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1613 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1614
1615 /* The mode and signedness of the argument as it is actually passed,
1616 see assign_parm_setup_reg in function.c. */
1617 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1618 TREE_TYPE (cfun->decl), 0);
1619
1620 /* The mode of the register in which the argument is being passed. */
1621 mode4 = GET_MODE (reg);
1622
1623 /* Eliminate sign extensions in the callee when:
1624 (a) A mode promotion has occurred; */
1625 if (mode1 == mode3)
1626 continue;
1627 /* (b) The mode of the register is the same as the mode of
1628 the argument as it is passed; */
1629 if (mode3 != mode4)
1630 continue;
1631 /* (c) There's no language level extension; */
1632 if (mode1 == mode2)
1633 ;
1634 /* (c.1) All callers are from the current compilation unit. If that's
1635 the case we don't have to rely on an ABI, we only have to know
1636 what we're generating right now, and we know that we will do the
1637 mode1 to mode2 promotion with the given sign. */
1638 else if (!strictly_local)
1639 continue;
1640 /* (c.2) The combination of the two promotions is useful. This is
1641 true when the signs match, or if the first promotion is unsigned.
1642 In the later case, (sign_extend (zero_extend x)) is the same as
1643 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1644 else if (uns1)
1645 uns3 = true;
1646 else if (uns3)
1647 continue;
1648
1649 /* Record that the value was promoted from mode1 to mode3,
1650 so that any sign extension at the head of the current
1651 function may be eliminated. */
1652 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1653 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1654 record_value_for_reg (reg, first, x);
1655 }
1656 }
1657
1658 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1659 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1660 because some machines (maybe most) will actually do the sign-extension and
1661 this is the conservative approach.
1662
1663 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1664 kludge. */
1665
1666 static rtx
1667 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1668 {
1669 scalar_int_mode int_mode;
1670 if (CONST_INT_P (src)
1671 && is_a <scalar_int_mode> (mode, &int_mode)
1672 && GET_MODE_PRECISION (int_mode) < prec
1673 && INTVAL (src) > 0
1674 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1675 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1676
1677 return src;
1678 }
1679
1680 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1681 and SET. */
1682
1683 static void
1684 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1685 rtx x)
1686 {
1687 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1688 unsigned HOST_WIDE_INT bits = 0;
1689 rtx reg_equal = NULL, src = SET_SRC (set);
1690 unsigned int num = 0;
1691
1692 if (reg_equal_note)
1693 reg_equal = XEXP (reg_equal_note, 0);
1694
1695 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1696 {
1697 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1698 if (reg_equal)
1699 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1700 }
1701
1702 /* Don't call nonzero_bits if it cannot change anything. */
1703 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1704 {
1705 machine_mode mode = GET_MODE (x);
1706 if (GET_MODE_CLASS (mode) == MODE_INT
1707 && HWI_COMPUTABLE_MODE_P (mode))
1708 mode = nonzero_bits_mode;
1709 bits = nonzero_bits (src, mode);
1710 if (reg_equal && bits)
1711 bits &= nonzero_bits (reg_equal, mode);
1712 rsp->nonzero_bits |= bits;
1713 }
1714
1715 /* Don't call num_sign_bit_copies if it cannot change anything. */
1716 if (rsp->sign_bit_copies != 1)
1717 {
1718 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1719 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1720 {
1721 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1722 if (num == 0 || numeq > num)
1723 num = numeq;
1724 }
1725 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1726 rsp->sign_bit_copies = num;
1727 }
1728 }
1729
1730 /* Called via note_stores. If X is a pseudo that is narrower than
1731 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1732
1733 If we are setting only a portion of X and we can't figure out what
1734 portion, assume all bits will be used since we don't know what will
1735 be happening.
1736
1737 Similarly, set how many bits of X are known to be copies of the sign bit
1738 at all locations in the function. This is the smallest number implied
1739 by any set of X. */
1740
1741 static void
1742 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1743 {
1744 rtx_insn *insn = (rtx_insn *) data;
1745 scalar_int_mode mode;
1746
1747 if (REG_P (x)
1748 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1749 /* If this register is undefined at the start of the file, we can't
1750 say what its contents were. */
1751 && ! REGNO_REG_SET_P
1752 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1753 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1754 && HWI_COMPUTABLE_MODE_P (mode))
1755 {
1756 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1757
1758 if (set == 0 || GET_CODE (set) == CLOBBER)
1759 {
1760 rsp->nonzero_bits = GET_MODE_MASK (mode);
1761 rsp->sign_bit_copies = 1;
1762 return;
1763 }
1764
1765 /* If this register is being initialized using itself, and the
1766 register is uninitialized in this basic block, and there are
1767 no LOG_LINKS which set the register, then part of the
1768 register is uninitialized. In that case we can't assume
1769 anything about the number of nonzero bits.
1770
1771 ??? We could do better if we checked this in
1772 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1773 could avoid making assumptions about the insn which initially
1774 sets the register, while still using the information in other
1775 insns. We would have to be careful to check every insn
1776 involved in the combination. */
1777
1778 if (insn
1779 && reg_referenced_p (x, PATTERN (insn))
1780 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1781 REGNO (x)))
1782 {
1783 struct insn_link *link;
1784
1785 FOR_EACH_LOG_LINK (link, insn)
1786 if (dead_or_set_p (link->insn, x))
1787 break;
1788 if (!link)
1789 {
1790 rsp->nonzero_bits = GET_MODE_MASK (mode);
1791 rsp->sign_bit_copies = 1;
1792 return;
1793 }
1794 }
1795
1796 /* If this is a complex assignment, see if we can convert it into a
1797 simple assignment. */
1798 set = expand_field_assignment (set);
1799
1800 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1801 set what we know about X. */
1802
1803 if (SET_DEST (set) == x
1804 || (paradoxical_subreg_p (SET_DEST (set))
1805 && SUBREG_REG (SET_DEST (set)) == x))
1806 update_rsp_from_reg_equal (rsp, insn, set, x);
1807 else
1808 {
1809 rsp->nonzero_bits = GET_MODE_MASK (mode);
1810 rsp->sign_bit_copies = 1;
1811 }
1812 }
1813 }
1814 \f
1815 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1816 optionally insns that were previously combined into I3 or that will be
1817 combined into the merger of INSN and I3. The order is PRED, PRED2,
1818 INSN, SUCC, SUCC2, I3.
1819
1820 Return 0 if the combination is not allowed for any reason.
1821
1822 If the combination is allowed, *PDEST will be set to the single
1823 destination of INSN and *PSRC to the single source, and this function
1824 will return 1. */
1825
1826 static int
1827 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1828 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1829 rtx *pdest, rtx *psrc)
1830 {
1831 int i;
1832 const_rtx set = 0;
1833 rtx src, dest;
1834 rtx_insn *p;
1835 rtx link;
1836 bool all_adjacent = true;
1837 int (*is_volatile_p) (const_rtx);
1838
1839 if (succ)
1840 {
1841 if (succ2)
1842 {
1843 if (next_active_insn (succ2) != i3)
1844 all_adjacent = false;
1845 if (next_active_insn (succ) != succ2)
1846 all_adjacent = false;
1847 }
1848 else if (next_active_insn (succ) != i3)
1849 all_adjacent = false;
1850 if (next_active_insn (insn) != succ)
1851 all_adjacent = false;
1852 }
1853 else if (next_active_insn (insn) != i3)
1854 all_adjacent = false;
1855
1856 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1857 or a PARALLEL consisting of such a SET and CLOBBERs.
1858
1859 If INSN has CLOBBER parallel parts, ignore them for our processing.
1860 By definition, these happen during the execution of the insn. When it
1861 is merged with another insn, all bets are off. If they are, in fact,
1862 needed and aren't also supplied in I3, they may be added by
1863 recog_for_combine. Otherwise, it won't match.
1864
1865 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1866 note.
1867
1868 Get the source and destination of INSN. If more than one, can't
1869 combine. */
1870
1871 if (GET_CODE (PATTERN (insn)) == SET)
1872 set = PATTERN (insn);
1873 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1874 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1875 {
1876 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1877 {
1878 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1879
1880 switch (GET_CODE (elt))
1881 {
1882 /* This is important to combine floating point insns
1883 for the SH4 port. */
1884 case USE:
1885 /* Combining an isolated USE doesn't make sense.
1886 We depend here on combinable_i3pat to reject them. */
1887 /* The code below this loop only verifies that the inputs of
1888 the SET in INSN do not change. We call reg_set_between_p
1889 to verify that the REG in the USE does not change between
1890 I3 and INSN.
1891 If the USE in INSN was for a pseudo register, the matching
1892 insn pattern will likely match any register; combining this
1893 with any other USE would only be safe if we knew that the
1894 used registers have identical values, or if there was
1895 something to tell them apart, e.g. different modes. For
1896 now, we forgo such complicated tests and simply disallow
1897 combining of USES of pseudo registers with any other USE. */
1898 if (REG_P (XEXP (elt, 0))
1899 && GET_CODE (PATTERN (i3)) == PARALLEL)
1900 {
1901 rtx i3pat = PATTERN (i3);
1902 int i = XVECLEN (i3pat, 0) - 1;
1903 unsigned int regno = REGNO (XEXP (elt, 0));
1904
1905 do
1906 {
1907 rtx i3elt = XVECEXP (i3pat, 0, i);
1908
1909 if (GET_CODE (i3elt) == USE
1910 && REG_P (XEXP (i3elt, 0))
1911 && (REGNO (XEXP (i3elt, 0)) == regno
1912 ? reg_set_between_p (XEXP (elt, 0),
1913 PREV_INSN (insn), i3)
1914 : regno >= FIRST_PSEUDO_REGISTER))
1915 return 0;
1916 }
1917 while (--i >= 0);
1918 }
1919 break;
1920
1921 /* We can ignore CLOBBERs. */
1922 case CLOBBER:
1923 break;
1924
1925 case SET:
1926 /* Ignore SETs whose result isn't used but not those that
1927 have side-effects. */
1928 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1929 && insn_nothrow_p (insn)
1930 && !side_effects_p (elt))
1931 break;
1932
1933 /* If we have already found a SET, this is a second one and
1934 so we cannot combine with this insn. */
1935 if (set)
1936 return 0;
1937
1938 set = elt;
1939 break;
1940
1941 default:
1942 /* Anything else means we can't combine. */
1943 return 0;
1944 }
1945 }
1946
1947 if (set == 0
1948 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1949 so don't do anything with it. */
1950 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1951 return 0;
1952 }
1953 else
1954 return 0;
1955
1956 if (set == 0)
1957 return 0;
1958
1959 /* The simplification in expand_field_assignment may call back to
1960 get_last_value, so set safe guard here. */
1961 subst_low_luid = DF_INSN_LUID (insn);
1962
1963 set = expand_field_assignment (set);
1964 src = SET_SRC (set), dest = SET_DEST (set);
1965
1966 /* Do not eliminate user-specified register if it is in an
1967 asm input because we may break the register asm usage defined
1968 in GCC manual if allow to do so.
1969 Be aware that this may cover more cases than we expect but this
1970 should be harmless. */
1971 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1972 && extract_asm_operands (PATTERN (i3)))
1973 return 0;
1974
1975 /* Don't eliminate a store in the stack pointer. */
1976 if (dest == stack_pointer_rtx
1977 /* Don't combine with an insn that sets a register to itself if it has
1978 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1979 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1980 /* Can't merge an ASM_OPERANDS. */
1981 || GET_CODE (src) == ASM_OPERANDS
1982 /* Can't merge a function call. */
1983 || GET_CODE (src) == CALL
1984 /* Don't eliminate a function call argument. */
1985 || (CALL_P (i3)
1986 && (find_reg_fusage (i3, USE, dest)
1987 || (REG_P (dest)
1988 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1989 && global_regs[REGNO (dest)])))
1990 /* Don't substitute into an incremented register. */
1991 || FIND_REG_INC_NOTE (i3, dest)
1992 || (succ && FIND_REG_INC_NOTE (succ, dest))
1993 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1994 /* Don't substitute into a non-local goto, this confuses CFG. */
1995 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1996 /* Make sure that DEST is not used after INSN but before SUCC, or
1997 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1998 || (!all_adjacent
1999 && ((succ2
2000 && (reg_used_between_p (dest, succ2, i3)
2001 || reg_used_between_p (dest, succ, succ2)))
2002 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2003 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2004 || (succ
2005 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2006 that case SUCC is not in the insn stream, so use SUCC2
2007 instead for this test. */
2008 && reg_used_between_p (dest, insn,
2009 succ2
2010 && INSN_UID (succ) == INSN_UID (succ2)
2011 ? succ2 : succ))))
2012 /* Make sure that the value that is to be substituted for the register
2013 does not use any registers whose values alter in between. However,
2014 If the insns are adjacent, a use can't cross a set even though we
2015 think it might (this can happen for a sequence of insns each setting
2016 the same destination; last_set of that register might point to
2017 a NOTE). If INSN has a REG_EQUIV note, the register is always
2018 equivalent to the memory so the substitution is valid even if there
2019 are intervening stores. Also, don't move a volatile asm or
2020 UNSPEC_VOLATILE across any other insns. */
2021 || (! all_adjacent
2022 && (((!MEM_P (src)
2023 || ! find_reg_note (insn, REG_EQUIV, src))
2024 && modified_between_p (src, insn, i3))
2025 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2026 || GET_CODE (src) == UNSPEC_VOLATILE))
2027 /* Don't combine across a CALL_INSN, because that would possibly
2028 change whether the life span of some REGs crosses calls or not,
2029 and it is a pain to update that information.
2030 Exception: if source is a constant, moving it later can't hurt.
2031 Accept that as a special case. */
2032 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2033 return 0;
2034
2035 /* DEST must either be a REG or CC0. */
2036 if (REG_P (dest))
2037 {
2038 /* If register alignment is being enforced for multi-word items in all
2039 cases except for parameters, it is possible to have a register copy
2040 insn referencing a hard register that is not allowed to contain the
2041 mode being copied and which would not be valid as an operand of most
2042 insns. Eliminate this problem by not combining with such an insn.
2043
2044 Also, on some machines we don't want to extend the life of a hard
2045 register. */
2046
2047 if (REG_P (src)
2048 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2049 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2050 /* Don't extend the life of a hard register unless it is
2051 user variable (if we have few registers) or it can't
2052 fit into the desired register (meaning something special
2053 is going on).
2054 Also avoid substituting a return register into I3, because
2055 reload can't handle a conflict with constraints of other
2056 inputs. */
2057 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2058 && !targetm.hard_regno_mode_ok (REGNO (src),
2059 GET_MODE (src)))))
2060 return 0;
2061 }
2062 else if (GET_CODE (dest) != CC0)
2063 return 0;
2064
2065
2066 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2067 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2068 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2069 {
2070 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2071
2072 /* If the clobber represents an earlyclobber operand, we must not
2073 substitute an expression containing the clobbered register.
2074 As we do not analyze the constraint strings here, we have to
2075 make the conservative assumption. However, if the register is
2076 a fixed hard reg, the clobber cannot represent any operand;
2077 we leave it up to the machine description to either accept or
2078 reject use-and-clobber patterns. */
2079 if (!REG_P (reg)
2080 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2081 || !fixed_regs[REGNO (reg)])
2082 if (reg_overlap_mentioned_p (reg, src))
2083 return 0;
2084 }
2085
2086 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2087 or not), reject, unless nothing volatile comes between it and I3 */
2088
2089 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2090 {
2091 /* Make sure neither succ nor succ2 contains a volatile reference. */
2092 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2093 return 0;
2094 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2095 return 0;
2096 /* We'll check insns between INSN and I3 below. */
2097 }
2098
2099 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2100 to be an explicit register variable, and was chosen for a reason. */
2101
2102 if (GET_CODE (src) == ASM_OPERANDS
2103 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2104 return 0;
2105
2106 /* If INSN contains volatile references (specifically volatile MEMs),
2107 we cannot combine across any other volatile references.
2108 Even if INSN doesn't contain volatile references, any intervening
2109 volatile insn might affect machine state. */
2110
2111 is_volatile_p = volatile_refs_p (PATTERN (insn))
2112 ? volatile_refs_p
2113 : volatile_insn_p;
2114
2115 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2116 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2117 return 0;
2118
2119 /* If INSN contains an autoincrement or autodecrement, make sure that
2120 register is not used between there and I3, and not already used in
2121 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2122 Also insist that I3 not be a jump if using LRA; if it were one
2123 and the incremented register were spilled, we would lose.
2124 Reload handles this correctly. */
2125
2126 if (AUTO_INC_DEC)
2127 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2128 if (REG_NOTE_KIND (link) == REG_INC
2129 && ((JUMP_P (i3) && targetm.lra_p ())
2130 || reg_used_between_p (XEXP (link, 0), insn, i3)
2131 || (pred != NULL_RTX
2132 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2133 || (pred2 != NULL_RTX
2134 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2135 || (succ != NULL_RTX
2136 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2137 || (succ2 != NULL_RTX
2138 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2139 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2140 return 0;
2141
2142 /* Don't combine an insn that follows a CC0-setting insn.
2143 An insn that uses CC0 must not be separated from the one that sets it.
2144 We do, however, allow I2 to follow a CC0-setting insn if that insn
2145 is passed as I1; in that case it will be deleted also.
2146 We also allow combining in this case if all the insns are adjacent
2147 because that would leave the two CC0 insns adjacent as well.
2148 It would be more logical to test whether CC0 occurs inside I1 or I2,
2149 but that would be much slower, and this ought to be equivalent. */
2150
2151 if (HAVE_cc0)
2152 {
2153 p = prev_nonnote_insn (insn);
2154 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2155 && ! all_adjacent)
2156 return 0;
2157 }
2158
2159 /* If we get here, we have passed all the tests and the combination is
2160 to be allowed. */
2161
2162 *pdest = dest;
2163 *psrc = src;
2164
2165 return 1;
2166 }
2167 \f
2168 /* LOC is the location within I3 that contains its pattern or the component
2169 of a PARALLEL of the pattern. We validate that it is valid for combining.
2170
2171 One problem is if I3 modifies its output, as opposed to replacing it
2172 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2173 doing so would produce an insn that is not equivalent to the original insns.
2174
2175 Consider:
2176
2177 (set (reg:DI 101) (reg:DI 100))
2178 (set (subreg:SI (reg:DI 101) 0) <foo>)
2179
2180 This is NOT equivalent to:
2181
2182 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2183 (set (reg:DI 101) (reg:DI 100))])
2184
2185 Not only does this modify 100 (in which case it might still be valid
2186 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2187
2188 We can also run into a problem if I2 sets a register that I1
2189 uses and I1 gets directly substituted into I3 (not via I2). In that
2190 case, we would be getting the wrong value of I2DEST into I3, so we
2191 must reject the combination. This case occurs when I2 and I1 both
2192 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2193 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2194 of a SET must prevent combination from occurring. The same situation
2195 can occur for I0, in which case I0_NOT_IN_SRC is set.
2196
2197 Before doing the above check, we first try to expand a field assignment
2198 into a set of logical operations.
2199
2200 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2201 we place a register that is both set and used within I3. If more than one
2202 such register is detected, we fail.
2203
2204 Return 1 if the combination is valid, zero otherwise. */
2205
2206 static int
2207 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2208 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2209 {
2210 rtx x = *loc;
2211
2212 if (GET_CODE (x) == SET)
2213 {
2214 rtx set = x ;
2215 rtx dest = SET_DEST (set);
2216 rtx src = SET_SRC (set);
2217 rtx inner_dest = dest;
2218 rtx subdest;
2219
2220 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2221 || GET_CODE (inner_dest) == SUBREG
2222 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2223 inner_dest = XEXP (inner_dest, 0);
2224
2225 /* Check for the case where I3 modifies its output, as discussed
2226 above. We don't want to prevent pseudos from being combined
2227 into the address of a MEM, so only prevent the combination if
2228 i1 or i2 set the same MEM. */
2229 if ((inner_dest != dest &&
2230 (!MEM_P (inner_dest)
2231 || rtx_equal_p (i2dest, inner_dest)
2232 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2233 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2234 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2235 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2236 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2237
2238 /* This is the same test done in can_combine_p except we can't test
2239 all_adjacent; we don't have to, since this instruction will stay
2240 in place, thus we are not considering increasing the lifetime of
2241 INNER_DEST.
2242
2243 Also, if this insn sets a function argument, combining it with
2244 something that might need a spill could clobber a previous
2245 function argument; the all_adjacent test in can_combine_p also
2246 checks this; here, we do a more specific test for this case. */
2247
2248 || (REG_P (inner_dest)
2249 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2250 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2251 GET_MODE (inner_dest)))
2252 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2253 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2254 return 0;
2255
2256 /* If DEST is used in I3, it is being killed in this insn, so
2257 record that for later. We have to consider paradoxical
2258 subregs here, since they kill the whole register, but we
2259 ignore partial subregs, STRICT_LOW_PART, etc.
2260 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2261 STACK_POINTER_REGNUM, since these are always considered to be
2262 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2263 subdest = dest;
2264 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2265 subdest = SUBREG_REG (subdest);
2266 if (pi3dest_killed
2267 && REG_P (subdest)
2268 && reg_referenced_p (subdest, PATTERN (i3))
2269 && REGNO (subdest) != FRAME_POINTER_REGNUM
2270 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2271 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2272 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2273 || (REGNO (subdest) != ARG_POINTER_REGNUM
2274 || ! fixed_regs [REGNO (subdest)]))
2275 && REGNO (subdest) != STACK_POINTER_REGNUM)
2276 {
2277 if (*pi3dest_killed)
2278 return 0;
2279
2280 *pi3dest_killed = subdest;
2281 }
2282 }
2283
2284 else if (GET_CODE (x) == PARALLEL)
2285 {
2286 int i;
2287
2288 for (i = 0; i < XVECLEN (x, 0); i++)
2289 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2290 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2291 return 0;
2292 }
2293
2294 return 1;
2295 }
2296 \f
2297 /* Return 1 if X is an arithmetic expression that contains a multiplication
2298 and division. We don't count multiplications by powers of two here. */
2299
2300 static int
2301 contains_muldiv (rtx x)
2302 {
2303 switch (GET_CODE (x))
2304 {
2305 case MOD: case DIV: case UMOD: case UDIV:
2306 return 1;
2307
2308 case MULT:
2309 return ! (CONST_INT_P (XEXP (x, 1))
2310 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2311 default:
2312 if (BINARY_P (x))
2313 return contains_muldiv (XEXP (x, 0))
2314 || contains_muldiv (XEXP (x, 1));
2315
2316 if (UNARY_P (x))
2317 return contains_muldiv (XEXP (x, 0));
2318
2319 return 0;
2320 }
2321 }
2322 \f
2323 /* Determine whether INSN can be used in a combination. Return nonzero if
2324 not. This is used in try_combine to detect early some cases where we
2325 can't perform combinations. */
2326
2327 static int
2328 cant_combine_insn_p (rtx_insn *insn)
2329 {
2330 rtx set;
2331 rtx src, dest;
2332
2333 /* If this isn't really an insn, we can't do anything.
2334 This can occur when flow deletes an insn that it has merged into an
2335 auto-increment address. */
2336 if (!NONDEBUG_INSN_P (insn))
2337 return 1;
2338
2339 /* Never combine loads and stores involving hard regs that are likely
2340 to be spilled. The register allocator can usually handle such
2341 reg-reg moves by tying. If we allow the combiner to make
2342 substitutions of likely-spilled regs, reload might die.
2343 As an exception, we allow combinations involving fixed regs; these are
2344 not available to the register allocator so there's no risk involved. */
2345
2346 set = single_set (insn);
2347 if (! set)
2348 return 0;
2349 src = SET_SRC (set);
2350 dest = SET_DEST (set);
2351 if (GET_CODE (src) == SUBREG)
2352 src = SUBREG_REG (src);
2353 if (GET_CODE (dest) == SUBREG)
2354 dest = SUBREG_REG (dest);
2355 if (REG_P (src) && REG_P (dest)
2356 && ((HARD_REGISTER_P (src)
2357 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2358 #ifdef LEAF_REGISTERS
2359 && ! LEAF_REGISTERS [REGNO (src)])
2360 #else
2361 )
2362 #endif
2363 || (HARD_REGISTER_P (dest)
2364 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2365 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2366 return 1;
2367
2368 return 0;
2369 }
2370
2371 struct likely_spilled_retval_info
2372 {
2373 unsigned regno, nregs;
2374 unsigned mask;
2375 };
2376
2377 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2378 hard registers that are known to be written to / clobbered in full. */
2379 static void
2380 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2381 {
2382 struct likely_spilled_retval_info *const info =
2383 (struct likely_spilled_retval_info *) data;
2384 unsigned regno, nregs;
2385 unsigned new_mask;
2386
2387 if (!REG_P (XEXP (set, 0)))
2388 return;
2389 regno = REGNO (x);
2390 if (regno >= info->regno + info->nregs)
2391 return;
2392 nregs = REG_NREGS (x);
2393 if (regno + nregs <= info->regno)
2394 return;
2395 new_mask = (2U << (nregs - 1)) - 1;
2396 if (regno < info->regno)
2397 new_mask >>= info->regno - regno;
2398 else
2399 new_mask <<= regno - info->regno;
2400 info->mask &= ~new_mask;
2401 }
2402
2403 /* Return nonzero iff part of the return value is live during INSN, and
2404 it is likely spilled. This can happen when more than one insn is needed
2405 to copy the return value, e.g. when we consider to combine into the
2406 second copy insn for a complex value. */
2407
2408 static int
2409 likely_spilled_retval_p (rtx_insn *insn)
2410 {
2411 rtx_insn *use = BB_END (this_basic_block);
2412 rtx reg;
2413 rtx_insn *p;
2414 unsigned regno, nregs;
2415 /* We assume here that no machine mode needs more than
2416 32 hard registers when the value overlaps with a register
2417 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2418 unsigned mask;
2419 struct likely_spilled_retval_info info;
2420
2421 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2422 return 0;
2423 reg = XEXP (PATTERN (use), 0);
2424 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2425 return 0;
2426 regno = REGNO (reg);
2427 nregs = REG_NREGS (reg);
2428 if (nregs == 1)
2429 return 0;
2430 mask = (2U << (nregs - 1)) - 1;
2431
2432 /* Disregard parts of the return value that are set later. */
2433 info.regno = regno;
2434 info.nregs = nregs;
2435 info.mask = mask;
2436 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2437 if (INSN_P (p))
2438 note_stores (p, likely_spilled_retval_1, &info);
2439 mask = info.mask;
2440
2441 /* Check if any of the (probably) live return value registers is
2442 likely spilled. */
2443 nregs --;
2444 do
2445 {
2446 if ((mask & 1 << nregs)
2447 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2448 return 1;
2449 } while (nregs--);
2450 return 0;
2451 }
2452
2453 /* Adjust INSN after we made a change to its destination.
2454
2455 Changing the destination can invalidate notes that say something about
2456 the results of the insn and a LOG_LINK pointing to the insn. */
2457
2458 static void
2459 adjust_for_new_dest (rtx_insn *insn)
2460 {
2461 /* For notes, be conservative and simply remove them. */
2462 remove_reg_equal_equiv_notes (insn, true);
2463
2464 /* The new insn will have a destination that was previously the destination
2465 of an insn just above it. Call distribute_links to make a LOG_LINK from
2466 the next use of that destination. */
2467
2468 rtx set = single_set (insn);
2469 gcc_assert (set);
2470
2471 rtx reg = SET_DEST (set);
2472
2473 while (GET_CODE (reg) == ZERO_EXTRACT
2474 || GET_CODE (reg) == STRICT_LOW_PART
2475 || GET_CODE (reg) == SUBREG)
2476 reg = XEXP (reg, 0);
2477 gcc_assert (REG_P (reg));
2478
2479 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2480
2481 df_insn_rescan (insn);
2482 }
2483
2484 /* Return TRUE if combine can reuse reg X in mode MODE.
2485 ADDED_SETS is nonzero if the original set is still required. */
2486 static bool
2487 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2488 {
2489 unsigned int regno;
2490
2491 if (!REG_P (x))
2492 return false;
2493
2494 /* Don't change between modes with different underlying register sizes,
2495 since this could lead to invalid subregs. */
2496 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2497 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2498 return false;
2499
2500 regno = REGNO (x);
2501 /* Allow hard registers if the new mode is legal, and occupies no more
2502 registers than the old mode. */
2503 if (regno < FIRST_PSEUDO_REGISTER)
2504 return (targetm.hard_regno_mode_ok (regno, mode)
2505 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2506
2507 /* Or a pseudo that is only used once. */
2508 return (regno < reg_n_sets_max
2509 && REG_N_SETS (regno) == 1
2510 && !added_sets
2511 && !REG_USERVAR_P (x));
2512 }
2513
2514
2515 /* Check whether X, the destination of a set, refers to part of
2516 the register specified by REG. */
2517
2518 static bool
2519 reg_subword_p (rtx x, rtx reg)
2520 {
2521 /* Check that reg is an integer mode register. */
2522 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2523 return false;
2524
2525 if (GET_CODE (x) == STRICT_LOW_PART
2526 || GET_CODE (x) == ZERO_EXTRACT)
2527 x = XEXP (x, 0);
2528
2529 return GET_CODE (x) == SUBREG
2530 && SUBREG_REG (x) == reg
2531 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2532 }
2533
2534 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2535 by an arbitrary number of CLOBBERs. */
2536 static bool
2537 is_parallel_of_n_reg_sets (rtx pat, int n)
2538 {
2539 if (GET_CODE (pat) != PARALLEL)
2540 return false;
2541
2542 int len = XVECLEN (pat, 0);
2543 if (len < n)
2544 return false;
2545
2546 int i;
2547 for (i = 0; i < n; i++)
2548 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2549 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2550 return false;
2551 for ( ; i < len; i++)
2552 switch (GET_CODE (XVECEXP (pat, 0, i)))
2553 {
2554 case CLOBBER:
2555 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2556 return false;
2557 break;
2558 default:
2559 return false;
2560 }
2561 return true;
2562 }
2563
2564 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2565 CLOBBERs), can be split into individual SETs in that order, without
2566 changing semantics. */
2567 static bool
2568 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2569 {
2570 if (!insn_nothrow_p (insn))
2571 return false;
2572
2573 rtx pat = PATTERN (insn);
2574
2575 int i, j;
2576 for (i = 0; i < n; i++)
2577 {
2578 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2579 return false;
2580
2581 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2582
2583 for (j = i + 1; j < n; j++)
2584 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2585 return false;
2586 }
2587
2588 return true;
2589 }
2590
2591 /* Return whether X is just a single_set, with the source
2592 a general_operand. */
2593 static bool
2594 is_just_move (rtx_insn *x)
2595 {
2596 rtx set = single_set (x);
2597 if (!set)
2598 return false;
2599
2600 return general_operand (SET_SRC (set), VOIDmode);
2601 }
2602
2603 /* Callback function to count autoincs. */
2604
2605 static int
2606 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2607 {
2608 (*((int *) arg))++;
2609
2610 return 0;
2611 }
2612
2613 /* Try to combine the insns I0, I1 and I2 into I3.
2614 Here I0, I1 and I2 appear earlier than I3.
2615 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2616 I3.
2617
2618 If we are combining more than two insns and the resulting insn is not
2619 recognized, try splitting it into two insns. If that happens, I2 and I3
2620 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2621 Otherwise, I0, I1 and I2 are pseudo-deleted.
2622
2623 Return 0 if the combination does not work. Then nothing is changed.
2624 If we did the combination, return the insn at which combine should
2625 resume scanning.
2626
2627 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2628 new direct jump instruction.
2629
2630 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2631 been I3 passed to an earlier try_combine within the same basic
2632 block. */
2633
2634 static rtx_insn *
2635 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2636 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2637 {
2638 /* New patterns for I3 and I2, respectively. */
2639 rtx newpat, newi2pat = 0;
2640 rtvec newpat_vec_with_clobbers = 0;
2641 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2642 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2643 dead. */
2644 int added_sets_0, added_sets_1, added_sets_2;
2645 /* Total number of SETs to put into I3. */
2646 int total_sets;
2647 /* Nonzero if I2's or I1's body now appears in I3. */
2648 int i2_is_used = 0, i1_is_used = 0;
2649 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2650 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2651 /* Contains I3 if the destination of I3 is used in its source, which means
2652 that the old life of I3 is being killed. If that usage is placed into
2653 I2 and not in I3, a REG_DEAD note must be made. */
2654 rtx i3dest_killed = 0;
2655 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2656 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2657 /* Copy of SET_SRC of I1 and I0, if needed. */
2658 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2659 /* Set if I2DEST was reused as a scratch register. */
2660 bool i2scratch = false;
2661 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2662 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2663 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2664 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2665 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2666 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2667 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2668 /* Notes that must be added to REG_NOTES in I3 and I2. */
2669 rtx new_i3_notes, new_i2_notes;
2670 /* Notes that we substituted I3 into I2 instead of the normal case. */
2671 int i3_subst_into_i2 = 0;
2672 /* Notes that I1, I2 or I3 is a MULT operation. */
2673 int have_mult = 0;
2674 int swap_i2i3 = 0;
2675 int split_i2i3 = 0;
2676 int changed_i3_dest = 0;
2677 bool i2_was_move = false, i3_was_move = false;
2678 int n_auto_inc = 0;
2679
2680 int maxreg;
2681 rtx_insn *temp_insn;
2682 rtx temp_expr;
2683 struct insn_link *link;
2684 rtx other_pat = 0;
2685 rtx new_other_notes;
2686 int i;
2687 scalar_int_mode dest_mode, temp_mode;
2688
2689 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2690 never be). */
2691 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2692 return 0;
2693
2694 /* Only try four-insn combinations when there's high likelihood of
2695 success. Look for simple insns, such as loads of constants or
2696 binary operations involving a constant. */
2697 if (i0)
2698 {
2699 int i;
2700 int ngood = 0;
2701 int nshift = 0;
2702 rtx set0, set3;
2703
2704 if (!flag_expensive_optimizations)
2705 return 0;
2706
2707 for (i = 0; i < 4; i++)
2708 {
2709 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2710 rtx set = single_set (insn);
2711 rtx src;
2712 if (!set)
2713 continue;
2714 src = SET_SRC (set);
2715 if (CONSTANT_P (src))
2716 {
2717 ngood += 2;
2718 break;
2719 }
2720 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2721 ngood++;
2722 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2723 || GET_CODE (src) == LSHIFTRT)
2724 nshift++;
2725 }
2726
2727 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2728 are likely manipulating its value. Ideally we'll be able to combine
2729 all four insns into a bitfield insertion of some kind.
2730
2731 Note the source in I0 might be inside a sign/zero extension and the
2732 memory modes in I0 and I3 might be different. So extract the address
2733 from the destination of I3 and search for it in the source of I0.
2734
2735 In the event that there's a match but the source/dest do not actually
2736 refer to the same memory, the worst that happens is we try some
2737 combinations that we wouldn't have otherwise. */
2738 if ((set0 = single_set (i0))
2739 /* Ensure the source of SET0 is a MEM, possibly buried inside
2740 an extension. */
2741 && (GET_CODE (SET_SRC (set0)) == MEM
2742 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2743 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2744 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2745 && (set3 = single_set (i3))
2746 /* Ensure the destination of SET3 is a MEM. */
2747 && GET_CODE (SET_DEST (set3)) == MEM
2748 /* Would it be better to extract the base address for the MEM
2749 in SET3 and look for that? I don't have cases where it matters
2750 but I could envision such cases. */
2751 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2752 ngood += 2;
2753
2754 if (ngood < 2 && nshift < 2)
2755 return 0;
2756 }
2757
2758 /* Exit early if one of the insns involved can't be used for
2759 combinations. */
2760 if (CALL_P (i2)
2761 || (i1 && CALL_P (i1))
2762 || (i0 && CALL_P (i0))
2763 || cant_combine_insn_p (i3)
2764 || cant_combine_insn_p (i2)
2765 || (i1 && cant_combine_insn_p (i1))
2766 || (i0 && cant_combine_insn_p (i0))
2767 || likely_spilled_retval_p (i3))
2768 return 0;
2769
2770 combine_attempts++;
2771 undobuf.other_insn = 0;
2772
2773 /* Reset the hard register usage information. */
2774 CLEAR_HARD_REG_SET (newpat_used_regs);
2775
2776 if (dump_file && (dump_flags & TDF_DETAILS))
2777 {
2778 if (i0)
2779 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2780 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2781 else if (i1)
2782 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2783 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2784 else
2785 fprintf (dump_file, "\nTrying %d -> %d:\n",
2786 INSN_UID (i2), INSN_UID (i3));
2787
2788 if (i0)
2789 dump_insn_slim (dump_file, i0);
2790 if (i1)
2791 dump_insn_slim (dump_file, i1);
2792 dump_insn_slim (dump_file, i2);
2793 dump_insn_slim (dump_file, i3);
2794 }
2795
2796 /* If multiple insns feed into one of I2 or I3, they can be in any
2797 order. To simplify the code below, reorder them in sequence. */
2798 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2799 std::swap (i0, i2);
2800 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2801 std::swap (i0, i1);
2802 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2803 std::swap (i1, i2);
2804
2805 added_links_insn = 0;
2806 added_notes_insn = 0;
2807
2808 /* First check for one important special case that the code below will
2809 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2810 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2811 we may be able to replace that destination with the destination of I3.
2812 This occurs in the common code where we compute both a quotient and
2813 remainder into a structure, in which case we want to do the computation
2814 directly into the structure to avoid register-register copies.
2815
2816 Note that this case handles both multiple sets in I2 and also cases
2817 where I2 has a number of CLOBBERs inside the PARALLEL.
2818
2819 We make very conservative checks below and only try to handle the
2820 most common cases of this. For example, we only handle the case
2821 where I2 and I3 are adjacent to avoid making difficult register
2822 usage tests. */
2823
2824 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2825 && REG_P (SET_SRC (PATTERN (i3)))
2826 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2827 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2828 && GET_CODE (PATTERN (i2)) == PARALLEL
2829 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2830 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2831 below would need to check what is inside (and reg_overlap_mentioned_p
2832 doesn't support those codes anyway). Don't allow those destinations;
2833 the resulting insn isn't likely to be recognized anyway. */
2834 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2835 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2836 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2837 SET_DEST (PATTERN (i3)))
2838 && next_active_insn (i2) == i3)
2839 {
2840 rtx p2 = PATTERN (i2);
2841
2842 /* Make sure that the destination of I3,
2843 which we are going to substitute into one output of I2,
2844 is not used within another output of I2. We must avoid making this:
2845 (parallel [(set (mem (reg 69)) ...)
2846 (set (reg 69) ...)])
2847 which is not well-defined as to order of actions.
2848 (Besides, reload can't handle output reloads for this.)
2849
2850 The problem can also happen if the dest of I3 is a memory ref,
2851 if another dest in I2 is an indirect memory ref.
2852
2853 Neither can this PARALLEL be an asm. We do not allow combining
2854 that usually (see can_combine_p), so do not here either. */
2855 bool ok = true;
2856 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2857 {
2858 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2859 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2860 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2861 SET_DEST (XVECEXP (p2, 0, i))))
2862 ok = false;
2863 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2864 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2865 ok = false;
2866 }
2867
2868 if (ok)
2869 for (i = 0; i < XVECLEN (p2, 0); i++)
2870 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2871 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2872 {
2873 combine_merges++;
2874
2875 subst_insn = i3;
2876 subst_low_luid = DF_INSN_LUID (i2);
2877
2878 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2879 i2src = SET_SRC (XVECEXP (p2, 0, i));
2880 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2881 i2dest_killed = dead_or_set_p (i2, i2dest);
2882
2883 /* Replace the dest in I2 with our dest and make the resulting
2884 insn the new pattern for I3. Then skip to where we validate
2885 the pattern. Everything was set up above. */
2886 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2887 newpat = p2;
2888 i3_subst_into_i2 = 1;
2889 goto validate_replacement;
2890 }
2891 }
2892
2893 /* If I2 is setting a pseudo to a constant and I3 is setting some
2894 sub-part of it to another constant, merge them by making a new
2895 constant. */
2896 if (i1 == 0
2897 && (temp_expr = single_set (i2)) != 0
2898 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2899 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2900 && GET_CODE (PATTERN (i3)) == SET
2901 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2902 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2903 {
2904 rtx dest = SET_DEST (PATTERN (i3));
2905 rtx temp_dest = SET_DEST (temp_expr);
2906 int offset = -1;
2907 int width = 0;
2908
2909 if (GET_CODE (dest) == ZERO_EXTRACT)
2910 {
2911 if (CONST_INT_P (XEXP (dest, 1))
2912 && CONST_INT_P (XEXP (dest, 2))
2913 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2914 &dest_mode))
2915 {
2916 width = INTVAL (XEXP (dest, 1));
2917 offset = INTVAL (XEXP (dest, 2));
2918 dest = XEXP (dest, 0);
2919 if (BITS_BIG_ENDIAN)
2920 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2921 }
2922 }
2923 else
2924 {
2925 if (GET_CODE (dest) == STRICT_LOW_PART)
2926 dest = XEXP (dest, 0);
2927 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2928 {
2929 width = GET_MODE_PRECISION (dest_mode);
2930 offset = 0;
2931 }
2932 }
2933
2934 if (offset >= 0)
2935 {
2936 /* If this is the low part, we're done. */
2937 if (subreg_lowpart_p (dest))
2938 ;
2939 /* Handle the case where inner is twice the size of outer. */
2940 else if (GET_MODE_PRECISION (temp_mode)
2941 == 2 * GET_MODE_PRECISION (dest_mode))
2942 offset += GET_MODE_PRECISION (dest_mode);
2943 /* Otherwise give up for now. */
2944 else
2945 offset = -1;
2946 }
2947
2948 if (offset >= 0)
2949 {
2950 rtx inner = SET_SRC (PATTERN (i3));
2951 rtx outer = SET_SRC (temp_expr);
2952
2953 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2954 rtx_mode_t (inner, dest_mode),
2955 offset, width);
2956
2957 combine_merges++;
2958 subst_insn = i3;
2959 subst_low_luid = DF_INSN_LUID (i2);
2960 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2961 i2dest = temp_dest;
2962 i2dest_killed = dead_or_set_p (i2, i2dest);
2963
2964 /* Replace the source in I2 with the new constant and make the
2965 resulting insn the new pattern for I3. Then skip to where we
2966 validate the pattern. Everything was set up above. */
2967 SUBST (SET_SRC (temp_expr),
2968 immed_wide_int_const (o, temp_mode));
2969
2970 newpat = PATTERN (i2);
2971
2972 /* The dest of I3 has been replaced with the dest of I2. */
2973 changed_i3_dest = 1;
2974 goto validate_replacement;
2975 }
2976 }
2977
2978 /* If we have no I1 and I2 looks like:
2979 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2980 (set Y OP)])
2981 make up a dummy I1 that is
2982 (set Y OP)
2983 and change I2 to be
2984 (set (reg:CC X) (compare:CC Y (const_int 0)))
2985
2986 (We can ignore any trailing CLOBBERs.)
2987
2988 This undoes a previous combination and allows us to match a branch-and-
2989 decrement insn. */
2990
2991 if (!HAVE_cc0 && i1 == 0
2992 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2993 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2994 == MODE_CC)
2995 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2996 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2997 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2998 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2999 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3000 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3001 {
3002 /* We make I1 with the same INSN_UID as I2. This gives it
3003 the same DF_INSN_LUID for value tracking. Our fake I1 will
3004 never appear in the insn stream so giving it the same INSN_UID
3005 as I2 will not cause a problem. */
3006
3007 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3008 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3009 -1, NULL_RTX);
3010 INSN_UID (i1) = INSN_UID (i2);
3011
3012 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3013 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3014 SET_DEST (PATTERN (i1)));
3015 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3016 SUBST_LINK (LOG_LINKS (i2),
3017 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3018 }
3019
3020 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3021 make those two SETs separate I1 and I2 insns, and make an I0 that is
3022 the original I1. */
3023 if (!HAVE_cc0 && i0 == 0
3024 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3025 && can_split_parallel_of_n_reg_sets (i2, 2)
3026 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3027 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3028 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3029 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3030 {
3031 /* If there is no I1, there is no I0 either. */
3032 i0 = i1;
3033
3034 /* We make I1 with the same INSN_UID as I2. This gives it
3035 the same DF_INSN_LUID for value tracking. Our fake I1 will
3036 never appear in the insn stream so giving it the same INSN_UID
3037 as I2 will not cause a problem. */
3038
3039 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3040 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3041 -1, NULL_RTX);
3042 INSN_UID (i1) = INSN_UID (i2);
3043
3044 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3045 }
3046
3047 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3048 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3049 {
3050 if (dump_file && (dump_flags & TDF_DETAILS))
3051 fprintf (dump_file, "Can't combine i2 into i3\n");
3052 undo_all ();
3053 return 0;
3054 }
3055 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3056 {
3057 if (dump_file && (dump_flags & TDF_DETAILS))
3058 fprintf (dump_file, "Can't combine i1 into i3\n");
3059 undo_all ();
3060 return 0;
3061 }
3062 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3063 {
3064 if (dump_file && (dump_flags & TDF_DETAILS))
3065 fprintf (dump_file, "Can't combine i0 into i3\n");
3066 undo_all ();
3067 return 0;
3068 }
3069
3070 /* Record whether i2 and i3 are trivial moves. */
3071 i2_was_move = is_just_move (i2);
3072 i3_was_move = is_just_move (i3);
3073
3074 /* Record whether I2DEST is used in I2SRC and similarly for the other
3075 cases. Knowing this will help in register status updating below. */
3076 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3077 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3078 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3079 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3080 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3081 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3082 i2dest_killed = dead_or_set_p (i2, i2dest);
3083 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3084 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3085
3086 /* For the earlier insns, determine which of the subsequent ones they
3087 feed. */
3088 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3089 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3090 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3091 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3092 && reg_overlap_mentioned_p (i0dest, i2src))));
3093
3094 /* Ensure that I3's pattern can be the destination of combines. */
3095 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3096 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3097 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3098 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3099 &i3dest_killed))
3100 {
3101 undo_all ();
3102 return 0;
3103 }
3104
3105 /* See if any of the insns is a MULT operation. Unless one is, we will
3106 reject a combination that is, since it must be slower. Be conservative
3107 here. */
3108 if (GET_CODE (i2src) == MULT
3109 || (i1 != 0 && GET_CODE (i1src) == MULT)
3110 || (i0 != 0 && GET_CODE (i0src) == MULT)
3111 || (GET_CODE (PATTERN (i3)) == SET
3112 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3113 have_mult = 1;
3114
3115 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3116 We used to do this EXCEPT in one case: I3 has a post-inc in an
3117 output operand. However, that exception can give rise to insns like
3118 mov r3,(r3)+
3119 which is a famous insn on the PDP-11 where the value of r3 used as the
3120 source was model-dependent. Avoid this sort of thing. */
3121
3122 #if 0
3123 if (!(GET_CODE (PATTERN (i3)) == SET
3124 && REG_P (SET_SRC (PATTERN (i3)))
3125 && MEM_P (SET_DEST (PATTERN (i3)))
3126 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3127 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3128 /* It's not the exception. */
3129 #endif
3130 if (AUTO_INC_DEC)
3131 {
3132 rtx link;
3133 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3134 if (REG_NOTE_KIND (link) == REG_INC
3135 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3136 || (i1 != 0
3137 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3138 {
3139 undo_all ();
3140 return 0;
3141 }
3142 }
3143
3144 /* See if the SETs in I1 or I2 need to be kept around in the merged
3145 instruction: whenever the value set there is still needed past I3.
3146 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3147
3148 For the SET in I1, we have two cases: if I1 and I2 independently feed
3149 into I3, the set in I1 needs to be kept around unless I1DEST dies
3150 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3151 in I1 needs to be kept around unless I1DEST dies or is set in either
3152 I2 or I3. The same considerations apply to I0. */
3153
3154 added_sets_2 = !dead_or_set_p (i3, i2dest);
3155
3156 if (i1)
3157 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3158 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3159 else
3160 added_sets_1 = 0;
3161
3162 if (i0)
3163 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3164 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3165 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3166 && dead_or_set_p (i2, i0dest)));
3167 else
3168 added_sets_0 = 0;
3169
3170 /* We are about to copy insns for the case where they need to be kept
3171 around. Check that they can be copied in the merged instruction. */
3172
3173 if (targetm.cannot_copy_insn_p
3174 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3175 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3176 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3177 {
3178 undo_all ();
3179 return 0;
3180 }
3181
3182 /* Count how many auto_inc expressions there were in the original insns;
3183 we need to have the same number in the resulting patterns. */
3184
3185 if (i0)
3186 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3187 if (i1)
3188 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3189 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3190 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3191
3192 /* If the set in I2 needs to be kept around, we must make a copy of
3193 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3194 PATTERN (I2), we are only substituting for the original I1DEST, not into
3195 an already-substituted copy. This also prevents making self-referential
3196 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3197 I2DEST. */
3198
3199 if (added_sets_2)
3200 {
3201 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3202 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3203 else
3204 i2pat = copy_rtx (PATTERN (i2));
3205 }
3206
3207 if (added_sets_1)
3208 {
3209 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3210 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3211 else
3212 i1pat = copy_rtx (PATTERN (i1));
3213 }
3214
3215 if (added_sets_0)
3216 {
3217 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3218 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3219 else
3220 i0pat = copy_rtx (PATTERN (i0));
3221 }
3222
3223 combine_merges++;
3224
3225 /* Substitute in the latest insn for the regs set by the earlier ones. */
3226
3227 maxreg = max_reg_num ();
3228
3229 subst_insn = i3;
3230
3231 /* Many machines that don't use CC0 have insns that can both perform an
3232 arithmetic operation and set the condition code. These operations will
3233 be represented as a PARALLEL with the first element of the vector
3234 being a COMPARE of an arithmetic operation with the constant zero.
3235 The second element of the vector will set some pseudo to the result
3236 of the same arithmetic operation. If we simplify the COMPARE, we won't
3237 match such a pattern and so will generate an extra insn. Here we test
3238 for this case, where both the comparison and the operation result are
3239 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3240 I2SRC. Later we will make the PARALLEL that contains I2. */
3241
3242 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3243 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3244 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3245 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3246 {
3247 rtx newpat_dest;
3248 rtx *cc_use_loc = NULL;
3249 rtx_insn *cc_use_insn = NULL;
3250 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3251 machine_mode compare_mode, orig_compare_mode;
3252 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3253 scalar_int_mode mode;
3254
3255 newpat = PATTERN (i3);
3256 newpat_dest = SET_DEST (newpat);
3257 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3258
3259 if (undobuf.other_insn == 0
3260 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3261 &cc_use_insn)))
3262 {
3263 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3264 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3265 compare_code = simplify_compare_const (compare_code, mode,
3266 op0, &op1);
3267 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3268 }
3269
3270 /* Do the rest only if op1 is const0_rtx, which may be the
3271 result of simplification. */
3272 if (op1 == const0_rtx)
3273 {
3274 /* If a single use of the CC is found, prepare to modify it
3275 when SELECT_CC_MODE returns a new CC-class mode, or when
3276 the above simplify_compare_const() returned a new comparison
3277 operator. undobuf.other_insn is assigned the CC use insn
3278 when modifying it. */
3279 if (cc_use_loc)
3280 {
3281 #ifdef SELECT_CC_MODE
3282 machine_mode new_mode
3283 = SELECT_CC_MODE (compare_code, op0, op1);
3284 if (new_mode != orig_compare_mode
3285 && can_change_dest_mode (SET_DEST (newpat),
3286 added_sets_2, new_mode))
3287 {
3288 unsigned int regno = REGNO (newpat_dest);
3289 compare_mode = new_mode;
3290 if (regno < FIRST_PSEUDO_REGISTER)
3291 newpat_dest = gen_rtx_REG (compare_mode, regno);
3292 else
3293 {
3294 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3295 newpat_dest = regno_reg_rtx[regno];
3296 }
3297 }
3298 #endif
3299 /* Cases for modifying the CC-using comparison. */
3300 if (compare_code != orig_compare_code
3301 /* ??? Do we need to verify the zero rtx? */
3302 && XEXP (*cc_use_loc, 1) == const0_rtx)
3303 {
3304 /* Replace cc_use_loc with entire new RTX. */
3305 SUBST (*cc_use_loc,
3306 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3307 newpat_dest, const0_rtx));
3308 undobuf.other_insn = cc_use_insn;
3309 }
3310 else if (compare_mode != orig_compare_mode)
3311 {
3312 /* Just replace the CC reg with a new mode. */
3313 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3314 undobuf.other_insn = cc_use_insn;
3315 }
3316 }
3317
3318 /* Now we modify the current newpat:
3319 First, SET_DEST(newpat) is updated if the CC mode has been
3320 altered. For targets without SELECT_CC_MODE, this should be
3321 optimized away. */
3322 if (compare_mode != orig_compare_mode)
3323 SUBST (SET_DEST (newpat), newpat_dest);
3324 /* This is always done to propagate i2src into newpat. */
3325 SUBST (SET_SRC (newpat),
3326 gen_rtx_COMPARE (compare_mode, op0, op1));
3327 /* Create new version of i2pat if needed; the below PARALLEL
3328 creation needs this to work correctly. */
3329 if (! rtx_equal_p (i2src, op0))
3330 i2pat = gen_rtx_SET (i2dest, op0);
3331 i2_is_used = 1;
3332 }
3333 }
3334
3335 if (i2_is_used == 0)
3336 {
3337 /* It is possible that the source of I2 or I1 may be performing
3338 an unneeded operation, such as a ZERO_EXTEND of something
3339 that is known to have the high part zero. Handle that case
3340 by letting subst look at the inner insns.
3341
3342 Another way to do this would be to have a function that tries
3343 to simplify a single insn instead of merging two or more
3344 insns. We don't do this because of the potential of infinite
3345 loops and because of the potential extra memory required.
3346 However, doing it the way we are is a bit of a kludge and
3347 doesn't catch all cases.
3348
3349 But only do this if -fexpensive-optimizations since it slows
3350 things down and doesn't usually win.
3351
3352 This is not done in the COMPARE case above because the
3353 unmodified I2PAT is used in the PARALLEL and so a pattern
3354 with a modified I2SRC would not match. */
3355
3356 if (flag_expensive_optimizations)
3357 {
3358 /* Pass pc_rtx so no substitutions are done, just
3359 simplifications. */
3360 if (i1)
3361 {
3362 subst_low_luid = DF_INSN_LUID (i1);
3363 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3364 }
3365
3366 subst_low_luid = DF_INSN_LUID (i2);
3367 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3368 }
3369
3370 n_occurrences = 0; /* `subst' counts here */
3371 subst_low_luid = DF_INSN_LUID (i2);
3372
3373 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3374 copy of I2SRC each time we substitute it, in order to avoid creating
3375 self-referential RTL when we will be substituting I1SRC for I1DEST
3376 later. Likewise if I0 feeds into I2, either directly or indirectly
3377 through I1, and I0DEST is in I0SRC. */
3378 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3379 (i1_feeds_i2_n && i1dest_in_i1src)
3380 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3381 && i0dest_in_i0src));
3382 substed_i2 = 1;
3383
3384 /* Record whether I2's body now appears within I3's body. */
3385 i2_is_used = n_occurrences;
3386 }
3387
3388 /* If we already got a failure, don't try to do more. Otherwise, try to
3389 substitute I1 if we have it. */
3390
3391 if (i1 && GET_CODE (newpat) != CLOBBER)
3392 {
3393 /* Before we can do this substitution, we must redo the test done
3394 above (see detailed comments there) that ensures I1DEST isn't
3395 mentioned in any SETs in NEWPAT that are field assignments. */
3396 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3397 0, 0, 0))
3398 {
3399 undo_all ();
3400 return 0;
3401 }
3402
3403 n_occurrences = 0;
3404 subst_low_luid = DF_INSN_LUID (i1);
3405
3406 /* If the following substitution will modify I1SRC, make a copy of it
3407 for the case where it is substituted for I1DEST in I2PAT later. */
3408 if (added_sets_2 && i1_feeds_i2_n)
3409 i1src_copy = copy_rtx (i1src);
3410
3411 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3412 copy of I1SRC each time we substitute it, in order to avoid creating
3413 self-referential RTL when we will be substituting I0SRC for I0DEST
3414 later. */
3415 newpat = subst (newpat, i1dest, i1src, 0, 0,
3416 i0_feeds_i1_n && i0dest_in_i0src);
3417 substed_i1 = 1;
3418
3419 /* Record whether I1's body now appears within I3's body. */
3420 i1_is_used = n_occurrences;
3421 }
3422
3423 /* Likewise for I0 if we have it. */
3424
3425 if (i0 && GET_CODE (newpat) != CLOBBER)
3426 {
3427 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3428 0, 0, 0))
3429 {
3430 undo_all ();
3431 return 0;
3432 }
3433
3434 /* If the following substitution will modify I0SRC, make a copy of it
3435 for the case where it is substituted for I0DEST in I1PAT later. */
3436 if (added_sets_1 && i0_feeds_i1_n)
3437 i0src_copy = copy_rtx (i0src);
3438 /* And a copy for I0DEST in I2PAT substitution. */
3439 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3440 || (i0_feeds_i2_n)))
3441 i0src_copy2 = copy_rtx (i0src);
3442
3443 n_occurrences = 0;
3444 subst_low_luid = DF_INSN_LUID (i0);
3445 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3446 substed_i0 = 1;
3447 }
3448
3449 if (n_auto_inc)
3450 {
3451 int new_n_auto_inc = 0;
3452 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3453
3454 if (n_auto_inc != new_n_auto_inc)
3455 {
3456 if (dump_file && (dump_flags & TDF_DETAILS))
3457 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3458 undo_all ();
3459 return 0;
3460 }
3461 }
3462
3463 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3464 to count all the ways that I2SRC and I1SRC can be used. */
3465 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3466 && i2_is_used + added_sets_2 > 1)
3467 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3468 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3469 > 1))
3470 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3471 && (n_occurrences + added_sets_0
3472 + (added_sets_1 && i0_feeds_i1_n)
3473 + (added_sets_2 && i0_feeds_i2_n)
3474 > 1))
3475 /* Fail if we tried to make a new register. */
3476 || max_reg_num () != maxreg
3477 /* Fail if we couldn't do something and have a CLOBBER. */
3478 || GET_CODE (newpat) == CLOBBER
3479 /* Fail if this new pattern is a MULT and we didn't have one before
3480 at the outer level. */
3481 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3482 && ! have_mult))
3483 {
3484 undo_all ();
3485 return 0;
3486 }
3487
3488 /* If the actions of the earlier insns must be kept
3489 in addition to substituting them into the latest one,
3490 we must make a new PARALLEL for the latest insn
3491 to hold additional the SETs. */
3492
3493 if (added_sets_0 || added_sets_1 || added_sets_2)
3494 {
3495 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3496 combine_extras++;
3497
3498 if (GET_CODE (newpat) == PARALLEL)
3499 {
3500 rtvec old = XVEC (newpat, 0);
3501 total_sets = XVECLEN (newpat, 0) + extra_sets;
3502 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3503 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3504 sizeof (old->elem[0]) * old->num_elem);
3505 }
3506 else
3507 {
3508 rtx old = newpat;
3509 total_sets = 1 + extra_sets;
3510 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3511 XVECEXP (newpat, 0, 0) = old;
3512 }
3513
3514 if (added_sets_0)
3515 XVECEXP (newpat, 0, --total_sets) = i0pat;
3516
3517 if (added_sets_1)
3518 {
3519 rtx t = i1pat;
3520 if (i0_feeds_i1_n)
3521 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3522
3523 XVECEXP (newpat, 0, --total_sets) = t;
3524 }
3525 if (added_sets_2)
3526 {
3527 rtx t = i2pat;
3528 if (i1_feeds_i2_n)
3529 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3530 i0_feeds_i1_n && i0dest_in_i0src);
3531 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3532 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3533
3534 XVECEXP (newpat, 0, --total_sets) = t;
3535 }
3536 }
3537
3538 validate_replacement:
3539
3540 /* Note which hard regs this insn has as inputs. */
3541 mark_used_regs_combine (newpat);
3542
3543 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3544 consider splitting this pattern, we might need these clobbers. */
3545 if (i1 && GET_CODE (newpat) == PARALLEL
3546 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3547 {
3548 int len = XVECLEN (newpat, 0);
3549
3550 newpat_vec_with_clobbers = rtvec_alloc (len);
3551 for (i = 0; i < len; i++)
3552 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3553 }
3554
3555 /* We have recognized nothing yet. */
3556 insn_code_number = -1;
3557
3558 /* See if this is a PARALLEL of two SETs where one SET's destination is
3559 a register that is unused and this isn't marked as an instruction that
3560 might trap in an EH region. In that case, we just need the other SET.
3561 We prefer this over the PARALLEL.
3562
3563 This can occur when simplifying a divmod insn. We *must* test for this
3564 case here because the code below that splits two independent SETs doesn't
3565 handle this case correctly when it updates the register status.
3566
3567 It's pointless doing this if we originally had two sets, one from
3568 i3, and one from i2. Combining then splitting the parallel results
3569 in the original i2 again plus an invalid insn (which we delete).
3570 The net effect is only to move instructions around, which makes
3571 debug info less accurate.
3572
3573 If the remaining SET came from I2 its destination should not be used
3574 between I2 and I3. See PR82024. */
3575
3576 if (!(added_sets_2 && i1 == 0)
3577 && is_parallel_of_n_reg_sets (newpat, 2)
3578 && asm_noperands (newpat) < 0)
3579 {
3580 rtx set0 = XVECEXP (newpat, 0, 0);
3581 rtx set1 = XVECEXP (newpat, 0, 1);
3582 rtx oldpat = newpat;
3583
3584 if (((REG_P (SET_DEST (set1))
3585 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3586 || (GET_CODE (SET_DEST (set1)) == SUBREG
3587 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3588 && insn_nothrow_p (i3)
3589 && !side_effects_p (SET_SRC (set1)))
3590 {
3591 newpat = set0;
3592 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3593 }
3594
3595 else if (((REG_P (SET_DEST (set0))
3596 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3597 || (GET_CODE (SET_DEST (set0)) == SUBREG
3598 && find_reg_note (i3, REG_UNUSED,
3599 SUBREG_REG (SET_DEST (set0)))))
3600 && insn_nothrow_p (i3)
3601 && !side_effects_p (SET_SRC (set0)))
3602 {
3603 rtx dest = SET_DEST (set1);
3604 if (GET_CODE (dest) == SUBREG)
3605 dest = SUBREG_REG (dest);
3606 if (!reg_used_between_p (dest, i2, i3))
3607 {
3608 newpat = set1;
3609 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3610
3611 if (insn_code_number >= 0)
3612 changed_i3_dest = 1;
3613 }
3614 }
3615
3616 if (insn_code_number < 0)
3617 newpat = oldpat;
3618 }
3619
3620 /* Is the result of combination a valid instruction? */
3621 if (insn_code_number < 0)
3622 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3623
3624 /* If we were combining three insns and the result is a simple SET
3625 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3626 insns. There are two ways to do this. It can be split using a
3627 machine-specific method (like when you have an addition of a large
3628 constant) or by combine in the function find_split_point. */
3629
3630 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3631 && asm_noperands (newpat) < 0)
3632 {
3633 rtx parallel, *split;
3634 rtx_insn *m_split_insn;
3635
3636 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3637 use I2DEST as a scratch register will help. In the latter case,
3638 convert I2DEST to the mode of the source of NEWPAT if we can. */
3639
3640 m_split_insn = combine_split_insns (newpat, i3);
3641
3642 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3643 inputs of NEWPAT. */
3644
3645 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3646 possible to try that as a scratch reg. This would require adding
3647 more code to make it work though. */
3648
3649 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3650 {
3651 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3652
3653 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3654 (temporarily, until we are committed to this instruction
3655 combination) does not work: for example, any call to nonzero_bits
3656 on the register (from a splitter in the MD file, for example)
3657 will get the old information, which is invalid.
3658
3659 Since nowadays we can create registers during combine just fine,
3660 we should just create a new one here, not reuse i2dest. */
3661
3662 /* First try to split using the original register as a
3663 scratch register. */
3664 parallel = gen_rtx_PARALLEL (VOIDmode,
3665 gen_rtvec (2, newpat,
3666 gen_rtx_CLOBBER (VOIDmode,
3667 i2dest)));
3668 m_split_insn = combine_split_insns (parallel, i3);
3669
3670 /* If that didn't work, try changing the mode of I2DEST if
3671 we can. */
3672 if (m_split_insn == 0
3673 && new_mode != GET_MODE (i2dest)
3674 && new_mode != VOIDmode
3675 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3676 {
3677 machine_mode old_mode = GET_MODE (i2dest);
3678 rtx ni2dest;
3679
3680 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3681 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3682 else
3683 {
3684 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3685 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3686 }
3687
3688 parallel = (gen_rtx_PARALLEL
3689 (VOIDmode,
3690 gen_rtvec (2, newpat,
3691 gen_rtx_CLOBBER (VOIDmode,
3692 ni2dest))));
3693 m_split_insn = combine_split_insns (parallel, i3);
3694
3695 if (m_split_insn == 0
3696 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3697 {
3698 struct undo *buf;
3699
3700 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3701 buf = undobuf.undos;
3702 undobuf.undos = buf->next;
3703 buf->next = undobuf.frees;
3704 undobuf.frees = buf;
3705 }
3706 }
3707
3708 i2scratch = m_split_insn != 0;
3709 }
3710
3711 /* If recog_for_combine has discarded clobbers, try to use them
3712 again for the split. */
3713 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3714 {
3715 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3716 m_split_insn = combine_split_insns (parallel, i3);
3717 }
3718
3719 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3720 {
3721 rtx m_split_pat = PATTERN (m_split_insn);
3722 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3723 if (insn_code_number >= 0)
3724 newpat = m_split_pat;
3725 }
3726 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3727 && (next_nonnote_nondebug_insn (i2) == i3
3728 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3729 {
3730 rtx i2set, i3set;
3731 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3732 newi2pat = PATTERN (m_split_insn);
3733
3734 i3set = single_set (NEXT_INSN (m_split_insn));
3735 i2set = single_set (m_split_insn);
3736
3737 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3738
3739 /* If I2 or I3 has multiple SETs, we won't know how to track
3740 register status, so don't use these insns. If I2's destination
3741 is used between I2 and I3, we also can't use these insns. */
3742
3743 if (i2_code_number >= 0 && i2set && i3set
3744 && (next_nonnote_nondebug_insn (i2) == i3
3745 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3746 insn_code_number = recog_for_combine (&newi3pat, i3,
3747 &new_i3_notes);
3748 if (insn_code_number >= 0)
3749 newpat = newi3pat;
3750
3751 /* It is possible that both insns now set the destination of I3.
3752 If so, we must show an extra use of it. */
3753
3754 if (insn_code_number >= 0)
3755 {
3756 rtx new_i3_dest = SET_DEST (i3set);
3757 rtx new_i2_dest = SET_DEST (i2set);
3758
3759 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3760 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3761 || GET_CODE (new_i3_dest) == SUBREG)
3762 new_i3_dest = XEXP (new_i3_dest, 0);
3763
3764 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3765 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3766 || GET_CODE (new_i2_dest) == SUBREG)
3767 new_i2_dest = XEXP (new_i2_dest, 0);
3768
3769 if (REG_P (new_i3_dest)
3770 && REG_P (new_i2_dest)
3771 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3772 && REGNO (new_i2_dest) < reg_n_sets_max)
3773 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3774 }
3775 }
3776
3777 /* If we can split it and use I2DEST, go ahead and see if that
3778 helps things be recognized. Verify that none of the registers
3779 are set between I2 and I3. */
3780 if (insn_code_number < 0
3781 && (split = find_split_point (&newpat, i3, false)) != 0
3782 && (!HAVE_cc0 || REG_P (i2dest))
3783 /* We need I2DEST in the proper mode. If it is a hard register
3784 or the only use of a pseudo, we can change its mode.
3785 Make sure we don't change a hard register to have a mode that
3786 isn't valid for it, or change the number of registers. */
3787 && (GET_MODE (*split) == GET_MODE (i2dest)
3788 || GET_MODE (*split) == VOIDmode
3789 || can_change_dest_mode (i2dest, added_sets_2,
3790 GET_MODE (*split)))
3791 && (next_nonnote_nondebug_insn (i2) == i3
3792 || !modified_between_p (*split, i2, i3))
3793 /* We can't overwrite I2DEST if its value is still used by
3794 NEWPAT. */
3795 && ! reg_referenced_p (i2dest, newpat))
3796 {
3797 rtx newdest = i2dest;
3798 enum rtx_code split_code = GET_CODE (*split);
3799 machine_mode split_mode = GET_MODE (*split);
3800 bool subst_done = false;
3801 newi2pat = NULL_RTX;
3802
3803 i2scratch = true;
3804
3805 /* *SPLIT may be part of I2SRC, so make sure we have the
3806 original expression around for later debug processing.
3807 We should not need I2SRC any more in other cases. */
3808 if (MAY_HAVE_DEBUG_BIND_INSNS)
3809 i2src = copy_rtx (i2src);
3810 else
3811 i2src = NULL;
3812
3813 /* Get NEWDEST as a register in the proper mode. We have already
3814 validated that we can do this. */
3815 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3816 {
3817 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3818 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3819 else
3820 {
3821 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3822 newdest = regno_reg_rtx[REGNO (i2dest)];
3823 }
3824 }
3825
3826 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3827 an ASHIFT. This can occur if it was inside a PLUS and hence
3828 appeared to be a memory address. This is a kludge. */
3829 if (split_code == MULT
3830 && CONST_INT_P (XEXP (*split, 1))
3831 && INTVAL (XEXP (*split, 1)) > 0
3832 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3833 {
3834 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3835 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3836 XEXP (*split, 0), i_rtx));
3837 /* Update split_code because we may not have a multiply
3838 anymore. */
3839 split_code = GET_CODE (*split);
3840 }
3841
3842 /* Similarly for (plus (mult FOO (const_int pow2))). */
3843 if (split_code == PLUS
3844 && GET_CODE (XEXP (*split, 0)) == MULT
3845 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3846 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3847 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3848 {
3849 rtx nsplit = XEXP (*split, 0);
3850 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3851 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3852 XEXP (nsplit, 0),
3853 i_rtx));
3854 /* Update split_code because we may not have a multiply
3855 anymore. */
3856 split_code = GET_CODE (*split);
3857 }
3858
3859 #ifdef INSN_SCHEDULING
3860 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3861 be written as a ZERO_EXTEND. */
3862 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3863 {
3864 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3865 what it really is. */
3866 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3867 == SIGN_EXTEND)
3868 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3869 SUBREG_REG (*split)));
3870 else
3871 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3872 SUBREG_REG (*split)));
3873 }
3874 #endif
3875
3876 /* Attempt to split binary operators using arithmetic identities. */
3877 if (BINARY_P (SET_SRC (newpat))
3878 && split_mode == GET_MODE (SET_SRC (newpat))
3879 && ! side_effects_p (SET_SRC (newpat)))
3880 {
3881 rtx setsrc = SET_SRC (newpat);
3882 machine_mode mode = GET_MODE (setsrc);
3883 enum rtx_code code = GET_CODE (setsrc);
3884 rtx src_op0 = XEXP (setsrc, 0);
3885 rtx src_op1 = XEXP (setsrc, 1);
3886
3887 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3888 if (rtx_equal_p (src_op0, src_op1))
3889 {
3890 newi2pat = gen_rtx_SET (newdest, src_op0);
3891 SUBST (XEXP (setsrc, 0), newdest);
3892 SUBST (XEXP (setsrc, 1), newdest);
3893 subst_done = true;
3894 }
3895 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3896 else if ((code == PLUS || code == MULT)
3897 && GET_CODE (src_op0) == code
3898 && GET_CODE (XEXP (src_op0, 0)) == code
3899 && (INTEGRAL_MODE_P (mode)
3900 || (FLOAT_MODE_P (mode)
3901 && flag_unsafe_math_optimizations)))
3902 {
3903 rtx p = XEXP (XEXP (src_op0, 0), 0);
3904 rtx q = XEXP (XEXP (src_op0, 0), 1);
3905 rtx r = XEXP (src_op0, 1);
3906 rtx s = src_op1;
3907
3908 /* Split both "((X op Y) op X) op Y" and
3909 "((X op Y) op Y) op X" as "T op T" where T is
3910 "X op Y". */
3911 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3912 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3913 {
3914 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3915 SUBST (XEXP (setsrc, 0), newdest);
3916 SUBST (XEXP (setsrc, 1), newdest);
3917 subst_done = true;
3918 }
3919 /* Split "((X op X) op Y) op Y)" as "T op T" where
3920 T is "X op Y". */
3921 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3922 {
3923 rtx tmp = simplify_gen_binary (code, mode, p, r);
3924 newi2pat = gen_rtx_SET (newdest, tmp);
3925 SUBST (XEXP (setsrc, 0), newdest);
3926 SUBST (XEXP (setsrc, 1), newdest);
3927 subst_done = true;
3928 }
3929 }
3930 }
3931
3932 if (!subst_done)
3933 {
3934 newi2pat = gen_rtx_SET (newdest, *split);
3935 SUBST (*split, newdest);
3936 }
3937
3938 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3939
3940 /* recog_for_combine might have added CLOBBERs to newi2pat.
3941 Make sure NEWPAT does not depend on the clobbered regs. */
3942 if (GET_CODE (newi2pat) == PARALLEL)
3943 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3944 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3945 {
3946 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3947 if (reg_overlap_mentioned_p (reg, newpat))
3948 {
3949 undo_all ();
3950 return 0;
3951 }
3952 }
3953
3954 /* If the split point was a MULT and we didn't have one before,
3955 don't use one now. */
3956 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3957 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3958 }
3959 }
3960
3961 /* Check for a case where we loaded from memory in a narrow mode and
3962 then sign extended it, but we need both registers. In that case,
3963 we have a PARALLEL with both loads from the same memory location.
3964 We can split this into a load from memory followed by a register-register
3965 copy. This saves at least one insn, more if register allocation can
3966 eliminate the copy.
3967
3968 We cannot do this if the destination of the first assignment is a
3969 condition code register or cc0. We eliminate this case by making sure
3970 the SET_DEST and SET_SRC have the same mode.
3971
3972 We cannot do this if the destination of the second assignment is
3973 a register that we have already assumed is zero-extended. Similarly
3974 for a SUBREG of such a register. */
3975
3976 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3977 && GET_CODE (newpat) == PARALLEL
3978 && XVECLEN (newpat, 0) == 2
3979 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3980 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3981 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3982 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3983 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3984 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3985 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3986 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3987 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3988 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3989 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3990 (REG_P (temp_expr)
3991 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3992 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3993 BITS_PER_WORD)
3994 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3995 HOST_BITS_PER_INT)
3996 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3997 != GET_MODE_MASK (word_mode))))
3998 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3999 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4000 (REG_P (temp_expr)
4001 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4002 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4003 BITS_PER_WORD)
4004 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4005 HOST_BITS_PER_INT)
4006 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4007 != GET_MODE_MASK (word_mode)))))
4008 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4009 SET_SRC (XVECEXP (newpat, 0, 1)))
4010 && ! find_reg_note (i3, REG_UNUSED,
4011 SET_DEST (XVECEXP (newpat, 0, 0))))
4012 {
4013 rtx ni2dest;
4014
4015 newi2pat = XVECEXP (newpat, 0, 0);
4016 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4017 newpat = XVECEXP (newpat, 0, 1);
4018 SUBST (SET_SRC (newpat),
4019 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4020 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4021
4022 if (i2_code_number >= 0)
4023 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4024
4025 if (insn_code_number >= 0)
4026 swap_i2i3 = 1;
4027 }
4028
4029 /* Similarly, check for a case where we have a PARALLEL of two independent
4030 SETs but we started with three insns. In this case, we can do the sets
4031 as two separate insns. This case occurs when some SET allows two
4032 other insns to combine, but the destination of that SET is still live.
4033
4034 Also do this if we started with two insns and (at least) one of the
4035 resulting sets is a noop; this noop will be deleted later.
4036
4037 Also do this if we started with two insns neither of which was a simple
4038 move. */
4039
4040 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4041 && GET_CODE (newpat) == PARALLEL
4042 && XVECLEN (newpat, 0) == 2
4043 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4044 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4045 && (i1
4046 || set_noop_p (XVECEXP (newpat, 0, 0))
4047 || set_noop_p (XVECEXP (newpat, 0, 1))
4048 || (!i2_was_move && !i3_was_move))
4049 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4050 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4051 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4052 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4053 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4054 XVECEXP (newpat, 0, 0))
4055 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4056 XVECEXP (newpat, 0, 1))
4057 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4058 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4059 {
4060 rtx set0 = XVECEXP (newpat, 0, 0);
4061 rtx set1 = XVECEXP (newpat, 0, 1);
4062
4063 /* Normally, it doesn't matter which of the two is done first,
4064 but the one that references cc0 can't be the second, and
4065 one which uses any regs/memory set in between i2 and i3 can't
4066 be first. The PARALLEL might also have been pre-existing in i3,
4067 so we need to make sure that we won't wrongly hoist a SET to i2
4068 that would conflict with a death note present in there, or would
4069 have its dest modified between i2 and i3. */
4070 if (!modified_between_p (SET_SRC (set1), i2, i3)
4071 && !(REG_P (SET_DEST (set1))
4072 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4073 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4074 && find_reg_note (i2, REG_DEAD,
4075 SUBREG_REG (SET_DEST (set1))))
4076 && !modified_between_p (SET_DEST (set1), i2, i3)
4077 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4078 /* If I3 is a jump, ensure that set0 is a jump so that
4079 we do not create invalid RTL. */
4080 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4081 )
4082 {
4083 newi2pat = set1;
4084 newpat = set0;
4085 }
4086 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4087 && !(REG_P (SET_DEST (set0))
4088 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4089 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4090 && find_reg_note (i2, REG_DEAD,
4091 SUBREG_REG (SET_DEST (set0))))
4092 && !modified_between_p (SET_DEST (set0), i2, i3)
4093 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4094 /* If I3 is a jump, ensure that set1 is a jump so that
4095 we do not create invalid RTL. */
4096 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4097 )
4098 {
4099 newi2pat = set0;
4100 newpat = set1;
4101 }
4102 else
4103 {
4104 undo_all ();
4105 return 0;
4106 }
4107
4108 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4109
4110 if (i2_code_number >= 0)
4111 {
4112 /* recog_for_combine might have added CLOBBERs to newi2pat.
4113 Make sure NEWPAT does not depend on the clobbered regs. */
4114 if (GET_CODE (newi2pat) == PARALLEL)
4115 {
4116 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4117 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4118 {
4119 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4120 if (reg_overlap_mentioned_p (reg, newpat))
4121 {
4122 undo_all ();
4123 return 0;
4124 }
4125 }
4126 }
4127
4128 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4129
4130 if (insn_code_number >= 0)
4131 split_i2i3 = 1;
4132 }
4133 }
4134
4135 /* If it still isn't recognized, fail and change things back the way they
4136 were. */
4137 if ((insn_code_number < 0
4138 /* Is the result a reasonable ASM_OPERANDS? */
4139 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4140 {
4141 undo_all ();
4142 return 0;
4143 }
4144
4145 /* If we had to change another insn, make sure it is valid also. */
4146 if (undobuf.other_insn)
4147 {
4148 CLEAR_HARD_REG_SET (newpat_used_regs);
4149
4150 other_pat = PATTERN (undobuf.other_insn);
4151 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4152 &new_other_notes);
4153
4154 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4155 {
4156 undo_all ();
4157 return 0;
4158 }
4159 }
4160
4161 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4162 they are adjacent to each other or not. */
4163 if (HAVE_cc0)
4164 {
4165 rtx_insn *p = prev_nonnote_insn (i3);
4166 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4167 && sets_cc0_p (newi2pat))
4168 {
4169 undo_all ();
4170 return 0;
4171 }
4172 }
4173
4174 /* Only allow this combination if insn_cost reports that the
4175 replacement instructions are cheaper than the originals. */
4176 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4177 {
4178 undo_all ();
4179 return 0;
4180 }
4181
4182 if (MAY_HAVE_DEBUG_BIND_INSNS)
4183 {
4184 struct undo *undo;
4185
4186 for (undo = undobuf.undos; undo; undo = undo->next)
4187 if (undo->kind == UNDO_MODE)
4188 {
4189 rtx reg = *undo->where.r;
4190 machine_mode new_mode = GET_MODE (reg);
4191 machine_mode old_mode = undo->old_contents.m;
4192
4193 /* Temporarily revert mode back. */
4194 adjust_reg_mode (reg, old_mode);
4195
4196 if (reg == i2dest && i2scratch)
4197 {
4198 /* If we used i2dest as a scratch register with a
4199 different mode, substitute it for the original
4200 i2src while its original mode is temporarily
4201 restored, and then clear i2scratch so that we don't
4202 do it again later. */
4203 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4204 this_basic_block);
4205 i2scratch = false;
4206 /* Put back the new mode. */
4207 adjust_reg_mode (reg, new_mode);
4208 }
4209 else
4210 {
4211 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4212 rtx_insn *first, *last;
4213
4214 if (reg == i2dest)
4215 {
4216 first = i2;
4217 last = last_combined_insn;
4218 }
4219 else
4220 {
4221 first = i3;
4222 last = undobuf.other_insn;
4223 gcc_assert (last);
4224 if (DF_INSN_LUID (last)
4225 < DF_INSN_LUID (last_combined_insn))
4226 last = last_combined_insn;
4227 }
4228
4229 /* We're dealing with a reg that changed mode but not
4230 meaning, so we want to turn it into a subreg for
4231 the new mode. However, because of REG sharing and
4232 because its mode had already changed, we have to do
4233 it in two steps. First, replace any debug uses of
4234 reg, with its original mode temporarily restored,
4235 with this copy we have created; then, replace the
4236 copy with the SUBREG of the original shared reg,
4237 once again changed to the new mode. */
4238 propagate_for_debug (first, last, reg, tempreg,
4239 this_basic_block);
4240 adjust_reg_mode (reg, new_mode);
4241 propagate_for_debug (first, last, tempreg,
4242 lowpart_subreg (old_mode, reg, new_mode),
4243 this_basic_block);
4244 }
4245 }
4246 }
4247
4248 /* If we will be able to accept this, we have made a
4249 change to the destination of I3. This requires us to
4250 do a few adjustments. */
4251
4252 if (changed_i3_dest)
4253 {
4254 PATTERN (i3) = newpat;
4255 adjust_for_new_dest (i3);
4256 }
4257
4258 /* We now know that we can do this combination. Merge the insns and
4259 update the status of registers and LOG_LINKS. */
4260
4261 if (undobuf.other_insn)
4262 {
4263 rtx note, next;
4264
4265 PATTERN (undobuf.other_insn) = other_pat;
4266
4267 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4268 ensure that they are still valid. Then add any non-duplicate
4269 notes added by recog_for_combine. */
4270 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4271 {
4272 next = XEXP (note, 1);
4273
4274 if ((REG_NOTE_KIND (note) == REG_DEAD
4275 && !reg_referenced_p (XEXP (note, 0),
4276 PATTERN (undobuf.other_insn)))
4277 ||(REG_NOTE_KIND (note) == REG_UNUSED
4278 && !reg_set_p (XEXP (note, 0),
4279 PATTERN (undobuf.other_insn)))
4280 /* Simply drop equal note since it may be no longer valid
4281 for other_insn. It may be possible to record that CC
4282 register is changed and only discard those notes, but
4283 in practice it's unnecessary complication and doesn't
4284 give any meaningful improvement.
4285
4286 See PR78559. */
4287 || REG_NOTE_KIND (note) == REG_EQUAL
4288 || REG_NOTE_KIND (note) == REG_EQUIV)
4289 remove_note (undobuf.other_insn, note);
4290 }
4291
4292 distribute_notes (new_other_notes, undobuf.other_insn,
4293 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4294 NULL_RTX);
4295 }
4296
4297 if (swap_i2i3)
4298 {
4299 /* I3 now uses what used to be its destination and which is now
4300 I2's destination. This requires us to do a few adjustments. */
4301 PATTERN (i3) = newpat;
4302 adjust_for_new_dest (i3);
4303 }
4304
4305 if (swap_i2i3 || split_i2i3)
4306 {
4307 /* We might need a LOG_LINK from I3 to I2. But then we used to
4308 have one, so we still will.
4309
4310 However, some later insn might be using I2's dest and have
4311 a LOG_LINK pointing at I3. We should change it to point at
4312 I2 instead. */
4313
4314 /* newi2pat is usually a SET here; however, recog_for_combine might
4315 have added some clobbers. */
4316 rtx x = newi2pat;
4317 if (GET_CODE (x) == PARALLEL)
4318 x = XVECEXP (newi2pat, 0, 0);
4319
4320 if (REG_P (SET_DEST (x))
4321 || (GET_CODE (SET_DEST (x)) == SUBREG
4322 && REG_P (SUBREG_REG (SET_DEST (x)))))
4323 {
4324 unsigned int regno = reg_or_subregno (SET_DEST (x));
4325
4326 bool done = false;
4327 for (rtx_insn *insn = NEXT_INSN (i3);
4328 !done
4329 && insn
4330 && NONDEBUG_INSN_P (insn)
4331 && BLOCK_FOR_INSN (insn) == this_basic_block;
4332 insn = NEXT_INSN (insn))
4333 {
4334 struct insn_link *link;
4335 FOR_EACH_LOG_LINK (link, insn)
4336 if (link->insn == i3 && link->regno == regno)
4337 {
4338 link->insn = i2;
4339 done = true;
4340 break;
4341 }
4342 }
4343 }
4344 }
4345
4346 {
4347 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4348 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4349 rtx midnotes = 0;
4350 int from_luid;
4351 /* Compute which registers we expect to eliminate. newi2pat may be setting
4352 either i3dest or i2dest, so we must check it. */
4353 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4354 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4355 || !i2dest_killed
4356 ? 0 : i2dest);
4357 /* For i1, we need to compute both local elimination and global
4358 elimination information with respect to newi2pat because i1dest
4359 may be the same as i3dest, in which case newi2pat may be setting
4360 i1dest. Global information is used when distributing REG_DEAD
4361 note for i2 and i3, in which case it does matter if newi2pat sets
4362 i1dest or not.
4363
4364 Local information is used when distributing REG_DEAD note for i1,
4365 in which case it doesn't matter if newi2pat sets i1dest or not.
4366 See PR62151, if we have four insns combination:
4367 i0: r0 <- i0src
4368 i1: r1 <- i1src (using r0)
4369 REG_DEAD (r0)
4370 i2: r0 <- i2src (using r1)
4371 i3: r3 <- i3src (using r0)
4372 ix: using r0
4373 From i1's point of view, r0 is eliminated, no matter if it is set
4374 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4375 should be discarded.
4376
4377 Note local information only affects cases in forms like "I1->I2->I3",
4378 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4379 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4380 i0dest anyway. */
4381 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4382 || !i1dest_killed
4383 ? 0 : i1dest);
4384 rtx elim_i1 = (local_elim_i1 == 0
4385 || (newi2pat && reg_set_p (i1dest, newi2pat))
4386 ? 0 : i1dest);
4387 /* Same case as i1. */
4388 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4389 ? 0 : i0dest);
4390 rtx elim_i0 = (local_elim_i0 == 0
4391 || (newi2pat && reg_set_p (i0dest, newi2pat))
4392 ? 0 : i0dest);
4393
4394 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4395 clear them. */
4396 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4397 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4398 if (i1)
4399 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4400 if (i0)
4401 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4402
4403 /* Ensure that we do not have something that should not be shared but
4404 occurs multiple times in the new insns. Check this by first
4405 resetting all the `used' flags and then copying anything is shared. */
4406
4407 reset_used_flags (i3notes);
4408 reset_used_flags (i2notes);
4409 reset_used_flags (i1notes);
4410 reset_used_flags (i0notes);
4411 reset_used_flags (newpat);
4412 reset_used_flags (newi2pat);
4413 if (undobuf.other_insn)
4414 reset_used_flags (PATTERN (undobuf.other_insn));
4415
4416 i3notes = copy_rtx_if_shared (i3notes);
4417 i2notes = copy_rtx_if_shared (i2notes);
4418 i1notes = copy_rtx_if_shared (i1notes);
4419 i0notes = copy_rtx_if_shared (i0notes);
4420 newpat = copy_rtx_if_shared (newpat);
4421 newi2pat = copy_rtx_if_shared (newi2pat);
4422 if (undobuf.other_insn)
4423 reset_used_flags (PATTERN (undobuf.other_insn));
4424
4425 INSN_CODE (i3) = insn_code_number;
4426 PATTERN (i3) = newpat;
4427
4428 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4429 {
4430 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4431 link = XEXP (link, 1))
4432 {
4433 if (substed_i2)
4434 {
4435 /* I2SRC must still be meaningful at this point. Some
4436 splitting operations can invalidate I2SRC, but those
4437 operations do not apply to calls. */
4438 gcc_assert (i2src);
4439 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4440 i2dest, i2src);
4441 }
4442 if (substed_i1)
4443 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4444 i1dest, i1src);
4445 if (substed_i0)
4446 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4447 i0dest, i0src);
4448 }
4449 }
4450
4451 if (undobuf.other_insn)
4452 INSN_CODE (undobuf.other_insn) = other_code_number;
4453
4454 /* We had one special case above where I2 had more than one set and
4455 we replaced a destination of one of those sets with the destination
4456 of I3. In that case, we have to update LOG_LINKS of insns later
4457 in this basic block. Note that this (expensive) case is rare.
4458
4459 Also, in this case, we must pretend that all REG_NOTEs for I2
4460 actually came from I3, so that REG_UNUSED notes from I2 will be
4461 properly handled. */
4462
4463 if (i3_subst_into_i2)
4464 {
4465 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4466 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4467 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4468 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4469 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4470 && ! find_reg_note (i2, REG_UNUSED,
4471 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4472 for (temp_insn = NEXT_INSN (i2);
4473 temp_insn
4474 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4475 || BB_HEAD (this_basic_block) != temp_insn);
4476 temp_insn = NEXT_INSN (temp_insn))
4477 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4478 FOR_EACH_LOG_LINK (link, temp_insn)
4479 if (link->insn == i2)
4480 link->insn = i3;
4481
4482 if (i3notes)
4483 {
4484 rtx link = i3notes;
4485 while (XEXP (link, 1))
4486 link = XEXP (link, 1);
4487 XEXP (link, 1) = i2notes;
4488 }
4489 else
4490 i3notes = i2notes;
4491 i2notes = 0;
4492 }
4493
4494 LOG_LINKS (i3) = NULL;
4495 REG_NOTES (i3) = 0;
4496 LOG_LINKS (i2) = NULL;
4497 REG_NOTES (i2) = 0;
4498
4499 if (newi2pat)
4500 {
4501 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4502 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4503 this_basic_block);
4504 INSN_CODE (i2) = i2_code_number;
4505 PATTERN (i2) = newi2pat;
4506 }
4507 else
4508 {
4509 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4510 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4511 this_basic_block);
4512 SET_INSN_DELETED (i2);
4513 }
4514
4515 if (i1)
4516 {
4517 LOG_LINKS (i1) = NULL;
4518 REG_NOTES (i1) = 0;
4519 if (MAY_HAVE_DEBUG_BIND_INSNS)
4520 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4521 this_basic_block);
4522 SET_INSN_DELETED (i1);
4523 }
4524
4525 if (i0)
4526 {
4527 LOG_LINKS (i0) = NULL;
4528 REG_NOTES (i0) = 0;
4529 if (MAY_HAVE_DEBUG_BIND_INSNS)
4530 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4531 this_basic_block);
4532 SET_INSN_DELETED (i0);
4533 }
4534
4535 /* Get death notes for everything that is now used in either I3 or
4536 I2 and used to die in a previous insn. If we built two new
4537 patterns, move from I1 to I2 then I2 to I3 so that we get the
4538 proper movement on registers that I2 modifies. */
4539
4540 if (i0)
4541 from_luid = DF_INSN_LUID (i0);
4542 else if (i1)
4543 from_luid = DF_INSN_LUID (i1);
4544 else
4545 from_luid = DF_INSN_LUID (i2);
4546 if (newi2pat)
4547 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4548 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4549
4550 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4551 if (i3notes)
4552 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4553 elim_i2, elim_i1, elim_i0);
4554 if (i2notes)
4555 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4556 elim_i2, elim_i1, elim_i0);
4557 if (i1notes)
4558 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4559 elim_i2, local_elim_i1, local_elim_i0);
4560 if (i0notes)
4561 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4562 elim_i2, elim_i1, local_elim_i0);
4563 if (midnotes)
4564 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4565 elim_i2, elim_i1, elim_i0);
4566
4567 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4568 know these are REG_UNUSED and want them to go to the desired insn,
4569 so we always pass it as i3. */
4570
4571 if (newi2pat && new_i2_notes)
4572 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4573 NULL_RTX);
4574
4575 if (new_i3_notes)
4576 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4577 NULL_RTX);
4578
4579 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4580 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4581 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4582 in that case, it might delete I2. Similarly for I2 and I1.
4583 Show an additional death due to the REG_DEAD note we make here. If
4584 we discard it in distribute_notes, we will decrement it again. */
4585
4586 if (i3dest_killed)
4587 {
4588 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4589 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4590 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4591 elim_i1, elim_i0);
4592 else
4593 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4594 elim_i2, elim_i1, elim_i0);
4595 }
4596
4597 if (i2dest_in_i2src)
4598 {
4599 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4600 if (newi2pat && reg_set_p (i2dest, newi2pat))
4601 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4602 NULL_RTX, NULL_RTX);
4603 else
4604 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4605 NULL_RTX, NULL_RTX, NULL_RTX);
4606 }
4607
4608 if (i1dest_in_i1src)
4609 {
4610 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4611 if (newi2pat && reg_set_p (i1dest, newi2pat))
4612 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4613 NULL_RTX, NULL_RTX);
4614 else
4615 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4616 NULL_RTX, NULL_RTX, NULL_RTX);
4617 }
4618
4619 if (i0dest_in_i0src)
4620 {
4621 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4622 if (newi2pat && reg_set_p (i0dest, newi2pat))
4623 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4624 NULL_RTX, NULL_RTX);
4625 else
4626 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4627 NULL_RTX, NULL_RTX, NULL_RTX);
4628 }
4629
4630 distribute_links (i3links);
4631 distribute_links (i2links);
4632 distribute_links (i1links);
4633 distribute_links (i0links);
4634
4635 if (REG_P (i2dest))
4636 {
4637 struct insn_link *link;
4638 rtx_insn *i2_insn = 0;
4639 rtx i2_val = 0, set;
4640
4641 /* The insn that used to set this register doesn't exist, and
4642 this life of the register may not exist either. See if one of
4643 I3's links points to an insn that sets I2DEST. If it does,
4644 that is now the last known value for I2DEST. If we don't update
4645 this and I2 set the register to a value that depended on its old
4646 contents, we will get confused. If this insn is used, thing
4647 will be set correctly in combine_instructions. */
4648 FOR_EACH_LOG_LINK (link, i3)
4649 if ((set = single_set (link->insn)) != 0
4650 && rtx_equal_p (i2dest, SET_DEST (set)))
4651 i2_insn = link->insn, i2_val = SET_SRC (set);
4652
4653 record_value_for_reg (i2dest, i2_insn, i2_val);
4654
4655 /* If the reg formerly set in I2 died only once and that was in I3,
4656 zero its use count so it won't make `reload' do any work. */
4657 if (! added_sets_2
4658 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4659 && ! i2dest_in_i2src
4660 && REGNO (i2dest) < reg_n_sets_max)
4661 INC_REG_N_SETS (REGNO (i2dest), -1);
4662 }
4663
4664 if (i1 && REG_P (i1dest))
4665 {
4666 struct insn_link *link;
4667 rtx_insn *i1_insn = 0;
4668 rtx i1_val = 0, set;
4669
4670 FOR_EACH_LOG_LINK (link, i3)
4671 if ((set = single_set (link->insn)) != 0
4672 && rtx_equal_p (i1dest, SET_DEST (set)))
4673 i1_insn = link->insn, i1_val = SET_SRC (set);
4674
4675 record_value_for_reg (i1dest, i1_insn, i1_val);
4676
4677 if (! added_sets_1
4678 && ! i1dest_in_i1src
4679 && REGNO (i1dest) < reg_n_sets_max)
4680 INC_REG_N_SETS (REGNO (i1dest), -1);
4681 }
4682
4683 if (i0 && REG_P (i0dest))
4684 {
4685 struct insn_link *link;
4686 rtx_insn *i0_insn = 0;
4687 rtx i0_val = 0, set;
4688
4689 FOR_EACH_LOG_LINK (link, i3)
4690 if ((set = single_set (link->insn)) != 0
4691 && rtx_equal_p (i0dest, SET_DEST (set)))
4692 i0_insn = link->insn, i0_val = SET_SRC (set);
4693
4694 record_value_for_reg (i0dest, i0_insn, i0_val);
4695
4696 if (! added_sets_0
4697 && ! i0dest_in_i0src
4698 && REGNO (i0dest) < reg_n_sets_max)
4699 INC_REG_N_SETS (REGNO (i0dest), -1);
4700 }
4701
4702 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4703 been made to this insn. The order is important, because newi2pat
4704 can affect nonzero_bits of newpat. */
4705 if (newi2pat)
4706 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4707 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4708 }
4709
4710 if (undobuf.other_insn != NULL_RTX)
4711 {
4712 if (dump_file)
4713 {
4714 fprintf (dump_file, "modifying other_insn ");
4715 dump_insn_slim (dump_file, undobuf.other_insn);
4716 }
4717 df_insn_rescan (undobuf.other_insn);
4718 }
4719
4720 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4721 {
4722 if (dump_file)
4723 {
4724 fprintf (dump_file, "modifying insn i0 ");
4725 dump_insn_slim (dump_file, i0);
4726 }
4727 df_insn_rescan (i0);
4728 }
4729
4730 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4731 {
4732 if (dump_file)
4733 {
4734 fprintf (dump_file, "modifying insn i1 ");
4735 dump_insn_slim (dump_file, i1);
4736 }
4737 df_insn_rescan (i1);
4738 }
4739
4740 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4741 {
4742 if (dump_file)
4743 {
4744 fprintf (dump_file, "modifying insn i2 ");
4745 dump_insn_slim (dump_file, i2);
4746 }
4747 df_insn_rescan (i2);
4748 }
4749
4750 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4751 {
4752 if (dump_file)
4753 {
4754 fprintf (dump_file, "modifying insn i3 ");
4755 dump_insn_slim (dump_file, i3);
4756 }
4757 df_insn_rescan (i3);
4758 }
4759
4760 /* Set new_direct_jump_p if a new return or simple jump instruction
4761 has been created. Adjust the CFG accordingly. */
4762 if (returnjump_p (i3) || any_uncondjump_p (i3))
4763 {
4764 *new_direct_jump_p = 1;
4765 mark_jump_label (PATTERN (i3), i3, 0);
4766 update_cfg_for_uncondjump (i3);
4767 }
4768
4769 if (undobuf.other_insn != NULL_RTX
4770 && (returnjump_p (undobuf.other_insn)
4771 || any_uncondjump_p (undobuf.other_insn)))
4772 {
4773 *new_direct_jump_p = 1;
4774 update_cfg_for_uncondjump (undobuf.other_insn);
4775 }
4776
4777 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4778 && XEXP (PATTERN (i3), 0) == const1_rtx)
4779 {
4780 basic_block bb = BLOCK_FOR_INSN (i3);
4781 gcc_assert (bb);
4782 remove_edge (split_block (bb, i3));
4783 emit_barrier_after_bb (bb);
4784 *new_direct_jump_p = 1;
4785 }
4786
4787 if (undobuf.other_insn
4788 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4789 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4790 {
4791 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4792 gcc_assert (bb);
4793 remove_edge (split_block (bb, undobuf.other_insn));
4794 emit_barrier_after_bb (bb);
4795 *new_direct_jump_p = 1;
4796 }
4797
4798 /* A noop might also need cleaning up of CFG, if it comes from the
4799 simplification of a jump. */
4800 if (JUMP_P (i3)
4801 && GET_CODE (newpat) == SET
4802 && SET_SRC (newpat) == pc_rtx
4803 && SET_DEST (newpat) == pc_rtx)
4804 {
4805 *new_direct_jump_p = 1;
4806 update_cfg_for_uncondjump (i3);
4807 }
4808
4809 if (undobuf.other_insn != NULL_RTX
4810 && JUMP_P (undobuf.other_insn)
4811 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4812 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4813 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4814 {
4815 *new_direct_jump_p = 1;
4816 update_cfg_for_uncondjump (undobuf.other_insn);
4817 }
4818
4819 combine_successes++;
4820 undo_commit ();
4821
4822 rtx_insn *ret = newi2pat ? i2 : i3;
4823 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4824 ret = added_links_insn;
4825 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4826 ret = added_notes_insn;
4827
4828 return ret;
4829 }
4830 \f
4831 /* Get a marker for undoing to the current state. */
4832
4833 static void *
4834 get_undo_marker (void)
4835 {
4836 return undobuf.undos;
4837 }
4838
4839 /* Undo the modifications up to the marker. */
4840
4841 static void
4842 undo_to_marker (void *marker)
4843 {
4844 struct undo *undo, *next;
4845
4846 for (undo = undobuf.undos; undo != marker; undo = next)
4847 {
4848 gcc_assert (undo);
4849
4850 next = undo->next;
4851 switch (undo->kind)
4852 {
4853 case UNDO_RTX:
4854 *undo->where.r = undo->old_contents.r;
4855 break;
4856 case UNDO_INT:
4857 *undo->where.i = undo->old_contents.i;
4858 break;
4859 case UNDO_MODE:
4860 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4861 break;
4862 case UNDO_LINKS:
4863 *undo->where.l = undo->old_contents.l;
4864 break;
4865 default:
4866 gcc_unreachable ();
4867 }
4868
4869 undo->next = undobuf.frees;
4870 undobuf.frees = undo;
4871 }
4872
4873 undobuf.undos = (struct undo *) marker;
4874 }
4875
4876 /* Undo all the modifications recorded in undobuf. */
4877
4878 static void
4879 undo_all (void)
4880 {
4881 undo_to_marker (0);
4882 }
4883
4884 /* We've committed to accepting the changes we made. Move all
4885 of the undos to the free list. */
4886
4887 static void
4888 undo_commit (void)
4889 {
4890 struct undo *undo, *next;
4891
4892 for (undo = undobuf.undos; undo; undo = next)
4893 {
4894 next = undo->next;
4895 undo->next = undobuf.frees;
4896 undobuf.frees = undo;
4897 }
4898 undobuf.undos = 0;
4899 }
4900 \f
4901 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4902 where we have an arithmetic expression and return that point. LOC will
4903 be inside INSN.
4904
4905 try_combine will call this function to see if an insn can be split into
4906 two insns. */
4907
4908 static rtx *
4909 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4910 {
4911 rtx x = *loc;
4912 enum rtx_code code = GET_CODE (x);
4913 rtx *split;
4914 unsigned HOST_WIDE_INT len = 0;
4915 HOST_WIDE_INT pos = 0;
4916 int unsignedp = 0;
4917 rtx inner = NULL_RTX;
4918 scalar_int_mode mode, inner_mode;
4919
4920 /* First special-case some codes. */
4921 switch (code)
4922 {
4923 case SUBREG:
4924 #ifdef INSN_SCHEDULING
4925 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4926 point. */
4927 if (MEM_P (SUBREG_REG (x)))
4928 return loc;
4929 #endif
4930 return find_split_point (&SUBREG_REG (x), insn, false);
4931
4932 case MEM:
4933 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4934 using LO_SUM and HIGH. */
4935 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4936 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4937 {
4938 machine_mode address_mode = get_address_mode (x);
4939
4940 SUBST (XEXP (x, 0),
4941 gen_rtx_LO_SUM (address_mode,
4942 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4943 XEXP (x, 0)));
4944 return &XEXP (XEXP (x, 0), 0);
4945 }
4946
4947 /* If we have a PLUS whose second operand is a constant and the
4948 address is not valid, perhaps we can split it up using
4949 the machine-specific way to split large constants. We use
4950 the first pseudo-reg (one of the virtual regs) as a placeholder;
4951 it will not remain in the result. */
4952 if (GET_CODE (XEXP (x, 0)) == PLUS
4953 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4954 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4955 MEM_ADDR_SPACE (x)))
4956 {
4957 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4958 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4959 subst_insn);
4960
4961 /* This should have produced two insns, each of which sets our
4962 placeholder. If the source of the second is a valid address,
4963 we can put both sources together and make a split point
4964 in the middle. */
4965
4966 if (seq
4967 && NEXT_INSN (seq) != NULL_RTX
4968 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4969 && NONJUMP_INSN_P (seq)
4970 && GET_CODE (PATTERN (seq)) == SET
4971 && SET_DEST (PATTERN (seq)) == reg
4972 && ! reg_mentioned_p (reg,
4973 SET_SRC (PATTERN (seq)))
4974 && NONJUMP_INSN_P (NEXT_INSN (seq))
4975 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4976 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4977 && memory_address_addr_space_p
4978 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4979 MEM_ADDR_SPACE (x)))
4980 {
4981 rtx src1 = SET_SRC (PATTERN (seq));
4982 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4983
4984 /* Replace the placeholder in SRC2 with SRC1. If we can
4985 find where in SRC2 it was placed, that can become our
4986 split point and we can replace this address with SRC2.
4987 Just try two obvious places. */
4988
4989 src2 = replace_rtx (src2, reg, src1);
4990 split = 0;
4991 if (XEXP (src2, 0) == src1)
4992 split = &XEXP (src2, 0);
4993 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4994 && XEXP (XEXP (src2, 0), 0) == src1)
4995 split = &XEXP (XEXP (src2, 0), 0);
4996
4997 if (split)
4998 {
4999 SUBST (XEXP (x, 0), src2);
5000 return split;
5001 }
5002 }
5003
5004 /* If that didn't work and we have a nested plus, like:
5005 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5006 is valid address, try to split (REG1 * CONST1). */
5007 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5008 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5009 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5010 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5011 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5012 0), 0)))))
5013 {
5014 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5015 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5016 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5017 MEM_ADDR_SPACE (x)))
5018 {
5019 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5020 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5021 }
5022 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5023 }
5024 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5025 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5026 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5027 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5028 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5029 0), 1)))))
5030 {
5031 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5032 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5033 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5034 MEM_ADDR_SPACE (x)))
5035 {
5036 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5037 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5038 }
5039 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5040 }
5041
5042 /* If that didn't work, perhaps the first operand is complex and
5043 needs to be computed separately, so make a split point there.
5044 This will occur on machines that just support REG + CONST
5045 and have a constant moved through some previous computation. */
5046 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5047 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5048 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5049 return &XEXP (XEXP (x, 0), 0);
5050 }
5051
5052 /* If we have a PLUS whose first operand is complex, try computing it
5053 separately by making a split there. */
5054 if (GET_CODE (XEXP (x, 0)) == PLUS
5055 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5056 MEM_ADDR_SPACE (x))
5057 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5058 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5059 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5060 return &XEXP (XEXP (x, 0), 0);
5061 break;
5062
5063 case SET:
5064 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5065 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5066 we need to put the operand into a register. So split at that
5067 point. */
5068
5069 if (SET_DEST (x) == cc0_rtx
5070 && GET_CODE (SET_SRC (x)) != COMPARE
5071 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5072 && !OBJECT_P (SET_SRC (x))
5073 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5074 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5075 return &SET_SRC (x);
5076
5077 /* See if we can split SET_SRC as it stands. */
5078 split = find_split_point (&SET_SRC (x), insn, true);
5079 if (split && split != &SET_SRC (x))
5080 return split;
5081
5082 /* See if we can split SET_DEST as it stands. */
5083 split = find_split_point (&SET_DEST (x), insn, false);
5084 if (split && split != &SET_DEST (x))
5085 return split;
5086
5087 /* See if this is a bitfield assignment with everything constant. If
5088 so, this is an IOR of an AND, so split it into that. */
5089 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5090 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5091 &inner_mode)
5092 && HWI_COMPUTABLE_MODE_P (inner_mode)
5093 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5094 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5095 && CONST_INT_P (SET_SRC (x))
5096 && ((INTVAL (XEXP (SET_DEST (x), 1))
5097 + INTVAL (XEXP (SET_DEST (x), 2)))
5098 <= GET_MODE_PRECISION (inner_mode))
5099 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5100 {
5101 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5102 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5103 rtx dest = XEXP (SET_DEST (x), 0);
5104 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5105 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5106 rtx or_mask;
5107
5108 if (BITS_BIG_ENDIAN)
5109 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5110
5111 or_mask = gen_int_mode (src << pos, inner_mode);
5112 if (src == mask)
5113 SUBST (SET_SRC (x),
5114 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5115 else
5116 {
5117 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5118 SUBST (SET_SRC (x),
5119 simplify_gen_binary (IOR, inner_mode,
5120 simplify_gen_binary (AND, inner_mode,
5121 dest, negmask),
5122 or_mask));
5123 }
5124
5125 SUBST (SET_DEST (x), dest);
5126
5127 split = find_split_point (&SET_SRC (x), insn, true);
5128 if (split && split != &SET_SRC (x))
5129 return split;
5130 }
5131
5132 /* Otherwise, see if this is an operation that we can split into two.
5133 If so, try to split that. */
5134 code = GET_CODE (SET_SRC (x));
5135
5136 switch (code)
5137 {
5138 case AND:
5139 /* If we are AND'ing with a large constant that is only a single
5140 bit and the result is only being used in a context where we
5141 need to know if it is zero or nonzero, replace it with a bit
5142 extraction. This will avoid the large constant, which might
5143 have taken more than one insn to make. If the constant were
5144 not a valid argument to the AND but took only one insn to make,
5145 this is no worse, but if it took more than one insn, it will
5146 be better. */
5147
5148 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5149 && REG_P (XEXP (SET_SRC (x), 0))
5150 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5151 && REG_P (SET_DEST (x))
5152 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5153 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5154 && XEXP (*split, 0) == SET_DEST (x)
5155 && XEXP (*split, 1) == const0_rtx)
5156 {
5157 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5158 XEXP (SET_SRC (x), 0),
5159 pos, NULL_RTX, 1, 1, 0, 0);
5160 if (extraction != 0)
5161 {
5162 SUBST (SET_SRC (x), extraction);
5163 return find_split_point (loc, insn, false);
5164 }
5165 }
5166 break;
5167
5168 case NE:
5169 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5170 is known to be on, this can be converted into a NEG of a shift. */
5171 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5172 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5173 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5174 GET_MODE (XEXP (SET_SRC (x),
5175 0))))) >= 1))
5176 {
5177 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5178 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5179 SUBST (SET_SRC (x),
5180 gen_rtx_NEG (mode,
5181 gen_rtx_LSHIFTRT (mode,
5182 XEXP (SET_SRC (x), 0),
5183 pos_rtx)));
5184
5185 split = find_split_point (&SET_SRC (x), insn, true);
5186 if (split && split != &SET_SRC (x))
5187 return split;
5188 }
5189 break;
5190
5191 case SIGN_EXTEND:
5192 inner = XEXP (SET_SRC (x), 0);
5193
5194 /* We can't optimize if either mode is a partial integer
5195 mode as we don't know how many bits are significant
5196 in those modes. */
5197 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5198 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5199 break;
5200
5201 pos = 0;
5202 len = GET_MODE_PRECISION (inner_mode);
5203 unsignedp = 0;
5204 break;
5205
5206 case SIGN_EXTRACT:
5207 case ZERO_EXTRACT:
5208 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5209 &inner_mode)
5210 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5211 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5212 {
5213 inner = XEXP (SET_SRC (x), 0);
5214 len = INTVAL (XEXP (SET_SRC (x), 1));
5215 pos = INTVAL (XEXP (SET_SRC (x), 2));
5216
5217 if (BITS_BIG_ENDIAN)
5218 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5219 unsignedp = (code == ZERO_EXTRACT);
5220 }
5221 break;
5222
5223 default:
5224 break;
5225 }
5226
5227 if (len
5228 && known_subrange_p (pos, len,
5229 0, GET_MODE_PRECISION (GET_MODE (inner)))
5230 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5231 {
5232 /* For unsigned, we have a choice of a shift followed by an
5233 AND or two shifts. Use two shifts for field sizes where the
5234 constant might be too large. We assume here that we can
5235 always at least get 8-bit constants in an AND insn, which is
5236 true for every current RISC. */
5237
5238 if (unsignedp && len <= 8)
5239 {
5240 unsigned HOST_WIDE_INT mask
5241 = (HOST_WIDE_INT_1U << len) - 1;
5242 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5243 SUBST (SET_SRC (x),
5244 gen_rtx_AND (mode,
5245 gen_rtx_LSHIFTRT
5246 (mode, gen_lowpart (mode, inner), pos_rtx),
5247 gen_int_mode (mask, mode)));
5248
5249 split = find_split_point (&SET_SRC (x), insn, true);
5250 if (split && split != &SET_SRC (x))
5251 return split;
5252 }
5253 else
5254 {
5255 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5256 int right_bits = GET_MODE_PRECISION (mode) - len;
5257 SUBST (SET_SRC (x),
5258 gen_rtx_fmt_ee
5259 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5260 gen_rtx_ASHIFT (mode,
5261 gen_lowpart (mode, inner),
5262 gen_int_shift_amount (mode, left_bits)),
5263 gen_int_shift_amount (mode, right_bits)));
5264
5265 split = find_split_point (&SET_SRC (x), insn, true);
5266 if (split && split != &SET_SRC (x))
5267 return split;
5268 }
5269 }
5270
5271 /* See if this is a simple operation with a constant as the second
5272 operand. It might be that this constant is out of range and hence
5273 could be used as a split point. */
5274 if (BINARY_P (SET_SRC (x))
5275 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5276 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5277 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5278 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5279 return &XEXP (SET_SRC (x), 1);
5280
5281 /* Finally, see if this is a simple operation with its first operand
5282 not in a register. The operation might require this operand in a
5283 register, so return it as a split point. We can always do this
5284 because if the first operand were another operation, we would have
5285 already found it as a split point. */
5286 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5287 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5288 return &XEXP (SET_SRC (x), 0);
5289
5290 return 0;
5291
5292 case AND:
5293 case IOR:
5294 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5295 it is better to write this as (not (ior A B)) so we can split it.
5296 Similarly for IOR. */
5297 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5298 {
5299 SUBST (*loc,
5300 gen_rtx_NOT (GET_MODE (x),
5301 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5302 GET_MODE (x),
5303 XEXP (XEXP (x, 0), 0),
5304 XEXP (XEXP (x, 1), 0))));
5305 return find_split_point (loc, insn, set_src);
5306 }
5307
5308 /* Many RISC machines have a large set of logical insns. If the
5309 second operand is a NOT, put it first so we will try to split the
5310 other operand first. */
5311 if (GET_CODE (XEXP (x, 1)) == NOT)
5312 {
5313 rtx tem = XEXP (x, 0);
5314 SUBST (XEXP (x, 0), XEXP (x, 1));
5315 SUBST (XEXP (x, 1), tem);
5316 }
5317 break;
5318
5319 case PLUS:
5320 case MINUS:
5321 /* Canonicalization can produce (minus A (mult B C)), where C is a
5322 constant. It may be better to try splitting (plus (mult B -C) A)
5323 instead if this isn't a multiply by a power of two. */
5324 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5325 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5326 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5327 {
5328 machine_mode mode = GET_MODE (x);
5329 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5330 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5331 SUBST (*loc, gen_rtx_PLUS (mode,
5332 gen_rtx_MULT (mode,
5333 XEXP (XEXP (x, 1), 0),
5334 gen_int_mode (other_int,
5335 mode)),
5336 XEXP (x, 0)));
5337 return find_split_point (loc, insn, set_src);
5338 }
5339
5340 /* Split at a multiply-accumulate instruction. However if this is
5341 the SET_SRC, we likely do not have such an instruction and it's
5342 worthless to try this split. */
5343 if (!set_src
5344 && (GET_CODE (XEXP (x, 0)) == MULT
5345 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5346 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5347 return loc;
5348
5349 default:
5350 break;
5351 }
5352
5353 /* Otherwise, select our actions depending on our rtx class. */
5354 switch (GET_RTX_CLASS (code))
5355 {
5356 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5357 case RTX_TERNARY:
5358 split = find_split_point (&XEXP (x, 2), insn, false);
5359 if (split)
5360 return split;
5361 /* fall through */
5362 case RTX_BIN_ARITH:
5363 case RTX_COMM_ARITH:
5364 case RTX_COMPARE:
5365 case RTX_COMM_COMPARE:
5366 split = find_split_point (&XEXP (x, 1), insn, false);
5367 if (split)
5368 return split;
5369 /* fall through */
5370 case RTX_UNARY:
5371 /* Some machines have (and (shift ...) ...) insns. If X is not
5372 an AND, but XEXP (X, 0) is, use it as our split point. */
5373 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5374 return &XEXP (x, 0);
5375
5376 split = find_split_point (&XEXP (x, 0), insn, false);
5377 if (split)
5378 return split;
5379 return loc;
5380
5381 default:
5382 /* Otherwise, we don't have a split point. */
5383 return 0;
5384 }
5385 }
5386 \f
5387 /* Throughout X, replace FROM with TO, and return the result.
5388 The result is TO if X is FROM;
5389 otherwise the result is X, but its contents may have been modified.
5390 If they were modified, a record was made in undobuf so that
5391 undo_all will (among other things) return X to its original state.
5392
5393 If the number of changes necessary is too much to record to undo,
5394 the excess changes are not made, so the result is invalid.
5395 The changes already made can still be undone.
5396 undobuf.num_undo is incremented for such changes, so by testing that
5397 the caller can tell whether the result is valid.
5398
5399 `n_occurrences' is incremented each time FROM is replaced.
5400
5401 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5402
5403 IN_COND is nonzero if we are at the top level of a condition.
5404
5405 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5406 by copying if `n_occurrences' is nonzero. */
5407
5408 static rtx
5409 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5410 {
5411 enum rtx_code code = GET_CODE (x);
5412 machine_mode op0_mode = VOIDmode;
5413 const char *fmt;
5414 int len, i;
5415 rtx new_rtx;
5416
5417 /* Two expressions are equal if they are identical copies of a shared
5418 RTX or if they are both registers with the same register number
5419 and mode. */
5420
5421 #define COMBINE_RTX_EQUAL_P(X,Y) \
5422 ((X) == (Y) \
5423 || (REG_P (X) && REG_P (Y) \
5424 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5425
5426 /* Do not substitute into clobbers of regs -- this will never result in
5427 valid RTL. */
5428 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5429 return x;
5430
5431 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5432 {
5433 n_occurrences++;
5434 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5435 }
5436
5437 /* If X and FROM are the same register but different modes, they
5438 will not have been seen as equal above. However, the log links code
5439 will make a LOG_LINKS entry for that case. If we do nothing, we
5440 will try to rerecognize our original insn and, when it succeeds,
5441 we will delete the feeding insn, which is incorrect.
5442
5443 So force this insn not to match in this (rare) case. */
5444 if (! in_dest && code == REG && REG_P (from)
5445 && reg_overlap_mentioned_p (x, from))
5446 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5447
5448 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5449 of which may contain things that can be combined. */
5450 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5451 return x;
5452
5453 /* It is possible to have a subexpression appear twice in the insn.
5454 Suppose that FROM is a register that appears within TO.
5455 Then, after that subexpression has been scanned once by `subst',
5456 the second time it is scanned, TO may be found. If we were
5457 to scan TO here, we would find FROM within it and create a
5458 self-referent rtl structure which is completely wrong. */
5459 if (COMBINE_RTX_EQUAL_P (x, to))
5460 return to;
5461
5462 /* Parallel asm_operands need special attention because all of the
5463 inputs are shared across the arms. Furthermore, unsharing the
5464 rtl results in recognition failures. Failure to handle this case
5465 specially can result in circular rtl.
5466
5467 Solve this by doing a normal pass across the first entry of the
5468 parallel, and only processing the SET_DESTs of the subsequent
5469 entries. Ug. */
5470
5471 if (code == PARALLEL
5472 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5473 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5474 {
5475 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5476
5477 /* If this substitution failed, this whole thing fails. */
5478 if (GET_CODE (new_rtx) == CLOBBER
5479 && XEXP (new_rtx, 0) == const0_rtx)
5480 return new_rtx;
5481
5482 SUBST (XVECEXP (x, 0, 0), new_rtx);
5483
5484 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5485 {
5486 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5487
5488 if (!REG_P (dest)
5489 && GET_CODE (dest) != CC0
5490 && GET_CODE (dest) != PC)
5491 {
5492 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5493
5494 /* If this substitution failed, this whole thing fails. */
5495 if (GET_CODE (new_rtx) == CLOBBER
5496 && XEXP (new_rtx, 0) == const0_rtx)
5497 return new_rtx;
5498
5499 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5500 }
5501 }
5502 }
5503 else
5504 {
5505 len = GET_RTX_LENGTH (code);
5506 fmt = GET_RTX_FORMAT (code);
5507
5508 /* We don't need to process a SET_DEST that is a register, CC0,
5509 or PC, so set up to skip this common case. All other cases
5510 where we want to suppress replacing something inside a
5511 SET_SRC are handled via the IN_DEST operand. */
5512 if (code == SET
5513 && (REG_P (SET_DEST (x))
5514 || GET_CODE (SET_DEST (x)) == CC0
5515 || GET_CODE (SET_DEST (x)) == PC))
5516 fmt = "ie";
5517
5518 /* Trying to simplify the operands of a widening MULT is not likely
5519 to create RTL matching a machine insn. */
5520 if (code == MULT
5521 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5522 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5523 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5524 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5525 && REG_P (XEXP (XEXP (x, 0), 0))
5526 && REG_P (XEXP (XEXP (x, 1), 0))
5527 && from == to)
5528 return x;
5529
5530
5531 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5532 constant. */
5533 if (fmt[0] == 'e')
5534 op0_mode = GET_MODE (XEXP (x, 0));
5535
5536 for (i = 0; i < len; i++)
5537 {
5538 if (fmt[i] == 'E')
5539 {
5540 int j;
5541 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5542 {
5543 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5544 {
5545 new_rtx = (unique_copy && n_occurrences
5546 ? copy_rtx (to) : to);
5547 n_occurrences++;
5548 }
5549 else
5550 {
5551 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5552 unique_copy);
5553
5554 /* If this substitution failed, this whole thing
5555 fails. */
5556 if (GET_CODE (new_rtx) == CLOBBER
5557 && XEXP (new_rtx, 0) == const0_rtx)
5558 return new_rtx;
5559 }
5560
5561 SUBST (XVECEXP (x, i, j), new_rtx);
5562 }
5563 }
5564 else if (fmt[i] == 'e')
5565 {
5566 /* If this is a register being set, ignore it. */
5567 new_rtx = XEXP (x, i);
5568 if (in_dest
5569 && i == 0
5570 && (((code == SUBREG || code == ZERO_EXTRACT)
5571 && REG_P (new_rtx))
5572 || code == STRICT_LOW_PART))
5573 ;
5574
5575 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5576 {
5577 /* In general, don't install a subreg involving two
5578 modes not tieable. It can worsen register
5579 allocation, and can even make invalid reload
5580 insns, since the reg inside may need to be copied
5581 from in the outside mode, and that may be invalid
5582 if it is an fp reg copied in integer mode.
5583
5584 We allow two exceptions to this: It is valid if
5585 it is inside another SUBREG and the mode of that
5586 SUBREG and the mode of the inside of TO is
5587 tieable and it is valid if X is a SET that copies
5588 FROM to CC0. */
5589
5590 if (GET_CODE (to) == SUBREG
5591 && !targetm.modes_tieable_p (GET_MODE (to),
5592 GET_MODE (SUBREG_REG (to)))
5593 && ! (code == SUBREG
5594 && (targetm.modes_tieable_p
5595 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5596 && (!HAVE_cc0
5597 || (! (code == SET
5598 && i == 1
5599 && XEXP (x, 0) == cc0_rtx))))
5600 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5601
5602 if (code == SUBREG
5603 && REG_P (to)
5604 && REGNO (to) < FIRST_PSEUDO_REGISTER
5605 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5606 SUBREG_BYTE (x),
5607 GET_MODE (x)) < 0)
5608 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5609
5610 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5611 n_occurrences++;
5612 }
5613 else
5614 /* If we are in a SET_DEST, suppress most cases unless we
5615 have gone inside a MEM, in which case we want to
5616 simplify the address. We assume here that things that
5617 are actually part of the destination have their inner
5618 parts in the first expression. This is true for SUBREG,
5619 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5620 things aside from REG and MEM that should appear in a
5621 SET_DEST. */
5622 new_rtx = subst (XEXP (x, i), from, to,
5623 (((in_dest
5624 && (code == SUBREG || code == STRICT_LOW_PART
5625 || code == ZERO_EXTRACT))
5626 || code == SET)
5627 && i == 0),
5628 code == IF_THEN_ELSE && i == 0,
5629 unique_copy);
5630
5631 /* If we found that we will have to reject this combination,
5632 indicate that by returning the CLOBBER ourselves, rather than
5633 an expression containing it. This will speed things up as
5634 well as prevent accidents where two CLOBBERs are considered
5635 to be equal, thus producing an incorrect simplification. */
5636
5637 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5638 return new_rtx;
5639
5640 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5641 {
5642 machine_mode mode = GET_MODE (x);
5643
5644 x = simplify_subreg (GET_MODE (x), new_rtx,
5645 GET_MODE (SUBREG_REG (x)),
5646 SUBREG_BYTE (x));
5647 if (! x)
5648 x = gen_rtx_CLOBBER (mode, const0_rtx);
5649 }
5650 else if (CONST_SCALAR_INT_P (new_rtx)
5651 && (GET_CODE (x) == ZERO_EXTEND
5652 || GET_CODE (x) == SIGN_EXTEND
5653 || GET_CODE (x) == FLOAT
5654 || GET_CODE (x) == UNSIGNED_FLOAT))
5655 {
5656 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5657 new_rtx,
5658 GET_MODE (XEXP (x, 0)));
5659 if (!x)
5660 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5661 }
5662 else
5663 SUBST (XEXP (x, i), new_rtx);
5664 }
5665 }
5666 }
5667
5668 /* Check if we are loading something from the constant pool via float
5669 extension; in this case we would undo compress_float_constant
5670 optimization and degenerate constant load to an immediate value. */
5671 if (GET_CODE (x) == FLOAT_EXTEND
5672 && MEM_P (XEXP (x, 0))
5673 && MEM_READONLY_P (XEXP (x, 0)))
5674 {
5675 rtx tmp = avoid_constant_pool_reference (x);
5676 if (x != tmp)
5677 return x;
5678 }
5679
5680 /* Try to simplify X. If the simplification changed the code, it is likely
5681 that further simplification will help, so loop, but limit the number
5682 of repetitions that will be performed. */
5683
5684 for (i = 0; i < 4; i++)
5685 {
5686 /* If X is sufficiently simple, don't bother trying to do anything
5687 with it. */
5688 if (code != CONST_INT && code != REG && code != CLOBBER)
5689 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5690
5691 if (GET_CODE (x) == code)
5692 break;
5693
5694 code = GET_CODE (x);
5695
5696 /* We no longer know the original mode of operand 0 since we
5697 have changed the form of X) */
5698 op0_mode = VOIDmode;
5699 }
5700
5701 return x;
5702 }
5703 \f
5704 /* If X is a commutative operation whose operands are not in the canonical
5705 order, use substitutions to swap them. */
5706
5707 static void
5708 maybe_swap_commutative_operands (rtx x)
5709 {
5710 if (COMMUTATIVE_ARITH_P (x)
5711 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5712 {
5713 rtx temp = XEXP (x, 0);
5714 SUBST (XEXP (x, 0), XEXP (x, 1));
5715 SUBST (XEXP (x, 1), temp);
5716 }
5717 }
5718
5719 /* Simplify X, a piece of RTL. We just operate on the expression at the
5720 outer level; call `subst' to simplify recursively. Return the new
5721 expression.
5722
5723 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5724 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5725 of a condition. */
5726
5727 static rtx
5728 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5729 int in_cond)
5730 {
5731 enum rtx_code code = GET_CODE (x);
5732 machine_mode mode = GET_MODE (x);
5733 scalar_int_mode int_mode;
5734 rtx temp;
5735 int i;
5736
5737 /* If this is a commutative operation, put a constant last and a complex
5738 expression first. We don't need to do this for comparisons here. */
5739 maybe_swap_commutative_operands (x);
5740
5741 /* Try to fold this expression in case we have constants that weren't
5742 present before. */
5743 temp = 0;
5744 switch (GET_RTX_CLASS (code))
5745 {
5746 case RTX_UNARY:
5747 if (op0_mode == VOIDmode)
5748 op0_mode = GET_MODE (XEXP (x, 0));
5749 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5750 break;
5751 case RTX_COMPARE:
5752 case RTX_COMM_COMPARE:
5753 {
5754 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5755 if (cmp_mode == VOIDmode)
5756 {
5757 cmp_mode = GET_MODE (XEXP (x, 1));
5758 if (cmp_mode == VOIDmode)
5759 cmp_mode = op0_mode;
5760 }
5761 temp = simplify_relational_operation (code, mode, cmp_mode,
5762 XEXP (x, 0), XEXP (x, 1));
5763 }
5764 break;
5765 case RTX_COMM_ARITH:
5766 case RTX_BIN_ARITH:
5767 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5768 break;
5769 case RTX_BITFIELD_OPS:
5770 case RTX_TERNARY:
5771 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5772 XEXP (x, 1), XEXP (x, 2));
5773 break;
5774 default:
5775 break;
5776 }
5777
5778 if (temp)
5779 {
5780 x = temp;
5781 code = GET_CODE (temp);
5782 op0_mode = VOIDmode;
5783 mode = GET_MODE (temp);
5784 }
5785
5786 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5787 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5788 things. Check for cases where both arms are testing the same
5789 condition.
5790
5791 Don't do anything if all operands are very simple. */
5792
5793 if ((BINARY_P (x)
5794 && ((!OBJECT_P (XEXP (x, 0))
5795 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5796 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5797 || (!OBJECT_P (XEXP (x, 1))
5798 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5799 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5800 || (UNARY_P (x)
5801 && (!OBJECT_P (XEXP (x, 0))
5802 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5803 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5804 {
5805 rtx cond, true_rtx, false_rtx;
5806
5807 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5808 if (cond != 0
5809 /* If everything is a comparison, what we have is highly unlikely
5810 to be simpler, so don't use it. */
5811 && ! (COMPARISON_P (x)
5812 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5813 /* Similarly, if we end up with one of the expressions the same
5814 as the original, it is certainly not simpler. */
5815 && ! rtx_equal_p (x, true_rtx)
5816 && ! rtx_equal_p (x, false_rtx))
5817 {
5818 rtx cop1 = const0_rtx;
5819 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5820
5821 if (cond_code == NE && COMPARISON_P (cond))
5822 return x;
5823
5824 /* Simplify the alternative arms; this may collapse the true and
5825 false arms to store-flag values. Be careful to use copy_rtx
5826 here since true_rtx or false_rtx might share RTL with x as a
5827 result of the if_then_else_cond call above. */
5828 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5829 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5830
5831 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5832 is unlikely to be simpler. */
5833 if (general_operand (true_rtx, VOIDmode)
5834 && general_operand (false_rtx, VOIDmode))
5835 {
5836 enum rtx_code reversed;
5837
5838 /* Restarting if we generate a store-flag expression will cause
5839 us to loop. Just drop through in this case. */
5840
5841 /* If the result values are STORE_FLAG_VALUE and zero, we can
5842 just make the comparison operation. */
5843 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5844 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5845 cond, cop1);
5846 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5847 && ((reversed = reversed_comparison_code_parts
5848 (cond_code, cond, cop1, NULL))
5849 != UNKNOWN))
5850 x = simplify_gen_relational (reversed, mode, VOIDmode,
5851 cond, cop1);
5852
5853 /* Likewise, we can make the negate of a comparison operation
5854 if the result values are - STORE_FLAG_VALUE and zero. */
5855 else if (CONST_INT_P (true_rtx)
5856 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5857 && false_rtx == const0_rtx)
5858 x = simplify_gen_unary (NEG, mode,
5859 simplify_gen_relational (cond_code,
5860 mode, VOIDmode,
5861 cond, cop1),
5862 mode);
5863 else if (CONST_INT_P (false_rtx)
5864 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5865 && true_rtx == const0_rtx
5866 && ((reversed = reversed_comparison_code_parts
5867 (cond_code, cond, cop1, NULL))
5868 != UNKNOWN))
5869 x = simplify_gen_unary (NEG, mode,
5870 simplify_gen_relational (reversed,
5871 mode, VOIDmode,
5872 cond, cop1),
5873 mode);
5874
5875 code = GET_CODE (x);
5876 op0_mode = VOIDmode;
5877 }
5878 }
5879 }
5880
5881 /* First see if we can apply the inverse distributive law. */
5882 if (code == PLUS || code == MINUS
5883 || code == AND || code == IOR || code == XOR)
5884 {
5885 x = apply_distributive_law (x);
5886 code = GET_CODE (x);
5887 op0_mode = VOIDmode;
5888 }
5889
5890 /* If CODE is an associative operation not otherwise handled, see if we
5891 can associate some operands. This can win if they are constants or
5892 if they are logically related (i.e. (a & b) & a). */
5893 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5894 || code == AND || code == IOR || code == XOR
5895 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5896 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5897 || (flag_associative_math && FLOAT_MODE_P (mode))))
5898 {
5899 if (GET_CODE (XEXP (x, 0)) == code)
5900 {
5901 rtx other = XEXP (XEXP (x, 0), 0);
5902 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5903 rtx inner_op1 = XEXP (x, 1);
5904 rtx inner;
5905
5906 /* Make sure we pass the constant operand if any as the second
5907 one if this is a commutative operation. */
5908 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5909 std::swap (inner_op0, inner_op1);
5910 inner = simplify_binary_operation (code == MINUS ? PLUS
5911 : code == DIV ? MULT
5912 : code,
5913 mode, inner_op0, inner_op1);
5914
5915 /* For commutative operations, try the other pair if that one
5916 didn't simplify. */
5917 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5918 {
5919 other = XEXP (XEXP (x, 0), 1);
5920 inner = simplify_binary_operation (code, mode,
5921 XEXP (XEXP (x, 0), 0),
5922 XEXP (x, 1));
5923 }
5924
5925 if (inner)
5926 return simplify_gen_binary (code, mode, other, inner);
5927 }
5928 }
5929
5930 /* A little bit of algebraic simplification here. */
5931 switch (code)
5932 {
5933 case MEM:
5934 /* Ensure that our address has any ASHIFTs converted to MULT in case
5935 address-recognizing predicates are called later. */
5936 temp = make_compound_operation (XEXP (x, 0), MEM);
5937 SUBST (XEXP (x, 0), temp);
5938 break;
5939
5940 case SUBREG:
5941 if (op0_mode == VOIDmode)
5942 op0_mode = GET_MODE (SUBREG_REG (x));
5943
5944 /* See if this can be moved to simplify_subreg. */
5945 if (CONSTANT_P (SUBREG_REG (x))
5946 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5947 /* Don't call gen_lowpart if the inner mode
5948 is VOIDmode and we cannot simplify it, as SUBREG without
5949 inner mode is invalid. */
5950 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5951 || gen_lowpart_common (mode, SUBREG_REG (x))))
5952 return gen_lowpart (mode, SUBREG_REG (x));
5953
5954 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5955 break;
5956 {
5957 rtx temp;
5958 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5959 SUBREG_BYTE (x));
5960 if (temp)
5961 return temp;
5962
5963 /* If op is known to have all lower bits zero, the result is zero. */
5964 scalar_int_mode int_mode, int_op0_mode;
5965 if (!in_dest
5966 && is_a <scalar_int_mode> (mode, &int_mode)
5967 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5968 && (GET_MODE_PRECISION (int_mode)
5969 < GET_MODE_PRECISION (int_op0_mode))
5970 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5971 SUBREG_BYTE (x))
5972 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5973 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5974 & GET_MODE_MASK (int_mode)) == 0)
5975 && !side_effects_p (SUBREG_REG (x)))
5976 return CONST0_RTX (int_mode);
5977 }
5978
5979 /* Don't change the mode of the MEM if that would change the meaning
5980 of the address. */
5981 if (MEM_P (SUBREG_REG (x))
5982 && (MEM_VOLATILE_P (SUBREG_REG (x))
5983 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5984 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5985 return gen_rtx_CLOBBER (mode, const0_rtx);
5986
5987 /* Note that we cannot do any narrowing for non-constants since
5988 we might have been counting on using the fact that some bits were
5989 zero. We now do this in the SET. */
5990
5991 break;
5992
5993 case NEG:
5994 temp = expand_compound_operation (XEXP (x, 0));
5995
5996 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5997 replaced by (lshiftrt X C). This will convert
5998 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5999
6000 if (GET_CODE (temp) == ASHIFTRT
6001 && CONST_INT_P (XEXP (temp, 1))
6002 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6003 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6004 INTVAL (XEXP (temp, 1)));
6005
6006 /* If X has only a single bit that might be nonzero, say, bit I, convert
6007 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6008 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6009 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6010 or a SUBREG of one since we'd be making the expression more
6011 complex if it was just a register. */
6012
6013 if (!REG_P (temp)
6014 && ! (GET_CODE (temp) == SUBREG
6015 && REG_P (SUBREG_REG (temp)))
6016 && is_a <scalar_int_mode> (mode, &int_mode)
6017 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6018 {
6019 rtx temp1 = simplify_shift_const
6020 (NULL_RTX, ASHIFTRT, int_mode,
6021 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6022 GET_MODE_PRECISION (int_mode) - 1 - i),
6023 GET_MODE_PRECISION (int_mode) - 1 - i);
6024
6025 /* If all we did was surround TEMP with the two shifts, we
6026 haven't improved anything, so don't use it. Otherwise,
6027 we are better off with TEMP1. */
6028 if (GET_CODE (temp1) != ASHIFTRT
6029 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6030 || XEXP (XEXP (temp1, 0), 0) != temp)
6031 return temp1;
6032 }
6033 break;
6034
6035 case TRUNCATE:
6036 /* We can't handle truncation to a partial integer mode here
6037 because we don't know the real bitsize of the partial
6038 integer mode. */
6039 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6040 break;
6041
6042 if (HWI_COMPUTABLE_MODE_P (mode))
6043 SUBST (XEXP (x, 0),
6044 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6045 GET_MODE_MASK (mode), 0));
6046
6047 /* We can truncate a constant value and return it. */
6048 {
6049 poly_int64 c;
6050 if (poly_int_rtx_p (XEXP (x, 0), &c))
6051 return gen_int_mode (c, mode);
6052 }
6053
6054 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6055 whose value is a comparison can be replaced with a subreg if
6056 STORE_FLAG_VALUE permits. */
6057 if (HWI_COMPUTABLE_MODE_P (mode)
6058 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6059 && (temp = get_last_value (XEXP (x, 0)))
6060 && COMPARISON_P (temp))
6061 return gen_lowpart (mode, XEXP (x, 0));
6062 break;
6063
6064 case CONST:
6065 /* (const (const X)) can become (const X). Do it this way rather than
6066 returning the inner CONST since CONST can be shared with a
6067 REG_EQUAL note. */
6068 if (GET_CODE (XEXP (x, 0)) == CONST)
6069 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6070 break;
6071
6072 case LO_SUM:
6073 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6074 can add in an offset. find_split_point will split this address up
6075 again if it doesn't match. */
6076 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6077 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6078 return XEXP (x, 1);
6079 break;
6080
6081 case PLUS:
6082 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6083 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6084 bit-field and can be replaced by either a sign_extend or a
6085 sign_extract. The `and' may be a zero_extend and the two
6086 <c>, -<c> constants may be reversed. */
6087 if (GET_CODE (XEXP (x, 0)) == XOR
6088 && is_a <scalar_int_mode> (mode, &int_mode)
6089 && CONST_INT_P (XEXP (x, 1))
6090 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6091 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6092 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6093 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6094 && HWI_COMPUTABLE_MODE_P (int_mode)
6095 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6096 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6097 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6098 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6099 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6100 && known_eq ((GET_MODE_PRECISION
6101 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6102 (unsigned int) i + 1))))
6103 return simplify_shift_const
6104 (NULL_RTX, ASHIFTRT, int_mode,
6105 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6106 XEXP (XEXP (XEXP (x, 0), 0), 0),
6107 GET_MODE_PRECISION (int_mode) - (i + 1)),
6108 GET_MODE_PRECISION (int_mode) - (i + 1));
6109
6110 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6111 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6112 the bitsize of the mode - 1. This allows simplification of
6113 "a = (b & 8) == 0;" */
6114 if (XEXP (x, 1) == constm1_rtx
6115 && !REG_P (XEXP (x, 0))
6116 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6117 && REG_P (SUBREG_REG (XEXP (x, 0))))
6118 && is_a <scalar_int_mode> (mode, &int_mode)
6119 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6120 return simplify_shift_const
6121 (NULL_RTX, ASHIFTRT, int_mode,
6122 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6123 gen_rtx_XOR (int_mode, XEXP (x, 0),
6124 const1_rtx),
6125 GET_MODE_PRECISION (int_mode) - 1),
6126 GET_MODE_PRECISION (int_mode) - 1);
6127
6128 /* If we are adding two things that have no bits in common, convert
6129 the addition into an IOR. This will often be further simplified,
6130 for example in cases like ((a & 1) + (a & 2)), which can
6131 become a & 3. */
6132
6133 if (HWI_COMPUTABLE_MODE_P (mode)
6134 && (nonzero_bits (XEXP (x, 0), mode)
6135 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6136 {
6137 /* Try to simplify the expression further. */
6138 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6139 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6140
6141 /* If we could, great. If not, do not go ahead with the IOR
6142 replacement, since PLUS appears in many special purpose
6143 address arithmetic instructions. */
6144 if (GET_CODE (temp) != CLOBBER
6145 && (GET_CODE (temp) != IOR
6146 || ((XEXP (temp, 0) != XEXP (x, 0)
6147 || XEXP (temp, 1) != XEXP (x, 1))
6148 && (XEXP (temp, 0) != XEXP (x, 1)
6149 || XEXP (temp, 1) != XEXP (x, 0)))))
6150 return temp;
6151 }
6152
6153 /* Canonicalize x + x into x << 1. */
6154 if (GET_MODE_CLASS (mode) == MODE_INT
6155 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6156 && !side_effects_p (XEXP (x, 0)))
6157 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6158
6159 break;
6160
6161 case MINUS:
6162 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6163 (and <foo> (const_int pow2-1)) */
6164 if (is_a <scalar_int_mode> (mode, &int_mode)
6165 && GET_CODE (XEXP (x, 1)) == AND
6166 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6167 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6168 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6169 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6170 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6171 break;
6172
6173 case MULT:
6174 /* If we have (mult (plus A B) C), apply the distributive law and then
6175 the inverse distributive law to see if things simplify. This
6176 occurs mostly in addresses, often when unrolling loops. */
6177
6178 if (GET_CODE (XEXP (x, 0)) == PLUS)
6179 {
6180 rtx result = distribute_and_simplify_rtx (x, 0);
6181 if (result)
6182 return result;
6183 }
6184
6185 /* Try simplify a*(b/c) as (a*b)/c. */
6186 if (FLOAT_MODE_P (mode) && flag_associative_math
6187 && GET_CODE (XEXP (x, 0)) == DIV)
6188 {
6189 rtx tem = simplify_binary_operation (MULT, mode,
6190 XEXP (XEXP (x, 0), 0),
6191 XEXP (x, 1));
6192 if (tem)
6193 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6194 }
6195 break;
6196
6197 case UDIV:
6198 /* If this is a divide by a power of two, treat it as a shift if
6199 its first operand is a shift. */
6200 if (is_a <scalar_int_mode> (mode, &int_mode)
6201 && CONST_INT_P (XEXP (x, 1))
6202 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6203 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6204 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6205 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6206 || GET_CODE (XEXP (x, 0)) == ROTATE
6207 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6208 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6209 XEXP (x, 0), i);
6210 break;
6211
6212 case EQ: case NE:
6213 case GT: case GTU: case GE: case GEU:
6214 case LT: case LTU: case LE: case LEU:
6215 case UNEQ: case LTGT:
6216 case UNGT: case UNGE:
6217 case UNLT: case UNLE:
6218 case UNORDERED: case ORDERED:
6219 /* If the first operand is a condition code, we can't do anything
6220 with it. */
6221 if (GET_CODE (XEXP (x, 0)) == COMPARE
6222 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6223 && ! CC0_P (XEXP (x, 0))))
6224 {
6225 rtx op0 = XEXP (x, 0);
6226 rtx op1 = XEXP (x, 1);
6227 enum rtx_code new_code;
6228
6229 if (GET_CODE (op0) == COMPARE)
6230 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6231
6232 /* Simplify our comparison, if possible. */
6233 new_code = simplify_comparison (code, &op0, &op1);
6234
6235 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6236 if only the low-order bit is possibly nonzero in X (such as when
6237 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6238 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6239 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6240 (plus X 1).
6241
6242 Remove any ZERO_EXTRACT we made when thinking this was a
6243 comparison. It may now be simpler to use, e.g., an AND. If a
6244 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6245 the call to make_compound_operation in the SET case.
6246
6247 Don't apply these optimizations if the caller would
6248 prefer a comparison rather than a value.
6249 E.g., for the condition in an IF_THEN_ELSE most targets need
6250 an explicit comparison. */
6251
6252 if (in_cond)
6253 ;
6254
6255 else if (STORE_FLAG_VALUE == 1
6256 && new_code == NE
6257 && is_int_mode (mode, &int_mode)
6258 && op1 == const0_rtx
6259 && int_mode == GET_MODE (op0)
6260 && nonzero_bits (op0, int_mode) == 1)
6261 return gen_lowpart (int_mode,
6262 expand_compound_operation (op0));
6263
6264 else if (STORE_FLAG_VALUE == 1
6265 && new_code == NE
6266 && is_int_mode (mode, &int_mode)
6267 && op1 == const0_rtx
6268 && int_mode == GET_MODE (op0)
6269 && (num_sign_bit_copies (op0, int_mode)
6270 == GET_MODE_PRECISION (int_mode)))
6271 {
6272 op0 = expand_compound_operation (op0);
6273 return simplify_gen_unary (NEG, int_mode,
6274 gen_lowpart (int_mode, op0),
6275 int_mode);
6276 }
6277
6278 else if (STORE_FLAG_VALUE == 1
6279 && new_code == EQ
6280 && is_int_mode (mode, &int_mode)
6281 && op1 == const0_rtx
6282 && int_mode == GET_MODE (op0)
6283 && nonzero_bits (op0, int_mode) == 1)
6284 {
6285 op0 = expand_compound_operation (op0);
6286 return simplify_gen_binary (XOR, int_mode,
6287 gen_lowpart (int_mode, op0),
6288 const1_rtx);
6289 }
6290
6291 else if (STORE_FLAG_VALUE == 1
6292 && new_code == EQ
6293 && is_int_mode (mode, &int_mode)
6294 && op1 == const0_rtx
6295 && int_mode == GET_MODE (op0)
6296 && (num_sign_bit_copies (op0, int_mode)
6297 == GET_MODE_PRECISION (int_mode)))
6298 {
6299 op0 = expand_compound_operation (op0);
6300 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6301 }
6302
6303 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6304 those above. */
6305 if (in_cond)
6306 ;
6307
6308 else if (STORE_FLAG_VALUE == -1
6309 && new_code == NE
6310 && is_int_mode (mode, &int_mode)
6311 && op1 == const0_rtx
6312 && int_mode == GET_MODE (op0)
6313 && (num_sign_bit_copies (op0, int_mode)
6314 == GET_MODE_PRECISION (int_mode)))
6315 return gen_lowpart (int_mode, expand_compound_operation (op0));
6316
6317 else if (STORE_FLAG_VALUE == -1
6318 && new_code == NE
6319 && is_int_mode (mode, &int_mode)
6320 && op1 == const0_rtx
6321 && int_mode == GET_MODE (op0)
6322 && nonzero_bits (op0, int_mode) == 1)
6323 {
6324 op0 = expand_compound_operation (op0);
6325 return simplify_gen_unary (NEG, int_mode,
6326 gen_lowpart (int_mode, op0),
6327 int_mode);
6328 }
6329
6330 else if (STORE_FLAG_VALUE == -1
6331 && new_code == EQ
6332 && is_int_mode (mode, &int_mode)
6333 && op1 == const0_rtx
6334 && int_mode == GET_MODE (op0)
6335 && (num_sign_bit_copies (op0, int_mode)
6336 == GET_MODE_PRECISION (int_mode)))
6337 {
6338 op0 = expand_compound_operation (op0);
6339 return simplify_gen_unary (NOT, int_mode,
6340 gen_lowpart (int_mode, op0),
6341 int_mode);
6342 }
6343
6344 /* If X is 0/1, (eq X 0) is X-1. */
6345 else if (STORE_FLAG_VALUE == -1
6346 && new_code == EQ
6347 && is_int_mode (mode, &int_mode)
6348 && op1 == const0_rtx
6349 && int_mode == GET_MODE (op0)
6350 && nonzero_bits (op0, int_mode) == 1)
6351 {
6352 op0 = expand_compound_operation (op0);
6353 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6354 }
6355
6356 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6357 one bit that might be nonzero, we can convert (ne x 0) to
6358 (ashift x c) where C puts the bit in the sign bit. Remove any
6359 AND with STORE_FLAG_VALUE when we are done, since we are only
6360 going to test the sign bit. */
6361 if (new_code == NE
6362 && is_int_mode (mode, &int_mode)
6363 && HWI_COMPUTABLE_MODE_P (int_mode)
6364 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6365 && op1 == const0_rtx
6366 && int_mode == GET_MODE (op0)
6367 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6368 {
6369 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6370 expand_compound_operation (op0),
6371 GET_MODE_PRECISION (int_mode) - 1 - i);
6372 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6373 return XEXP (x, 0);
6374 else
6375 return x;
6376 }
6377
6378 /* If the code changed, return a whole new comparison.
6379 We also need to avoid using SUBST in cases where
6380 simplify_comparison has widened a comparison with a CONST_INT,
6381 since in that case the wider CONST_INT may fail the sanity
6382 checks in do_SUBST. */
6383 if (new_code != code
6384 || (CONST_INT_P (op1)
6385 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6386 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6387 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6388
6389 /* Otherwise, keep this operation, but maybe change its operands.
6390 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6391 SUBST (XEXP (x, 0), op0);
6392 SUBST (XEXP (x, 1), op1);
6393 }
6394 break;
6395
6396 case IF_THEN_ELSE:
6397 return simplify_if_then_else (x);
6398
6399 case ZERO_EXTRACT:
6400 case SIGN_EXTRACT:
6401 case ZERO_EXTEND:
6402 case SIGN_EXTEND:
6403 /* If we are processing SET_DEST, we are done. */
6404 if (in_dest)
6405 return x;
6406
6407 return expand_compound_operation (x);
6408
6409 case SET:
6410 return simplify_set (x);
6411
6412 case AND:
6413 case IOR:
6414 return simplify_logical (x);
6415
6416 case ASHIFT:
6417 case LSHIFTRT:
6418 case ASHIFTRT:
6419 case ROTATE:
6420 case ROTATERT:
6421 /* If this is a shift by a constant amount, simplify it. */
6422 if (CONST_INT_P (XEXP (x, 1)))
6423 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6424 INTVAL (XEXP (x, 1)));
6425
6426 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6427 SUBST (XEXP (x, 1),
6428 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6429 (HOST_WIDE_INT_1U
6430 << exact_log2 (GET_MODE_UNIT_BITSIZE
6431 (GET_MODE (x))))
6432 - 1,
6433 0));
6434 break;
6435
6436 default:
6437 break;
6438 }
6439
6440 return x;
6441 }
6442 \f
6443 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6444
6445 static rtx
6446 simplify_if_then_else (rtx x)
6447 {
6448 machine_mode mode = GET_MODE (x);
6449 rtx cond = XEXP (x, 0);
6450 rtx true_rtx = XEXP (x, 1);
6451 rtx false_rtx = XEXP (x, 2);
6452 enum rtx_code true_code = GET_CODE (cond);
6453 int comparison_p = COMPARISON_P (cond);
6454 rtx temp;
6455 int i;
6456 enum rtx_code false_code;
6457 rtx reversed;
6458 scalar_int_mode int_mode, inner_mode;
6459
6460 /* Simplify storing of the truth value. */
6461 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6462 return simplify_gen_relational (true_code, mode, VOIDmode,
6463 XEXP (cond, 0), XEXP (cond, 1));
6464
6465 /* Also when the truth value has to be reversed. */
6466 if (comparison_p
6467 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6468 && (reversed = reversed_comparison (cond, mode)))
6469 return reversed;
6470
6471 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6472 in it is being compared against certain values. Get the true and false
6473 comparisons and see if that says anything about the value of each arm. */
6474
6475 if (comparison_p
6476 && ((false_code = reversed_comparison_code (cond, NULL))
6477 != UNKNOWN)
6478 && REG_P (XEXP (cond, 0)))
6479 {
6480 HOST_WIDE_INT nzb;
6481 rtx from = XEXP (cond, 0);
6482 rtx true_val = XEXP (cond, 1);
6483 rtx false_val = true_val;
6484 int swapped = 0;
6485
6486 /* If FALSE_CODE is EQ, swap the codes and arms. */
6487
6488 if (false_code == EQ)
6489 {
6490 swapped = 1, true_code = EQ, false_code = NE;
6491 std::swap (true_rtx, false_rtx);
6492 }
6493
6494 scalar_int_mode from_mode;
6495 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6496 {
6497 /* If we are comparing against zero and the expression being
6498 tested has only a single bit that might be nonzero, that is
6499 its value when it is not equal to zero. Similarly if it is
6500 known to be -1 or 0. */
6501 if (true_code == EQ
6502 && true_val == const0_rtx
6503 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6504 {
6505 false_code = EQ;
6506 false_val = gen_int_mode (nzb, from_mode);
6507 }
6508 else if (true_code == EQ
6509 && true_val == const0_rtx
6510 && (num_sign_bit_copies (from, from_mode)
6511 == GET_MODE_PRECISION (from_mode)))
6512 {
6513 false_code = EQ;
6514 false_val = constm1_rtx;
6515 }
6516 }
6517
6518 /* Now simplify an arm if we know the value of the register in the
6519 branch and it is used in the arm. Be careful due to the potential
6520 of locally-shared RTL. */
6521
6522 if (reg_mentioned_p (from, true_rtx))
6523 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6524 from, true_val),
6525 pc_rtx, pc_rtx, 0, 0, 0);
6526 if (reg_mentioned_p (from, false_rtx))
6527 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6528 from, false_val),
6529 pc_rtx, pc_rtx, 0, 0, 0);
6530
6531 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6532 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6533
6534 true_rtx = XEXP (x, 1);
6535 false_rtx = XEXP (x, 2);
6536 true_code = GET_CODE (cond);
6537 }
6538
6539 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6540 reversed, do so to avoid needing two sets of patterns for
6541 subtract-and-branch insns. Similarly if we have a constant in the true
6542 arm, the false arm is the same as the first operand of the comparison, or
6543 the false arm is more complicated than the true arm. */
6544
6545 if (comparison_p
6546 && reversed_comparison_code (cond, NULL) != UNKNOWN
6547 && (true_rtx == pc_rtx
6548 || (CONSTANT_P (true_rtx)
6549 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6550 || true_rtx == const0_rtx
6551 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6552 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6553 && !OBJECT_P (false_rtx))
6554 || reg_mentioned_p (true_rtx, false_rtx)
6555 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6556 {
6557 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6558 SUBST (XEXP (x, 1), false_rtx);
6559 SUBST (XEXP (x, 2), true_rtx);
6560
6561 std::swap (true_rtx, false_rtx);
6562 cond = XEXP (x, 0);
6563
6564 /* It is possible that the conditional has been simplified out. */
6565 true_code = GET_CODE (cond);
6566 comparison_p = COMPARISON_P (cond);
6567 }
6568
6569 /* If the two arms are identical, we don't need the comparison. */
6570
6571 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6572 return true_rtx;
6573
6574 /* Convert a == b ? b : a to "a". */
6575 if (true_code == EQ && ! side_effects_p (cond)
6576 && !HONOR_NANS (mode)
6577 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6578 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6579 return false_rtx;
6580 else if (true_code == NE && ! side_effects_p (cond)
6581 && !HONOR_NANS (mode)
6582 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6583 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6584 return true_rtx;
6585
6586 /* Look for cases where we have (abs x) or (neg (abs X)). */
6587
6588 if (GET_MODE_CLASS (mode) == MODE_INT
6589 && comparison_p
6590 && XEXP (cond, 1) == const0_rtx
6591 && GET_CODE (false_rtx) == NEG
6592 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6593 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6594 && ! side_effects_p (true_rtx))
6595 switch (true_code)
6596 {
6597 case GT:
6598 case GE:
6599 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6600 case LT:
6601 case LE:
6602 return
6603 simplify_gen_unary (NEG, mode,
6604 simplify_gen_unary (ABS, mode, true_rtx, mode),
6605 mode);
6606 default:
6607 break;
6608 }
6609
6610 /* Look for MIN or MAX. */
6611
6612 if ((! FLOAT_MODE_P (mode)
6613 || (flag_unsafe_math_optimizations
6614 && !HONOR_NANS (mode)
6615 && !HONOR_SIGNED_ZEROS (mode)))
6616 && comparison_p
6617 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6618 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6619 && ! side_effects_p (cond))
6620 switch (true_code)
6621 {
6622 case GE:
6623 case GT:
6624 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6625 case LE:
6626 case LT:
6627 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6628 case GEU:
6629 case GTU:
6630 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6631 case LEU:
6632 case LTU:
6633 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6634 default:
6635 break;
6636 }
6637
6638 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6639 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6640 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6641 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6642 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6643 neither 1 or -1, but it isn't worth checking for. */
6644
6645 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6646 && comparison_p
6647 && is_int_mode (mode, &int_mode)
6648 && ! side_effects_p (x))
6649 {
6650 rtx t = make_compound_operation (true_rtx, SET);
6651 rtx f = make_compound_operation (false_rtx, SET);
6652 rtx cond_op0 = XEXP (cond, 0);
6653 rtx cond_op1 = XEXP (cond, 1);
6654 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6655 scalar_int_mode m = int_mode;
6656 rtx z = 0, c1 = NULL_RTX;
6657
6658 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6659 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6660 || GET_CODE (t) == ASHIFT
6661 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6662 && rtx_equal_p (XEXP (t, 0), f))
6663 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6664
6665 /* If an identity-zero op is commutative, check whether there
6666 would be a match if we swapped the operands. */
6667 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6668 || GET_CODE (t) == XOR)
6669 && rtx_equal_p (XEXP (t, 1), f))
6670 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6671 else if (GET_CODE (t) == SIGN_EXTEND
6672 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6673 && (GET_CODE (XEXP (t, 0)) == PLUS
6674 || GET_CODE (XEXP (t, 0)) == MINUS
6675 || GET_CODE (XEXP (t, 0)) == IOR
6676 || GET_CODE (XEXP (t, 0)) == XOR
6677 || GET_CODE (XEXP (t, 0)) == ASHIFT
6678 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6679 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6680 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6681 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6682 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6683 && (num_sign_bit_copies (f, GET_MODE (f))
6684 > (unsigned int)
6685 (GET_MODE_PRECISION (int_mode)
6686 - GET_MODE_PRECISION (inner_mode))))
6687 {
6688 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6689 extend_op = SIGN_EXTEND;
6690 m = inner_mode;
6691 }
6692 else if (GET_CODE (t) == SIGN_EXTEND
6693 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6694 && (GET_CODE (XEXP (t, 0)) == PLUS
6695 || GET_CODE (XEXP (t, 0)) == IOR
6696 || GET_CODE (XEXP (t, 0)) == XOR)
6697 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6698 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6699 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6700 && (num_sign_bit_copies (f, GET_MODE (f))
6701 > (unsigned int)
6702 (GET_MODE_PRECISION (int_mode)
6703 - GET_MODE_PRECISION (inner_mode))))
6704 {
6705 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6706 extend_op = SIGN_EXTEND;
6707 m = inner_mode;
6708 }
6709 else if (GET_CODE (t) == ZERO_EXTEND
6710 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6711 && (GET_CODE (XEXP (t, 0)) == PLUS
6712 || GET_CODE (XEXP (t, 0)) == MINUS
6713 || GET_CODE (XEXP (t, 0)) == IOR
6714 || GET_CODE (XEXP (t, 0)) == XOR
6715 || GET_CODE (XEXP (t, 0)) == ASHIFT
6716 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6717 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6718 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6719 && HWI_COMPUTABLE_MODE_P (int_mode)
6720 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6721 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6722 && ((nonzero_bits (f, GET_MODE (f))
6723 & ~GET_MODE_MASK (inner_mode))
6724 == 0))
6725 {
6726 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6727 extend_op = ZERO_EXTEND;
6728 m = inner_mode;
6729 }
6730 else if (GET_CODE (t) == ZERO_EXTEND
6731 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6732 && (GET_CODE (XEXP (t, 0)) == PLUS
6733 || GET_CODE (XEXP (t, 0)) == IOR
6734 || GET_CODE (XEXP (t, 0)) == XOR)
6735 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6736 && HWI_COMPUTABLE_MODE_P (int_mode)
6737 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6738 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6739 && ((nonzero_bits (f, GET_MODE (f))
6740 & ~GET_MODE_MASK (inner_mode))
6741 == 0))
6742 {
6743 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6744 extend_op = ZERO_EXTEND;
6745 m = inner_mode;
6746 }
6747
6748 if (z)
6749 {
6750 machine_mode cm = m;
6751 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6752 && GET_MODE (c1) != VOIDmode)
6753 cm = GET_MODE (c1);
6754 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6755 cond_op0, cond_op1),
6756 pc_rtx, pc_rtx, 0, 0, 0);
6757 temp = simplify_gen_binary (MULT, cm, temp,
6758 simplify_gen_binary (MULT, cm, c1,
6759 const_true_rtx));
6760 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6761 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6762
6763 if (extend_op != UNKNOWN)
6764 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6765
6766 return temp;
6767 }
6768 }
6769
6770 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6771 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6772 negation of a single bit, we can convert this operation to a shift. We
6773 can actually do this more generally, but it doesn't seem worth it. */
6774
6775 if (true_code == NE
6776 && is_a <scalar_int_mode> (mode, &int_mode)
6777 && XEXP (cond, 1) == const0_rtx
6778 && false_rtx == const0_rtx
6779 && CONST_INT_P (true_rtx)
6780 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6781 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6782 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6783 == GET_MODE_PRECISION (int_mode))
6784 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6785 return
6786 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6787 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6788
6789 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6790 non-zero bit in A is C1. */
6791 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6792 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6793 && is_a <scalar_int_mode> (mode, &int_mode)
6794 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6795 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6796 == nonzero_bits (XEXP (cond, 0), inner_mode)
6797 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6798 {
6799 rtx val = XEXP (cond, 0);
6800 if (inner_mode == int_mode)
6801 return val;
6802 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6803 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6804 }
6805
6806 return x;
6807 }
6808 \f
6809 /* Simplify X, a SET expression. Return the new expression. */
6810
6811 static rtx
6812 simplify_set (rtx x)
6813 {
6814 rtx src = SET_SRC (x);
6815 rtx dest = SET_DEST (x);
6816 machine_mode mode
6817 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6818 rtx_insn *other_insn;
6819 rtx *cc_use;
6820 scalar_int_mode int_mode;
6821
6822 /* (set (pc) (return)) gets written as (return). */
6823 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6824 return src;
6825
6826 /* Now that we know for sure which bits of SRC we are using, see if we can
6827 simplify the expression for the object knowing that we only need the
6828 low-order bits. */
6829
6830 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6831 {
6832 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6833 SUBST (SET_SRC (x), src);
6834 }
6835
6836 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6837 the comparison result and try to simplify it unless we already have used
6838 undobuf.other_insn. */
6839 if ((GET_MODE_CLASS (mode) == MODE_CC
6840 || GET_CODE (src) == COMPARE
6841 || CC0_P (dest))
6842 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6843 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6844 && COMPARISON_P (*cc_use)
6845 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6846 {
6847 enum rtx_code old_code = GET_CODE (*cc_use);
6848 enum rtx_code new_code;
6849 rtx op0, op1, tmp;
6850 int other_changed = 0;
6851 rtx inner_compare = NULL_RTX;
6852 machine_mode compare_mode = GET_MODE (dest);
6853
6854 if (GET_CODE (src) == COMPARE)
6855 {
6856 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6857 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6858 {
6859 inner_compare = op0;
6860 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6861 }
6862 }
6863 else
6864 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6865
6866 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6867 op0, op1);
6868 if (!tmp)
6869 new_code = old_code;
6870 else if (!CONSTANT_P (tmp))
6871 {
6872 new_code = GET_CODE (tmp);
6873 op0 = XEXP (tmp, 0);
6874 op1 = XEXP (tmp, 1);
6875 }
6876 else
6877 {
6878 rtx pat = PATTERN (other_insn);
6879 undobuf.other_insn = other_insn;
6880 SUBST (*cc_use, tmp);
6881
6882 /* Attempt to simplify CC user. */
6883 if (GET_CODE (pat) == SET)
6884 {
6885 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6886 if (new_rtx != NULL_RTX)
6887 SUBST (SET_SRC (pat), new_rtx);
6888 }
6889
6890 /* Convert X into a no-op move. */
6891 SUBST (SET_DEST (x), pc_rtx);
6892 SUBST (SET_SRC (x), pc_rtx);
6893 return x;
6894 }
6895
6896 /* Simplify our comparison, if possible. */
6897 new_code = simplify_comparison (new_code, &op0, &op1);
6898
6899 #ifdef SELECT_CC_MODE
6900 /* If this machine has CC modes other than CCmode, check to see if we
6901 need to use a different CC mode here. */
6902 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6903 compare_mode = GET_MODE (op0);
6904 else if (inner_compare
6905 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6906 && new_code == old_code
6907 && op0 == XEXP (inner_compare, 0)
6908 && op1 == XEXP (inner_compare, 1))
6909 compare_mode = GET_MODE (inner_compare);
6910 else
6911 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6912
6913 /* If the mode changed, we have to change SET_DEST, the mode in the
6914 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6915 a hard register, just build new versions with the proper mode. If it
6916 is a pseudo, we lose unless it is only time we set the pseudo, in
6917 which case we can safely change its mode. */
6918 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6919 {
6920 if (can_change_dest_mode (dest, 0, compare_mode))
6921 {
6922 unsigned int regno = REGNO (dest);
6923 rtx new_dest;
6924
6925 if (regno < FIRST_PSEUDO_REGISTER)
6926 new_dest = gen_rtx_REG (compare_mode, regno);
6927 else
6928 {
6929 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6930 new_dest = regno_reg_rtx[regno];
6931 }
6932
6933 SUBST (SET_DEST (x), new_dest);
6934 SUBST (XEXP (*cc_use, 0), new_dest);
6935 other_changed = 1;
6936
6937 dest = new_dest;
6938 }
6939 }
6940 #endif /* SELECT_CC_MODE */
6941
6942 /* If the code changed, we have to build a new comparison in
6943 undobuf.other_insn. */
6944 if (new_code != old_code)
6945 {
6946 int other_changed_previously = other_changed;
6947 unsigned HOST_WIDE_INT mask;
6948 rtx old_cc_use = *cc_use;
6949
6950 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6951 dest, const0_rtx));
6952 other_changed = 1;
6953
6954 /* If the only change we made was to change an EQ into an NE or
6955 vice versa, OP0 has only one bit that might be nonzero, and OP1
6956 is zero, check if changing the user of the condition code will
6957 produce a valid insn. If it won't, we can keep the original code
6958 in that insn by surrounding our operation with an XOR. */
6959
6960 if (((old_code == NE && new_code == EQ)
6961 || (old_code == EQ && new_code == NE))
6962 && ! other_changed_previously && op1 == const0_rtx
6963 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6964 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6965 {
6966 rtx pat = PATTERN (other_insn), note = 0;
6967
6968 if ((recog_for_combine (&pat, other_insn, &note) < 0
6969 && ! check_asm_operands (pat)))
6970 {
6971 *cc_use = old_cc_use;
6972 other_changed = 0;
6973
6974 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6975 gen_int_mode (mask,
6976 GET_MODE (op0)));
6977 }
6978 }
6979 }
6980
6981 if (other_changed)
6982 undobuf.other_insn = other_insn;
6983
6984 /* Don't generate a compare of a CC with 0, just use that CC. */
6985 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6986 {
6987 SUBST (SET_SRC (x), op0);
6988 src = SET_SRC (x);
6989 }
6990 /* Otherwise, if we didn't previously have the same COMPARE we
6991 want, create it from scratch. */
6992 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6993 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6994 {
6995 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6996 src = SET_SRC (x);
6997 }
6998 }
6999 else
7000 {
7001 /* Get SET_SRC in a form where we have placed back any
7002 compound expressions. Then do the checks below. */
7003 src = make_compound_operation (src, SET);
7004 SUBST (SET_SRC (x), src);
7005 }
7006
7007 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7008 and X being a REG or (subreg (reg)), we may be able to convert this to
7009 (set (subreg:m2 x) (op)).
7010
7011 We can always do this if M1 is narrower than M2 because that means that
7012 we only care about the low bits of the result.
7013
7014 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7015 perform a narrower operation than requested since the high-order bits will
7016 be undefined. On machine where it is defined, this transformation is safe
7017 as long as M1 and M2 have the same number of words. */
7018
7019 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7020 && !OBJECT_P (SUBREG_REG (src))
7021 && (known_equal_after_align_up
7022 (GET_MODE_SIZE (GET_MODE (src)),
7023 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7024 UNITS_PER_WORD))
7025 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7026 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7027 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7028 GET_MODE (SUBREG_REG (src)),
7029 GET_MODE (src)))
7030 && (REG_P (dest)
7031 || (GET_CODE (dest) == SUBREG
7032 && REG_P (SUBREG_REG (dest)))))
7033 {
7034 SUBST (SET_DEST (x),
7035 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7036 dest));
7037 SUBST (SET_SRC (x), SUBREG_REG (src));
7038
7039 src = SET_SRC (x), dest = SET_DEST (x);
7040 }
7041
7042 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7043 in SRC. */
7044 if (dest == cc0_rtx
7045 && partial_subreg_p (src)
7046 && subreg_lowpart_p (src))
7047 {
7048 rtx inner = SUBREG_REG (src);
7049 machine_mode inner_mode = GET_MODE (inner);
7050
7051 /* Here we make sure that we don't have a sign bit on. */
7052 if (val_signbit_known_clear_p (GET_MODE (src),
7053 nonzero_bits (inner, inner_mode)))
7054 {
7055 SUBST (SET_SRC (x), inner);
7056 src = SET_SRC (x);
7057 }
7058 }
7059
7060 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7061 would require a paradoxical subreg. Replace the subreg with a
7062 zero_extend to avoid the reload that would otherwise be required.
7063 Don't do this unless we have a scalar integer mode, otherwise the
7064 transformation is incorrect. */
7065
7066 enum rtx_code extend_op;
7067 if (paradoxical_subreg_p (src)
7068 && MEM_P (SUBREG_REG (src))
7069 && SCALAR_INT_MODE_P (GET_MODE (src))
7070 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7071 {
7072 SUBST (SET_SRC (x),
7073 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7074
7075 src = SET_SRC (x);
7076 }
7077
7078 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7079 are comparing an item known to be 0 or -1 against 0, use a logical
7080 operation instead. Check for one of the arms being an IOR of the other
7081 arm with some value. We compute three terms to be IOR'ed together. In
7082 practice, at most two will be nonzero. Then we do the IOR's. */
7083
7084 if (GET_CODE (dest) != PC
7085 && GET_CODE (src) == IF_THEN_ELSE
7086 && is_int_mode (GET_MODE (src), &int_mode)
7087 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7088 && XEXP (XEXP (src, 0), 1) == const0_rtx
7089 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7090 && (!HAVE_conditional_move
7091 || ! can_conditionally_move_p (int_mode))
7092 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7093 == GET_MODE_PRECISION (int_mode))
7094 && ! side_effects_p (src))
7095 {
7096 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7097 ? XEXP (src, 1) : XEXP (src, 2));
7098 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7099 ? XEXP (src, 2) : XEXP (src, 1));
7100 rtx term1 = const0_rtx, term2, term3;
7101
7102 if (GET_CODE (true_rtx) == IOR
7103 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7104 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7105 else if (GET_CODE (true_rtx) == IOR
7106 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7107 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7108 else if (GET_CODE (false_rtx) == IOR
7109 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7110 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7111 else if (GET_CODE (false_rtx) == IOR
7112 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7113 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7114
7115 term2 = simplify_gen_binary (AND, int_mode,
7116 XEXP (XEXP (src, 0), 0), true_rtx);
7117 term3 = simplify_gen_binary (AND, int_mode,
7118 simplify_gen_unary (NOT, int_mode,
7119 XEXP (XEXP (src, 0), 0),
7120 int_mode),
7121 false_rtx);
7122
7123 SUBST (SET_SRC (x),
7124 simplify_gen_binary (IOR, int_mode,
7125 simplify_gen_binary (IOR, int_mode,
7126 term1, term2),
7127 term3));
7128
7129 src = SET_SRC (x);
7130 }
7131
7132 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7133 whole thing fail. */
7134 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7135 return src;
7136 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7137 return dest;
7138 else
7139 /* Convert this into a field assignment operation, if possible. */
7140 return make_field_assignment (x);
7141 }
7142 \f
7143 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7144 result. */
7145
7146 static rtx
7147 simplify_logical (rtx x)
7148 {
7149 rtx op0 = XEXP (x, 0);
7150 rtx op1 = XEXP (x, 1);
7151 scalar_int_mode mode;
7152
7153 switch (GET_CODE (x))
7154 {
7155 case AND:
7156 /* We can call simplify_and_const_int only if we don't lose
7157 any (sign) bits when converting INTVAL (op1) to
7158 "unsigned HOST_WIDE_INT". */
7159 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7160 && CONST_INT_P (op1)
7161 && (HWI_COMPUTABLE_MODE_P (mode)
7162 || INTVAL (op1) > 0))
7163 {
7164 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7165 if (GET_CODE (x) != AND)
7166 return x;
7167
7168 op0 = XEXP (x, 0);
7169 op1 = XEXP (x, 1);
7170 }
7171
7172 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7173 apply the distributive law and then the inverse distributive
7174 law to see if things simplify. */
7175 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7176 {
7177 rtx result = distribute_and_simplify_rtx (x, 0);
7178 if (result)
7179 return result;
7180 }
7181 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7182 {
7183 rtx result = distribute_and_simplify_rtx (x, 1);
7184 if (result)
7185 return result;
7186 }
7187 break;
7188
7189 case IOR:
7190 /* If we have (ior (and A B) C), apply the distributive law and then
7191 the inverse distributive law to see if things simplify. */
7192
7193 if (GET_CODE (op0) == AND)
7194 {
7195 rtx result = distribute_and_simplify_rtx (x, 0);
7196 if (result)
7197 return result;
7198 }
7199
7200 if (GET_CODE (op1) == AND)
7201 {
7202 rtx result = distribute_and_simplify_rtx (x, 1);
7203 if (result)
7204 return result;
7205 }
7206 break;
7207
7208 default:
7209 gcc_unreachable ();
7210 }
7211
7212 return x;
7213 }
7214 \f
7215 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7216 operations" because they can be replaced with two more basic operations.
7217 ZERO_EXTEND is also considered "compound" because it can be replaced with
7218 an AND operation, which is simpler, though only one operation.
7219
7220 The function expand_compound_operation is called with an rtx expression
7221 and will convert it to the appropriate shifts and AND operations,
7222 simplifying at each stage.
7223
7224 The function make_compound_operation is called to convert an expression
7225 consisting of shifts and ANDs into the equivalent compound expression.
7226 It is the inverse of this function, loosely speaking. */
7227
7228 static rtx
7229 expand_compound_operation (rtx x)
7230 {
7231 unsigned HOST_WIDE_INT pos = 0, len;
7232 int unsignedp = 0;
7233 unsigned int modewidth;
7234 rtx tem;
7235 scalar_int_mode inner_mode;
7236
7237 switch (GET_CODE (x))
7238 {
7239 case ZERO_EXTEND:
7240 unsignedp = 1;
7241 /* FALLTHRU */
7242 case SIGN_EXTEND:
7243 /* We can't necessarily use a const_int for a multiword mode;
7244 it depends on implicitly extending the value.
7245 Since we don't know the right way to extend it,
7246 we can't tell whether the implicit way is right.
7247
7248 Even for a mode that is no wider than a const_int,
7249 we can't win, because we need to sign extend one of its bits through
7250 the rest of it, and we don't know which bit. */
7251 if (CONST_INT_P (XEXP (x, 0)))
7252 return x;
7253
7254 /* Reject modes that aren't scalar integers because turning vector
7255 or complex modes into shifts causes problems. */
7256 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7257 return x;
7258
7259 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7260 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7261 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7262 reloaded. If not for that, MEM's would very rarely be safe.
7263
7264 Reject modes bigger than a word, because we might not be able
7265 to reference a two-register group starting with an arbitrary register
7266 (and currently gen_lowpart might crash for a SUBREG). */
7267
7268 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7269 return x;
7270
7271 len = GET_MODE_PRECISION (inner_mode);
7272 /* If the inner object has VOIDmode (the only way this can happen
7273 is if it is an ASM_OPERANDS), we can't do anything since we don't
7274 know how much masking to do. */
7275 if (len == 0)
7276 return x;
7277
7278 break;
7279
7280 case ZERO_EXTRACT:
7281 unsignedp = 1;
7282
7283 /* fall through */
7284
7285 case SIGN_EXTRACT:
7286 /* If the operand is a CLOBBER, just return it. */
7287 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7288 return XEXP (x, 0);
7289
7290 if (!CONST_INT_P (XEXP (x, 1))
7291 || !CONST_INT_P (XEXP (x, 2)))
7292 return x;
7293
7294 /* Reject modes that aren't scalar integers because turning vector
7295 or complex modes into shifts causes problems. */
7296 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7297 return x;
7298
7299 len = INTVAL (XEXP (x, 1));
7300 pos = INTVAL (XEXP (x, 2));
7301
7302 /* This should stay within the object being extracted, fail otherwise. */
7303 if (len + pos > GET_MODE_PRECISION (inner_mode))
7304 return x;
7305
7306 if (BITS_BIG_ENDIAN)
7307 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7308
7309 break;
7310
7311 default:
7312 return x;
7313 }
7314
7315 /* We've rejected non-scalar operations by now. */
7316 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7317
7318 /* Convert sign extension to zero extension, if we know that the high
7319 bit is not set, as this is easier to optimize. It will be converted
7320 back to cheaper alternative in make_extraction. */
7321 if (GET_CODE (x) == SIGN_EXTEND
7322 && HWI_COMPUTABLE_MODE_P (mode)
7323 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7324 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7325 == 0))
7326 {
7327 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7328 rtx temp2 = expand_compound_operation (temp);
7329
7330 /* Make sure this is a profitable operation. */
7331 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7332 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7333 return temp2;
7334 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7335 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7336 return temp;
7337 else
7338 return x;
7339 }
7340
7341 /* We can optimize some special cases of ZERO_EXTEND. */
7342 if (GET_CODE (x) == ZERO_EXTEND)
7343 {
7344 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7345 know that the last value didn't have any inappropriate bits
7346 set. */
7347 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7348 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7349 && HWI_COMPUTABLE_MODE_P (mode)
7350 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7351 & ~GET_MODE_MASK (inner_mode)) == 0)
7352 return XEXP (XEXP (x, 0), 0);
7353
7354 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7355 if (GET_CODE (XEXP (x, 0)) == SUBREG
7356 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7357 && subreg_lowpart_p (XEXP (x, 0))
7358 && HWI_COMPUTABLE_MODE_P (mode)
7359 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7360 & ~GET_MODE_MASK (inner_mode)) == 0)
7361 return SUBREG_REG (XEXP (x, 0));
7362
7363 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7364 is a comparison and STORE_FLAG_VALUE permits. This is like
7365 the first case, but it works even when MODE is larger
7366 than HOST_WIDE_INT. */
7367 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7368 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7369 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7370 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7371 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7372 return XEXP (XEXP (x, 0), 0);
7373
7374 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7375 if (GET_CODE (XEXP (x, 0)) == SUBREG
7376 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7377 && subreg_lowpart_p (XEXP (x, 0))
7378 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7379 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7380 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7381 return SUBREG_REG (XEXP (x, 0));
7382
7383 }
7384
7385 /* If we reach here, we want to return a pair of shifts. The inner
7386 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7387 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7388 logical depending on the value of UNSIGNEDP.
7389
7390 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7391 converted into an AND of a shift.
7392
7393 We must check for the case where the left shift would have a negative
7394 count. This can happen in a case like (x >> 31) & 255 on machines
7395 that can't shift by a constant. On those machines, we would first
7396 combine the shift with the AND to produce a variable-position
7397 extraction. Then the constant of 31 would be substituted in
7398 to produce such a position. */
7399
7400 modewidth = GET_MODE_PRECISION (mode);
7401 if (modewidth >= pos + len)
7402 {
7403 tem = gen_lowpart (mode, XEXP (x, 0));
7404 if (!tem || GET_CODE (tem) == CLOBBER)
7405 return x;
7406 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7407 tem, modewidth - pos - len);
7408 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7409 mode, tem, modewidth - len);
7410 }
7411 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7412 tem = simplify_and_const_int (NULL_RTX, mode,
7413 simplify_shift_const (NULL_RTX, LSHIFTRT,
7414 mode, XEXP (x, 0),
7415 pos),
7416 (HOST_WIDE_INT_1U << len) - 1);
7417 else
7418 /* Any other cases we can't handle. */
7419 return x;
7420
7421 /* If we couldn't do this for some reason, return the original
7422 expression. */
7423 if (GET_CODE (tem) == CLOBBER)
7424 return x;
7425
7426 return tem;
7427 }
7428 \f
7429 /* X is a SET which contains an assignment of one object into
7430 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7431 or certain SUBREGS). If possible, convert it into a series of
7432 logical operations.
7433
7434 We half-heartedly support variable positions, but do not at all
7435 support variable lengths. */
7436
7437 static const_rtx
7438 expand_field_assignment (const_rtx x)
7439 {
7440 rtx inner;
7441 rtx pos; /* Always counts from low bit. */
7442 int len, inner_len;
7443 rtx mask, cleared, masked;
7444 scalar_int_mode compute_mode;
7445
7446 /* Loop until we find something we can't simplify. */
7447 while (1)
7448 {
7449 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7450 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7451 {
7452 rtx x0 = XEXP (SET_DEST (x), 0);
7453 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7454 break;
7455 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7456 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7457 MAX_MODE_INT);
7458 }
7459 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7460 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7461 {
7462 inner = XEXP (SET_DEST (x), 0);
7463 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7464 break;
7465
7466 len = INTVAL (XEXP (SET_DEST (x), 1));
7467 pos = XEXP (SET_DEST (x), 2);
7468
7469 /* A constant position should stay within the width of INNER. */
7470 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7471 break;
7472
7473 if (BITS_BIG_ENDIAN)
7474 {
7475 if (CONST_INT_P (pos))
7476 pos = GEN_INT (inner_len - len - INTVAL (pos));
7477 else if (GET_CODE (pos) == MINUS
7478 && CONST_INT_P (XEXP (pos, 1))
7479 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7480 /* If position is ADJUST - X, new position is X. */
7481 pos = XEXP (pos, 0);
7482 else
7483 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7484 gen_int_mode (inner_len - len,
7485 GET_MODE (pos)),
7486 pos);
7487 }
7488 }
7489
7490 /* If the destination is a subreg that overwrites the whole of the inner
7491 register, we can move the subreg to the source. */
7492 else if (GET_CODE (SET_DEST (x)) == SUBREG
7493 /* We need SUBREGs to compute nonzero_bits properly. */
7494 && nonzero_sign_valid
7495 && !read_modify_subreg_p (SET_DEST (x)))
7496 {
7497 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7498 gen_lowpart
7499 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7500 SET_SRC (x)));
7501 continue;
7502 }
7503 else
7504 break;
7505
7506 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7507 inner = SUBREG_REG (inner);
7508
7509 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7510 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7511 {
7512 /* Don't do anything for vector or complex integral types. */
7513 if (! FLOAT_MODE_P (GET_MODE (inner)))
7514 break;
7515
7516 /* Try to find an integral mode to pun with. */
7517 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7518 .exists (&compute_mode))
7519 break;
7520
7521 inner = gen_lowpart (compute_mode, inner);
7522 }
7523
7524 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7525 if (len >= HOST_BITS_PER_WIDE_INT)
7526 break;
7527
7528 /* Don't try to compute in too wide unsupported modes. */
7529 if (!targetm.scalar_mode_supported_p (compute_mode))
7530 break;
7531
7532 /* Now compute the equivalent expression. Make a copy of INNER
7533 for the SET_DEST in case it is a MEM into which we will substitute;
7534 we don't want shared RTL in that case. */
7535 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7536 compute_mode);
7537 cleared = simplify_gen_binary (AND, compute_mode,
7538 simplify_gen_unary (NOT, compute_mode,
7539 simplify_gen_binary (ASHIFT,
7540 compute_mode,
7541 mask, pos),
7542 compute_mode),
7543 inner);
7544 masked = simplify_gen_binary (ASHIFT, compute_mode,
7545 simplify_gen_binary (
7546 AND, compute_mode,
7547 gen_lowpart (compute_mode, SET_SRC (x)),
7548 mask),
7549 pos);
7550
7551 x = gen_rtx_SET (copy_rtx (inner),
7552 simplify_gen_binary (IOR, compute_mode,
7553 cleared, masked));
7554 }
7555
7556 return x;
7557 }
7558 \f
7559 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7560 it is an RTX that represents the (variable) starting position; otherwise,
7561 POS is the (constant) starting bit position. Both are counted from the LSB.
7562
7563 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7564
7565 IN_DEST is nonzero if this is a reference in the destination of a SET.
7566 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7567 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7568 be used.
7569
7570 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7571 ZERO_EXTRACT should be built even for bits starting at bit 0.
7572
7573 MODE is the desired mode of the result (if IN_DEST == 0).
7574
7575 The result is an RTX for the extraction or NULL_RTX if the target
7576 can't handle it. */
7577
7578 static rtx
7579 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7580 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7581 int in_dest, int in_compare)
7582 {
7583 /* This mode describes the size of the storage area
7584 to fetch the overall value from. Within that, we
7585 ignore the POS lowest bits, etc. */
7586 machine_mode is_mode = GET_MODE (inner);
7587 machine_mode inner_mode;
7588 scalar_int_mode wanted_inner_mode;
7589 scalar_int_mode wanted_inner_reg_mode = word_mode;
7590 scalar_int_mode pos_mode = word_mode;
7591 machine_mode extraction_mode = word_mode;
7592 rtx new_rtx = 0;
7593 rtx orig_pos_rtx = pos_rtx;
7594 HOST_WIDE_INT orig_pos;
7595
7596 if (pos_rtx && CONST_INT_P (pos_rtx))
7597 pos = INTVAL (pos_rtx), pos_rtx = 0;
7598
7599 if (GET_CODE (inner) == SUBREG
7600 && subreg_lowpart_p (inner)
7601 && (paradoxical_subreg_p (inner)
7602 /* If trying or potentionally trying to extract
7603 bits outside of is_mode, don't look through
7604 non-paradoxical SUBREGs. See PR82192. */
7605 || (pos_rtx == NULL_RTX
7606 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7607 {
7608 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7609 consider just the QI as the memory to extract from.
7610 The subreg adds or removes high bits; its mode is
7611 irrelevant to the meaning of this extraction,
7612 since POS and LEN count from the lsb. */
7613 if (MEM_P (SUBREG_REG (inner)))
7614 is_mode = GET_MODE (SUBREG_REG (inner));
7615 inner = SUBREG_REG (inner);
7616 }
7617 else if (GET_CODE (inner) == ASHIFT
7618 && CONST_INT_P (XEXP (inner, 1))
7619 && pos_rtx == 0 && pos == 0
7620 && len > UINTVAL (XEXP (inner, 1)))
7621 {
7622 /* We're extracting the least significant bits of an rtx
7623 (ashift X (const_int C)), where LEN > C. Extract the
7624 least significant (LEN - C) bits of X, giving an rtx
7625 whose mode is MODE, then shift it left C times. */
7626 new_rtx = make_extraction (mode, XEXP (inner, 0),
7627 0, 0, len - INTVAL (XEXP (inner, 1)),
7628 unsignedp, in_dest, in_compare);
7629 if (new_rtx != 0)
7630 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7631 }
7632 else if (GET_CODE (inner) == MULT
7633 && CONST_INT_P (XEXP (inner, 1))
7634 && pos_rtx == 0 && pos == 0)
7635 {
7636 /* We're extracting the least significant bits of an rtx
7637 (mult X (const_int 2^C)), where LEN > C. Extract the
7638 least significant (LEN - C) bits of X, giving an rtx
7639 whose mode is MODE, then multiply it by 2^C. */
7640 const HOST_WIDE_INT shift_amt = exact_log2 (INTVAL (XEXP (inner, 1)));
7641 if (IN_RANGE (shift_amt, 1, len - 1))
7642 {
7643 new_rtx = make_extraction (mode, XEXP (inner, 0),
7644 0, 0, len - shift_amt,
7645 unsignedp, in_dest, in_compare);
7646 if (new_rtx)
7647 return gen_rtx_MULT (mode, new_rtx, XEXP (inner, 1));
7648 }
7649 }
7650 else if (GET_CODE (inner) == TRUNCATE
7651 /* If trying or potentionally trying to extract
7652 bits outside of is_mode, don't look through
7653 TRUNCATE. See PR82192. */
7654 && pos_rtx == NULL_RTX
7655 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7656 inner = XEXP (inner, 0);
7657
7658 inner_mode = GET_MODE (inner);
7659
7660 /* See if this can be done without an extraction. We never can if the
7661 width of the field is not the same as that of some integer mode. For
7662 registers, we can only avoid the extraction if the position is at the
7663 low-order bit and this is either not in the destination or we have the
7664 appropriate STRICT_LOW_PART operation available.
7665
7666 For MEM, we can avoid an extract if the field starts on an appropriate
7667 boundary and we can change the mode of the memory reference. */
7668
7669 scalar_int_mode tmode;
7670 if (int_mode_for_size (len, 1).exists (&tmode)
7671 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7672 && !MEM_P (inner)
7673 && (pos == 0 || REG_P (inner))
7674 && (inner_mode == tmode
7675 || !REG_P (inner)
7676 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7677 || reg_truncated_to_mode (tmode, inner))
7678 && (! in_dest
7679 || (REG_P (inner)
7680 && have_insn_for (STRICT_LOW_PART, tmode))))
7681 || (MEM_P (inner) && pos_rtx == 0
7682 && (pos
7683 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7684 : BITS_PER_UNIT)) == 0
7685 /* We can't do this if we are widening INNER_MODE (it
7686 may not be aligned, for one thing). */
7687 && !paradoxical_subreg_p (tmode, inner_mode)
7688 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7689 && (inner_mode == tmode
7690 || (! mode_dependent_address_p (XEXP (inner, 0),
7691 MEM_ADDR_SPACE (inner))
7692 && ! MEM_VOLATILE_P (inner))))))
7693 {
7694 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7695 field. If the original and current mode are the same, we need not
7696 adjust the offset. Otherwise, we do if bytes big endian.
7697
7698 If INNER is not a MEM, get a piece consisting of just the field
7699 of interest (in this case POS % BITS_PER_WORD must be 0). */
7700
7701 if (MEM_P (inner))
7702 {
7703 poly_int64 offset;
7704
7705 /* POS counts from lsb, but make OFFSET count in memory order. */
7706 if (BYTES_BIG_ENDIAN)
7707 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7708 - len - pos);
7709 else
7710 offset = pos / BITS_PER_UNIT;
7711
7712 new_rtx = adjust_address_nv (inner, tmode, offset);
7713 }
7714 else if (REG_P (inner))
7715 {
7716 if (tmode != inner_mode)
7717 {
7718 /* We can't call gen_lowpart in a DEST since we
7719 always want a SUBREG (see below) and it would sometimes
7720 return a new hard register. */
7721 if (pos || in_dest)
7722 {
7723 poly_uint64 offset
7724 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7725
7726 /* Avoid creating invalid subregs, for example when
7727 simplifying (x>>32)&255. */
7728 if (!validate_subreg (tmode, inner_mode, inner, offset))
7729 return NULL_RTX;
7730
7731 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7732 }
7733 else
7734 new_rtx = gen_lowpart (tmode, inner);
7735 }
7736 else
7737 new_rtx = inner;
7738 }
7739 else
7740 new_rtx = force_to_mode (inner, tmode,
7741 len >= HOST_BITS_PER_WIDE_INT
7742 ? HOST_WIDE_INT_M1U
7743 : (HOST_WIDE_INT_1U << len) - 1, 0);
7744
7745 /* If this extraction is going into the destination of a SET,
7746 make a STRICT_LOW_PART unless we made a MEM. */
7747
7748 if (in_dest)
7749 return (MEM_P (new_rtx) ? new_rtx
7750 : (GET_CODE (new_rtx) != SUBREG
7751 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7752 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7753
7754 if (mode == tmode)
7755 return new_rtx;
7756
7757 if (CONST_SCALAR_INT_P (new_rtx))
7758 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7759 mode, new_rtx, tmode);
7760
7761 /* If we know that no extraneous bits are set, and that the high
7762 bit is not set, convert the extraction to the cheaper of
7763 sign and zero extension, that are equivalent in these cases. */
7764 if (flag_expensive_optimizations
7765 && (HWI_COMPUTABLE_MODE_P (tmode)
7766 && ((nonzero_bits (new_rtx, tmode)
7767 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7768 == 0)))
7769 {
7770 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7771 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7772
7773 /* Prefer ZERO_EXTENSION, since it gives more information to
7774 backends. */
7775 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7776 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7777 return temp;
7778 return temp1;
7779 }
7780
7781 /* Otherwise, sign- or zero-extend unless we already are in the
7782 proper mode. */
7783
7784 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7785 mode, new_rtx));
7786 }
7787
7788 /* Unless this is a COMPARE or we have a funny memory reference,
7789 don't do anything with zero-extending field extracts starting at
7790 the low-order bit since they are simple AND operations. */
7791 if (pos_rtx == 0 && pos == 0 && ! in_dest
7792 && ! in_compare && unsignedp)
7793 return 0;
7794
7795 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7796 if the position is not a constant and the length is not 1. In all
7797 other cases, we would only be going outside our object in cases when
7798 an original shift would have been undefined. */
7799 if (MEM_P (inner)
7800 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7801 || (pos_rtx != 0 && len != 1)))
7802 return 0;
7803
7804 enum extraction_pattern pattern = (in_dest ? EP_insv
7805 : unsignedp ? EP_extzv : EP_extv);
7806
7807 /* If INNER is not from memory, we want it to have the mode of a register
7808 extraction pattern's structure operand, or word_mode if there is no
7809 such pattern. The same applies to extraction_mode and pos_mode
7810 and their respective operands.
7811
7812 For memory, assume that the desired extraction_mode and pos_mode
7813 are the same as for a register operation, since at present we don't
7814 have named patterns for aligned memory structures. */
7815 class extraction_insn insn;
7816 unsigned int inner_size;
7817 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7818 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7819 {
7820 wanted_inner_reg_mode = insn.struct_mode.require ();
7821 pos_mode = insn.pos_mode;
7822 extraction_mode = insn.field_mode;
7823 }
7824
7825 /* Never narrow an object, since that might not be safe. */
7826
7827 if (mode != VOIDmode
7828 && partial_subreg_p (extraction_mode, mode))
7829 extraction_mode = mode;
7830
7831 /* Punt if len is too large for extraction_mode. */
7832 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7833 return NULL_RTX;
7834
7835 if (!MEM_P (inner))
7836 wanted_inner_mode = wanted_inner_reg_mode;
7837 else
7838 {
7839 /* Be careful not to go beyond the extracted object and maintain the
7840 natural alignment of the memory. */
7841 wanted_inner_mode = smallest_int_mode_for_size (len);
7842 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7843 > GET_MODE_BITSIZE (wanted_inner_mode))
7844 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7845 }
7846
7847 orig_pos = pos;
7848
7849 if (BITS_BIG_ENDIAN)
7850 {
7851 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7852 BITS_BIG_ENDIAN style. If position is constant, compute new
7853 position. Otherwise, build subtraction.
7854 Note that POS is relative to the mode of the original argument.
7855 If it's a MEM we need to recompute POS relative to that.
7856 However, if we're extracting from (or inserting into) a register,
7857 we want to recompute POS relative to wanted_inner_mode. */
7858 int width;
7859 if (!MEM_P (inner))
7860 width = GET_MODE_BITSIZE (wanted_inner_mode);
7861 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7862 return NULL_RTX;
7863
7864 if (pos_rtx == 0)
7865 pos = width - len - pos;
7866 else
7867 pos_rtx
7868 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7869 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7870 pos_rtx);
7871 /* POS may be less than 0 now, but we check for that below.
7872 Note that it can only be less than 0 if !MEM_P (inner). */
7873 }
7874
7875 /* If INNER has a wider mode, and this is a constant extraction, try to
7876 make it smaller and adjust the byte to point to the byte containing
7877 the value. */
7878 if (wanted_inner_mode != VOIDmode
7879 && inner_mode != wanted_inner_mode
7880 && ! pos_rtx
7881 && partial_subreg_p (wanted_inner_mode, is_mode)
7882 && MEM_P (inner)
7883 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7884 && ! MEM_VOLATILE_P (inner))
7885 {
7886 poly_int64 offset = 0;
7887
7888 /* The computations below will be correct if the machine is big
7889 endian in both bits and bytes or little endian in bits and bytes.
7890 If it is mixed, we must adjust. */
7891
7892 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7893 adjust OFFSET to compensate. */
7894 if (BYTES_BIG_ENDIAN
7895 && paradoxical_subreg_p (is_mode, inner_mode))
7896 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7897
7898 /* We can now move to the desired byte. */
7899 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7900 * GET_MODE_SIZE (wanted_inner_mode);
7901 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7902
7903 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7904 && is_mode != wanted_inner_mode)
7905 offset = (GET_MODE_SIZE (is_mode)
7906 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7907
7908 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7909 }
7910
7911 /* If INNER is not memory, get it into the proper mode. If we are changing
7912 its mode, POS must be a constant and smaller than the size of the new
7913 mode. */
7914 else if (!MEM_P (inner))
7915 {
7916 /* On the LHS, don't create paradoxical subregs implicitely truncating
7917 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7918 if (in_dest
7919 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7920 wanted_inner_mode))
7921 return NULL_RTX;
7922
7923 if (GET_MODE (inner) != wanted_inner_mode
7924 && (pos_rtx != 0
7925 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7926 return NULL_RTX;
7927
7928 if (orig_pos < 0)
7929 return NULL_RTX;
7930
7931 inner = force_to_mode (inner, wanted_inner_mode,
7932 pos_rtx
7933 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7934 ? HOST_WIDE_INT_M1U
7935 : (((HOST_WIDE_INT_1U << len) - 1)
7936 << orig_pos),
7937 0);
7938 }
7939
7940 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7941 have to zero extend. Otherwise, we can just use a SUBREG.
7942
7943 We dealt with constant rtxes earlier, so pos_rtx cannot
7944 have VOIDmode at this point. */
7945 if (pos_rtx != 0
7946 && (GET_MODE_SIZE (pos_mode)
7947 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7948 {
7949 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7950 GET_MODE (pos_rtx));
7951
7952 /* If we know that no extraneous bits are set, and that the high
7953 bit is not set, convert extraction to cheaper one - either
7954 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7955 cases. */
7956 if (flag_expensive_optimizations
7957 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7958 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7959 & ~(((unsigned HOST_WIDE_INT)
7960 GET_MODE_MASK (GET_MODE (pos_rtx)))
7961 >> 1))
7962 == 0)))
7963 {
7964 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7965 GET_MODE (pos_rtx));
7966
7967 /* Prefer ZERO_EXTENSION, since it gives more information to
7968 backends. */
7969 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7970 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7971 temp = temp1;
7972 }
7973 pos_rtx = temp;
7974 }
7975
7976 /* Make POS_RTX unless we already have it and it is correct. If we don't
7977 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7978 be a CONST_INT. */
7979 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7980 pos_rtx = orig_pos_rtx;
7981
7982 else if (pos_rtx == 0)
7983 pos_rtx = GEN_INT (pos);
7984
7985 /* Make the required operation. See if we can use existing rtx. */
7986 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7987 extraction_mode, inner, GEN_INT (len), pos_rtx);
7988 if (! in_dest)
7989 new_rtx = gen_lowpart (mode, new_rtx);
7990
7991 return new_rtx;
7992 }
7993 \f
7994 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7995 can be commuted with any other operations in X. Return X without
7996 that shift if so. */
7997
7998 static rtx
7999 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8000 {
8001 enum rtx_code code = GET_CODE (x);
8002 rtx tem;
8003
8004 switch (code)
8005 {
8006 case ASHIFT:
8007 /* This is the shift itself. If it is wide enough, we will return
8008 either the value being shifted if the shift count is equal to
8009 COUNT or a shift for the difference. */
8010 if (CONST_INT_P (XEXP (x, 1))
8011 && INTVAL (XEXP (x, 1)) >= count)
8012 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8013 INTVAL (XEXP (x, 1)) - count);
8014 break;
8015
8016 case NEG: case NOT:
8017 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8018 return simplify_gen_unary (code, mode, tem, mode);
8019
8020 break;
8021
8022 case PLUS: case IOR: case XOR: case AND:
8023 /* If we can safely shift this constant and we find the inner shift,
8024 make a new operation. */
8025 if (CONST_INT_P (XEXP (x, 1))
8026 && (UINTVAL (XEXP (x, 1))
8027 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8028 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8029 {
8030 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8031 return simplify_gen_binary (code, mode, tem,
8032 gen_int_mode (val, mode));
8033 }
8034 break;
8035
8036 default:
8037 break;
8038 }
8039
8040 return 0;
8041 }
8042 \f
8043 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8044 level of the expression and MODE is its mode. IN_CODE is as for
8045 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8046 that should be used when recursing on operands of *X_PTR.
8047
8048 There are two possible actions:
8049
8050 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8051 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8052
8053 - Return a new rtx, which the caller returns directly. */
8054
8055 static rtx
8056 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8057 enum rtx_code in_code,
8058 enum rtx_code *next_code_ptr)
8059 {
8060 rtx x = *x_ptr;
8061 enum rtx_code next_code = *next_code_ptr;
8062 enum rtx_code code = GET_CODE (x);
8063 int mode_width = GET_MODE_PRECISION (mode);
8064 rtx rhs, lhs;
8065 rtx new_rtx = 0;
8066 int i;
8067 rtx tem;
8068 scalar_int_mode inner_mode;
8069 bool equality_comparison = false;
8070
8071 if (in_code == EQ)
8072 {
8073 equality_comparison = true;
8074 in_code = COMPARE;
8075 }
8076
8077 /* Process depending on the code of this operation. If NEW is set
8078 nonzero, it will be returned. */
8079
8080 switch (code)
8081 {
8082 case ASHIFT:
8083 /* Convert shifts by constants into multiplications if inside
8084 an address. */
8085 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8086 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8087 && INTVAL (XEXP (x, 1)) >= 0)
8088 {
8089 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8090 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8091
8092 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8093 if (GET_CODE (new_rtx) == NEG)
8094 {
8095 new_rtx = XEXP (new_rtx, 0);
8096 multval = -multval;
8097 }
8098 multval = trunc_int_for_mode (multval, mode);
8099 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8100 }
8101 break;
8102
8103 case PLUS:
8104 lhs = XEXP (x, 0);
8105 rhs = XEXP (x, 1);
8106 lhs = make_compound_operation (lhs, next_code);
8107 rhs = make_compound_operation (rhs, next_code);
8108 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8109 {
8110 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8111 XEXP (lhs, 1));
8112 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8113 }
8114 else if (GET_CODE (lhs) == MULT
8115 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8116 {
8117 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8118 simplify_gen_unary (NEG, mode,
8119 XEXP (lhs, 1),
8120 mode));
8121 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8122 }
8123 else
8124 {
8125 SUBST (XEXP (x, 0), lhs);
8126 SUBST (XEXP (x, 1), rhs);
8127 }
8128 maybe_swap_commutative_operands (x);
8129 return x;
8130
8131 case MINUS:
8132 lhs = XEXP (x, 0);
8133 rhs = XEXP (x, 1);
8134 lhs = make_compound_operation (lhs, next_code);
8135 rhs = make_compound_operation (rhs, next_code);
8136 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8137 {
8138 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8139 XEXP (rhs, 1));
8140 return simplify_gen_binary (PLUS, mode, tem, lhs);
8141 }
8142 else if (GET_CODE (rhs) == MULT
8143 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8144 {
8145 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8146 simplify_gen_unary (NEG, mode,
8147 XEXP (rhs, 1),
8148 mode));
8149 return simplify_gen_binary (PLUS, mode, tem, lhs);
8150 }
8151 else
8152 {
8153 SUBST (XEXP (x, 0), lhs);
8154 SUBST (XEXP (x, 1), rhs);
8155 return x;
8156 }
8157
8158 case AND:
8159 /* If the second operand is not a constant, we can't do anything
8160 with it. */
8161 if (!CONST_INT_P (XEXP (x, 1)))
8162 break;
8163
8164 /* If the constant is a power of two minus one and the first operand
8165 is a logical right shift, make an extraction. */
8166 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8167 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8168 {
8169 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8170 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8171 i, 1, 0, in_code == COMPARE);
8172 }
8173
8174 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8175 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8176 && subreg_lowpart_p (XEXP (x, 0))
8177 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8178 &inner_mode)
8179 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8180 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8181 {
8182 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8183 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8184 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8185 XEXP (inner_x0, 1),
8186 i, 1, 0, in_code == COMPARE);
8187
8188 /* If we narrowed the mode when dropping the subreg, then we lose. */
8189 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8190 new_rtx = NULL;
8191
8192 /* If that didn't give anything, see if the AND simplifies on
8193 its own. */
8194 if (!new_rtx && i >= 0)
8195 {
8196 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8197 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8198 0, in_code == COMPARE);
8199 }
8200 }
8201 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8202 else if ((GET_CODE (XEXP (x, 0)) == XOR
8203 || GET_CODE (XEXP (x, 0)) == IOR)
8204 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8205 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8206 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8207 {
8208 /* Apply the distributive law, and then try to make extractions. */
8209 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8210 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8211 XEXP (x, 1)),
8212 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8213 XEXP (x, 1)));
8214 new_rtx = make_compound_operation (new_rtx, in_code);
8215 }
8216
8217 /* If we are have (and (rotate X C) M) and C is larger than the number
8218 of bits in M, this is an extraction. */
8219
8220 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8221 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8222 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8223 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8224 {
8225 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8226 new_rtx = make_extraction (mode, new_rtx,
8227 (GET_MODE_PRECISION (mode)
8228 - INTVAL (XEXP (XEXP (x, 0), 1))),
8229 NULL_RTX, i, 1, 0, in_code == COMPARE);
8230 }
8231
8232 /* On machines without logical shifts, if the operand of the AND is
8233 a logical shift and our mask turns off all the propagated sign
8234 bits, we can replace the logical shift with an arithmetic shift. */
8235 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8236 && !have_insn_for (LSHIFTRT, mode)
8237 && have_insn_for (ASHIFTRT, mode)
8238 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8239 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8240 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8241 && mode_width <= HOST_BITS_PER_WIDE_INT)
8242 {
8243 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8244
8245 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8246 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8247 SUBST (XEXP (x, 0),
8248 gen_rtx_ASHIFTRT (mode,
8249 make_compound_operation (XEXP (XEXP (x,
8250 0),
8251 0),
8252 next_code),
8253 XEXP (XEXP (x, 0), 1)));
8254 }
8255
8256 /* If the constant is one less than a power of two, this might be
8257 representable by an extraction even if no shift is present.
8258 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8259 we are in a COMPARE. */
8260 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8261 new_rtx = make_extraction (mode,
8262 make_compound_operation (XEXP (x, 0),
8263 next_code),
8264 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8265
8266 /* If we are in a comparison and this is an AND with a power of two,
8267 convert this into the appropriate bit extract. */
8268 else if (in_code == COMPARE
8269 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8270 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8271 new_rtx = make_extraction (mode,
8272 make_compound_operation (XEXP (x, 0),
8273 next_code),
8274 i, NULL_RTX, 1, 1, 0, 1);
8275
8276 /* If the one operand is a paradoxical subreg of a register or memory and
8277 the constant (limited to the smaller mode) has only zero bits where
8278 the sub expression has known zero bits, this can be expressed as
8279 a zero_extend. */
8280 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8281 {
8282 rtx sub;
8283
8284 sub = XEXP (XEXP (x, 0), 0);
8285 machine_mode sub_mode = GET_MODE (sub);
8286 int sub_width;
8287 if ((REG_P (sub) || MEM_P (sub))
8288 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8289 && sub_width < mode_width)
8290 {
8291 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8292 unsigned HOST_WIDE_INT mask;
8293
8294 /* original AND constant with all the known zero bits set */
8295 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8296 if ((mask & mode_mask) == mode_mask)
8297 {
8298 new_rtx = make_compound_operation (sub, next_code);
8299 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8300 1, 0, in_code == COMPARE);
8301 }
8302 }
8303 }
8304
8305 break;
8306
8307 case LSHIFTRT:
8308 /* If the sign bit is known to be zero, replace this with an
8309 arithmetic shift. */
8310 if (have_insn_for (ASHIFTRT, mode)
8311 && ! have_insn_for (LSHIFTRT, mode)
8312 && mode_width <= HOST_BITS_PER_WIDE_INT
8313 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8314 {
8315 new_rtx = gen_rtx_ASHIFTRT (mode,
8316 make_compound_operation (XEXP (x, 0),
8317 next_code),
8318 XEXP (x, 1));
8319 break;
8320 }
8321
8322 /* fall through */
8323
8324 case ASHIFTRT:
8325 lhs = XEXP (x, 0);
8326 rhs = XEXP (x, 1);
8327
8328 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8329 this is a SIGN_EXTRACT. */
8330 if (CONST_INT_P (rhs)
8331 && GET_CODE (lhs) == ASHIFT
8332 && CONST_INT_P (XEXP (lhs, 1))
8333 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8334 && INTVAL (XEXP (lhs, 1)) >= 0
8335 && INTVAL (rhs) < mode_width)
8336 {
8337 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8338 new_rtx = make_extraction (mode, new_rtx,
8339 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8340 NULL_RTX, mode_width - INTVAL (rhs),
8341 code == LSHIFTRT, 0, in_code == COMPARE);
8342 break;
8343 }
8344
8345 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8346 If so, try to merge the shifts into a SIGN_EXTEND. We could
8347 also do this for some cases of SIGN_EXTRACT, but it doesn't
8348 seem worth the effort; the case checked for occurs on Alpha. */
8349
8350 if (!OBJECT_P (lhs)
8351 && ! (GET_CODE (lhs) == SUBREG
8352 && (OBJECT_P (SUBREG_REG (lhs))))
8353 && CONST_INT_P (rhs)
8354 && INTVAL (rhs) >= 0
8355 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8356 && INTVAL (rhs) < mode_width
8357 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8358 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8359 next_code),
8360 0, NULL_RTX, mode_width - INTVAL (rhs),
8361 code == LSHIFTRT, 0, in_code == COMPARE);
8362
8363 break;
8364
8365 case SUBREG:
8366 /* Call ourselves recursively on the inner expression. If we are
8367 narrowing the object and it has a different RTL code from
8368 what it originally did, do this SUBREG as a force_to_mode. */
8369 {
8370 rtx inner = SUBREG_REG (x), simplified;
8371 enum rtx_code subreg_code = in_code;
8372
8373 /* If the SUBREG is masking of a logical right shift,
8374 make an extraction. */
8375 if (GET_CODE (inner) == LSHIFTRT
8376 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8377 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8378 && CONST_INT_P (XEXP (inner, 1))
8379 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8380 && subreg_lowpart_p (x))
8381 {
8382 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8383 int width = GET_MODE_PRECISION (inner_mode)
8384 - INTVAL (XEXP (inner, 1));
8385 if (width > mode_width)
8386 width = mode_width;
8387 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8388 width, 1, 0, in_code == COMPARE);
8389 break;
8390 }
8391
8392 /* If in_code is COMPARE, it isn't always safe to pass it through
8393 to the recursive make_compound_operation call. */
8394 if (subreg_code == COMPARE
8395 && (!subreg_lowpart_p (x)
8396 || GET_CODE (inner) == SUBREG
8397 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8398 is (const_int 0), rather than
8399 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8400 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8401 for non-equality comparisons against 0 is not equivalent
8402 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8403 || (GET_CODE (inner) == AND
8404 && CONST_INT_P (XEXP (inner, 1))
8405 && partial_subreg_p (x)
8406 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8407 >= GET_MODE_BITSIZE (mode) - 1)))
8408 subreg_code = SET;
8409
8410 tem = make_compound_operation (inner, subreg_code);
8411
8412 simplified
8413 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8414 if (simplified)
8415 tem = simplified;
8416
8417 if (GET_CODE (tem) != GET_CODE (inner)
8418 && partial_subreg_p (x)
8419 && subreg_lowpart_p (x))
8420 {
8421 rtx newer
8422 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8423
8424 /* If we have something other than a SUBREG, we might have
8425 done an expansion, so rerun ourselves. */
8426 if (GET_CODE (newer) != SUBREG)
8427 newer = make_compound_operation (newer, in_code);
8428
8429 /* force_to_mode can expand compounds. If it just re-expanded
8430 the compound, use gen_lowpart to convert to the desired
8431 mode. */
8432 if (rtx_equal_p (newer, x)
8433 /* Likewise if it re-expanded the compound only partially.
8434 This happens for SUBREG of ZERO_EXTRACT if they extract
8435 the same number of bits. */
8436 || (GET_CODE (newer) == SUBREG
8437 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8438 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8439 && GET_CODE (inner) == AND
8440 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8441 return gen_lowpart (GET_MODE (x), tem);
8442
8443 return newer;
8444 }
8445
8446 if (simplified)
8447 return tem;
8448 }
8449 break;
8450
8451 default:
8452 break;
8453 }
8454
8455 if (new_rtx)
8456 *x_ptr = gen_lowpart (mode, new_rtx);
8457 *next_code_ptr = next_code;
8458 return NULL_RTX;
8459 }
8460
8461 /* Look at the expression rooted at X. Look for expressions
8462 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8463 Form these expressions.
8464
8465 Return the new rtx, usually just X.
8466
8467 Also, for machines like the VAX that don't have logical shift insns,
8468 try to convert logical to arithmetic shift operations in cases where
8469 they are equivalent. This undoes the canonicalizations to logical
8470 shifts done elsewhere.
8471
8472 We try, as much as possible, to re-use rtl expressions to save memory.
8473
8474 IN_CODE says what kind of expression we are processing. Normally, it is
8475 SET. In a memory address it is MEM. When processing the arguments of
8476 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8477 precisely it is an equality comparison against zero. */
8478
8479 rtx
8480 make_compound_operation (rtx x, enum rtx_code in_code)
8481 {
8482 enum rtx_code code = GET_CODE (x);
8483 const char *fmt;
8484 int i, j;
8485 enum rtx_code next_code;
8486 rtx new_rtx, tem;
8487
8488 /* Select the code to be used in recursive calls. Once we are inside an
8489 address, we stay there. If we have a comparison, set to COMPARE,
8490 but once inside, go back to our default of SET. */
8491
8492 next_code = (code == MEM ? MEM
8493 : ((code == COMPARE || COMPARISON_P (x))
8494 && XEXP (x, 1) == const0_rtx) ? COMPARE
8495 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8496
8497 scalar_int_mode mode;
8498 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8499 {
8500 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8501 &next_code);
8502 if (new_rtx)
8503 return new_rtx;
8504 code = GET_CODE (x);
8505 }
8506
8507 /* Now recursively process each operand of this operation. We need to
8508 handle ZERO_EXTEND specially so that we don't lose track of the
8509 inner mode. */
8510 if (code == ZERO_EXTEND)
8511 {
8512 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8513 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8514 new_rtx, GET_MODE (XEXP (x, 0)));
8515 if (tem)
8516 return tem;
8517 SUBST (XEXP (x, 0), new_rtx);
8518 return x;
8519 }
8520
8521 fmt = GET_RTX_FORMAT (code);
8522 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8523 if (fmt[i] == 'e')
8524 {
8525 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8526 SUBST (XEXP (x, i), new_rtx);
8527 }
8528 else if (fmt[i] == 'E')
8529 for (j = 0; j < XVECLEN (x, i); j++)
8530 {
8531 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8532 SUBST (XVECEXP (x, i, j), new_rtx);
8533 }
8534
8535 maybe_swap_commutative_operands (x);
8536 return x;
8537 }
8538 \f
8539 /* Given M see if it is a value that would select a field of bits
8540 within an item, but not the entire word. Return -1 if not.
8541 Otherwise, return the starting position of the field, where 0 is the
8542 low-order bit.
8543
8544 *PLEN is set to the length of the field. */
8545
8546 static int
8547 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8548 {
8549 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8550 int pos = m ? ctz_hwi (m) : -1;
8551 int len = 0;
8552
8553 if (pos >= 0)
8554 /* Now shift off the low-order zero bits and see if we have a
8555 power of two minus 1. */
8556 len = exact_log2 ((m >> pos) + 1);
8557
8558 if (len <= 0)
8559 pos = -1;
8560
8561 *plen = len;
8562 return pos;
8563 }
8564 \f
8565 /* If X refers to a register that equals REG in value, replace these
8566 references with REG. */
8567 static rtx
8568 canon_reg_for_combine (rtx x, rtx reg)
8569 {
8570 rtx op0, op1, op2;
8571 const char *fmt;
8572 int i;
8573 bool copied;
8574
8575 enum rtx_code code = GET_CODE (x);
8576 switch (GET_RTX_CLASS (code))
8577 {
8578 case RTX_UNARY:
8579 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8580 if (op0 != XEXP (x, 0))
8581 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8582 GET_MODE (reg));
8583 break;
8584
8585 case RTX_BIN_ARITH:
8586 case RTX_COMM_ARITH:
8587 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8588 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8589 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8590 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8591 break;
8592
8593 case RTX_COMPARE:
8594 case RTX_COMM_COMPARE:
8595 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8596 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8597 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8598 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8599 GET_MODE (op0), op0, op1);
8600 break;
8601
8602 case RTX_TERNARY:
8603 case RTX_BITFIELD_OPS:
8604 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8605 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8606 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8607 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8608 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8609 GET_MODE (op0), op0, op1, op2);
8610 /* FALLTHRU */
8611
8612 case RTX_OBJ:
8613 if (REG_P (x))
8614 {
8615 if (rtx_equal_p (get_last_value (reg), x)
8616 || rtx_equal_p (reg, get_last_value (x)))
8617 return reg;
8618 else
8619 break;
8620 }
8621
8622 /* fall through */
8623
8624 default:
8625 fmt = GET_RTX_FORMAT (code);
8626 copied = false;
8627 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8628 if (fmt[i] == 'e')
8629 {
8630 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8631 if (op != XEXP (x, i))
8632 {
8633 if (!copied)
8634 {
8635 copied = true;
8636 x = copy_rtx (x);
8637 }
8638 XEXP (x, i) = op;
8639 }
8640 }
8641 else if (fmt[i] == 'E')
8642 {
8643 int j;
8644 for (j = 0; j < XVECLEN (x, i); j++)
8645 {
8646 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8647 if (op != XVECEXP (x, i, j))
8648 {
8649 if (!copied)
8650 {
8651 copied = true;
8652 x = copy_rtx (x);
8653 }
8654 XVECEXP (x, i, j) = op;
8655 }
8656 }
8657 }
8658
8659 break;
8660 }
8661
8662 return x;
8663 }
8664
8665 /* Return X converted to MODE. If the value is already truncated to
8666 MODE we can just return a subreg even though in the general case we
8667 would need an explicit truncation. */
8668
8669 static rtx
8670 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8671 {
8672 if (!CONST_INT_P (x)
8673 && partial_subreg_p (mode, GET_MODE (x))
8674 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8675 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8676 {
8677 /* Bit-cast X into an integer mode. */
8678 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8679 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8680 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8681 x, GET_MODE (x));
8682 }
8683
8684 return gen_lowpart (mode, x);
8685 }
8686
8687 /* See if X can be simplified knowing that we will only refer to it in
8688 MODE and will only refer to those bits that are nonzero in MASK.
8689 If other bits are being computed or if masking operations are done
8690 that select a superset of the bits in MASK, they can sometimes be
8691 ignored.
8692
8693 Return a possibly simplified expression, but always convert X to
8694 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8695
8696 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8697 are all off in X. This is used when X will be complemented, by either
8698 NOT, NEG, or XOR. */
8699
8700 static rtx
8701 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8702 int just_select)
8703 {
8704 enum rtx_code code = GET_CODE (x);
8705 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8706 machine_mode op_mode;
8707 unsigned HOST_WIDE_INT nonzero;
8708
8709 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8710 code below will do the wrong thing since the mode of such an
8711 expression is VOIDmode.
8712
8713 Also do nothing if X is a CLOBBER; this can happen if X was
8714 the return value from a call to gen_lowpart. */
8715 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8716 return x;
8717
8718 /* We want to perform the operation in its present mode unless we know
8719 that the operation is valid in MODE, in which case we do the operation
8720 in MODE. */
8721 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8722 && have_insn_for (code, mode))
8723 ? mode : GET_MODE (x));
8724
8725 /* It is not valid to do a right-shift in a narrower mode
8726 than the one it came in with. */
8727 if ((code == LSHIFTRT || code == ASHIFTRT)
8728 && partial_subreg_p (mode, GET_MODE (x)))
8729 op_mode = GET_MODE (x);
8730
8731 /* Truncate MASK to fit OP_MODE. */
8732 if (op_mode)
8733 mask &= GET_MODE_MASK (op_mode);
8734
8735 /* Determine what bits of X are guaranteed to be (non)zero. */
8736 nonzero = nonzero_bits (x, mode);
8737
8738 /* If none of the bits in X are needed, return a zero. */
8739 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8740 x = const0_rtx;
8741
8742 /* If X is a CONST_INT, return a new one. Do this here since the
8743 test below will fail. */
8744 if (CONST_INT_P (x))
8745 {
8746 if (SCALAR_INT_MODE_P (mode))
8747 return gen_int_mode (INTVAL (x) & mask, mode);
8748 else
8749 {
8750 x = GEN_INT (INTVAL (x) & mask);
8751 return gen_lowpart_common (mode, x);
8752 }
8753 }
8754
8755 /* If X is narrower than MODE and we want all the bits in X's mode, just
8756 get X in the proper mode. */
8757 if (paradoxical_subreg_p (mode, GET_MODE (x))
8758 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8759 return gen_lowpart (mode, x);
8760
8761 /* We can ignore the effect of a SUBREG if it narrows the mode or
8762 if the constant masks to zero all the bits the mode doesn't have. */
8763 if (GET_CODE (x) == SUBREG
8764 && subreg_lowpart_p (x)
8765 && (partial_subreg_p (x)
8766 || (mask
8767 & GET_MODE_MASK (GET_MODE (x))
8768 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8769 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8770
8771 scalar_int_mode int_mode, xmode;
8772 if (is_a <scalar_int_mode> (mode, &int_mode)
8773 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8774 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8775 integer too. */
8776 return force_int_to_mode (x, int_mode, xmode,
8777 as_a <scalar_int_mode> (op_mode),
8778 mask, just_select);
8779
8780 return gen_lowpart_or_truncate (mode, x);
8781 }
8782
8783 /* Subroutine of force_to_mode that handles cases in which both X and
8784 the result are scalar integers. MODE is the mode of the result,
8785 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8786 is preferred for simplified versions of X. The other arguments
8787 are as for force_to_mode. */
8788
8789 static rtx
8790 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8791 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8792 int just_select)
8793 {
8794 enum rtx_code code = GET_CODE (x);
8795 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8796 unsigned HOST_WIDE_INT fuller_mask;
8797 rtx op0, op1, temp;
8798 poly_int64 const_op0;
8799
8800 /* When we have an arithmetic operation, or a shift whose count we
8801 do not know, we need to assume that all bits up to the highest-order
8802 bit in MASK will be needed. This is how we form such a mask. */
8803 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8804 fuller_mask = HOST_WIDE_INT_M1U;
8805 else
8806 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8807 - 1);
8808
8809 switch (code)
8810 {
8811 case CLOBBER:
8812 /* If X is a (clobber (const_int)), return it since we know we are
8813 generating something that won't match. */
8814 return x;
8815
8816 case SIGN_EXTEND:
8817 case ZERO_EXTEND:
8818 case ZERO_EXTRACT:
8819 case SIGN_EXTRACT:
8820 x = expand_compound_operation (x);
8821 if (GET_CODE (x) != code)
8822 return force_to_mode (x, mode, mask, next_select);
8823 break;
8824
8825 case TRUNCATE:
8826 /* Similarly for a truncate. */
8827 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8828
8829 case AND:
8830 /* If this is an AND with a constant, convert it into an AND
8831 whose constant is the AND of that constant with MASK. If it
8832 remains an AND of MASK, delete it since it is redundant. */
8833
8834 if (CONST_INT_P (XEXP (x, 1)))
8835 {
8836 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8837 mask & INTVAL (XEXP (x, 1)));
8838 xmode = op_mode;
8839
8840 /* If X is still an AND, see if it is an AND with a mask that
8841 is just some low-order bits. If so, and it is MASK, we don't
8842 need it. */
8843
8844 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8845 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8846 x = XEXP (x, 0);
8847
8848 /* If it remains an AND, try making another AND with the bits
8849 in the mode mask that aren't in MASK turned on. If the
8850 constant in the AND is wide enough, this might make a
8851 cheaper constant. */
8852
8853 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8854 && GET_MODE_MASK (xmode) != mask
8855 && HWI_COMPUTABLE_MODE_P (xmode))
8856 {
8857 unsigned HOST_WIDE_INT cval
8858 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8859 rtx y;
8860
8861 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8862 gen_int_mode (cval, xmode));
8863 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8864 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8865 x = y;
8866 }
8867
8868 break;
8869 }
8870
8871 goto binop;
8872
8873 case PLUS:
8874 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8875 low-order bits (as in an alignment operation) and FOO is already
8876 aligned to that boundary, mask C1 to that boundary as well.
8877 This may eliminate that PLUS and, later, the AND. */
8878
8879 {
8880 unsigned int width = GET_MODE_PRECISION (mode);
8881 unsigned HOST_WIDE_INT smask = mask;
8882
8883 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8884 number, sign extend it. */
8885
8886 if (width < HOST_BITS_PER_WIDE_INT
8887 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8888 smask |= HOST_WIDE_INT_M1U << width;
8889
8890 if (CONST_INT_P (XEXP (x, 1))
8891 && pow2p_hwi (- smask)
8892 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8893 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8894 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8895 (INTVAL (XEXP (x, 1)) & smask)),
8896 mode, smask, next_select);
8897 }
8898
8899 /* fall through */
8900
8901 case MULT:
8902 /* Substituting into the operands of a widening MULT is not likely to
8903 create RTL matching a machine insn. */
8904 if (code == MULT
8905 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8906 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8907 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8908 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8909 && REG_P (XEXP (XEXP (x, 0), 0))
8910 && REG_P (XEXP (XEXP (x, 1), 0)))
8911 return gen_lowpart_or_truncate (mode, x);
8912
8913 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8914 most significant bit in MASK since carries from those bits will
8915 affect the bits we are interested in. */
8916 mask = fuller_mask;
8917 goto binop;
8918
8919 case MINUS:
8920 /* If X is (minus C Y) where C's least set bit is larger than any bit
8921 in the mask, then we may replace with (neg Y). */
8922 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8923 && known_alignment (poly_uint64 (const_op0)) > mask)
8924 {
8925 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8926 return force_to_mode (x, mode, mask, next_select);
8927 }
8928
8929 /* Similarly, if C contains every bit in the fuller_mask, then we may
8930 replace with (not Y). */
8931 if (CONST_INT_P (XEXP (x, 0))
8932 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8933 {
8934 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8935 return force_to_mode (x, mode, mask, next_select);
8936 }
8937
8938 mask = fuller_mask;
8939 goto binop;
8940
8941 case IOR:
8942 case XOR:
8943 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8944 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8945 operation which may be a bitfield extraction. Ensure that the
8946 constant we form is not wider than the mode of X. */
8947
8948 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8949 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8950 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8951 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8952 && CONST_INT_P (XEXP (x, 1))
8953 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8954 + floor_log2 (INTVAL (XEXP (x, 1))))
8955 < GET_MODE_PRECISION (xmode))
8956 && (UINTVAL (XEXP (x, 1))
8957 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8958 {
8959 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8960 << INTVAL (XEXP (XEXP (x, 0), 1)),
8961 xmode);
8962 temp = simplify_gen_binary (GET_CODE (x), xmode,
8963 XEXP (XEXP (x, 0), 0), temp);
8964 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8965 XEXP (XEXP (x, 0), 1));
8966 return force_to_mode (x, mode, mask, next_select);
8967 }
8968
8969 binop:
8970 /* For most binary operations, just propagate into the operation and
8971 change the mode if we have an operation of that mode. */
8972
8973 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8974 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8975
8976 /* If we ended up truncating both operands, truncate the result of the
8977 operation instead. */
8978 if (GET_CODE (op0) == TRUNCATE
8979 && GET_CODE (op1) == TRUNCATE)
8980 {
8981 op0 = XEXP (op0, 0);
8982 op1 = XEXP (op1, 0);
8983 }
8984
8985 op0 = gen_lowpart_or_truncate (op_mode, op0);
8986 op1 = gen_lowpart_or_truncate (op_mode, op1);
8987
8988 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8989 {
8990 x = simplify_gen_binary (code, op_mode, op0, op1);
8991 xmode = op_mode;
8992 }
8993 break;
8994
8995 case ASHIFT:
8996 /* For left shifts, do the same, but just for the first operand.
8997 However, we cannot do anything with shifts where we cannot
8998 guarantee that the counts are smaller than the size of the mode
8999 because such a count will have a different meaning in a
9000 wider mode. */
9001
9002 if (! (CONST_INT_P (XEXP (x, 1))
9003 && INTVAL (XEXP (x, 1)) >= 0
9004 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9005 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9006 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9007 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9008 break;
9009
9010 /* If the shift count is a constant and we can do arithmetic in
9011 the mode of the shift, refine which bits we need. Otherwise, use the
9012 conservative form of the mask. */
9013 if (CONST_INT_P (XEXP (x, 1))
9014 && INTVAL (XEXP (x, 1)) >= 0
9015 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9016 && HWI_COMPUTABLE_MODE_P (op_mode))
9017 mask >>= INTVAL (XEXP (x, 1));
9018 else
9019 mask = fuller_mask;
9020
9021 op0 = gen_lowpart_or_truncate (op_mode,
9022 force_to_mode (XEXP (x, 0), mode,
9023 mask, next_select));
9024
9025 if (op_mode != xmode || op0 != XEXP (x, 0))
9026 {
9027 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9028 xmode = op_mode;
9029 }
9030 break;
9031
9032 case LSHIFTRT:
9033 /* Here we can only do something if the shift count is a constant,
9034 this shift constant is valid for the host, and we can do arithmetic
9035 in OP_MODE. */
9036
9037 if (CONST_INT_P (XEXP (x, 1))
9038 && INTVAL (XEXP (x, 1)) >= 0
9039 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9040 && HWI_COMPUTABLE_MODE_P (op_mode))
9041 {
9042 rtx inner = XEXP (x, 0);
9043 unsigned HOST_WIDE_INT inner_mask;
9044
9045 /* Select the mask of the bits we need for the shift operand. */
9046 inner_mask = mask << INTVAL (XEXP (x, 1));
9047
9048 /* We can only change the mode of the shift if we can do arithmetic
9049 in the mode of the shift and INNER_MASK is no wider than the
9050 width of X's mode. */
9051 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9052 op_mode = xmode;
9053
9054 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9055
9056 if (xmode != op_mode || inner != XEXP (x, 0))
9057 {
9058 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9059 xmode = op_mode;
9060 }
9061 }
9062
9063 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9064 shift and AND produces only copies of the sign bit (C2 is one less
9065 than a power of two), we can do this with just a shift. */
9066
9067 if (GET_CODE (x) == LSHIFTRT
9068 && CONST_INT_P (XEXP (x, 1))
9069 /* The shift puts one of the sign bit copies in the least significant
9070 bit. */
9071 && ((INTVAL (XEXP (x, 1))
9072 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9073 >= GET_MODE_PRECISION (xmode))
9074 && pow2p_hwi (mask + 1)
9075 /* Number of bits left after the shift must be more than the mask
9076 needs. */
9077 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9078 <= GET_MODE_PRECISION (xmode))
9079 /* Must be more sign bit copies than the mask needs. */
9080 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9081 >= exact_log2 (mask + 1)))
9082 {
9083 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9084 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9085 gen_int_shift_amount (xmode, nbits));
9086 }
9087 goto shiftrt;
9088
9089 case ASHIFTRT:
9090 /* If we are just looking for the sign bit, we don't need this shift at
9091 all, even if it has a variable count. */
9092 if (val_signbit_p (xmode, mask))
9093 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9094
9095 /* If this is a shift by a constant, get a mask that contains those bits
9096 that are not copies of the sign bit. We then have two cases: If
9097 MASK only includes those bits, this can be a logical shift, which may
9098 allow simplifications. If MASK is a single-bit field not within
9099 those bits, we are requesting a copy of the sign bit and hence can
9100 shift the sign bit to the appropriate location. */
9101
9102 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9103 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9104 {
9105 unsigned HOST_WIDE_INT nonzero;
9106 int i;
9107
9108 /* If the considered data is wider than HOST_WIDE_INT, we can't
9109 represent a mask for all its bits in a single scalar.
9110 But we only care about the lower bits, so calculate these. */
9111
9112 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9113 {
9114 nonzero = HOST_WIDE_INT_M1U;
9115
9116 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9117 is the number of bits a full-width mask would have set.
9118 We need only shift if these are fewer than nonzero can
9119 hold. If not, we must keep all bits set in nonzero. */
9120
9121 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9122 < HOST_BITS_PER_WIDE_INT)
9123 nonzero >>= INTVAL (XEXP (x, 1))
9124 + HOST_BITS_PER_WIDE_INT
9125 - GET_MODE_PRECISION (xmode);
9126 }
9127 else
9128 {
9129 nonzero = GET_MODE_MASK (xmode);
9130 nonzero >>= INTVAL (XEXP (x, 1));
9131 }
9132
9133 if ((mask & ~nonzero) == 0)
9134 {
9135 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9136 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9137 if (GET_CODE (x) != ASHIFTRT)
9138 return force_to_mode (x, mode, mask, next_select);
9139 }
9140
9141 else if ((i = exact_log2 (mask)) >= 0)
9142 {
9143 x = simplify_shift_const
9144 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9145 GET_MODE_PRECISION (xmode) - 1 - i);
9146
9147 if (GET_CODE (x) != ASHIFTRT)
9148 return force_to_mode (x, mode, mask, next_select);
9149 }
9150 }
9151
9152 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9153 even if the shift count isn't a constant. */
9154 if (mask == 1)
9155 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9156
9157 shiftrt:
9158
9159 /* If this is a zero- or sign-extension operation that just affects bits
9160 we don't care about, remove it. Be sure the call above returned
9161 something that is still a shift. */
9162
9163 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9164 && CONST_INT_P (XEXP (x, 1))
9165 && INTVAL (XEXP (x, 1)) >= 0
9166 && (INTVAL (XEXP (x, 1))
9167 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9168 && GET_CODE (XEXP (x, 0)) == ASHIFT
9169 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9170 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9171 next_select);
9172
9173 break;
9174
9175 case ROTATE:
9176 case ROTATERT:
9177 /* If the shift count is constant and we can do computations
9178 in the mode of X, compute where the bits we care about are.
9179 Otherwise, we can't do anything. Don't change the mode of
9180 the shift or propagate MODE into the shift, though. */
9181 if (CONST_INT_P (XEXP (x, 1))
9182 && INTVAL (XEXP (x, 1)) >= 0)
9183 {
9184 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9185 xmode, gen_int_mode (mask, xmode),
9186 XEXP (x, 1));
9187 if (temp && CONST_INT_P (temp))
9188 x = simplify_gen_binary (code, xmode,
9189 force_to_mode (XEXP (x, 0), xmode,
9190 INTVAL (temp), next_select),
9191 XEXP (x, 1));
9192 }
9193 break;
9194
9195 case NEG:
9196 /* If we just want the low-order bit, the NEG isn't needed since it
9197 won't change the low-order bit. */
9198 if (mask == 1)
9199 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9200
9201 /* We need any bits less significant than the most significant bit in
9202 MASK since carries from those bits will affect the bits we are
9203 interested in. */
9204 mask = fuller_mask;
9205 goto unop;
9206
9207 case NOT:
9208 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9209 same as the XOR case above. Ensure that the constant we form is not
9210 wider than the mode of X. */
9211
9212 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9213 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9214 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9215 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9216 < GET_MODE_PRECISION (xmode))
9217 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9218 {
9219 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9220 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9221 x = simplify_gen_binary (LSHIFTRT, xmode,
9222 temp, XEXP (XEXP (x, 0), 1));
9223
9224 return force_to_mode (x, mode, mask, next_select);
9225 }
9226
9227 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9228 use the full mask inside the NOT. */
9229 mask = fuller_mask;
9230
9231 unop:
9232 op0 = gen_lowpart_or_truncate (op_mode,
9233 force_to_mode (XEXP (x, 0), mode, mask,
9234 next_select));
9235 if (op_mode != xmode || op0 != XEXP (x, 0))
9236 {
9237 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9238 xmode = op_mode;
9239 }
9240 break;
9241
9242 case NE:
9243 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9244 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9245 which is equal to STORE_FLAG_VALUE. */
9246 if ((mask & ~STORE_FLAG_VALUE) == 0
9247 && XEXP (x, 1) == const0_rtx
9248 && GET_MODE (XEXP (x, 0)) == mode
9249 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9250 && (nonzero_bits (XEXP (x, 0), mode)
9251 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9252 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9253
9254 break;
9255
9256 case IF_THEN_ELSE:
9257 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9258 written in a narrower mode. We play it safe and do not do so. */
9259
9260 op0 = gen_lowpart_or_truncate (xmode,
9261 force_to_mode (XEXP (x, 1), mode,
9262 mask, next_select));
9263 op1 = gen_lowpart_or_truncate (xmode,
9264 force_to_mode (XEXP (x, 2), mode,
9265 mask, next_select));
9266 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9267 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9268 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9269 op0, op1);
9270 break;
9271
9272 default:
9273 break;
9274 }
9275
9276 /* Ensure we return a value of the proper mode. */
9277 return gen_lowpart_or_truncate (mode, x);
9278 }
9279 \f
9280 /* Return nonzero if X is an expression that has one of two values depending on
9281 whether some other value is zero or nonzero. In that case, we return the
9282 value that is being tested, *PTRUE is set to the value if the rtx being
9283 returned has a nonzero value, and *PFALSE is set to the other alternative.
9284
9285 If we return zero, we set *PTRUE and *PFALSE to X. */
9286
9287 static rtx
9288 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9289 {
9290 machine_mode mode = GET_MODE (x);
9291 enum rtx_code code = GET_CODE (x);
9292 rtx cond0, cond1, true0, true1, false0, false1;
9293 unsigned HOST_WIDE_INT nz;
9294 scalar_int_mode int_mode;
9295
9296 /* If we are comparing a value against zero, we are done. */
9297 if ((code == NE || code == EQ)
9298 && XEXP (x, 1) == const0_rtx)
9299 {
9300 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9301 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9302 return XEXP (x, 0);
9303 }
9304
9305 /* If this is a unary operation whose operand has one of two values, apply
9306 our opcode to compute those values. */
9307 else if (UNARY_P (x)
9308 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9309 {
9310 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9311 *pfalse = simplify_gen_unary (code, mode, false0,
9312 GET_MODE (XEXP (x, 0)));
9313 return cond0;
9314 }
9315
9316 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9317 make can't possibly match and would suppress other optimizations. */
9318 else if (code == COMPARE)
9319 ;
9320
9321 /* If this is a binary operation, see if either side has only one of two
9322 values. If either one does or if both do and they are conditional on
9323 the same value, compute the new true and false values. */
9324 else if (BINARY_P (x))
9325 {
9326 rtx op0 = XEXP (x, 0);
9327 rtx op1 = XEXP (x, 1);
9328 cond0 = if_then_else_cond (op0, &true0, &false0);
9329 cond1 = if_then_else_cond (op1, &true1, &false1);
9330
9331 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9332 && (REG_P (op0) || REG_P (op1)))
9333 {
9334 /* Try to enable a simplification by undoing work done by
9335 if_then_else_cond if it converted a REG into something more
9336 complex. */
9337 if (REG_P (op0))
9338 {
9339 cond0 = 0;
9340 true0 = false0 = op0;
9341 }
9342 else
9343 {
9344 cond1 = 0;
9345 true1 = false1 = op1;
9346 }
9347 }
9348
9349 if ((cond0 != 0 || cond1 != 0)
9350 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9351 {
9352 /* If if_then_else_cond returned zero, then true/false are the
9353 same rtl. We must copy one of them to prevent invalid rtl
9354 sharing. */
9355 if (cond0 == 0)
9356 true0 = copy_rtx (true0);
9357 else if (cond1 == 0)
9358 true1 = copy_rtx (true1);
9359
9360 if (COMPARISON_P (x))
9361 {
9362 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9363 true0, true1);
9364 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9365 false0, false1);
9366 }
9367 else
9368 {
9369 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9370 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9371 }
9372
9373 return cond0 ? cond0 : cond1;
9374 }
9375
9376 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9377 operands is zero when the other is nonzero, and vice-versa,
9378 and STORE_FLAG_VALUE is 1 or -1. */
9379
9380 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9381 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9382 || code == UMAX)
9383 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9384 {
9385 rtx op0 = XEXP (XEXP (x, 0), 1);
9386 rtx op1 = XEXP (XEXP (x, 1), 1);
9387
9388 cond0 = XEXP (XEXP (x, 0), 0);
9389 cond1 = XEXP (XEXP (x, 1), 0);
9390
9391 if (COMPARISON_P (cond0)
9392 && COMPARISON_P (cond1)
9393 && SCALAR_INT_MODE_P (mode)
9394 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9395 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9396 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9397 || ((swap_condition (GET_CODE (cond0))
9398 == reversed_comparison_code (cond1, NULL))
9399 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9400 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9401 && ! side_effects_p (x))
9402 {
9403 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9404 *pfalse = simplify_gen_binary (MULT, mode,
9405 (code == MINUS
9406 ? simplify_gen_unary (NEG, mode,
9407 op1, mode)
9408 : op1),
9409 const_true_rtx);
9410 return cond0;
9411 }
9412 }
9413
9414 /* Similarly for MULT, AND and UMIN, except that for these the result
9415 is always zero. */
9416 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9417 && (code == MULT || code == AND || code == UMIN)
9418 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9419 {
9420 cond0 = XEXP (XEXP (x, 0), 0);
9421 cond1 = XEXP (XEXP (x, 1), 0);
9422
9423 if (COMPARISON_P (cond0)
9424 && COMPARISON_P (cond1)
9425 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9426 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9427 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9428 || ((swap_condition (GET_CODE (cond0))
9429 == reversed_comparison_code (cond1, NULL))
9430 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9431 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9432 && ! side_effects_p (x))
9433 {
9434 *ptrue = *pfalse = const0_rtx;
9435 return cond0;
9436 }
9437 }
9438 }
9439
9440 else if (code == IF_THEN_ELSE)
9441 {
9442 /* If we have IF_THEN_ELSE already, extract the condition and
9443 canonicalize it if it is NE or EQ. */
9444 cond0 = XEXP (x, 0);
9445 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9446 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9447 return XEXP (cond0, 0);
9448 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9449 {
9450 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9451 return XEXP (cond0, 0);
9452 }
9453 else
9454 return cond0;
9455 }
9456
9457 /* If X is a SUBREG, we can narrow both the true and false values
9458 if the inner expression, if there is a condition. */
9459 else if (code == SUBREG
9460 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9461 &false0)) != 0)
9462 {
9463 true0 = simplify_gen_subreg (mode, true0,
9464 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9465 false0 = simplify_gen_subreg (mode, false0,
9466 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9467 if (true0 && false0)
9468 {
9469 *ptrue = true0;
9470 *pfalse = false0;
9471 return cond0;
9472 }
9473 }
9474
9475 /* If X is a constant, this isn't special and will cause confusions
9476 if we treat it as such. Likewise if it is equivalent to a constant. */
9477 else if (CONSTANT_P (x)
9478 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9479 ;
9480
9481 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9482 will be least confusing to the rest of the compiler. */
9483 else if (mode == BImode)
9484 {
9485 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9486 return x;
9487 }
9488
9489 /* If X is known to be either 0 or -1, those are the true and
9490 false values when testing X. */
9491 else if (x == constm1_rtx || x == const0_rtx
9492 || (is_a <scalar_int_mode> (mode, &int_mode)
9493 && (num_sign_bit_copies (x, int_mode)
9494 == GET_MODE_PRECISION (int_mode))))
9495 {
9496 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9497 return x;
9498 }
9499
9500 /* Likewise for 0 or a single bit. */
9501 else if (HWI_COMPUTABLE_MODE_P (mode)
9502 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9503 {
9504 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9505 return x;
9506 }
9507
9508 /* Otherwise fail; show no condition with true and false values the same. */
9509 *ptrue = *pfalse = x;
9510 return 0;
9511 }
9512 \f
9513 /* Return the value of expression X given the fact that condition COND
9514 is known to be true when applied to REG as its first operand and VAL
9515 as its second. X is known to not be shared and so can be modified in
9516 place.
9517
9518 We only handle the simplest cases, and specifically those cases that
9519 arise with IF_THEN_ELSE expressions. */
9520
9521 static rtx
9522 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9523 {
9524 enum rtx_code code = GET_CODE (x);
9525 const char *fmt;
9526 int i, j;
9527
9528 if (side_effects_p (x))
9529 return x;
9530
9531 /* If either operand of the condition is a floating point value,
9532 then we have to avoid collapsing an EQ comparison. */
9533 if (cond == EQ
9534 && rtx_equal_p (x, reg)
9535 && ! FLOAT_MODE_P (GET_MODE (x))
9536 && ! FLOAT_MODE_P (GET_MODE (val)))
9537 return val;
9538
9539 if (cond == UNEQ && rtx_equal_p (x, reg))
9540 return val;
9541
9542 /* If X is (abs REG) and we know something about REG's relationship
9543 with zero, we may be able to simplify this. */
9544
9545 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9546 switch (cond)
9547 {
9548 case GE: case GT: case EQ:
9549 return XEXP (x, 0);
9550 case LT: case LE:
9551 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9552 XEXP (x, 0),
9553 GET_MODE (XEXP (x, 0)));
9554 default:
9555 break;
9556 }
9557
9558 /* The only other cases we handle are MIN, MAX, and comparisons if the
9559 operands are the same as REG and VAL. */
9560
9561 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9562 {
9563 if (rtx_equal_p (XEXP (x, 0), val))
9564 {
9565 std::swap (val, reg);
9566 cond = swap_condition (cond);
9567 }
9568
9569 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9570 {
9571 if (COMPARISON_P (x))
9572 {
9573 if (comparison_dominates_p (cond, code))
9574 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9575
9576 code = reversed_comparison_code (x, NULL);
9577 if (code != UNKNOWN
9578 && comparison_dominates_p (cond, code))
9579 return CONST0_RTX (GET_MODE (x));
9580 else
9581 return x;
9582 }
9583 else if (code == SMAX || code == SMIN
9584 || code == UMIN || code == UMAX)
9585 {
9586 int unsignedp = (code == UMIN || code == UMAX);
9587
9588 /* Do not reverse the condition when it is NE or EQ.
9589 This is because we cannot conclude anything about
9590 the value of 'SMAX (x, y)' when x is not equal to y,
9591 but we can when x equals y. */
9592 if ((code == SMAX || code == UMAX)
9593 && ! (cond == EQ || cond == NE))
9594 cond = reverse_condition (cond);
9595
9596 switch (cond)
9597 {
9598 case GE: case GT:
9599 return unsignedp ? x : XEXP (x, 1);
9600 case LE: case LT:
9601 return unsignedp ? x : XEXP (x, 0);
9602 case GEU: case GTU:
9603 return unsignedp ? XEXP (x, 1) : x;
9604 case LEU: case LTU:
9605 return unsignedp ? XEXP (x, 0) : x;
9606 default:
9607 break;
9608 }
9609 }
9610 }
9611 }
9612 else if (code == SUBREG)
9613 {
9614 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9615 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9616
9617 if (SUBREG_REG (x) != r)
9618 {
9619 /* We must simplify subreg here, before we lose track of the
9620 original inner_mode. */
9621 new_rtx = simplify_subreg (GET_MODE (x), r,
9622 inner_mode, SUBREG_BYTE (x));
9623 if (new_rtx)
9624 return new_rtx;
9625 else
9626 SUBST (SUBREG_REG (x), r);
9627 }
9628
9629 return x;
9630 }
9631 /* We don't have to handle SIGN_EXTEND here, because even in the
9632 case of replacing something with a modeless CONST_INT, a
9633 CONST_INT is already (supposed to be) a valid sign extension for
9634 its narrower mode, which implies it's already properly
9635 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9636 story is different. */
9637 else if (code == ZERO_EXTEND)
9638 {
9639 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9640 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9641
9642 if (XEXP (x, 0) != r)
9643 {
9644 /* We must simplify the zero_extend here, before we lose
9645 track of the original inner_mode. */
9646 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9647 r, inner_mode);
9648 if (new_rtx)
9649 return new_rtx;
9650 else
9651 SUBST (XEXP (x, 0), r);
9652 }
9653
9654 return x;
9655 }
9656
9657 fmt = GET_RTX_FORMAT (code);
9658 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9659 {
9660 if (fmt[i] == 'e')
9661 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9662 else if (fmt[i] == 'E')
9663 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9664 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9665 cond, reg, val));
9666 }
9667
9668 return x;
9669 }
9670 \f
9671 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9672 assignment as a field assignment. */
9673
9674 static int
9675 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9676 {
9677 if (widen_x && GET_MODE (x) != GET_MODE (y))
9678 {
9679 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9680 return 0;
9681 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9682 return 0;
9683 x = adjust_address_nv (x, GET_MODE (y),
9684 byte_lowpart_offset (GET_MODE (y),
9685 GET_MODE (x)));
9686 }
9687
9688 if (x == y || rtx_equal_p (x, y))
9689 return 1;
9690
9691 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9692 return 0;
9693
9694 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9695 Note that all SUBREGs of MEM are paradoxical; otherwise they
9696 would have been rewritten. */
9697 if (MEM_P (x) && GET_CODE (y) == SUBREG
9698 && MEM_P (SUBREG_REG (y))
9699 && rtx_equal_p (SUBREG_REG (y),
9700 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9701 return 1;
9702
9703 if (MEM_P (y) && GET_CODE (x) == SUBREG
9704 && MEM_P (SUBREG_REG (x))
9705 && rtx_equal_p (SUBREG_REG (x),
9706 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9707 return 1;
9708
9709 /* We used to see if get_last_value of X and Y were the same but that's
9710 not correct. In one direction, we'll cause the assignment to have
9711 the wrong destination and in the case, we'll import a register into this
9712 insn that might have already have been dead. So fail if none of the
9713 above cases are true. */
9714 return 0;
9715 }
9716 \f
9717 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9718 Return that assignment if so.
9719
9720 We only handle the most common cases. */
9721
9722 static rtx
9723 make_field_assignment (rtx x)
9724 {
9725 rtx dest = SET_DEST (x);
9726 rtx src = SET_SRC (x);
9727 rtx assign;
9728 rtx rhs, lhs;
9729 HOST_WIDE_INT c1;
9730 HOST_WIDE_INT pos;
9731 unsigned HOST_WIDE_INT len;
9732 rtx other;
9733
9734 /* All the rules in this function are specific to scalar integers. */
9735 scalar_int_mode mode;
9736 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9737 return x;
9738
9739 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9740 a clear of a one-bit field. We will have changed it to
9741 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9742 for a SUBREG. */
9743
9744 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9745 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9746 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9747 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9748 {
9749 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9750 1, 1, 1, 0);
9751 if (assign != 0)
9752 return gen_rtx_SET (assign, const0_rtx);
9753 return x;
9754 }
9755
9756 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9757 && subreg_lowpart_p (XEXP (src, 0))
9758 && partial_subreg_p (XEXP (src, 0))
9759 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9760 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9761 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9762 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9763 {
9764 assign = make_extraction (VOIDmode, dest, 0,
9765 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9766 1, 1, 1, 0);
9767 if (assign != 0)
9768 return gen_rtx_SET (assign, const0_rtx);
9769 return x;
9770 }
9771
9772 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9773 one-bit field. */
9774 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9775 && XEXP (XEXP (src, 0), 0) == const1_rtx
9776 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9777 {
9778 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9779 1, 1, 1, 0);
9780 if (assign != 0)
9781 return gen_rtx_SET (assign, const1_rtx);
9782 return x;
9783 }
9784
9785 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9786 SRC is an AND with all bits of that field set, then we can discard
9787 the AND. */
9788 if (GET_CODE (dest) == ZERO_EXTRACT
9789 && CONST_INT_P (XEXP (dest, 1))
9790 && GET_CODE (src) == AND
9791 && CONST_INT_P (XEXP (src, 1)))
9792 {
9793 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9794 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9795 unsigned HOST_WIDE_INT ze_mask;
9796
9797 if (width >= HOST_BITS_PER_WIDE_INT)
9798 ze_mask = -1;
9799 else
9800 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9801
9802 /* Complete overlap. We can remove the source AND. */
9803 if ((and_mask & ze_mask) == ze_mask)
9804 return gen_rtx_SET (dest, XEXP (src, 0));
9805
9806 /* Partial overlap. We can reduce the source AND. */
9807 if ((and_mask & ze_mask) != and_mask)
9808 {
9809 src = gen_rtx_AND (mode, XEXP (src, 0),
9810 gen_int_mode (and_mask & ze_mask, mode));
9811 return gen_rtx_SET (dest, src);
9812 }
9813 }
9814
9815 /* The other case we handle is assignments into a constant-position
9816 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9817 a mask that has all one bits except for a group of zero bits and
9818 OTHER is known to have zeros where C1 has ones, this is such an
9819 assignment. Compute the position and length from C1. Shift OTHER
9820 to the appropriate position, force it to the required mode, and
9821 make the extraction. Check for the AND in both operands. */
9822
9823 /* One or more SUBREGs might obscure the constant-position field
9824 assignment. The first one we are likely to encounter is an outer
9825 narrowing SUBREG, which we can just strip for the purposes of
9826 identifying the constant-field assignment. */
9827 scalar_int_mode src_mode = mode;
9828 if (GET_CODE (src) == SUBREG
9829 && subreg_lowpart_p (src)
9830 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9831 src = SUBREG_REG (src);
9832
9833 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9834 return x;
9835
9836 rhs = expand_compound_operation (XEXP (src, 0));
9837 lhs = expand_compound_operation (XEXP (src, 1));
9838
9839 if (GET_CODE (rhs) == AND
9840 && CONST_INT_P (XEXP (rhs, 1))
9841 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9842 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9843 /* The second SUBREG that might get in the way is a paradoxical
9844 SUBREG around the first operand of the AND. We want to
9845 pretend the operand is as wide as the destination here. We
9846 do this by adjusting the MEM to wider mode for the sole
9847 purpose of the call to rtx_equal_for_field_assignment_p. Also
9848 note this trick only works for MEMs. */
9849 else if (GET_CODE (rhs) == AND
9850 && paradoxical_subreg_p (XEXP (rhs, 0))
9851 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9852 && CONST_INT_P (XEXP (rhs, 1))
9853 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9854 dest, true))
9855 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9856 else if (GET_CODE (lhs) == AND
9857 && CONST_INT_P (XEXP (lhs, 1))
9858 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9859 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9860 /* The second SUBREG that might get in the way is a paradoxical
9861 SUBREG around the first operand of the AND. We want to
9862 pretend the operand is as wide as the destination here. We
9863 do this by adjusting the MEM to wider mode for the sole
9864 purpose of the call to rtx_equal_for_field_assignment_p. Also
9865 note this trick only works for MEMs. */
9866 else if (GET_CODE (lhs) == AND
9867 && paradoxical_subreg_p (XEXP (lhs, 0))
9868 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9869 && CONST_INT_P (XEXP (lhs, 1))
9870 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9871 dest, true))
9872 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9873 else
9874 return x;
9875
9876 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9877 if (pos < 0
9878 || pos + len > GET_MODE_PRECISION (mode)
9879 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9880 || (c1 & nonzero_bits (other, mode)) != 0)
9881 return x;
9882
9883 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9884 if (assign == 0)
9885 return x;
9886
9887 /* The mode to use for the source is the mode of the assignment, or of
9888 what is inside a possible STRICT_LOW_PART. */
9889 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9890 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9891
9892 /* Shift OTHER right POS places and make it the source, restricting it
9893 to the proper length and mode. */
9894
9895 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9896 src_mode, other, pos),
9897 dest);
9898 src = force_to_mode (src, new_mode,
9899 len >= HOST_BITS_PER_WIDE_INT
9900 ? HOST_WIDE_INT_M1U
9901 : (HOST_WIDE_INT_1U << len) - 1,
9902 0);
9903
9904 /* If SRC is masked by an AND that does not make a difference in
9905 the value being stored, strip it. */
9906 if (GET_CODE (assign) == ZERO_EXTRACT
9907 && CONST_INT_P (XEXP (assign, 1))
9908 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9909 && GET_CODE (src) == AND
9910 && CONST_INT_P (XEXP (src, 1))
9911 && UINTVAL (XEXP (src, 1))
9912 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9913 src = XEXP (src, 0);
9914
9915 return gen_rtx_SET (assign, src);
9916 }
9917 \f
9918 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9919 if so. */
9920
9921 static rtx
9922 apply_distributive_law (rtx x)
9923 {
9924 enum rtx_code code = GET_CODE (x);
9925 enum rtx_code inner_code;
9926 rtx lhs, rhs, other;
9927 rtx tem;
9928
9929 /* Distributivity is not true for floating point as it can change the
9930 value. So we don't do it unless -funsafe-math-optimizations. */
9931 if (FLOAT_MODE_P (GET_MODE (x))
9932 && ! flag_unsafe_math_optimizations)
9933 return x;
9934
9935 /* The outer operation can only be one of the following: */
9936 if (code != IOR && code != AND && code != XOR
9937 && code != PLUS && code != MINUS)
9938 return x;
9939
9940 lhs = XEXP (x, 0);
9941 rhs = XEXP (x, 1);
9942
9943 /* If either operand is a primitive we can't do anything, so get out
9944 fast. */
9945 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9946 return x;
9947
9948 lhs = expand_compound_operation (lhs);
9949 rhs = expand_compound_operation (rhs);
9950 inner_code = GET_CODE (lhs);
9951 if (inner_code != GET_CODE (rhs))
9952 return x;
9953
9954 /* See if the inner and outer operations distribute. */
9955 switch (inner_code)
9956 {
9957 case LSHIFTRT:
9958 case ASHIFTRT:
9959 case AND:
9960 case IOR:
9961 /* These all distribute except over PLUS. */
9962 if (code == PLUS || code == MINUS)
9963 return x;
9964 break;
9965
9966 case MULT:
9967 if (code != PLUS && code != MINUS)
9968 return x;
9969 break;
9970
9971 case ASHIFT:
9972 /* This is also a multiply, so it distributes over everything. */
9973 break;
9974
9975 /* This used to handle SUBREG, but this turned out to be counter-
9976 productive, since (subreg (op ...)) usually is not handled by
9977 insn patterns, and this "optimization" therefore transformed
9978 recognizable patterns into unrecognizable ones. Therefore the
9979 SUBREG case was removed from here.
9980
9981 It is possible that distributing SUBREG over arithmetic operations
9982 leads to an intermediate result than can then be optimized further,
9983 e.g. by moving the outer SUBREG to the other side of a SET as done
9984 in simplify_set. This seems to have been the original intent of
9985 handling SUBREGs here.
9986
9987 However, with current GCC this does not appear to actually happen,
9988 at least on major platforms. If some case is found where removing
9989 the SUBREG case here prevents follow-on optimizations, distributing
9990 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9991
9992 default:
9993 return x;
9994 }
9995
9996 /* Set LHS and RHS to the inner operands (A and B in the example
9997 above) and set OTHER to the common operand (C in the example).
9998 There is only one way to do this unless the inner operation is
9999 commutative. */
10000 if (COMMUTATIVE_ARITH_P (lhs)
10001 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10002 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10003 else if (COMMUTATIVE_ARITH_P (lhs)
10004 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10005 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10006 else if (COMMUTATIVE_ARITH_P (lhs)
10007 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10008 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10009 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10010 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10011 else
10012 return x;
10013
10014 /* Form the new inner operation, seeing if it simplifies first. */
10015 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10016
10017 /* There is one exception to the general way of distributing:
10018 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10019 if (code == XOR && inner_code == IOR)
10020 {
10021 inner_code = AND;
10022 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10023 }
10024
10025 /* We may be able to continuing distributing the result, so call
10026 ourselves recursively on the inner operation before forming the
10027 outer operation, which we return. */
10028 return simplify_gen_binary (inner_code, GET_MODE (x),
10029 apply_distributive_law (tem), other);
10030 }
10031
10032 /* See if X is of the form (* (+ A B) C), and if so convert to
10033 (+ (* A C) (* B C)) and try to simplify.
10034
10035 Most of the time, this results in no change. However, if some of
10036 the operands are the same or inverses of each other, simplifications
10037 will result.
10038
10039 For example, (and (ior A B) (not B)) can occur as the result of
10040 expanding a bit field assignment. When we apply the distributive
10041 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10042 which then simplifies to (and (A (not B))).
10043
10044 Note that no checks happen on the validity of applying the inverse
10045 distributive law. This is pointless since we can do it in the
10046 few places where this routine is called.
10047
10048 N is the index of the term that is decomposed (the arithmetic operation,
10049 i.e. (+ A B) in the first example above). !N is the index of the term that
10050 is distributed, i.e. of C in the first example above. */
10051 static rtx
10052 distribute_and_simplify_rtx (rtx x, int n)
10053 {
10054 machine_mode mode;
10055 enum rtx_code outer_code, inner_code;
10056 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10057
10058 /* Distributivity is not true for floating point as it can change the
10059 value. So we don't do it unless -funsafe-math-optimizations. */
10060 if (FLOAT_MODE_P (GET_MODE (x))
10061 && ! flag_unsafe_math_optimizations)
10062 return NULL_RTX;
10063
10064 decomposed = XEXP (x, n);
10065 if (!ARITHMETIC_P (decomposed))
10066 return NULL_RTX;
10067
10068 mode = GET_MODE (x);
10069 outer_code = GET_CODE (x);
10070 distributed = XEXP (x, !n);
10071
10072 inner_code = GET_CODE (decomposed);
10073 inner_op0 = XEXP (decomposed, 0);
10074 inner_op1 = XEXP (decomposed, 1);
10075
10076 /* Special case (and (xor B C) (not A)), which is equivalent to
10077 (xor (ior A B) (ior A C)) */
10078 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10079 {
10080 distributed = XEXP (distributed, 0);
10081 outer_code = IOR;
10082 }
10083
10084 if (n == 0)
10085 {
10086 /* Distribute the second term. */
10087 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10088 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10089 }
10090 else
10091 {
10092 /* Distribute the first term. */
10093 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10094 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10095 }
10096
10097 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10098 new_op0, new_op1));
10099 if (GET_CODE (tmp) != outer_code
10100 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10101 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10102 return tmp;
10103
10104 return NULL_RTX;
10105 }
10106 \f
10107 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10108 in MODE. Return an equivalent form, if different from (and VAROP
10109 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10110
10111 static rtx
10112 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10113 unsigned HOST_WIDE_INT constop)
10114 {
10115 unsigned HOST_WIDE_INT nonzero;
10116 unsigned HOST_WIDE_INT orig_constop;
10117 rtx orig_varop;
10118 int i;
10119
10120 orig_varop = varop;
10121 orig_constop = constop;
10122 if (GET_CODE (varop) == CLOBBER)
10123 return NULL_RTX;
10124
10125 /* Simplify VAROP knowing that we will be only looking at some of the
10126 bits in it.
10127
10128 Note by passing in CONSTOP, we guarantee that the bits not set in
10129 CONSTOP are not significant and will never be examined. We must
10130 ensure that is the case by explicitly masking out those bits
10131 before returning. */
10132 varop = force_to_mode (varop, mode, constop, 0);
10133
10134 /* If VAROP is a CLOBBER, we will fail so return it. */
10135 if (GET_CODE (varop) == CLOBBER)
10136 return varop;
10137
10138 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10139 to VAROP and return the new constant. */
10140 if (CONST_INT_P (varop))
10141 return gen_int_mode (INTVAL (varop) & constop, mode);
10142
10143 /* See what bits may be nonzero in VAROP. Unlike the general case of
10144 a call to nonzero_bits, here we don't care about bits outside
10145 MODE. */
10146
10147 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10148
10149 /* Turn off all bits in the constant that are known to already be zero.
10150 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10151 which is tested below. */
10152
10153 constop &= nonzero;
10154
10155 /* If we don't have any bits left, return zero. */
10156 if (constop == 0)
10157 return const0_rtx;
10158
10159 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10160 a power of two, we can replace this with an ASHIFT. */
10161 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10162 && (i = exact_log2 (constop)) >= 0)
10163 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10164
10165 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10166 or XOR, then try to apply the distributive law. This may eliminate
10167 operations if either branch can be simplified because of the AND.
10168 It may also make some cases more complex, but those cases probably
10169 won't match a pattern either with or without this. */
10170
10171 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10172 {
10173 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10174 return
10175 gen_lowpart
10176 (mode,
10177 apply_distributive_law
10178 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10179 simplify_and_const_int (NULL_RTX, varop_mode,
10180 XEXP (varop, 0),
10181 constop),
10182 simplify_and_const_int (NULL_RTX, varop_mode,
10183 XEXP (varop, 1),
10184 constop))));
10185 }
10186
10187 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10188 the AND and see if one of the operands simplifies to zero. If so, we
10189 may eliminate it. */
10190
10191 if (GET_CODE (varop) == PLUS
10192 && pow2p_hwi (constop + 1))
10193 {
10194 rtx o0, o1;
10195
10196 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10197 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10198 if (o0 == const0_rtx)
10199 return o1;
10200 if (o1 == const0_rtx)
10201 return o0;
10202 }
10203
10204 /* Make a SUBREG if necessary. If we can't make it, fail. */
10205 varop = gen_lowpart (mode, varop);
10206 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10207 return NULL_RTX;
10208
10209 /* If we are only masking insignificant bits, return VAROP. */
10210 if (constop == nonzero)
10211 return varop;
10212
10213 if (varop == orig_varop && constop == orig_constop)
10214 return NULL_RTX;
10215
10216 /* Otherwise, return an AND. */
10217 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10218 }
10219
10220
10221 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10222 in MODE.
10223
10224 Return an equivalent form, if different from X. Otherwise, return X. If
10225 X is zero, we are to always construct the equivalent form. */
10226
10227 static rtx
10228 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10229 unsigned HOST_WIDE_INT constop)
10230 {
10231 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10232 if (tem)
10233 return tem;
10234
10235 if (!x)
10236 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10237 gen_int_mode (constop, mode));
10238 if (GET_MODE (x) != mode)
10239 x = gen_lowpart (mode, x);
10240 return x;
10241 }
10242 \f
10243 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10244 We don't care about bits outside of those defined in MODE.
10245 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10246
10247 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10248 a shift, AND, or zero_extract, we can do better. */
10249
10250 static rtx
10251 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10252 scalar_int_mode mode,
10253 unsigned HOST_WIDE_INT *nonzero)
10254 {
10255 rtx tem;
10256 reg_stat_type *rsp;
10257
10258 /* If X is a register whose nonzero bits value is current, use it.
10259 Otherwise, if X is a register whose value we can find, use that
10260 value. Otherwise, use the previously-computed global nonzero bits
10261 for this register. */
10262
10263 rsp = &reg_stat[REGNO (x)];
10264 if (rsp->last_set_value != 0
10265 && (rsp->last_set_mode == mode
10266 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10267 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10268 && GET_MODE_CLASS (mode) == MODE_INT))
10269 && ((rsp->last_set_label >= label_tick_ebb_start
10270 && rsp->last_set_label < label_tick)
10271 || (rsp->last_set_label == label_tick
10272 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10273 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10274 && REGNO (x) < reg_n_sets_max
10275 && REG_N_SETS (REGNO (x)) == 1
10276 && !REGNO_REG_SET_P
10277 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10278 REGNO (x)))))
10279 {
10280 /* Note that, even if the precision of last_set_mode is lower than that
10281 of mode, record_value_for_reg invoked nonzero_bits on the register
10282 with nonzero_bits_mode (because last_set_mode is necessarily integral
10283 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10284 are all valid, hence in mode too since nonzero_bits_mode is defined
10285 to the largest HWI_COMPUTABLE_MODE_P mode. */
10286 *nonzero &= rsp->last_set_nonzero_bits;
10287 return NULL;
10288 }
10289
10290 tem = get_last_value (x);
10291 if (tem)
10292 {
10293 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10294 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10295
10296 return tem;
10297 }
10298
10299 if (nonzero_sign_valid && rsp->nonzero_bits)
10300 {
10301 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10302
10303 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10304 /* We don't know anything about the upper bits. */
10305 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10306
10307 *nonzero &= mask;
10308 }
10309
10310 return NULL;
10311 }
10312
10313 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10314 end of X that are known to be equal to the sign bit. X will be used
10315 in mode MODE; the returned value will always be between 1 and the
10316 number of bits in MODE. */
10317
10318 static rtx
10319 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10320 scalar_int_mode mode,
10321 unsigned int *result)
10322 {
10323 rtx tem;
10324 reg_stat_type *rsp;
10325
10326 rsp = &reg_stat[REGNO (x)];
10327 if (rsp->last_set_value != 0
10328 && rsp->last_set_mode == mode
10329 && ((rsp->last_set_label >= label_tick_ebb_start
10330 && rsp->last_set_label < label_tick)
10331 || (rsp->last_set_label == label_tick
10332 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10333 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10334 && REGNO (x) < reg_n_sets_max
10335 && REG_N_SETS (REGNO (x)) == 1
10336 && !REGNO_REG_SET_P
10337 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10338 REGNO (x)))))
10339 {
10340 *result = rsp->last_set_sign_bit_copies;
10341 return NULL;
10342 }
10343
10344 tem = get_last_value (x);
10345 if (tem != 0)
10346 return tem;
10347
10348 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10349 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10350 *result = rsp->sign_bit_copies;
10351
10352 return NULL;
10353 }
10354 \f
10355 /* Return the number of "extended" bits there are in X, when interpreted
10356 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10357 unsigned quantities, this is the number of high-order zero bits.
10358 For signed quantities, this is the number of copies of the sign bit
10359 minus 1. In both case, this function returns the number of "spare"
10360 bits. For example, if two quantities for which this function returns
10361 at least 1 are added, the addition is known not to overflow.
10362
10363 This function will always return 0 unless called during combine, which
10364 implies that it must be called from a define_split. */
10365
10366 unsigned int
10367 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10368 {
10369 if (nonzero_sign_valid == 0)
10370 return 0;
10371
10372 scalar_int_mode int_mode;
10373 return (unsignedp
10374 ? (is_a <scalar_int_mode> (mode, &int_mode)
10375 && HWI_COMPUTABLE_MODE_P (int_mode)
10376 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10377 - floor_log2 (nonzero_bits (x, int_mode)))
10378 : 0)
10379 : num_sign_bit_copies (x, mode) - 1);
10380 }
10381
10382 /* This function is called from `simplify_shift_const' to merge two
10383 outer operations. Specifically, we have already found that we need
10384 to perform operation *POP0 with constant *PCONST0 at the outermost
10385 position. We would now like to also perform OP1 with constant CONST1
10386 (with *POP0 being done last).
10387
10388 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10389 the resulting operation. *PCOMP_P is set to 1 if we would need to
10390 complement the innermost operand, otherwise it is unchanged.
10391
10392 MODE is the mode in which the operation will be done. No bits outside
10393 the width of this mode matter. It is assumed that the width of this mode
10394 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10395
10396 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10397 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10398 result is simply *PCONST0.
10399
10400 If the resulting operation cannot be expressed as one operation, we
10401 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10402
10403 static int
10404 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10405 {
10406 enum rtx_code op0 = *pop0;
10407 HOST_WIDE_INT const0 = *pconst0;
10408
10409 const0 &= GET_MODE_MASK (mode);
10410 const1 &= GET_MODE_MASK (mode);
10411
10412 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10413 if (op0 == AND)
10414 const1 &= const0;
10415
10416 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10417 if OP0 is SET. */
10418
10419 if (op1 == UNKNOWN || op0 == SET)
10420 return 1;
10421
10422 else if (op0 == UNKNOWN)
10423 op0 = op1, const0 = const1;
10424
10425 else if (op0 == op1)
10426 {
10427 switch (op0)
10428 {
10429 case AND:
10430 const0 &= const1;
10431 break;
10432 case IOR:
10433 const0 |= const1;
10434 break;
10435 case XOR:
10436 const0 ^= const1;
10437 break;
10438 case PLUS:
10439 const0 += const1;
10440 break;
10441 case NEG:
10442 op0 = UNKNOWN;
10443 break;
10444 default:
10445 break;
10446 }
10447 }
10448
10449 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10450 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10451 return 0;
10452
10453 /* If the two constants aren't the same, we can't do anything. The
10454 remaining six cases can all be done. */
10455 else if (const0 != const1)
10456 return 0;
10457
10458 else
10459 switch (op0)
10460 {
10461 case IOR:
10462 if (op1 == AND)
10463 /* (a & b) | b == b */
10464 op0 = SET;
10465 else /* op1 == XOR */
10466 /* (a ^ b) | b == a | b */
10467 {;}
10468 break;
10469
10470 case XOR:
10471 if (op1 == AND)
10472 /* (a & b) ^ b == (~a) & b */
10473 op0 = AND, *pcomp_p = 1;
10474 else /* op1 == IOR */
10475 /* (a | b) ^ b == a & ~b */
10476 op0 = AND, const0 = ~const0;
10477 break;
10478
10479 case AND:
10480 if (op1 == IOR)
10481 /* (a | b) & b == b */
10482 op0 = SET;
10483 else /* op1 == XOR */
10484 /* (a ^ b) & b) == (~a) & b */
10485 *pcomp_p = 1;
10486 break;
10487 default:
10488 break;
10489 }
10490
10491 /* Check for NO-OP cases. */
10492 const0 &= GET_MODE_MASK (mode);
10493 if (const0 == 0
10494 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10495 op0 = UNKNOWN;
10496 else if (const0 == 0 && op0 == AND)
10497 op0 = SET;
10498 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10499 && op0 == AND)
10500 op0 = UNKNOWN;
10501
10502 *pop0 = op0;
10503
10504 /* ??? Slightly redundant with the above mask, but not entirely.
10505 Moving this above means we'd have to sign-extend the mode mask
10506 for the final test. */
10507 if (op0 != UNKNOWN && op0 != NEG)
10508 *pconst0 = trunc_int_for_mode (const0, mode);
10509
10510 return 1;
10511 }
10512 \f
10513 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10514 the shift in. The original shift operation CODE is performed on OP in
10515 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10516 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10517 result of the shift is subject to operation OUTER_CODE with operand
10518 OUTER_CONST. */
10519
10520 static scalar_int_mode
10521 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10522 scalar_int_mode orig_mode, scalar_int_mode mode,
10523 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10524 {
10525 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10526
10527 /* In general we can't perform in wider mode for right shift and rotate. */
10528 switch (code)
10529 {
10530 case ASHIFTRT:
10531 /* We can still widen if the bits brought in from the left are identical
10532 to the sign bit of ORIG_MODE. */
10533 if (num_sign_bit_copies (op, mode)
10534 > (unsigned) (GET_MODE_PRECISION (mode)
10535 - GET_MODE_PRECISION (orig_mode)))
10536 return mode;
10537 return orig_mode;
10538
10539 case LSHIFTRT:
10540 /* Similarly here but with zero bits. */
10541 if (HWI_COMPUTABLE_MODE_P (mode)
10542 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10543 return mode;
10544
10545 /* We can also widen if the bits brought in will be masked off. This
10546 operation is performed in ORIG_MODE. */
10547 if (outer_code == AND)
10548 {
10549 int care_bits = low_bitmask_len (orig_mode, outer_const);
10550
10551 if (care_bits >= 0
10552 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10553 return mode;
10554 }
10555 /* fall through */
10556
10557 case ROTATE:
10558 return orig_mode;
10559
10560 case ROTATERT:
10561 gcc_unreachable ();
10562
10563 default:
10564 return mode;
10565 }
10566 }
10567
10568 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10569 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10570 if we cannot simplify it. Otherwise, return a simplified value.
10571
10572 The shift is normally computed in the widest mode we find in VAROP, as
10573 long as it isn't a different number of words than RESULT_MODE. Exceptions
10574 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10575
10576 static rtx
10577 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10578 rtx varop, int orig_count)
10579 {
10580 enum rtx_code orig_code = code;
10581 rtx orig_varop = varop;
10582 int count, log2;
10583 machine_mode mode = result_mode;
10584 machine_mode shift_mode;
10585 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10586 /* We form (outer_op (code varop count) (outer_const)). */
10587 enum rtx_code outer_op = UNKNOWN;
10588 HOST_WIDE_INT outer_const = 0;
10589 int complement_p = 0;
10590 rtx new_rtx, x;
10591
10592 /* Make sure and truncate the "natural" shift on the way in. We don't
10593 want to do this inside the loop as it makes it more difficult to
10594 combine shifts. */
10595 if (SHIFT_COUNT_TRUNCATED)
10596 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10597
10598 /* If we were given an invalid count, don't do anything except exactly
10599 what was requested. */
10600
10601 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10602 return NULL_RTX;
10603
10604 count = orig_count;
10605
10606 /* Unless one of the branches of the `if' in this loop does a `continue',
10607 we will `break' the loop after the `if'. */
10608
10609 while (count != 0)
10610 {
10611 /* If we have an operand of (clobber (const_int 0)), fail. */
10612 if (GET_CODE (varop) == CLOBBER)
10613 return NULL_RTX;
10614
10615 /* Convert ROTATERT to ROTATE. */
10616 if (code == ROTATERT)
10617 {
10618 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10619 code = ROTATE;
10620 count = bitsize - count;
10621 }
10622
10623 shift_mode = result_mode;
10624 if (shift_mode != mode)
10625 {
10626 /* We only change the modes of scalar shifts. */
10627 int_mode = as_a <scalar_int_mode> (mode);
10628 int_result_mode = as_a <scalar_int_mode> (result_mode);
10629 shift_mode = try_widen_shift_mode (code, varop, count,
10630 int_result_mode, int_mode,
10631 outer_op, outer_const);
10632 }
10633
10634 scalar_int_mode shift_unit_mode
10635 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10636
10637 /* Handle cases where the count is greater than the size of the mode
10638 minus 1. For ASHIFT, use the size minus one as the count (this can
10639 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10640 take the count modulo the size. For other shifts, the result is
10641 zero.
10642
10643 Since these shifts are being produced by the compiler by combining
10644 multiple operations, each of which are defined, we know what the
10645 result is supposed to be. */
10646
10647 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10648 {
10649 if (code == ASHIFTRT)
10650 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10651 else if (code == ROTATE || code == ROTATERT)
10652 count %= GET_MODE_PRECISION (shift_unit_mode);
10653 else
10654 {
10655 /* We can't simply return zero because there may be an
10656 outer op. */
10657 varop = const0_rtx;
10658 count = 0;
10659 break;
10660 }
10661 }
10662
10663 /* If we discovered we had to complement VAROP, leave. Making a NOT
10664 here would cause an infinite loop. */
10665 if (complement_p)
10666 break;
10667
10668 if (shift_mode == shift_unit_mode)
10669 {
10670 /* An arithmetic right shift of a quantity known to be -1 or 0
10671 is a no-op. */
10672 if (code == ASHIFTRT
10673 && (num_sign_bit_copies (varop, shift_unit_mode)
10674 == GET_MODE_PRECISION (shift_unit_mode)))
10675 {
10676 count = 0;
10677 break;
10678 }
10679
10680 /* If we are doing an arithmetic right shift and discarding all but
10681 the sign bit copies, this is equivalent to doing a shift by the
10682 bitsize minus one. Convert it into that shift because it will
10683 often allow other simplifications. */
10684
10685 if (code == ASHIFTRT
10686 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10687 >= GET_MODE_PRECISION (shift_unit_mode)))
10688 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10689
10690 /* We simplify the tests below and elsewhere by converting
10691 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10692 `make_compound_operation' will convert it to an ASHIFTRT for
10693 those machines (such as VAX) that don't have an LSHIFTRT. */
10694 if (code == ASHIFTRT
10695 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10696 && val_signbit_known_clear_p (shift_unit_mode,
10697 nonzero_bits (varop,
10698 shift_unit_mode)))
10699 code = LSHIFTRT;
10700
10701 if (((code == LSHIFTRT
10702 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10703 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10704 || (code == ASHIFT
10705 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10706 && !((nonzero_bits (varop, shift_unit_mode) << count)
10707 & GET_MODE_MASK (shift_unit_mode))))
10708 && !side_effects_p (varop))
10709 varop = const0_rtx;
10710 }
10711
10712 switch (GET_CODE (varop))
10713 {
10714 case SIGN_EXTEND:
10715 case ZERO_EXTEND:
10716 case SIGN_EXTRACT:
10717 case ZERO_EXTRACT:
10718 new_rtx = expand_compound_operation (varop);
10719 if (new_rtx != varop)
10720 {
10721 varop = new_rtx;
10722 continue;
10723 }
10724 break;
10725
10726 case MEM:
10727 /* The following rules apply only to scalars. */
10728 if (shift_mode != shift_unit_mode)
10729 break;
10730 int_mode = as_a <scalar_int_mode> (mode);
10731
10732 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10733 minus the width of a smaller mode, we can do this with a
10734 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10735 if ((code == ASHIFTRT || code == LSHIFTRT)
10736 && ! mode_dependent_address_p (XEXP (varop, 0),
10737 MEM_ADDR_SPACE (varop))
10738 && ! MEM_VOLATILE_P (varop)
10739 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10740 .exists (&tmode)))
10741 {
10742 new_rtx = adjust_address_nv (varop, tmode,
10743 BYTES_BIG_ENDIAN ? 0
10744 : count / BITS_PER_UNIT);
10745
10746 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10747 : ZERO_EXTEND, int_mode, new_rtx);
10748 count = 0;
10749 continue;
10750 }
10751 break;
10752
10753 case SUBREG:
10754 /* The following rules apply only to scalars. */
10755 if (shift_mode != shift_unit_mode)
10756 break;
10757 int_mode = as_a <scalar_int_mode> (mode);
10758 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10759
10760 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10761 the same number of words as what we've seen so far. Then store
10762 the widest mode in MODE. */
10763 if (subreg_lowpart_p (varop)
10764 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10765 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10766 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10767 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10768 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10769 {
10770 varop = SUBREG_REG (varop);
10771 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10772 mode = inner_mode;
10773 continue;
10774 }
10775 break;
10776
10777 case MULT:
10778 /* Some machines use MULT instead of ASHIFT because MULT
10779 is cheaper. But it is still better on those machines to
10780 merge two shifts into one. */
10781 if (CONST_INT_P (XEXP (varop, 1))
10782 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10783 {
10784 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10785 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10786 XEXP (varop, 0), log2_rtx);
10787 continue;
10788 }
10789 break;
10790
10791 case UDIV:
10792 /* Similar, for when divides are cheaper. */
10793 if (CONST_INT_P (XEXP (varop, 1))
10794 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10795 {
10796 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10797 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10798 XEXP (varop, 0), log2_rtx);
10799 continue;
10800 }
10801 break;
10802
10803 case ASHIFTRT:
10804 /* If we are extracting just the sign bit of an arithmetic
10805 right shift, that shift is not needed. However, the sign
10806 bit of a wider mode may be different from what would be
10807 interpreted as the sign bit in a narrower mode, so, if
10808 the result is narrower, don't discard the shift. */
10809 if (code == LSHIFTRT
10810 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10811 && (GET_MODE_UNIT_BITSIZE (result_mode)
10812 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10813 {
10814 varop = XEXP (varop, 0);
10815 continue;
10816 }
10817
10818 /* fall through */
10819
10820 case LSHIFTRT:
10821 case ASHIFT:
10822 case ROTATE:
10823 /* The following rules apply only to scalars. */
10824 if (shift_mode != shift_unit_mode)
10825 break;
10826 int_mode = as_a <scalar_int_mode> (mode);
10827 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10828 int_result_mode = as_a <scalar_int_mode> (result_mode);
10829
10830 /* Here we have two nested shifts. The result is usually the
10831 AND of a new shift with a mask. We compute the result below. */
10832 if (CONST_INT_P (XEXP (varop, 1))
10833 && INTVAL (XEXP (varop, 1)) >= 0
10834 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10835 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10836 && HWI_COMPUTABLE_MODE_P (int_mode))
10837 {
10838 enum rtx_code first_code = GET_CODE (varop);
10839 unsigned int first_count = INTVAL (XEXP (varop, 1));
10840 unsigned HOST_WIDE_INT mask;
10841 rtx mask_rtx;
10842
10843 /* We have one common special case. We can't do any merging if
10844 the inner code is an ASHIFTRT of a smaller mode. However, if
10845 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10846 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10847 we can convert it to
10848 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10849 This simplifies certain SIGN_EXTEND operations. */
10850 if (code == ASHIFT && first_code == ASHIFTRT
10851 && count == (GET_MODE_PRECISION (int_result_mode)
10852 - GET_MODE_PRECISION (int_varop_mode)))
10853 {
10854 /* C3 has the low-order C1 bits zero. */
10855
10856 mask = GET_MODE_MASK (int_mode)
10857 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10858
10859 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10860 XEXP (varop, 0), mask);
10861 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10862 int_result_mode, varop, count);
10863 count = first_count;
10864 code = ASHIFTRT;
10865 continue;
10866 }
10867
10868 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10869 than C1 high-order bits equal to the sign bit, we can convert
10870 this to either an ASHIFT or an ASHIFTRT depending on the
10871 two counts.
10872
10873 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10874
10875 if (code == ASHIFTRT && first_code == ASHIFT
10876 && int_varop_mode == shift_unit_mode
10877 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10878 > first_count))
10879 {
10880 varop = XEXP (varop, 0);
10881 count -= first_count;
10882 if (count < 0)
10883 {
10884 count = -count;
10885 code = ASHIFT;
10886 }
10887
10888 continue;
10889 }
10890
10891 /* There are some cases we can't do. If CODE is ASHIFTRT,
10892 we can only do this if FIRST_CODE is also ASHIFTRT.
10893
10894 We can't do the case when CODE is ROTATE and FIRST_CODE is
10895 ASHIFTRT.
10896
10897 If the mode of this shift is not the mode of the outer shift,
10898 we can't do this if either shift is a right shift or ROTATE.
10899
10900 Finally, we can't do any of these if the mode is too wide
10901 unless the codes are the same.
10902
10903 Handle the case where the shift codes are the same
10904 first. */
10905
10906 if (code == first_code)
10907 {
10908 if (int_varop_mode != int_result_mode
10909 && (code == ASHIFTRT || code == LSHIFTRT
10910 || code == ROTATE))
10911 break;
10912
10913 count += first_count;
10914 varop = XEXP (varop, 0);
10915 continue;
10916 }
10917
10918 if (code == ASHIFTRT
10919 || (code == ROTATE && first_code == ASHIFTRT)
10920 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10921 || (int_varop_mode != int_result_mode
10922 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10923 || first_code == ROTATE
10924 || code == ROTATE)))
10925 break;
10926
10927 /* To compute the mask to apply after the shift, shift the
10928 nonzero bits of the inner shift the same way the
10929 outer shift will. */
10930
10931 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10932 int_result_mode);
10933 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10934 mask_rtx
10935 = simplify_const_binary_operation (code, int_result_mode,
10936 mask_rtx, count_rtx);
10937
10938 /* Give up if we can't compute an outer operation to use. */
10939 if (mask_rtx == 0
10940 || !CONST_INT_P (mask_rtx)
10941 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10942 INTVAL (mask_rtx),
10943 int_result_mode, &complement_p))
10944 break;
10945
10946 /* If the shifts are in the same direction, we add the
10947 counts. Otherwise, we subtract them. */
10948 if ((code == ASHIFTRT || code == LSHIFTRT)
10949 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10950 count += first_count;
10951 else
10952 count -= first_count;
10953
10954 /* If COUNT is positive, the new shift is usually CODE,
10955 except for the two exceptions below, in which case it is
10956 FIRST_CODE. If the count is negative, FIRST_CODE should
10957 always be used */
10958 if (count > 0
10959 && ((first_code == ROTATE && code == ASHIFT)
10960 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10961 code = first_code;
10962 else if (count < 0)
10963 code = first_code, count = -count;
10964
10965 varop = XEXP (varop, 0);
10966 continue;
10967 }
10968
10969 /* If we have (A << B << C) for any shift, we can convert this to
10970 (A << C << B). This wins if A is a constant. Only try this if
10971 B is not a constant. */
10972
10973 else if (GET_CODE (varop) == code
10974 && CONST_INT_P (XEXP (varop, 0))
10975 && !CONST_INT_P (XEXP (varop, 1)))
10976 {
10977 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10978 sure the result will be masked. See PR70222. */
10979 if (code == LSHIFTRT
10980 && int_mode != int_result_mode
10981 && !merge_outer_ops (&outer_op, &outer_const, AND,
10982 GET_MODE_MASK (int_result_mode)
10983 >> orig_count, int_result_mode,
10984 &complement_p))
10985 break;
10986 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10987 up outer sign extension (often left and right shift) is
10988 hardly more efficient than the original. See PR70429.
10989 Similarly punt for rotates with different modes.
10990 See PR97386. */
10991 if ((code == ASHIFTRT || code == ROTATE)
10992 && int_mode != int_result_mode)
10993 break;
10994
10995 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10996 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10997 XEXP (varop, 0),
10998 count_rtx);
10999 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
11000 count = 0;
11001 continue;
11002 }
11003 break;
11004
11005 case NOT:
11006 /* The following rules apply only to scalars. */
11007 if (shift_mode != shift_unit_mode)
11008 break;
11009
11010 /* Make this fit the case below. */
11011 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11012 continue;
11013
11014 case IOR:
11015 case AND:
11016 case XOR:
11017 /* The following rules apply only to scalars. */
11018 if (shift_mode != shift_unit_mode)
11019 break;
11020 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11021 int_result_mode = as_a <scalar_int_mode> (result_mode);
11022
11023 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11024 with C the size of VAROP - 1 and the shift is logical if
11025 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11026 we have an (le X 0) operation. If we have an arithmetic shift
11027 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11028 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11029
11030 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11031 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11032 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11033 && (code == LSHIFTRT || code == ASHIFTRT)
11034 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11035 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11036 {
11037 count = 0;
11038 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11039 const0_rtx);
11040
11041 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11042 varop = gen_rtx_NEG (int_varop_mode, varop);
11043
11044 continue;
11045 }
11046
11047 /* If we have (shift (logical)), move the logical to the outside
11048 to allow it to possibly combine with another logical and the
11049 shift to combine with another shift. This also canonicalizes to
11050 what a ZERO_EXTRACT looks like. Also, some machines have
11051 (and (shift)) insns. */
11052
11053 if (CONST_INT_P (XEXP (varop, 1))
11054 /* We can't do this if we have (ashiftrt (xor)) and the
11055 constant has its sign bit set in shift_unit_mode with
11056 shift_unit_mode wider than result_mode. */
11057 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11058 && int_result_mode != shift_unit_mode
11059 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11060 shift_unit_mode) < 0)
11061 && (new_rtx = simplify_const_binary_operation
11062 (code, int_result_mode,
11063 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11064 gen_int_shift_amount (int_result_mode, count))) != 0
11065 && CONST_INT_P (new_rtx)
11066 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11067 INTVAL (new_rtx), int_result_mode,
11068 &complement_p))
11069 {
11070 varop = XEXP (varop, 0);
11071 continue;
11072 }
11073
11074 /* If we can't do that, try to simplify the shift in each arm of the
11075 logical expression, make a new logical expression, and apply
11076 the inverse distributive law. This also can't be done for
11077 (ashiftrt (xor)) where we've widened the shift and the constant
11078 changes the sign bit. */
11079 if (CONST_INT_P (XEXP (varop, 1))
11080 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11081 && int_result_mode != shift_unit_mode
11082 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11083 shift_unit_mode) < 0))
11084 {
11085 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11086 XEXP (varop, 0), count);
11087 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11088 XEXP (varop, 1), count);
11089
11090 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11091 lhs, rhs);
11092 varop = apply_distributive_law (varop);
11093
11094 count = 0;
11095 continue;
11096 }
11097 break;
11098
11099 case EQ:
11100 /* The following rules apply only to scalars. */
11101 if (shift_mode != shift_unit_mode)
11102 break;
11103 int_result_mode = as_a <scalar_int_mode> (result_mode);
11104
11105 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11106 says that the sign bit can be tested, FOO has mode MODE, C is
11107 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11108 that may be nonzero. */
11109 if (code == LSHIFTRT
11110 && XEXP (varop, 1) == const0_rtx
11111 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11112 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11113 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11114 && STORE_FLAG_VALUE == -1
11115 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11116 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11117 int_result_mode, &complement_p))
11118 {
11119 varop = XEXP (varop, 0);
11120 count = 0;
11121 continue;
11122 }
11123 break;
11124
11125 case NEG:
11126 /* The following rules apply only to scalars. */
11127 if (shift_mode != shift_unit_mode)
11128 break;
11129 int_result_mode = as_a <scalar_int_mode> (result_mode);
11130
11131 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11132 than the number of bits in the mode is equivalent to A. */
11133 if (code == LSHIFTRT
11134 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11135 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11136 {
11137 varop = XEXP (varop, 0);
11138 count = 0;
11139 continue;
11140 }
11141
11142 /* NEG commutes with ASHIFT since it is multiplication. Move the
11143 NEG outside to allow shifts to combine. */
11144 if (code == ASHIFT
11145 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11146 int_result_mode, &complement_p))
11147 {
11148 varop = XEXP (varop, 0);
11149 continue;
11150 }
11151 break;
11152
11153 case PLUS:
11154 /* The following rules apply only to scalars. */
11155 if (shift_mode != shift_unit_mode)
11156 break;
11157 int_result_mode = as_a <scalar_int_mode> (result_mode);
11158
11159 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11160 is one less than the number of bits in the mode is
11161 equivalent to (xor A 1). */
11162 if (code == LSHIFTRT
11163 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11164 && XEXP (varop, 1) == constm1_rtx
11165 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11166 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11167 int_result_mode, &complement_p))
11168 {
11169 count = 0;
11170 varop = XEXP (varop, 0);
11171 continue;
11172 }
11173
11174 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11175 that might be nonzero in BAR are those being shifted out and those
11176 bits are known zero in FOO, we can replace the PLUS with FOO.
11177 Similarly in the other operand order. This code occurs when
11178 we are computing the size of a variable-size array. */
11179
11180 if ((code == ASHIFTRT || code == LSHIFTRT)
11181 && count < HOST_BITS_PER_WIDE_INT
11182 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11183 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11184 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11185 {
11186 varop = XEXP (varop, 0);
11187 continue;
11188 }
11189 else if ((code == ASHIFTRT || code == LSHIFTRT)
11190 && count < HOST_BITS_PER_WIDE_INT
11191 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11192 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11193 >> count) == 0
11194 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11195 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11196 {
11197 varop = XEXP (varop, 1);
11198 continue;
11199 }
11200
11201 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11202 if (code == ASHIFT
11203 && CONST_INT_P (XEXP (varop, 1))
11204 && (new_rtx = simplify_const_binary_operation
11205 (ASHIFT, int_result_mode,
11206 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11207 gen_int_shift_amount (int_result_mode, count))) != 0
11208 && CONST_INT_P (new_rtx)
11209 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11210 INTVAL (new_rtx), int_result_mode,
11211 &complement_p))
11212 {
11213 varop = XEXP (varop, 0);
11214 continue;
11215 }
11216
11217 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11218 signbit', and attempt to change the PLUS to an XOR and move it to
11219 the outer operation as is done above in the AND/IOR/XOR case
11220 leg for shift(logical). See details in logical handling above
11221 for reasoning in doing so. */
11222 if (code == LSHIFTRT
11223 && CONST_INT_P (XEXP (varop, 1))
11224 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11225 && (new_rtx = simplify_const_binary_operation
11226 (code, int_result_mode,
11227 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11228 gen_int_shift_amount (int_result_mode, count))) != 0
11229 && CONST_INT_P (new_rtx)
11230 && merge_outer_ops (&outer_op, &outer_const, XOR,
11231 INTVAL (new_rtx), int_result_mode,
11232 &complement_p))
11233 {
11234 varop = XEXP (varop, 0);
11235 continue;
11236 }
11237
11238 break;
11239
11240 case MINUS:
11241 /* The following rules apply only to scalars. */
11242 if (shift_mode != shift_unit_mode)
11243 break;
11244 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11245
11246 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11247 with C the size of VAROP - 1 and the shift is logical if
11248 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11249 we have a (gt X 0) operation. If the shift is arithmetic with
11250 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11251 we have a (neg (gt X 0)) operation. */
11252
11253 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11254 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11255 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11256 && (code == LSHIFTRT || code == ASHIFTRT)
11257 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11258 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11259 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11260 {
11261 count = 0;
11262 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11263 const0_rtx);
11264
11265 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11266 varop = gen_rtx_NEG (int_varop_mode, varop);
11267
11268 continue;
11269 }
11270 break;
11271
11272 case TRUNCATE:
11273 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11274 if the truncate does not affect the value. */
11275 if (code == LSHIFTRT
11276 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11277 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11278 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11279 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11280 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11281 {
11282 rtx varop_inner = XEXP (varop, 0);
11283 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11284 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11285 new_count);
11286 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11287 XEXP (varop_inner, 0),
11288 new_count_rtx);
11289 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11290 count = 0;
11291 continue;
11292 }
11293 break;
11294
11295 default:
11296 break;
11297 }
11298
11299 break;
11300 }
11301
11302 shift_mode = result_mode;
11303 if (shift_mode != mode)
11304 {
11305 /* We only change the modes of scalar shifts. */
11306 int_mode = as_a <scalar_int_mode> (mode);
11307 int_result_mode = as_a <scalar_int_mode> (result_mode);
11308 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11309 int_mode, outer_op, outer_const);
11310 }
11311
11312 /* We have now finished analyzing the shift. The result should be
11313 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11314 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11315 to the result of the shift. OUTER_CONST is the relevant constant,
11316 but we must turn off all bits turned off in the shift. */
11317
11318 if (outer_op == UNKNOWN
11319 && orig_code == code && orig_count == count
11320 && varop == orig_varop
11321 && shift_mode == GET_MODE (varop))
11322 return NULL_RTX;
11323
11324 /* Make a SUBREG if necessary. If we can't make it, fail. */
11325 varop = gen_lowpart (shift_mode, varop);
11326 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11327 return NULL_RTX;
11328
11329 /* If we have an outer operation and we just made a shift, it is
11330 possible that we could have simplified the shift were it not
11331 for the outer operation. So try to do the simplification
11332 recursively. */
11333
11334 if (outer_op != UNKNOWN)
11335 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11336 else
11337 x = NULL_RTX;
11338
11339 if (x == NULL_RTX)
11340 x = simplify_gen_binary (code, shift_mode, varop,
11341 gen_int_shift_amount (shift_mode, count));
11342
11343 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11344 turn off all the bits that the shift would have turned off. */
11345 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11346 /* We only change the modes of scalar shifts. */
11347 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11348 x, GET_MODE_MASK (result_mode) >> orig_count);
11349
11350 /* Do the remainder of the processing in RESULT_MODE. */
11351 x = gen_lowpart_or_truncate (result_mode, x);
11352
11353 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11354 operation. */
11355 if (complement_p)
11356 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11357
11358 if (outer_op != UNKNOWN)
11359 {
11360 int_result_mode = as_a <scalar_int_mode> (result_mode);
11361
11362 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11363 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11364 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11365
11366 if (outer_op == AND)
11367 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11368 else if (outer_op == SET)
11369 {
11370 /* This means that we have determined that the result is
11371 equivalent to a constant. This should be rare. */
11372 if (!side_effects_p (x))
11373 x = GEN_INT (outer_const);
11374 }
11375 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11376 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11377 else
11378 x = simplify_gen_binary (outer_op, int_result_mode, x,
11379 GEN_INT (outer_const));
11380 }
11381
11382 return x;
11383 }
11384
11385 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11386 The result of the shift is RESULT_MODE. If we cannot simplify it,
11387 return X or, if it is NULL, synthesize the expression with
11388 simplify_gen_binary. Otherwise, return a simplified value.
11389
11390 The shift is normally computed in the widest mode we find in VAROP, as
11391 long as it isn't a different number of words than RESULT_MODE. Exceptions
11392 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11393
11394 static rtx
11395 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11396 rtx varop, int count)
11397 {
11398 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11399 if (tem)
11400 return tem;
11401
11402 if (!x)
11403 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11404 gen_int_shift_amount (GET_MODE (varop), count));
11405 if (GET_MODE (x) != result_mode)
11406 x = gen_lowpart (result_mode, x);
11407 return x;
11408 }
11409
11410 \f
11411 /* A subroutine of recog_for_combine. See there for arguments and
11412 return value. */
11413
11414 static int
11415 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11416 {
11417 rtx pat = *pnewpat;
11418 rtx pat_without_clobbers;
11419 int insn_code_number;
11420 int num_clobbers_to_add = 0;
11421 int i;
11422 rtx notes = NULL_RTX;
11423 rtx old_notes, old_pat;
11424 int old_icode;
11425
11426 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11427 we use to indicate that something didn't match. If we find such a
11428 thing, force rejection. */
11429 if (GET_CODE (pat) == PARALLEL)
11430 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11431 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11432 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11433 return -1;
11434
11435 old_pat = PATTERN (insn);
11436 old_notes = REG_NOTES (insn);
11437 PATTERN (insn) = pat;
11438 REG_NOTES (insn) = NULL_RTX;
11439
11440 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11441 if (dump_file && (dump_flags & TDF_DETAILS))
11442 {
11443 if (insn_code_number < 0)
11444 fputs ("Failed to match this instruction:\n", dump_file);
11445 else
11446 fputs ("Successfully matched this instruction:\n", dump_file);
11447 print_rtl_single (dump_file, pat);
11448 }
11449
11450 /* If it isn't, there is the possibility that we previously had an insn
11451 that clobbered some register as a side effect, but the combined
11452 insn doesn't need to do that. So try once more without the clobbers
11453 unless this represents an ASM insn. */
11454
11455 if (insn_code_number < 0 && ! check_asm_operands (pat)
11456 && GET_CODE (pat) == PARALLEL)
11457 {
11458 int pos;
11459
11460 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11461 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11462 {
11463 if (i != pos)
11464 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11465 pos++;
11466 }
11467
11468 SUBST_INT (XVECLEN (pat, 0), pos);
11469
11470 if (pos == 1)
11471 pat = XVECEXP (pat, 0, 0);
11472
11473 PATTERN (insn) = pat;
11474 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11475 if (dump_file && (dump_flags & TDF_DETAILS))
11476 {
11477 if (insn_code_number < 0)
11478 fputs ("Failed to match this instruction:\n", dump_file);
11479 else
11480 fputs ("Successfully matched this instruction:\n", dump_file);
11481 print_rtl_single (dump_file, pat);
11482 }
11483 }
11484
11485 pat_without_clobbers = pat;
11486
11487 PATTERN (insn) = old_pat;
11488 REG_NOTES (insn) = old_notes;
11489
11490 /* Recognize all noop sets, these will be killed by followup pass. */
11491 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11492 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11493
11494 /* If we had any clobbers to add, make a new pattern than contains
11495 them. Then check to make sure that all of them are dead. */
11496 if (num_clobbers_to_add)
11497 {
11498 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11499 rtvec_alloc (GET_CODE (pat) == PARALLEL
11500 ? (XVECLEN (pat, 0)
11501 + num_clobbers_to_add)
11502 : num_clobbers_to_add + 1));
11503
11504 if (GET_CODE (pat) == PARALLEL)
11505 for (i = 0; i < XVECLEN (pat, 0); i++)
11506 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11507 else
11508 XVECEXP (newpat, 0, 0) = pat;
11509
11510 add_clobbers (newpat, insn_code_number);
11511
11512 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11513 i < XVECLEN (newpat, 0); i++)
11514 {
11515 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11516 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11517 return -1;
11518 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11519 {
11520 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11521 notes = alloc_reg_note (REG_UNUSED,
11522 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11523 }
11524 }
11525 pat = newpat;
11526 }
11527
11528 if (insn_code_number >= 0
11529 && insn_code_number != NOOP_MOVE_INSN_CODE)
11530 {
11531 old_pat = PATTERN (insn);
11532 old_notes = REG_NOTES (insn);
11533 old_icode = INSN_CODE (insn);
11534 PATTERN (insn) = pat;
11535 REG_NOTES (insn) = notes;
11536 INSN_CODE (insn) = insn_code_number;
11537
11538 /* Allow targets to reject combined insn. */
11539 if (!targetm.legitimate_combined_insn (insn))
11540 {
11541 if (dump_file && (dump_flags & TDF_DETAILS))
11542 fputs ("Instruction not appropriate for target.",
11543 dump_file);
11544
11545 /* Callers expect recog_for_combine to strip
11546 clobbers from the pattern on failure. */
11547 pat = pat_without_clobbers;
11548 notes = NULL_RTX;
11549
11550 insn_code_number = -1;
11551 }
11552
11553 PATTERN (insn) = old_pat;
11554 REG_NOTES (insn) = old_notes;
11555 INSN_CODE (insn) = old_icode;
11556 }
11557
11558 *pnewpat = pat;
11559 *pnotes = notes;
11560
11561 return insn_code_number;
11562 }
11563
11564 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11565 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11566 Return whether anything was so changed. */
11567
11568 static bool
11569 change_zero_ext (rtx pat)
11570 {
11571 bool changed = false;
11572 rtx *src = &SET_SRC (pat);
11573
11574 subrtx_ptr_iterator::array_type array;
11575 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11576 {
11577 rtx x = **iter;
11578 scalar_int_mode mode, inner_mode;
11579 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11580 continue;
11581 int size;
11582
11583 if (GET_CODE (x) == ZERO_EXTRACT
11584 && CONST_INT_P (XEXP (x, 1))
11585 && CONST_INT_P (XEXP (x, 2))
11586 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11587 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11588 {
11589 size = INTVAL (XEXP (x, 1));
11590
11591 int start = INTVAL (XEXP (x, 2));
11592 if (BITS_BIG_ENDIAN)
11593 start = GET_MODE_PRECISION (inner_mode) - size - start;
11594
11595 if (start != 0)
11596 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11597 gen_int_shift_amount (inner_mode, start));
11598 else
11599 x = XEXP (x, 0);
11600
11601 if (mode != inner_mode)
11602 {
11603 if (REG_P (x) && HARD_REGISTER_P (x)
11604 && !can_change_dest_mode (x, 0, mode))
11605 continue;
11606
11607 x = gen_lowpart_SUBREG (mode, x);
11608 }
11609 }
11610 else if (GET_CODE (x) == ZERO_EXTEND
11611 && GET_CODE (XEXP (x, 0)) == SUBREG
11612 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11613 && !paradoxical_subreg_p (XEXP (x, 0))
11614 && subreg_lowpart_p (XEXP (x, 0)))
11615 {
11616 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11617 size = GET_MODE_PRECISION (inner_mode);
11618 x = SUBREG_REG (XEXP (x, 0));
11619 if (GET_MODE (x) != mode)
11620 {
11621 if (REG_P (x) && HARD_REGISTER_P (x)
11622 && !can_change_dest_mode (x, 0, mode))
11623 continue;
11624
11625 x = gen_lowpart_SUBREG (mode, x);
11626 }
11627 }
11628 else if (GET_CODE (x) == ZERO_EXTEND
11629 && REG_P (XEXP (x, 0))
11630 && HARD_REGISTER_P (XEXP (x, 0))
11631 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11632 {
11633 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11634 size = GET_MODE_PRECISION (inner_mode);
11635 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11636 }
11637 else
11638 continue;
11639
11640 if (!(GET_CODE (x) == LSHIFTRT
11641 && CONST_INT_P (XEXP (x, 1))
11642 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11643 {
11644 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11645 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11646 }
11647
11648 SUBST (**iter, x);
11649 changed = true;
11650 }
11651
11652 if (changed)
11653 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11654 maybe_swap_commutative_operands (**iter);
11655
11656 rtx *dst = &SET_DEST (pat);
11657 scalar_int_mode mode;
11658 if (GET_CODE (*dst) == ZERO_EXTRACT
11659 && REG_P (XEXP (*dst, 0))
11660 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11661 && CONST_INT_P (XEXP (*dst, 1))
11662 && CONST_INT_P (XEXP (*dst, 2)))
11663 {
11664 rtx reg = XEXP (*dst, 0);
11665 int width = INTVAL (XEXP (*dst, 1));
11666 int offset = INTVAL (XEXP (*dst, 2));
11667 int reg_width = GET_MODE_PRECISION (mode);
11668 if (BITS_BIG_ENDIAN)
11669 offset = reg_width - width - offset;
11670
11671 rtx x, y, z, w;
11672 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11673 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11674 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11675 if (offset)
11676 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11677 else
11678 y = SET_SRC (pat);
11679 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11680 w = gen_rtx_IOR (mode, x, z);
11681 SUBST (SET_DEST (pat), reg);
11682 SUBST (SET_SRC (pat), w);
11683
11684 changed = true;
11685 }
11686
11687 return changed;
11688 }
11689
11690 /* Like recog, but we receive the address of a pointer to a new pattern.
11691 We try to match the rtx that the pointer points to.
11692 If that fails, we may try to modify or replace the pattern,
11693 storing the replacement into the same pointer object.
11694
11695 Modifications include deletion or addition of CLOBBERs. If the
11696 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11697 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11698 (and undo if that fails).
11699
11700 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11701 the CLOBBERs are placed.
11702
11703 The value is the final insn code from the pattern ultimately matched,
11704 or -1. */
11705
11706 static int
11707 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11708 {
11709 rtx pat = *pnewpat;
11710 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11711 if (insn_code_number >= 0 || check_asm_operands (pat))
11712 return insn_code_number;
11713
11714 void *marker = get_undo_marker ();
11715 bool changed = false;
11716
11717 if (GET_CODE (pat) == SET)
11718 changed = change_zero_ext (pat);
11719 else if (GET_CODE (pat) == PARALLEL)
11720 {
11721 int i;
11722 for (i = 0; i < XVECLEN (pat, 0); i++)
11723 {
11724 rtx set = XVECEXP (pat, 0, i);
11725 if (GET_CODE (set) == SET)
11726 changed |= change_zero_ext (set);
11727 }
11728 }
11729
11730 if (changed)
11731 {
11732 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11733
11734 if (insn_code_number < 0)
11735 undo_to_marker (marker);
11736 }
11737
11738 return insn_code_number;
11739 }
11740 \f
11741 /* Like gen_lowpart_general but for use by combine. In combine it
11742 is not possible to create any new pseudoregs. However, it is
11743 safe to create invalid memory addresses, because combine will
11744 try to recognize them and all they will do is make the combine
11745 attempt fail.
11746
11747 If for some reason this cannot do its job, an rtx
11748 (clobber (const_int 0)) is returned.
11749 An insn containing that will not be recognized. */
11750
11751 static rtx
11752 gen_lowpart_for_combine (machine_mode omode, rtx x)
11753 {
11754 machine_mode imode = GET_MODE (x);
11755 rtx result;
11756
11757 if (omode == imode)
11758 return x;
11759
11760 /* We can only support MODE being wider than a word if X is a
11761 constant integer or has a mode the same size. */
11762 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11763 && ! (CONST_SCALAR_INT_P (x)
11764 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11765 goto fail;
11766
11767 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11768 won't know what to do. So we will strip off the SUBREG here and
11769 process normally. */
11770 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11771 {
11772 x = SUBREG_REG (x);
11773
11774 /* For use in case we fall down into the address adjustments
11775 further below, we need to adjust the known mode and size of
11776 x; imode and isize, since we just adjusted x. */
11777 imode = GET_MODE (x);
11778
11779 if (imode == omode)
11780 return x;
11781 }
11782
11783 result = gen_lowpart_common (omode, x);
11784
11785 if (result)
11786 return result;
11787
11788 if (MEM_P (x))
11789 {
11790 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11791 address. */
11792 if (MEM_VOLATILE_P (x)
11793 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11794 goto fail;
11795
11796 /* If we want to refer to something bigger than the original memref,
11797 generate a paradoxical subreg instead. That will force a reload
11798 of the original memref X. */
11799 if (paradoxical_subreg_p (omode, imode))
11800 return gen_rtx_SUBREG (omode, x, 0);
11801
11802 poly_int64 offset = byte_lowpart_offset (omode, imode);
11803 return adjust_address_nv (x, omode, offset);
11804 }
11805
11806 /* If X is a comparison operator, rewrite it in a new mode. This
11807 probably won't match, but may allow further simplifications. */
11808 else if (COMPARISON_P (x)
11809 && SCALAR_INT_MODE_P (imode)
11810 && SCALAR_INT_MODE_P (omode))
11811 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11812
11813 /* If we couldn't simplify X any other way, just enclose it in a
11814 SUBREG. Normally, this SUBREG won't match, but some patterns may
11815 include an explicit SUBREG or we may simplify it further in combine. */
11816 else
11817 {
11818 rtx res;
11819
11820 if (imode == VOIDmode)
11821 {
11822 imode = int_mode_for_mode (omode).require ();
11823 x = gen_lowpart_common (imode, x);
11824 if (x == NULL)
11825 goto fail;
11826 }
11827 res = lowpart_subreg (omode, x, imode);
11828 if (res)
11829 return res;
11830 }
11831
11832 fail:
11833 return gen_rtx_CLOBBER (omode, const0_rtx);
11834 }
11835 \f
11836 /* Try to simplify a comparison between OP0 and a constant OP1,
11837 where CODE is the comparison code that will be tested, into a
11838 (CODE OP0 const0_rtx) form.
11839
11840 The result is a possibly different comparison code to use.
11841 *POP1 may be updated. */
11842
11843 static enum rtx_code
11844 simplify_compare_const (enum rtx_code code, machine_mode mode,
11845 rtx op0, rtx *pop1)
11846 {
11847 scalar_int_mode int_mode;
11848 HOST_WIDE_INT const_op = INTVAL (*pop1);
11849
11850 /* Get the constant we are comparing against and turn off all bits
11851 not on in our mode. */
11852 if (mode != VOIDmode)
11853 const_op = trunc_int_for_mode (const_op, mode);
11854
11855 /* If we are comparing against a constant power of two and the value
11856 being compared can only have that single bit nonzero (e.g., it was
11857 `and'ed with that bit), we can replace this with a comparison
11858 with zero. */
11859 if (const_op
11860 && (code == EQ || code == NE || code == GE || code == GEU
11861 || code == LT || code == LTU)
11862 && is_a <scalar_int_mode> (mode, &int_mode)
11863 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11864 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11865 && (nonzero_bits (op0, int_mode)
11866 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11867 {
11868 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11869 const_op = 0;
11870 }
11871
11872 /* Similarly, if we are comparing a value known to be either -1 or
11873 0 with -1, change it to the opposite comparison against zero. */
11874 if (const_op == -1
11875 && (code == EQ || code == NE || code == GT || code == LE
11876 || code == GEU || code == LTU)
11877 && is_a <scalar_int_mode> (mode, &int_mode)
11878 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11879 {
11880 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11881 const_op = 0;
11882 }
11883
11884 /* Do some canonicalizations based on the comparison code. We prefer
11885 comparisons against zero and then prefer equality comparisons.
11886 If we can reduce the size of a constant, we will do that too. */
11887 switch (code)
11888 {
11889 case LT:
11890 /* < C is equivalent to <= (C - 1) */
11891 if (const_op > 0)
11892 {
11893 const_op -= 1;
11894 code = LE;
11895 /* ... fall through to LE case below. */
11896 gcc_fallthrough ();
11897 }
11898 else
11899 break;
11900
11901 case LE:
11902 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11903 if (const_op < 0)
11904 {
11905 const_op += 1;
11906 code = LT;
11907 }
11908
11909 /* If we are doing a <= 0 comparison on a value known to have
11910 a zero sign bit, we can replace this with == 0. */
11911 else if (const_op == 0
11912 && is_a <scalar_int_mode> (mode, &int_mode)
11913 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11914 && (nonzero_bits (op0, int_mode)
11915 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11916 == 0)
11917 code = EQ;
11918 break;
11919
11920 case GE:
11921 /* >= C is equivalent to > (C - 1). */
11922 if (const_op > 0)
11923 {
11924 const_op -= 1;
11925 code = GT;
11926 /* ... fall through to GT below. */
11927 gcc_fallthrough ();
11928 }
11929 else
11930 break;
11931
11932 case GT:
11933 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11934 if (const_op < 0)
11935 {
11936 const_op += 1;
11937 code = GE;
11938 }
11939
11940 /* If we are doing a > 0 comparison on a value known to have
11941 a zero sign bit, we can replace this with != 0. */
11942 else if (const_op == 0
11943 && is_a <scalar_int_mode> (mode, &int_mode)
11944 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11945 && (nonzero_bits (op0, int_mode)
11946 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11947 == 0)
11948 code = NE;
11949 break;
11950
11951 case LTU:
11952 /* < C is equivalent to <= (C - 1). */
11953 if (const_op > 0)
11954 {
11955 const_op -= 1;
11956 code = LEU;
11957 /* ... fall through ... */
11958 gcc_fallthrough ();
11959 }
11960 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11961 else if (is_a <scalar_int_mode> (mode, &int_mode)
11962 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11963 && ((unsigned HOST_WIDE_INT) const_op
11964 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11965 {
11966 const_op = 0;
11967 code = GE;
11968 break;
11969 }
11970 else
11971 break;
11972
11973 case LEU:
11974 /* unsigned <= 0 is equivalent to == 0 */
11975 if (const_op == 0)
11976 code = EQ;
11977 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11978 else if (is_a <scalar_int_mode> (mode, &int_mode)
11979 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11980 && ((unsigned HOST_WIDE_INT) const_op
11981 == ((HOST_WIDE_INT_1U
11982 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11983 {
11984 const_op = 0;
11985 code = GE;
11986 }
11987 break;
11988
11989 case GEU:
11990 /* >= C is equivalent to > (C - 1). */
11991 if (const_op > 1)
11992 {
11993 const_op -= 1;
11994 code = GTU;
11995 /* ... fall through ... */
11996 gcc_fallthrough ();
11997 }
11998
11999 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12000 else if (is_a <scalar_int_mode> (mode, &int_mode)
12001 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12002 && ((unsigned HOST_WIDE_INT) const_op
12003 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12004 {
12005 const_op = 0;
12006 code = LT;
12007 break;
12008 }
12009 else
12010 break;
12011
12012 case GTU:
12013 /* unsigned > 0 is equivalent to != 0 */
12014 if (const_op == 0)
12015 code = NE;
12016 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12017 else if (is_a <scalar_int_mode> (mode, &int_mode)
12018 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12019 && ((unsigned HOST_WIDE_INT) const_op
12020 == (HOST_WIDE_INT_1U
12021 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12022 {
12023 const_op = 0;
12024 code = LT;
12025 }
12026 break;
12027
12028 default:
12029 break;
12030 }
12031
12032 *pop1 = GEN_INT (const_op);
12033 return code;
12034 }
12035 \f
12036 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12037 comparison code that will be tested.
12038
12039 The result is a possibly different comparison code to use. *POP0 and
12040 *POP1 may be updated.
12041
12042 It is possible that we might detect that a comparison is either always
12043 true or always false. However, we do not perform general constant
12044 folding in combine, so this knowledge isn't useful. Such tautologies
12045 should have been detected earlier. Hence we ignore all such cases. */
12046
12047 static enum rtx_code
12048 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12049 {
12050 rtx op0 = *pop0;
12051 rtx op1 = *pop1;
12052 rtx tem, tem1;
12053 int i;
12054 scalar_int_mode mode, inner_mode, tmode;
12055 opt_scalar_int_mode tmode_iter;
12056
12057 /* Try a few ways of applying the same transformation to both operands. */
12058 while (1)
12059 {
12060 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12061 so check specially. */
12062 if (!WORD_REGISTER_OPERATIONS
12063 && code != GTU && code != GEU && code != LTU && code != LEU
12064 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12065 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12066 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12067 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12068 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12069 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12070 && (is_a <scalar_int_mode>
12071 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12072 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12073 && CONST_INT_P (XEXP (op0, 1))
12074 && XEXP (op0, 1) == XEXP (op1, 1)
12075 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12076 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12077 && (INTVAL (XEXP (op0, 1))
12078 == (GET_MODE_PRECISION (mode)
12079 - GET_MODE_PRECISION (inner_mode))))
12080 {
12081 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12082 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12083 }
12084
12085 /* If both operands are the same constant shift, see if we can ignore the
12086 shift. We can if the shift is a rotate or if the bits shifted out of
12087 this shift are known to be zero for both inputs and if the type of
12088 comparison is compatible with the shift. */
12089 if (GET_CODE (op0) == GET_CODE (op1)
12090 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12091 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12092 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12093 && (code != GT && code != LT && code != GE && code != LE))
12094 || (GET_CODE (op0) == ASHIFTRT
12095 && (code != GTU && code != LTU
12096 && code != GEU && code != LEU)))
12097 && CONST_INT_P (XEXP (op0, 1))
12098 && INTVAL (XEXP (op0, 1)) >= 0
12099 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12100 && XEXP (op0, 1) == XEXP (op1, 1))
12101 {
12102 machine_mode mode = GET_MODE (op0);
12103 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12104 int shift_count = INTVAL (XEXP (op0, 1));
12105
12106 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12107 mask &= (mask >> shift_count) << shift_count;
12108 else if (GET_CODE (op0) == ASHIFT)
12109 mask = (mask & (mask << shift_count)) >> shift_count;
12110
12111 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12112 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12113 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12114 else
12115 break;
12116 }
12117
12118 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12119 SUBREGs are of the same mode, and, in both cases, the AND would
12120 be redundant if the comparison was done in the narrower mode,
12121 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12122 and the operand's possibly nonzero bits are 0xffffff01; in that case
12123 if we only care about QImode, we don't need the AND). This case
12124 occurs if the output mode of an scc insn is not SImode and
12125 STORE_FLAG_VALUE == 1 (e.g., the 386).
12126
12127 Similarly, check for a case where the AND's are ZERO_EXTEND
12128 operations from some narrower mode even though a SUBREG is not
12129 present. */
12130
12131 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12132 && CONST_INT_P (XEXP (op0, 1))
12133 && CONST_INT_P (XEXP (op1, 1)))
12134 {
12135 rtx inner_op0 = XEXP (op0, 0);
12136 rtx inner_op1 = XEXP (op1, 0);
12137 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12138 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12139 int changed = 0;
12140
12141 if (paradoxical_subreg_p (inner_op0)
12142 && GET_CODE (inner_op1) == SUBREG
12143 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12144 && (GET_MODE (SUBREG_REG (inner_op0))
12145 == GET_MODE (SUBREG_REG (inner_op1)))
12146 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12147 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12148 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12149 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12150 {
12151 op0 = SUBREG_REG (inner_op0);
12152 op1 = SUBREG_REG (inner_op1);
12153
12154 /* The resulting comparison is always unsigned since we masked
12155 off the original sign bit. */
12156 code = unsigned_condition (code);
12157
12158 changed = 1;
12159 }
12160
12161 else if (c0 == c1)
12162 FOR_EACH_MODE_UNTIL (tmode,
12163 as_a <scalar_int_mode> (GET_MODE (op0)))
12164 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12165 {
12166 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12167 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12168 code = unsigned_condition (code);
12169 changed = 1;
12170 break;
12171 }
12172
12173 if (! changed)
12174 break;
12175 }
12176
12177 /* If both operands are NOT, we can strip off the outer operation
12178 and adjust the comparison code for swapped operands; similarly for
12179 NEG, except that this must be an equality comparison. */
12180 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12181 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12182 && (code == EQ || code == NE)))
12183 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12184
12185 else
12186 break;
12187 }
12188
12189 /* If the first operand is a constant, swap the operands and adjust the
12190 comparison code appropriately, but don't do this if the second operand
12191 is already a constant integer. */
12192 if (swap_commutative_operands_p (op0, op1))
12193 {
12194 std::swap (op0, op1);
12195 code = swap_condition (code);
12196 }
12197
12198 /* We now enter a loop during which we will try to simplify the comparison.
12199 For the most part, we only are concerned with comparisons with zero,
12200 but some things may really be comparisons with zero but not start
12201 out looking that way. */
12202
12203 while (CONST_INT_P (op1))
12204 {
12205 machine_mode raw_mode = GET_MODE (op0);
12206 scalar_int_mode int_mode;
12207 int equality_comparison_p;
12208 int sign_bit_comparison_p;
12209 int unsigned_comparison_p;
12210 HOST_WIDE_INT const_op;
12211
12212 /* We only want to handle integral modes. This catches VOIDmode,
12213 CCmode, and the floating-point modes. An exception is that we
12214 can handle VOIDmode if OP0 is a COMPARE or a comparison
12215 operation. */
12216
12217 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12218 && ! (raw_mode == VOIDmode
12219 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12220 break;
12221
12222 /* Try to simplify the compare to constant, possibly changing the
12223 comparison op, and/or changing op1 to zero. */
12224 code = simplify_compare_const (code, raw_mode, op0, &op1);
12225 const_op = INTVAL (op1);
12226
12227 /* Compute some predicates to simplify code below. */
12228
12229 equality_comparison_p = (code == EQ || code == NE);
12230 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12231 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12232 || code == GEU);
12233
12234 /* If this is a sign bit comparison and we can do arithmetic in
12235 MODE, say that we will only be needing the sign bit of OP0. */
12236 if (sign_bit_comparison_p
12237 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12238 && HWI_COMPUTABLE_MODE_P (int_mode))
12239 op0 = force_to_mode (op0, int_mode,
12240 HOST_WIDE_INT_1U
12241 << (GET_MODE_PRECISION (int_mode) - 1),
12242 0);
12243
12244 if (COMPARISON_P (op0))
12245 {
12246 /* We can't do anything if OP0 is a condition code value, rather
12247 than an actual data value. */
12248 if (const_op != 0
12249 || CC0_P (XEXP (op0, 0))
12250 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12251 break;
12252
12253 /* Get the two operands being compared. */
12254 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12255 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12256 else
12257 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12258
12259 /* Check for the cases where we simply want the result of the
12260 earlier test or the opposite of that result. */
12261 if (code == NE || code == EQ
12262 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12263 && (code == LT || code == GE)))
12264 {
12265 enum rtx_code new_code;
12266 if (code == LT || code == NE)
12267 new_code = GET_CODE (op0);
12268 else
12269 new_code = reversed_comparison_code (op0, NULL);
12270
12271 if (new_code != UNKNOWN)
12272 {
12273 code = new_code;
12274 op0 = tem;
12275 op1 = tem1;
12276 continue;
12277 }
12278 }
12279 break;
12280 }
12281
12282 if (raw_mode == VOIDmode)
12283 break;
12284 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12285
12286 /* Now try cases based on the opcode of OP0. If none of the cases
12287 does a "continue", we exit this loop immediately after the
12288 switch. */
12289
12290 unsigned int mode_width = GET_MODE_PRECISION (mode);
12291 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12292 switch (GET_CODE (op0))
12293 {
12294 case ZERO_EXTRACT:
12295 /* If we are extracting a single bit from a variable position in
12296 a constant that has only a single bit set and are comparing it
12297 with zero, we can convert this into an equality comparison
12298 between the position and the location of the single bit. */
12299 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12300 have already reduced the shift count modulo the word size. */
12301 if (!SHIFT_COUNT_TRUNCATED
12302 && CONST_INT_P (XEXP (op0, 0))
12303 && XEXP (op0, 1) == const1_rtx
12304 && equality_comparison_p && const_op == 0
12305 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12306 {
12307 if (BITS_BIG_ENDIAN)
12308 i = BITS_PER_WORD - 1 - i;
12309
12310 op0 = XEXP (op0, 2);
12311 op1 = GEN_INT (i);
12312 const_op = i;
12313
12314 /* Result is nonzero iff shift count is equal to I. */
12315 code = reverse_condition (code);
12316 continue;
12317 }
12318
12319 /* fall through */
12320
12321 case SIGN_EXTRACT:
12322 tem = expand_compound_operation (op0);
12323 if (tem != op0)
12324 {
12325 op0 = tem;
12326 continue;
12327 }
12328 break;
12329
12330 case NOT:
12331 /* If testing for equality, we can take the NOT of the constant. */
12332 if (equality_comparison_p
12333 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12334 {
12335 op0 = XEXP (op0, 0);
12336 op1 = tem;
12337 continue;
12338 }
12339
12340 /* If just looking at the sign bit, reverse the sense of the
12341 comparison. */
12342 if (sign_bit_comparison_p)
12343 {
12344 op0 = XEXP (op0, 0);
12345 code = (code == GE ? LT : GE);
12346 continue;
12347 }
12348 break;
12349
12350 case NEG:
12351 /* If testing for equality, we can take the NEG of the constant. */
12352 if (equality_comparison_p
12353 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12354 {
12355 op0 = XEXP (op0, 0);
12356 op1 = tem;
12357 continue;
12358 }
12359
12360 /* The remaining cases only apply to comparisons with zero. */
12361 if (const_op != 0)
12362 break;
12363
12364 /* When X is ABS or is known positive,
12365 (neg X) is < 0 if and only if X != 0. */
12366
12367 if (sign_bit_comparison_p
12368 && (GET_CODE (XEXP (op0, 0)) == ABS
12369 || (mode_width <= HOST_BITS_PER_WIDE_INT
12370 && (nonzero_bits (XEXP (op0, 0), mode)
12371 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12372 == 0)))
12373 {
12374 op0 = XEXP (op0, 0);
12375 code = (code == LT ? NE : EQ);
12376 continue;
12377 }
12378
12379 /* If we have NEG of something whose two high-order bits are the
12380 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12381 if (num_sign_bit_copies (op0, mode) >= 2)
12382 {
12383 op0 = XEXP (op0, 0);
12384 code = swap_condition (code);
12385 continue;
12386 }
12387 break;
12388
12389 case ROTATE:
12390 /* If we are testing equality and our count is a constant, we
12391 can perform the inverse operation on our RHS. */
12392 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12393 && (tem = simplify_binary_operation (ROTATERT, mode,
12394 op1, XEXP (op0, 1))) != 0)
12395 {
12396 op0 = XEXP (op0, 0);
12397 op1 = tem;
12398 continue;
12399 }
12400
12401 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12402 a particular bit. Convert it to an AND of a constant of that
12403 bit. This will be converted into a ZERO_EXTRACT. */
12404 if (const_op == 0 && sign_bit_comparison_p
12405 && CONST_INT_P (XEXP (op0, 1))
12406 && mode_width <= HOST_BITS_PER_WIDE_INT
12407 && UINTVAL (XEXP (op0, 1)) < mode_width)
12408 {
12409 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12410 (HOST_WIDE_INT_1U
12411 << (mode_width - 1
12412 - INTVAL (XEXP (op0, 1)))));
12413 code = (code == LT ? NE : EQ);
12414 continue;
12415 }
12416
12417 /* Fall through. */
12418
12419 case ABS:
12420 /* ABS is ignorable inside an equality comparison with zero. */
12421 if (const_op == 0 && equality_comparison_p)
12422 {
12423 op0 = XEXP (op0, 0);
12424 continue;
12425 }
12426 break;
12427
12428 case SIGN_EXTEND:
12429 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12430 (compare FOO CONST) if CONST fits in FOO's mode and we
12431 are either testing inequality or have an unsigned
12432 comparison with ZERO_EXTEND or a signed comparison with
12433 SIGN_EXTEND. But don't do it if we don't have a compare
12434 insn of the given mode, since we'd have to revert it
12435 later on, and then we wouldn't know whether to sign- or
12436 zero-extend. */
12437 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12438 && ! unsigned_comparison_p
12439 && HWI_COMPUTABLE_MODE_P (mode)
12440 && trunc_int_for_mode (const_op, mode) == const_op
12441 && have_insn_for (COMPARE, mode))
12442 {
12443 op0 = XEXP (op0, 0);
12444 continue;
12445 }
12446 break;
12447
12448 case SUBREG:
12449 /* Check for the case where we are comparing A - C1 with C2, that is
12450
12451 (subreg:MODE (plus (A) (-C1))) op (C2)
12452
12453 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12454 comparison in the wider mode. One of the following two conditions
12455 must be true in order for this to be valid:
12456
12457 1. The mode extension results in the same bit pattern being added
12458 on both sides and the comparison is equality or unsigned. As
12459 C2 has been truncated to fit in MODE, the pattern can only be
12460 all 0s or all 1s.
12461
12462 2. The mode extension results in the sign bit being copied on
12463 each side.
12464
12465 The difficulty here is that we have predicates for A but not for
12466 (A - C1) so we need to check that C1 is within proper bounds so
12467 as to perturbate A as little as possible. */
12468
12469 if (mode_width <= HOST_BITS_PER_WIDE_INT
12470 && subreg_lowpart_p (op0)
12471 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12472 &inner_mode)
12473 && GET_MODE_PRECISION (inner_mode) > mode_width
12474 && GET_CODE (SUBREG_REG (op0)) == PLUS
12475 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12476 {
12477 rtx a = XEXP (SUBREG_REG (op0), 0);
12478 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12479
12480 if ((c1 > 0
12481 && (unsigned HOST_WIDE_INT) c1
12482 < HOST_WIDE_INT_1U << (mode_width - 1)
12483 && (equality_comparison_p || unsigned_comparison_p)
12484 /* (A - C1) zero-extends if it is positive and sign-extends
12485 if it is negative, C2 both zero- and sign-extends. */
12486 && (((nonzero_bits (a, inner_mode)
12487 & ~GET_MODE_MASK (mode)) == 0
12488 && const_op >= 0)
12489 /* (A - C1) sign-extends if it is positive and 1-extends
12490 if it is negative, C2 both sign- and 1-extends. */
12491 || (num_sign_bit_copies (a, inner_mode)
12492 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12493 - mode_width)
12494 && const_op < 0)))
12495 || ((unsigned HOST_WIDE_INT) c1
12496 < HOST_WIDE_INT_1U << (mode_width - 2)
12497 /* (A - C1) always sign-extends, like C2. */
12498 && num_sign_bit_copies (a, inner_mode)
12499 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12500 - (mode_width - 1))))
12501 {
12502 op0 = SUBREG_REG (op0);
12503 continue;
12504 }
12505 }
12506
12507 /* If the inner mode is narrower and we are extracting the low part,
12508 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12509 if (paradoxical_subreg_p (op0))
12510 ;
12511 else if (subreg_lowpart_p (op0)
12512 && GET_MODE_CLASS (mode) == MODE_INT
12513 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12514 && (code == NE || code == EQ)
12515 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12516 && !paradoxical_subreg_p (op0)
12517 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12518 & ~GET_MODE_MASK (mode)) == 0)
12519 {
12520 /* Remove outer subregs that don't do anything. */
12521 tem = gen_lowpart (inner_mode, op1);
12522
12523 if ((nonzero_bits (tem, inner_mode)
12524 & ~GET_MODE_MASK (mode)) == 0)
12525 {
12526 op0 = SUBREG_REG (op0);
12527 op1 = tem;
12528 continue;
12529 }
12530 break;
12531 }
12532 else
12533 break;
12534
12535 /* FALLTHROUGH */
12536
12537 case ZERO_EXTEND:
12538 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12539 && (unsigned_comparison_p || equality_comparison_p)
12540 && HWI_COMPUTABLE_MODE_P (mode)
12541 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12542 && const_op >= 0
12543 && have_insn_for (COMPARE, mode))
12544 {
12545 op0 = XEXP (op0, 0);
12546 continue;
12547 }
12548 break;
12549
12550 case PLUS:
12551 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12552 this for equality comparisons due to pathological cases involving
12553 overflows. */
12554 if (equality_comparison_p
12555 && (tem = simplify_binary_operation (MINUS, mode,
12556 op1, XEXP (op0, 1))) != 0)
12557 {
12558 op0 = XEXP (op0, 0);
12559 op1 = tem;
12560 continue;
12561 }
12562
12563 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12564 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12565 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12566 {
12567 op0 = XEXP (XEXP (op0, 0), 0);
12568 code = (code == LT ? EQ : NE);
12569 continue;
12570 }
12571 break;
12572
12573 case MINUS:
12574 /* We used to optimize signed comparisons against zero, but that
12575 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12576 arrive here as equality comparisons, or (GEU, LTU) are
12577 optimized away. No need to special-case them. */
12578
12579 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12580 (eq B (minus A C)), whichever simplifies. We can only do
12581 this for equality comparisons due to pathological cases involving
12582 overflows. */
12583 if (equality_comparison_p
12584 && (tem = simplify_binary_operation (PLUS, mode,
12585 XEXP (op0, 1), op1)) != 0)
12586 {
12587 op0 = XEXP (op0, 0);
12588 op1 = tem;
12589 continue;
12590 }
12591
12592 if (equality_comparison_p
12593 && (tem = simplify_binary_operation (MINUS, mode,
12594 XEXP (op0, 0), op1)) != 0)
12595 {
12596 op0 = XEXP (op0, 1);
12597 op1 = tem;
12598 continue;
12599 }
12600
12601 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12602 of bits in X minus 1, is one iff X > 0. */
12603 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12604 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12605 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12606 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12607 {
12608 op0 = XEXP (op0, 1);
12609 code = (code == GE ? LE : GT);
12610 continue;
12611 }
12612 break;
12613
12614 case XOR:
12615 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12616 if C is zero or B is a constant. */
12617 if (equality_comparison_p
12618 && (tem = simplify_binary_operation (XOR, mode,
12619 XEXP (op0, 1), op1)) != 0)
12620 {
12621 op0 = XEXP (op0, 0);
12622 op1 = tem;
12623 continue;
12624 }
12625 break;
12626
12627
12628 case IOR:
12629 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12630 iff X <= 0. */
12631 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12632 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12633 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12634 {
12635 op0 = XEXP (op0, 1);
12636 code = (code == GE ? GT : LE);
12637 continue;
12638 }
12639 break;
12640
12641 case AND:
12642 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12643 will be converted to a ZERO_EXTRACT later. */
12644 if (const_op == 0 && equality_comparison_p
12645 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12646 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12647 {
12648 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12649 XEXP (XEXP (op0, 0), 1));
12650 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12651 continue;
12652 }
12653
12654 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12655 zero and X is a comparison and C1 and C2 describe only bits set
12656 in STORE_FLAG_VALUE, we can compare with X. */
12657 if (const_op == 0 && equality_comparison_p
12658 && mode_width <= HOST_BITS_PER_WIDE_INT
12659 && CONST_INT_P (XEXP (op0, 1))
12660 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12661 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12662 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12663 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12664 {
12665 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12666 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12667 if ((~STORE_FLAG_VALUE & mask) == 0
12668 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12669 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12670 && COMPARISON_P (tem))))
12671 {
12672 op0 = XEXP (XEXP (op0, 0), 0);
12673 continue;
12674 }
12675 }
12676
12677 /* If we are doing an equality comparison of an AND of a bit equal
12678 to the sign bit, replace this with a LT or GE comparison of
12679 the underlying value. */
12680 if (equality_comparison_p
12681 && const_op == 0
12682 && CONST_INT_P (XEXP (op0, 1))
12683 && mode_width <= HOST_BITS_PER_WIDE_INT
12684 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12685 == HOST_WIDE_INT_1U << (mode_width - 1)))
12686 {
12687 op0 = XEXP (op0, 0);
12688 code = (code == EQ ? GE : LT);
12689 continue;
12690 }
12691
12692 /* If this AND operation is really a ZERO_EXTEND from a narrower
12693 mode, the constant fits within that mode, and this is either an
12694 equality or unsigned comparison, try to do this comparison in
12695 the narrower mode.
12696
12697 Note that in:
12698
12699 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12700 -> (ne:DI (reg:SI 4) (const_int 0))
12701
12702 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12703 known to hold a value of the required mode the
12704 transformation is invalid. */
12705 if ((equality_comparison_p || unsigned_comparison_p)
12706 && CONST_INT_P (XEXP (op0, 1))
12707 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12708 & GET_MODE_MASK (mode))
12709 + 1)) >= 0
12710 && const_op >> i == 0
12711 && int_mode_for_size (i, 1).exists (&tmode))
12712 {
12713 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12714 continue;
12715 }
12716
12717 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12718 fits in both M1 and M2 and the SUBREG is either paradoxical
12719 or represents the low part, permute the SUBREG and the AND
12720 and try again. */
12721 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12722 && CONST_INT_P (XEXP (op0, 1)))
12723 {
12724 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12725 /* Require an integral mode, to avoid creating something like
12726 (AND:SF ...). */
12727 if ((is_a <scalar_int_mode>
12728 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12729 /* It is unsafe to commute the AND into the SUBREG if the
12730 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12731 not defined. As originally written the upper bits
12732 have a defined value due to the AND operation.
12733 However, if we commute the AND inside the SUBREG then
12734 they no longer have defined values and the meaning of
12735 the code has been changed.
12736 Also C1 should not change value in the smaller mode,
12737 see PR67028 (a positive C1 can become negative in the
12738 smaller mode, so that the AND does no longer mask the
12739 upper bits). */
12740 && ((WORD_REGISTER_OPERATIONS
12741 && mode_width > GET_MODE_PRECISION (tmode)
12742 && mode_width <= BITS_PER_WORD
12743 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12744 || (mode_width <= GET_MODE_PRECISION (tmode)
12745 && subreg_lowpart_p (XEXP (op0, 0))))
12746 && mode_width <= HOST_BITS_PER_WIDE_INT
12747 && HWI_COMPUTABLE_MODE_P (tmode)
12748 && (c1 & ~mask) == 0
12749 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12750 && c1 != mask
12751 && c1 != GET_MODE_MASK (tmode))
12752 {
12753 op0 = simplify_gen_binary (AND, tmode,
12754 SUBREG_REG (XEXP (op0, 0)),
12755 gen_int_mode (c1, tmode));
12756 op0 = gen_lowpart (mode, op0);
12757 continue;
12758 }
12759 }
12760
12761 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12762 if (const_op == 0 && equality_comparison_p
12763 && XEXP (op0, 1) == const1_rtx
12764 && GET_CODE (XEXP (op0, 0)) == NOT)
12765 {
12766 op0 = simplify_and_const_int (NULL_RTX, mode,
12767 XEXP (XEXP (op0, 0), 0), 1);
12768 code = (code == NE ? EQ : NE);
12769 continue;
12770 }
12771
12772 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12773 (eq (and (lshiftrt X) 1) 0).
12774 Also handle the case where (not X) is expressed using xor. */
12775 if (const_op == 0 && equality_comparison_p
12776 && XEXP (op0, 1) == const1_rtx
12777 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12778 {
12779 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12780 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12781
12782 if (GET_CODE (shift_op) == NOT
12783 || (GET_CODE (shift_op) == XOR
12784 && CONST_INT_P (XEXP (shift_op, 1))
12785 && CONST_INT_P (shift_count)
12786 && HWI_COMPUTABLE_MODE_P (mode)
12787 && (UINTVAL (XEXP (shift_op, 1))
12788 == HOST_WIDE_INT_1U
12789 << INTVAL (shift_count))))
12790 {
12791 op0
12792 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12793 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12794 code = (code == NE ? EQ : NE);
12795 continue;
12796 }
12797 }
12798 break;
12799
12800 case ASHIFT:
12801 /* If we have (compare (ashift FOO N) (const_int C)) and
12802 the high order N bits of FOO (N+1 if an inequality comparison)
12803 are known to be zero, we can do this by comparing FOO with C
12804 shifted right N bits so long as the low-order N bits of C are
12805 zero. */
12806 if (CONST_INT_P (XEXP (op0, 1))
12807 && INTVAL (XEXP (op0, 1)) >= 0
12808 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12809 < HOST_BITS_PER_WIDE_INT)
12810 && (((unsigned HOST_WIDE_INT) const_op
12811 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12812 - 1)) == 0)
12813 && mode_width <= HOST_BITS_PER_WIDE_INT
12814 && (nonzero_bits (XEXP (op0, 0), mode)
12815 & ~(mask >> (INTVAL (XEXP (op0, 1))
12816 + ! equality_comparison_p))) == 0)
12817 {
12818 /* We must perform a logical shift, not an arithmetic one,
12819 as we want the top N bits of C to be zero. */
12820 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12821
12822 temp >>= INTVAL (XEXP (op0, 1));
12823 op1 = gen_int_mode (temp, mode);
12824 op0 = XEXP (op0, 0);
12825 continue;
12826 }
12827
12828 /* If we are doing a sign bit comparison, it means we are testing
12829 a particular bit. Convert it to the appropriate AND. */
12830 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12831 && mode_width <= HOST_BITS_PER_WIDE_INT)
12832 {
12833 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12834 (HOST_WIDE_INT_1U
12835 << (mode_width - 1
12836 - INTVAL (XEXP (op0, 1)))));
12837 code = (code == LT ? NE : EQ);
12838 continue;
12839 }
12840
12841 /* If this an equality comparison with zero and we are shifting
12842 the low bit to the sign bit, we can convert this to an AND of the
12843 low-order bit. */
12844 if (const_op == 0 && equality_comparison_p
12845 && CONST_INT_P (XEXP (op0, 1))
12846 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12847 {
12848 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12849 continue;
12850 }
12851 break;
12852
12853 case ASHIFTRT:
12854 /* If this is an equality comparison with zero, we can do this
12855 as a logical shift, which might be much simpler. */
12856 if (equality_comparison_p && const_op == 0
12857 && CONST_INT_P (XEXP (op0, 1)))
12858 {
12859 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12860 XEXP (op0, 0),
12861 INTVAL (XEXP (op0, 1)));
12862 continue;
12863 }
12864
12865 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12866 do the comparison in a narrower mode. */
12867 if (! unsigned_comparison_p
12868 && CONST_INT_P (XEXP (op0, 1))
12869 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12870 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12871 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12872 .exists (&tmode))
12873 && (((unsigned HOST_WIDE_INT) const_op
12874 + (GET_MODE_MASK (tmode) >> 1) + 1)
12875 <= GET_MODE_MASK (tmode)))
12876 {
12877 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12878 continue;
12879 }
12880
12881 /* Likewise if OP0 is a PLUS of a sign extension with a
12882 constant, which is usually represented with the PLUS
12883 between the shifts. */
12884 if (! unsigned_comparison_p
12885 && CONST_INT_P (XEXP (op0, 1))
12886 && GET_CODE (XEXP (op0, 0)) == PLUS
12887 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12888 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12889 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12890 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12891 .exists (&tmode))
12892 && (((unsigned HOST_WIDE_INT) const_op
12893 + (GET_MODE_MASK (tmode) >> 1) + 1)
12894 <= GET_MODE_MASK (tmode)))
12895 {
12896 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12897 rtx add_const = XEXP (XEXP (op0, 0), 1);
12898 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12899 add_const, XEXP (op0, 1));
12900
12901 op0 = simplify_gen_binary (PLUS, tmode,
12902 gen_lowpart (tmode, inner),
12903 new_const);
12904 continue;
12905 }
12906
12907 /* FALLTHROUGH */
12908 case LSHIFTRT:
12909 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12910 the low order N bits of FOO are known to be zero, we can do this
12911 by comparing FOO with C shifted left N bits so long as no
12912 overflow occurs. Even if the low order N bits of FOO aren't known
12913 to be zero, if the comparison is >= or < we can use the same
12914 optimization and for > or <= by setting all the low
12915 order N bits in the comparison constant. */
12916 if (CONST_INT_P (XEXP (op0, 1))
12917 && INTVAL (XEXP (op0, 1)) > 0
12918 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12919 && mode_width <= HOST_BITS_PER_WIDE_INT
12920 && (((unsigned HOST_WIDE_INT) const_op
12921 + (GET_CODE (op0) != LSHIFTRT
12922 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12923 + 1)
12924 : 0))
12925 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12926 {
12927 unsigned HOST_WIDE_INT low_bits
12928 = (nonzero_bits (XEXP (op0, 0), mode)
12929 & ((HOST_WIDE_INT_1U
12930 << INTVAL (XEXP (op0, 1))) - 1));
12931 if (low_bits == 0 || !equality_comparison_p)
12932 {
12933 /* If the shift was logical, then we must make the condition
12934 unsigned. */
12935 if (GET_CODE (op0) == LSHIFTRT)
12936 code = unsigned_condition (code);
12937
12938 const_op = (unsigned HOST_WIDE_INT) const_op
12939 << INTVAL (XEXP (op0, 1));
12940 if (low_bits != 0
12941 && (code == GT || code == GTU
12942 || code == LE || code == LEU))
12943 const_op
12944 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12945 op1 = GEN_INT (const_op);
12946 op0 = XEXP (op0, 0);
12947 continue;
12948 }
12949 }
12950
12951 /* If we are using this shift to extract just the sign bit, we
12952 can replace this with an LT or GE comparison. */
12953 if (const_op == 0
12954 && (equality_comparison_p || sign_bit_comparison_p)
12955 && CONST_INT_P (XEXP (op0, 1))
12956 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12957 {
12958 op0 = XEXP (op0, 0);
12959 code = (code == NE || code == GT ? LT : GE);
12960 continue;
12961 }
12962 break;
12963
12964 default:
12965 break;
12966 }
12967
12968 break;
12969 }
12970
12971 /* Now make any compound operations involved in this comparison. Then,
12972 check for an outmost SUBREG on OP0 that is not doing anything or is
12973 paradoxical. The latter transformation must only be performed when
12974 it is known that the "extra" bits will be the same in op0 and op1 or
12975 that they don't matter. There are three cases to consider:
12976
12977 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12978 care bits and we can assume they have any convenient value. So
12979 making the transformation is safe.
12980
12981 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12982 In this case the upper bits of op0 are undefined. We should not make
12983 the simplification in that case as we do not know the contents of
12984 those bits.
12985
12986 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12987 In that case we know those bits are zeros or ones. We must also be
12988 sure that they are the same as the upper bits of op1.
12989
12990 We can never remove a SUBREG for a non-equality comparison because
12991 the sign bit is in a different place in the underlying object. */
12992
12993 rtx_code op0_mco_code = SET;
12994 if (op1 == const0_rtx)
12995 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12996
12997 op0 = make_compound_operation (op0, op0_mco_code);
12998 op1 = make_compound_operation (op1, SET);
12999
13000 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13001 && is_int_mode (GET_MODE (op0), &mode)
13002 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13003 && (code == NE || code == EQ))
13004 {
13005 if (paradoxical_subreg_p (op0))
13006 {
13007 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13008 implemented. */
13009 if (REG_P (SUBREG_REG (op0)))
13010 {
13011 op0 = SUBREG_REG (op0);
13012 op1 = gen_lowpart (inner_mode, op1);
13013 }
13014 }
13015 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13016 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13017 & ~GET_MODE_MASK (mode)) == 0)
13018 {
13019 tem = gen_lowpart (inner_mode, op1);
13020
13021 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13022 op0 = SUBREG_REG (op0), op1 = tem;
13023 }
13024 }
13025
13026 /* We now do the opposite procedure: Some machines don't have compare
13027 insns in all modes. If OP0's mode is an integer mode smaller than a
13028 word and we can't do a compare in that mode, see if there is a larger
13029 mode for which we can do the compare. There are a number of cases in
13030 which we can use the wider mode. */
13031
13032 if (is_int_mode (GET_MODE (op0), &mode)
13033 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13034 && ! have_insn_for (COMPARE, mode))
13035 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13036 {
13037 tmode = tmode_iter.require ();
13038 if (!HWI_COMPUTABLE_MODE_P (tmode))
13039 break;
13040 if (have_insn_for (COMPARE, tmode))
13041 {
13042 int zero_extended;
13043
13044 /* If this is a test for negative, we can make an explicit
13045 test of the sign bit. Test this first so we can use
13046 a paradoxical subreg to extend OP0. */
13047
13048 if (op1 == const0_rtx && (code == LT || code == GE)
13049 && HWI_COMPUTABLE_MODE_P (mode))
13050 {
13051 unsigned HOST_WIDE_INT sign
13052 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13053 op0 = simplify_gen_binary (AND, tmode,
13054 gen_lowpart (tmode, op0),
13055 gen_int_mode (sign, tmode));
13056 code = (code == LT) ? NE : EQ;
13057 break;
13058 }
13059
13060 /* If the only nonzero bits in OP0 and OP1 are those in the
13061 narrower mode and this is an equality or unsigned comparison,
13062 we can use the wider mode. Similarly for sign-extended
13063 values, in which case it is true for all comparisons. */
13064 zero_extended = ((code == EQ || code == NE
13065 || code == GEU || code == GTU
13066 || code == LEU || code == LTU)
13067 && (nonzero_bits (op0, tmode)
13068 & ~GET_MODE_MASK (mode)) == 0
13069 && ((CONST_INT_P (op1)
13070 || (nonzero_bits (op1, tmode)
13071 & ~GET_MODE_MASK (mode)) == 0)));
13072
13073 if (zero_extended
13074 || ((num_sign_bit_copies (op0, tmode)
13075 > (unsigned int) (GET_MODE_PRECISION (tmode)
13076 - GET_MODE_PRECISION (mode)))
13077 && (num_sign_bit_copies (op1, tmode)
13078 > (unsigned int) (GET_MODE_PRECISION (tmode)
13079 - GET_MODE_PRECISION (mode)))))
13080 {
13081 /* If OP0 is an AND and we don't have an AND in MODE either,
13082 make a new AND in the proper mode. */
13083 if (GET_CODE (op0) == AND
13084 && !have_insn_for (AND, mode))
13085 op0 = simplify_gen_binary (AND, tmode,
13086 gen_lowpart (tmode,
13087 XEXP (op0, 0)),
13088 gen_lowpart (tmode,
13089 XEXP (op0, 1)));
13090 else
13091 {
13092 if (zero_extended)
13093 {
13094 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13095 op0, mode);
13096 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13097 op1, mode);
13098 }
13099 else
13100 {
13101 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13102 op0, mode);
13103 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13104 op1, mode);
13105 }
13106 break;
13107 }
13108 }
13109 }
13110 }
13111
13112 /* We may have changed the comparison operands. Re-canonicalize. */
13113 if (swap_commutative_operands_p (op0, op1))
13114 {
13115 std::swap (op0, op1);
13116 code = swap_condition (code);
13117 }
13118
13119 /* If this machine only supports a subset of valid comparisons, see if we
13120 can convert an unsupported one into a supported one. */
13121 target_canonicalize_comparison (&code, &op0, &op1, 0);
13122
13123 *pop0 = op0;
13124 *pop1 = op1;
13125
13126 return code;
13127 }
13128 \f
13129 /* Utility function for record_value_for_reg. Count number of
13130 rtxs in X. */
13131 static int
13132 count_rtxs (rtx x)
13133 {
13134 enum rtx_code code = GET_CODE (x);
13135 const char *fmt;
13136 int i, j, ret = 1;
13137
13138 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13139 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13140 {
13141 rtx x0 = XEXP (x, 0);
13142 rtx x1 = XEXP (x, 1);
13143
13144 if (x0 == x1)
13145 return 1 + 2 * count_rtxs (x0);
13146
13147 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13148 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13149 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13150 return 2 + 2 * count_rtxs (x0)
13151 + count_rtxs (x == XEXP (x1, 0)
13152 ? XEXP (x1, 1) : XEXP (x1, 0));
13153
13154 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13155 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13156 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13157 return 2 + 2 * count_rtxs (x1)
13158 + count_rtxs (x == XEXP (x0, 0)
13159 ? XEXP (x0, 1) : XEXP (x0, 0));
13160 }
13161
13162 fmt = GET_RTX_FORMAT (code);
13163 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13164 if (fmt[i] == 'e')
13165 ret += count_rtxs (XEXP (x, i));
13166 else if (fmt[i] == 'E')
13167 for (j = 0; j < XVECLEN (x, i); j++)
13168 ret += count_rtxs (XVECEXP (x, i, j));
13169
13170 return ret;
13171 }
13172 \f
13173 /* Utility function for following routine. Called when X is part of a value
13174 being stored into last_set_value. Sets last_set_table_tick
13175 for each register mentioned. Similar to mention_regs in cse.c */
13176
13177 static void
13178 update_table_tick (rtx x)
13179 {
13180 enum rtx_code code = GET_CODE (x);
13181 const char *fmt = GET_RTX_FORMAT (code);
13182 int i, j;
13183
13184 if (code == REG)
13185 {
13186 unsigned int regno = REGNO (x);
13187 unsigned int endregno = END_REGNO (x);
13188 unsigned int r;
13189
13190 for (r = regno; r < endregno; r++)
13191 {
13192 reg_stat_type *rsp = &reg_stat[r];
13193 rsp->last_set_table_tick = label_tick;
13194 }
13195
13196 return;
13197 }
13198
13199 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13200 if (fmt[i] == 'e')
13201 {
13202 /* Check for identical subexpressions. If x contains
13203 identical subexpression we only have to traverse one of
13204 them. */
13205 if (i == 0 && ARITHMETIC_P (x))
13206 {
13207 /* Note that at this point x1 has already been
13208 processed. */
13209 rtx x0 = XEXP (x, 0);
13210 rtx x1 = XEXP (x, 1);
13211
13212 /* If x0 and x1 are identical then there is no need to
13213 process x0. */
13214 if (x0 == x1)
13215 break;
13216
13217 /* If x0 is identical to a subexpression of x1 then while
13218 processing x1, x0 has already been processed. Thus we
13219 are done with x. */
13220 if (ARITHMETIC_P (x1)
13221 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13222 break;
13223
13224 /* If x1 is identical to a subexpression of x0 then we
13225 still have to process the rest of x0. */
13226 if (ARITHMETIC_P (x0)
13227 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13228 {
13229 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13230 break;
13231 }
13232 }
13233
13234 update_table_tick (XEXP (x, i));
13235 }
13236 else if (fmt[i] == 'E')
13237 for (j = 0; j < XVECLEN (x, i); j++)
13238 update_table_tick (XVECEXP (x, i, j));
13239 }
13240
13241 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13242 are saying that the register is clobbered and we no longer know its
13243 value. If INSN is zero, don't update reg_stat[].last_set; this is
13244 only permitted with VALUE also zero and is used to invalidate the
13245 register. */
13246
13247 static void
13248 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13249 {
13250 unsigned int regno = REGNO (reg);
13251 unsigned int endregno = END_REGNO (reg);
13252 unsigned int i;
13253 reg_stat_type *rsp;
13254
13255 /* If VALUE contains REG and we have a previous value for REG, substitute
13256 the previous value. */
13257 if (value && insn && reg_overlap_mentioned_p (reg, value))
13258 {
13259 rtx tem;
13260
13261 /* Set things up so get_last_value is allowed to see anything set up to
13262 our insn. */
13263 subst_low_luid = DF_INSN_LUID (insn);
13264 tem = get_last_value (reg);
13265
13266 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13267 it isn't going to be useful and will take a lot of time to process,
13268 so just use the CLOBBER. */
13269
13270 if (tem)
13271 {
13272 if (ARITHMETIC_P (tem)
13273 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13274 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13275 tem = XEXP (tem, 0);
13276 else if (count_occurrences (value, reg, 1) >= 2)
13277 {
13278 /* If there are two or more occurrences of REG in VALUE,
13279 prevent the value from growing too much. */
13280 if (count_rtxs (tem) > param_max_last_value_rtl)
13281 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13282 }
13283
13284 value = replace_rtx (copy_rtx (value), reg, tem);
13285 }
13286 }
13287
13288 /* For each register modified, show we don't know its value, that
13289 we don't know about its bitwise content, that its value has been
13290 updated, and that we don't know the location of the death of the
13291 register. */
13292 for (i = regno; i < endregno; i++)
13293 {
13294 rsp = &reg_stat[i];
13295
13296 if (insn)
13297 rsp->last_set = insn;
13298
13299 rsp->last_set_value = 0;
13300 rsp->last_set_mode = VOIDmode;
13301 rsp->last_set_nonzero_bits = 0;
13302 rsp->last_set_sign_bit_copies = 0;
13303 rsp->last_death = 0;
13304 rsp->truncated_to_mode = VOIDmode;
13305 }
13306
13307 /* Mark registers that are being referenced in this value. */
13308 if (value)
13309 update_table_tick (value);
13310
13311 /* Now update the status of each register being set.
13312 If someone is using this register in this block, set this register
13313 to invalid since we will get confused between the two lives in this
13314 basic block. This makes using this register always invalid. In cse, we
13315 scan the table to invalidate all entries using this register, but this
13316 is too much work for us. */
13317
13318 for (i = regno; i < endregno; i++)
13319 {
13320 rsp = &reg_stat[i];
13321 rsp->last_set_label = label_tick;
13322 if (!insn
13323 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13324 rsp->last_set_invalid = 1;
13325 else
13326 rsp->last_set_invalid = 0;
13327 }
13328
13329 /* The value being assigned might refer to X (like in "x++;"). In that
13330 case, we must replace it with (clobber (const_int 0)) to prevent
13331 infinite loops. */
13332 rsp = &reg_stat[regno];
13333 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13334 {
13335 value = copy_rtx (value);
13336 if (!get_last_value_validate (&value, insn, label_tick, 1))
13337 value = 0;
13338 }
13339
13340 /* For the main register being modified, update the value, the mode, the
13341 nonzero bits, and the number of sign bit copies. */
13342
13343 rsp->last_set_value = value;
13344
13345 if (value)
13346 {
13347 machine_mode mode = GET_MODE (reg);
13348 subst_low_luid = DF_INSN_LUID (insn);
13349 rsp->last_set_mode = mode;
13350 if (GET_MODE_CLASS (mode) == MODE_INT
13351 && HWI_COMPUTABLE_MODE_P (mode))
13352 mode = nonzero_bits_mode;
13353 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13354 rsp->last_set_sign_bit_copies
13355 = num_sign_bit_copies (value, GET_MODE (reg));
13356 }
13357 }
13358
13359 /* Called via note_stores from record_dead_and_set_regs to handle one
13360 SET or CLOBBER in an insn. DATA is the instruction in which the
13361 set is occurring. */
13362
13363 static void
13364 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13365 {
13366 rtx_insn *record_dead_insn = (rtx_insn *) data;
13367
13368 if (GET_CODE (dest) == SUBREG)
13369 dest = SUBREG_REG (dest);
13370
13371 if (!record_dead_insn)
13372 {
13373 if (REG_P (dest))
13374 record_value_for_reg (dest, NULL, NULL_RTX);
13375 return;
13376 }
13377
13378 if (REG_P (dest))
13379 {
13380 /* If we are setting the whole register, we know its value. Otherwise
13381 show that we don't know the value. We can handle a SUBREG if it's
13382 the low part, but we must be careful with paradoxical SUBREGs on
13383 RISC architectures because we cannot strip e.g. an extension around
13384 a load and record the naked load since the RTL middle-end considers
13385 that the upper bits are defined according to LOAD_EXTEND_OP. */
13386 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13387 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13388 else if (GET_CODE (setter) == SET
13389 && GET_CODE (SET_DEST (setter)) == SUBREG
13390 && SUBREG_REG (SET_DEST (setter)) == dest
13391 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13392 BITS_PER_WORD)
13393 && subreg_lowpart_p (SET_DEST (setter)))
13394 record_value_for_reg (dest, record_dead_insn,
13395 WORD_REGISTER_OPERATIONS
13396 && word_register_operation_p (SET_SRC (setter))
13397 && paradoxical_subreg_p (SET_DEST (setter))
13398 ? SET_SRC (setter)
13399 : gen_lowpart (GET_MODE (dest),
13400 SET_SRC (setter)));
13401 else
13402 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13403 }
13404 else if (MEM_P (dest)
13405 /* Ignore pushes, they clobber nothing. */
13406 && ! push_operand (dest, GET_MODE (dest)))
13407 mem_last_set = DF_INSN_LUID (record_dead_insn);
13408 }
13409
13410 /* Update the records of when each REG was most recently set or killed
13411 for the things done by INSN. This is the last thing done in processing
13412 INSN in the combiner loop.
13413
13414 We update reg_stat[], in particular fields last_set, last_set_value,
13415 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13416 last_death, and also the similar information mem_last_set (which insn
13417 most recently modified memory) and last_call_luid (which insn was the
13418 most recent subroutine call). */
13419
13420 static void
13421 record_dead_and_set_regs (rtx_insn *insn)
13422 {
13423 rtx link;
13424 unsigned int i;
13425
13426 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13427 {
13428 if (REG_NOTE_KIND (link) == REG_DEAD
13429 && REG_P (XEXP (link, 0)))
13430 {
13431 unsigned int regno = REGNO (XEXP (link, 0));
13432 unsigned int endregno = END_REGNO (XEXP (link, 0));
13433
13434 for (i = regno; i < endregno; i++)
13435 {
13436 reg_stat_type *rsp;
13437
13438 rsp = &reg_stat[i];
13439 rsp->last_death = insn;
13440 }
13441 }
13442 else if (REG_NOTE_KIND (link) == REG_INC)
13443 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13444 }
13445
13446 if (CALL_P (insn))
13447 {
13448 HARD_REG_SET callee_clobbers
13449 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13450 hard_reg_set_iterator hrsi;
13451 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13452 {
13453 reg_stat_type *rsp;
13454
13455 /* ??? We could try to preserve some information from the last
13456 set of register I if the call doesn't actually clobber
13457 (reg:last_set_mode I), which might be true for ABIs with
13458 partial clobbers. However, it would be difficult to
13459 update last_set_nonzero_bits and last_sign_bit_copies
13460 to account for the part of I that actually was clobbered.
13461 It wouldn't help much anyway, since we rarely see this
13462 situation before RA. */
13463 rsp = &reg_stat[i];
13464 rsp->last_set_invalid = 1;
13465 rsp->last_set = insn;
13466 rsp->last_set_value = 0;
13467 rsp->last_set_mode = VOIDmode;
13468 rsp->last_set_nonzero_bits = 0;
13469 rsp->last_set_sign_bit_copies = 0;
13470 rsp->last_death = 0;
13471 rsp->truncated_to_mode = VOIDmode;
13472 }
13473
13474 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13475
13476 /* We can't combine into a call pattern. Remember, though, that
13477 the return value register is set at this LUID. We could
13478 still replace a register with the return value from the
13479 wrong subroutine call! */
13480 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13481 }
13482 else
13483 note_stores (insn, record_dead_and_set_regs_1, insn);
13484 }
13485
13486 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13487 register present in the SUBREG, so for each such SUBREG go back and
13488 adjust nonzero and sign bit information of the registers that are
13489 known to have some zero/sign bits set.
13490
13491 This is needed because when combine blows the SUBREGs away, the
13492 information on zero/sign bits is lost and further combines can be
13493 missed because of that. */
13494
13495 static void
13496 record_promoted_value (rtx_insn *insn, rtx subreg)
13497 {
13498 struct insn_link *links;
13499 rtx set;
13500 unsigned int regno = REGNO (SUBREG_REG (subreg));
13501 machine_mode mode = GET_MODE (subreg);
13502
13503 if (!HWI_COMPUTABLE_MODE_P (mode))
13504 return;
13505
13506 for (links = LOG_LINKS (insn); links;)
13507 {
13508 reg_stat_type *rsp;
13509
13510 insn = links->insn;
13511 set = single_set (insn);
13512
13513 if (! set || !REG_P (SET_DEST (set))
13514 || REGNO (SET_DEST (set)) != regno
13515 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13516 {
13517 links = links->next;
13518 continue;
13519 }
13520
13521 rsp = &reg_stat[regno];
13522 if (rsp->last_set == insn)
13523 {
13524 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13525 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13526 }
13527
13528 if (REG_P (SET_SRC (set)))
13529 {
13530 regno = REGNO (SET_SRC (set));
13531 links = LOG_LINKS (insn);
13532 }
13533 else
13534 break;
13535 }
13536 }
13537
13538 /* Check if X, a register, is known to contain a value already
13539 truncated to MODE. In this case we can use a subreg to refer to
13540 the truncated value even though in the generic case we would need
13541 an explicit truncation. */
13542
13543 static bool
13544 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13545 {
13546 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13547 machine_mode truncated = rsp->truncated_to_mode;
13548
13549 if (truncated == 0
13550 || rsp->truncation_label < label_tick_ebb_start)
13551 return false;
13552 if (!partial_subreg_p (mode, truncated))
13553 return true;
13554 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13555 return true;
13556 return false;
13557 }
13558
13559 /* If X is a hard reg or a subreg record the mode that the register is
13560 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13561 able to turn a truncate into a subreg using this information. Return true
13562 if traversing X is complete. */
13563
13564 static bool
13565 record_truncated_value (rtx x)
13566 {
13567 machine_mode truncated_mode;
13568 reg_stat_type *rsp;
13569
13570 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13571 {
13572 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13573 truncated_mode = GET_MODE (x);
13574
13575 if (!partial_subreg_p (truncated_mode, original_mode))
13576 return true;
13577
13578 truncated_mode = GET_MODE (x);
13579 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13580 return true;
13581
13582 x = SUBREG_REG (x);
13583 }
13584 /* ??? For hard-regs we now record everything. We might be able to
13585 optimize this using last_set_mode. */
13586 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13587 truncated_mode = GET_MODE (x);
13588 else
13589 return false;
13590
13591 rsp = &reg_stat[REGNO (x)];
13592 if (rsp->truncated_to_mode == 0
13593 || rsp->truncation_label < label_tick_ebb_start
13594 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13595 {
13596 rsp->truncated_to_mode = truncated_mode;
13597 rsp->truncation_label = label_tick;
13598 }
13599
13600 return true;
13601 }
13602
13603 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13604 the modes they are used in. This can help truning TRUNCATEs into
13605 SUBREGs. */
13606
13607 static void
13608 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13609 {
13610 subrtx_var_iterator::array_type array;
13611 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13612 if (record_truncated_value (*iter))
13613 iter.skip_subrtxes ();
13614 }
13615
13616 /* Scan X for promoted SUBREGs. For each one found,
13617 note what it implies to the registers used in it. */
13618
13619 static void
13620 check_promoted_subreg (rtx_insn *insn, rtx x)
13621 {
13622 if (GET_CODE (x) == SUBREG
13623 && SUBREG_PROMOTED_VAR_P (x)
13624 && REG_P (SUBREG_REG (x)))
13625 record_promoted_value (insn, x);
13626 else
13627 {
13628 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13629 int i, j;
13630
13631 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13632 switch (format[i])
13633 {
13634 case 'e':
13635 check_promoted_subreg (insn, XEXP (x, i));
13636 break;
13637 case 'V':
13638 case 'E':
13639 if (XVEC (x, i) != 0)
13640 for (j = 0; j < XVECLEN (x, i); j++)
13641 check_promoted_subreg (insn, XVECEXP (x, i, j));
13642 break;
13643 }
13644 }
13645 }
13646 \f
13647 /* Verify that all the registers and memory references mentioned in *LOC are
13648 still valid. *LOC was part of a value set in INSN when label_tick was
13649 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13650 the invalid references with (clobber (const_int 0)) and return 1. This
13651 replacement is useful because we often can get useful information about
13652 the form of a value (e.g., if it was produced by a shift that always
13653 produces -1 or 0) even though we don't know exactly what registers it
13654 was produced from. */
13655
13656 static int
13657 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13658 {
13659 rtx x = *loc;
13660 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13661 int len = GET_RTX_LENGTH (GET_CODE (x));
13662 int i, j;
13663
13664 if (REG_P (x))
13665 {
13666 unsigned int regno = REGNO (x);
13667 unsigned int endregno = END_REGNO (x);
13668 unsigned int j;
13669
13670 for (j = regno; j < endregno; j++)
13671 {
13672 reg_stat_type *rsp = &reg_stat[j];
13673 if (rsp->last_set_invalid
13674 /* If this is a pseudo-register that was only set once and not
13675 live at the beginning of the function, it is always valid. */
13676 || (! (regno >= FIRST_PSEUDO_REGISTER
13677 && regno < reg_n_sets_max
13678 && REG_N_SETS (regno) == 1
13679 && (!REGNO_REG_SET_P
13680 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13681 regno)))
13682 && rsp->last_set_label > tick))
13683 {
13684 if (replace)
13685 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13686 return replace;
13687 }
13688 }
13689
13690 return 1;
13691 }
13692 /* If this is a memory reference, make sure that there were no stores after
13693 it that might have clobbered the value. We don't have alias info, so we
13694 assume any store invalidates it. Moreover, we only have local UIDs, so
13695 we also assume that there were stores in the intervening basic blocks. */
13696 else if (MEM_P (x) && !MEM_READONLY_P (x)
13697 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13698 {
13699 if (replace)
13700 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13701 return replace;
13702 }
13703
13704 for (i = 0; i < len; i++)
13705 {
13706 if (fmt[i] == 'e')
13707 {
13708 /* Check for identical subexpressions. If x contains
13709 identical subexpression we only have to traverse one of
13710 them. */
13711 if (i == 1 && ARITHMETIC_P (x))
13712 {
13713 /* Note that at this point x0 has already been checked
13714 and found valid. */
13715 rtx x0 = XEXP (x, 0);
13716 rtx x1 = XEXP (x, 1);
13717
13718 /* If x0 and x1 are identical then x is also valid. */
13719 if (x0 == x1)
13720 return 1;
13721
13722 /* If x1 is identical to a subexpression of x0 then
13723 while checking x0, x1 has already been checked. Thus
13724 it is valid and so as x. */
13725 if (ARITHMETIC_P (x0)
13726 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13727 return 1;
13728
13729 /* If x0 is identical to a subexpression of x1 then x is
13730 valid iff the rest of x1 is valid. */
13731 if (ARITHMETIC_P (x1)
13732 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13733 return
13734 get_last_value_validate (&XEXP (x1,
13735 x0 == XEXP (x1, 0) ? 1 : 0),
13736 insn, tick, replace);
13737 }
13738
13739 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13740 replace) == 0)
13741 return 0;
13742 }
13743 else if (fmt[i] == 'E')
13744 for (j = 0; j < XVECLEN (x, i); j++)
13745 if (get_last_value_validate (&XVECEXP (x, i, j),
13746 insn, tick, replace) == 0)
13747 return 0;
13748 }
13749
13750 /* If we haven't found a reason for it to be invalid, it is valid. */
13751 return 1;
13752 }
13753
13754 /* Get the last value assigned to X, if known. Some registers
13755 in the value may be replaced with (clobber (const_int 0)) if their value
13756 is known longer known reliably. */
13757
13758 static rtx
13759 get_last_value (const_rtx x)
13760 {
13761 unsigned int regno;
13762 rtx value;
13763 reg_stat_type *rsp;
13764
13765 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13766 then convert it to the desired mode. If this is a paradoxical SUBREG,
13767 we cannot predict what values the "extra" bits might have. */
13768 if (GET_CODE (x) == SUBREG
13769 && subreg_lowpart_p (x)
13770 && !paradoxical_subreg_p (x)
13771 && (value = get_last_value (SUBREG_REG (x))) != 0)
13772 return gen_lowpart (GET_MODE (x), value);
13773
13774 if (!REG_P (x))
13775 return 0;
13776
13777 regno = REGNO (x);
13778 rsp = &reg_stat[regno];
13779 value = rsp->last_set_value;
13780
13781 /* If we don't have a value, or if it isn't for this basic block and
13782 it's either a hard register, set more than once, or it's a live
13783 at the beginning of the function, return 0.
13784
13785 Because if it's not live at the beginning of the function then the reg
13786 is always set before being used (is never used without being set).
13787 And, if it's set only once, and it's always set before use, then all
13788 uses must have the same last value, even if it's not from this basic
13789 block. */
13790
13791 if (value == 0
13792 || (rsp->last_set_label < label_tick_ebb_start
13793 && (regno < FIRST_PSEUDO_REGISTER
13794 || regno >= reg_n_sets_max
13795 || REG_N_SETS (regno) != 1
13796 || REGNO_REG_SET_P
13797 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13798 return 0;
13799
13800 /* If the value was set in a later insn than the ones we are processing,
13801 we can't use it even if the register was only set once. */
13802 if (rsp->last_set_label == label_tick
13803 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13804 return 0;
13805
13806 /* If fewer bits were set than what we are asked for now, we cannot use
13807 the value. */
13808 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13809 GET_MODE_PRECISION (GET_MODE (x))))
13810 return 0;
13811
13812 /* If the value has all its registers valid, return it. */
13813 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13814 return value;
13815
13816 /* Otherwise, make a copy and replace any invalid register with
13817 (clobber (const_int 0)). If that fails for some reason, return 0. */
13818
13819 value = copy_rtx (value);
13820 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13821 return value;
13822
13823 return 0;
13824 }
13825 \f
13826 /* Define three variables used for communication between the following
13827 routines. */
13828
13829 static unsigned int reg_dead_regno, reg_dead_endregno;
13830 static int reg_dead_flag;
13831 rtx reg_dead_reg;
13832
13833 /* Function called via note_stores from reg_dead_at_p.
13834
13835 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13836 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13837
13838 static void
13839 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13840 {
13841 unsigned int regno, endregno;
13842
13843 if (!REG_P (dest))
13844 return;
13845
13846 regno = REGNO (dest);
13847 endregno = END_REGNO (dest);
13848 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13849 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13850 }
13851
13852 /* Return nonzero if REG is known to be dead at INSN.
13853
13854 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13855 referencing REG, it is dead. If we hit a SET referencing REG, it is
13856 live. Otherwise, see if it is live or dead at the start of the basic
13857 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13858 must be assumed to be always live. */
13859
13860 static int
13861 reg_dead_at_p (rtx reg, rtx_insn *insn)
13862 {
13863 basic_block block;
13864 unsigned int i;
13865
13866 /* Set variables for reg_dead_at_p_1. */
13867 reg_dead_regno = REGNO (reg);
13868 reg_dead_endregno = END_REGNO (reg);
13869 reg_dead_reg = reg;
13870
13871 reg_dead_flag = 0;
13872
13873 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13874 we allow the machine description to decide whether use-and-clobber
13875 patterns are OK. */
13876 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13877 {
13878 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13879 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13880 return 0;
13881 }
13882
13883 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13884 beginning of basic block. */
13885 block = BLOCK_FOR_INSN (insn);
13886 for (;;)
13887 {
13888 if (INSN_P (insn))
13889 {
13890 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13891 return 1;
13892
13893 note_stores (insn, reg_dead_at_p_1, NULL);
13894 if (reg_dead_flag)
13895 return reg_dead_flag == 1 ? 1 : 0;
13896
13897 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13898 return 1;
13899 }
13900
13901 if (insn == BB_HEAD (block))
13902 break;
13903
13904 insn = PREV_INSN (insn);
13905 }
13906
13907 /* Look at live-in sets for the basic block that we were in. */
13908 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13909 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13910 return 0;
13911
13912 return 1;
13913 }
13914 \f
13915 /* Note hard registers in X that are used. */
13916
13917 static void
13918 mark_used_regs_combine (rtx x)
13919 {
13920 RTX_CODE code = GET_CODE (x);
13921 unsigned int regno;
13922 int i;
13923
13924 switch (code)
13925 {
13926 case LABEL_REF:
13927 case SYMBOL_REF:
13928 case CONST:
13929 CASE_CONST_ANY:
13930 case PC:
13931 case ADDR_VEC:
13932 case ADDR_DIFF_VEC:
13933 case ASM_INPUT:
13934 /* CC0 must die in the insn after it is set, so we don't need to take
13935 special note of it here. */
13936 case CC0:
13937 return;
13938
13939 case CLOBBER:
13940 /* If we are clobbering a MEM, mark any hard registers inside the
13941 address as used. */
13942 if (MEM_P (XEXP (x, 0)))
13943 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13944 return;
13945
13946 case REG:
13947 regno = REGNO (x);
13948 /* A hard reg in a wide mode may really be multiple registers.
13949 If so, mark all of them just like the first. */
13950 if (regno < FIRST_PSEUDO_REGISTER)
13951 {
13952 /* None of this applies to the stack, frame or arg pointers. */
13953 if (regno == STACK_POINTER_REGNUM
13954 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13955 && regno == HARD_FRAME_POINTER_REGNUM)
13956 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13957 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13958 || regno == FRAME_POINTER_REGNUM)
13959 return;
13960
13961 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13962 }
13963 return;
13964
13965 case SET:
13966 {
13967 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13968 the address. */
13969 rtx testreg = SET_DEST (x);
13970
13971 while (GET_CODE (testreg) == SUBREG
13972 || GET_CODE (testreg) == ZERO_EXTRACT
13973 || GET_CODE (testreg) == STRICT_LOW_PART)
13974 testreg = XEXP (testreg, 0);
13975
13976 if (MEM_P (testreg))
13977 mark_used_regs_combine (XEXP (testreg, 0));
13978
13979 mark_used_regs_combine (SET_SRC (x));
13980 }
13981 return;
13982
13983 default:
13984 break;
13985 }
13986
13987 /* Recursively scan the operands of this expression. */
13988
13989 {
13990 const char *fmt = GET_RTX_FORMAT (code);
13991
13992 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13993 {
13994 if (fmt[i] == 'e')
13995 mark_used_regs_combine (XEXP (x, i));
13996 else if (fmt[i] == 'E')
13997 {
13998 int j;
13999
14000 for (j = 0; j < XVECLEN (x, i); j++)
14001 mark_used_regs_combine (XVECEXP (x, i, j));
14002 }
14003 }
14004 }
14005 }
14006 \f
14007 /* Remove register number REGNO from the dead registers list of INSN.
14008
14009 Return the note used to record the death, if there was one. */
14010
14011 rtx
14012 remove_death (unsigned int regno, rtx_insn *insn)
14013 {
14014 rtx note = find_regno_note (insn, REG_DEAD, regno);
14015
14016 if (note)
14017 remove_note (insn, note);
14018
14019 return note;
14020 }
14021
14022 /* For each register (hardware or pseudo) used within expression X, if its
14023 death is in an instruction with luid between FROM_LUID (inclusive) and
14024 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14025 list headed by PNOTES.
14026
14027 That said, don't move registers killed by maybe_kill_insn.
14028
14029 This is done when X is being merged by combination into TO_INSN. These
14030 notes will then be distributed as needed. */
14031
14032 static void
14033 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14034 rtx *pnotes)
14035 {
14036 const char *fmt;
14037 int len, i;
14038 enum rtx_code code = GET_CODE (x);
14039
14040 if (code == REG)
14041 {
14042 unsigned int regno = REGNO (x);
14043 rtx_insn *where_dead = reg_stat[regno].last_death;
14044
14045 /* If we do not know where the register died, it may still die between
14046 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14047 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14048 {
14049 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14050 while (insn
14051 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14052 && DF_INSN_LUID (insn) >= from_luid)
14053 {
14054 if (dead_or_set_regno_p (insn, regno))
14055 {
14056 if (find_regno_note (insn, REG_DEAD, regno))
14057 where_dead = insn;
14058 break;
14059 }
14060
14061 insn = prev_real_nondebug_insn (insn);
14062 }
14063 }
14064
14065 /* Don't move the register if it gets killed in between from and to. */
14066 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14067 && ! reg_referenced_p (x, maybe_kill_insn))
14068 return;
14069
14070 if (where_dead
14071 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14072 && DF_INSN_LUID (where_dead) >= from_luid
14073 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14074 {
14075 rtx note = remove_death (regno, where_dead);
14076
14077 /* It is possible for the call above to return 0. This can occur
14078 when last_death points to I2 or I1 that we combined with.
14079 In that case make a new note.
14080
14081 We must also check for the case where X is a hard register
14082 and NOTE is a death note for a range of hard registers
14083 including X. In that case, we must put REG_DEAD notes for
14084 the remaining registers in place of NOTE. */
14085
14086 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14087 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14088 {
14089 unsigned int deadregno = REGNO (XEXP (note, 0));
14090 unsigned int deadend = END_REGNO (XEXP (note, 0));
14091 unsigned int ourend = END_REGNO (x);
14092 unsigned int i;
14093
14094 for (i = deadregno; i < deadend; i++)
14095 if (i < regno || i >= ourend)
14096 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14097 }
14098
14099 /* If we didn't find any note, or if we found a REG_DEAD note that
14100 covers only part of the given reg, and we have a multi-reg hard
14101 register, then to be safe we must check for REG_DEAD notes
14102 for each register other than the first. They could have
14103 their own REG_DEAD notes lying around. */
14104 else if ((note == 0
14105 || (note != 0
14106 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14107 GET_MODE (x))))
14108 && regno < FIRST_PSEUDO_REGISTER
14109 && REG_NREGS (x) > 1)
14110 {
14111 unsigned int ourend = END_REGNO (x);
14112 unsigned int i, offset;
14113 rtx oldnotes = 0;
14114
14115 if (note)
14116 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14117 else
14118 offset = 1;
14119
14120 for (i = regno + offset; i < ourend; i++)
14121 move_deaths (regno_reg_rtx[i],
14122 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14123 }
14124
14125 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14126 {
14127 XEXP (note, 1) = *pnotes;
14128 *pnotes = note;
14129 }
14130 else
14131 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14132 }
14133
14134 return;
14135 }
14136
14137 else if (GET_CODE (x) == SET)
14138 {
14139 rtx dest = SET_DEST (x);
14140
14141 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14142
14143 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14144 that accesses one word of a multi-word item, some
14145 piece of everything register in the expression is used by
14146 this insn, so remove any old death. */
14147 /* ??? So why do we test for equality of the sizes? */
14148
14149 if (GET_CODE (dest) == ZERO_EXTRACT
14150 || GET_CODE (dest) == STRICT_LOW_PART
14151 || (GET_CODE (dest) == SUBREG
14152 && !read_modify_subreg_p (dest)))
14153 {
14154 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14155 return;
14156 }
14157
14158 /* If this is some other SUBREG, we know it replaces the entire
14159 value, so use that as the destination. */
14160 if (GET_CODE (dest) == SUBREG)
14161 dest = SUBREG_REG (dest);
14162
14163 /* If this is a MEM, adjust deaths of anything used in the address.
14164 For a REG (the only other possibility), the entire value is
14165 being replaced so the old value is not used in this insn. */
14166
14167 if (MEM_P (dest))
14168 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14169 to_insn, pnotes);
14170 return;
14171 }
14172
14173 else if (GET_CODE (x) == CLOBBER)
14174 return;
14175
14176 len = GET_RTX_LENGTH (code);
14177 fmt = GET_RTX_FORMAT (code);
14178
14179 for (i = 0; i < len; i++)
14180 {
14181 if (fmt[i] == 'E')
14182 {
14183 int j;
14184 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14185 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14186 to_insn, pnotes);
14187 }
14188 else if (fmt[i] == 'e')
14189 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14190 }
14191 }
14192 \f
14193 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14194 pattern of an insn. X must be a REG. */
14195
14196 static int
14197 reg_bitfield_target_p (rtx x, rtx body)
14198 {
14199 int i;
14200
14201 if (GET_CODE (body) == SET)
14202 {
14203 rtx dest = SET_DEST (body);
14204 rtx target;
14205 unsigned int regno, tregno, endregno, endtregno;
14206
14207 if (GET_CODE (dest) == ZERO_EXTRACT)
14208 target = XEXP (dest, 0);
14209 else if (GET_CODE (dest) == STRICT_LOW_PART)
14210 target = SUBREG_REG (XEXP (dest, 0));
14211 else
14212 return 0;
14213
14214 if (GET_CODE (target) == SUBREG)
14215 target = SUBREG_REG (target);
14216
14217 if (!REG_P (target))
14218 return 0;
14219
14220 tregno = REGNO (target), regno = REGNO (x);
14221 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14222 return target == x;
14223
14224 endtregno = end_hard_regno (GET_MODE (target), tregno);
14225 endregno = end_hard_regno (GET_MODE (x), regno);
14226
14227 return endregno > tregno && regno < endtregno;
14228 }
14229
14230 else if (GET_CODE (body) == PARALLEL)
14231 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14232 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14233 return 1;
14234
14235 return 0;
14236 }
14237 \f
14238 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14239 as appropriate. I3 and I2 are the insns resulting from the combination
14240 insns including FROM (I2 may be zero).
14241
14242 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14243 not need REG_DEAD notes because they are being substituted for. This
14244 saves searching in the most common cases.
14245
14246 Each note in the list is either ignored or placed on some insns, depending
14247 on the type of note. */
14248
14249 static void
14250 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14251 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14252 {
14253 rtx note, next_note;
14254 rtx tem_note;
14255 rtx_insn *tem_insn;
14256
14257 for (note = notes; note; note = next_note)
14258 {
14259 rtx_insn *place = 0, *place2 = 0;
14260
14261 next_note = XEXP (note, 1);
14262 switch (REG_NOTE_KIND (note))
14263 {
14264 case REG_BR_PROB:
14265 case REG_BR_PRED:
14266 /* Doesn't matter much where we put this, as long as it's somewhere.
14267 It is preferable to keep these notes on branches, which is most
14268 likely to be i3. */
14269 place = i3;
14270 break;
14271
14272 case REG_NON_LOCAL_GOTO:
14273 if (JUMP_P (i3))
14274 place = i3;
14275 else
14276 {
14277 gcc_assert (i2 && JUMP_P (i2));
14278 place = i2;
14279 }
14280 break;
14281
14282 case REG_EH_REGION:
14283 /* These notes must remain with the call or trapping instruction. */
14284 if (CALL_P (i3))
14285 place = i3;
14286 else if (i2 && CALL_P (i2))
14287 place = i2;
14288 else
14289 {
14290 gcc_assert (cfun->can_throw_non_call_exceptions);
14291 if (may_trap_p (i3))
14292 place = i3;
14293 else if (i2 && may_trap_p (i2))
14294 place = i2;
14295 /* ??? Otherwise assume we've combined things such that we
14296 can now prove that the instructions can't trap. Drop the
14297 note in this case. */
14298 }
14299 break;
14300
14301 case REG_ARGS_SIZE:
14302 /* ??? How to distribute between i3-i1. Assume i3 contains the
14303 entire adjustment. Assert i3 contains at least some adjust. */
14304 if (!noop_move_p (i3))
14305 {
14306 poly_int64 old_size, args_size = get_args_size (note);
14307 /* fixup_args_size_notes looks at REG_NORETURN note,
14308 so ensure the note is placed there first. */
14309 if (CALL_P (i3))
14310 {
14311 rtx *np;
14312 for (np = &next_note; *np; np = &XEXP (*np, 1))
14313 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14314 {
14315 rtx n = *np;
14316 *np = XEXP (n, 1);
14317 XEXP (n, 1) = REG_NOTES (i3);
14318 REG_NOTES (i3) = n;
14319 break;
14320 }
14321 }
14322 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14323 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14324 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14325 gcc_assert (maybe_ne (old_size, args_size)
14326 || (CALL_P (i3)
14327 && !ACCUMULATE_OUTGOING_ARGS
14328 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14329 }
14330 break;
14331
14332 case REG_NORETURN:
14333 case REG_SETJMP:
14334 case REG_TM:
14335 case REG_CALL_DECL:
14336 case REG_CALL_NOCF_CHECK:
14337 /* These notes must remain with the call. It should not be
14338 possible for both I2 and I3 to be a call. */
14339 if (CALL_P (i3))
14340 place = i3;
14341 else
14342 {
14343 gcc_assert (i2 && CALL_P (i2));
14344 place = i2;
14345 }
14346 break;
14347
14348 case REG_UNUSED:
14349 /* Any clobbers for i3 may still exist, and so we must process
14350 REG_UNUSED notes from that insn.
14351
14352 Any clobbers from i2 or i1 can only exist if they were added by
14353 recog_for_combine. In that case, recog_for_combine created the
14354 necessary REG_UNUSED notes. Trying to keep any original
14355 REG_UNUSED notes from these insns can cause incorrect output
14356 if it is for the same register as the original i3 dest.
14357 In that case, we will notice that the register is set in i3,
14358 and then add a REG_UNUSED note for the destination of i3, which
14359 is wrong. However, it is possible to have REG_UNUSED notes from
14360 i2 or i1 for register which were both used and clobbered, so
14361 we keep notes from i2 or i1 if they will turn into REG_DEAD
14362 notes. */
14363
14364 /* If this register is set or clobbered in I3, put the note there
14365 unless there is one already. */
14366 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14367 {
14368 if (from_insn != i3)
14369 break;
14370
14371 if (! (REG_P (XEXP (note, 0))
14372 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14373 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14374 place = i3;
14375 }
14376 /* Otherwise, if this register is used by I3, then this register
14377 now dies here, so we must put a REG_DEAD note here unless there
14378 is one already. */
14379 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14380 && ! (REG_P (XEXP (note, 0))
14381 ? find_regno_note (i3, REG_DEAD,
14382 REGNO (XEXP (note, 0)))
14383 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14384 {
14385 PUT_REG_NOTE_KIND (note, REG_DEAD);
14386 place = i3;
14387 }
14388
14389 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14390 but we can't tell which at this point. We must reset any
14391 expectations we had about the value that was previously
14392 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14393 and, if appropriate, restore its previous value, but we
14394 don't have enough information for that at this point. */
14395 else
14396 {
14397 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14398
14399 /* Otherwise, if this register is now referenced in i2
14400 then the register used to be modified in one of the
14401 original insns. If it was i3 (say, in an unused
14402 parallel), it's now completely gone, so the note can
14403 be discarded. But if it was modified in i2, i1 or i0
14404 and we still reference it in i2, then we're
14405 referencing the previous value, and since the
14406 register was modified and REG_UNUSED, we know that
14407 the previous value is now dead. So, if we only
14408 reference the register in i2, we change the note to
14409 REG_DEAD, to reflect the previous value. However, if
14410 we're also setting or clobbering the register as
14411 scratch, we know (because the register was not
14412 referenced in i3) that it's unused, just as it was
14413 unused before, and we place the note in i2. */
14414 if (from_insn != i3 && i2 && INSN_P (i2)
14415 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14416 {
14417 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14418 PUT_REG_NOTE_KIND (note, REG_DEAD);
14419 if (! (REG_P (XEXP (note, 0))
14420 ? find_regno_note (i2, REG_NOTE_KIND (note),
14421 REGNO (XEXP (note, 0)))
14422 : find_reg_note (i2, REG_NOTE_KIND (note),
14423 XEXP (note, 0))))
14424 place = i2;
14425 }
14426 }
14427
14428 break;
14429
14430 case REG_EQUAL:
14431 case REG_EQUIV:
14432 case REG_NOALIAS:
14433 /* These notes say something about results of an insn. We can
14434 only support them if they used to be on I3 in which case they
14435 remain on I3. Otherwise they are ignored.
14436
14437 If the note refers to an expression that is not a constant, we
14438 must also ignore the note since we cannot tell whether the
14439 equivalence is still true. It might be possible to do
14440 slightly better than this (we only have a problem if I2DEST
14441 or I1DEST is present in the expression), but it doesn't
14442 seem worth the trouble. */
14443
14444 if (from_insn == i3
14445 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14446 place = i3;
14447 break;
14448
14449 case REG_INC:
14450 /* These notes say something about how a register is used. They must
14451 be present on any use of the register in I2 or I3. */
14452 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14453 place = i3;
14454
14455 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14456 {
14457 if (place)
14458 place2 = i2;
14459 else
14460 place = i2;
14461 }
14462 break;
14463
14464 case REG_LABEL_TARGET:
14465 case REG_LABEL_OPERAND:
14466 /* This can show up in several ways -- either directly in the
14467 pattern, or hidden off in the constant pool with (or without?)
14468 a REG_EQUAL note. */
14469 /* ??? Ignore the without-reg_equal-note problem for now. */
14470 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14471 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14472 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14473 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14474 place = i3;
14475
14476 if (i2
14477 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14478 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14479 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14480 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14481 {
14482 if (place)
14483 place2 = i2;
14484 else
14485 place = i2;
14486 }
14487
14488 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14489 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14490 there. */
14491 if (place && JUMP_P (place)
14492 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14493 && (JUMP_LABEL (place) == NULL
14494 || JUMP_LABEL (place) == XEXP (note, 0)))
14495 {
14496 rtx label = JUMP_LABEL (place);
14497
14498 if (!label)
14499 JUMP_LABEL (place) = XEXP (note, 0);
14500 else if (LABEL_P (label))
14501 LABEL_NUSES (label)--;
14502 }
14503
14504 if (place2 && JUMP_P (place2)
14505 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14506 && (JUMP_LABEL (place2) == NULL
14507 || JUMP_LABEL (place2) == XEXP (note, 0)))
14508 {
14509 rtx label = JUMP_LABEL (place2);
14510
14511 if (!label)
14512 JUMP_LABEL (place2) = XEXP (note, 0);
14513 else if (LABEL_P (label))
14514 LABEL_NUSES (label)--;
14515 place2 = 0;
14516 }
14517 break;
14518
14519 case REG_NONNEG:
14520 /* This note says something about the value of a register prior
14521 to the execution of an insn. It is too much trouble to see
14522 if the note is still correct in all situations. It is better
14523 to simply delete it. */
14524 break;
14525
14526 case REG_DEAD:
14527 /* If we replaced the right hand side of FROM_INSN with a
14528 REG_EQUAL note, the original use of the dying register
14529 will not have been combined into I3 and I2. In such cases,
14530 FROM_INSN is guaranteed to be the first of the combined
14531 instructions, so we simply need to search back before
14532 FROM_INSN for the previous use or set of this register,
14533 then alter the notes there appropriately.
14534
14535 If the register is used as an input in I3, it dies there.
14536 Similarly for I2, if it is nonzero and adjacent to I3.
14537
14538 If the register is not used as an input in either I3 or I2
14539 and it is not one of the registers we were supposed to eliminate,
14540 there are two possibilities. We might have a non-adjacent I2
14541 or we might have somehow eliminated an additional register
14542 from a computation. For example, we might have had A & B where
14543 we discover that B will always be zero. In this case we will
14544 eliminate the reference to A.
14545
14546 In both cases, we must search to see if we can find a previous
14547 use of A and put the death note there. */
14548
14549 if (from_insn
14550 && from_insn == i2mod
14551 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14552 tem_insn = from_insn;
14553 else
14554 {
14555 if (from_insn
14556 && CALL_P (from_insn)
14557 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14558 place = from_insn;
14559 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14560 {
14561 /* If the new I2 sets the same register that is marked
14562 dead in the note, we do not in general know where to
14563 put the note. One important case we _can_ handle is
14564 when the note comes from I3. */
14565 if (from_insn == i3)
14566 place = i3;
14567 else
14568 break;
14569 }
14570 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14571 place = i3;
14572 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14573 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14574 place = i2;
14575 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14576 && !(i2mod
14577 && reg_overlap_mentioned_p (XEXP (note, 0),
14578 i2mod_old_rhs)))
14579 || rtx_equal_p (XEXP (note, 0), elim_i1)
14580 || rtx_equal_p (XEXP (note, 0), elim_i0))
14581 break;
14582 tem_insn = i3;
14583 }
14584
14585 if (place == 0)
14586 {
14587 basic_block bb = this_basic_block;
14588
14589 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14590 {
14591 if (!NONDEBUG_INSN_P (tem_insn))
14592 {
14593 if (tem_insn == BB_HEAD (bb))
14594 break;
14595 continue;
14596 }
14597
14598 /* If the register is being set at TEM_INSN, see if that is all
14599 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14600 into a REG_UNUSED note instead. Don't delete sets to
14601 global register vars. */
14602 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14603 || !global_regs[REGNO (XEXP (note, 0))])
14604 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14605 {
14606 rtx set = single_set (tem_insn);
14607 rtx inner_dest = 0;
14608 rtx_insn *cc0_setter = NULL;
14609
14610 if (set != 0)
14611 for (inner_dest = SET_DEST (set);
14612 (GET_CODE (inner_dest) == STRICT_LOW_PART
14613 || GET_CODE (inner_dest) == SUBREG
14614 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14615 inner_dest = XEXP (inner_dest, 0))
14616 ;
14617
14618 /* Verify that it was the set, and not a clobber that
14619 modified the register.
14620
14621 CC0 targets must be careful to maintain setter/user
14622 pairs. If we cannot delete the setter due to side
14623 effects, mark the user with an UNUSED note instead
14624 of deleting it. */
14625
14626 if (set != 0 && ! side_effects_p (SET_SRC (set))
14627 && rtx_equal_p (XEXP (note, 0), inner_dest)
14628 && (!HAVE_cc0
14629 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14630 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14631 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14632 {
14633 /* Move the notes and links of TEM_INSN elsewhere.
14634 This might delete other dead insns recursively.
14635 First set the pattern to something that won't use
14636 any register. */
14637 rtx old_notes = REG_NOTES (tem_insn);
14638
14639 PATTERN (tem_insn) = pc_rtx;
14640 REG_NOTES (tem_insn) = NULL;
14641
14642 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14643 NULL_RTX, NULL_RTX, NULL_RTX);
14644 distribute_links (LOG_LINKS (tem_insn));
14645
14646 unsigned int regno = REGNO (XEXP (note, 0));
14647 reg_stat_type *rsp = &reg_stat[regno];
14648 if (rsp->last_set == tem_insn)
14649 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14650
14651 SET_INSN_DELETED (tem_insn);
14652 if (tem_insn == i2)
14653 i2 = NULL;
14654
14655 /* Delete the setter too. */
14656 if (cc0_setter)
14657 {
14658 PATTERN (cc0_setter) = pc_rtx;
14659 old_notes = REG_NOTES (cc0_setter);
14660 REG_NOTES (cc0_setter) = NULL;
14661
14662 distribute_notes (old_notes, cc0_setter,
14663 cc0_setter, NULL,
14664 NULL_RTX, NULL_RTX, NULL_RTX);
14665 distribute_links (LOG_LINKS (cc0_setter));
14666
14667 SET_INSN_DELETED (cc0_setter);
14668 if (cc0_setter == i2)
14669 i2 = NULL;
14670 }
14671 }
14672 else
14673 {
14674 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14675
14676 /* If there isn't already a REG_UNUSED note, put one
14677 here. Do not place a REG_DEAD note, even if
14678 the register is also used here; that would not
14679 match the algorithm used in lifetime analysis
14680 and can cause the consistency check in the
14681 scheduler to fail. */
14682 if (! find_regno_note (tem_insn, REG_UNUSED,
14683 REGNO (XEXP (note, 0))))
14684 place = tem_insn;
14685 break;
14686 }
14687 }
14688 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14689 || (CALL_P (tem_insn)
14690 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14691 {
14692 place = tem_insn;
14693
14694 /* If we are doing a 3->2 combination, and we have a
14695 register which formerly died in i3 and was not used
14696 by i2, which now no longer dies in i3 and is used in
14697 i2 but does not die in i2, and place is between i2
14698 and i3, then we may need to move a link from place to
14699 i2. */
14700 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14701 && from_insn
14702 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14703 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14704 {
14705 struct insn_link *links = LOG_LINKS (place);
14706 LOG_LINKS (place) = NULL;
14707 distribute_links (links);
14708 }
14709 break;
14710 }
14711
14712 if (tem_insn == BB_HEAD (bb))
14713 break;
14714 }
14715
14716 }
14717
14718 /* If the register is set or already dead at PLACE, we needn't do
14719 anything with this note if it is still a REG_DEAD note.
14720 We check here if it is set at all, not if is it totally replaced,
14721 which is what `dead_or_set_p' checks, so also check for it being
14722 set partially. */
14723
14724 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14725 {
14726 unsigned int regno = REGNO (XEXP (note, 0));
14727 reg_stat_type *rsp = &reg_stat[regno];
14728
14729 if (dead_or_set_p (place, XEXP (note, 0))
14730 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14731 {
14732 /* Unless the register previously died in PLACE, clear
14733 last_death. [I no longer understand why this is
14734 being done.] */
14735 if (rsp->last_death != place)
14736 rsp->last_death = 0;
14737 place = 0;
14738 }
14739 else
14740 rsp->last_death = place;
14741
14742 /* If this is a death note for a hard reg that is occupying
14743 multiple registers, ensure that we are still using all
14744 parts of the object. If we find a piece of the object
14745 that is unused, we must arrange for an appropriate REG_DEAD
14746 note to be added for it. However, we can't just emit a USE
14747 and tag the note to it, since the register might actually
14748 be dead; so we recourse, and the recursive call then finds
14749 the previous insn that used this register. */
14750
14751 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14752 {
14753 unsigned int endregno = END_REGNO (XEXP (note, 0));
14754 bool all_used = true;
14755 unsigned int i;
14756
14757 for (i = regno; i < endregno; i++)
14758 if ((! refers_to_regno_p (i, PATTERN (place))
14759 && ! find_regno_fusage (place, USE, i))
14760 || dead_or_set_regno_p (place, i))
14761 {
14762 all_used = false;
14763 break;
14764 }
14765
14766 if (! all_used)
14767 {
14768 /* Put only REG_DEAD notes for pieces that are
14769 not already dead or set. */
14770
14771 for (i = regno; i < endregno;
14772 i += hard_regno_nregs (i, reg_raw_mode[i]))
14773 {
14774 rtx piece = regno_reg_rtx[i];
14775 basic_block bb = this_basic_block;
14776
14777 if (! dead_or_set_p (place, piece)
14778 && ! reg_bitfield_target_p (piece,
14779 PATTERN (place)))
14780 {
14781 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14782 NULL_RTX);
14783
14784 distribute_notes (new_note, place, place,
14785 NULL, NULL_RTX, NULL_RTX,
14786 NULL_RTX);
14787 }
14788 else if (! refers_to_regno_p (i, PATTERN (place))
14789 && ! find_regno_fusage (place, USE, i))
14790 for (tem_insn = PREV_INSN (place); ;
14791 tem_insn = PREV_INSN (tem_insn))
14792 {
14793 if (!NONDEBUG_INSN_P (tem_insn))
14794 {
14795 if (tem_insn == BB_HEAD (bb))
14796 break;
14797 continue;
14798 }
14799 if (dead_or_set_p (tem_insn, piece)
14800 || reg_bitfield_target_p (piece,
14801 PATTERN (tem_insn)))
14802 {
14803 add_reg_note (tem_insn, REG_UNUSED, piece);
14804 break;
14805 }
14806 }
14807 }
14808
14809 place = 0;
14810 }
14811 }
14812 }
14813 break;
14814
14815 default:
14816 /* Any other notes should not be present at this point in the
14817 compilation. */
14818 gcc_unreachable ();
14819 }
14820
14821 if (place)
14822 {
14823 XEXP (note, 1) = REG_NOTES (place);
14824 REG_NOTES (place) = note;
14825
14826 /* Set added_notes_insn to the earliest insn we added a note to. */
14827 if (added_notes_insn == 0
14828 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14829 added_notes_insn = place;
14830 }
14831
14832 if (place2)
14833 {
14834 add_shallow_copy_of_reg_note (place2, note);
14835
14836 /* Set added_notes_insn to the earliest insn we added a note to. */
14837 if (added_notes_insn == 0
14838 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14839 added_notes_insn = place2;
14840 }
14841 }
14842 }
14843 \f
14844 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14845 I3, I2, and I1 to new locations. This is also called to add a link
14846 pointing at I3 when I3's destination is changed. */
14847
14848 static void
14849 distribute_links (struct insn_link *links)
14850 {
14851 struct insn_link *link, *next_link;
14852
14853 for (link = links; link; link = next_link)
14854 {
14855 rtx_insn *place = 0;
14856 rtx_insn *insn;
14857 rtx set, reg;
14858
14859 next_link = link->next;
14860
14861 /* If the insn that this link points to is a NOTE, ignore it. */
14862 if (NOTE_P (link->insn))
14863 continue;
14864
14865 set = 0;
14866 rtx pat = PATTERN (link->insn);
14867 if (GET_CODE (pat) == SET)
14868 set = pat;
14869 else if (GET_CODE (pat) == PARALLEL)
14870 {
14871 int i;
14872 for (i = 0; i < XVECLEN (pat, 0); i++)
14873 {
14874 set = XVECEXP (pat, 0, i);
14875 if (GET_CODE (set) != SET)
14876 continue;
14877
14878 reg = SET_DEST (set);
14879 while (GET_CODE (reg) == ZERO_EXTRACT
14880 || GET_CODE (reg) == STRICT_LOW_PART
14881 || GET_CODE (reg) == SUBREG)
14882 reg = XEXP (reg, 0);
14883
14884 if (!REG_P (reg))
14885 continue;
14886
14887 if (REGNO (reg) == link->regno)
14888 break;
14889 }
14890 if (i == XVECLEN (pat, 0))
14891 continue;
14892 }
14893 else
14894 continue;
14895
14896 reg = SET_DEST (set);
14897
14898 while (GET_CODE (reg) == ZERO_EXTRACT
14899 || GET_CODE (reg) == STRICT_LOW_PART
14900 || GET_CODE (reg) == SUBREG)
14901 reg = XEXP (reg, 0);
14902
14903 if (reg == pc_rtx)
14904 continue;
14905
14906 /* A LOG_LINK is defined as being placed on the first insn that uses
14907 a register and points to the insn that sets the register. Start
14908 searching at the next insn after the target of the link and stop
14909 when we reach a set of the register or the end of the basic block.
14910
14911 Note that this correctly handles the link that used to point from
14912 I3 to I2. Also note that not much searching is typically done here
14913 since most links don't point very far away. */
14914
14915 for (insn = NEXT_INSN (link->insn);
14916 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14917 || BB_HEAD (this_basic_block->next_bb) != insn));
14918 insn = NEXT_INSN (insn))
14919 if (DEBUG_INSN_P (insn))
14920 continue;
14921 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14922 {
14923 if (reg_referenced_p (reg, PATTERN (insn)))
14924 place = insn;
14925 break;
14926 }
14927 else if (CALL_P (insn)
14928 && find_reg_fusage (insn, USE, reg))
14929 {
14930 place = insn;
14931 break;
14932 }
14933 else if (INSN_P (insn) && reg_set_p (reg, insn))
14934 break;
14935
14936 /* If we found a place to put the link, place it there unless there
14937 is already a link to the same insn as LINK at that point. */
14938
14939 if (place)
14940 {
14941 struct insn_link *link2;
14942
14943 FOR_EACH_LOG_LINK (link2, place)
14944 if (link2->insn == link->insn && link2->regno == link->regno)
14945 break;
14946
14947 if (link2 == NULL)
14948 {
14949 link->next = LOG_LINKS (place);
14950 LOG_LINKS (place) = link;
14951
14952 /* Set added_links_insn to the earliest insn we added a
14953 link to. */
14954 if (added_links_insn == 0
14955 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14956 added_links_insn = place;
14957 }
14958 }
14959 }
14960 }
14961 \f
14962 /* Check for any register or memory mentioned in EQUIV that is not
14963 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14964 of EXPR where some registers may have been replaced by constants. */
14965
14966 static bool
14967 unmentioned_reg_p (rtx equiv, rtx expr)
14968 {
14969 subrtx_iterator::array_type array;
14970 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14971 {
14972 const_rtx x = *iter;
14973 if ((REG_P (x) || MEM_P (x))
14974 && !reg_mentioned_p (x, expr))
14975 return true;
14976 }
14977 return false;
14978 }
14979 \f
14980 DEBUG_FUNCTION void
14981 dump_combine_stats (FILE *file)
14982 {
14983 fprintf
14984 (file,
14985 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14986 combine_attempts, combine_merges, combine_extras, combine_successes);
14987 }
14988
14989 void
14990 dump_combine_total_stats (FILE *file)
14991 {
14992 fprintf
14993 (file,
14994 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14995 total_attempts, total_merges, total_extras, total_successes);
14996 }
14997 \f
14998 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
14999 the reg-to-reg copy can usefully combine with later instructions, but we
15000 do not want to combine the hard reg into later instructions, for that
15001 restricts register allocation. */
15002 static void
15003 make_more_copies (void)
15004 {
15005 basic_block bb;
15006
15007 FOR_EACH_BB_FN (bb, cfun)
15008 {
15009 rtx_insn *insn;
15010
15011 FOR_BB_INSNS (bb, insn)
15012 {
15013 if (!NONDEBUG_INSN_P (insn))
15014 continue;
15015
15016 rtx set = single_set (insn);
15017 if (!set)
15018 continue;
15019
15020 rtx dest = SET_DEST (set);
15021 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15022 continue;
15023
15024 rtx src = SET_SRC (set);
15025 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15026 continue;
15027 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15028 continue;
15029
15030 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15031 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15032 SET_SRC (set) = new_reg;
15033 emit_insn_before (new_insn, insn);
15034 df_insn_rescan (insn);
15035 }
15036 }
15037 }
15038
15039 /* Try combining insns through substitution. */
15040 static unsigned int
15041 rest_of_handle_combine (void)
15042 {
15043 make_more_copies ();
15044
15045 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15046 df_note_add_problem ();
15047 df_analyze ();
15048
15049 regstat_init_n_sets_and_refs ();
15050 reg_n_sets_max = max_reg_num ();
15051
15052 int rebuild_jump_labels_after_combine
15053 = combine_instructions (get_insns (), max_reg_num ());
15054
15055 /* Combining insns may have turned an indirect jump into a
15056 direct jump. Rebuild the JUMP_LABEL fields of jumping
15057 instructions. */
15058 if (rebuild_jump_labels_after_combine)
15059 {
15060 if (dom_info_available_p (CDI_DOMINATORS))
15061 free_dominance_info (CDI_DOMINATORS);
15062 timevar_push (TV_JUMP);
15063 rebuild_jump_labels (get_insns ());
15064 cleanup_cfg (0);
15065 timevar_pop (TV_JUMP);
15066 }
15067
15068 regstat_free_n_sets_and_refs ();
15069 return 0;
15070 }
15071
15072 namespace {
15073
15074 const pass_data pass_data_combine =
15075 {
15076 RTL_PASS, /* type */
15077 "combine", /* name */
15078 OPTGROUP_NONE, /* optinfo_flags */
15079 TV_COMBINE, /* tv_id */
15080 PROP_cfglayout, /* properties_required */
15081 0, /* properties_provided */
15082 0, /* properties_destroyed */
15083 0, /* todo_flags_start */
15084 TODO_df_finish, /* todo_flags_finish */
15085 };
15086
15087 class pass_combine : public rtl_opt_pass
15088 {
15089 public:
15090 pass_combine (gcc::context *ctxt)
15091 : rtl_opt_pass (pass_data_combine, ctxt)
15092 {}
15093
15094 /* opt_pass methods: */
15095 virtual bool gate (function *) { return (optimize > 0); }
15096 virtual unsigned int execute (function *)
15097 {
15098 return rest_of_handle_combine ();
15099 }
15100
15101 }; // class pass_combine
15102
15103 } // anon namespace
15104
15105 rtl_opt_pass *
15106 make_pass_combine (gcc::context *ctxt)
15107 {
15108 return new pass_combine (ctxt);
15109 }