Daily bump.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "stringpool.h"
79 #include "attribs.h"
80 #include "asan.h"
81 #include "rtl-iter.h"
82 #include "print-rtl.h"
83 #include "function-abi.h"
84 #include "common/common-target.h"
85
86 #ifdef XCOFF_DEBUGGING_INFO
87 #include "xcoffout.h" /* Needed for external data declarations. */
88 #endif
89
90 #include "dwarf2out.h"
91
92 #ifdef DBX_DEBUGGING_INFO
93 #include "dbxout.h"
94 #endif
95
96 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
97 So define a null default for it to save conditionalization later. */
98 #ifndef CC_STATUS_INIT
99 #define CC_STATUS_INIT
100 #endif
101
102 /* Is the given character a logical line separator for the assembler? */
103 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
104 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
105 #endif
106
107 #ifndef JUMP_TABLES_IN_TEXT_SECTION
108 #define JUMP_TABLES_IN_TEXT_SECTION 0
109 #endif
110
111 /* Bitflags used by final_scan_insn. */
112 #define SEEN_NOTE 1
113 #define SEEN_EMITTED 2
114 #define SEEN_NEXT_VIEW 4
115
116 /* Last insn processed by final_scan_insn. */
117 static rtx_insn *debug_insn;
118 rtx_insn *current_output_insn;
119
120 /* Line number of last NOTE. */
121 static int last_linenum;
122
123 /* Column number of last NOTE. */
124 static int last_columnnum;
125
126 /* Discriminator written to assembly. */
127 static int last_discriminator;
128
129 /* Discriminator to be written to assembly for current instruction.
130 Note: actual usage depends on loc_discriminator_kind setting. */
131 static int discriminator;
132 static inline int compute_discriminator (location_t loc);
133
134 /* Discriminator identifying current basic block among others sharing
135 the same locus. */
136 static int bb_discriminator;
137
138 /* Basic block discriminator for previous instruction. */
139 static int last_bb_discriminator;
140
141 /* Highest line number in current block. */
142 static int high_block_linenum;
143
144 /* Likewise for function. */
145 static int high_function_linenum;
146
147 /* Filename of last NOTE. */
148 static const char *last_filename;
149
150 /* Override filename, line and column number. */
151 static const char *override_filename;
152 static int override_linenum;
153 static int override_columnnum;
154 static int override_discriminator;
155
156 /* Whether to force emission of a line note before the next insn. */
157 static bool force_source_line = false;
158
159 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
160
161 /* Nonzero while outputting an `asm' with operands.
162 This means that inconsistencies are the user's fault, so don't die.
163 The precise value is the insn being output, to pass to error_for_asm. */
164 const rtx_insn *this_is_asm_operands;
165
166 /* Number of operands of this insn, for an `asm' with operands. */
167 static unsigned int insn_noperands;
168
169 /* Compare optimization flag. */
170
171 static rtx last_ignored_compare = 0;
172
173 /* Assign a unique number to each insn that is output.
174 This can be used to generate unique local labels. */
175
176 static int insn_counter = 0;
177
178 /* This variable contains machine-dependent flags (defined in tm.h)
179 set and examined by output routines
180 that describe how to interpret the condition codes properly. */
181
182 CC_STATUS cc_status;
183
184 /* During output of an insn, this contains a copy of cc_status
185 from before the insn. */
186
187 CC_STATUS cc_prev_status;
188
189 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
190
191 static int block_depth;
192
193 /* Nonzero if have enabled APP processing of our assembler output. */
194
195 static int app_on;
196
197 /* If we are outputting an insn sequence, this contains the sequence rtx.
198 Zero otherwise. */
199
200 rtx_sequence *final_sequence;
201
202 #ifdef ASSEMBLER_DIALECT
203
204 /* Number of the assembler dialect to use, starting at 0. */
205 static int dialect_number;
206 #endif
207
208 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
209 rtx current_insn_predicate;
210
211 /* True if printing into -fdump-final-insns= dump. */
212 bool final_insns_dump_p;
213
214 /* True if profile_function should be called, but hasn't been called yet. */
215 static bool need_profile_function;
216
217 static int asm_insn_count (rtx);
218 static void profile_function (FILE *);
219 static void profile_after_prologue (FILE *);
220 static bool notice_source_line (rtx_insn *, bool *);
221 static rtx walk_alter_subreg (rtx *, bool *);
222 static void output_asm_name (void);
223 static void output_alternate_entry_point (FILE *, rtx_insn *);
224 static tree get_mem_expr_from_op (rtx, int *);
225 static void output_asm_operand_names (rtx *, int *, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx_insn *);
228 #endif
229 #if HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 static int align_fuzz (rtx, rtx, int, unsigned);
233 static void collect_fn_hard_reg_usage (void);
234 \f
235 /* Initialize data in final at the beginning of a compilation. */
236
237 void
238 init_final (const char *filename ATTRIBUTE_UNUSED)
239 {
240 app_on = 0;
241 final_sequence = 0;
242
243 #ifdef ASSEMBLER_DIALECT
244 dialect_number = ASSEMBLER_DIALECT;
245 #endif
246 }
247
248 /* Default target function prologue and epilogue assembler output.
249
250 If not overridden for epilogue code, then the function body itself
251 contains return instructions wherever needed. */
252 void
253 default_function_pro_epilogue (FILE *)
254 {
255 }
256
257 void
258 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
259 tree decl ATTRIBUTE_UNUSED,
260 bool new_is_cold ATTRIBUTE_UNUSED)
261 {
262 }
263
264 /* Default target hook that outputs nothing to a stream. */
265 void
266 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
267 {
268 }
269
270 /* Enable APP processing of subsequent output.
271 Used before the output from an `asm' statement. */
272
273 void
274 app_enable (void)
275 {
276 if (! app_on)
277 {
278 fputs (ASM_APP_ON, asm_out_file);
279 app_on = 1;
280 }
281 }
282
283 /* Disable APP processing of subsequent output.
284 Called from varasm.c before most kinds of output. */
285
286 void
287 app_disable (void)
288 {
289 if (app_on)
290 {
291 fputs (ASM_APP_OFF, asm_out_file);
292 app_on = 0;
293 }
294 }
295 \f
296 /* Return the number of slots filled in the current
297 delayed branch sequence (we don't count the insn needing the
298 delay slot). Zero if not in a delayed branch sequence. */
299
300 int
301 dbr_sequence_length (void)
302 {
303 if (final_sequence != 0)
304 return XVECLEN (final_sequence, 0) - 1;
305 else
306 return 0;
307 }
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 vec<int> insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 static rtx *uid_align;
341 static int *uid_shuid;
342 static vec<align_flags> label_align;
343
344 /* Indicate that branch shortening hasn't yet been done. */
345
346 void
347 init_insn_lengths (void)
348 {
349 if (uid_shuid)
350 {
351 free (uid_shuid);
352 uid_shuid = 0;
353 }
354 if (insn_lengths)
355 {
356 free (insn_lengths);
357 insn_lengths = 0;
358 insn_lengths_max_uid = 0;
359 }
360 if (HAVE_ATTR_length)
361 INSN_ADDRESSES_FREE ();
362 if (uid_align)
363 {
364 free (uid_align);
365 uid_align = 0;
366 }
367 }
368
369 /* Obtain the current length of an insn. If branch shortening has been done,
370 get its actual length. Otherwise, use FALLBACK_FN to calculate the
371 length. */
372 static int
373 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
374 {
375 rtx body;
376 int i;
377 int length = 0;
378
379 if (!HAVE_ATTR_length)
380 return 0;
381
382 if (insn_lengths_max_uid > INSN_UID (insn))
383 return insn_lengths[INSN_UID (insn)];
384 else
385 switch (GET_CODE (insn))
386 {
387 case NOTE:
388 case BARRIER:
389 case CODE_LABEL:
390 case DEBUG_INSN:
391 return 0;
392
393 case CALL_INSN:
394 case JUMP_INSN:
395 length = fallback_fn (insn);
396 break;
397
398 case INSN:
399 body = PATTERN (insn);
400 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
401 return 0;
402
403 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
404 length = asm_insn_count (body) * fallback_fn (insn);
405 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
406 for (i = 0; i < seq->len (); i++)
407 length += get_attr_length_1 (seq->insn (i), fallback_fn);
408 else
409 length = fallback_fn (insn);
410 break;
411
412 default:
413 break;
414 }
415
416 #ifdef ADJUST_INSN_LENGTH
417 ADJUST_INSN_LENGTH (insn, length);
418 #endif
419 return length;
420 }
421
422 /* Obtain the current length of an insn. If branch shortening has been done,
423 get its actual length. Otherwise, get its maximum length. */
424 int
425 get_attr_length (rtx_insn *insn)
426 {
427 return get_attr_length_1 (insn, insn_default_length);
428 }
429
430 /* Obtain the current length of an insn. If branch shortening has been done,
431 get its actual length. Otherwise, get its minimum length. */
432 int
433 get_attr_min_length (rtx_insn *insn)
434 {
435 return get_attr_length_1 (insn, insn_min_length);
436 }
437 \f
438 /* Code to handle alignment inside shorten_branches. */
439
440 /* Here is an explanation how the algorithm in align_fuzz can give
441 proper results:
442
443 Call a sequence of instructions beginning with alignment point X
444 and continuing until the next alignment point `block X'. When `X'
445 is used in an expression, it means the alignment value of the
446 alignment point.
447
448 Call the distance between the start of the first insn of block X, and
449 the end of the last insn of block X `IX', for the `inner size of X'.
450 This is clearly the sum of the instruction lengths.
451
452 Likewise with the next alignment-delimited block following X, which we
453 shall call block Y.
454
455 Call the distance between the start of the first insn of block X, and
456 the start of the first insn of block Y `OX', for the `outer size of X'.
457
458 The estimated padding is then OX - IX.
459
460 OX can be safely estimated as
461
462 if (X >= Y)
463 OX = round_up(IX, Y)
464 else
465 OX = round_up(IX, X) + Y - X
466
467 Clearly est(IX) >= real(IX), because that only depends on the
468 instruction lengths, and those being overestimated is a given.
469
470 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
471 we needn't worry about that when thinking about OX.
472
473 When X >= Y, the alignment provided by Y adds no uncertainty factor
474 for branch ranges starting before X, so we can just round what we have.
475 But when X < Y, we don't know anything about the, so to speak,
476 `middle bits', so we have to assume the worst when aligning up from an
477 address mod X to one mod Y, which is Y - X. */
478
479 #ifndef LABEL_ALIGN
480 #define LABEL_ALIGN(LABEL) align_labels
481 #endif
482
483 #ifndef LOOP_ALIGN
484 #define LOOP_ALIGN(LABEL) align_loops
485 #endif
486
487 #ifndef LABEL_ALIGN_AFTER_BARRIER
488 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
489 #endif
490
491 #ifndef JUMP_ALIGN
492 #define JUMP_ALIGN(LABEL) align_jumps
493 #endif
494
495 #ifndef ADDR_VEC_ALIGN
496 static int
497 final_addr_vec_align (rtx_jump_table_data *addr_vec)
498 {
499 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
500
501 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
502 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
503 return exact_log2 (align);
504
505 }
506
507 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
508 #endif
509
510 #ifndef INSN_LENGTH_ALIGNMENT
511 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
512 #endif
513
514 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
515
516 static int min_labelno, max_labelno;
517
518 #define LABEL_TO_ALIGNMENT(LABEL) \
519 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno])
520
521 /* For the benefit of port specific code do this also as a function. */
522
523 align_flags
524 label_to_alignment (rtx label)
525 {
526 if (CODE_LABEL_NUMBER (label) <= max_labelno)
527 return LABEL_TO_ALIGNMENT (label);
528 return align_flags ();
529 }
530
531 /* The differences in addresses
532 between a branch and its target might grow or shrink depending on
533 the alignment the start insn of the range (the branch for a forward
534 branch or the label for a backward branch) starts out on; if these
535 differences are used naively, they can even oscillate infinitely.
536 We therefore want to compute a 'worst case' address difference that
537 is independent of the alignment the start insn of the range end
538 up on, and that is at least as large as the actual difference.
539 The function align_fuzz calculates the amount we have to add to the
540 naively computed difference, by traversing the part of the alignment
541 chain of the start insn of the range that is in front of the end insn
542 of the range, and considering for each alignment the maximum amount
543 that it might contribute to a size increase.
544
545 For casesi tables, we also want to know worst case minimum amounts of
546 address difference, in case a machine description wants to introduce
547 some common offset that is added to all offsets in a table.
548 For this purpose, align_fuzz with a growth argument of 0 computes the
549 appropriate adjustment. */
550
551 /* Compute the maximum delta by which the difference of the addresses of
552 START and END might grow / shrink due to a different address for start
553 which changes the size of alignment insns between START and END.
554 KNOWN_ALIGN_LOG is the alignment known for START.
555 GROWTH should be ~0 if the objective is to compute potential code size
556 increase, and 0 if the objective is to compute potential shrink.
557 The return value is undefined for any other value of GROWTH. */
558
559 static int
560 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
561 {
562 int uid = INSN_UID (start);
563 rtx align_label;
564 int known_align = 1 << known_align_log;
565 int end_shuid = INSN_SHUID (end);
566 int fuzz = 0;
567
568 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
569 {
570 int align_addr, new_align;
571
572 uid = INSN_UID (align_label);
573 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
574 if (uid_shuid[uid] > end_shuid)
575 break;
576 align_flags alignment = LABEL_TO_ALIGNMENT (align_label);
577 new_align = 1 << alignment.levels[0].log;
578 if (new_align < known_align)
579 continue;
580 fuzz += (-align_addr ^ growth) & (new_align - known_align);
581 known_align = new_align;
582 }
583 return fuzz;
584 }
585
586 /* Compute a worst-case reference address of a branch so that it
587 can be safely used in the presence of aligned labels. Since the
588 size of the branch itself is unknown, the size of the branch is
589 not included in the range. I.e. for a forward branch, the reference
590 address is the end address of the branch as known from the previous
591 branch shortening pass, minus a value to account for possible size
592 increase due to alignment. For a backward branch, it is the start
593 address of the branch as known from the current pass, plus a value
594 to account for possible size increase due to alignment.
595 NB.: Therefore, the maximum offset allowed for backward branches needs
596 to exclude the branch size. */
597
598 int
599 insn_current_reference_address (rtx_insn *branch)
600 {
601 rtx dest;
602 int seq_uid;
603
604 if (! INSN_ADDRESSES_SET_P ())
605 return 0;
606
607 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
608 seq_uid = INSN_UID (seq);
609 if (!jump_to_label_p (branch))
610 /* This can happen for example on the PA; the objective is to know the
611 offset to address something in front of the start of the function.
612 Thus, we can treat it like a backward branch.
613 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
614 any alignment we'd encounter, so we skip the call to align_fuzz. */
615 return insn_current_address;
616 dest = JUMP_LABEL (branch);
617
618 /* BRANCH has no proper alignment chain set, so use SEQ.
619 BRANCH also has no INSN_SHUID. */
620 if (INSN_SHUID (seq) < INSN_SHUID (dest))
621 {
622 /* Forward branch. */
623 return (insn_last_address + insn_lengths[seq_uid]
624 - align_fuzz (seq, dest, length_unit_log, ~0));
625 }
626 else
627 {
628 /* Backward branch. */
629 return (insn_current_address
630 + align_fuzz (dest, seq, length_unit_log, ~0));
631 }
632 }
633 \f
634 /* Compute branch alignments based on CFG profile. */
635
636 unsigned int
637 compute_alignments (void)
638 {
639 basic_block bb;
640 align_flags max_alignment;
641
642 label_align.truncate (0);
643
644 max_labelno = max_label_num ();
645 min_labelno = get_first_label_num ();
646 label_align.safe_grow_cleared (max_labelno - min_labelno + 1, true);
647
648 /* If not optimizing or optimizing for size, don't assign any alignments. */
649 if (! optimize || optimize_function_for_size_p (cfun))
650 return 0;
651
652 if (dump_file)
653 {
654 dump_reg_info (dump_file);
655 dump_flow_info (dump_file, TDF_DETAILS);
656 flow_loops_dump (dump_file, NULL, 1);
657 }
658 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
659 profile_count count_threshold = cfun->cfg->count_max.apply_scale
660 (1, param_align_threshold);
661
662 if (dump_file)
663 {
664 fprintf (dump_file, "count_max: ");
665 cfun->cfg->count_max.dump (dump_file);
666 fprintf (dump_file, "\n");
667 }
668 FOR_EACH_BB_FN (bb, cfun)
669 {
670 rtx_insn *label = BB_HEAD (bb);
671 bool has_fallthru = 0;
672 edge e;
673 edge_iterator ei;
674
675 if (!LABEL_P (label)
676 || optimize_bb_for_size_p (bb))
677 {
678 if (dump_file)
679 fprintf (dump_file,
680 "BB %4i loop %2i loop_depth %2i skipped.\n",
681 bb->index,
682 bb->loop_father->num,
683 bb_loop_depth (bb));
684 continue;
685 }
686 max_alignment = LABEL_ALIGN (label);
687 profile_count fallthru_count = profile_count::zero ();
688 profile_count branch_count = profile_count::zero ();
689
690 FOR_EACH_EDGE (e, ei, bb->preds)
691 {
692 if (e->flags & EDGE_FALLTHRU)
693 has_fallthru = 1, fallthru_count += e->count ();
694 else
695 branch_count += e->count ();
696 }
697 if (dump_file)
698 {
699 fprintf (dump_file, "BB %4i loop %2i loop_depth"
700 " %2i fall ",
701 bb->index, bb->loop_father->num,
702 bb_loop_depth (bb));
703 fallthru_count.dump (dump_file);
704 fprintf (dump_file, " branch ");
705 branch_count.dump (dump_file);
706 if (!bb->loop_father->inner && bb->loop_father->num)
707 fprintf (dump_file, " inner_loop");
708 if (bb->loop_father->header == bb)
709 fprintf (dump_file, " loop_header");
710 fprintf (dump_file, "\n");
711 }
712 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
713 continue;
714
715 /* There are two purposes to align block with no fallthru incoming edge:
716 1) to avoid fetch stalls when branch destination is near cache boundary
717 2) to improve cache efficiency in case the previous block is not executed
718 (so it does not need to be in the cache).
719
720 We to catch first case, we align frequently executed blocks.
721 To catch the second, we align blocks that are executed more frequently
722 than the predecessor and the predecessor is likely to not be executed
723 when function is called. */
724
725 if (!has_fallthru
726 && (branch_count > count_threshold
727 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
728 && (bb->prev_bb->count
729 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
730 ->count.apply_scale (1, 2)))))
731 {
732 align_flags alignment = JUMP_ALIGN (label);
733 if (dump_file)
734 fprintf (dump_file, " jump alignment added.\n");
735 max_alignment = align_flags::max (max_alignment, alignment);
736 }
737 /* In case block is frequent and reached mostly by non-fallthru edge,
738 align it. It is most likely a first block of loop. */
739 if (has_fallthru
740 && !(single_succ_p (bb)
741 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
742 && optimize_bb_for_speed_p (bb)
743 && branch_count + fallthru_count > count_threshold
744 && (branch_count
745 > fallthru_count.apply_scale
746 (param_align_loop_iterations, 1)))
747 {
748 align_flags alignment = LOOP_ALIGN (label);
749 if (dump_file)
750 fprintf (dump_file, " internal loop alignment added.\n");
751 max_alignment = align_flags::max (max_alignment, alignment);
752 }
753 LABEL_TO_ALIGNMENT (label) = max_alignment;
754 }
755
756 loop_optimizer_finalize ();
757 free_dominance_info (CDI_DOMINATORS);
758 return 0;
759 }
760
761 /* Grow the LABEL_ALIGN array after new labels are created. */
762
763 static void
764 grow_label_align (void)
765 {
766 int old = max_labelno;
767 int n_labels;
768 int n_old_labels;
769
770 max_labelno = max_label_num ();
771
772 n_labels = max_labelno - min_labelno + 1;
773 n_old_labels = old - min_labelno + 1;
774
775 label_align.safe_grow_cleared (n_labels, true);
776
777 /* Range of labels grows monotonically in the function. Failing here
778 means that the initialization of array got lost. */
779 gcc_assert (n_old_labels <= n_labels);
780 }
781
782 /* Update the already computed alignment information. LABEL_PAIRS is a vector
783 made up of pairs of labels for which the alignment information of the first
784 element will be copied from that of the second element. */
785
786 void
787 update_alignments (vec<rtx> &label_pairs)
788 {
789 unsigned int i = 0;
790 rtx iter, label = NULL_RTX;
791
792 if (max_labelno != max_label_num ())
793 grow_label_align ();
794
795 FOR_EACH_VEC_ELT (label_pairs, i, iter)
796 if (i & 1)
797 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
798 else
799 label = iter;
800 }
801
802 namespace {
803
804 const pass_data pass_data_compute_alignments =
805 {
806 RTL_PASS, /* type */
807 "alignments", /* name */
808 OPTGROUP_NONE, /* optinfo_flags */
809 TV_NONE, /* tv_id */
810 0, /* properties_required */
811 0, /* properties_provided */
812 0, /* properties_destroyed */
813 0, /* todo_flags_start */
814 0, /* todo_flags_finish */
815 };
816
817 class pass_compute_alignments : public rtl_opt_pass
818 {
819 public:
820 pass_compute_alignments (gcc::context *ctxt)
821 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
822 {}
823
824 /* opt_pass methods: */
825 virtual unsigned int execute (function *) { return compute_alignments (); }
826
827 }; // class pass_compute_alignments
828
829 } // anon namespace
830
831 rtl_opt_pass *
832 make_pass_compute_alignments (gcc::context *ctxt)
833 {
834 return new pass_compute_alignments (ctxt);
835 }
836
837 \f
838 /* Make a pass over all insns and compute their actual lengths by shortening
839 any branches of variable length if possible. */
840
841 /* shorten_branches might be called multiple times: for example, the SH
842 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
843 In order to do this, it needs proper length information, which it obtains
844 by calling shorten_branches. This cannot be collapsed with
845 shorten_branches itself into a single pass unless we also want to integrate
846 reorg.c, since the branch splitting exposes new instructions with delay
847 slots. */
848
849 void
850 shorten_branches (rtx_insn *first)
851 {
852 rtx_insn *insn;
853 int max_uid;
854 int i;
855 rtx_insn *seq;
856 int something_changed = 1;
857 char *varying_length;
858 rtx body;
859 int uid;
860 rtx align_tab[MAX_CODE_ALIGN + 1];
861
862 /* Compute maximum UID and allocate label_align / uid_shuid. */
863 max_uid = get_max_uid ();
864
865 /* Free uid_shuid before reallocating it. */
866 free (uid_shuid);
867
868 uid_shuid = XNEWVEC (int, max_uid);
869
870 if (max_labelno != max_label_num ())
871 grow_label_align ();
872
873 /* Initialize label_align and set up uid_shuid to be strictly
874 monotonically rising with insn order. */
875 /* We use alignment here to keep track of the maximum alignment we want to
876 impose on the next CODE_LABEL (or the current one if we are processing
877 the CODE_LABEL itself). */
878
879 align_flags max_alignment;
880
881 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
882 {
883 INSN_SHUID (insn) = i++;
884 if (INSN_P (insn))
885 continue;
886
887 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
888 {
889 /* Merge in alignments computed by compute_alignments. */
890 align_flags alignment = LABEL_TO_ALIGNMENT (label);
891 max_alignment = align_flags::max (max_alignment, alignment);
892
893 rtx_jump_table_data *table = jump_table_for_label (label);
894 if (!table)
895 {
896 align_flags alignment = LABEL_ALIGN (label);
897 max_alignment = align_flags::max (max_alignment, alignment);
898 }
899 /* ADDR_VECs only take room if read-only data goes into the text
900 section. */
901 if ((JUMP_TABLES_IN_TEXT_SECTION
902 || readonly_data_section == text_section)
903 && table)
904 {
905 align_flags alignment = align_flags (ADDR_VEC_ALIGN (table));
906 max_alignment = align_flags::max (max_alignment, alignment);
907 }
908 LABEL_TO_ALIGNMENT (label) = max_alignment;
909 max_alignment = align_flags ();
910 }
911 else if (BARRIER_P (insn))
912 {
913 rtx_insn *label;
914
915 for (label = insn; label && ! INSN_P (label);
916 label = NEXT_INSN (label))
917 if (LABEL_P (label))
918 {
919 align_flags alignment
920 = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn));
921 max_alignment = align_flags::max (max_alignment, alignment);
922 break;
923 }
924 }
925 }
926 if (!HAVE_ATTR_length)
927 return;
928
929 /* Allocate the rest of the arrays. */
930 insn_lengths = XNEWVEC (int, max_uid);
931 insn_lengths_max_uid = max_uid;
932 /* Syntax errors can lead to labels being outside of the main insn stream.
933 Initialize insn_addresses, so that we get reproducible results. */
934 INSN_ADDRESSES_ALLOC (max_uid);
935
936 varying_length = XCNEWVEC (char, max_uid);
937
938 /* Initialize uid_align. We scan instructions
939 from end to start, and keep in align_tab[n] the last seen insn
940 that does an alignment of at least n+1, i.e. the successor
941 in the alignment chain for an insn that does / has a known
942 alignment of n. */
943 uid_align = XCNEWVEC (rtx, max_uid);
944
945 for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
946 align_tab[i] = NULL_RTX;
947 seq = get_last_insn ();
948 for (; seq; seq = PREV_INSN (seq))
949 {
950 int uid = INSN_UID (seq);
951 int log;
952 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0);
953 uid_align[uid] = align_tab[0];
954 if (log)
955 {
956 /* Found an alignment label. */
957 gcc_checking_assert (log < MAX_CODE_ALIGN + 1);
958 uid_align[uid] = align_tab[log];
959 for (i = log - 1; i >= 0; i--)
960 align_tab[i] = seq;
961 }
962 }
963
964 /* When optimizing, we start assuming minimum length, and keep increasing
965 lengths as we find the need for this, till nothing changes.
966 When not optimizing, we start assuming maximum lengths, and
967 do a single pass to update the lengths. */
968 bool increasing = optimize != 0;
969
970 #ifdef CASE_VECTOR_SHORTEN_MODE
971 if (optimize)
972 {
973 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
974 label fields. */
975
976 int min_shuid = INSN_SHUID (get_insns ()) - 1;
977 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
978 int rel;
979
980 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
981 {
982 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
983 int len, i, min, max, insn_shuid;
984 int min_align;
985 addr_diff_vec_flags flags;
986
987 if (! JUMP_TABLE_DATA_P (insn)
988 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
989 continue;
990 pat = PATTERN (insn);
991 len = XVECLEN (pat, 1);
992 gcc_assert (len > 0);
993 min_align = MAX_CODE_ALIGN;
994 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
995 {
996 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
997 int shuid = INSN_SHUID (lab);
998 if (shuid < min)
999 {
1000 min = shuid;
1001 min_lab = lab;
1002 }
1003 if (shuid > max)
1004 {
1005 max = shuid;
1006 max_lab = lab;
1007 }
1008
1009 int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log;
1010 if (min_align > label_alignment)
1011 min_align = label_alignment;
1012 }
1013 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1014 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1015 insn_shuid = INSN_SHUID (insn);
1016 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1017 memset (&flags, 0, sizeof (flags));
1018 flags.min_align = min_align;
1019 flags.base_after_vec = rel > insn_shuid;
1020 flags.min_after_vec = min > insn_shuid;
1021 flags.max_after_vec = max > insn_shuid;
1022 flags.min_after_base = min > rel;
1023 flags.max_after_base = max > rel;
1024 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1025
1026 if (increasing)
1027 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1028 }
1029 }
1030 #endif /* CASE_VECTOR_SHORTEN_MODE */
1031
1032 /* Compute initial lengths, addresses, and varying flags for each insn. */
1033 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1034
1035 for (insn_current_address = 0, insn = first;
1036 insn != 0;
1037 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1038 {
1039 uid = INSN_UID (insn);
1040
1041 insn_lengths[uid] = 0;
1042
1043 if (LABEL_P (insn))
1044 {
1045 int log = LABEL_TO_ALIGNMENT (insn).levels[0].log;
1046 if (log)
1047 {
1048 int align = 1 << log;
1049 int new_address = (insn_current_address + align - 1) & -align;
1050 insn_lengths[uid] = new_address - insn_current_address;
1051 }
1052 }
1053
1054 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1055
1056 if (NOTE_P (insn) || BARRIER_P (insn)
1057 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1058 continue;
1059 if (insn->deleted ())
1060 continue;
1061
1062 body = PATTERN (insn);
1063 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1064 {
1065 /* This only takes room if read-only data goes into the text
1066 section. */
1067 if (JUMP_TABLES_IN_TEXT_SECTION
1068 || readonly_data_section == text_section)
1069 insn_lengths[uid] = (XVECLEN (body,
1070 GET_CODE (body) == ADDR_DIFF_VEC)
1071 * GET_MODE_SIZE (table->get_data_mode ()));
1072 /* Alignment is handled by ADDR_VEC_ALIGN. */
1073 }
1074 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1075 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1076 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1077 {
1078 int i;
1079 int const_delay_slots;
1080 if (DELAY_SLOTS)
1081 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1082 else
1083 const_delay_slots = 0;
1084
1085 int (*inner_length_fun) (rtx_insn *)
1086 = const_delay_slots ? length_fun : insn_default_length;
1087 /* Inside a delay slot sequence, we do not do any branch shortening
1088 if the shortening could change the number of delay slots
1089 of the branch. */
1090 for (i = 0; i < body_seq->len (); i++)
1091 {
1092 rtx_insn *inner_insn = body_seq->insn (i);
1093 int inner_uid = INSN_UID (inner_insn);
1094 int inner_length;
1095
1096 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1097 || asm_noperands (PATTERN (inner_insn)) >= 0)
1098 inner_length = (asm_insn_count (PATTERN (inner_insn))
1099 * insn_default_length (inner_insn));
1100 else
1101 inner_length = inner_length_fun (inner_insn);
1102
1103 insn_lengths[inner_uid] = inner_length;
1104 if (const_delay_slots)
1105 {
1106 if ((varying_length[inner_uid]
1107 = insn_variable_length_p (inner_insn)) != 0)
1108 varying_length[uid] = 1;
1109 INSN_ADDRESSES (inner_uid) = (insn_current_address
1110 + insn_lengths[uid]);
1111 }
1112 else
1113 varying_length[inner_uid] = 0;
1114 insn_lengths[uid] += inner_length;
1115 }
1116 }
1117 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1118 {
1119 insn_lengths[uid] = length_fun (insn);
1120 varying_length[uid] = insn_variable_length_p (insn);
1121 }
1122
1123 /* If needed, do any adjustment. */
1124 #ifdef ADJUST_INSN_LENGTH
1125 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1126 if (insn_lengths[uid] < 0)
1127 fatal_insn ("negative insn length", insn);
1128 #endif
1129 }
1130
1131 /* Now loop over all the insns finding varying length insns. For each,
1132 get the current insn length. If it has changed, reflect the change.
1133 When nothing changes for a full pass, we are done. */
1134
1135 while (something_changed)
1136 {
1137 something_changed = 0;
1138 insn_current_align = MAX_CODE_ALIGN - 1;
1139 for (insn_current_address = 0, insn = first;
1140 insn != 0;
1141 insn = NEXT_INSN (insn))
1142 {
1143 int new_length;
1144 #ifdef ADJUST_INSN_LENGTH
1145 int tmp_length;
1146 #endif
1147 int length_align;
1148
1149 uid = INSN_UID (insn);
1150
1151 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1152 {
1153 int log = LABEL_TO_ALIGNMENT (label).levels[0].log;
1154
1155 #ifdef CASE_VECTOR_SHORTEN_MODE
1156 /* If the mode of a following jump table was changed, we
1157 may need to update the alignment of this label. */
1158
1159 if (JUMP_TABLES_IN_TEXT_SECTION
1160 || readonly_data_section == text_section)
1161 {
1162 rtx_jump_table_data *table = jump_table_for_label (label);
1163 if (table)
1164 {
1165 int newlog = ADDR_VEC_ALIGN (table);
1166 if (newlog != log)
1167 {
1168 log = newlog;
1169 LABEL_TO_ALIGNMENT (insn) = log;
1170 something_changed = 1;
1171 }
1172 }
1173 }
1174 #endif
1175
1176 if (log > insn_current_align)
1177 {
1178 int align = 1 << log;
1179 int new_address= (insn_current_address + align - 1) & -align;
1180 insn_lengths[uid] = new_address - insn_current_address;
1181 insn_current_align = log;
1182 insn_current_address = new_address;
1183 }
1184 else
1185 insn_lengths[uid] = 0;
1186 INSN_ADDRESSES (uid) = insn_current_address;
1187 continue;
1188 }
1189
1190 length_align = INSN_LENGTH_ALIGNMENT (insn);
1191 if (length_align < insn_current_align)
1192 insn_current_align = length_align;
1193
1194 insn_last_address = INSN_ADDRESSES (uid);
1195 INSN_ADDRESSES (uid) = insn_current_address;
1196
1197 #ifdef CASE_VECTOR_SHORTEN_MODE
1198 if (optimize
1199 && JUMP_TABLE_DATA_P (insn)
1200 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1201 {
1202 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1203 rtx body = PATTERN (insn);
1204 int old_length = insn_lengths[uid];
1205 rtx_insn *rel_lab =
1206 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1207 rtx min_lab = XEXP (XEXP (body, 2), 0);
1208 rtx max_lab = XEXP (XEXP (body, 3), 0);
1209 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1210 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1211 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1212 rtx_insn *prev;
1213 int rel_align = 0;
1214 addr_diff_vec_flags flags;
1215 scalar_int_mode vec_mode;
1216
1217 /* Avoid automatic aggregate initialization. */
1218 flags = ADDR_DIFF_VEC_FLAGS (body);
1219
1220 /* Try to find a known alignment for rel_lab. */
1221 for (prev = rel_lab;
1222 prev
1223 && ! insn_lengths[INSN_UID (prev)]
1224 && ! (varying_length[INSN_UID (prev)] & 1);
1225 prev = PREV_INSN (prev))
1226 if (varying_length[INSN_UID (prev)] & 2)
1227 {
1228 rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log;
1229 break;
1230 }
1231
1232 /* See the comment on addr_diff_vec_flags in rtl.h for the
1233 meaning of the flags values. base: REL_LAB vec: INSN */
1234 /* Anything after INSN has still addresses from the last
1235 pass; adjust these so that they reflect our current
1236 estimate for this pass. */
1237 if (flags.base_after_vec)
1238 rel_addr += insn_current_address - insn_last_address;
1239 if (flags.min_after_vec)
1240 min_addr += insn_current_address - insn_last_address;
1241 if (flags.max_after_vec)
1242 max_addr += insn_current_address - insn_last_address;
1243 /* We want to know the worst case, i.e. lowest possible value
1244 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1245 its offset is positive, and we have to be wary of code shrink;
1246 otherwise, it is negative, and we have to be vary of code
1247 size increase. */
1248 if (flags.min_after_base)
1249 {
1250 /* If INSN is between REL_LAB and MIN_LAB, the size
1251 changes we are about to make can change the alignment
1252 within the observed offset, therefore we have to break
1253 it up into two parts that are independent. */
1254 if (! flags.base_after_vec && flags.min_after_vec)
1255 {
1256 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1257 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1258 }
1259 else
1260 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1261 }
1262 else
1263 {
1264 if (flags.base_after_vec && ! flags.min_after_vec)
1265 {
1266 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1267 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1268 }
1269 else
1270 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1271 }
1272 /* Likewise, determine the highest lowest possible value
1273 for the offset of MAX_LAB. */
1274 if (flags.max_after_base)
1275 {
1276 if (! flags.base_after_vec && flags.max_after_vec)
1277 {
1278 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1279 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1280 }
1281 else
1282 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1283 }
1284 else
1285 {
1286 if (flags.base_after_vec && ! flags.max_after_vec)
1287 {
1288 max_addr += align_fuzz (max_lab, insn, 0, 0);
1289 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1290 }
1291 else
1292 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1293 }
1294 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1295 max_addr - rel_addr, body);
1296 if (!increasing
1297 || (GET_MODE_SIZE (vec_mode)
1298 >= GET_MODE_SIZE (table->get_data_mode ())))
1299 PUT_MODE (body, vec_mode);
1300 if (JUMP_TABLES_IN_TEXT_SECTION
1301 || readonly_data_section == text_section)
1302 {
1303 insn_lengths[uid]
1304 = (XVECLEN (body, 1)
1305 * GET_MODE_SIZE (table->get_data_mode ()));
1306 insn_current_address += insn_lengths[uid];
1307 if (insn_lengths[uid] != old_length)
1308 something_changed = 1;
1309 }
1310
1311 continue;
1312 }
1313 #endif /* CASE_VECTOR_SHORTEN_MODE */
1314
1315 if (! (varying_length[uid]))
1316 {
1317 if (NONJUMP_INSN_P (insn)
1318 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1319 {
1320 int i;
1321
1322 body = PATTERN (insn);
1323 for (i = 0; i < XVECLEN (body, 0); i++)
1324 {
1325 rtx inner_insn = XVECEXP (body, 0, i);
1326 int inner_uid = INSN_UID (inner_insn);
1327
1328 INSN_ADDRESSES (inner_uid) = insn_current_address;
1329
1330 insn_current_address += insn_lengths[inner_uid];
1331 }
1332 }
1333 else
1334 insn_current_address += insn_lengths[uid];
1335
1336 continue;
1337 }
1338
1339 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1340 {
1341 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1342 int i;
1343
1344 body = PATTERN (insn);
1345 new_length = 0;
1346 for (i = 0; i < seqn->len (); i++)
1347 {
1348 rtx_insn *inner_insn = seqn->insn (i);
1349 int inner_uid = INSN_UID (inner_insn);
1350 int inner_length;
1351
1352 INSN_ADDRESSES (inner_uid) = insn_current_address;
1353
1354 /* insn_current_length returns 0 for insns with a
1355 non-varying length. */
1356 if (! varying_length[inner_uid])
1357 inner_length = insn_lengths[inner_uid];
1358 else
1359 inner_length = insn_current_length (inner_insn);
1360
1361 if (inner_length != insn_lengths[inner_uid])
1362 {
1363 if (!increasing || inner_length > insn_lengths[inner_uid])
1364 {
1365 insn_lengths[inner_uid] = inner_length;
1366 something_changed = 1;
1367 }
1368 else
1369 inner_length = insn_lengths[inner_uid];
1370 }
1371 insn_current_address += inner_length;
1372 new_length += inner_length;
1373 }
1374 }
1375 else
1376 {
1377 new_length = insn_current_length (insn);
1378 insn_current_address += new_length;
1379 }
1380
1381 #ifdef ADJUST_INSN_LENGTH
1382 /* If needed, do any adjustment. */
1383 tmp_length = new_length;
1384 ADJUST_INSN_LENGTH (insn, new_length);
1385 insn_current_address += (new_length - tmp_length);
1386 #endif
1387
1388 if (new_length != insn_lengths[uid]
1389 && (!increasing || new_length > insn_lengths[uid]))
1390 {
1391 insn_lengths[uid] = new_length;
1392 something_changed = 1;
1393 }
1394 else
1395 insn_current_address += insn_lengths[uid] - new_length;
1396 }
1397 /* For a non-optimizing compile, do only a single pass. */
1398 if (!increasing)
1399 break;
1400 }
1401 crtl->max_insn_address = insn_current_address;
1402 free (varying_length);
1403 }
1404
1405 /* Given the body of an INSN known to be generated by an ASM statement, return
1406 the number of machine instructions likely to be generated for this insn.
1407 This is used to compute its length. */
1408
1409 static int
1410 asm_insn_count (rtx body)
1411 {
1412 const char *templ;
1413
1414 if (GET_CODE (body) == ASM_INPUT)
1415 templ = XSTR (body, 0);
1416 else
1417 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1418
1419 return asm_str_count (templ);
1420 }
1421
1422 /* Return the number of machine instructions likely to be generated for the
1423 inline-asm template. */
1424 int
1425 asm_str_count (const char *templ)
1426 {
1427 int count = 1;
1428
1429 if (!*templ)
1430 return 0;
1431
1432 for (; *templ; templ++)
1433 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1434 || *templ == '\n')
1435 count++;
1436
1437 return count;
1438 }
1439 \f
1440 /* Return true if DWARF2 debug info can be emitted for DECL. */
1441
1442 static bool
1443 dwarf2_debug_info_emitted_p (tree decl)
1444 {
1445 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1446 return false;
1447
1448 if (DECL_IGNORED_P (decl))
1449 return false;
1450
1451 return true;
1452 }
1453
1454 /* Return scope resulting from combination of S1 and S2. */
1455 static tree
1456 choose_inner_scope (tree s1, tree s2)
1457 {
1458 if (!s1)
1459 return s2;
1460 if (!s2)
1461 return s1;
1462 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1463 return s1;
1464 return s2;
1465 }
1466
1467 /* Emit lexical block notes needed to change scope from S1 to S2. */
1468
1469 static void
1470 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1471 {
1472 rtx_insn *insn = orig_insn;
1473 tree com = NULL_TREE;
1474 tree ts1 = s1, ts2 = s2;
1475 tree s;
1476
1477 while (ts1 != ts2)
1478 {
1479 gcc_assert (ts1 && ts2);
1480 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1481 ts1 = BLOCK_SUPERCONTEXT (ts1);
1482 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1483 ts2 = BLOCK_SUPERCONTEXT (ts2);
1484 else
1485 {
1486 ts1 = BLOCK_SUPERCONTEXT (ts1);
1487 ts2 = BLOCK_SUPERCONTEXT (ts2);
1488 }
1489 }
1490 com = ts1;
1491
1492 /* Close scopes. */
1493 s = s1;
1494 while (s != com)
1495 {
1496 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1497 NOTE_BLOCK (note) = s;
1498 s = BLOCK_SUPERCONTEXT (s);
1499 }
1500
1501 /* Open scopes. */
1502 s = s2;
1503 while (s != com)
1504 {
1505 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1506 NOTE_BLOCK (insn) = s;
1507 s = BLOCK_SUPERCONTEXT (s);
1508 }
1509 }
1510
1511 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1512 on the scope tree and the newly reordered instructions. */
1513
1514 static void
1515 reemit_insn_block_notes (void)
1516 {
1517 tree cur_block = DECL_INITIAL (cfun->decl);
1518 rtx_insn *insn;
1519
1520 insn = get_insns ();
1521 for (; insn; insn = NEXT_INSN (insn))
1522 {
1523 tree this_block;
1524
1525 /* Prevent lexical blocks from straddling section boundaries. */
1526 if (NOTE_P (insn))
1527 switch (NOTE_KIND (insn))
1528 {
1529 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1530 {
1531 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1532 s = BLOCK_SUPERCONTEXT (s))
1533 {
1534 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1535 NOTE_BLOCK (note) = s;
1536 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1537 NOTE_BLOCK (note) = s;
1538 }
1539 }
1540 break;
1541
1542 case NOTE_INSN_BEGIN_STMT:
1543 case NOTE_INSN_INLINE_ENTRY:
1544 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1545 goto set_cur_block_to_this_block;
1546
1547 default:
1548 continue;
1549 }
1550
1551 if (!active_insn_p (insn))
1552 continue;
1553
1554 /* Avoid putting scope notes between jump table and its label. */
1555 if (JUMP_TABLE_DATA_P (insn))
1556 continue;
1557
1558 this_block = insn_scope (insn);
1559 /* For sequences compute scope resulting from merging all scopes
1560 of instructions nested inside. */
1561 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1562 {
1563 int i;
1564
1565 this_block = NULL;
1566 for (i = 0; i < body->len (); i++)
1567 this_block = choose_inner_scope (this_block,
1568 insn_scope (body->insn (i)));
1569 }
1570 set_cur_block_to_this_block:
1571 if (! this_block)
1572 {
1573 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1574 continue;
1575 else
1576 this_block = DECL_INITIAL (cfun->decl);
1577 }
1578
1579 if (this_block != cur_block)
1580 {
1581 change_scope (insn, cur_block, this_block);
1582 cur_block = this_block;
1583 }
1584 }
1585
1586 /* change_scope emits before the insn, not after. */
1587 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1588 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1589 delete_insn (note);
1590
1591 reorder_blocks ();
1592 }
1593
1594 static const char *some_local_dynamic_name;
1595
1596 /* Locate some local-dynamic symbol still in use by this function
1597 so that we can print its name in local-dynamic base patterns.
1598 Return null if there are no local-dynamic references. */
1599
1600 const char *
1601 get_some_local_dynamic_name ()
1602 {
1603 subrtx_iterator::array_type array;
1604 rtx_insn *insn;
1605
1606 if (some_local_dynamic_name)
1607 return some_local_dynamic_name;
1608
1609 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1610 if (NONDEBUG_INSN_P (insn))
1611 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1612 {
1613 const_rtx x = *iter;
1614 if (GET_CODE (x) == SYMBOL_REF)
1615 {
1616 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1617 return some_local_dynamic_name = XSTR (x, 0);
1618 if (CONSTANT_POOL_ADDRESS_P (x))
1619 iter.substitute (get_pool_constant (x));
1620 }
1621 }
1622
1623 return 0;
1624 }
1625
1626 /* Arrange for us to emit a source location note before any further
1627 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1628 *SEEN, as long as we are keeping track of location views. The bit
1629 indicates we have referenced the next view at the current PC, so we
1630 have to emit it. This should be called next to the var_location
1631 debug hook. */
1632
1633 static inline void
1634 set_next_view_needed (int *seen)
1635 {
1636 if (debug_variable_location_views)
1637 *seen |= SEEN_NEXT_VIEW;
1638 }
1639
1640 /* Clear the flag in *SEEN indicating we need to emit the next view.
1641 This should be called next to the source_line debug hook. */
1642
1643 static inline void
1644 clear_next_view_needed (int *seen)
1645 {
1646 *seen &= ~SEEN_NEXT_VIEW;
1647 }
1648
1649 /* Test whether we have a pending request to emit the next view in
1650 *SEEN, and emit it if needed, clearing the request bit. */
1651
1652 static inline void
1653 maybe_output_next_view (int *seen)
1654 {
1655 if ((*seen & SEEN_NEXT_VIEW) != 0)
1656 {
1657 clear_next_view_needed (seen);
1658 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1659 last_filename, last_discriminator,
1660 false);
1661 }
1662 }
1663
1664 /* We want to emit param bindings (before the first begin_stmt) in the
1665 initial view, if we are emitting views. To that end, we may
1666 consume initial notes in the function, processing them in
1667 final_start_function, before signaling the beginning of the
1668 prologue, rather than in final.
1669
1670 We don't test whether the DECLs are PARM_DECLs: the assumption is
1671 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1672 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1673 there, we'll just have more variable locations bound in the initial
1674 view, which is consistent with their being bound without any code
1675 that would give them a value. */
1676
1677 static inline bool
1678 in_initial_view_p (rtx_insn *insn)
1679 {
1680 return (!DECL_IGNORED_P (current_function_decl)
1681 && debug_variable_location_views
1682 && insn && GET_CODE (insn) == NOTE
1683 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1684 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1685 }
1686
1687 /* Output assembler code for the start of a function,
1688 and initialize some of the variables in this file
1689 for the new function. The label for the function and associated
1690 assembler pseudo-ops have already been output in `assemble_start_function'.
1691
1692 FIRST is the first insn of the rtl for the function being compiled.
1693 FILE is the file to write assembler code to.
1694 SEEN should be initially set to zero, and it may be updated to
1695 indicate we have references to the next location view, that would
1696 require us to emit it at the current PC.
1697 OPTIMIZE_P is nonzero if we should eliminate redundant
1698 test and compare insns. */
1699
1700 static void
1701 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1702 int optimize_p ATTRIBUTE_UNUSED)
1703 {
1704 block_depth = 0;
1705
1706 this_is_asm_operands = 0;
1707
1708 need_profile_function = false;
1709
1710 last_filename = LOCATION_FILE (prologue_location);
1711 last_linenum = LOCATION_LINE (prologue_location);
1712 last_columnnum = LOCATION_COLUMN (prologue_location);
1713 last_discriminator = discriminator = 0;
1714 last_bb_discriminator = bb_discriminator = 0;
1715 force_source_line = false;
1716
1717 high_block_linenum = high_function_linenum = last_linenum;
1718
1719 if (flag_sanitize & SANITIZE_ADDRESS)
1720 asan_function_start ();
1721
1722 rtx_insn *first = *firstp;
1723 if (in_initial_view_p (first))
1724 {
1725 do
1726 {
1727 final_scan_insn (first, file, 0, 0, seen);
1728 first = NEXT_INSN (first);
1729 }
1730 while (in_initial_view_p (first));
1731 *firstp = first;
1732 }
1733
1734 if (!DECL_IGNORED_P (current_function_decl))
1735 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1736 last_filename);
1737
1738 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1739 dwarf2out_begin_prologue (0, 0, NULL);
1740
1741 #ifdef LEAF_REG_REMAP
1742 if (crtl->uses_only_leaf_regs)
1743 leaf_renumber_regs (first);
1744 #endif
1745
1746 /* The Sun386i and perhaps other machines don't work right
1747 if the profiling code comes after the prologue. */
1748 if (targetm.profile_before_prologue () && crtl->profile)
1749 {
1750 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1751 && targetm.have_prologue ())
1752 {
1753 rtx_insn *insn;
1754 for (insn = first; insn; insn = NEXT_INSN (insn))
1755 if (!NOTE_P (insn))
1756 {
1757 insn = NULL;
1758 break;
1759 }
1760 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1761 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1762 break;
1763 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1764 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1765 continue;
1766 else
1767 {
1768 insn = NULL;
1769 break;
1770 }
1771
1772 if (insn)
1773 need_profile_function = true;
1774 else
1775 profile_function (file);
1776 }
1777 else
1778 profile_function (file);
1779 }
1780
1781 /* If debugging, assign block numbers to all of the blocks in this
1782 function. */
1783 if (write_symbols)
1784 {
1785 reemit_insn_block_notes ();
1786 number_blocks (current_function_decl);
1787 /* We never actually put out begin/end notes for the top-level
1788 block in the function. But, conceptually, that block is
1789 always needed. */
1790 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1791 }
1792
1793 unsigned HOST_WIDE_INT min_frame_size
1794 = constant_lower_bound (get_frame_size ());
1795 if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size)
1796 {
1797 /* Issue a warning */
1798 warning (OPT_Wframe_larger_than_,
1799 "the frame size of %wu bytes is larger than %wu bytes",
1800 min_frame_size, warn_frame_larger_than_size);
1801 }
1802
1803 /* First output the function prologue: code to set up the stack frame. */
1804 targetm.asm_out.function_prologue (file);
1805
1806 /* If the machine represents the prologue as RTL, the profiling code must
1807 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1808 if (! targetm.have_prologue ())
1809 profile_after_prologue (file);
1810 }
1811
1812 /* This is an exported final_start_function_1, callable without SEEN. */
1813
1814 void
1815 final_start_function (rtx_insn *first, FILE *file,
1816 int optimize_p ATTRIBUTE_UNUSED)
1817 {
1818 int seen = 0;
1819 final_start_function_1 (&first, file, &seen, optimize_p);
1820 gcc_assert (seen == 0);
1821 }
1822
1823 static void
1824 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1825 {
1826 if (!targetm.profile_before_prologue () && crtl->profile)
1827 profile_function (file);
1828 }
1829
1830 static void
1831 profile_function (FILE *file ATTRIBUTE_UNUSED)
1832 {
1833 #ifndef NO_PROFILE_COUNTERS
1834 # define NO_PROFILE_COUNTERS 0
1835 #endif
1836 #ifdef ASM_OUTPUT_REG_PUSH
1837 rtx sval = NULL, chain = NULL;
1838
1839 if (cfun->returns_struct)
1840 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1841 true);
1842 if (cfun->static_chain_decl)
1843 chain = targetm.calls.static_chain (current_function_decl, true);
1844 #endif /* ASM_OUTPUT_REG_PUSH */
1845
1846 if (! NO_PROFILE_COUNTERS)
1847 {
1848 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1849 switch_to_section (data_section);
1850 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1851 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1852 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1853 }
1854
1855 switch_to_section (current_function_section ());
1856
1857 #ifdef ASM_OUTPUT_REG_PUSH
1858 if (sval && REG_P (sval))
1859 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1860 if (chain && REG_P (chain))
1861 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1862 #endif
1863
1864 FUNCTION_PROFILER (file, current_function_funcdef_no);
1865
1866 #ifdef ASM_OUTPUT_REG_PUSH
1867 if (chain && REG_P (chain))
1868 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1869 if (sval && REG_P (sval))
1870 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1871 #endif
1872 }
1873
1874 /* Output assembler code for the end of a function.
1875 For clarity, args are same as those of `final_start_function'
1876 even though not all of them are needed. */
1877
1878 void
1879 final_end_function (void)
1880 {
1881 app_disable ();
1882
1883 if (!DECL_IGNORED_P (current_function_decl))
1884 debug_hooks->end_function (high_function_linenum);
1885
1886 /* Finally, output the function epilogue:
1887 code to restore the stack frame and return to the caller. */
1888 targetm.asm_out.function_epilogue (asm_out_file);
1889
1890 /* And debug output. */
1891 if (!DECL_IGNORED_P (current_function_decl))
1892 debug_hooks->end_epilogue (last_linenum, last_filename);
1893
1894 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1895 && dwarf2out_do_frame ())
1896 dwarf2out_end_epilogue (last_linenum, last_filename);
1897
1898 some_local_dynamic_name = 0;
1899 }
1900 \f
1901
1902 /* Dumper helper for basic block information. FILE is the assembly
1903 output file, and INSN is the instruction being emitted. */
1904
1905 static void
1906 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1907 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1908 {
1909 basic_block bb;
1910
1911 if (!flag_debug_asm)
1912 return;
1913
1914 if (INSN_UID (insn) < bb_map_size
1915 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1916 {
1917 edge e;
1918 edge_iterator ei;
1919
1920 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1921 if (bb->count.initialized_p ())
1922 {
1923 fprintf (file, ", count:");
1924 bb->count.dump (file);
1925 }
1926 fprintf (file, " seq:%d", (*bb_seqn)++);
1927 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1928 FOR_EACH_EDGE (e, ei, bb->preds)
1929 {
1930 dump_edge_info (file, e, TDF_DETAILS, 0);
1931 }
1932 fprintf (file, "\n");
1933 }
1934 if (INSN_UID (insn) < bb_map_size
1935 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1936 {
1937 edge e;
1938 edge_iterator ei;
1939
1940 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1941 FOR_EACH_EDGE (e, ei, bb->succs)
1942 {
1943 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1944 }
1945 fprintf (file, "\n");
1946 }
1947 }
1948
1949 /* Output assembler code for some insns: all or part of a function.
1950 For description of args, see `final_start_function', above. */
1951
1952 static void
1953 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
1954 {
1955 rtx_insn *insn, *next;
1956
1957 /* Used for -dA dump. */
1958 basic_block *start_to_bb = NULL;
1959 basic_block *end_to_bb = NULL;
1960 int bb_map_size = 0;
1961 int bb_seqn = 0;
1962
1963 last_ignored_compare = 0;
1964
1965 if (HAVE_cc0)
1966 for (insn = first; insn; insn = NEXT_INSN (insn))
1967 {
1968 /* If CC tracking across branches is enabled, record the insn which
1969 jumps to each branch only reached from one place. */
1970 if (optimize_p && JUMP_P (insn))
1971 {
1972 rtx lab = JUMP_LABEL (insn);
1973 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1974 {
1975 LABEL_REFS (lab) = insn;
1976 }
1977 }
1978 }
1979
1980 init_recog ();
1981
1982 CC_STATUS_INIT;
1983
1984 if (flag_debug_asm)
1985 {
1986 basic_block bb;
1987
1988 bb_map_size = get_max_uid () + 1;
1989 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1990 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1991
1992 /* There is no cfg for a thunk. */
1993 if (!cfun->is_thunk)
1994 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1995 {
1996 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
1997 end_to_bb[INSN_UID (BB_END (bb))] = bb;
1998 }
1999 }
2000
2001 /* Output the insns. */
2002 for (insn = first; insn;)
2003 {
2004 if (HAVE_ATTR_length)
2005 {
2006 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2007 {
2008 /* This can be triggered by bugs elsewhere in the compiler if
2009 new insns are created after init_insn_lengths is called. */
2010 gcc_assert (NOTE_P (insn));
2011 insn_current_address = -1;
2012 }
2013 else
2014 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2015 /* final can be seen as an iteration of shorten_branches that
2016 does nothing (since a fixed point has already been reached). */
2017 insn_last_address = insn_current_address;
2018 }
2019
2020 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2021 bb_map_size, &bb_seqn);
2022 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2023 }
2024
2025 maybe_output_next_view (&seen);
2026
2027 if (flag_debug_asm)
2028 {
2029 free (start_to_bb);
2030 free (end_to_bb);
2031 }
2032
2033 /* Remove CFI notes, to avoid compare-debug failures. */
2034 for (insn = first; insn; insn = next)
2035 {
2036 next = NEXT_INSN (insn);
2037 if (NOTE_P (insn)
2038 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2039 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2040 delete_insn (insn);
2041 }
2042 }
2043
2044 /* This is an exported final_1, callable without SEEN. */
2045
2046 void
2047 final (rtx_insn *first, FILE *file, int optimize_p)
2048 {
2049 /* Those that use the internal final_start_function_1/final_1 API
2050 skip initial debug bind notes in final_start_function_1, and pass
2051 the modified FIRST to final_1. But those that use the public
2052 final_start_function/final APIs, final_start_function can't move
2053 FIRST because it's not passed by reference, so if they were
2054 skipped there, skip them again here. */
2055 while (in_initial_view_p (first))
2056 first = NEXT_INSN (first);
2057
2058 final_1 (first, file, 0, optimize_p);
2059 }
2060 \f
2061 const char *
2062 get_insn_template (int code, rtx_insn *insn)
2063 {
2064 switch (insn_data[code].output_format)
2065 {
2066 case INSN_OUTPUT_FORMAT_SINGLE:
2067 return insn_data[code].output.single;
2068 case INSN_OUTPUT_FORMAT_MULTI:
2069 return insn_data[code].output.multi[which_alternative];
2070 case INSN_OUTPUT_FORMAT_FUNCTION:
2071 gcc_assert (insn);
2072 return (*insn_data[code].output.function) (recog_data.operand, insn);
2073
2074 default:
2075 gcc_unreachable ();
2076 }
2077 }
2078
2079 /* Emit the appropriate declaration for an alternate-entry-point
2080 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2081 LABEL_KIND != LABEL_NORMAL.
2082
2083 The case fall-through in this function is intentional. */
2084 static void
2085 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2086 {
2087 const char *name = LABEL_NAME (insn);
2088
2089 switch (LABEL_KIND (insn))
2090 {
2091 case LABEL_WEAK_ENTRY:
2092 #ifdef ASM_WEAKEN_LABEL
2093 ASM_WEAKEN_LABEL (file, name);
2094 gcc_fallthrough ();
2095 #endif
2096 case LABEL_GLOBAL_ENTRY:
2097 targetm.asm_out.globalize_label (file, name);
2098 gcc_fallthrough ();
2099 case LABEL_STATIC_ENTRY:
2100 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2101 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2102 #endif
2103 ASM_OUTPUT_LABEL (file, name);
2104 break;
2105
2106 case LABEL_NORMAL:
2107 default:
2108 gcc_unreachable ();
2109 }
2110 }
2111
2112 /* Given a CALL_INSN, find and return the nested CALL. */
2113 static rtx
2114 call_from_call_insn (rtx_call_insn *insn)
2115 {
2116 rtx x;
2117 gcc_assert (CALL_P (insn));
2118 x = PATTERN (insn);
2119
2120 while (GET_CODE (x) != CALL)
2121 {
2122 switch (GET_CODE (x))
2123 {
2124 default:
2125 gcc_unreachable ();
2126 case COND_EXEC:
2127 x = COND_EXEC_CODE (x);
2128 break;
2129 case PARALLEL:
2130 x = XVECEXP (x, 0, 0);
2131 break;
2132 case SET:
2133 x = XEXP (x, 1);
2134 break;
2135 }
2136 }
2137 return x;
2138 }
2139
2140 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2141 corresponding source line, if available. */
2142
2143 static void
2144 asm_show_source (const char *filename, int linenum)
2145 {
2146 if (!filename)
2147 return;
2148
2149 char_span line = location_get_source_line (filename, linenum);
2150 if (!line)
2151 return;
2152
2153 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2154 /* "line" is not 0-terminated, so we must use its length. */
2155 fwrite (line.get_buffer (), 1, line.length (), asm_out_file);
2156 fputc ('\n', asm_out_file);
2157 }
2158
2159 /* Judge if an absolute jump table is relocatable. */
2160
2161 bool
2162 jumptable_relocatable (void)
2163 {
2164 bool relocatable = false;
2165
2166 if (!CASE_VECTOR_PC_RELATIVE
2167 && !targetm.asm_out.generate_pic_addr_diff_vec ()
2168 && targetm_common.have_named_sections)
2169 relocatable = targetm.asm_out.reloc_rw_mask ();
2170
2171 return relocatable;
2172 }
2173
2174 /* The final scan for one insn, INSN.
2175 Args are same as in `final', except that INSN
2176 is the insn being scanned.
2177 Value returned is the next insn to be scanned.
2178
2179 NOPEEPHOLES is the flag to disallow peephole processing (currently
2180 used for within delayed branch sequence output).
2181
2182 SEEN is used to track the end of the prologue, for emitting
2183 debug information. We force the emission of a line note after
2184 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2185
2186 static rtx_insn *
2187 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2188 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2189 {
2190 #if HAVE_cc0
2191 rtx set;
2192 #endif
2193 rtx_insn *next;
2194 rtx_jump_table_data *table;
2195
2196 insn_counter++;
2197
2198 /* Ignore deleted insns. These can occur when we split insns (due to a
2199 template of "#") while not optimizing. */
2200 if (insn->deleted ())
2201 return NEXT_INSN (insn);
2202
2203 switch (GET_CODE (insn))
2204 {
2205 case NOTE:
2206 switch (NOTE_KIND (insn))
2207 {
2208 case NOTE_INSN_DELETED:
2209 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2210 break;
2211
2212 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2213 maybe_output_next_view (seen);
2214
2215 output_function_exception_table (0);
2216
2217 if (targetm.asm_out.unwind_emit)
2218 targetm.asm_out.unwind_emit (asm_out_file, insn);
2219
2220 in_cold_section_p = !in_cold_section_p;
2221
2222 if (in_cold_section_p)
2223 cold_function_name
2224 = clone_function_name (current_function_decl, "cold");
2225
2226 if (dwarf2out_do_frame ())
2227 {
2228 dwarf2out_switch_text_section ();
2229 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2230 && !DECL_IGNORED_P (current_function_decl))
2231 debug_hooks->switch_text_section ();
2232 }
2233 else if (!DECL_IGNORED_P (current_function_decl))
2234 debug_hooks->switch_text_section ();
2235
2236 switch_to_section (current_function_section ());
2237 targetm.asm_out.function_switched_text_sections (asm_out_file,
2238 current_function_decl,
2239 in_cold_section_p);
2240 /* Emit a label for the split cold section. Form label name by
2241 suffixing "cold" to the original function's name. */
2242 if (in_cold_section_p)
2243 {
2244 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2245 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2246 IDENTIFIER_POINTER
2247 (cold_function_name),
2248 current_function_decl);
2249 #else
2250 ASM_OUTPUT_LABEL (asm_out_file,
2251 IDENTIFIER_POINTER (cold_function_name));
2252 #endif
2253 if (dwarf2out_do_frame ()
2254 && cfun->fde->dw_fde_second_begin != NULL)
2255 ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
2256 }
2257 break;
2258
2259 case NOTE_INSN_BASIC_BLOCK:
2260 if (need_profile_function)
2261 {
2262 profile_function (asm_out_file);
2263 need_profile_function = false;
2264 }
2265
2266 if (targetm.asm_out.unwind_emit)
2267 targetm.asm_out.unwind_emit (asm_out_file, insn);
2268
2269 bb_discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2270 break;
2271
2272 case NOTE_INSN_EH_REGION_BEG:
2273 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2274 NOTE_EH_HANDLER (insn));
2275 break;
2276
2277 case NOTE_INSN_EH_REGION_END:
2278 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2279 NOTE_EH_HANDLER (insn));
2280 break;
2281
2282 case NOTE_INSN_PROLOGUE_END:
2283 targetm.asm_out.function_end_prologue (file);
2284 profile_after_prologue (file);
2285
2286 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2287 {
2288 *seen |= SEEN_EMITTED;
2289 force_source_line = true;
2290 }
2291 else
2292 *seen |= SEEN_NOTE;
2293
2294 break;
2295
2296 case NOTE_INSN_EPILOGUE_BEG:
2297 if (!DECL_IGNORED_P (current_function_decl))
2298 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2299 targetm.asm_out.function_begin_epilogue (file);
2300 break;
2301
2302 case NOTE_INSN_CFI:
2303 dwarf2out_emit_cfi (NOTE_CFI (insn));
2304 break;
2305
2306 case NOTE_INSN_CFI_LABEL:
2307 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2308 NOTE_LABEL_NUMBER (insn));
2309 break;
2310
2311 case NOTE_INSN_FUNCTION_BEG:
2312 if (need_profile_function)
2313 {
2314 profile_function (asm_out_file);
2315 need_profile_function = false;
2316 }
2317
2318 app_disable ();
2319 if (!DECL_IGNORED_P (current_function_decl))
2320 debug_hooks->end_prologue (last_linenum, last_filename);
2321
2322 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2323 {
2324 *seen |= SEEN_EMITTED;
2325 force_source_line = true;
2326 }
2327 else
2328 *seen |= SEEN_NOTE;
2329
2330 break;
2331
2332 case NOTE_INSN_BLOCK_BEG:
2333 if (debug_info_level == DINFO_LEVEL_NORMAL
2334 || debug_info_level == DINFO_LEVEL_VERBOSE
2335 || write_symbols == DWARF2_DEBUG
2336 || write_symbols == VMS_AND_DWARF2_DEBUG
2337 || write_symbols == VMS_DEBUG)
2338 {
2339 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2340
2341 app_disable ();
2342 ++block_depth;
2343 high_block_linenum = last_linenum;
2344
2345 /* Output debugging info about the symbol-block beginning. */
2346 if (!DECL_IGNORED_P (current_function_decl))
2347 debug_hooks->begin_block (last_linenum, n);
2348
2349 /* Mark this block as output. */
2350 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2351 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2352 }
2353 if (write_symbols == DBX_DEBUG)
2354 {
2355 location_t *locus_ptr
2356 = block_nonartificial_location (NOTE_BLOCK (insn));
2357
2358 if (locus_ptr != NULL)
2359 {
2360 override_filename = LOCATION_FILE (*locus_ptr);
2361 override_linenum = LOCATION_LINE (*locus_ptr);
2362 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2363 override_discriminator = compute_discriminator (*locus_ptr);
2364 }
2365 }
2366 break;
2367
2368 case NOTE_INSN_BLOCK_END:
2369 maybe_output_next_view (seen);
2370
2371 if (debug_info_level == DINFO_LEVEL_NORMAL
2372 || debug_info_level == DINFO_LEVEL_VERBOSE
2373 || write_symbols == DWARF2_DEBUG
2374 || write_symbols == VMS_AND_DWARF2_DEBUG
2375 || write_symbols == VMS_DEBUG)
2376 {
2377 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2378
2379 app_disable ();
2380
2381 /* End of a symbol-block. */
2382 --block_depth;
2383 gcc_assert (block_depth >= 0);
2384
2385 if (!DECL_IGNORED_P (current_function_decl))
2386 debug_hooks->end_block (high_block_linenum, n);
2387 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2388 == in_cold_section_p);
2389 }
2390 if (write_symbols == DBX_DEBUG)
2391 {
2392 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2393 location_t *locus_ptr
2394 = block_nonartificial_location (outer_block);
2395
2396 if (locus_ptr != NULL)
2397 {
2398 override_filename = LOCATION_FILE (*locus_ptr);
2399 override_linenum = LOCATION_LINE (*locus_ptr);
2400 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2401 override_discriminator = compute_discriminator (*locus_ptr);
2402 }
2403 else
2404 {
2405 override_filename = NULL;
2406 override_linenum = 0;
2407 override_columnnum = 0;
2408 override_discriminator = 0;
2409 }
2410 }
2411 break;
2412
2413 case NOTE_INSN_DELETED_LABEL:
2414 /* Emit the label. We may have deleted the CODE_LABEL because
2415 the label could be proved to be unreachable, though still
2416 referenced (in the form of having its address taken. */
2417 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2418 break;
2419
2420 case NOTE_INSN_DELETED_DEBUG_LABEL:
2421 /* Similarly, but need to use different namespace for it. */
2422 if (CODE_LABEL_NUMBER (insn) != -1)
2423 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2424 break;
2425
2426 case NOTE_INSN_VAR_LOCATION:
2427 if (!DECL_IGNORED_P (current_function_decl))
2428 {
2429 debug_hooks->var_location (insn);
2430 set_next_view_needed (seen);
2431 }
2432 break;
2433
2434 case NOTE_INSN_BEGIN_STMT:
2435 gcc_checking_assert (cfun->debug_nonbind_markers);
2436 if (!DECL_IGNORED_P (current_function_decl)
2437 && notice_source_line (insn, NULL))
2438 {
2439 output_source_line:
2440 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2441 last_filename, last_discriminator,
2442 true);
2443 clear_next_view_needed (seen);
2444 }
2445 break;
2446
2447 case NOTE_INSN_INLINE_ENTRY:
2448 gcc_checking_assert (cfun->debug_nonbind_markers);
2449 if (!DECL_IGNORED_P (current_function_decl)
2450 && notice_source_line (insn, NULL))
2451 {
2452 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2453 (NOTE_MARKER_LOCATION (insn)));
2454 goto output_source_line;
2455 }
2456 break;
2457
2458 default:
2459 gcc_unreachable ();
2460 break;
2461 }
2462 break;
2463
2464 case BARRIER:
2465 break;
2466
2467 case CODE_LABEL:
2468 /* The target port might emit labels in the output function for
2469 some insn, e.g. sh.c output_branchy_insn. */
2470 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2471 {
2472 align_flags alignment = LABEL_TO_ALIGNMENT (insn);
2473 if (alignment.levels[0].log && NEXT_INSN (insn))
2474 {
2475 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2476 /* Output both primary and secondary alignment. */
2477 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log,
2478 alignment.levels[0].maxskip);
2479 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log,
2480 alignment.levels[1].maxskip);
2481 #else
2482 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2483 ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log);
2484 #else
2485 ASM_OUTPUT_ALIGN (file, alignment.levels[0].log);
2486 #endif
2487 #endif
2488 }
2489 }
2490 CC_STATUS_INIT;
2491
2492 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2493 debug_hooks->label (as_a <rtx_code_label *> (insn));
2494
2495 app_disable ();
2496
2497 /* If this label is followed by a jump-table, make sure we put
2498 the label in the read-only section. Also possibly write the
2499 label and jump table together. */
2500 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2501 if (table)
2502 {
2503 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2504 /* In this case, the case vector is being moved by the
2505 target, so don't output the label at all. Leave that
2506 to the back end macros. */
2507 #else
2508 if (! JUMP_TABLES_IN_TEXT_SECTION)
2509 {
2510 int log_align;
2511
2512 switch_to_section (targetm.asm_out.function_rodata_section
2513 (current_function_decl,
2514 jumptable_relocatable ()));
2515
2516 #ifdef ADDR_VEC_ALIGN
2517 log_align = ADDR_VEC_ALIGN (table);
2518 #else
2519 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2520 #endif
2521 ASM_OUTPUT_ALIGN (file, log_align);
2522 }
2523 else
2524 switch_to_section (current_function_section ());
2525
2526 #ifdef ASM_OUTPUT_CASE_LABEL
2527 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2528 #else
2529 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2530 #endif
2531 #endif
2532 break;
2533 }
2534 if (LABEL_ALT_ENTRY_P (insn))
2535 output_alternate_entry_point (file, insn);
2536 else
2537 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2538 break;
2539
2540 default:
2541 {
2542 rtx body = PATTERN (insn);
2543 int insn_code_number;
2544 const char *templ;
2545 bool is_stmt, *is_stmt_p;
2546
2547 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2548 {
2549 is_stmt = false;
2550 is_stmt_p = NULL;
2551 }
2552 else
2553 is_stmt_p = &is_stmt;
2554
2555 /* Reset this early so it is correct for ASM statements. */
2556 current_insn_predicate = NULL_RTX;
2557
2558 /* An INSN, JUMP_INSN or CALL_INSN.
2559 First check for special kinds that recog doesn't recognize. */
2560
2561 if (GET_CODE (body) == USE /* These are just declarations. */
2562 || GET_CODE (body) == CLOBBER)
2563 break;
2564
2565 #if HAVE_cc0
2566 {
2567 /* If there is a REG_CC_SETTER note on this insn, it means that
2568 the setting of the condition code was done in the delay slot
2569 of the insn that branched here. So recover the cc status
2570 from the insn that set it. */
2571
2572 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2573 if (note)
2574 {
2575 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2576 NOTICE_UPDATE_CC (PATTERN (other), other);
2577 cc_prev_status = cc_status;
2578 }
2579 }
2580 #endif
2581
2582 /* Detect insns that are really jump-tables
2583 and output them as such. */
2584
2585 if (JUMP_TABLE_DATA_P (insn))
2586 {
2587 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2588 int vlen, idx;
2589 #endif
2590
2591 if (! JUMP_TABLES_IN_TEXT_SECTION)
2592 switch_to_section (targetm.asm_out.function_rodata_section
2593 (current_function_decl,
2594 jumptable_relocatable ()));
2595 else
2596 switch_to_section (current_function_section ());
2597
2598 app_disable ();
2599
2600 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2601 if (GET_CODE (body) == ADDR_VEC)
2602 {
2603 #ifdef ASM_OUTPUT_ADDR_VEC
2604 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2605 #else
2606 gcc_unreachable ();
2607 #endif
2608 }
2609 else
2610 {
2611 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2612 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2613 #else
2614 gcc_unreachable ();
2615 #endif
2616 }
2617 #else
2618 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2619 for (idx = 0; idx < vlen; idx++)
2620 {
2621 if (GET_CODE (body) == ADDR_VEC)
2622 {
2623 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2624 ASM_OUTPUT_ADDR_VEC_ELT
2625 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2626 #else
2627 gcc_unreachable ();
2628 #endif
2629 }
2630 else
2631 {
2632 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2633 ASM_OUTPUT_ADDR_DIFF_ELT
2634 (file,
2635 body,
2636 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2637 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2638 #else
2639 gcc_unreachable ();
2640 #endif
2641 }
2642 }
2643 #ifdef ASM_OUTPUT_CASE_END
2644 ASM_OUTPUT_CASE_END (file,
2645 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2646 insn);
2647 #endif
2648 #endif
2649
2650 switch_to_section (current_function_section ());
2651
2652 if (debug_variable_location_views
2653 && !DECL_IGNORED_P (current_function_decl))
2654 debug_hooks->var_location (insn);
2655
2656 break;
2657 }
2658 /* Output this line note if it is the first or the last line
2659 note in a row. */
2660 if (!DECL_IGNORED_P (current_function_decl)
2661 && notice_source_line (insn, is_stmt_p))
2662 {
2663 if (flag_verbose_asm)
2664 asm_show_source (last_filename, last_linenum);
2665 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2666 last_filename, last_discriminator,
2667 is_stmt);
2668 clear_next_view_needed (seen);
2669 }
2670 else
2671 maybe_output_next_view (seen);
2672
2673 gcc_checking_assert (!DEBUG_INSN_P (insn));
2674
2675 if (GET_CODE (body) == PARALLEL
2676 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2677 body = XVECEXP (body, 0, 0);
2678
2679 if (GET_CODE (body) == ASM_INPUT)
2680 {
2681 const char *string = XSTR (body, 0);
2682
2683 /* There's no telling what that did to the condition codes. */
2684 CC_STATUS_INIT;
2685
2686 if (string[0])
2687 {
2688 expanded_location loc;
2689
2690 app_enable ();
2691 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2692 if (*loc.file && loc.line)
2693 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2694 ASM_COMMENT_START, loc.line, loc.file);
2695 fprintf (asm_out_file, "\t%s\n", string);
2696 #if HAVE_AS_LINE_ZERO
2697 if (*loc.file && loc.line)
2698 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2699 #endif
2700 }
2701 break;
2702 }
2703
2704 /* Detect `asm' construct with operands. */
2705 if (asm_noperands (body) >= 0)
2706 {
2707 unsigned int noperands = asm_noperands (body);
2708 rtx *ops = XALLOCAVEC (rtx, noperands);
2709 const char *string;
2710 location_t loc;
2711 expanded_location expanded;
2712
2713 /* There's no telling what that did to the condition codes. */
2714 CC_STATUS_INIT;
2715
2716 /* Get out the operand values. */
2717 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2718 /* Inhibit dying on what would otherwise be compiler bugs. */
2719 insn_noperands = noperands;
2720 this_is_asm_operands = insn;
2721 expanded = expand_location (loc);
2722
2723 #ifdef FINAL_PRESCAN_INSN
2724 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2725 #endif
2726
2727 /* Output the insn using them. */
2728 if (string[0])
2729 {
2730 app_enable ();
2731 if (expanded.file && expanded.line)
2732 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2733 ASM_COMMENT_START, expanded.line, expanded.file);
2734 output_asm_insn (string, ops);
2735 #if HAVE_AS_LINE_ZERO
2736 if (expanded.file && expanded.line)
2737 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2738 #endif
2739 }
2740
2741 if (targetm.asm_out.final_postscan_insn)
2742 targetm.asm_out.final_postscan_insn (file, insn, ops,
2743 insn_noperands);
2744
2745 this_is_asm_operands = 0;
2746 break;
2747 }
2748
2749 app_disable ();
2750
2751 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2752 {
2753 /* A delayed-branch sequence */
2754 int i;
2755
2756 final_sequence = seq;
2757
2758 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2759 force the restoration of a comparison that was previously
2760 thought unnecessary. If that happens, cancel this sequence
2761 and cause that insn to be restored. */
2762
2763 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2764 if (next != seq->insn (1))
2765 {
2766 final_sequence = 0;
2767 return next;
2768 }
2769
2770 for (i = 1; i < seq->len (); i++)
2771 {
2772 rtx_insn *insn = seq->insn (i);
2773 rtx_insn *next = NEXT_INSN (insn);
2774 /* We loop in case any instruction in a delay slot gets
2775 split. */
2776 do
2777 insn = final_scan_insn (insn, file, 0, 1, seen);
2778 while (insn != next);
2779 }
2780 #ifdef DBR_OUTPUT_SEQEND
2781 DBR_OUTPUT_SEQEND (file);
2782 #endif
2783 final_sequence = 0;
2784
2785 /* If the insn requiring the delay slot was a CALL_INSN, the
2786 insns in the delay slot are actually executed before the
2787 called function. Hence we don't preserve any CC-setting
2788 actions in these insns and the CC must be marked as being
2789 clobbered by the function. */
2790 if (CALL_P (seq->insn (0)))
2791 {
2792 CC_STATUS_INIT;
2793 }
2794 break;
2795 }
2796
2797 /* We have a real machine instruction as rtl. */
2798
2799 body = PATTERN (insn);
2800
2801 #if HAVE_cc0
2802 set = single_set (insn);
2803
2804 /* Check for redundant test and compare instructions
2805 (when the condition codes are already set up as desired).
2806 This is done only when optimizing; if not optimizing,
2807 it should be possible for the user to alter a variable
2808 with the debugger in between statements
2809 and the next statement should reexamine the variable
2810 to compute the condition codes. */
2811
2812 if (optimize_p)
2813 {
2814 if (set
2815 && GET_CODE (SET_DEST (set)) == CC0
2816 && insn != last_ignored_compare)
2817 {
2818 rtx src1, src2;
2819 if (GET_CODE (SET_SRC (set)) == SUBREG)
2820 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2821
2822 src1 = SET_SRC (set);
2823 src2 = NULL_RTX;
2824 if (GET_CODE (SET_SRC (set)) == COMPARE)
2825 {
2826 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2827 XEXP (SET_SRC (set), 0)
2828 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2829 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2830 XEXP (SET_SRC (set), 1)
2831 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2832 if (XEXP (SET_SRC (set), 1)
2833 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2834 src2 = XEXP (SET_SRC (set), 0);
2835 }
2836 if ((cc_status.value1 != 0
2837 && rtx_equal_p (src1, cc_status.value1))
2838 || (cc_status.value2 != 0
2839 && rtx_equal_p (src1, cc_status.value2))
2840 || (src2 != 0 && cc_status.value1 != 0
2841 && rtx_equal_p (src2, cc_status.value1))
2842 || (src2 != 0 && cc_status.value2 != 0
2843 && rtx_equal_p (src2, cc_status.value2)))
2844 {
2845 /* Don't delete insn if it has an addressing side-effect. */
2846 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2847 /* or if anything in it is volatile. */
2848 && ! volatile_refs_p (PATTERN (insn)))
2849 {
2850 /* We don't really delete the insn; just ignore it. */
2851 last_ignored_compare = insn;
2852 break;
2853 }
2854 }
2855 }
2856 }
2857
2858 /* If this is a conditional branch, maybe modify it
2859 if the cc's are in a nonstandard state
2860 so that it accomplishes the same thing that it would
2861 do straightforwardly if the cc's were set up normally. */
2862
2863 if (cc_status.flags != 0
2864 && JUMP_P (insn)
2865 && GET_CODE (body) == SET
2866 && SET_DEST (body) == pc_rtx
2867 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2868 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2869 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2870 {
2871 /* This function may alter the contents of its argument
2872 and clear some of the cc_status.flags bits.
2873 It may also return 1 meaning condition now always true
2874 or -1 meaning condition now always false
2875 or 2 meaning condition nontrivial but altered. */
2876 int result = alter_cond (XEXP (SET_SRC (body), 0));
2877 /* If condition now has fixed value, replace the IF_THEN_ELSE
2878 with its then-operand or its else-operand. */
2879 if (result == 1)
2880 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2881 if (result == -1)
2882 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2883
2884 /* The jump is now either unconditional or a no-op.
2885 If it has become a no-op, don't try to output it.
2886 (It would not be recognized.) */
2887 if (SET_SRC (body) == pc_rtx)
2888 {
2889 delete_insn (insn);
2890 break;
2891 }
2892 else if (ANY_RETURN_P (SET_SRC (body)))
2893 /* Replace (set (pc) (return)) with (return). */
2894 PATTERN (insn) = body = SET_SRC (body);
2895
2896 /* Rerecognize the instruction if it has changed. */
2897 if (result != 0)
2898 INSN_CODE (insn) = -1;
2899 }
2900
2901 /* If this is a conditional trap, maybe modify it if the cc's
2902 are in a nonstandard state so that it accomplishes the same
2903 thing that it would do straightforwardly if the cc's were
2904 set up normally. */
2905 if (cc_status.flags != 0
2906 && NONJUMP_INSN_P (insn)
2907 && GET_CODE (body) == TRAP_IF
2908 && COMPARISON_P (TRAP_CONDITION (body))
2909 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2910 {
2911 /* This function may alter the contents of its argument
2912 and clear some of the cc_status.flags bits.
2913 It may also return 1 meaning condition now always true
2914 or -1 meaning condition now always false
2915 or 2 meaning condition nontrivial but altered. */
2916 int result = alter_cond (TRAP_CONDITION (body));
2917
2918 /* If TRAP_CONDITION has become always false, delete the
2919 instruction. */
2920 if (result == -1)
2921 {
2922 delete_insn (insn);
2923 break;
2924 }
2925
2926 /* If TRAP_CONDITION has become always true, replace
2927 TRAP_CONDITION with const_true_rtx. */
2928 if (result == 1)
2929 TRAP_CONDITION (body) = const_true_rtx;
2930
2931 /* Rerecognize the instruction if it has changed. */
2932 if (result != 0)
2933 INSN_CODE (insn) = -1;
2934 }
2935
2936 /* Make same adjustments to instructions that examine the
2937 condition codes without jumping and instructions that
2938 handle conditional moves (if this machine has either one). */
2939
2940 if (cc_status.flags != 0
2941 && set != 0)
2942 {
2943 rtx cond_rtx, then_rtx, else_rtx;
2944
2945 if (!JUMP_P (insn)
2946 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2947 {
2948 cond_rtx = XEXP (SET_SRC (set), 0);
2949 then_rtx = XEXP (SET_SRC (set), 1);
2950 else_rtx = XEXP (SET_SRC (set), 2);
2951 }
2952 else
2953 {
2954 cond_rtx = SET_SRC (set);
2955 then_rtx = const_true_rtx;
2956 else_rtx = const0_rtx;
2957 }
2958
2959 if (COMPARISON_P (cond_rtx)
2960 && XEXP (cond_rtx, 0) == cc0_rtx)
2961 {
2962 int result;
2963 result = alter_cond (cond_rtx);
2964 if (result == 1)
2965 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2966 else if (result == -1)
2967 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2968 else if (result == 2)
2969 INSN_CODE (insn) = -1;
2970 if (SET_DEST (set) == SET_SRC (set))
2971 delete_insn (insn);
2972 }
2973 }
2974
2975 #endif
2976
2977 /* Do machine-specific peephole optimizations if desired. */
2978
2979 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2980 {
2981 rtx_insn *next = peephole (insn);
2982 /* When peepholing, if there were notes within the peephole,
2983 emit them before the peephole. */
2984 if (next != 0 && next != NEXT_INSN (insn))
2985 {
2986 rtx_insn *note, *prev = PREV_INSN (insn);
2987
2988 for (note = NEXT_INSN (insn); note != next;
2989 note = NEXT_INSN (note))
2990 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2991
2992 /* Put the notes in the proper position for a later
2993 rescan. For example, the SH target can do this
2994 when generating a far jump in a delayed branch
2995 sequence. */
2996 note = NEXT_INSN (insn);
2997 SET_PREV_INSN (note) = prev;
2998 SET_NEXT_INSN (prev) = note;
2999 SET_NEXT_INSN (PREV_INSN (next)) = insn;
3000 SET_PREV_INSN (insn) = PREV_INSN (next);
3001 SET_NEXT_INSN (insn) = next;
3002 SET_PREV_INSN (next) = insn;
3003 }
3004
3005 /* PEEPHOLE might have changed this. */
3006 body = PATTERN (insn);
3007 }
3008
3009 /* Try to recognize the instruction.
3010 If successful, verify that the operands satisfy the
3011 constraints for the instruction. Crash if they don't,
3012 since `reload' should have changed them so that they do. */
3013
3014 insn_code_number = recog_memoized (insn);
3015 cleanup_subreg_operands (insn);
3016
3017 /* Dump the insn in the assembly for debugging (-dAP).
3018 If the final dump is requested as slim RTL, dump slim
3019 RTL to the assembly file also. */
3020 if (flag_dump_rtl_in_asm)
3021 {
3022 print_rtx_head = ASM_COMMENT_START;
3023 if (! (dump_flags & TDF_SLIM))
3024 print_rtl_single (asm_out_file, insn);
3025 else
3026 dump_insn_slim (asm_out_file, insn);
3027 print_rtx_head = "";
3028 }
3029
3030 if (! constrain_operands_cached (insn, 1))
3031 fatal_insn_not_found (insn);
3032
3033 /* Some target machines need to prescan each insn before
3034 it is output. */
3035
3036 #ifdef FINAL_PRESCAN_INSN
3037 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3038 #endif
3039
3040 if (targetm.have_conditional_execution ()
3041 && GET_CODE (PATTERN (insn)) == COND_EXEC)
3042 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3043
3044 #if HAVE_cc0
3045 cc_prev_status = cc_status;
3046
3047 /* Update `cc_status' for this instruction.
3048 The instruction's output routine may change it further.
3049 If the output routine for a jump insn needs to depend
3050 on the cc status, it should look at cc_prev_status. */
3051
3052 NOTICE_UPDATE_CC (body, insn);
3053 #endif
3054
3055 current_output_insn = debug_insn = insn;
3056
3057 /* Find the proper template for this insn. */
3058 templ = get_insn_template (insn_code_number, insn);
3059
3060 /* If the C code returns 0, it means that it is a jump insn
3061 which follows a deleted test insn, and that test insn
3062 needs to be reinserted. */
3063 if (templ == 0)
3064 {
3065 rtx_insn *prev;
3066
3067 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3068
3069 /* We have already processed the notes between the setter and
3070 the user. Make sure we don't process them again, this is
3071 particularly important if one of the notes is a block
3072 scope note or an EH note. */
3073 for (prev = insn;
3074 prev != last_ignored_compare;
3075 prev = PREV_INSN (prev))
3076 {
3077 if (NOTE_P (prev))
3078 delete_insn (prev); /* Use delete_note. */
3079 }
3080
3081 return prev;
3082 }
3083
3084 /* If the template is the string "#", it means that this insn must
3085 be split. */
3086 if (templ[0] == '#' && templ[1] == '\0')
3087 {
3088 rtx_insn *new_rtx = try_split (body, insn, 0);
3089
3090 /* If we didn't split the insn, go away. */
3091 if (new_rtx == insn && PATTERN (new_rtx) == body)
3092 fatal_insn ("could not split insn", insn);
3093
3094 /* If we have a length attribute, this instruction should have
3095 been split in shorten_branches, to ensure that we would have
3096 valid length info for the splitees. */
3097 gcc_assert (!HAVE_ATTR_length);
3098
3099 return new_rtx;
3100 }
3101
3102 /* ??? This will put the directives in the wrong place if
3103 get_insn_template outputs assembly directly. However calling it
3104 before get_insn_template breaks if the insns is split. */
3105 if (targetm.asm_out.unwind_emit_before_insn
3106 && targetm.asm_out.unwind_emit)
3107 targetm.asm_out.unwind_emit (asm_out_file, insn);
3108
3109 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3110 if (call_insn != NULL)
3111 {
3112 rtx x = call_from_call_insn (call_insn);
3113 x = XEXP (x, 0);
3114 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3115 {
3116 tree t;
3117 x = XEXP (x, 0);
3118 t = SYMBOL_REF_DECL (x);
3119 if (t)
3120 assemble_external (t);
3121 }
3122 }
3123
3124 /* Output assembler code from the template. */
3125 output_asm_insn (templ, recog_data.operand);
3126
3127 /* Some target machines need to postscan each insn after
3128 it is output. */
3129 if (targetm.asm_out.final_postscan_insn)
3130 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3131 recog_data.n_operands);
3132
3133 if (!targetm.asm_out.unwind_emit_before_insn
3134 && targetm.asm_out.unwind_emit)
3135 targetm.asm_out.unwind_emit (asm_out_file, insn);
3136
3137 /* Let the debug info back-end know about this call. We do this only
3138 after the instruction has been emitted because labels that may be
3139 created to reference the call instruction must appear after it. */
3140 if ((debug_variable_location_views || call_insn != NULL)
3141 && !DECL_IGNORED_P (current_function_decl))
3142 debug_hooks->var_location (insn);
3143
3144 current_output_insn = debug_insn = 0;
3145 }
3146 }
3147 return NEXT_INSN (insn);
3148 }
3149
3150 /* This is a wrapper around final_scan_insn_1 that allows ports to
3151 call it recursively without a known value for SEEN. The value is
3152 saved at the outermost call, and recovered for recursive calls.
3153 Recursive calls MUST pass NULL, or the same pointer if they can
3154 otherwise get to it. */
3155
3156 rtx_insn *
3157 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3158 int nopeepholes, int *seen)
3159 {
3160 static int *enclosing_seen;
3161 static int recursion_counter;
3162
3163 gcc_assert (seen || recursion_counter);
3164 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3165
3166 if (!recursion_counter++)
3167 enclosing_seen = seen;
3168 else if (!seen)
3169 seen = enclosing_seen;
3170
3171 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3172
3173 if (!--recursion_counter)
3174 enclosing_seen = NULL;
3175
3176 return ret;
3177 }
3178
3179 \f
3180
3181 /* Map DECLs to instance discriminators. This is allocated and
3182 defined in ada/gcc-interfaces/trans.c, when compiling with -gnateS.
3183 Mappings from this table are saved and restored for LTO, so
3184 link-time compilation will have this map set, at least in
3185 partitions containing at least one DECL with an associated instance
3186 discriminator. */
3187
3188 decl_to_instance_map_t *decl_to_instance_map;
3189
3190 /* Return the instance number assigned to DECL. */
3191
3192 static inline int
3193 map_decl_to_instance (const_tree decl)
3194 {
3195 int *inst;
3196
3197 if (!decl_to_instance_map || !decl || !DECL_P (decl))
3198 return 0;
3199
3200 inst = decl_to_instance_map->get (decl);
3201
3202 if (!inst)
3203 return 0;
3204
3205 return *inst;
3206 }
3207
3208 /* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC. */
3209
3210 static inline int
3211 compute_discriminator (location_t loc)
3212 {
3213 int discriminator;
3214
3215 if (!decl_to_instance_map)
3216 discriminator = bb_discriminator;
3217 else
3218 {
3219 tree block = LOCATION_BLOCK (loc);
3220
3221 while (block && TREE_CODE (block) == BLOCK
3222 && !inlined_function_outer_scope_p (block))
3223 block = BLOCK_SUPERCONTEXT (block);
3224
3225 tree decl;
3226
3227 if (!block)
3228 decl = current_function_decl;
3229 else if (DECL_P (block))
3230 decl = block;
3231 else
3232 decl = block_ultimate_origin (block);
3233
3234 discriminator = map_decl_to_instance (decl);
3235 }
3236
3237 return discriminator;
3238 }
3239
3240 /* Return whether a source line note needs to be emitted before INSN.
3241 Sets IS_STMT to TRUE if the line should be marked as a possible
3242 breakpoint location. */
3243
3244 static bool
3245 notice_source_line (rtx_insn *insn, bool *is_stmt)
3246 {
3247 const char *filename;
3248 int linenum, columnnum;
3249
3250 if (NOTE_MARKER_P (insn))
3251 {
3252 location_t loc = NOTE_MARKER_LOCATION (insn);
3253 expanded_location xloc = expand_location (loc);
3254 if (xloc.line == 0
3255 && (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3256 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION))
3257 return false;
3258
3259 filename = xloc.file;
3260 linenum = xloc.line;
3261 columnnum = xloc.column;
3262 discriminator = compute_discriminator (loc);
3263 force_source_line = true;
3264 }
3265 else if (override_filename)
3266 {
3267 filename = override_filename;
3268 linenum = override_linenum;
3269 columnnum = override_columnnum;
3270 discriminator = override_discriminator;
3271 }
3272 else if (INSN_HAS_LOCATION (insn))
3273 {
3274 expanded_location xloc = insn_location (insn);
3275 filename = xloc.file;
3276 linenum = xloc.line;
3277 columnnum = xloc.column;
3278 discriminator = compute_discriminator (INSN_LOCATION (insn));
3279 }
3280 else
3281 {
3282 filename = NULL;
3283 linenum = 0;
3284 columnnum = 0;
3285 discriminator = 0;
3286 }
3287
3288 if (filename == NULL)
3289 return false;
3290
3291 if (force_source_line
3292 || filename != last_filename
3293 || last_linenum != linenum
3294 || (debug_column_info && last_columnnum != columnnum))
3295 {
3296 force_source_line = false;
3297 last_filename = filename;
3298 last_linenum = linenum;
3299 last_columnnum = columnnum;
3300 last_discriminator = discriminator;
3301 if (is_stmt)
3302 *is_stmt = true;
3303 high_block_linenum = MAX (last_linenum, high_block_linenum);
3304 high_function_linenum = MAX (last_linenum, high_function_linenum);
3305 return true;
3306 }
3307
3308 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3309 {
3310 /* If the discriminator changed, but the line number did not,
3311 output the line table entry with is_stmt false so the
3312 debugger does not treat this as a breakpoint location. */
3313 last_discriminator = discriminator;
3314 if (is_stmt)
3315 *is_stmt = false;
3316 return true;
3317 }
3318
3319 return false;
3320 }
3321 \f
3322 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3323 directly to the desired hard register. */
3324
3325 void
3326 cleanup_subreg_operands (rtx_insn *insn)
3327 {
3328 int i;
3329 bool changed = false;
3330 extract_insn_cached (insn);
3331 for (i = 0; i < recog_data.n_operands; i++)
3332 {
3333 /* The following test cannot use recog_data.operand when testing
3334 for a SUBREG: the underlying object might have been changed
3335 already if we are inside a match_operator expression that
3336 matches the else clause. Instead we test the underlying
3337 expression directly. */
3338 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3339 {
3340 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3341 changed = true;
3342 }
3343 else if (GET_CODE (recog_data.operand[i]) == PLUS
3344 || GET_CODE (recog_data.operand[i]) == MULT
3345 || MEM_P (recog_data.operand[i]))
3346 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3347 }
3348
3349 for (i = 0; i < recog_data.n_dups; i++)
3350 {
3351 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3352 {
3353 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3354 changed = true;
3355 }
3356 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3357 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3358 || MEM_P (*recog_data.dup_loc[i]))
3359 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3360 }
3361 if (changed)
3362 df_insn_rescan (insn);
3363 }
3364
3365 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3366 the thing it is a subreg of. Do it anyway if FINAL_P. */
3367
3368 rtx
3369 alter_subreg (rtx *xp, bool final_p)
3370 {
3371 rtx x = *xp;
3372 rtx y = SUBREG_REG (x);
3373
3374 /* simplify_subreg does not remove subreg from volatile references.
3375 We are required to. */
3376 if (MEM_P (y))
3377 {
3378 poly_int64 offset = SUBREG_BYTE (x);
3379
3380 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3381 contains 0 instead of the proper offset. See simplify_subreg. */
3382 if (paradoxical_subreg_p (x))
3383 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3384
3385 if (final_p)
3386 *xp = adjust_address (y, GET_MODE (x), offset);
3387 else
3388 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3389 }
3390 else if (REG_P (y) && HARD_REGISTER_P (y))
3391 {
3392 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3393 SUBREG_BYTE (x));
3394
3395 if (new_rtx != 0)
3396 *xp = new_rtx;
3397 else if (final_p && REG_P (y))
3398 {
3399 /* Simplify_subreg can't handle some REG cases, but we have to. */
3400 unsigned int regno;
3401 poly_int64 offset;
3402
3403 regno = subreg_regno (x);
3404 if (subreg_lowpart_p (x))
3405 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3406 else
3407 offset = SUBREG_BYTE (x);
3408 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3409 }
3410 }
3411
3412 return *xp;
3413 }
3414
3415 /* Do alter_subreg on all the SUBREGs contained in X. */
3416
3417 static rtx
3418 walk_alter_subreg (rtx *xp, bool *changed)
3419 {
3420 rtx x = *xp;
3421 switch (GET_CODE (x))
3422 {
3423 case PLUS:
3424 case MULT:
3425 case AND:
3426 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3427 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3428 break;
3429
3430 case MEM:
3431 case ZERO_EXTEND:
3432 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3433 break;
3434
3435 case SUBREG:
3436 *changed = true;
3437 return alter_subreg (xp, true);
3438
3439 default:
3440 break;
3441 }
3442
3443 return *xp;
3444 }
3445 \f
3446 #if HAVE_cc0
3447
3448 /* Given BODY, the body of a jump instruction, alter the jump condition
3449 as required by the bits that are set in cc_status.flags.
3450 Not all of the bits there can be handled at this level in all cases.
3451
3452 The value is normally 0.
3453 1 means that the condition has become always true.
3454 -1 means that the condition has become always false.
3455 2 means that COND has been altered. */
3456
3457 static int
3458 alter_cond (rtx cond)
3459 {
3460 int value = 0;
3461
3462 if (cc_status.flags & CC_REVERSED)
3463 {
3464 value = 2;
3465 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3466 }
3467
3468 if (cc_status.flags & CC_INVERTED)
3469 {
3470 value = 2;
3471 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3472 }
3473
3474 if (cc_status.flags & CC_NOT_POSITIVE)
3475 switch (GET_CODE (cond))
3476 {
3477 case LE:
3478 case LEU:
3479 case GEU:
3480 /* Jump becomes unconditional. */
3481 return 1;
3482
3483 case GT:
3484 case GTU:
3485 case LTU:
3486 /* Jump becomes no-op. */
3487 return -1;
3488
3489 case GE:
3490 PUT_CODE (cond, EQ);
3491 value = 2;
3492 break;
3493
3494 case LT:
3495 PUT_CODE (cond, NE);
3496 value = 2;
3497 break;
3498
3499 default:
3500 break;
3501 }
3502
3503 if (cc_status.flags & CC_NOT_NEGATIVE)
3504 switch (GET_CODE (cond))
3505 {
3506 case GE:
3507 case GEU:
3508 /* Jump becomes unconditional. */
3509 return 1;
3510
3511 case LT:
3512 case LTU:
3513 /* Jump becomes no-op. */
3514 return -1;
3515
3516 case LE:
3517 case LEU:
3518 PUT_CODE (cond, EQ);
3519 value = 2;
3520 break;
3521
3522 case GT:
3523 case GTU:
3524 PUT_CODE (cond, NE);
3525 value = 2;
3526 break;
3527
3528 default:
3529 break;
3530 }
3531
3532 if (cc_status.flags & CC_NO_OVERFLOW)
3533 switch (GET_CODE (cond))
3534 {
3535 case GEU:
3536 /* Jump becomes unconditional. */
3537 return 1;
3538
3539 case LEU:
3540 PUT_CODE (cond, EQ);
3541 value = 2;
3542 break;
3543
3544 case GTU:
3545 PUT_CODE (cond, NE);
3546 value = 2;
3547 break;
3548
3549 case LTU:
3550 /* Jump becomes no-op. */
3551 return -1;
3552
3553 default:
3554 break;
3555 }
3556
3557 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3558 switch (GET_CODE (cond))
3559 {
3560 default:
3561 gcc_unreachable ();
3562
3563 case NE:
3564 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3565 value = 2;
3566 break;
3567
3568 case EQ:
3569 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3570 value = 2;
3571 break;
3572 }
3573
3574 if (cc_status.flags & CC_NOT_SIGNED)
3575 /* The flags are valid if signed condition operators are converted
3576 to unsigned. */
3577 switch (GET_CODE (cond))
3578 {
3579 case LE:
3580 PUT_CODE (cond, LEU);
3581 value = 2;
3582 break;
3583
3584 case LT:
3585 PUT_CODE (cond, LTU);
3586 value = 2;
3587 break;
3588
3589 case GT:
3590 PUT_CODE (cond, GTU);
3591 value = 2;
3592 break;
3593
3594 case GE:
3595 PUT_CODE (cond, GEU);
3596 value = 2;
3597 break;
3598
3599 default:
3600 break;
3601 }
3602
3603 return value;
3604 }
3605 #endif
3606 \f
3607 /* Report inconsistency between the assembler template and the operands.
3608 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3609
3610 void
3611 output_operand_lossage (const char *cmsgid, ...)
3612 {
3613 char *fmt_string;
3614 char *new_message;
3615 const char *pfx_str;
3616 va_list ap;
3617
3618 va_start (ap, cmsgid);
3619
3620 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3621 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3622 new_message = xvasprintf (fmt_string, ap);
3623
3624 if (this_is_asm_operands)
3625 error_for_asm (this_is_asm_operands, "%s", new_message);
3626 else
3627 internal_error ("%s", new_message);
3628
3629 free (fmt_string);
3630 free (new_message);
3631 va_end (ap);
3632 }
3633 \f
3634 /* Output of assembler code from a template, and its subroutines. */
3635
3636 /* Annotate the assembly with a comment describing the pattern and
3637 alternative used. */
3638
3639 static void
3640 output_asm_name (void)
3641 {
3642 if (debug_insn)
3643 {
3644 fprintf (asm_out_file, "\t%s %d\t",
3645 ASM_COMMENT_START, INSN_UID (debug_insn));
3646
3647 fprintf (asm_out_file, "[c=%d",
3648 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3649 if (HAVE_ATTR_length)
3650 fprintf (asm_out_file, " l=%d",
3651 get_attr_length (debug_insn));
3652 fprintf (asm_out_file, "] ");
3653
3654 int num = INSN_CODE (debug_insn);
3655 fprintf (asm_out_file, "%s", insn_data[num].name);
3656 if (insn_data[num].n_alternatives > 1)
3657 fprintf (asm_out_file, "/%d", which_alternative);
3658
3659 /* Clear this so only the first assembler insn
3660 of any rtl insn will get the special comment for -dp. */
3661 debug_insn = 0;
3662 }
3663 }
3664
3665 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3666 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3667 corresponds to the address of the object and 0 if to the object. */
3668
3669 static tree
3670 get_mem_expr_from_op (rtx op, int *paddressp)
3671 {
3672 tree expr;
3673 int inner_addressp;
3674
3675 *paddressp = 0;
3676
3677 if (REG_P (op))
3678 return REG_EXPR (op);
3679 else if (!MEM_P (op))
3680 return 0;
3681
3682 if (MEM_EXPR (op) != 0)
3683 return MEM_EXPR (op);
3684
3685 /* Otherwise we have an address, so indicate it and look at the address. */
3686 *paddressp = 1;
3687 op = XEXP (op, 0);
3688
3689 /* First check if we have a decl for the address, then look at the right side
3690 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3691 But don't allow the address to itself be indirect. */
3692 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3693 return expr;
3694 else if (GET_CODE (op) == PLUS
3695 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3696 return expr;
3697
3698 while (UNARY_P (op)
3699 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3700 op = XEXP (op, 0);
3701
3702 expr = get_mem_expr_from_op (op, &inner_addressp);
3703 return inner_addressp ? 0 : expr;
3704 }
3705
3706 /* Output operand names for assembler instructions. OPERANDS is the
3707 operand vector, OPORDER is the order to write the operands, and NOPS
3708 is the number of operands to write. */
3709
3710 static void
3711 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3712 {
3713 int wrote = 0;
3714 int i;
3715
3716 for (i = 0; i < nops; i++)
3717 {
3718 int addressp;
3719 rtx op = operands[oporder[i]];
3720 tree expr = get_mem_expr_from_op (op, &addressp);
3721
3722 fprintf (asm_out_file, "%c%s",
3723 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3724 wrote = 1;
3725 if (expr)
3726 {
3727 fprintf (asm_out_file, "%s",
3728 addressp ? "*" : "");
3729 print_mem_expr (asm_out_file, expr);
3730 wrote = 1;
3731 }
3732 else if (REG_P (op) && ORIGINAL_REGNO (op)
3733 && ORIGINAL_REGNO (op) != REGNO (op))
3734 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3735 }
3736 }
3737
3738 #ifdef ASSEMBLER_DIALECT
3739 /* Helper function to parse assembler dialects in the asm string.
3740 This is called from output_asm_insn and asm_fprintf. */
3741 static const char *
3742 do_assembler_dialects (const char *p, int *dialect)
3743 {
3744 char c = *(p - 1);
3745
3746 switch (c)
3747 {
3748 case '{':
3749 {
3750 int i;
3751
3752 if (*dialect)
3753 output_operand_lossage ("nested assembly dialect alternatives");
3754 else
3755 *dialect = 1;
3756
3757 /* If we want the first dialect, do nothing. Otherwise, skip
3758 DIALECT_NUMBER of strings ending with '|'. */
3759 for (i = 0; i < dialect_number; i++)
3760 {
3761 while (*p && *p != '}')
3762 {
3763 if (*p == '|')
3764 {
3765 p++;
3766 break;
3767 }
3768
3769 /* Skip over any character after a percent sign. */
3770 if (*p == '%')
3771 p++;
3772 if (*p)
3773 p++;
3774 }
3775
3776 if (*p == '}')
3777 break;
3778 }
3779
3780 if (*p == '\0')
3781 output_operand_lossage ("unterminated assembly dialect alternative");
3782 }
3783 break;
3784
3785 case '|':
3786 if (*dialect)
3787 {
3788 /* Skip to close brace. */
3789 do
3790 {
3791 if (*p == '\0')
3792 {
3793 output_operand_lossage ("unterminated assembly dialect alternative");
3794 break;
3795 }
3796
3797 /* Skip over any character after a percent sign. */
3798 if (*p == '%' && p[1])
3799 {
3800 p += 2;
3801 continue;
3802 }
3803
3804 if (*p++ == '}')
3805 break;
3806 }
3807 while (1);
3808
3809 *dialect = 0;
3810 }
3811 else
3812 putc (c, asm_out_file);
3813 break;
3814
3815 case '}':
3816 if (! *dialect)
3817 putc (c, asm_out_file);
3818 *dialect = 0;
3819 break;
3820 default:
3821 gcc_unreachable ();
3822 }
3823
3824 return p;
3825 }
3826 #endif
3827
3828 /* Output text from TEMPLATE to the assembler output file,
3829 obeying %-directions to substitute operands taken from
3830 the vector OPERANDS.
3831
3832 %N (for N a digit) means print operand N in usual manner.
3833 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3834 and print the label name with no punctuation.
3835 %cN means require operand N to be a constant
3836 and print the constant expression with no punctuation.
3837 %aN means expect operand N to be a memory address
3838 (not a memory reference!) and print a reference
3839 to that address.
3840 %nN means expect operand N to be a constant
3841 and print a constant expression for minus the value
3842 of the operand, with no other punctuation. */
3843
3844 void
3845 output_asm_insn (const char *templ, rtx *operands)
3846 {
3847 const char *p;
3848 int c;
3849 #ifdef ASSEMBLER_DIALECT
3850 int dialect = 0;
3851 #endif
3852 int oporder[MAX_RECOG_OPERANDS];
3853 char opoutput[MAX_RECOG_OPERANDS];
3854 int ops = 0;
3855
3856 /* An insn may return a null string template
3857 in a case where no assembler code is needed. */
3858 if (*templ == 0)
3859 return;
3860
3861 memset (opoutput, 0, sizeof opoutput);
3862 p = templ;
3863 putc ('\t', asm_out_file);
3864
3865 #ifdef ASM_OUTPUT_OPCODE
3866 ASM_OUTPUT_OPCODE (asm_out_file, p);
3867 #endif
3868
3869 while ((c = *p++))
3870 switch (c)
3871 {
3872 case '\n':
3873 if (flag_verbose_asm)
3874 output_asm_operand_names (operands, oporder, ops);
3875 if (flag_print_asm_name)
3876 output_asm_name ();
3877
3878 ops = 0;
3879 memset (opoutput, 0, sizeof opoutput);
3880
3881 putc (c, asm_out_file);
3882 #ifdef ASM_OUTPUT_OPCODE
3883 while ((c = *p) == '\t')
3884 {
3885 putc (c, asm_out_file);
3886 p++;
3887 }
3888 ASM_OUTPUT_OPCODE (asm_out_file, p);
3889 #endif
3890 break;
3891
3892 #ifdef ASSEMBLER_DIALECT
3893 case '{':
3894 case '}':
3895 case '|':
3896 p = do_assembler_dialects (p, &dialect);
3897 break;
3898 #endif
3899
3900 case '%':
3901 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3902 if ASSEMBLER_DIALECT defined and these characters have a special
3903 meaning as dialect delimiters.*/
3904 if (*p == '%'
3905 #ifdef ASSEMBLER_DIALECT
3906 || *p == '{' || *p == '}' || *p == '|'
3907 #endif
3908 )
3909 {
3910 putc (*p, asm_out_file);
3911 p++;
3912 }
3913 /* %= outputs a number which is unique to each insn in the entire
3914 compilation. This is useful for making local labels that are
3915 referred to more than once in a given insn. */
3916 else if (*p == '=')
3917 {
3918 p++;
3919 fprintf (asm_out_file, "%d", insn_counter);
3920 }
3921 /* % followed by a letter and some digits
3922 outputs an operand in a special way depending on the letter.
3923 Letters `acln' are implemented directly.
3924 Other letters are passed to `output_operand' so that
3925 the TARGET_PRINT_OPERAND hook can define them. */
3926 else if (ISALPHA (*p))
3927 {
3928 int letter = *p++;
3929 unsigned long opnum;
3930 char *endptr;
3931
3932 opnum = strtoul (p, &endptr, 10);
3933
3934 if (endptr == p)
3935 output_operand_lossage ("operand number missing "
3936 "after %%-letter");
3937 else if (this_is_asm_operands && opnum >= insn_noperands)
3938 output_operand_lossage ("operand number out of range");
3939 else if (letter == 'l')
3940 output_asm_label (operands[opnum]);
3941 else if (letter == 'a')
3942 output_address (VOIDmode, operands[opnum]);
3943 else if (letter == 'c')
3944 {
3945 if (CONSTANT_ADDRESS_P (operands[opnum]))
3946 output_addr_const (asm_out_file, operands[opnum]);
3947 else
3948 output_operand (operands[opnum], 'c');
3949 }
3950 else if (letter == 'n')
3951 {
3952 if (CONST_INT_P (operands[opnum]))
3953 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3954 - INTVAL (operands[opnum]));
3955 else
3956 {
3957 putc ('-', asm_out_file);
3958 output_addr_const (asm_out_file, operands[opnum]);
3959 }
3960 }
3961 else
3962 output_operand (operands[opnum], letter);
3963
3964 if (!opoutput[opnum])
3965 oporder[ops++] = opnum;
3966 opoutput[opnum] = 1;
3967
3968 p = endptr;
3969 c = *p;
3970 }
3971 /* % followed by a digit outputs an operand the default way. */
3972 else if (ISDIGIT (*p))
3973 {
3974 unsigned long opnum;
3975 char *endptr;
3976
3977 opnum = strtoul (p, &endptr, 10);
3978 if (this_is_asm_operands && opnum >= insn_noperands)
3979 output_operand_lossage ("operand number out of range");
3980 else
3981 output_operand (operands[opnum], 0);
3982
3983 if (!opoutput[opnum])
3984 oporder[ops++] = opnum;
3985 opoutput[opnum] = 1;
3986
3987 p = endptr;
3988 c = *p;
3989 }
3990 /* % followed by punctuation: output something for that
3991 punctuation character alone, with no operand. The
3992 TARGET_PRINT_OPERAND hook decides what is actually done. */
3993 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3994 output_operand (NULL_RTX, *p++);
3995 else
3996 output_operand_lossage ("invalid %%-code");
3997 break;
3998
3999 default:
4000 putc (c, asm_out_file);
4001 }
4002
4003 /* Try to keep the asm a bit more readable. */
4004 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
4005 putc ('\t', asm_out_file);
4006
4007 /* Write out the variable names for operands, if we know them. */
4008 if (flag_verbose_asm)
4009 output_asm_operand_names (operands, oporder, ops);
4010 if (flag_print_asm_name)
4011 output_asm_name ();
4012
4013 putc ('\n', asm_out_file);
4014 }
4015 \f
4016 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
4017
4018 void
4019 output_asm_label (rtx x)
4020 {
4021 char buf[256];
4022
4023 if (GET_CODE (x) == LABEL_REF)
4024 x = label_ref_label (x);
4025 if (LABEL_P (x)
4026 || (NOTE_P (x)
4027 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4028 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4029 else
4030 output_operand_lossage ("'%%l' operand isn't a label");
4031
4032 assemble_name (asm_out_file, buf);
4033 }
4034
4035 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
4036
4037 void
4038 mark_symbol_refs_as_used (rtx x)
4039 {
4040 subrtx_iterator::array_type array;
4041 FOR_EACH_SUBRTX (iter, array, x, ALL)
4042 {
4043 const_rtx x = *iter;
4044 if (GET_CODE (x) == SYMBOL_REF)
4045 if (tree t = SYMBOL_REF_DECL (x))
4046 assemble_external (t);
4047 }
4048 }
4049
4050 /* Print operand X using machine-dependent assembler syntax.
4051 CODE is a non-digit that preceded the operand-number in the % spec,
4052 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
4053 between the % and the digits.
4054 When CODE is a non-letter, X is 0.
4055
4056 The meanings of the letters are machine-dependent and controlled
4057 by TARGET_PRINT_OPERAND. */
4058
4059 void
4060 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4061 {
4062 if (x && GET_CODE (x) == SUBREG)
4063 x = alter_subreg (&x, true);
4064
4065 /* X must not be a pseudo reg. */
4066 if (!targetm.no_register_allocation)
4067 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4068
4069 targetm.asm_out.print_operand (asm_out_file, x, code);
4070
4071 if (x == NULL_RTX)
4072 return;
4073
4074 mark_symbol_refs_as_used (x);
4075 }
4076
4077 /* Print a memory reference operand for address X using
4078 machine-dependent assembler syntax. */
4079
4080 void
4081 output_address (machine_mode mode, rtx x)
4082 {
4083 bool changed = false;
4084 walk_alter_subreg (&x, &changed);
4085 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4086 }
4087 \f
4088 /* Print an integer constant expression in assembler syntax.
4089 Addition and subtraction are the only arithmetic
4090 that may appear in these expressions. */
4091
4092 void
4093 output_addr_const (FILE *file, rtx x)
4094 {
4095 char buf[256];
4096
4097 restart:
4098 switch (GET_CODE (x))
4099 {
4100 case PC:
4101 putc ('.', file);
4102 break;
4103
4104 case SYMBOL_REF:
4105 if (SYMBOL_REF_DECL (x))
4106 assemble_external (SYMBOL_REF_DECL (x));
4107 #ifdef ASM_OUTPUT_SYMBOL_REF
4108 ASM_OUTPUT_SYMBOL_REF (file, x);
4109 #else
4110 assemble_name (file, XSTR (x, 0));
4111 #endif
4112 break;
4113
4114 case LABEL_REF:
4115 x = label_ref_label (x);
4116 /* Fall through. */
4117 case CODE_LABEL:
4118 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4119 #ifdef ASM_OUTPUT_LABEL_REF
4120 ASM_OUTPUT_LABEL_REF (file, buf);
4121 #else
4122 assemble_name (file, buf);
4123 #endif
4124 break;
4125
4126 case CONST_INT:
4127 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4128 break;
4129
4130 case CONST:
4131 /* This used to output parentheses around the expression,
4132 but that does not work on the 386 (either ATT or BSD assembler). */
4133 output_addr_const (file, XEXP (x, 0));
4134 break;
4135
4136 case CONST_WIDE_INT:
4137 /* We do not know the mode here so we have to use a round about
4138 way to build a wide-int to get it printed properly. */
4139 {
4140 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4141 CONST_WIDE_INT_NUNITS (x),
4142 CONST_WIDE_INT_NUNITS (x)
4143 * HOST_BITS_PER_WIDE_INT,
4144 false);
4145 print_decs (w, file);
4146 }
4147 break;
4148
4149 case CONST_DOUBLE:
4150 if (CONST_DOUBLE_AS_INT_P (x))
4151 {
4152 /* We can use %d if the number is one word and positive. */
4153 if (CONST_DOUBLE_HIGH (x))
4154 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4155 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4156 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4157 else if (CONST_DOUBLE_LOW (x) < 0)
4158 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4159 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4160 else
4161 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4162 }
4163 else
4164 /* We can't handle floating point constants;
4165 PRINT_OPERAND must handle them. */
4166 output_operand_lossage ("floating constant misused");
4167 break;
4168
4169 case CONST_FIXED:
4170 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4171 break;
4172
4173 case PLUS:
4174 /* Some assemblers need integer constants to appear last (eg masm). */
4175 if (CONST_INT_P (XEXP (x, 0)))
4176 {
4177 output_addr_const (file, XEXP (x, 1));
4178 if (INTVAL (XEXP (x, 0)) >= 0)
4179 fprintf (file, "+");
4180 output_addr_const (file, XEXP (x, 0));
4181 }
4182 else
4183 {
4184 output_addr_const (file, XEXP (x, 0));
4185 if (!CONST_INT_P (XEXP (x, 1))
4186 || INTVAL (XEXP (x, 1)) >= 0)
4187 fprintf (file, "+");
4188 output_addr_const (file, XEXP (x, 1));
4189 }
4190 break;
4191
4192 case MINUS:
4193 /* Avoid outputting things like x-x or x+5-x,
4194 since some assemblers can't handle that. */
4195 x = simplify_subtraction (x);
4196 if (GET_CODE (x) != MINUS)
4197 goto restart;
4198
4199 output_addr_const (file, XEXP (x, 0));
4200 fprintf (file, "-");
4201 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4202 || GET_CODE (XEXP (x, 1)) == PC
4203 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4204 output_addr_const (file, XEXP (x, 1));
4205 else
4206 {
4207 fputs (targetm.asm_out.open_paren, file);
4208 output_addr_const (file, XEXP (x, 1));
4209 fputs (targetm.asm_out.close_paren, file);
4210 }
4211 break;
4212
4213 case ZERO_EXTEND:
4214 case SIGN_EXTEND:
4215 case SUBREG:
4216 case TRUNCATE:
4217 output_addr_const (file, XEXP (x, 0));
4218 break;
4219
4220 default:
4221 if (targetm.asm_out.output_addr_const_extra (file, x))
4222 break;
4223
4224 output_operand_lossage ("invalid expression as operand");
4225 }
4226 }
4227 \f
4228 /* Output a quoted string. */
4229
4230 void
4231 output_quoted_string (FILE *asm_file, const char *string)
4232 {
4233 #ifdef OUTPUT_QUOTED_STRING
4234 OUTPUT_QUOTED_STRING (asm_file, string);
4235 #else
4236 char c;
4237
4238 putc ('\"', asm_file);
4239 while ((c = *string++) != 0)
4240 {
4241 if (ISPRINT (c))
4242 {
4243 if (c == '\"' || c == '\\')
4244 putc ('\\', asm_file);
4245 putc (c, asm_file);
4246 }
4247 else
4248 fprintf (asm_file, "\\%03o", (unsigned char) c);
4249 }
4250 putc ('\"', asm_file);
4251 #endif
4252 }
4253 \f
4254 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4255
4256 void
4257 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4258 {
4259 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4260 if (value == 0)
4261 putc ('0', f);
4262 else
4263 {
4264 char *p = buf + sizeof (buf);
4265 do
4266 *--p = "0123456789abcdef"[value % 16];
4267 while ((value /= 16) != 0);
4268 *--p = 'x';
4269 *--p = '0';
4270 fwrite (p, 1, buf + sizeof (buf) - p, f);
4271 }
4272 }
4273
4274 /* Internal function that prints an unsigned long in decimal in reverse.
4275 The output string IS NOT null-terminated. */
4276
4277 static int
4278 sprint_ul_rev (char *s, unsigned long value)
4279 {
4280 int i = 0;
4281 do
4282 {
4283 s[i] = "0123456789"[value % 10];
4284 value /= 10;
4285 i++;
4286 /* alternate version, without modulo */
4287 /* oldval = value; */
4288 /* value /= 10; */
4289 /* s[i] = "0123456789" [oldval - 10*value]; */
4290 /* i++ */
4291 }
4292 while (value != 0);
4293 return i;
4294 }
4295
4296 /* Write an unsigned long as decimal to a file, fast. */
4297
4298 void
4299 fprint_ul (FILE *f, unsigned long value)
4300 {
4301 /* python says: len(str(2**64)) == 20 */
4302 char s[20];
4303 int i;
4304
4305 i = sprint_ul_rev (s, value);
4306
4307 /* It's probably too small to bother with string reversal and fputs. */
4308 do
4309 {
4310 i--;
4311 putc (s[i], f);
4312 }
4313 while (i != 0);
4314 }
4315
4316 /* Write an unsigned long as decimal to a string, fast.
4317 s must be wide enough to not overflow, at least 21 chars.
4318 Returns the length of the string (without terminating '\0'). */
4319
4320 int
4321 sprint_ul (char *s, unsigned long value)
4322 {
4323 int len = sprint_ul_rev (s, value);
4324 s[len] = '\0';
4325
4326 std::reverse (s, s + len);
4327 return len;
4328 }
4329
4330 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4331 %R prints the value of REGISTER_PREFIX.
4332 %L prints the value of LOCAL_LABEL_PREFIX.
4333 %U prints the value of USER_LABEL_PREFIX.
4334 %I prints the value of IMMEDIATE_PREFIX.
4335 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4336 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4337
4338 We handle alternate assembler dialects here, just like output_asm_insn. */
4339
4340 void
4341 asm_fprintf (FILE *file, const char *p, ...)
4342 {
4343 char buf[10];
4344 char *q, c;
4345 #ifdef ASSEMBLER_DIALECT
4346 int dialect = 0;
4347 #endif
4348 va_list argptr;
4349
4350 va_start (argptr, p);
4351
4352 buf[0] = '%';
4353
4354 while ((c = *p++))
4355 switch (c)
4356 {
4357 #ifdef ASSEMBLER_DIALECT
4358 case '{':
4359 case '}':
4360 case '|':
4361 p = do_assembler_dialects (p, &dialect);
4362 break;
4363 #endif
4364
4365 case '%':
4366 c = *p++;
4367 q = &buf[1];
4368 while (strchr ("-+ #0", c))
4369 {
4370 *q++ = c;
4371 c = *p++;
4372 }
4373 while (ISDIGIT (c) || c == '.')
4374 {
4375 *q++ = c;
4376 c = *p++;
4377 }
4378 switch (c)
4379 {
4380 case '%':
4381 putc ('%', file);
4382 break;
4383
4384 case 'd': case 'i': case 'u':
4385 case 'x': case 'X': case 'o':
4386 case 'c':
4387 *q++ = c;
4388 *q = 0;
4389 fprintf (file, buf, va_arg (argptr, int));
4390 break;
4391
4392 case 'w':
4393 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4394 'o' cases, but we do not check for those cases. It
4395 means that the value is a HOST_WIDE_INT, which may be
4396 either `long' or `long long'. */
4397 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4398 q += strlen (HOST_WIDE_INT_PRINT);
4399 *q++ = *p++;
4400 *q = 0;
4401 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4402 break;
4403
4404 case 'l':
4405 *q++ = c;
4406 #ifdef HAVE_LONG_LONG
4407 if (*p == 'l')
4408 {
4409 *q++ = *p++;
4410 *q++ = *p++;
4411 *q = 0;
4412 fprintf (file, buf, va_arg (argptr, long long));
4413 }
4414 else
4415 #endif
4416 {
4417 *q++ = *p++;
4418 *q = 0;
4419 fprintf (file, buf, va_arg (argptr, long));
4420 }
4421
4422 break;
4423
4424 case 's':
4425 *q++ = c;
4426 *q = 0;
4427 fprintf (file, buf, va_arg (argptr, char *));
4428 break;
4429
4430 case 'O':
4431 #ifdef ASM_OUTPUT_OPCODE
4432 ASM_OUTPUT_OPCODE (asm_out_file, p);
4433 #endif
4434 break;
4435
4436 case 'R':
4437 #ifdef REGISTER_PREFIX
4438 fprintf (file, "%s", REGISTER_PREFIX);
4439 #endif
4440 break;
4441
4442 case 'I':
4443 #ifdef IMMEDIATE_PREFIX
4444 fprintf (file, "%s", IMMEDIATE_PREFIX);
4445 #endif
4446 break;
4447
4448 case 'L':
4449 #ifdef LOCAL_LABEL_PREFIX
4450 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4451 #endif
4452 break;
4453
4454 case 'U':
4455 fputs (user_label_prefix, file);
4456 break;
4457
4458 #ifdef ASM_FPRINTF_EXTENSIONS
4459 /* Uppercase letters are reserved for general use by asm_fprintf
4460 and so are not available to target specific code. In order to
4461 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4462 they are defined here. As they get turned into real extensions
4463 to asm_fprintf they should be removed from this list. */
4464 case 'A': case 'B': case 'C': case 'D': case 'E':
4465 case 'F': case 'G': case 'H': case 'J': case 'K':
4466 case 'M': case 'N': case 'P': case 'Q': case 'S':
4467 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4468 break;
4469
4470 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4471 #endif
4472 default:
4473 gcc_unreachable ();
4474 }
4475 break;
4476
4477 default:
4478 putc (c, file);
4479 }
4480 va_end (argptr);
4481 }
4482 \f
4483 /* Return nonzero if this function has no function calls. */
4484
4485 int
4486 leaf_function_p (void)
4487 {
4488 rtx_insn *insn;
4489
4490 /* Ensure we walk the entire function body. */
4491 gcc_assert (!in_sequence_p ());
4492
4493 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4494 functions even if they call mcount. */
4495 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4496 return 0;
4497
4498 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4499 {
4500 if (CALL_P (insn)
4501 && ! SIBLING_CALL_P (insn))
4502 return 0;
4503 if (NONJUMP_INSN_P (insn)
4504 && GET_CODE (PATTERN (insn)) == SEQUENCE
4505 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4506 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4507 return 0;
4508 }
4509
4510 return 1;
4511 }
4512
4513 /* Return 1 if branch is a forward branch.
4514 Uses insn_shuid array, so it works only in the final pass. May be used by
4515 output templates to customary add branch prediction hints.
4516 */
4517 int
4518 final_forward_branch_p (rtx_insn *insn)
4519 {
4520 int insn_id, label_id;
4521
4522 gcc_assert (uid_shuid);
4523 insn_id = INSN_SHUID (insn);
4524 label_id = INSN_SHUID (JUMP_LABEL (insn));
4525 /* We've hit some insns that does not have id information available. */
4526 gcc_assert (insn_id && label_id);
4527 return insn_id < label_id;
4528 }
4529
4530 /* On some machines, a function with no call insns
4531 can run faster if it doesn't create its own register window.
4532 When output, the leaf function should use only the "output"
4533 registers. Ordinarily, the function would be compiled to use
4534 the "input" registers to find its arguments; it is a candidate
4535 for leaf treatment if it uses only the "input" registers.
4536 Leaf function treatment means renumbering so the function
4537 uses the "output" registers instead. */
4538
4539 #ifdef LEAF_REGISTERS
4540
4541 /* Return 1 if this function uses only the registers that can be
4542 safely renumbered. */
4543
4544 int
4545 only_leaf_regs_used (void)
4546 {
4547 int i;
4548 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4549
4550 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4551 if ((df_regs_ever_live_p (i) || global_regs[i])
4552 && ! permitted_reg_in_leaf_functions[i])
4553 return 0;
4554
4555 if (crtl->uses_pic_offset_table
4556 && pic_offset_table_rtx != 0
4557 && REG_P (pic_offset_table_rtx)
4558 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4559 return 0;
4560
4561 return 1;
4562 }
4563
4564 /* Scan all instructions and renumber all registers into those
4565 available in leaf functions. */
4566
4567 static void
4568 leaf_renumber_regs (rtx_insn *first)
4569 {
4570 rtx_insn *insn;
4571
4572 /* Renumber only the actual patterns.
4573 The reg-notes can contain frame pointer refs,
4574 and renumbering them could crash, and should not be needed. */
4575 for (insn = first; insn; insn = NEXT_INSN (insn))
4576 if (INSN_P (insn))
4577 leaf_renumber_regs_insn (PATTERN (insn));
4578 }
4579
4580 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4581 available in leaf functions. */
4582
4583 void
4584 leaf_renumber_regs_insn (rtx in_rtx)
4585 {
4586 int i, j;
4587 const char *format_ptr;
4588
4589 if (in_rtx == 0)
4590 return;
4591
4592 /* Renumber all input-registers into output-registers.
4593 renumbered_regs would be 1 for an output-register;
4594 they */
4595
4596 if (REG_P (in_rtx))
4597 {
4598 int newreg;
4599
4600 /* Don't renumber the same reg twice. */
4601 if (in_rtx->used)
4602 return;
4603
4604 newreg = REGNO (in_rtx);
4605 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4606 to reach here as part of a REG_NOTE. */
4607 if (newreg >= FIRST_PSEUDO_REGISTER)
4608 {
4609 in_rtx->used = 1;
4610 return;
4611 }
4612 newreg = LEAF_REG_REMAP (newreg);
4613 gcc_assert (newreg >= 0);
4614 df_set_regs_ever_live (REGNO (in_rtx), false);
4615 df_set_regs_ever_live (newreg, true);
4616 SET_REGNO (in_rtx, newreg);
4617 in_rtx->used = 1;
4618 return;
4619 }
4620
4621 if (INSN_P (in_rtx))
4622 {
4623 /* Inside a SEQUENCE, we find insns.
4624 Renumber just the patterns of these insns,
4625 just as we do for the top-level insns. */
4626 leaf_renumber_regs_insn (PATTERN (in_rtx));
4627 return;
4628 }
4629
4630 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4631
4632 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4633 switch (*format_ptr++)
4634 {
4635 case 'e':
4636 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4637 break;
4638
4639 case 'E':
4640 if (XVEC (in_rtx, i) != NULL)
4641 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4642 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4643 break;
4644
4645 case 'S':
4646 case 's':
4647 case '0':
4648 case 'i':
4649 case 'w':
4650 case 'p':
4651 case 'n':
4652 case 'u':
4653 break;
4654
4655 default:
4656 gcc_unreachable ();
4657 }
4658 }
4659 #endif
4660 \f
4661 /* Turn the RTL into assembly. */
4662 static unsigned int
4663 rest_of_handle_final (void)
4664 {
4665 const char *fnname = get_fnname_from_decl (current_function_decl);
4666
4667 /* Turn debug markers into notes if the var-tracking pass has not
4668 been invoked. */
4669 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4670 delete_vta_debug_insns (false);
4671
4672 assemble_start_function (current_function_decl, fnname);
4673 rtx_insn *first = get_insns ();
4674 int seen = 0;
4675 final_start_function_1 (&first, asm_out_file, &seen, optimize);
4676 final_1 (first, asm_out_file, seen, optimize);
4677 if (flag_ipa_ra
4678 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl))
4679 /* Functions with naked attributes are supported only with basic asm
4680 statements in the body, thus for supported use cases the information
4681 on clobbered registers is not available. */
4682 && !lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)))
4683 collect_fn_hard_reg_usage ();
4684 final_end_function ();
4685
4686 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4687 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4688 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4689 output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4690
4691 assemble_end_function (current_function_decl, fnname);
4692
4693 /* Free up reg info memory. */
4694 free_reg_info ();
4695
4696 if (! quiet_flag)
4697 fflush (asm_out_file);
4698
4699 /* Write DBX symbols if requested. */
4700
4701 /* Note that for those inline functions where we don't initially
4702 know for certain that we will be generating an out-of-line copy,
4703 the first invocation of this routine (rest_of_compilation) will
4704 skip over this code by doing a `goto exit_rest_of_compilation;'.
4705 Later on, wrapup_global_declarations will (indirectly) call
4706 rest_of_compilation again for those inline functions that need
4707 to have out-of-line copies generated. During that call, we
4708 *will* be routed past here. */
4709
4710 timevar_push (TV_SYMOUT);
4711 if (!DECL_IGNORED_P (current_function_decl))
4712 debug_hooks->function_decl (current_function_decl);
4713 timevar_pop (TV_SYMOUT);
4714
4715 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4716 DECL_INITIAL (current_function_decl) = error_mark_node;
4717
4718 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4719 && targetm.have_ctors_dtors)
4720 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4721 decl_init_priority_lookup
4722 (current_function_decl));
4723 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4724 && targetm.have_ctors_dtors)
4725 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4726 decl_fini_priority_lookup
4727 (current_function_decl));
4728 return 0;
4729 }
4730
4731 namespace {
4732
4733 const pass_data pass_data_final =
4734 {
4735 RTL_PASS, /* type */
4736 "final", /* name */
4737 OPTGROUP_NONE, /* optinfo_flags */
4738 TV_FINAL, /* tv_id */
4739 0, /* properties_required */
4740 0, /* properties_provided */
4741 0, /* properties_destroyed */
4742 0, /* todo_flags_start */
4743 0, /* todo_flags_finish */
4744 };
4745
4746 class pass_final : public rtl_opt_pass
4747 {
4748 public:
4749 pass_final (gcc::context *ctxt)
4750 : rtl_opt_pass (pass_data_final, ctxt)
4751 {}
4752
4753 /* opt_pass methods: */
4754 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4755
4756 }; // class pass_final
4757
4758 } // anon namespace
4759
4760 rtl_opt_pass *
4761 make_pass_final (gcc::context *ctxt)
4762 {
4763 return new pass_final (ctxt);
4764 }
4765
4766
4767 static unsigned int
4768 rest_of_handle_shorten_branches (void)
4769 {
4770 /* Shorten branches. */
4771 shorten_branches (get_insns ());
4772 return 0;
4773 }
4774
4775 namespace {
4776
4777 const pass_data pass_data_shorten_branches =
4778 {
4779 RTL_PASS, /* type */
4780 "shorten", /* name */
4781 OPTGROUP_NONE, /* optinfo_flags */
4782 TV_SHORTEN_BRANCH, /* tv_id */
4783 0, /* properties_required */
4784 0, /* properties_provided */
4785 0, /* properties_destroyed */
4786 0, /* todo_flags_start */
4787 0, /* todo_flags_finish */
4788 };
4789
4790 class pass_shorten_branches : public rtl_opt_pass
4791 {
4792 public:
4793 pass_shorten_branches (gcc::context *ctxt)
4794 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4795 {}
4796
4797 /* opt_pass methods: */
4798 virtual unsigned int execute (function *)
4799 {
4800 return rest_of_handle_shorten_branches ();
4801 }
4802
4803 }; // class pass_shorten_branches
4804
4805 } // anon namespace
4806
4807 rtl_opt_pass *
4808 make_pass_shorten_branches (gcc::context *ctxt)
4809 {
4810 return new pass_shorten_branches (ctxt);
4811 }
4812
4813
4814 static unsigned int
4815 rest_of_clean_state (void)
4816 {
4817 rtx_insn *insn, *next;
4818 FILE *final_output = NULL;
4819 int save_unnumbered = flag_dump_unnumbered;
4820 int save_noaddr = flag_dump_noaddr;
4821
4822 if (flag_dump_final_insns)
4823 {
4824 final_output = fopen (flag_dump_final_insns, "a");
4825 if (!final_output)
4826 {
4827 error ("could not open final insn dump file %qs: %m",
4828 flag_dump_final_insns);
4829 flag_dump_final_insns = NULL;
4830 }
4831 else
4832 {
4833 flag_dump_noaddr = flag_dump_unnumbered = 1;
4834 if (flag_compare_debug_opt || flag_compare_debug)
4835 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4836 dump_function_header (final_output, current_function_decl,
4837 dump_flags);
4838 final_insns_dump_p = true;
4839
4840 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4841 if (LABEL_P (insn))
4842 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4843 else
4844 {
4845 if (NOTE_P (insn))
4846 set_block_for_insn (insn, NULL);
4847 INSN_UID (insn) = 0;
4848 }
4849 }
4850 }
4851
4852 /* It is very important to decompose the RTL instruction chain here:
4853 debug information keeps pointing into CODE_LABEL insns inside the function
4854 body. If these remain pointing to the other insns, we end up preserving
4855 whole RTL chain and attached detailed debug info in memory. */
4856 for (insn = get_insns (); insn; insn = next)
4857 {
4858 next = NEXT_INSN (insn);
4859 SET_NEXT_INSN (insn) = NULL;
4860 SET_PREV_INSN (insn) = NULL;
4861
4862 rtx_insn *call_insn = insn;
4863 if (NONJUMP_INSN_P (call_insn)
4864 && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4865 {
4866 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4867 call_insn = seq->insn (0);
4868 }
4869 if (CALL_P (call_insn))
4870 {
4871 rtx note
4872 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4873 if (note)
4874 remove_note (call_insn, note);
4875 }
4876
4877 if (final_output
4878 && (!NOTE_P (insn)
4879 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4880 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4881 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4882 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4883 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4884 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4885 print_rtl_single (final_output, insn);
4886 }
4887
4888 if (final_output)
4889 {
4890 flag_dump_noaddr = save_noaddr;
4891 flag_dump_unnumbered = save_unnumbered;
4892 final_insns_dump_p = false;
4893
4894 if (fclose (final_output))
4895 {
4896 error ("could not close final insn dump file %qs: %m",
4897 flag_dump_final_insns);
4898 flag_dump_final_insns = NULL;
4899 }
4900 }
4901
4902 flag_rerun_cse_after_global_opts = 0;
4903 reload_completed = 0;
4904 epilogue_completed = 0;
4905 #ifdef STACK_REGS
4906 regstack_completed = 0;
4907 #endif
4908
4909 /* Clear out the insn_length contents now that they are no
4910 longer valid. */
4911 init_insn_lengths ();
4912
4913 /* Show no temporary slots allocated. */
4914 init_temp_slots ();
4915
4916 free_bb_for_insn ();
4917
4918 if (cfun->gimple_df)
4919 delete_tree_ssa (cfun);
4920
4921 /* We can reduce stack alignment on call site only when we are sure that
4922 the function body just produced will be actually used in the final
4923 executable. */
4924 if (flag_ipa_stack_alignment
4925 && decl_binds_to_current_def_p (current_function_decl))
4926 {
4927 unsigned int pref = crtl->preferred_stack_boundary;
4928 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4929 pref = crtl->stack_alignment_needed;
4930 cgraph_node::rtl_info (current_function_decl)
4931 ->preferred_incoming_stack_boundary = pref;
4932 }
4933
4934 /* Make sure volatile mem refs aren't considered valid operands for
4935 arithmetic insns. We must call this here if this is a nested inline
4936 function, since the above code leaves us in the init_recog state,
4937 and the function context push/pop code does not save/restore volatile_ok.
4938
4939 ??? Maybe it isn't necessary for expand_start_function to call this
4940 anymore if we do it here? */
4941
4942 init_recog_no_volatile ();
4943
4944 /* We're done with this function. Free up memory if we can. */
4945 free_after_parsing (cfun);
4946 free_after_compilation (cfun);
4947 return 0;
4948 }
4949
4950 namespace {
4951
4952 const pass_data pass_data_clean_state =
4953 {
4954 RTL_PASS, /* type */
4955 "*clean_state", /* name */
4956 OPTGROUP_NONE, /* optinfo_flags */
4957 TV_FINAL, /* tv_id */
4958 0, /* properties_required */
4959 0, /* properties_provided */
4960 PROP_rtl, /* properties_destroyed */
4961 0, /* todo_flags_start */
4962 0, /* todo_flags_finish */
4963 };
4964
4965 class pass_clean_state : public rtl_opt_pass
4966 {
4967 public:
4968 pass_clean_state (gcc::context *ctxt)
4969 : rtl_opt_pass (pass_data_clean_state, ctxt)
4970 {}
4971
4972 /* opt_pass methods: */
4973 virtual unsigned int execute (function *)
4974 {
4975 return rest_of_clean_state ();
4976 }
4977
4978 }; // class pass_clean_state
4979
4980 } // anon namespace
4981
4982 rtl_opt_pass *
4983 make_pass_clean_state (gcc::context *ctxt)
4984 {
4985 return new pass_clean_state (ctxt);
4986 }
4987
4988 /* Return true if INSN is a call to the current function. */
4989
4990 static bool
4991 self_recursive_call_p (rtx_insn *insn)
4992 {
4993 tree fndecl = get_call_fndecl (insn);
4994 return (fndecl == current_function_decl
4995 && decl_binds_to_current_def_p (fndecl));
4996 }
4997
4998 /* Collect hard register usage for the current function. */
4999
5000 static void
5001 collect_fn_hard_reg_usage (void)
5002 {
5003 rtx_insn *insn;
5004 #ifdef STACK_REGS
5005 int i;
5006 #endif
5007 struct cgraph_rtl_info *node;
5008 HARD_REG_SET function_used_regs;
5009
5010 /* ??? To be removed when all the ports have been fixed. */
5011 if (!targetm.call_fusage_contains_non_callee_clobbers)
5012 return;
5013
5014 /* Be conservative - mark fixed and global registers as used. */
5015 function_used_regs = fixed_reg_set;
5016
5017 #ifdef STACK_REGS
5018 /* Handle STACK_REGS conservatively, since the df-framework does not
5019 provide accurate information for them. */
5020
5021 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5022 SET_HARD_REG_BIT (function_used_regs, i);
5023 #endif
5024
5025 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5026 {
5027 HARD_REG_SET insn_used_regs;
5028
5029 if (!NONDEBUG_INSN_P (insn))
5030 continue;
5031
5032 if (CALL_P (insn)
5033 && !self_recursive_call_p (insn))
5034 function_used_regs
5035 |= insn_callee_abi (insn).full_and_partial_reg_clobbers ();
5036
5037 find_all_hard_reg_sets (insn, &insn_used_regs, false);
5038 function_used_regs |= insn_used_regs;
5039
5040 if (hard_reg_set_subset_p (crtl->abi->full_and_partial_reg_clobbers (),
5041 function_used_regs))
5042 return;
5043 }
5044
5045 /* Mask out fully-saved registers, so that they don't affect equality
5046 comparisons between function_abis. */
5047 function_used_regs &= crtl->abi->full_and_partial_reg_clobbers ();
5048
5049 node = cgraph_node::rtl_info (current_function_decl);
5050 gcc_assert (node != NULL);
5051
5052 node->function_used_regs = function_used_regs;
5053 }