Daily bump.
[gcc.git] / gcc / gimple-range.cc
1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2021 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "ssa.h"
31 #include "gimple-pretty-print.h"
32 #include "gimple-iterator.h"
33 #include "optabs-tree.h"
34 #include "gimple-fold.h"
35 #include "tree-cfg.h"
36 #include "fold-const.h"
37 #include "tree-cfg.h"
38 #include "wide-int.h"
39 #include "fold-const.h"
40 #include "case-cfn-macros.h"
41 #include "omp-general.h"
42 #include "cfgloop.h"
43 #include "tree-ssa-loop.h"
44 #include "tree-scalar-evolution.h"
45 #include "dbgcnt.h"
46 #include "alloc-pool.h"
47 #include "vr-values.h"
48 #include "gimple-range.h"
49
50
51 // Adjust the range for a pointer difference where the operands came
52 // from a memchr.
53 //
54 // This notices the following sequence:
55 //
56 // def = __builtin_memchr (arg, 0, sz)
57 // n = def - arg
58 //
59 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
60
61 static void
62 adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
63 {
64 tree op0 = gimple_assign_rhs1 (diff_stmt);
65 tree op1 = gimple_assign_rhs2 (diff_stmt);
66 tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
67 tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
68 gimple *call;
69
70 if (TREE_CODE (op0) == SSA_NAME
71 && TREE_CODE (op1) == SSA_NAME
72 && (call = SSA_NAME_DEF_STMT (op0))
73 && is_gimple_call (call)
74 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
75 && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
76 && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
77 && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
78 && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
79 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
80 && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
81 && integer_zerop (gimple_call_arg (call, 1)))
82 {
83 tree max = vrp_val_max (ptrdiff_type_node);
84 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
85 tree expr_type = gimple_expr_type (diff_stmt);
86 tree range_min = build_zero_cst (expr_type);
87 tree range_max = wide_int_to_tree (expr_type, wmax - 1);
88 int_range<2> r (range_min, range_max);
89 res.intersect (r);
90 }
91 }
92
93 // This function looks for situations when walking the use/def chains
94 // may provide additonal contextual range information not exposed on
95 // this statement. Like knowing the IMAGPART return value from a
96 // builtin function is a boolean result.
97
98 // We should rework how we're called, as we have an op_unknown entry
99 // for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this
100 // function gets called.
101
102 static void
103 gimple_range_adjustment (irange &res, const gimple *stmt)
104 {
105 switch (gimple_expr_code (stmt))
106 {
107 case POINTER_DIFF_EXPR:
108 adjust_pointer_diff_expr (res, stmt);
109 return;
110
111 case IMAGPART_EXPR:
112 {
113 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
114 if (TREE_CODE (name) == SSA_NAME)
115 {
116 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
117 if (def_stmt && is_gimple_call (def_stmt)
118 && gimple_call_internal_p (def_stmt))
119 {
120 switch (gimple_call_internal_fn (def_stmt))
121 {
122 case IFN_ADD_OVERFLOW:
123 case IFN_SUB_OVERFLOW:
124 case IFN_MUL_OVERFLOW:
125 case IFN_ATOMIC_COMPARE_EXCHANGE:
126 {
127 int_range<2> r;
128 r.set_varying (boolean_type_node);
129 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
130 range_cast (r, type);
131 res.intersect (r);
132 }
133 default:
134 break;
135 }
136 }
137 }
138 break;
139 }
140
141 default:
142 break;
143 }
144 }
145
146 // Return a range in R for the tree EXPR. Return true if a range is
147 // representable, and UNDEFINED/false if not.
148
149 bool
150 get_tree_range (irange &r, tree expr)
151 {
152 tree type;
153 if (TYPE_P (expr))
154 type = expr;
155 else
156 type = TREE_TYPE (expr);
157
158 // Return false if the type isn't suported.
159 if (!irange::supports_type_p (type))
160 {
161 r.set_undefined ();
162 return false;
163 }
164
165 switch (TREE_CODE (expr))
166 {
167 case INTEGER_CST:
168 if (TREE_OVERFLOW_P (expr))
169 expr = drop_tree_overflow (expr);
170 r.set (expr, expr);
171 return true;
172
173 case SSA_NAME:
174 r = gimple_range_global (expr);
175 return true;
176
177 case ADDR_EXPR:
178 {
179 // Handle &var which can show up in phi arguments.
180 bool ov;
181 if (tree_single_nonzero_warnv_p (expr, &ov))
182 {
183 r = range_nonzero (type);
184 return true;
185 }
186 break;
187 }
188
189 default:
190 break;
191 }
192 r.set_varying (type);
193 return true;
194 }
195
196 // Fold this unary statement using R1 as operand1's range, returning
197 // the result in RES. Return false if the operation fails.
198
199 bool
200 gimple_range_fold (irange &res, const gimple *stmt, const irange &r1)
201 {
202 gcc_checking_assert (gimple_range_handler (stmt));
203
204 tree type = gimple_expr_type (stmt);
205 // Unary SSA operations require the LHS type as the second range.
206 int_range<2> r2 (type);
207
208 return gimple_range_fold (res, stmt, r1, r2);
209 }
210
211 // Fold this binary statement using R1 and R2 as the operands ranges,
212 // returning the result in RES. Return false if the operation fails.
213
214 bool
215 gimple_range_fold (irange &res, const gimple *stmt,
216 const irange &r1, const irange &r2)
217 {
218 gcc_checking_assert (gimple_range_handler (stmt));
219
220 gimple_range_handler (stmt)->fold_range (res, gimple_expr_type (stmt),
221 r1, r2);
222
223 // If there are any gimple lookups, do those now.
224 gimple_range_adjustment (res, stmt);
225 return true;
226 }
227
228 // Return the base of the RHS of an assignment.
229
230 tree
231 gimple_range_base_of_assignment (const gimple *stmt)
232 {
233 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
234 tree op1 = gimple_assign_rhs1 (stmt);
235 if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
236 return get_base_address (TREE_OPERAND (op1, 0));
237 return op1;
238 }
239
240 // Return the first operand of this statement if it is a valid operand
241 // supported by ranges, otherwise return NULL_TREE. Special case is
242 // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
243
244 tree
245 gimple_range_operand1 (const gimple *stmt)
246 {
247 gcc_checking_assert (gimple_range_handler (stmt));
248
249 switch (gimple_code (stmt))
250 {
251 case GIMPLE_COND:
252 return gimple_cond_lhs (stmt);
253 case GIMPLE_ASSIGN:
254 {
255 tree base = gimple_range_base_of_assignment (stmt);
256 if (base && TREE_CODE (base) == MEM_REF)
257 {
258 // If the base address is an SSA_NAME, we return it
259 // here. This allows processing of the range of that
260 // name, while the rest of the expression is simply
261 // ignored. The code in range_ops will see the
262 // ADDR_EXPR and do the right thing.
263 tree ssa = TREE_OPERAND (base, 0);
264 if (TREE_CODE (ssa) == SSA_NAME)
265 return ssa;
266 }
267 return base;
268 }
269 default:
270 break;
271 }
272 return NULL;
273 }
274
275 // Return the second operand of statement STMT, otherwise return NULL_TREE.
276
277 tree
278 gimple_range_operand2 (const gimple *stmt)
279 {
280 gcc_checking_assert (gimple_range_handler (stmt));
281
282 switch (gimple_code (stmt))
283 {
284 case GIMPLE_COND:
285 return gimple_cond_rhs (stmt);
286 case GIMPLE_ASSIGN:
287 if (gimple_num_ops (stmt) >= 3)
288 return gimple_assign_rhs2 (stmt);
289 default:
290 break;
291 }
292 return NULL_TREE;
293 }
294
295 // Calculate what we can determine of the range of this unary
296 // statement's operand if the lhs of the expression has the range
297 // LHS_RANGE. Return false if nothing can be determined.
298
299 bool
300 gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
301 {
302 gcc_checking_assert (gimple_num_ops (stmt) < 3);
303
304 // An empty range is viral.
305 tree type = TREE_TYPE (gimple_range_operand1 (stmt));
306 if (lhs_range.undefined_p ())
307 {
308 r.set_undefined ();
309 return true;
310 }
311 // Unary operations require the type of the first operand in the
312 // second range position.
313 int_range<2> type_range (type);
314 return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
315 type_range);
316 }
317
318 // Calculate what we can determine of the range of this statement's
319 // first operand if the lhs of the expression has the range LHS_RANGE
320 // and the second operand has the range OP2_RANGE. Return false if
321 // nothing can be determined.
322
323 bool
324 gimple_range_calc_op1 (irange &r, const gimple *stmt,
325 const irange &lhs_range, const irange &op2_range)
326 {
327 // Unary operation are allowed to pass a range in for second operand
328 // as there are often additional restrictions beyond the type which
329 // can be imposed. See operator_cast::op1_range().
330 tree type = TREE_TYPE (gimple_range_operand1 (stmt));
331 // An empty range is viral.
332 if (op2_range.undefined_p () || lhs_range.undefined_p ())
333 {
334 r.set_undefined ();
335 return true;
336 }
337 return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
338 op2_range);
339 }
340
341 // Calculate what we can determine of the range of this statement's
342 // second operand if the lhs of the expression has the range LHS_RANGE
343 // and the first operand has the range OP1_RANGE. Return false if
344 // nothing can be determined.
345
346 bool
347 gimple_range_calc_op2 (irange &r, const gimple *stmt,
348 const irange &lhs_range, const irange &op1_range)
349 {
350 tree type = TREE_TYPE (gimple_range_operand2 (stmt));
351 // An empty range is viral.
352 if (op1_range.undefined_p () || lhs_range.undefined_p ())
353 {
354 r.set_undefined ();
355 return true;
356 }
357 return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
358 op1_range);
359 }
360
361 // Calculate a range for statement S and return it in R. If NAME is provided it
362 // represents the SSA_NAME on the LHS of the statement. It is only required
363 // if there is more than one lhs/output. If a range cannot
364 // be calculated, return false.
365
366 bool
367 gimple_ranger::calc_stmt (irange &r, gimple *s, tree name)
368 {
369 bool res = false;
370 // If name is specified, make sure it is an LHS of S.
371 gcc_checking_assert (name ? SSA_NAME_DEF_STMT (name) == s : true);
372
373 if (gimple_range_handler (s))
374 res = range_of_range_op (r, s);
375 else if (is_a<gphi *>(s))
376 res = range_of_phi (r, as_a<gphi *> (s));
377 else if (is_a<gcall *>(s))
378 res = range_of_call (r, as_a<gcall *> (s));
379 else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
380 res = range_of_cond_expr (r, as_a<gassign *> (s));
381
382 if (!res)
383 {
384 // If no name is specified, try the expression kind.
385 if (!name)
386 {
387 tree t = gimple_expr_type (s);
388 if (!irange::supports_type_p (t))
389 return false;
390 r.set_varying (t);
391 return true;
392 }
393 if (!gimple_range_ssa_p (name))
394 return false;
395 // We don't understand the stmt, so return the global range.
396 r = gimple_range_global (name);
397 return true;
398 }
399
400 if (r.undefined_p ())
401 return true;
402
403 // We sometimes get compatible types copied from operands, make sure
404 // the correct type is being returned.
405 if (name && TREE_TYPE (name) != r.type ())
406 {
407 gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
408 range_cast (r, TREE_TYPE (name));
409 }
410 return true;
411 }
412
413 // Calculate a range for range_op statement S and return it in R. If any
414 // If a range cannot be calculated, return false.
415
416 bool
417 gimple_ranger::range_of_range_op (irange &r, gimple *s)
418 {
419 int_range_max range1, range2;
420 tree lhs = gimple_get_lhs (s);
421 tree type = gimple_expr_type (s);
422 gcc_checking_assert (irange::supports_type_p (type));
423
424 tree op1 = gimple_range_operand1 (s);
425 tree op2 = gimple_range_operand2 (s);
426
427 if (lhs)
428 {
429 // Register potential dependencies for stale value tracking.
430 m_cache.register_dependency (lhs, op1);
431 m_cache.register_dependency (lhs, op2);
432 }
433
434 if (gimple_code (s) == GIMPLE_ASSIGN
435 && gimple_assign_rhs_code (s) == ADDR_EXPR)
436 return range_of_address (r, s);
437
438 if (range_of_expr (range1, op1, s))
439 {
440 if (!op2)
441 return gimple_range_fold (r, s, range1);
442
443 if (range_of_expr (range2, op2, s))
444 return gimple_range_fold (r, s, range1, range2);
445 }
446 r.set_varying (type);
447 return true;
448 }
449
450 // Calculate the range of an assignment containing an ADDR_EXPR.
451 // Return the range in R.
452 // If a range cannot be calculated, set it to VARYING and return true.
453
454 bool
455 gimple_ranger::range_of_address (irange &r, gimple *stmt)
456 {
457 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
458 gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);
459
460 bool strict_overflow_p;
461 tree expr = gimple_assign_rhs1 (stmt);
462 poly_int64 bitsize, bitpos;
463 tree offset;
464 machine_mode mode;
465 int unsignedp, reversep, volatilep;
466 tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
467 &bitpos, &offset, &mode, &unsignedp,
468 &reversep, &volatilep);
469
470
471 if (base != NULL_TREE
472 && TREE_CODE (base) == MEM_REF
473 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
474 {
475 tree ssa = TREE_OPERAND (base, 0);
476 gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa)));
477 range_of_expr (r, ssa, stmt);
478 range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));
479
480 poly_offset_int off = 0;
481 bool off_cst = false;
482 if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
483 {
484 off = mem_ref_offset (base);
485 if (offset)
486 off += poly_offset_int::from (wi::to_poly_wide (offset),
487 SIGNED);
488 off <<= LOG2_BITS_PER_UNIT;
489 off += bitpos;
490 off_cst = true;
491 }
492 /* If &X->a is equal to X, the range of X is the result. */
493 if (off_cst && known_eq (off, 0))
494 return true;
495 else if (flag_delete_null_pointer_checks
496 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
497 {
498 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
499 allow going from non-NULL pointer to NULL. */
500 if(!range_includes_zero_p (&r))
501 return true;
502 }
503 /* If MEM_REF has a "positive" offset, consider it non-NULL
504 always, for -fdelete-null-pointer-checks also "negative"
505 ones. Punt for unknown offsets (e.g. variable ones). */
506 if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
507 && off_cst
508 && known_ne (off, 0)
509 && (flag_delete_null_pointer_checks || known_gt (off, 0)))
510 {
511 r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
512 return true;
513 }
514 r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
515 return true;
516 }
517
518 // Handle "= &a".
519 if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
520 {
521 r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
522 return true;
523 }
524
525 // Otherwise return varying.
526 r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
527 return true;
528 }
529
530 // Calculate a range for phi statement S and return it in R.
531 // If a range cannot be calculated, return false.
532
533 bool
534 gimple_ranger::range_of_phi (irange &r, gphi *phi)
535 {
536 tree phi_def = gimple_phi_result (phi);
537 tree type = TREE_TYPE (phi_def);
538 int_range_max arg_range;
539 unsigned x;
540
541 if (!irange::supports_type_p (type))
542 return false;
543
544 // Start with an empty range, unioning in each argument's range.
545 r.set_undefined ();
546 for (x = 0; x < gimple_phi_num_args (phi); x++)
547 {
548 tree arg = gimple_phi_arg_def (phi, x);
549 edge e = gimple_phi_arg_edge (phi, x);
550
551 // Register potential dependencies for stale value tracking.
552 m_cache.register_dependency (phi_def, arg);
553
554 range_on_edge (arg_range, e, arg);
555 r.union_ (arg_range);
556 // Once the value reaches varying, stop looking.
557 if (r.varying_p ())
558 break;
559 }
560
561 // If SCEV is available, query if this PHI has any knonwn values.
562 if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
563 {
564 value_range loop_range;
565 class loop *l = loop_containing_stmt (phi);
566 if (l && loop_outer (l))
567 {
568 range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi);
569 if (!loop_range.varying_p ())
570 {
571 if (dump_file && (dump_flags & TDF_DETAILS))
572 {
573 fprintf (dump_file, " Loops range found for ");
574 print_generic_expr (dump_file, phi_def, TDF_SLIM);
575 fprintf (dump_file, ": ");
576 loop_range.dump (dump_file);
577 fprintf (dump_file, " and calculated range :");
578 r.dump (dump_file);
579 fprintf (dump_file, "\n");
580 }
581 r.intersect (loop_range);
582 }
583 }
584 }
585
586 return true;
587 }
588
589 // Calculate a range for call statement S and return it in R.
590 // If a range cannot be calculated, return false.
591
592 bool
593 gimple_ranger::range_of_call (irange &r, gcall *call)
594 {
595 tree type = gimple_call_return_type (call);
596 tree lhs = gimple_call_lhs (call);
597 bool strict_overflow_p;
598
599 if (!irange::supports_type_p (type))
600 return false;
601
602 if (range_of_builtin_call (r, call))
603 ;
604 else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
605 r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
606 else if (gimple_call_nonnull_result_p (call)
607 || gimple_call_nonnull_arg (call))
608 r = range_nonzero (type);
609 else
610 r.set_varying (type);
611
612 // If there is an LHS, intersect that with what is known.
613 if (lhs)
614 {
615 value_range def;
616 def = gimple_range_global (lhs);
617 r.intersect (def);
618 }
619 return true;
620 }
621
622 // Return the range of a __builtin_ubsan* in CALL and set it in R.
623 // CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or
624 // MULT_EXPR).
625
626 static void
627 range_of_builtin_ubsan_call (range_query &query, irange &r, gcall *call,
628 tree_code code)
629 {
630 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
631 || code == MULT_EXPR);
632 tree type = gimple_call_return_type (call);
633 range_operator *op = range_op_handler (code, type);
634 gcc_checking_assert (op);
635 int_range_max ir0, ir1;
636 tree arg0 = gimple_call_arg (call, 0);
637 tree arg1 = gimple_call_arg (call, 1);
638 query.range_of_expr (ir0, arg0, call);
639 query.range_of_expr (ir1, arg1, call);
640
641 bool saved_flag_wrapv = flag_wrapv;
642 // Pretend the arithmetic is wrapping. If there is any overflow,
643 // we'll complain, but will actually do wrapping operation.
644 flag_wrapv = 1;
645 op->fold_range (r, type, ir0, ir1);
646 flag_wrapv = saved_flag_wrapv;
647
648 // If for both arguments vrp_valueize returned non-NULL, this should
649 // have been already folded and if not, it wasn't folded because of
650 // overflow. Avoid removing the UBSAN_CHECK_* calls in that case.
651 if (r.singleton_p ())
652 r.set_varying (type);
653 }
654
655 // For a builtin in CALL, return a range in R if known and return
656 // TRUE. Otherwise return FALSE.
657
658 bool
659 range_of_builtin_call (range_query &query, irange &r, gcall *call)
660 {
661 combined_fn func = gimple_call_combined_fn (call);
662 if (func == CFN_LAST)
663 return false;
664
665 tree type = gimple_call_return_type (call);
666 tree arg;
667 int mini, maxi, zerov = 0, prec;
668 scalar_int_mode mode;
669
670 switch (func)
671 {
672 case CFN_BUILT_IN_CONSTANT_P:
673 if (cfun->after_inlining)
674 {
675 r.set_zero (type);
676 // r.equiv_clear ();
677 return true;
678 }
679 arg = gimple_call_arg (call, 0);
680 if (query.range_of_expr (r, arg, call) && r.singleton_p ())
681 {
682 r.set (build_one_cst (type), build_one_cst (type));
683 return true;
684 }
685 break;
686
687 CASE_CFN_FFS:
688 CASE_CFN_POPCOUNT:
689 // __builtin_ffs* and __builtin_popcount* return [0, prec].
690 arg = gimple_call_arg (call, 0);
691 prec = TYPE_PRECISION (TREE_TYPE (arg));
692 mini = 0;
693 maxi = prec;
694 query.range_of_expr (r, arg, call);
695 // If arg is non-zero, then ffs or popcount are non-zero.
696 if (!range_includes_zero_p (&r))
697 mini = 1;
698 // If some high bits are known to be zero, decrease the maximum.
699 if (!r.undefined_p ())
700 {
701 if (TYPE_SIGN (r.type ()) == SIGNED)
702 range_cast (r, unsigned_type_for (r.type ()));
703 wide_int max = r.upper_bound ();
704 maxi = wi::floor_log2 (max) + 1;
705 }
706 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
707 return true;
708
709 CASE_CFN_PARITY:
710 r.set (build_zero_cst (type), build_one_cst (type));
711 return true;
712
713 CASE_CFN_CLZ:
714 // __builtin_c[lt]z* return [0, prec-1], except when the
715 // argument is 0, but that is undefined behavior.
716 //
717 // For __builtin_c[lt]z* consider argument of 0 always undefined
718 // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO.
719 arg = gimple_call_arg (call, 0);
720 prec = TYPE_PRECISION (TREE_TYPE (arg));
721 mini = 0;
722 maxi = prec - 1;
723 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
724 if (gimple_call_internal_p (call))
725 {
726 if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
727 && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
728 {
729 // Only handle the single common value.
730 if (zerov == prec)
731 maxi = prec;
732 else
733 // Magic value to give up, unless we can prove arg is non-zero.
734 mini = -2;
735 }
736 }
737
738 query.range_of_expr (r, arg, call);
739 // From clz of minimum we can compute result maximum.
740 if (r.constant_p ())
741 {
742 int newmaxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
743 // Argument is unsigned, so do nothing if it is [0, ...] range.
744 if (newmaxi != prec)
745 {
746 mini = 0;
747 maxi = newmaxi;
748 }
749 }
750 else if (!range_includes_zero_p (&r))
751 {
752 maxi = prec - 1;
753 mini = 0;
754 }
755 if (mini == -2)
756 break;
757 // From clz of maximum we can compute result minimum.
758 if (r.constant_p ())
759 {
760 int newmini = prec - 1 - wi::floor_log2 (r.upper_bound ());
761 if (newmini == prec)
762 {
763 // Argument range is [0, 0]. If CLZ_DEFINED_VALUE_AT_ZERO
764 // is 2 with VALUE of prec, return [prec, prec], otherwise
765 // ignore the range.
766 if (maxi == prec)
767 mini = prec;
768 }
769 else
770 mini = newmini;
771 }
772 if (mini == -2)
773 break;
774 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
775 return true;
776
777 CASE_CFN_CTZ:
778 // __builtin_ctz* return [0, prec-1], except for when the
779 // argument is 0, but that is undefined behavior.
780 //
781 // For __builtin_ctz* consider argument of 0 always undefined
782 // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO.
783 arg = gimple_call_arg (call, 0);
784 prec = TYPE_PRECISION (TREE_TYPE (arg));
785 mini = 0;
786 maxi = prec - 1;
787 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
788 if (gimple_call_internal_p (call))
789 {
790 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
791 && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
792 {
793 // Handle only the two common values.
794 if (zerov == -1)
795 mini = -1;
796 else if (zerov == prec)
797 maxi = prec;
798 else
799 // Magic value to give up, unless we can prove arg is non-zero.
800 mini = -2;
801 }
802 }
803 query.range_of_expr (r, arg, call);
804 if (!r.undefined_p ())
805 {
806 if (r.lower_bound () != 0)
807 {
808 mini = 0;
809 maxi = prec - 1;
810 }
811 // If some high bits are known to be zero, we can decrease
812 // the maximum.
813 wide_int max = r.upper_bound ();
814 if (max == 0)
815 {
816 // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO
817 // is 2 with value -1 or prec, return [-1, -1] or [prec, prec].
818 // Otherwise ignore the range.
819 if (mini == -1)
820 maxi = -1;
821 else if (maxi == prec)
822 mini = prec;
823 }
824 // If value at zero is prec and 0 is in the range, we can't lower
825 // the upper bound. We could create two separate ranges though,
826 // [0,floor_log2(max)][prec,prec] though.
827 else if (maxi != prec)
828 maxi = wi::floor_log2 (max);
829 }
830 if (mini == -2)
831 break;
832 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
833 return true;
834
835 CASE_CFN_CLRSB:
836 arg = gimple_call_arg (call, 0);
837 prec = TYPE_PRECISION (TREE_TYPE (arg));
838 r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
839 return true;
840 case CFN_UBSAN_CHECK_ADD:
841 range_of_builtin_ubsan_call (query, r, call, PLUS_EXPR);
842 return true;
843 case CFN_UBSAN_CHECK_SUB:
844 range_of_builtin_ubsan_call (query, r, call, MINUS_EXPR);
845 return true;
846 case CFN_UBSAN_CHECK_MUL:
847 range_of_builtin_ubsan_call (query, r, call, MULT_EXPR);
848 return true;
849
850 case CFN_GOACC_DIM_SIZE:
851 case CFN_GOACC_DIM_POS:
852 // Optimizing these two internal functions helps the loop
853 // optimizer eliminate outer comparisons. Size is [1,N]
854 // and pos is [0,N-1].
855 {
856 bool is_pos = func == CFN_GOACC_DIM_POS;
857 int axis = oacc_get_ifn_dim_arg (call);
858 int size = oacc_get_fn_dim_size (current_function_decl, axis);
859 if (!size)
860 // If it's dynamic, the backend might know a hardware limitation.
861 size = targetm.goacc.dim_limit (axis);
862
863 r.set (build_int_cst (type, is_pos ? 0 : 1),
864 size
865 ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
866 return true;
867 }
868
869 case CFN_BUILT_IN_STRLEN:
870 if (tree lhs = gimple_call_lhs (call))
871 if (ptrdiff_type_node
872 && (TYPE_PRECISION (ptrdiff_type_node)
873 == TYPE_PRECISION (TREE_TYPE (lhs))))
874 {
875 tree type = TREE_TYPE (lhs);
876 tree max = vrp_val_max (ptrdiff_type_node);
877 wide_int wmax
878 = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
879 tree range_min = build_zero_cst (type);
880 // To account for the terminating NULL, the maximum length
881 // is one less than the maximum array size, which in turn
882 // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
883 // smaller than the former type).
884 // FIXME: Use max_object_size() - 1 here.
885 tree range_max = wide_int_to_tree (type, wmax - 2);
886 r.set (range_min, range_max);
887 return true;
888 }
889 break;
890 default:
891 break;
892 }
893 return false;
894 }
895
896
897 bool
898 gimple_ranger::range_of_builtin_call (irange &r, gcall *call)
899 {
900 return ::range_of_builtin_call (*this, r, call);
901 }
902
903 // Calculate a range for COND_EXPR statement S and return it in R.
904 // If a range cannot be calculated, return false.
905
906 bool
907 gimple_ranger::range_of_cond_expr (irange &r, gassign *s)
908 {
909 int_range_max cond_range, range1, range2;
910 tree cond = gimple_assign_rhs1 (s);
911 tree op1 = gimple_assign_rhs2 (s);
912 tree op2 = gimple_assign_rhs3 (s);
913
914 gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
915 gcc_checking_assert (useless_type_conversion_p (TREE_TYPE (op1),
916 TREE_TYPE (op2)));
917 if (!irange::supports_type_p (TREE_TYPE (op1)))
918 return false;
919
920 range_of_expr (cond_range, cond, s);
921 range_of_expr (range1, op1, s);
922 range_of_expr (range2, op2, s);
923
924 // If the condition is known, choose the appropriate expression.
925 if (cond_range.singleton_p ())
926 {
927 // False, pick second operand.
928 if (cond_range.zero_p ())
929 r = range2;
930 else
931 r = range1;
932 }
933 else
934 {
935 r = range1;
936 r.union_ (range2);
937 }
938 return true;
939 }
940
941 bool
942 gimple_ranger::range_of_expr (irange &r, tree expr, gimple *stmt)
943 {
944 if (!gimple_range_ssa_p (expr))
945 return get_tree_range (r, expr);
946
947 // If there is no statement, just get the global value.
948 if (!stmt)
949 {
950 if (!m_cache.get_global_range (r, expr))
951 r = gimple_range_global (expr);
952 return true;
953 }
954
955 basic_block bb = gimple_bb (stmt);
956 gimple *def_stmt = SSA_NAME_DEF_STMT (expr);
957
958 // If name is defined in this block, try to get an range from S.
959 if (def_stmt && gimple_bb (def_stmt) == bb)
960 range_of_stmt (r, def_stmt, expr);
961 else
962 // Otherwise OP comes from outside this block, use range on entry.
963 range_on_entry (r, bb, expr);
964
965 // No range yet, see if there is a dereference in the block.
966 // We don't care if it's between the def and a use within a block
967 // because the entire block must be executed anyway.
968 // FIXME:?? For non-call exceptions we could have a statement throw
969 // which causes an early block exit.
970 // in which case we may need to walk from S back to the def/top of block
971 // to make sure the deref happens between S and there before claiming
972 // there is a deref. Punt for now.
973 if (!cfun->can_throw_non_call_exceptions && r.varying_p () &&
974 m_cache.m_non_null.non_null_deref_p (expr, bb))
975 r = range_nonzero (TREE_TYPE (expr));
976
977 return true;
978 }
979
980 // Return the range of NAME on entry to block BB in R.
981
982 void
983 gimple_ranger::range_on_entry (irange &r, basic_block bb, tree name)
984 {
985 int_range_max entry_range;
986 gcc_checking_assert (gimple_range_ssa_p (name));
987
988 // Start with any known range
989 range_of_stmt (r, SSA_NAME_DEF_STMT (name), name);
990
991 // Now see if there is any on_entry value which may refine it.
992 if (m_cache.block_range (entry_range, bb, name))
993 r.intersect (entry_range);
994 }
995
996 // Calculate the range for NAME at the end of block BB and return it in R.
997 // Return false if no range can be calculated.
998
999 void
1000 gimple_ranger::range_on_exit (irange &r, basic_block bb, tree name)
1001 {
1002 // on-exit from the exit block?
1003 gcc_checking_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
1004 gcc_checking_assert (gimple_range_ssa_p (name));
1005
1006 gimple *s = last_stmt (bb);
1007 // If there is no statement in the block and this isn't the entry
1008 // block, go get the range_on_entry for this block. For the entry
1009 // block, a NULL stmt will return the global value for NAME.
1010 if (!s && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1011 range_on_entry (r, bb, name);
1012 else
1013 range_of_expr (r, name, s);
1014 gcc_checking_assert (r.undefined_p ()
1015 || range_compatible_p (r.type (), TREE_TYPE (name)));
1016 }
1017
1018 // Calculate a range for NAME on edge E and return it in R.
1019
1020 bool
1021 gimple_ranger::range_on_edge (irange &r, edge e, tree name)
1022 {
1023 int_range_max edge_range;
1024 gcc_checking_assert (irange::supports_type_p (TREE_TYPE (name)));
1025
1026 // PHI arguments can be constants, catch these here.
1027 if (!gimple_range_ssa_p (name))
1028 return range_of_expr (r, name);
1029
1030 range_on_exit (r, e->src, name);
1031 gcc_checking_assert (r.undefined_p ()
1032 || range_compatible_p (r.type(), TREE_TYPE (name)));
1033
1034 // Check to see if NAME is defined on edge e.
1035 if (m_cache.outgoing_edge_range_p (edge_range, e, name))
1036 r.intersect (edge_range);
1037
1038 return true;
1039 }
1040
1041 // Calculate a range for statement S and return it in R. If NAME is
1042 // provided it represents the SSA_NAME on the LHS of the statement.
1043 // It is only required if there is more than one lhs/output. Check
1044 // the global cache for NAME first to see if the evaluation can be
1045 // avoided. If a range cannot be calculated, return false and UNDEFINED.
1046
1047 bool
1048 gimple_ranger::range_of_stmt (irange &r, gimple *s, tree name)
1049 {
1050 r.set_undefined ();
1051
1052 if (!name)
1053 name = gimple_get_lhs (s);
1054
1055 // If no name, simply call the base routine.
1056 if (!name)
1057 return calc_stmt (r, s, NULL_TREE);
1058
1059 if (!gimple_range_ssa_p (name))
1060 return false;
1061
1062 // Check if the stmt has already been processed, and is not stale.
1063 if (m_cache.get_non_stale_global_range (r, name))
1064 return true;
1065
1066 // Otherwise calculate a new value.
1067 int_range_max tmp;
1068 calc_stmt (tmp, s, name);
1069
1070 // Combine the new value with the old value. This is required because
1071 // the way value propagation works, when the IL changes on the fly we
1072 // can sometimes get different results. See PR 97741.
1073 r.intersect (tmp);
1074 m_cache.set_global_range (name, r);
1075 return true;
1076 }
1077
1078 // This routine will export whatever global ranges are known to GCC
1079 // SSA_RANGE_NAME_INFO fields.
1080
1081 void
1082 gimple_ranger::export_global_ranges ()
1083 {
1084 unsigned x;
1085 int_range_max r;
1086 if (dump_file)
1087 {
1088 fprintf (dump_file, "Exported global range table\n");
1089 fprintf (dump_file, "===========================\n");
1090 }
1091
1092 for ( x = 1; x < num_ssa_names; x++)
1093 {
1094 tree name = ssa_name (x);
1095 if (name && !SSA_NAME_IN_FREE_LIST (name)
1096 && gimple_range_ssa_p (name)
1097 && m_cache.get_global_range (r, name)
1098 && !r.varying_p())
1099 {
1100 // Make sure the new range is a subset of the old range.
1101 int_range_max old_range;
1102 old_range = gimple_range_global (name);
1103 old_range.intersect (r);
1104 /* Disable this while we fix tree-ssa/pr61743-2.c. */
1105 //gcc_checking_assert (old_range == r);
1106
1107 // WTF? Can't write non-null pointer ranges?? stupid set_range_info!
1108 if (!POINTER_TYPE_P (TREE_TYPE (name)) && !r.undefined_p ())
1109 {
1110 value_range vr = r;
1111 set_range_info (name, vr);
1112 if (dump_file)
1113 {
1114 print_generic_expr (dump_file, name , TDF_SLIM);
1115 fprintf (dump_file, " --> ");
1116 vr.dump (dump_file);
1117 fprintf (dump_file, "\n");
1118 fprintf (dump_file, " irange : ");
1119 r.dump (dump_file);
1120 fprintf (dump_file, "\n");
1121 }
1122 }
1123 }
1124 }
1125 }
1126
1127 // Print the known table values to file F.
1128
1129 void
1130 gimple_ranger::dump (FILE *f)
1131 {
1132 basic_block bb;
1133
1134 FOR_EACH_BB_FN (bb, cfun)
1135 {
1136 unsigned x;
1137 edge_iterator ei;
1138 edge e;
1139 int_range_max range;
1140 fprintf (f, "\n=========== BB %d ============\n", bb->index);
1141 m_cache.dump (f, bb);
1142
1143 dump_bb (f, bb, 4, TDF_NONE);
1144
1145 // Now find any globals defined in this block.
1146 for (x = 1; x < num_ssa_names; x++)
1147 {
1148 tree name = ssa_name (x);
1149 if (gimple_range_ssa_p (name) && SSA_NAME_DEF_STMT (name) &&
1150 gimple_bb (SSA_NAME_DEF_STMT (name)) == bb &&
1151 m_cache.get_global_range (range, name))
1152 {
1153 if (!range.varying_p ())
1154 {
1155 print_generic_expr (f, name, TDF_SLIM);
1156 fprintf (f, " : ");
1157 range.dump (f);
1158 fprintf (f, "\n");
1159 }
1160
1161 }
1162 }
1163
1164 // And now outgoing edges, if they define anything.
1165 FOR_EACH_EDGE (e, ei, bb->succs)
1166 {
1167 for (x = 1; x < num_ssa_names; x++)
1168 {
1169 tree name = gimple_range_ssa_p (ssa_name (x));
1170 if (name && m_cache.outgoing_edge_range_p (range, e, name))
1171 {
1172 gimple *s = SSA_NAME_DEF_STMT (name);
1173 // Only print the range if this is the def block, or
1174 // the on entry cache for either end of the edge is
1175 // set.
1176 if ((s && bb == gimple_bb (s)) ||
1177 m_cache.block_range (range, bb, name, false) ||
1178 m_cache.block_range (range, e->dest, name, false))
1179 {
1180 range_on_edge (range, e, name);
1181 if (!range.varying_p ())
1182 {
1183 fprintf (f, "%d->%d ", e->src->index,
1184 e->dest->index);
1185 char c = ' ';
1186 if (e->flags & EDGE_TRUE_VALUE)
1187 fprintf (f, " (T)%c", c);
1188 else if (e->flags & EDGE_FALSE_VALUE)
1189 fprintf (f, " (F)%c", c);
1190 else
1191 fprintf (f, " ");
1192 print_generic_expr (f, name, TDF_SLIM);
1193 fprintf(f, " : \t");
1194 range.dump(f);
1195 fprintf (f, "\n");
1196 }
1197 }
1198 }
1199 }
1200 }
1201 }
1202
1203 m_cache.dump (dump_file, (dump_flags & TDF_DETAILS) != 0);
1204 }
1205
1206 // If SCEV has any information about phi node NAME, return it as a range in R.
1207
1208 void
1209 gimple_ranger::range_of_ssa_name_with_loop_info (irange &r, tree name,
1210 class loop *l, gphi *phi)
1211 {
1212 gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
1213 tree min, max, type = TREE_TYPE (name);
1214 if (bounds_of_var_in_loop (&min, &max, this, l, phi, name))
1215 {
1216 // ?? We could do better here. Since MIN/MAX can only be an
1217 // SSA, SSA +- INTEGER_CST, or INTEGER_CST, we could easily call
1218 // the ranger and solve anything not an integer.
1219 if (TREE_CODE (min) != INTEGER_CST)
1220 min = vrp_val_min (type);
1221 if (TREE_CODE (max) != INTEGER_CST)
1222 max = vrp_val_max (type);
1223 r.set (min, max);
1224 }
1225 else
1226 r.set_varying (type);
1227 }
1228
1229 // --------------------------------------------------------------------------
1230 // trace_ranger implementation.
1231
1232
1233 trace_ranger::trace_ranger ()
1234 {
1235 indent = 0;
1236 trace_count = 0;
1237 }
1238
1239 // If dumping, return true and print the prefix for the next output line.
1240
1241 bool
1242 trace_ranger::dumping (unsigned counter, bool trailing)
1243 {
1244 if (dump_file && (dump_flags & TDF_DETAILS))
1245 {
1246 // Print counter index as well as INDENT spaces.
1247 if (!trailing)
1248 fprintf (dump_file, " %-7u ", counter);
1249 else
1250 fprintf (dump_file, " ");
1251 unsigned x;
1252 for (x = 0; x< indent; x++)
1253 fputc (' ', dump_file);
1254 return true;
1255 }
1256 return false;
1257 }
1258
1259 // After calling a routine, if dumping, print the CALLER, NAME, and RESULT,
1260 // returning RESULT.
1261
1262 bool
1263 trace_ranger::trailer (unsigned counter, const char *caller, bool result,
1264 tree name, const irange &r)
1265 {
1266 if (dumping (counter, true))
1267 {
1268 indent -= bump;
1269 fputs(result ? "TRUE : " : "FALSE : ", dump_file);
1270 fprintf (dump_file, "(%u) ", counter);
1271 fputs (caller, dump_file);
1272 fputs (" (",dump_file);
1273 if (name)
1274 print_generic_expr (dump_file, name, TDF_SLIM);
1275 fputs (") ",dump_file);
1276 if (result)
1277 {
1278 r.dump (dump_file);
1279 fputc('\n', dump_file);
1280 }
1281 else
1282 fputc('\n', dump_file);
1283 // Marks the end of a request.
1284 if (indent == 0)
1285 fputc('\n', dump_file);
1286 }
1287 return result;
1288 }
1289
1290 // Tracing version of range_on_edge. Call it with printing wrappers.
1291
1292 bool
1293 trace_ranger::range_on_edge (irange &r, edge e, tree name)
1294 {
1295 unsigned idx = ++trace_count;
1296 if (dumping (idx))
1297 {
1298 fprintf (dump_file, "range_on_edge (");
1299 print_generic_expr (dump_file, name, TDF_SLIM);
1300 fprintf (dump_file, ") on edge %d->%d\n", e->src->index, e->dest->index);
1301 indent += bump;
1302 }
1303
1304 bool res = gimple_ranger::range_on_edge (r, e, name);
1305 trailer (idx, "range_on_edge", true, name, r);
1306 return res;
1307 }
1308
1309 // Tracing version of range_on_entry. Call it with printing wrappers.
1310
1311 void
1312 trace_ranger::range_on_entry (irange &r, basic_block bb, tree name)
1313 {
1314 unsigned idx = ++trace_count;
1315 if (dumping (idx))
1316 {
1317 fprintf (dump_file, "range_on_entry (");
1318 print_generic_expr (dump_file, name, TDF_SLIM);
1319 fprintf (dump_file, ") to BB %d\n", bb->index);
1320 indent += bump;
1321 }
1322
1323 gimple_ranger::range_on_entry (r, bb, name);
1324
1325 trailer (idx, "range_on_entry", true, name, r);
1326 }
1327
1328 // Tracing version of range_on_exit. Call it with printing wrappers.
1329
1330 void
1331 trace_ranger::range_on_exit (irange &r, basic_block bb, tree name)
1332 {
1333 unsigned idx = ++trace_count;
1334 if (dumping (idx))
1335 {
1336 fprintf (dump_file, "range_on_exit (");
1337 print_generic_expr (dump_file, name, TDF_SLIM);
1338 fprintf (dump_file, ") from BB %d\n", bb->index);
1339 indent += bump;
1340 }
1341
1342 gimple_ranger::range_on_exit (r, bb, name);
1343
1344 trailer (idx, "range_on_exit", true, name, r);
1345 }
1346
1347 // Tracing version of range_of_stmt. Call it with printing wrappers.
1348
1349 bool
1350 trace_ranger::range_of_stmt (irange &r, gimple *s, tree name)
1351 {
1352 bool res;
1353 unsigned idx = ++trace_count;
1354 if (dumping (idx))
1355 {
1356 fprintf (dump_file, "range_of_stmt (");
1357 if (name)
1358 print_generic_expr (dump_file, name, TDF_SLIM);
1359 fputs (") at stmt ", dump_file);
1360 print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
1361 indent += bump;
1362 }
1363
1364 res = gimple_ranger::range_of_stmt (r, s, name);
1365
1366 return trailer (idx, "range_of_stmt", res, name, r);
1367 }
1368
1369 // Tracing version of range_of_expr. Call it with printing wrappers.
1370
1371 bool
1372 trace_ranger::range_of_expr (irange &r, tree name, gimple *s)
1373 {
1374 bool res;
1375 unsigned idx = ++trace_count;
1376 if (dumping (idx))
1377 {
1378 fprintf (dump_file, "range_of_expr(");
1379 print_generic_expr (dump_file, name, TDF_SLIM);
1380 fputs (")", dump_file);
1381 if (s)
1382 {
1383 fputs (" at stmt ", dump_file);
1384 print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
1385 }
1386 else
1387 fputs ("\n", dump_file);
1388 indent += bump;
1389 }
1390
1391 res = gimple_ranger::range_of_expr (r, name, s);
1392
1393 return trailer (idx, "range_of_expr", res, name, r);
1394 }