Daily bump.
[gcc.git] / gcc / ira.c
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2021 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
76
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
155
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
179
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA cannot assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363 */
364
365
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
395
396 struct target_ira default_target_ira;
397 class target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 class target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
402
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
405
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
408
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
411
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
425
426 /* All registers that can be eliminated. */
427
428 HARD_REG_SET eliminable_regset;
429
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
434
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
437
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
440 \f
441
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
445 {
446 int i, m, hard_regno;
447
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 {
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
457 }
458 }
459
460 \f
461 #define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
463
464 /* The function sets up the three arrays declared above. */
465 static void
466 setup_class_hard_regs (void)
467 {
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
470
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 {
474 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 {
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
480 }
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 {
483 #ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485 #else
486 hard_regno = i;
487 #endif
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
494 {
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
497 }
498 }
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
504 }
505 }
506
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
512 {
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515 #endif
516 no_unit_alloc_regs = fixed_nonglobal_reg_set;
517 if (! use_hard_frame_p)
518 add_to_hard_reg_set (&no_unit_alloc_regs, Pmode,
519 HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
521 }
522
523 \f
524
525 #define alloc_reg_class_subclasses \
526 (this_target_ira_int->x_alloc_reg_class_subclasses)
527
528 /* Initialize the table of subclasses of each reg class. */
529 static void
530 setup_reg_subclasses (void)
531 {
532 int i, j;
533 HARD_REG_SET temp_hard_regset2;
534
535 for (i = 0; i < N_REG_CLASSES; i++)
536 for (j = 0; j < N_REG_CLASSES; j++)
537 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538
539 for (i = 0; i < N_REG_CLASSES; i++)
540 {
541 if (i == (int) NO_REGS)
542 continue;
543
544 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
545 if (hard_reg_set_empty_p (temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
549 {
550 enum reg_class *p;
551
552 temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
559 }
560 }
561 }
562
563 \f
564
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
568 {
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
571
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
576 {
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
579 {
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
601 }
602 }
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
605 {
606 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
607 temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
608 ira_class_subset_p[cl][cl2]
609 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
610 if (! hard_reg_set_empty_p (temp_hard_regset2)
611 && hard_reg_set_subset_p (reg_class_contents[cl2],
612 reg_class_contents[cl]))
613 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
614 {
615 cost = ira_memory_move_cost[mode][cl2][0];
616 if (cost > ira_max_memory_move_cost[mode][cl][0])
617 ira_max_memory_move_cost[mode][cl][0] = cost;
618 cost = ira_memory_move_cost[mode][cl2][1];
619 if (cost > ira_max_memory_move_cost[mode][cl][1])
620 ira_max_memory_move_cost[mode][cl][1] = cost;
621 }
622 }
623 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
624 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
625 {
626 ira_memory_move_cost[mode][cl][0]
627 = ira_max_memory_move_cost[mode][cl][0];
628 ira_memory_move_cost[mode][cl][1]
629 = ira_max_memory_move_cost[mode][cl][1];
630 }
631 setup_reg_subclasses ();
632 }
633
634 \f
635
636 /* Define the following macro if allocation through malloc if
637 preferable. */
638 #define IRA_NO_OBSTACK
639
640 #ifndef IRA_NO_OBSTACK
641 /* Obstack used for storing all dynamic data (except bitmaps) of the
642 IRA. */
643 static struct obstack ira_obstack;
644 #endif
645
646 /* Obstack used for storing all bitmaps of the IRA. */
647 static struct bitmap_obstack ira_bitmap_obstack;
648
649 /* Allocate memory of size LEN for IRA data. */
650 void *
651 ira_allocate (size_t len)
652 {
653 void *res;
654
655 #ifndef IRA_NO_OBSTACK
656 res = obstack_alloc (&ira_obstack, len);
657 #else
658 res = xmalloc (len);
659 #endif
660 return res;
661 }
662
663 /* Free memory ADDR allocated for IRA data. */
664 void
665 ira_free (void *addr ATTRIBUTE_UNUSED)
666 {
667 #ifndef IRA_NO_OBSTACK
668 /* do nothing */
669 #else
670 free (addr);
671 #endif
672 }
673
674
675 /* Allocate and returns bitmap for IRA. */
676 bitmap
677 ira_allocate_bitmap (void)
678 {
679 return BITMAP_ALLOC (&ira_bitmap_obstack);
680 }
681
682 /* Free bitmap B allocated for IRA. */
683 void
684 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
685 {
686 /* do nothing */
687 }
688
689 \f
690
691 /* Output information about allocation of all allocnos (except for
692 caps) into file F. */
693 void
694 ira_print_disposition (FILE *f)
695 {
696 int i, n, max_regno;
697 ira_allocno_t a;
698 basic_block bb;
699
700 fprintf (f, "Disposition:");
701 max_regno = max_reg_num ();
702 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
703 for (a = ira_regno_allocno_map[i];
704 a != NULL;
705 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
706 {
707 if (n % 4 == 0)
708 fprintf (f, "\n");
709 n++;
710 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
711 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
712 fprintf (f, "b%-3d", bb->index);
713 else
714 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
715 if (ALLOCNO_HARD_REGNO (a) >= 0)
716 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
717 else
718 fprintf (f, " mem");
719 }
720 fprintf (f, "\n");
721 }
722
723 /* Outputs information about allocation of all allocnos into
724 stderr. */
725 void
726 ira_debug_disposition (void)
727 {
728 ira_print_disposition (stderr);
729 }
730
731 \f
732
733 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
734 register class containing stack registers or NO_REGS if there are
735 no stack registers. To find this class, we iterate through all
736 register pressure classes and choose the first register pressure
737 class containing all the stack registers and having the biggest
738 size. */
739 static void
740 setup_stack_reg_pressure_class (void)
741 {
742 ira_stack_reg_pressure_class = NO_REGS;
743 #ifdef STACK_REGS
744 {
745 int i, best, size;
746 enum reg_class cl;
747 HARD_REG_SET temp_hard_regset2;
748
749 CLEAR_HARD_REG_SET (temp_hard_regset);
750 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
751 SET_HARD_REG_BIT (temp_hard_regset, i);
752 best = 0;
753 for (i = 0; i < ira_pressure_classes_num; i++)
754 {
755 cl = ira_pressure_classes[i];
756 temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
757 size = hard_reg_set_size (temp_hard_regset2);
758 if (best < size)
759 {
760 best = size;
761 ira_stack_reg_pressure_class = cl;
762 }
763 }
764 }
765 #endif
766 }
767
768 /* Find pressure classes which are register classes for which we
769 calculate register pressure in IRA, register pressure sensitive
770 insn scheduling, and register pressure sensitive loop invariant
771 motion.
772
773 To make register pressure calculation easy, we always use
774 non-intersected register pressure classes. A move of hard
775 registers from one register pressure class is not more expensive
776 than load and store of the hard registers. Most likely an allocno
777 class will be a subset of a register pressure class and in many
778 cases a register pressure class. That makes usage of register
779 pressure classes a good approximation to find a high register
780 pressure. */
781 static void
782 setup_pressure_classes (void)
783 {
784 int cost, i, n, curr;
785 int cl, cl2;
786 enum reg_class pressure_classes[N_REG_CLASSES];
787 int m;
788 HARD_REG_SET temp_hard_regset2;
789 bool insert_p;
790
791 if (targetm.compute_pressure_classes)
792 n = targetm.compute_pressure_classes (pressure_classes);
793 else
794 {
795 n = 0;
796 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 {
798 if (ira_class_hard_regs_num[cl] == 0)
799 continue;
800 if (ira_class_hard_regs_num[cl] != 1
801 /* A register class without subclasses may contain a few
802 hard registers and movement between them is costly
803 (e.g. SPARC FPCC registers). We still should consider it
804 as a candidate for a pressure class. */
805 && alloc_reg_class_subclasses[cl][0] < cl)
806 {
807 /* Check that the moves between any hard registers of the
808 current class are not more expensive for a legal mode
809 than load/store of the hard registers of the current
810 class. Such class is a potential candidate to be a
811 register pressure class. */
812 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 {
814 temp_hard_regset
815 = (reg_class_contents[cl]
816 & ~(no_unit_alloc_regs
817 | ira_prohibited_class_mode_regs[cl][m]));
818 if (hard_reg_set_empty_p (temp_hard_regset))
819 continue;
820 ira_init_register_move_cost_if_necessary ((machine_mode) m);
821 cost = ira_register_move_cost[m][cl][cl];
822 if (cost <= ira_max_memory_move_cost[m][cl][1]
823 || cost <= ira_max_memory_move_cost[m][cl][0])
824 break;
825 }
826 if (m >= NUM_MACHINE_MODES)
827 continue;
828 }
829 curr = 0;
830 insert_p = true;
831 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
840 {
841 cl2 = pressure_classes[i];
842 temp_hard_regset2 = (reg_class_contents[cl2]
843 & ~no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (temp_hard_regset != temp_hard_regset2
846 || cl2 == (int) GENERAL_REGS))
847 {
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
851 }
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (temp_hard_regset2 != temp_hard_regset
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (temp_hard_regset2 == temp_hard_regset)
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
859 }
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
866 }
867 }
868 #ifdef ENABLE_IRA_CHECKING
869 {
870 HARD_REG_SET ignore_hard_regs;
871
872 /* Check pressure classes correctness: here we check that hard
873 registers from all register pressure classes contains all hard
874 registers available for the allocation. */
875 CLEAR_HARD_REG_SET (temp_hard_regset);
876 CLEAR_HARD_REG_SET (temp_hard_regset2);
877 ignore_hard_regs = no_unit_alloc_regs;
878 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 {
880 /* For some targets (like MIPS with MD_REGS), there are some
881 classes with hard registers available for allocation but
882 not able to hold value of any mode. */
883 for (m = 0; m < NUM_MACHINE_MODES; m++)
884 if (contains_reg_of_mode[cl][m])
885 break;
886 if (m >= NUM_MACHINE_MODES)
887 {
888 ignore_hard_regs |= reg_class_contents[cl];
889 continue;
890 }
891 for (i = 0; i < n; i++)
892 if ((int) pressure_classes[i] == cl)
893 break;
894 temp_hard_regset2 |= reg_class_contents[cl];
895 if (i < n)
896 temp_hard_regset |= reg_class_contents[cl];
897 }
898 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
899 /* Some targets (like SPARC with ICC reg) have allocatable regs
900 for which no reg class is defined. */
901 if (REGNO_REG_CLASS (i) == NO_REGS)
902 SET_HARD_REG_BIT (ignore_hard_regs, i);
903 temp_hard_regset &= ~ignore_hard_regs;
904 temp_hard_regset2 &= ~ignore_hard_regs;
905 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 }
907 #endif
908 ira_pressure_classes_num = 0;
909 for (i = 0; i < n; i++)
910 {
911 cl = (int) pressure_classes[i];
912 ira_reg_pressure_class_p[cl] = true;
913 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 }
915 setup_stack_reg_pressure_class ();
916 }
917
918 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
919 whose register move cost between any registers of the class is the
920 same as for all its subclasses. We use the data to speed up the
921 2nd pass of calculations of allocno costs. */
922 static void
923 setup_uniform_class_p (void)
924 {
925 int i, cl, cl2, m;
926
927 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 {
929 ira_uniform_class_p[cl] = false;
930 if (ira_class_hard_regs_num[cl] == 0)
931 continue;
932 /* We cannot use alloc_reg_class_subclasses here because move
933 cost hooks does not take into account that some registers are
934 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
935 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 because SSE regs are unavailable. */
937 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 {
939 if (ira_class_hard_regs_num[cl2] == 0)
940 continue;
941 for (m = 0; m < NUM_MACHINE_MODES; m++)
942 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 {
944 ira_init_register_move_cost_if_necessary ((machine_mode) m);
945 if (ira_register_move_cost[m][cl][cl]
946 != ira_register_move_cost[m][cl2][cl2])
947 break;
948 }
949 if (m < NUM_MACHINE_MODES)
950 break;
951 }
952 if (cl2 == LIM_REG_CLASSES)
953 ira_uniform_class_p[cl] = true;
954 }
955 }
956
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959
960 Target may have many subtargets and not all target hard registers can
961 be used for allocation, e.g. x86 port in 32-bit mode cannot use
962 hard registers introduced in x86-64 like r8-r15). Some classes
963 might have the same allocatable hard registers, e.g. INDEX_REGS
964 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
965 calculations efforts we introduce allocno classes which contain
966 unique non-empty sets of allocatable hard-registers.
967
968 Pseudo class cost calculation in ira-costs.c is very expensive.
969 Therefore we are trying to decrease number of classes involved in
970 such calculation. Register classes used in the cost calculation
971 are called important classes. They are allocno classes and other
972 non-empty classes whose allocatable hard register sets are inside
973 of an allocno class hard register set. From the first sight, it
974 looks like that they are just allocno classes. It is not true. In
975 example of x86-port in 32-bit mode, allocno classes will contain
976 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977 registers are the same for the both classes). The important
978 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
979 because a machine description insn constraint may refers for
980 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
981 of the insn constraints. */
982 static void
983 setup_allocno_and_important_classes (void)
984 {
985 int i, j, n, cl;
986 bool set_p;
987 HARD_REG_SET temp_hard_regset2;
988 static enum reg_class classes[LIM_REG_CLASSES + 1];
989
990 n = 0;
991 /* Collect classes which contain unique sets of allocatable hard
992 registers. Prefer GENERAL_REGS to other classes containing the
993 same set of hard registers. */
994 for (i = 0; i < LIM_REG_CLASSES; i++)
995 {
996 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
997 for (j = 0; j < n; j++)
998 {
999 cl = classes[j];
1000 temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
1001 if (temp_hard_regset == temp_hard_regset2)
1002 break;
1003 }
1004 if (j >= n || targetm.additional_allocno_class_p (i))
1005 classes[n++] = (enum reg_class) i;
1006 else if (i == GENERAL_REGS)
1007 /* Prefer general regs. For i386 example, it means that
1008 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1009 (all of them consists of the same available hard
1010 registers). */
1011 classes[j] = (enum reg_class) i;
1012 }
1013 classes[n] = LIM_REG_CLASSES;
1014
1015 /* Set up classes which can be used for allocnos as classes
1016 containing non-empty unique sets of allocatable hard
1017 registers. */
1018 ira_allocno_classes_num = 0;
1019 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1020 if (ira_class_hard_regs_num[cl] > 0)
1021 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1022 ira_important_classes_num = 0;
1023 /* Add non-allocno classes containing to non-empty set of
1024 allocatable hard regs. */
1025 for (cl = 0; cl < N_REG_CLASSES; cl++)
1026 if (ira_class_hard_regs_num[cl] > 0)
1027 {
1028 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1029 set_p = false;
1030 for (j = 0; j < ira_allocno_classes_num; j++)
1031 {
1032 temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1033 & ~no_unit_alloc_regs);
1034 if ((enum reg_class) cl == ira_allocno_classes[j])
1035 break;
1036 else if (hard_reg_set_subset_p (temp_hard_regset,
1037 temp_hard_regset2))
1038 set_p = true;
1039 }
1040 if (set_p && j >= ira_allocno_classes_num)
1041 ira_important_classes[ira_important_classes_num++]
1042 = (enum reg_class) cl;
1043 }
1044 /* Now add allocno classes to the important classes. */
1045 for (j = 0; j < ira_allocno_classes_num; j++)
1046 ira_important_classes[ira_important_classes_num++]
1047 = ira_allocno_classes[j];
1048 for (cl = 0; cl < N_REG_CLASSES; cl++)
1049 {
1050 ira_reg_allocno_class_p[cl] = false;
1051 ira_reg_pressure_class_p[cl] = false;
1052 }
1053 for (j = 0; j < ira_allocno_classes_num; j++)
1054 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1055 setup_pressure_classes ();
1056 setup_uniform_class_p ();
1057 }
1058
1059 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1060 given by array CLASSES of length CLASSES_NUM. The function is used
1061 make translation any reg class to an allocno class or to an
1062 pressure class. This translation is necessary for some
1063 calculations when we can use only allocno or pressure classes and
1064 such translation represents an approximate representation of all
1065 classes.
1066
1067 The translation in case when allocatable hard register set of a
1068 given class is subset of allocatable hard register set of a class
1069 in CLASSES is pretty simple. We use smallest classes from CLASSES
1070 containing a given class. If allocatable hard register set of a
1071 given class is not a subset of any corresponding set of a class
1072 from CLASSES, we use the cheapest (with load/store point of view)
1073 class from CLASSES whose set intersects with given class set. */
1074 static void
1075 setup_class_translate_array (enum reg_class *class_translate,
1076 int classes_num, enum reg_class *classes)
1077 {
1078 int cl, mode;
1079 enum reg_class aclass, best_class, *cl_ptr;
1080 int i, cost, min_cost, best_cost;
1081
1082 for (cl = 0; cl < N_REG_CLASSES; cl++)
1083 class_translate[cl] = NO_REGS;
1084
1085 for (i = 0; i < classes_num; i++)
1086 {
1087 aclass = classes[i];
1088 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1089 (cl = *cl_ptr) != LIM_REG_CLASSES;
1090 cl_ptr++)
1091 if (class_translate[cl] == NO_REGS)
1092 class_translate[cl] = aclass;
1093 class_translate[aclass] = aclass;
1094 }
1095 /* For classes which are not fully covered by one of given classes
1096 (in other words covered by more one given class), use the
1097 cheapest class. */
1098 for (cl = 0; cl < N_REG_CLASSES; cl++)
1099 {
1100 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1101 continue;
1102 best_class = NO_REGS;
1103 best_cost = INT_MAX;
1104 for (i = 0; i < classes_num; i++)
1105 {
1106 aclass = classes[i];
1107 temp_hard_regset = (reg_class_contents[aclass]
1108 & reg_class_contents[cl]
1109 & ~no_unit_alloc_regs);
1110 if (! hard_reg_set_empty_p (temp_hard_regset))
1111 {
1112 min_cost = INT_MAX;
1113 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1114 {
1115 cost = (ira_memory_move_cost[mode][aclass][0]
1116 + ira_memory_move_cost[mode][aclass][1]);
1117 if (min_cost > cost)
1118 min_cost = cost;
1119 }
1120 if (best_class == NO_REGS || best_cost > min_cost)
1121 {
1122 best_class = aclass;
1123 best_cost = min_cost;
1124 }
1125 }
1126 }
1127 class_translate[cl] = best_class;
1128 }
1129 }
1130
1131 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1132 IRA_PRESSURE_CLASS_TRANSLATE. */
1133 static void
1134 setup_class_translate (void)
1135 {
1136 setup_class_translate_array (ira_allocno_class_translate,
1137 ira_allocno_classes_num, ira_allocno_classes);
1138 setup_class_translate_array (ira_pressure_class_translate,
1139 ira_pressure_classes_num, ira_pressure_classes);
1140 }
1141
1142 /* Order numbers of allocno classes in original target allocno class
1143 array, -1 for non-allocno classes. */
1144 static int allocno_class_order[N_REG_CLASSES];
1145
1146 /* The function used to sort the important classes. */
1147 static int
1148 comp_reg_classes_func (const void *v1p, const void *v2p)
1149 {
1150 enum reg_class cl1 = *(const enum reg_class *) v1p;
1151 enum reg_class cl2 = *(const enum reg_class *) v2p;
1152 enum reg_class tcl1, tcl2;
1153 int diff;
1154
1155 tcl1 = ira_allocno_class_translate[cl1];
1156 tcl2 = ira_allocno_class_translate[cl2];
1157 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1158 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1159 return diff;
1160 return (int) cl1 - (int) cl2;
1161 }
1162
1163 /* For correct work of function setup_reg_class_relation we need to
1164 reorder important classes according to the order of their allocno
1165 classes. It places important classes containing the same
1166 allocatable hard register set adjacent to each other and allocno
1167 class with the allocatable hard register set right after the other
1168 important classes with the same set.
1169
1170 In example from comments of function
1171 setup_allocno_and_important_classes, it places LEGACY_REGS and
1172 GENERAL_REGS close to each other and GENERAL_REGS is after
1173 LEGACY_REGS. */
1174 static void
1175 reorder_important_classes (void)
1176 {
1177 int i;
1178
1179 for (i = 0; i < N_REG_CLASSES; i++)
1180 allocno_class_order[i] = -1;
1181 for (i = 0; i < ira_allocno_classes_num; i++)
1182 allocno_class_order[ira_allocno_classes[i]] = i;
1183 qsort (ira_important_classes, ira_important_classes_num,
1184 sizeof (enum reg_class), comp_reg_classes_func);
1185 for (i = 0; i < ira_important_classes_num; i++)
1186 ira_important_class_nums[ira_important_classes[i]] = i;
1187 }
1188
1189 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1190 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1191 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1192 please see corresponding comments in ira-int.h. */
1193 static void
1194 setup_reg_class_relations (void)
1195 {
1196 int i, cl1, cl2, cl3;
1197 HARD_REG_SET intersection_set, union_set, temp_set2;
1198 bool important_class_p[N_REG_CLASSES];
1199
1200 memset (important_class_p, 0, sizeof (important_class_p));
1201 for (i = 0; i < ira_important_classes_num; i++)
1202 important_class_p[ira_important_classes[i]] = true;
1203 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1204 {
1205 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1206 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1207 {
1208 ira_reg_classes_intersect_p[cl1][cl2] = false;
1209 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1210 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1211 temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1212 temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1213 if (hard_reg_set_empty_p (temp_hard_regset)
1214 && hard_reg_set_empty_p (temp_set2))
1215 {
1216 /* The both classes have no allocatable hard registers
1217 -- take all class hard registers into account and use
1218 reg_class_subunion and reg_class_superunion. */
1219 for (i = 0;; i++)
1220 {
1221 cl3 = reg_class_subclasses[cl1][i];
1222 if (cl3 == LIM_REG_CLASSES)
1223 break;
1224 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1225 (enum reg_class) cl3))
1226 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1227 }
1228 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1229 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1230 continue;
1231 }
1232 ira_reg_classes_intersect_p[cl1][cl2]
1233 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1234 if (important_class_p[cl1] && important_class_p[cl2]
1235 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1236 {
1237 /* CL1 and CL2 are important classes and CL1 allocatable
1238 hard register set is inside of CL2 allocatable hard
1239 registers -- make CL1 a superset of CL2. */
1240 enum reg_class *p;
1241
1242 p = &ira_reg_class_super_classes[cl1][0];
1243 while (*p != LIM_REG_CLASSES)
1244 p++;
1245 *p++ = (enum reg_class) cl2;
1246 *p = LIM_REG_CLASSES;
1247 }
1248 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1249 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1250 intersection_set = (reg_class_contents[cl1]
1251 & reg_class_contents[cl2]
1252 & ~no_unit_alloc_regs);
1253 union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1254 & ~no_unit_alloc_regs);
1255 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1256 {
1257 temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
1258 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1259 {
1260 /* CL3 allocatable hard register set is inside of
1261 intersection of allocatable hard register sets
1262 of CL1 and CL2. */
1263 if (important_class_p[cl3])
1264 {
1265 temp_set2
1266 = (reg_class_contents
1267 [ira_reg_class_intersect[cl1][cl2]]);
1268 temp_set2 &= ~no_unit_alloc_regs;
1269 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1270 /* If the allocatable hard register sets are
1271 the same, prefer GENERAL_REGS or the
1272 smallest class for debugging
1273 purposes. */
1274 || (temp_hard_regset == temp_set2
1275 && (cl3 == GENERAL_REGS
1276 || ((ira_reg_class_intersect[cl1][cl2]
1277 != GENERAL_REGS)
1278 && hard_reg_set_subset_p
1279 (reg_class_contents[cl3],
1280 reg_class_contents
1281 [(int)
1282 ira_reg_class_intersect[cl1][cl2]])))))
1283 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1284 }
1285 temp_set2
1286 = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1287 & ~no_unit_alloc_regs);
1288 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1289 /* Ignore unavailable hard registers and prefer
1290 smallest class for debugging purposes. */
1291 || (temp_hard_regset == temp_set2
1292 && hard_reg_set_subset_p
1293 (reg_class_contents[cl3],
1294 reg_class_contents
1295 [(int) ira_reg_class_subset[cl1][cl2]])))
1296 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1297 }
1298 if (important_class_p[cl3]
1299 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1300 {
1301 /* CL3 allocatable hard register set is inside of
1302 union of allocatable hard register sets of CL1
1303 and CL2. */
1304 temp_set2
1305 = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1306 & ~no_unit_alloc_regs);
1307 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1308 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1309
1310 && (temp_set2 != temp_hard_regset
1311 || cl3 == GENERAL_REGS
1312 /* If the allocatable hard register sets are the
1313 same, prefer GENERAL_REGS or the smallest
1314 class for debugging purposes. */
1315 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1316 && hard_reg_set_subset_p
1317 (reg_class_contents[cl3],
1318 reg_class_contents
1319 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1320 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1321 }
1322 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1323 {
1324 /* CL3 allocatable hard register set contains union
1325 of allocatable hard register sets of CL1 and
1326 CL2. */
1327 temp_set2
1328 = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1329 & ~no_unit_alloc_regs);
1330 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1331 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1332
1333 && (temp_set2 != temp_hard_regset
1334 || cl3 == GENERAL_REGS
1335 /* If the allocatable hard register sets are the
1336 same, prefer GENERAL_REGS or the smallest
1337 class for debugging purposes. */
1338 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1339 && hard_reg_set_subset_p
1340 (reg_class_contents[cl3],
1341 reg_class_contents
1342 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1343 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1344 }
1345 }
1346 }
1347 }
1348 }
1349
1350 /* Output all uniform and important classes into file F. */
1351 static void
1352 print_uniform_and_important_classes (FILE *f)
1353 {
1354 int i, cl;
1355
1356 fprintf (f, "Uniform classes:\n");
1357 for (cl = 0; cl < N_REG_CLASSES; cl++)
1358 if (ira_uniform_class_p[cl])
1359 fprintf (f, " %s", reg_class_names[cl]);
1360 fprintf (f, "\nImportant classes:\n");
1361 for (i = 0; i < ira_important_classes_num; i++)
1362 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1363 fprintf (f, "\n");
1364 }
1365
1366 /* Output all possible allocno or pressure classes and their
1367 translation map into file F. */
1368 static void
1369 print_translated_classes (FILE *f, bool pressure_p)
1370 {
1371 int classes_num = (pressure_p
1372 ? ira_pressure_classes_num : ira_allocno_classes_num);
1373 enum reg_class *classes = (pressure_p
1374 ? ira_pressure_classes : ira_allocno_classes);
1375 enum reg_class *class_translate = (pressure_p
1376 ? ira_pressure_class_translate
1377 : ira_allocno_class_translate);
1378 int i;
1379
1380 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1381 for (i = 0; i < classes_num; i++)
1382 fprintf (f, " %s", reg_class_names[classes[i]]);
1383 fprintf (f, "\nClass translation:\n");
1384 for (i = 0; i < N_REG_CLASSES; i++)
1385 fprintf (f, " %s -> %s\n", reg_class_names[i],
1386 reg_class_names[class_translate[i]]);
1387 }
1388
1389 /* Output all possible allocno and translation classes and the
1390 translation maps into stderr. */
1391 void
1392 ira_debug_allocno_classes (void)
1393 {
1394 print_uniform_and_important_classes (stderr);
1395 print_translated_classes (stderr, false);
1396 print_translated_classes (stderr, true);
1397 }
1398
1399 /* Set up different arrays concerning class subsets, allocno and
1400 important classes. */
1401 static void
1402 find_reg_classes (void)
1403 {
1404 setup_allocno_and_important_classes ();
1405 setup_class_translate ();
1406 reorder_important_classes ();
1407 setup_reg_class_relations ();
1408 }
1409
1410 \f
1411
1412 /* Set up the array above. */
1413 static void
1414 setup_hard_regno_aclass (void)
1415 {
1416 int i;
1417
1418 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1419 {
1420 #if 1
1421 ira_hard_regno_allocno_class[i]
1422 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1423 ? NO_REGS
1424 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1425 #else
1426 int j;
1427 enum reg_class cl;
1428 ira_hard_regno_allocno_class[i] = NO_REGS;
1429 for (j = 0; j < ira_allocno_classes_num; j++)
1430 {
1431 cl = ira_allocno_classes[j];
1432 if (ira_class_hard_reg_index[cl][i] >= 0)
1433 {
1434 ira_hard_regno_allocno_class[i] = cl;
1435 break;
1436 }
1437 }
1438 #endif
1439 }
1440 }
1441
1442 \f
1443
1444 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1445 static void
1446 setup_reg_class_nregs (void)
1447 {
1448 int i, cl, cl2, m;
1449
1450 for (m = 0; m < MAX_MACHINE_MODE; m++)
1451 {
1452 for (cl = 0; cl < N_REG_CLASSES; cl++)
1453 ira_reg_class_max_nregs[cl][m]
1454 = ira_reg_class_min_nregs[cl][m]
1455 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1456 for (cl = 0; cl < N_REG_CLASSES; cl++)
1457 for (i = 0;
1458 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1459 i++)
1460 if (ira_reg_class_min_nregs[cl2][m]
1461 < ira_reg_class_min_nregs[cl][m])
1462 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1463 }
1464 }
1465
1466 \f
1467
1468 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1469 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1470 static void
1471 setup_prohibited_class_mode_regs (void)
1472 {
1473 int j, k, hard_regno, cl, last_hard_regno, count;
1474
1475 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1476 {
1477 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1478 for (j = 0; j < NUM_MACHINE_MODES; j++)
1479 {
1480 count = 0;
1481 last_hard_regno = -1;
1482 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1483 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1484 {
1485 hard_regno = ira_class_hard_regs[cl][k];
1486 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1487 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1488 hard_regno);
1489 else if (in_hard_reg_set_p (temp_hard_regset,
1490 (machine_mode) j, hard_regno))
1491 {
1492 last_hard_regno = hard_regno;
1493 count++;
1494 }
1495 }
1496 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1497 }
1498 }
1499 }
1500
1501 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1502 spanning from one register pressure class to another one. It is
1503 called after defining the pressure classes. */
1504 static void
1505 clarify_prohibited_class_mode_regs (void)
1506 {
1507 int j, k, hard_regno, cl, pclass, nregs;
1508
1509 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1510 for (j = 0; j < NUM_MACHINE_MODES; j++)
1511 {
1512 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1513 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1514 {
1515 hard_regno = ira_class_hard_regs[cl][k];
1516 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1517 continue;
1518 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1519 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1520 {
1521 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1522 hard_regno);
1523 continue;
1524 }
1525 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1526 for (nregs-- ;nregs >= 0; nregs--)
1527 if (((enum reg_class) pclass
1528 != ira_pressure_class_translate[REGNO_REG_CLASS
1529 (hard_regno + nregs)]))
1530 {
1531 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1532 hard_regno);
1533 break;
1534 }
1535 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1536 hard_regno))
1537 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1538 (machine_mode) j, hard_regno);
1539 }
1540 }
1541 }
1542 \f
1543 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1544 and IRA_MAY_MOVE_OUT_COST for MODE. */
1545 void
1546 ira_init_register_move_cost (machine_mode mode)
1547 {
1548 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1549 bool all_match = true;
1550 unsigned int i, cl1, cl2;
1551 HARD_REG_SET ok_regs;
1552
1553 ira_assert (ira_register_move_cost[mode] == NULL
1554 && ira_may_move_in_cost[mode] == NULL
1555 && ira_may_move_out_cost[mode] == NULL);
1556 CLEAR_HARD_REG_SET (ok_regs);
1557 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1558 if (targetm.hard_regno_mode_ok (i, mode))
1559 SET_HARD_REG_BIT (ok_regs, i);
1560
1561 /* Note that we might be asked about the move costs of modes that
1562 cannot be stored in any hard register, for example if an inline
1563 asm tries to create a register operand with an impossible mode.
1564 We therefore can't assert have_regs_of_mode[mode] here. */
1565 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1566 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1567 {
1568 int cost;
1569 if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1570 || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
1571 {
1572 if ((ira_reg_class_max_nregs[cl1][mode]
1573 > ira_class_hard_regs_num[cl1])
1574 || (ira_reg_class_max_nregs[cl2][mode]
1575 > ira_class_hard_regs_num[cl2]))
1576 cost = 65535;
1577 else
1578 cost = (ira_memory_move_cost[mode][cl1][0]
1579 + ira_memory_move_cost[mode][cl2][1]) * 2;
1580 }
1581 else
1582 {
1583 cost = register_move_cost (mode, (enum reg_class) cl1,
1584 (enum reg_class) cl2);
1585 ira_assert (cost < 65535);
1586 }
1587 all_match &= (last_move_cost[cl1][cl2] == cost);
1588 last_move_cost[cl1][cl2] = cost;
1589 }
1590 if (all_match && last_mode_for_init_move_cost != -1)
1591 {
1592 ira_register_move_cost[mode]
1593 = ira_register_move_cost[last_mode_for_init_move_cost];
1594 ira_may_move_in_cost[mode]
1595 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1596 ira_may_move_out_cost[mode]
1597 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1598 return;
1599 }
1600 last_mode_for_init_move_cost = mode;
1601 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1602 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1603 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1604 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1605 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1606 {
1607 int cost;
1608 enum reg_class *p1, *p2;
1609
1610 if (last_move_cost[cl1][cl2] == 65535)
1611 {
1612 ira_register_move_cost[mode][cl1][cl2] = 65535;
1613 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1614 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1615 }
1616 else
1617 {
1618 cost = last_move_cost[cl1][cl2];
1619
1620 for (p2 = &reg_class_subclasses[cl2][0];
1621 *p2 != LIM_REG_CLASSES; p2++)
1622 if (ira_class_hard_regs_num[*p2] > 0
1623 && (ira_reg_class_max_nregs[*p2][mode]
1624 <= ira_class_hard_regs_num[*p2]))
1625 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1626
1627 for (p1 = &reg_class_subclasses[cl1][0];
1628 *p1 != LIM_REG_CLASSES; p1++)
1629 if (ira_class_hard_regs_num[*p1] > 0
1630 && (ira_reg_class_max_nregs[*p1][mode]
1631 <= ira_class_hard_regs_num[*p1]))
1632 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1633
1634 ira_assert (cost <= 65535);
1635 ira_register_move_cost[mode][cl1][cl2] = cost;
1636
1637 if (ira_class_subset_p[cl1][cl2])
1638 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1639 else
1640 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1641
1642 if (ira_class_subset_p[cl2][cl1])
1643 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1644 else
1645 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1646 }
1647 }
1648 }
1649
1650 \f
1651
1652 /* This is called once during compiler work. It sets up
1653 different arrays whose values don't depend on the compiled
1654 function. */
1655 void
1656 ira_init_once (void)
1657 {
1658 ira_init_costs_once ();
1659 lra_init_once ();
1660
1661 ira_use_lra_p = targetm.lra_p ();
1662 }
1663
1664 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1665 ira_may_move_out_cost for each mode. */
1666 void
1667 target_ira_int::free_register_move_costs (void)
1668 {
1669 int mode, i;
1670
1671 /* Reset move_cost and friends, making sure we only free shared
1672 table entries once. */
1673 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1674 if (x_ira_register_move_cost[mode])
1675 {
1676 for (i = 0;
1677 i < mode && (x_ira_register_move_cost[i]
1678 != x_ira_register_move_cost[mode]);
1679 i++)
1680 ;
1681 if (i == mode)
1682 {
1683 free (x_ira_register_move_cost[mode]);
1684 free (x_ira_may_move_in_cost[mode]);
1685 free (x_ira_may_move_out_cost[mode]);
1686 }
1687 }
1688 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1689 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1690 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1691 last_mode_for_init_move_cost = -1;
1692 }
1693
1694 target_ira_int::~target_ira_int ()
1695 {
1696 free_ira_costs ();
1697 free_register_move_costs ();
1698 }
1699
1700 /* This is called every time when register related information is
1701 changed. */
1702 void
1703 ira_init (void)
1704 {
1705 this_target_ira_int->free_register_move_costs ();
1706 setup_reg_mode_hard_regset ();
1707 setup_alloc_regs (flag_omit_frame_pointer != 0);
1708 setup_class_subset_and_memory_move_costs ();
1709 setup_reg_class_nregs ();
1710 setup_prohibited_class_mode_regs ();
1711 find_reg_classes ();
1712 clarify_prohibited_class_mode_regs ();
1713 setup_hard_regno_aclass ();
1714 ira_init_costs ();
1715 }
1716
1717 \f
1718 #define ira_prohibited_mode_move_regs_initialized_p \
1719 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1720
1721 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1722 static void
1723 setup_prohibited_mode_move_regs (void)
1724 {
1725 int i, j;
1726 rtx test_reg1, test_reg2, move_pat;
1727 rtx_insn *move_insn;
1728
1729 if (ira_prohibited_mode_move_regs_initialized_p)
1730 return;
1731 ira_prohibited_mode_move_regs_initialized_p = true;
1732 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1733 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1734 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1735 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1736 for (i = 0; i < NUM_MACHINE_MODES; i++)
1737 {
1738 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1739 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1740 {
1741 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1742 continue;
1743 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1744 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1745 INSN_CODE (move_insn) = -1;
1746 recog_memoized (move_insn);
1747 if (INSN_CODE (move_insn) < 0)
1748 continue;
1749 extract_insn (move_insn);
1750 /* We don't know whether the move will be in code that is optimized
1751 for size or speed, so consider all enabled alternatives. */
1752 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1753 continue;
1754 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1755 }
1756 }
1757 }
1758
1759 \f
1760
1761 /* Extract INSN and return the set of alternatives that we should consider.
1762 This excludes any alternatives whose constraints are obviously impossible
1763 to meet (e.g. because the constraint requires a constant and the operand
1764 is nonconstant). It also excludes alternatives that are bound to need
1765 a spill or reload, as long as we have other alternatives that match
1766 exactly. */
1767 alternative_mask
1768 ira_setup_alts (rtx_insn *insn)
1769 {
1770 int nop, nalt;
1771 bool curr_swapped;
1772 const char *p;
1773 int commutative = -1;
1774
1775 extract_insn (insn);
1776 preprocess_constraints (insn);
1777 alternative_mask preferred = get_preferred_alternatives (insn);
1778 alternative_mask alts = 0;
1779 alternative_mask exact_alts = 0;
1780 /* Check that the hard reg set is enough for holding all
1781 alternatives. It is hard to imagine the situation when the
1782 assertion is wrong. */
1783 ira_assert (recog_data.n_alternatives
1784 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1785 FIRST_PSEUDO_REGISTER));
1786 for (nop = 0; nop < recog_data.n_operands; nop++)
1787 if (recog_data.constraints[nop][0] == '%')
1788 {
1789 commutative = nop;
1790 break;
1791 }
1792 for (curr_swapped = false;; curr_swapped = true)
1793 {
1794 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1795 {
1796 if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
1797 continue;
1798
1799 const operand_alternative *op_alt
1800 = &recog_op_alt[nalt * recog_data.n_operands];
1801 int this_reject = 0;
1802 for (nop = 0; nop < recog_data.n_operands; nop++)
1803 {
1804 int c, len;
1805
1806 this_reject += op_alt[nop].reject;
1807
1808 rtx op = recog_data.operand[nop];
1809 p = op_alt[nop].constraint;
1810 if (*p == 0 || *p == ',')
1811 continue;
1812
1813 bool win_p = false;
1814 do
1815 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1816 {
1817 case '#':
1818 case ',':
1819 c = '\0';
1820 /* FALLTHRU */
1821 case '\0':
1822 len = 0;
1823 break;
1824
1825 case '%':
1826 /* The commutative modifier is handled above. */
1827 break;
1828
1829 case '0': case '1': case '2': case '3': case '4':
1830 case '5': case '6': case '7': case '8': case '9':
1831 {
1832 rtx other = recog_data.operand[c - '0'];
1833 if (MEM_P (other)
1834 ? rtx_equal_p (other, op)
1835 : REG_P (op) || SUBREG_P (op))
1836 goto op_success;
1837 win_p = true;
1838 }
1839 break;
1840
1841 case 'g':
1842 goto op_success;
1843 break;
1844
1845 default:
1846 {
1847 enum constraint_num cn = lookup_constraint (p);
1848 rtx mem = NULL;
1849 switch (get_constraint_type (cn))
1850 {
1851 case CT_REGISTER:
1852 if (reg_class_for_constraint (cn) != NO_REGS)
1853 {
1854 if (REG_P (op) || SUBREG_P (op))
1855 goto op_success;
1856 win_p = true;
1857 }
1858 break;
1859
1860 case CT_CONST_INT:
1861 if (CONST_INT_P (op)
1862 && (insn_const_int_ok_for_constraint
1863 (INTVAL (op), cn)))
1864 goto op_success;
1865 break;
1866
1867 case CT_ADDRESS:
1868 goto op_success;
1869
1870 case CT_MEMORY:
1871 mem = op;
1872 /* Fall through. */
1873 case CT_SPECIAL_MEMORY:
1874 if (!mem)
1875 mem = extract_mem_from_operand (op);
1876 if (MEM_P (mem))
1877 goto op_success;
1878 win_p = true;
1879 break;
1880
1881 case CT_FIXED_FORM:
1882 if (constraint_satisfied_p (op, cn))
1883 goto op_success;
1884 break;
1885 }
1886 break;
1887 }
1888 }
1889 while (p += len, c);
1890 if (!win_p)
1891 break;
1892 /* We can make the alternative match by spilling a register
1893 to memory or loading something into a register. Count a
1894 cost of one reload (the equivalent of the '?' constraint). */
1895 this_reject += 6;
1896 op_success:
1897 ;
1898 }
1899
1900 if (nop >= recog_data.n_operands)
1901 {
1902 alts |= ALTERNATIVE_BIT (nalt);
1903 if (this_reject == 0)
1904 exact_alts |= ALTERNATIVE_BIT (nalt);
1905 }
1906 }
1907 if (commutative < 0)
1908 break;
1909 /* Swap forth and back to avoid changing recog_data. */
1910 std::swap (recog_data.operand[commutative],
1911 recog_data.operand[commutative + 1]);
1912 if (curr_swapped)
1913 break;
1914 }
1915 return exact_alts ? exact_alts : alts;
1916 }
1917
1918 /* Return the number of the output non-early clobber operand which
1919 should be the same in any case as operand with number OP_NUM (or
1920 negative value if there is no such operand). ALTS is the mask
1921 of alternatives that we should consider. */
1922 int
1923 ira_get_dup_out_num (int op_num, alternative_mask alts)
1924 {
1925 int curr_alt, c, original, dup;
1926 bool ignore_p, use_commut_op_p;
1927 const char *str;
1928
1929 if (op_num < 0 || recog_data.n_alternatives == 0)
1930 return -1;
1931 /* We should find duplications only for input operands. */
1932 if (recog_data.operand_type[op_num] != OP_IN)
1933 return -1;
1934 str = recog_data.constraints[op_num];
1935 use_commut_op_p = false;
1936 for (;;)
1937 {
1938 rtx op = recog_data.operand[op_num];
1939
1940 for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
1941 original = -1;;)
1942 {
1943 c = *str;
1944 if (c == '\0')
1945 break;
1946 if (c == '#')
1947 ignore_p = true;
1948 else if (c == ',')
1949 {
1950 curr_alt++;
1951 ignore_p = !TEST_BIT (alts, curr_alt);
1952 }
1953 else if (! ignore_p)
1954 switch (c)
1955 {
1956 case 'g':
1957 goto fail;
1958 default:
1959 {
1960 enum constraint_num cn = lookup_constraint (str);
1961 enum reg_class cl = reg_class_for_constraint (cn);
1962 if (cl != NO_REGS
1963 && !targetm.class_likely_spilled_p (cl))
1964 goto fail;
1965 if (constraint_satisfied_p (op, cn))
1966 goto fail;
1967 break;
1968 }
1969
1970 case '0': case '1': case '2': case '3': case '4':
1971 case '5': case '6': case '7': case '8': case '9':
1972 if (original != -1 && original != c)
1973 goto fail;
1974 original = c;
1975 break;
1976 }
1977 str += CONSTRAINT_LEN (c, str);
1978 }
1979 if (original == -1)
1980 goto fail;
1981 dup = original - '0';
1982 if (recog_data.operand_type[dup] == OP_OUT)
1983 return dup;
1984 fail:
1985 if (use_commut_op_p)
1986 break;
1987 use_commut_op_p = true;
1988 if (recog_data.constraints[op_num][0] == '%')
1989 str = recog_data.constraints[op_num + 1];
1990 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1991 str = recog_data.constraints[op_num - 1];
1992 else
1993 break;
1994 }
1995 return -1;
1996 }
1997
1998 \f
1999
2000 /* Search forward to see if the source register of a copy insn dies
2001 before either it or the destination register is modified, but don't
2002 scan past the end of the basic block. If so, we can replace the
2003 source with the destination and let the source die in the copy
2004 insn.
2005
2006 This will reduce the number of registers live in that range and may
2007 enable the destination and the source coalescing, thus often saving
2008 one register in addition to a register-register copy. */
2009
2010 static void
2011 decrease_live_ranges_number (void)
2012 {
2013 basic_block bb;
2014 rtx_insn *insn;
2015 rtx set, src, dest, dest_death, note;
2016 rtx_insn *p, *q;
2017 int sregno, dregno;
2018
2019 if (! flag_expensive_optimizations)
2020 return;
2021
2022 if (ira_dump_file)
2023 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2024
2025 FOR_EACH_BB_FN (bb, cfun)
2026 FOR_BB_INSNS (bb, insn)
2027 {
2028 set = single_set (insn);
2029 if (! set)
2030 continue;
2031 src = SET_SRC (set);
2032 dest = SET_DEST (set);
2033 if (! REG_P (src) || ! REG_P (dest)
2034 || find_reg_note (insn, REG_DEAD, src))
2035 continue;
2036 sregno = REGNO (src);
2037 dregno = REGNO (dest);
2038
2039 /* We don't want to mess with hard regs if register classes
2040 are small. */
2041 if (sregno == dregno
2042 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2043 && (sregno < FIRST_PSEUDO_REGISTER
2044 || dregno < FIRST_PSEUDO_REGISTER))
2045 /* We don't see all updates to SP if they are in an
2046 auto-inc memory reference, so we must disallow this
2047 optimization on them. */
2048 || sregno == STACK_POINTER_REGNUM
2049 || dregno == STACK_POINTER_REGNUM)
2050 continue;
2051
2052 dest_death = NULL_RTX;
2053
2054 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2055 {
2056 if (! INSN_P (p))
2057 continue;
2058 if (BLOCK_FOR_INSN (p) != bb)
2059 break;
2060
2061 if (reg_set_p (src, p) || reg_set_p (dest, p)
2062 /* If SRC is an asm-declared register, it must not be
2063 replaced in any asm. Unfortunately, the REG_EXPR
2064 tree for the asm variable may be absent in the SRC
2065 rtx, so we can't check the actual register
2066 declaration easily (the asm operand will have it,
2067 though). To avoid complicating the test for a rare
2068 case, we just don't perform register replacement
2069 for a hard reg mentioned in an asm. */
2070 || (sregno < FIRST_PSEUDO_REGISTER
2071 && asm_noperands (PATTERN (p)) >= 0
2072 && reg_overlap_mentioned_p (src, PATTERN (p)))
2073 /* Don't change hard registers used by a call. */
2074 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2075 && find_reg_fusage (p, USE, src))
2076 /* Don't change a USE of a register. */
2077 || (GET_CODE (PATTERN (p)) == USE
2078 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2079 break;
2080
2081 /* See if all of SRC dies in P. This test is slightly
2082 more conservative than it needs to be. */
2083 if ((note = find_regno_note (p, REG_DEAD, sregno))
2084 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2085 {
2086 int failed = 0;
2087
2088 /* We can do the optimization. Scan forward from INSN
2089 again, replacing regs as we go. Set FAILED if a
2090 replacement can't be done. In that case, we can't
2091 move the death note for SRC. This should be
2092 rare. */
2093
2094 /* Set to stop at next insn. */
2095 for (q = next_real_insn (insn);
2096 q != next_real_insn (p);
2097 q = next_real_insn (q))
2098 {
2099 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2100 {
2101 /* If SRC is a hard register, we might miss
2102 some overlapping registers with
2103 validate_replace_rtx, so we would have to
2104 undo it. We can't if DEST is present in
2105 the insn, so fail in that combination of
2106 cases. */
2107 if (sregno < FIRST_PSEUDO_REGISTER
2108 && reg_mentioned_p (dest, PATTERN (q)))
2109 failed = 1;
2110
2111 /* Attempt to replace all uses. */
2112 else if (!validate_replace_rtx (src, dest, q))
2113 failed = 1;
2114
2115 /* If this succeeded, but some part of the
2116 register is still present, undo the
2117 replacement. */
2118 else if (sregno < FIRST_PSEUDO_REGISTER
2119 && reg_overlap_mentioned_p (src, PATTERN (q)))
2120 {
2121 validate_replace_rtx (dest, src, q);
2122 failed = 1;
2123 }
2124 }
2125
2126 /* If DEST dies here, remove the death note and
2127 save it for later. Make sure ALL of DEST dies
2128 here; again, this is overly conservative. */
2129 if (! dest_death
2130 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2131 {
2132 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2133 remove_note (q, dest_death);
2134 else
2135 {
2136 failed = 1;
2137 dest_death = 0;
2138 }
2139 }
2140 }
2141
2142 if (! failed)
2143 {
2144 /* Move death note of SRC from P to INSN. */
2145 remove_note (p, note);
2146 XEXP (note, 1) = REG_NOTES (insn);
2147 REG_NOTES (insn) = note;
2148 }
2149
2150 /* DEST is also dead if INSN has a REG_UNUSED note for
2151 DEST. */
2152 if (! dest_death
2153 && (dest_death
2154 = find_regno_note (insn, REG_UNUSED, dregno)))
2155 {
2156 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2157 remove_note (insn, dest_death);
2158 }
2159
2160 /* Put death note of DEST on P if we saw it die. */
2161 if (dest_death)
2162 {
2163 XEXP (dest_death, 1) = REG_NOTES (p);
2164 REG_NOTES (p) = dest_death;
2165 }
2166 break;
2167 }
2168
2169 /* If SRC is a hard register which is set or killed in
2170 some other way, we can't do this optimization. */
2171 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2172 break;
2173 }
2174 }
2175 }
2176
2177 \f
2178
2179 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2180 static bool
2181 ira_bad_reload_regno_1 (int regno, rtx x)
2182 {
2183 int x_regno, n, i;
2184 ira_allocno_t a;
2185 enum reg_class pref;
2186
2187 /* We only deal with pseudo regs. */
2188 if (! x || GET_CODE (x) != REG)
2189 return false;
2190
2191 x_regno = REGNO (x);
2192 if (x_regno < FIRST_PSEUDO_REGISTER)
2193 return false;
2194
2195 /* If the pseudo prefers REGNO explicitly, then do not consider
2196 REGNO a bad spill choice. */
2197 pref = reg_preferred_class (x_regno);
2198 if (reg_class_size[pref] == 1)
2199 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2200
2201 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2202 poor choice for a reload regno. */
2203 a = ira_regno_allocno_map[x_regno];
2204 n = ALLOCNO_NUM_OBJECTS (a);
2205 for (i = 0; i < n; i++)
2206 {
2207 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2208 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2209 return true;
2210 }
2211 return false;
2212 }
2213
2214 /* Return nonzero if REGNO is a particularly bad choice for reloading
2215 IN or OUT. */
2216 bool
2217 ira_bad_reload_regno (int regno, rtx in, rtx out)
2218 {
2219 return (ira_bad_reload_regno_1 (regno, in)
2220 || ira_bad_reload_regno_1 (regno, out));
2221 }
2222
2223 /* Add register clobbers from asm statements. */
2224 static void
2225 compute_regs_asm_clobbered (void)
2226 {
2227 basic_block bb;
2228
2229 FOR_EACH_BB_FN (bb, cfun)
2230 {
2231 rtx_insn *insn;
2232 FOR_BB_INSNS_REVERSE (bb, insn)
2233 {
2234 df_ref def;
2235
2236 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2237 FOR_EACH_INSN_DEF (def, insn)
2238 {
2239 unsigned int dregno = DF_REF_REGNO (def);
2240 if (HARD_REGISTER_NUM_P (dregno))
2241 add_to_hard_reg_set (&crtl->asm_clobbers,
2242 GET_MODE (DF_REF_REAL_REG (def)),
2243 dregno);
2244 }
2245 }
2246 }
2247 }
2248
2249
2250 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2251 REGS_EVER_LIVE. */
2252 void
2253 ira_setup_eliminable_regset (void)
2254 {
2255 int i;
2256 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2257 int fp_reg_count = hard_regno_nregs (HARD_FRAME_POINTER_REGNUM, Pmode);
2258
2259 /* Setup is_leaf as frame_pointer_required may use it. This function
2260 is called by sched_init before ira if scheduling is enabled. */
2261 crtl->is_leaf = leaf_function_p ();
2262
2263 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2264 sp for alloca. So we can't eliminate the frame pointer in that
2265 case. At some point, we should improve this by emitting the
2266 sp-adjusting insns for this case. */
2267 frame_pointer_needed
2268 = (! flag_omit_frame_pointer
2269 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2270 /* We need the frame pointer to catch stack overflow exceptions if
2271 the stack pointer is moving (as for the alloca case just above). */
2272 || (STACK_CHECK_MOVING_SP
2273 && flag_stack_check
2274 && flag_exceptions
2275 && cfun->can_throw_non_call_exceptions)
2276 || crtl->accesses_prior_frames
2277 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2278 || targetm.frame_pointer_required ());
2279
2280 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2281 RTL is very small. So if we use frame pointer for RA and RTL
2282 actually prevents this, we will spill pseudos assigned to the
2283 frame pointer in LRA. */
2284
2285 if (frame_pointer_needed)
2286 for (i = 0; i < fp_reg_count; i++)
2287 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2288
2289 ira_no_alloc_regs = no_unit_alloc_regs;
2290 CLEAR_HARD_REG_SET (eliminable_regset);
2291
2292 compute_regs_asm_clobbered ();
2293
2294 /* Build the regset of all eliminable registers and show we can't
2295 use those that we already know won't be eliminated. */
2296 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2297 {
2298 bool cannot_elim
2299 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2300 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2301
2302 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2303 {
2304 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2305
2306 if (cannot_elim)
2307 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2308 }
2309 else if (cannot_elim)
2310 error ("%s cannot be used in %<asm%> here",
2311 reg_names[eliminables[i].from]);
2312 else
2313 df_set_regs_ever_live (eliminables[i].from, true);
2314 }
2315 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2316 {
2317 for (i = 0; i < fp_reg_count; i++)
2318 if (global_regs[HARD_FRAME_POINTER_REGNUM + i])
2319 /* Nothing to do: the register is already treated as live
2320 where appropriate, and cannot be eliminated. */
2321 ;
2322 else if (!TEST_HARD_REG_BIT (crtl->asm_clobbers,
2323 HARD_FRAME_POINTER_REGNUM + i))
2324 {
2325 SET_HARD_REG_BIT (eliminable_regset,
2326 HARD_FRAME_POINTER_REGNUM + i);
2327 if (frame_pointer_needed)
2328 SET_HARD_REG_BIT (ira_no_alloc_regs,
2329 HARD_FRAME_POINTER_REGNUM + i);
2330 }
2331 else if (frame_pointer_needed)
2332 error ("%s cannot be used in %<asm%> here",
2333 reg_names[HARD_FRAME_POINTER_REGNUM + i]);
2334 else
2335 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2336 }
2337 }
2338
2339 \f
2340
2341 /* Vector of substitutions of register numbers,
2342 used to map pseudo regs into hardware regs.
2343 This is set up as a result of register allocation.
2344 Element N is the hard reg assigned to pseudo reg N,
2345 or is -1 if no hard reg was assigned.
2346 If N is a hard reg number, element N is N. */
2347 short *reg_renumber;
2348
2349 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2350 the allocation found by IRA. */
2351 static void
2352 setup_reg_renumber (void)
2353 {
2354 int regno, hard_regno;
2355 ira_allocno_t a;
2356 ira_allocno_iterator ai;
2357
2358 caller_save_needed = 0;
2359 FOR_EACH_ALLOCNO (a, ai)
2360 {
2361 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2362 continue;
2363 /* There are no caps at this point. */
2364 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2365 if (! ALLOCNO_ASSIGNED_P (a))
2366 /* It can happen if A is not referenced but partially anticipated
2367 somewhere in a region. */
2368 ALLOCNO_ASSIGNED_P (a) = true;
2369 ira_free_allocno_updated_costs (a);
2370 hard_regno = ALLOCNO_HARD_REGNO (a);
2371 regno = ALLOCNO_REGNO (a);
2372 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2373 if (hard_regno >= 0)
2374 {
2375 int i, nwords;
2376 enum reg_class pclass;
2377 ira_object_t obj;
2378
2379 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2380 nwords = ALLOCNO_NUM_OBJECTS (a);
2381 for (i = 0; i < nwords; i++)
2382 {
2383 obj = ALLOCNO_OBJECT (a, i);
2384 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2385 |= ~reg_class_contents[pclass];
2386 }
2387 if (ira_need_caller_save_p (a, hard_regno))
2388 {
2389 ira_assert (!optimize || flag_caller_saves
2390 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2391 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2392 || regno >= ira_reg_equiv_len
2393 || ira_equiv_no_lvalue_p (regno));
2394 caller_save_needed = 1;
2395 }
2396 }
2397 }
2398 }
2399
2400 /* Set up allocno assignment flags for further allocation
2401 improvements. */
2402 static void
2403 setup_allocno_assignment_flags (void)
2404 {
2405 int hard_regno;
2406 ira_allocno_t a;
2407 ira_allocno_iterator ai;
2408
2409 FOR_EACH_ALLOCNO (a, ai)
2410 {
2411 if (! ALLOCNO_ASSIGNED_P (a))
2412 /* It can happen if A is not referenced but partially anticipated
2413 somewhere in a region. */
2414 ira_free_allocno_updated_costs (a);
2415 hard_regno = ALLOCNO_HARD_REGNO (a);
2416 /* Don't assign hard registers to allocnos which are destination
2417 of removed store at the end of loop. It has no sense to keep
2418 the same value in different hard registers. It is also
2419 impossible to assign hard registers correctly to such
2420 allocnos because the cost info and info about intersected
2421 calls are incorrect for them. */
2422 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2423 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2424 || (ALLOCNO_MEMORY_COST (a)
2425 - ALLOCNO_CLASS_COST (a)) < 0);
2426 ira_assert
2427 (hard_regno < 0
2428 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2429 reg_class_contents[ALLOCNO_CLASS (a)]));
2430 }
2431 }
2432
2433 /* Evaluate overall allocation cost and the costs for using hard
2434 registers and memory for allocnos. */
2435 static void
2436 calculate_allocation_cost (void)
2437 {
2438 int hard_regno, cost;
2439 ira_allocno_t a;
2440 ira_allocno_iterator ai;
2441
2442 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2443 FOR_EACH_ALLOCNO (a, ai)
2444 {
2445 hard_regno = ALLOCNO_HARD_REGNO (a);
2446 ira_assert (hard_regno < 0
2447 || (ira_hard_reg_in_set_p
2448 (hard_regno, ALLOCNO_MODE (a),
2449 reg_class_contents[ALLOCNO_CLASS (a)])));
2450 if (hard_regno < 0)
2451 {
2452 cost = ALLOCNO_MEMORY_COST (a);
2453 ira_mem_cost += cost;
2454 }
2455 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2456 {
2457 cost = (ALLOCNO_HARD_REG_COSTS (a)
2458 [ira_class_hard_reg_index
2459 [ALLOCNO_CLASS (a)][hard_regno]]);
2460 ira_reg_cost += cost;
2461 }
2462 else
2463 {
2464 cost = ALLOCNO_CLASS_COST (a);
2465 ira_reg_cost += cost;
2466 }
2467 ira_overall_cost += cost;
2468 }
2469
2470 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2471 {
2472 fprintf (ira_dump_file,
2473 "+++Costs: overall %" PRId64
2474 ", reg %" PRId64
2475 ", mem %" PRId64
2476 ", ld %" PRId64
2477 ", st %" PRId64
2478 ", move %" PRId64,
2479 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2480 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2481 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2482 ira_move_loops_num, ira_additional_jumps_num);
2483 }
2484
2485 }
2486
2487 #ifdef ENABLE_IRA_CHECKING
2488 /* Check the correctness of the allocation. We do need this because
2489 of complicated code to transform more one region internal
2490 representation into one region representation. */
2491 static void
2492 check_allocation (void)
2493 {
2494 ira_allocno_t a;
2495 int hard_regno, nregs, conflict_nregs;
2496 ira_allocno_iterator ai;
2497
2498 FOR_EACH_ALLOCNO (a, ai)
2499 {
2500 int n = ALLOCNO_NUM_OBJECTS (a);
2501 int i;
2502
2503 if (ALLOCNO_CAP_MEMBER (a) != NULL
2504 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2505 continue;
2506 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2507 if (nregs == 1)
2508 /* We allocated a single hard register. */
2509 n = 1;
2510 else if (n > 1)
2511 /* We allocated multiple hard registers, and we will test
2512 conflicts in a granularity of single hard regs. */
2513 nregs = 1;
2514
2515 for (i = 0; i < n; i++)
2516 {
2517 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2518 ira_object_t conflict_obj;
2519 ira_object_conflict_iterator oci;
2520 int this_regno = hard_regno;
2521 if (n > 1)
2522 {
2523 if (REG_WORDS_BIG_ENDIAN)
2524 this_regno += n - i - 1;
2525 else
2526 this_regno += i;
2527 }
2528 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2529 {
2530 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2531 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2532 if (conflict_hard_regno < 0)
2533 continue;
2534
2535 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2536 ALLOCNO_MODE (conflict_a));
2537
2538 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2539 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2540 {
2541 if (REG_WORDS_BIG_ENDIAN)
2542 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2543 - OBJECT_SUBWORD (conflict_obj) - 1);
2544 else
2545 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2546 conflict_nregs = 1;
2547 }
2548
2549 if ((conflict_hard_regno <= this_regno
2550 && this_regno < conflict_hard_regno + conflict_nregs)
2551 || (this_regno <= conflict_hard_regno
2552 && conflict_hard_regno < this_regno + nregs))
2553 {
2554 fprintf (stderr, "bad allocation for %d and %d\n",
2555 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2556 gcc_unreachable ();
2557 }
2558 }
2559 }
2560 }
2561 }
2562 #endif
2563
2564 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2565 be already calculated. */
2566 static void
2567 setup_reg_equiv_init (void)
2568 {
2569 int i;
2570 int max_regno = max_reg_num ();
2571
2572 for (i = 0; i < max_regno; i++)
2573 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2574 }
2575
2576 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2577 are insns which were generated for such movement. It is assumed
2578 that FROM_REGNO and TO_REGNO always have the same value at the
2579 point of any move containing such registers. This function is used
2580 to update equiv info for register shuffles on the region borders
2581 and for caller save/restore insns. */
2582 void
2583 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2584 {
2585 rtx_insn *insn;
2586 rtx x, note;
2587
2588 if (! ira_reg_equiv[from_regno].defined_p
2589 && (! ira_reg_equiv[to_regno].defined_p
2590 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2591 && ! MEM_READONLY_P (x))))
2592 return;
2593 insn = insns;
2594 if (NEXT_INSN (insn) != NULL_RTX)
2595 {
2596 if (! ira_reg_equiv[to_regno].defined_p)
2597 {
2598 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2599 return;
2600 }
2601 ira_reg_equiv[to_regno].defined_p = false;
2602 ira_reg_equiv[to_regno].memory
2603 = ira_reg_equiv[to_regno].constant
2604 = ira_reg_equiv[to_regno].invariant
2605 = ira_reg_equiv[to_regno].init_insns = NULL;
2606 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2607 fprintf (ira_dump_file,
2608 " Invalidating equiv info for reg %d\n", to_regno);
2609 return;
2610 }
2611 /* It is possible that FROM_REGNO still has no equivalence because
2612 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2613 insn was not processed yet. */
2614 if (ira_reg_equiv[from_regno].defined_p)
2615 {
2616 ira_reg_equiv[to_regno].defined_p = true;
2617 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2618 {
2619 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2620 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2621 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2622 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2623 ira_reg_equiv[to_regno].memory = x;
2624 if (! MEM_READONLY_P (x))
2625 /* We don't add the insn to insn init list because memory
2626 equivalence is just to say what memory is better to use
2627 when the pseudo is spilled. */
2628 return;
2629 }
2630 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2631 {
2632 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2633 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2634 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2635 ira_reg_equiv[to_regno].constant = x;
2636 }
2637 else
2638 {
2639 x = ira_reg_equiv[from_regno].invariant;
2640 ira_assert (x != NULL_RTX);
2641 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2642 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2643 ira_reg_equiv[to_regno].invariant = x;
2644 }
2645 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2646 {
2647 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2648 gcc_assert (note != NULL_RTX);
2649 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2650 {
2651 fprintf (ira_dump_file,
2652 " Adding equiv note to insn %u for reg %d ",
2653 INSN_UID (insn), to_regno);
2654 dump_value_slim (ira_dump_file, x, 1);
2655 fprintf (ira_dump_file, "\n");
2656 }
2657 }
2658 }
2659 ira_reg_equiv[to_regno].init_insns
2660 = gen_rtx_INSN_LIST (VOIDmode, insn,
2661 ira_reg_equiv[to_regno].init_insns);
2662 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2663 fprintf (ira_dump_file,
2664 " Adding equiv init move insn %u to reg %d\n",
2665 INSN_UID (insn), to_regno);
2666 }
2667
2668 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2669 by IRA. */
2670 static void
2671 fix_reg_equiv_init (void)
2672 {
2673 int max_regno = max_reg_num ();
2674 int i, new_regno, max;
2675 rtx set;
2676 rtx_insn_list *x, *next, *prev;
2677 rtx_insn *insn;
2678
2679 if (max_regno_before_ira < max_regno)
2680 {
2681 max = vec_safe_length (reg_equivs);
2682 grow_reg_equivs ();
2683 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2684 for (prev = NULL, x = reg_equiv_init (i);
2685 x != NULL_RTX;
2686 x = next)
2687 {
2688 next = x->next ();
2689 insn = x->insn ();
2690 set = single_set (insn);
2691 ira_assert (set != NULL_RTX
2692 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2693 if (REG_P (SET_DEST (set))
2694 && ((int) REGNO (SET_DEST (set)) == i
2695 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2696 new_regno = REGNO (SET_DEST (set));
2697 else if (REG_P (SET_SRC (set))
2698 && ((int) REGNO (SET_SRC (set)) == i
2699 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2700 new_regno = REGNO (SET_SRC (set));
2701 else
2702 gcc_unreachable ();
2703 if (new_regno == i)
2704 prev = x;
2705 else
2706 {
2707 /* Remove the wrong list element. */
2708 if (prev == NULL_RTX)
2709 reg_equiv_init (i) = next;
2710 else
2711 XEXP (prev, 1) = next;
2712 XEXP (x, 1) = reg_equiv_init (new_regno);
2713 reg_equiv_init (new_regno) = x;
2714 }
2715 }
2716 }
2717 }
2718
2719 #ifdef ENABLE_IRA_CHECKING
2720 /* Print redundant memory-memory copies. */
2721 static void
2722 print_redundant_copies (void)
2723 {
2724 int hard_regno;
2725 ira_allocno_t a;
2726 ira_copy_t cp, next_cp;
2727 ira_allocno_iterator ai;
2728
2729 FOR_EACH_ALLOCNO (a, ai)
2730 {
2731 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2732 /* It is a cap. */
2733 continue;
2734 hard_regno = ALLOCNO_HARD_REGNO (a);
2735 if (hard_regno >= 0)
2736 continue;
2737 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2738 if (cp->first == a)
2739 next_cp = cp->next_first_allocno_copy;
2740 else
2741 {
2742 next_cp = cp->next_second_allocno_copy;
2743 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2744 && cp->insn != NULL_RTX
2745 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2746 fprintf (ira_dump_file,
2747 " Redundant move from %d(freq %d):%d\n",
2748 INSN_UID (cp->insn), cp->freq, hard_regno);
2749 }
2750 }
2751 }
2752 #endif
2753
2754 /* Setup preferred and alternative classes for new pseudo-registers
2755 created by IRA starting with START. */
2756 static void
2757 setup_preferred_alternate_classes_for_new_pseudos (int start)
2758 {
2759 int i, old_regno;
2760 int max_regno = max_reg_num ();
2761
2762 for (i = start; i < max_regno; i++)
2763 {
2764 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2765 ira_assert (i != old_regno);
2766 setup_reg_classes (i, reg_preferred_class (old_regno),
2767 reg_alternate_class (old_regno),
2768 reg_allocno_class (old_regno));
2769 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2770 fprintf (ira_dump_file,
2771 " New r%d: setting preferred %s, alternative %s\n",
2772 i, reg_class_names[reg_preferred_class (old_regno)],
2773 reg_class_names[reg_alternate_class (old_regno)]);
2774 }
2775 }
2776
2777 \f
2778 /* The number of entries allocated in reg_info. */
2779 static int allocated_reg_info_size;
2780
2781 /* Regional allocation can create new pseudo-registers. This function
2782 expands some arrays for pseudo-registers. */
2783 static void
2784 expand_reg_info (void)
2785 {
2786 int i;
2787 int size = max_reg_num ();
2788
2789 resize_reg_info ();
2790 for (i = allocated_reg_info_size; i < size; i++)
2791 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2792 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2793 allocated_reg_info_size = size;
2794 }
2795
2796 /* Return TRUE if there is too high register pressure in the function.
2797 It is used to decide when stack slot sharing is worth to do. */
2798 static bool
2799 too_high_register_pressure_p (void)
2800 {
2801 int i;
2802 enum reg_class pclass;
2803
2804 for (i = 0; i < ira_pressure_classes_num; i++)
2805 {
2806 pclass = ira_pressure_classes[i];
2807 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2808 return true;
2809 }
2810 return false;
2811 }
2812
2813 \f
2814
2815 /* Indicate that hard register number FROM was eliminated and replaced with
2816 an offset from hard register number TO. The status of hard registers live
2817 at the start of a basic block is updated by replacing a use of FROM with
2818 a use of TO. */
2819
2820 void
2821 mark_elimination (int from, int to)
2822 {
2823 basic_block bb;
2824 bitmap r;
2825
2826 FOR_EACH_BB_FN (bb, cfun)
2827 {
2828 r = DF_LR_IN (bb);
2829 if (bitmap_bit_p (r, from))
2830 {
2831 bitmap_clear_bit (r, from);
2832 bitmap_set_bit (r, to);
2833 }
2834 if (! df_live)
2835 continue;
2836 r = DF_LIVE_IN (bb);
2837 if (bitmap_bit_p (r, from))
2838 {
2839 bitmap_clear_bit (r, from);
2840 bitmap_set_bit (r, to);
2841 }
2842 }
2843 }
2844
2845 \f
2846
2847 /* The length of the following array. */
2848 int ira_reg_equiv_len;
2849
2850 /* Info about equiv. info for each register. */
2851 struct ira_reg_equiv_s *ira_reg_equiv;
2852
2853 /* Expand ira_reg_equiv if necessary. */
2854 void
2855 ira_expand_reg_equiv (void)
2856 {
2857 int old = ira_reg_equiv_len;
2858
2859 if (ira_reg_equiv_len > max_reg_num ())
2860 return;
2861 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2862 ira_reg_equiv
2863 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2864 ira_reg_equiv_len
2865 * sizeof (struct ira_reg_equiv_s));
2866 gcc_assert (old < ira_reg_equiv_len);
2867 memset (ira_reg_equiv + old, 0,
2868 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2869 }
2870
2871 static void
2872 init_reg_equiv (void)
2873 {
2874 ira_reg_equiv_len = 0;
2875 ira_reg_equiv = NULL;
2876 ira_expand_reg_equiv ();
2877 }
2878
2879 static void
2880 finish_reg_equiv (void)
2881 {
2882 free (ira_reg_equiv);
2883 }
2884
2885 \f
2886
2887 struct equivalence
2888 {
2889 /* Set when a REG_EQUIV note is found or created. Use to
2890 keep track of what memory accesses might be created later,
2891 e.g. by reload. */
2892 rtx replacement;
2893 rtx *src_p;
2894
2895 /* The list of each instruction which initializes this register.
2896
2897 NULL indicates we know nothing about this register's equivalence
2898 properties.
2899
2900 An INSN_LIST with a NULL insn indicates this pseudo is already
2901 known to not have a valid equivalence. */
2902 rtx_insn_list *init_insns;
2903
2904 /* Loop depth is used to recognize equivalences which appear
2905 to be present within the same loop (or in an inner loop). */
2906 short loop_depth;
2907 /* Nonzero if this had a preexisting REG_EQUIV note. */
2908 unsigned char is_arg_equivalence : 1;
2909 /* Set when an attempt should be made to replace a register
2910 with the associated src_p entry. */
2911 unsigned char replace : 1;
2912 /* Set if this register has no known equivalence. */
2913 unsigned char no_equiv : 1;
2914 /* Set if this register is mentioned in a paradoxical subreg. */
2915 unsigned char pdx_subregs : 1;
2916 };
2917
2918 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2919 structure for that register. */
2920 static struct equivalence *reg_equiv;
2921
2922 /* Used for communication between the following two functions. */
2923 struct equiv_mem_data
2924 {
2925 /* A MEM that we wish to ensure remains unchanged. */
2926 rtx equiv_mem;
2927
2928 /* Set true if EQUIV_MEM is modified. */
2929 bool equiv_mem_modified;
2930 };
2931
2932 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2933 Called via note_stores. */
2934 static void
2935 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2936 void *data)
2937 {
2938 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2939
2940 if ((REG_P (dest)
2941 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2942 || (MEM_P (dest)
2943 && anti_dependence (info->equiv_mem, dest)))
2944 info->equiv_mem_modified = true;
2945 }
2946
2947 enum valid_equiv { valid_none, valid_combine, valid_reload };
2948
2949 /* Verify that no store between START and the death of REG invalidates
2950 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2951 by storing into an overlapping memory location, or with a non-const
2952 CALL_INSN.
2953
2954 Return VALID_RELOAD if MEMREF remains valid for both reload and
2955 combine_and_move insns, VALID_COMBINE if only valid for
2956 combine_and_move_insns, and VALID_NONE otherwise. */
2957 static enum valid_equiv
2958 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2959 {
2960 rtx_insn *insn;
2961 rtx note;
2962 struct equiv_mem_data info = { memref, false };
2963 enum valid_equiv ret = valid_reload;
2964
2965 /* If the memory reference has side effects or is volatile, it isn't a
2966 valid equivalence. */
2967 if (side_effects_p (memref))
2968 return valid_none;
2969
2970 for (insn = start; insn; insn = NEXT_INSN (insn))
2971 {
2972 if (!INSN_P (insn))
2973 continue;
2974
2975 if (find_reg_note (insn, REG_DEAD, reg))
2976 return ret;
2977
2978 if (CALL_P (insn))
2979 {
2980 /* We can combine a reg def from one insn into a reg use in
2981 another over a call if the memory is readonly or the call
2982 const/pure. However, we can't set reg_equiv notes up for
2983 reload over any call. The problem is the equivalent form
2984 may reference a pseudo which gets assigned a call
2985 clobbered hard reg. When we later replace REG with its
2986 equivalent form, the value in the call-clobbered reg has
2987 been changed and all hell breaks loose. */
2988 ret = valid_combine;
2989 if (!MEM_READONLY_P (memref)
2990 && !RTL_CONST_OR_PURE_CALL_P (insn))
2991 return valid_none;
2992 }
2993
2994 note_stores (insn, validate_equiv_mem_from_store, &info);
2995 if (info.equiv_mem_modified)
2996 return valid_none;
2997
2998 /* If a register mentioned in MEMREF is modified via an
2999 auto-increment, we lose the equivalence. Do the same if one
3000 dies; although we could extend the life, it doesn't seem worth
3001 the trouble. */
3002
3003 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3004 if ((REG_NOTE_KIND (note) == REG_INC
3005 || REG_NOTE_KIND (note) == REG_DEAD)
3006 && REG_P (XEXP (note, 0))
3007 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3008 return valid_none;
3009 }
3010
3011 return valid_none;
3012 }
3013
3014 /* Returns zero if X is known to be invariant. */
3015 static int
3016 equiv_init_varies_p (rtx x)
3017 {
3018 RTX_CODE code = GET_CODE (x);
3019 int i;
3020 const char *fmt;
3021
3022 switch (code)
3023 {
3024 case MEM:
3025 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3026
3027 case CONST:
3028 CASE_CONST_ANY:
3029 case SYMBOL_REF:
3030 case LABEL_REF:
3031 return 0;
3032
3033 case REG:
3034 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3035
3036 case ASM_OPERANDS:
3037 if (MEM_VOLATILE_P (x))
3038 return 1;
3039
3040 /* Fall through. */
3041
3042 default:
3043 break;
3044 }
3045
3046 fmt = GET_RTX_FORMAT (code);
3047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3048 if (fmt[i] == 'e')
3049 {
3050 if (equiv_init_varies_p (XEXP (x, i)))
3051 return 1;
3052 }
3053 else if (fmt[i] == 'E')
3054 {
3055 int j;
3056 for (j = 0; j < XVECLEN (x, i); j++)
3057 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3058 return 1;
3059 }
3060
3061 return 0;
3062 }
3063
3064 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3065 X is only movable if the registers it uses have equivalent initializations
3066 which appear to be within the same loop (or in an inner loop) and movable
3067 or if they are not candidates for local_alloc and don't vary. */
3068 static int
3069 equiv_init_movable_p (rtx x, int regno)
3070 {
3071 int i, j;
3072 const char *fmt;
3073 enum rtx_code code = GET_CODE (x);
3074
3075 switch (code)
3076 {
3077 case SET:
3078 return equiv_init_movable_p (SET_SRC (x), regno);
3079
3080 case CC0:
3081 case CLOBBER:
3082 return 0;
3083
3084 case PRE_INC:
3085 case PRE_DEC:
3086 case POST_INC:
3087 case POST_DEC:
3088 case PRE_MODIFY:
3089 case POST_MODIFY:
3090 return 0;
3091
3092 case REG:
3093 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3094 && reg_equiv[REGNO (x)].replace)
3095 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3096 && ! rtx_varies_p (x, 0)));
3097
3098 case UNSPEC_VOLATILE:
3099 return 0;
3100
3101 case ASM_OPERANDS:
3102 if (MEM_VOLATILE_P (x))
3103 return 0;
3104
3105 /* Fall through. */
3106
3107 default:
3108 break;
3109 }
3110
3111 fmt = GET_RTX_FORMAT (code);
3112 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3113 switch (fmt[i])
3114 {
3115 case 'e':
3116 if (! equiv_init_movable_p (XEXP (x, i), regno))
3117 return 0;
3118 break;
3119 case 'E':
3120 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3121 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3122 return 0;
3123 break;
3124 }
3125
3126 return 1;
3127 }
3128
3129 static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3130
3131 /* Auxiliary function for memref_referenced_p. Process setting X for
3132 MEMREF store. */
3133 static bool
3134 process_set_for_memref_referenced_p (rtx memref, rtx x)
3135 {
3136 /* If we are setting a MEM, it doesn't count (its address does), but any
3137 other SET_DEST that has a MEM in it is referencing the MEM. */
3138 if (MEM_P (x))
3139 {
3140 if (memref_referenced_p (memref, XEXP (x, 0), true))
3141 return true;
3142 }
3143 else if (memref_referenced_p (memref, x, false))
3144 return true;
3145
3146 return false;
3147 }
3148
3149 /* TRUE if X references a memory location (as a read if READ_P) that
3150 would be affected by a store to MEMREF. */
3151 static bool
3152 memref_referenced_p (rtx memref, rtx x, bool read_p)
3153 {
3154 int i, j;
3155 const char *fmt;
3156 enum rtx_code code = GET_CODE (x);
3157
3158 switch (code)
3159 {
3160 case CONST:
3161 case LABEL_REF:
3162 case SYMBOL_REF:
3163 CASE_CONST_ANY:
3164 case PC:
3165 case CC0:
3166 case HIGH:
3167 case LO_SUM:
3168 return false;
3169
3170 case REG:
3171 return (reg_equiv[REGNO (x)].replacement
3172 && memref_referenced_p (memref,
3173 reg_equiv[REGNO (x)].replacement, read_p));
3174
3175 case MEM:
3176 /* Memory X might have another effective type than MEMREF. */
3177 if (read_p || true_dependence (memref, VOIDmode, x))
3178 return true;
3179 break;
3180
3181 case SET:
3182 if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3183 return true;
3184
3185 return memref_referenced_p (memref, SET_SRC (x), true);
3186
3187 case CLOBBER:
3188 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3189 return true;
3190
3191 return false;
3192
3193 case PRE_DEC:
3194 case POST_DEC:
3195 case PRE_INC:
3196 case POST_INC:
3197 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3198 return true;
3199
3200 return memref_referenced_p (memref, XEXP (x, 0), true);
3201
3202 case POST_MODIFY:
3203 case PRE_MODIFY:
3204 /* op0 = op0 + op1 */
3205 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3206 return true;
3207
3208 if (memref_referenced_p (memref, XEXP (x, 0), true))
3209 return true;
3210
3211 return memref_referenced_p (memref, XEXP (x, 1), true);
3212
3213 default:
3214 break;
3215 }
3216
3217 fmt = GET_RTX_FORMAT (code);
3218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3219 switch (fmt[i])
3220 {
3221 case 'e':
3222 if (memref_referenced_p (memref, XEXP (x, i), read_p))
3223 return true;
3224 break;
3225 case 'E':
3226 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3227 if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3228 return true;
3229 break;
3230 }
3231
3232 return false;
3233 }
3234
3235 /* TRUE if some insn in the range (START, END] references a memory location
3236 that would be affected by a store to MEMREF.
3237
3238 Callers should not call this routine if START is after END in the
3239 RTL chain. */
3240
3241 static int
3242 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3243 {
3244 rtx_insn *insn;
3245
3246 for (insn = NEXT_INSN (start);
3247 insn && insn != NEXT_INSN (end);
3248 insn = NEXT_INSN (insn))
3249 {
3250 if (!NONDEBUG_INSN_P (insn))
3251 continue;
3252
3253 if (memref_referenced_p (memref, PATTERN (insn), false))
3254 return 1;
3255
3256 /* Nonconst functions may access memory. */
3257 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3258 return 1;
3259 }
3260
3261 gcc_assert (insn == NEXT_INSN (end));
3262 return 0;
3263 }
3264
3265 /* Mark REG as having no known equivalence.
3266 Some instructions might have been processed before and furnished
3267 with REG_EQUIV notes for this register; these notes will have to be
3268 removed.
3269 STORE is the piece of RTL that does the non-constant / conflicting
3270 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3271 but needs to be there because this function is called from note_stores. */
3272 static void
3273 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3274 void *data ATTRIBUTE_UNUSED)
3275 {
3276 int regno;
3277 rtx_insn_list *list;
3278
3279 if (!REG_P (reg))
3280 return;
3281 regno = REGNO (reg);
3282 reg_equiv[regno].no_equiv = 1;
3283 list = reg_equiv[regno].init_insns;
3284 if (list && list->insn () == NULL)
3285 return;
3286 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3287 reg_equiv[regno].replacement = NULL_RTX;
3288 /* This doesn't matter for equivalences made for argument registers, we
3289 should keep their initialization insns. */
3290 if (reg_equiv[regno].is_arg_equivalence)
3291 return;
3292 ira_reg_equiv[regno].defined_p = false;
3293 ira_reg_equiv[regno].init_insns = NULL;
3294 for (; list; list = list->next ())
3295 {
3296 rtx_insn *insn = list->insn ();
3297 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3298 }
3299 }
3300
3301 /* Check whether the SUBREG is a paradoxical subreg and set the result
3302 in PDX_SUBREGS. */
3303
3304 static void
3305 set_paradoxical_subreg (rtx_insn *insn)
3306 {
3307 subrtx_iterator::array_type array;
3308 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3309 {
3310 const_rtx subreg = *iter;
3311 if (GET_CODE (subreg) == SUBREG)
3312 {
3313 const_rtx reg = SUBREG_REG (subreg);
3314 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3315 reg_equiv[REGNO (reg)].pdx_subregs = true;
3316 }
3317 }
3318 }
3319
3320 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3321 equivalent replacement. */
3322
3323 static rtx
3324 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3325 {
3326 if (REG_P (loc))
3327 {
3328 bitmap cleared_regs = (bitmap) data;
3329 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3330 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3331 NULL_RTX, adjust_cleared_regs, data);
3332 }
3333 return NULL_RTX;
3334 }
3335
3336 /* Given register REGNO is set only once, return true if the defining
3337 insn dominates all uses. */
3338
3339 static bool
3340 def_dominates_uses (int regno)
3341 {
3342 df_ref def = DF_REG_DEF_CHAIN (regno);
3343
3344 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3345 /* If this is an artificial def (eh handler regs, hard frame pointer
3346 for non-local goto, regs defined on function entry) then def_info
3347 is NULL and the reg is always live before any use. We might
3348 reasonably return true in that case, but since the only call
3349 of this function is currently here in ira.c when we are looking
3350 at a defining insn we can't have an artificial def as that would
3351 bump DF_REG_DEF_COUNT. */
3352 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3353
3354 rtx_insn *def_insn = DF_REF_INSN (def);
3355 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3356
3357 for (df_ref use = DF_REG_USE_CHAIN (regno);
3358 use;
3359 use = DF_REF_NEXT_REG (use))
3360 {
3361 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3362 /* Only check real uses, not artificial ones. */
3363 if (use_info)
3364 {
3365 rtx_insn *use_insn = DF_REF_INSN (use);
3366 if (!DEBUG_INSN_P (use_insn))
3367 {
3368 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3369 if (use_bb != def_bb
3370 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3371 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3372 return false;
3373 }
3374 }
3375 }
3376 return true;
3377 }
3378
3379 /* Scan the instructions before update_equiv_regs. Record which registers
3380 are referenced as paradoxical subregs. Also check for cases in which
3381 the current function needs to save a register that one of its call
3382 instructions clobbers.
3383
3384 These things are logically unrelated, but it's more efficient to do
3385 them together. */
3386
3387 static void
3388 update_equiv_regs_prescan (void)
3389 {
3390 basic_block bb;
3391 rtx_insn *insn;
3392 function_abi_aggregator callee_abis;
3393
3394 FOR_EACH_BB_FN (bb, cfun)
3395 FOR_BB_INSNS (bb, insn)
3396 if (NONDEBUG_INSN_P (insn))
3397 {
3398 set_paradoxical_subreg (insn);
3399 if (CALL_P (insn))
3400 callee_abis.note_callee_abi (insn_callee_abi (insn));
3401 }
3402
3403 HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi);
3404 if (!hard_reg_set_empty_p (extra_caller_saves))
3405 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
3406 if (TEST_HARD_REG_BIT (extra_caller_saves, regno))
3407 df_set_regs_ever_live (regno, true);
3408 }
3409
3410 /* Find registers that are equivalent to a single value throughout the
3411 compilation (either because they can be referenced in memory or are
3412 set once from a single constant). Lower their priority for a
3413 register.
3414
3415 If such a register is only referenced once, try substituting its
3416 value into the using insn. If it succeeds, we can eliminate the
3417 register completely.
3418
3419 Initialize init_insns in ira_reg_equiv array. */
3420 static void
3421 update_equiv_regs (void)
3422 {
3423 rtx_insn *insn;
3424 basic_block bb;
3425
3426 /* Scan the insns and find which registers have equivalences. Do this
3427 in a separate scan of the insns because (due to -fcse-follow-jumps)
3428 a register can be set below its use. */
3429 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3430 FOR_EACH_BB_FN (bb, cfun)
3431 {
3432 int loop_depth = bb_loop_depth (bb);
3433
3434 for (insn = BB_HEAD (bb);
3435 insn != NEXT_INSN (BB_END (bb));
3436 insn = NEXT_INSN (insn))
3437 {
3438 rtx note;
3439 rtx set;
3440 rtx dest, src;
3441 int regno;
3442
3443 if (! INSN_P (insn))
3444 continue;
3445
3446 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3447 if (REG_NOTE_KIND (note) == REG_INC)
3448 no_equiv (XEXP (note, 0), note, NULL);
3449
3450 set = single_set (insn);
3451
3452 /* If this insn contains more (or less) than a single SET,
3453 only mark all destinations as having no known equivalence. */
3454 if (set == NULL_RTX
3455 || side_effects_p (SET_SRC (set)))
3456 {
3457 note_pattern_stores (PATTERN (insn), no_equiv, NULL);
3458 continue;
3459 }
3460 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3461 {
3462 int i;
3463
3464 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3465 {
3466 rtx part = XVECEXP (PATTERN (insn), 0, i);
3467 if (part != set)
3468 note_pattern_stores (part, no_equiv, NULL);
3469 }
3470 }
3471
3472 dest = SET_DEST (set);
3473 src = SET_SRC (set);
3474
3475 /* See if this is setting up the equivalence between an argument
3476 register and its stack slot. */
3477 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3478 if (note)
3479 {
3480 gcc_assert (REG_P (dest));
3481 regno = REGNO (dest);
3482
3483 /* Note that we don't want to clear init_insns in
3484 ira_reg_equiv even if there are multiple sets of this
3485 register. */
3486 reg_equiv[regno].is_arg_equivalence = 1;
3487
3488 /* The insn result can have equivalence memory although
3489 the equivalence is not set up by the insn. We add
3490 this insn to init insns as it is a flag for now that
3491 regno has an equivalence. We will remove the insn
3492 from init insn list later. */
3493 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3494 ira_reg_equiv[regno].init_insns
3495 = gen_rtx_INSN_LIST (VOIDmode, insn,
3496 ira_reg_equiv[regno].init_insns);
3497
3498 /* Continue normally in case this is a candidate for
3499 replacements. */
3500 }
3501
3502 if (!optimize)
3503 continue;
3504
3505 /* We only handle the case of a pseudo register being set
3506 once, or always to the same value. */
3507 /* ??? The mn10200 port breaks if we add equivalences for
3508 values that need an ADDRESS_REGS register and set them equivalent
3509 to a MEM of a pseudo. The actual problem is in the over-conservative
3510 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3511 calculate_needs, but we traditionally work around this problem
3512 here by rejecting equivalences when the destination is in a register
3513 that's likely spilled. This is fragile, of course, since the
3514 preferred class of a pseudo depends on all instructions that set
3515 or use it. */
3516
3517 if (!REG_P (dest)
3518 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3519 || (reg_equiv[regno].init_insns
3520 && reg_equiv[regno].init_insns->insn () == NULL)
3521 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3522 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3523 {
3524 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3525 also set somewhere else to a constant. */
3526 note_pattern_stores (set, no_equiv, NULL);
3527 continue;
3528 }
3529
3530 /* Don't set reg mentioned in a paradoxical subreg
3531 equivalent to a mem. */
3532 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3533 {
3534 note_pattern_stores (set, no_equiv, NULL);
3535 continue;
3536 }
3537
3538 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3539
3540 /* cse sometimes generates function invariants, but doesn't put a
3541 REG_EQUAL note on the insn. Since this note would be redundant,
3542 there's no point creating it earlier than here. */
3543 if (! note && ! rtx_varies_p (src, 0))
3544 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3545
3546 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3547 since it represents a function call. */
3548 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3549 note = NULL_RTX;
3550
3551 if (DF_REG_DEF_COUNT (regno) != 1)
3552 {
3553 bool equal_p = true;
3554 rtx_insn_list *list;
3555
3556 /* If we have already processed this pseudo and determined it
3557 cannot have an equivalence, then honor that decision. */
3558 if (reg_equiv[regno].no_equiv)
3559 continue;
3560
3561 if (! note
3562 || rtx_varies_p (XEXP (note, 0), 0)
3563 || (reg_equiv[regno].replacement
3564 && ! rtx_equal_p (XEXP (note, 0),
3565 reg_equiv[regno].replacement)))
3566 {
3567 no_equiv (dest, set, NULL);
3568 continue;
3569 }
3570
3571 list = reg_equiv[regno].init_insns;
3572 for (; list; list = list->next ())
3573 {
3574 rtx note_tmp;
3575 rtx_insn *insn_tmp;
3576
3577 insn_tmp = list->insn ();
3578 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3579 gcc_assert (note_tmp);
3580 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3581 {
3582 equal_p = false;
3583 break;
3584 }
3585 }
3586
3587 if (! equal_p)
3588 {
3589 no_equiv (dest, set, NULL);
3590 continue;
3591 }
3592 }
3593
3594 /* Record this insn as initializing this register. */
3595 reg_equiv[regno].init_insns
3596 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3597
3598 /* If this register is known to be equal to a constant, record that
3599 it is always equivalent to the constant.
3600 Note that it is possible to have a register use before
3601 the def in loops (see gcc.c-torture/execute/pr79286.c)
3602 where the reg is undefined on first use. If the def insn
3603 won't trap we can use it as an equivalence, effectively
3604 choosing the "undefined" value for the reg to be the
3605 same as the value set by the def. */
3606 if (DF_REG_DEF_COUNT (regno) == 1
3607 && note
3608 && !rtx_varies_p (XEXP (note, 0), 0)
3609 && (!may_trap_or_fault_p (XEXP (note, 0))
3610 || def_dominates_uses (regno)))
3611 {
3612 rtx note_value = XEXP (note, 0);
3613 remove_note (insn, note);
3614 set_unique_reg_note (insn, REG_EQUIV, note_value);
3615 }
3616
3617 /* If this insn introduces a "constant" register, decrease the priority
3618 of that register. Record this insn if the register is only used once
3619 more and the equivalence value is the same as our source.
3620
3621 The latter condition is checked for two reasons: First, it is an
3622 indication that it may be more efficient to actually emit the insn
3623 as written (if no registers are available, reload will substitute
3624 the equivalence). Secondly, it avoids problems with any registers
3625 dying in this insn whose death notes would be missed.
3626
3627 If we don't have a REG_EQUIV note, see if this insn is loading
3628 a register used only in one basic block from a MEM. If so, and the
3629 MEM remains unchanged for the life of the register, add a REG_EQUIV
3630 note. */
3631 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3632
3633 rtx replacement = NULL_RTX;
3634 if (note)
3635 replacement = XEXP (note, 0);
3636 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3637 && MEM_P (SET_SRC (set)))
3638 {
3639 enum valid_equiv validity;
3640 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3641 if (validity != valid_none)
3642 {
3643 replacement = copy_rtx (SET_SRC (set));
3644 if (validity == valid_reload)
3645 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3646 }
3647 }
3648
3649 /* If we haven't done so, record for reload that this is an
3650 equivalencing insn. */
3651 if (note && !reg_equiv[regno].is_arg_equivalence)
3652 ira_reg_equiv[regno].init_insns
3653 = gen_rtx_INSN_LIST (VOIDmode, insn,
3654 ira_reg_equiv[regno].init_insns);
3655
3656 if (replacement)
3657 {
3658 reg_equiv[regno].replacement = replacement;
3659 reg_equiv[regno].src_p = &SET_SRC (set);
3660 reg_equiv[regno].loop_depth = (short) loop_depth;
3661
3662 /* Don't mess with things live during setjmp. */
3663 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3664 {
3665 /* If the register is referenced exactly twice, meaning it is
3666 set once and used once, indicate that the reference may be
3667 replaced by the equivalence we computed above. Do this
3668 even if the register is only used in one block so that
3669 dependencies can be handled where the last register is
3670 used in a different block (i.e. HIGH / LO_SUM sequences)
3671 and to reduce the number of registers alive across
3672 calls. */
3673
3674 if (REG_N_REFS (regno) == 2
3675 && (rtx_equal_p (replacement, src)
3676 || ! equiv_init_varies_p (src))
3677 && NONJUMP_INSN_P (insn)
3678 && equiv_init_movable_p (PATTERN (insn), regno))
3679 reg_equiv[regno].replace = 1;
3680 }
3681 }
3682 }
3683 }
3684 }
3685
3686 /* For insns that set a MEM to the contents of a REG that is only used
3687 in a single basic block, see if the register is always equivalent
3688 to that memory location and if moving the store from INSN to the
3689 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3690 initializing insn. */
3691 static void
3692 add_store_equivs (void)
3693 {
3694 auto_bitmap seen_insns;
3695
3696 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3697 {
3698 rtx set, src, dest;
3699 unsigned regno;
3700 rtx_insn *init_insn;
3701
3702 bitmap_set_bit (seen_insns, INSN_UID (insn));
3703
3704 if (! INSN_P (insn))
3705 continue;
3706
3707 set = single_set (insn);
3708 if (! set)
3709 continue;
3710
3711 dest = SET_DEST (set);
3712 src = SET_SRC (set);
3713
3714 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3715 REG_EQUIV is likely more useful than the one we are adding. */
3716 if (MEM_P (dest) && REG_P (src)
3717 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3718 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3719 && DF_REG_DEF_COUNT (regno) == 1
3720 && ! reg_equiv[regno].pdx_subregs
3721 && reg_equiv[regno].init_insns != NULL
3722 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3723 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3724 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3725 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3726 && ! memref_used_between_p (dest, init_insn, insn)
3727 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3728 multiple sets. */
3729 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3730 {
3731 /* This insn makes the equivalence, not the one initializing
3732 the register. */
3733 ira_reg_equiv[regno].init_insns
3734 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3735 df_notes_rescan (init_insn);
3736 if (dump_file)
3737 fprintf (dump_file,
3738 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3739 INSN_UID (init_insn),
3740 INSN_UID (insn));
3741 }
3742 }
3743 }
3744
3745 /* Scan all regs killed in an insn to see if any of them are registers
3746 only used that once. If so, see if we can replace the reference
3747 with the equivalent form. If we can, delete the initializing
3748 reference and this register will go away. If we can't replace the
3749 reference, and the initializing reference is within the same loop
3750 (or in an inner loop), then move the register initialization just
3751 before the use, so that they are in the same basic block. */
3752 static void
3753 combine_and_move_insns (void)
3754 {
3755 auto_bitmap cleared_regs;
3756 int max = max_reg_num ();
3757
3758 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3759 {
3760 if (!reg_equiv[regno].replace)
3761 continue;
3762
3763 rtx_insn *use_insn = 0;
3764 for (df_ref use = DF_REG_USE_CHAIN (regno);
3765 use;
3766 use = DF_REF_NEXT_REG (use))
3767 if (DF_REF_INSN_INFO (use))
3768 {
3769 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3770 continue;
3771 gcc_assert (!use_insn);
3772 use_insn = DF_REF_INSN (use);
3773 }
3774 gcc_assert (use_insn);
3775
3776 /* Don't substitute into jumps. indirect_jump_optimize does
3777 this for anything we are prepared to handle. */
3778 if (JUMP_P (use_insn))
3779 continue;
3780
3781 /* Also don't substitute into a conditional trap insn -- it can become
3782 an unconditional trap, and that is a flow control insn. */
3783 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3784 continue;
3785
3786 df_ref def = DF_REG_DEF_CHAIN (regno);
3787 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3788 rtx_insn *def_insn = DF_REF_INSN (def);
3789
3790 /* We may not move instructions that can throw, since that
3791 changes basic block boundaries and we are not prepared to
3792 adjust the CFG to match. */
3793 if (can_throw_internal (def_insn))
3794 continue;
3795
3796 /* Instructions with multiple sets can only be moved if DF analysis is
3797 performed for all of the registers set. See PR91052. */
3798 if (multiple_sets (def_insn))
3799 continue;
3800
3801 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3802 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3803 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3804 continue;
3805
3806 if (asm_noperands (PATTERN (def_insn)) < 0
3807 && validate_replace_rtx (regno_reg_rtx[regno],
3808 *reg_equiv[regno].src_p, use_insn))
3809 {
3810 rtx link;
3811 /* Append the REG_DEAD notes from def_insn. */
3812 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3813 {
3814 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3815 {
3816 *p = XEXP (link, 1);
3817 XEXP (link, 1) = REG_NOTES (use_insn);
3818 REG_NOTES (use_insn) = link;
3819 }
3820 else
3821 p = &XEXP (link, 1);
3822 }
3823
3824 remove_death (regno, use_insn);
3825 SET_REG_N_REFS (regno, 0);
3826 REG_FREQ (regno) = 0;
3827 df_ref use;
3828 FOR_EACH_INSN_USE (use, def_insn)
3829 {
3830 unsigned int use_regno = DF_REF_REGNO (use);
3831 if (!HARD_REGISTER_NUM_P (use_regno))
3832 reg_equiv[use_regno].replace = 0;
3833 }
3834
3835 delete_insn (def_insn);
3836
3837 reg_equiv[regno].init_insns = NULL;
3838 ira_reg_equiv[regno].init_insns = NULL;
3839 bitmap_set_bit (cleared_regs, regno);
3840 }
3841
3842 /* Move the initialization of the register to just before
3843 USE_INSN. Update the flow information. */
3844 else if (prev_nondebug_insn (use_insn) != def_insn)
3845 {
3846 rtx_insn *new_insn;
3847
3848 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3849 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3850 REG_NOTES (def_insn) = 0;
3851 /* Rescan it to process the notes. */
3852 df_insn_rescan (new_insn);
3853
3854 /* Make sure this insn is recognized before reload begins,
3855 otherwise eliminate_regs_in_insn will die. */
3856 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3857
3858 delete_insn (def_insn);
3859
3860 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3861
3862 REG_BASIC_BLOCK (regno) = use_bb->index;
3863 REG_N_CALLS_CROSSED (regno) = 0;
3864
3865 if (use_insn == BB_HEAD (use_bb))
3866 BB_HEAD (use_bb) = new_insn;
3867
3868 /* We know regno dies in use_insn, but inside a loop
3869 REG_DEAD notes might be missing when def_insn was in
3870 another basic block. However, when we move def_insn into
3871 this bb we'll definitely get a REG_DEAD note and reload
3872 will see the death. It's possible that update_equiv_regs
3873 set up an equivalence referencing regno for a reg set by
3874 use_insn, when regno was seen as non-local. Now that
3875 regno is local to this block, and dies, such an
3876 equivalence is invalid. */
3877 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3878 {
3879 rtx set = single_set (use_insn);
3880 if (set && REG_P (SET_DEST (set)))
3881 no_equiv (SET_DEST (set), set, NULL);
3882 }
3883
3884 ira_reg_equiv[regno].init_insns
3885 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3886 bitmap_set_bit (cleared_regs, regno);
3887 }
3888 }
3889
3890 if (!bitmap_empty_p (cleared_regs))
3891 {
3892 basic_block bb;
3893
3894 FOR_EACH_BB_FN (bb, cfun)
3895 {
3896 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3897 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3898 if (!df_live)
3899 continue;
3900 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3901 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3902 }
3903
3904 /* Last pass - adjust debug insns referencing cleared regs. */
3905 if (MAY_HAVE_DEBUG_BIND_INSNS)
3906 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3907 if (DEBUG_BIND_INSN_P (insn))
3908 {
3909 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3910 INSN_VAR_LOCATION_LOC (insn)
3911 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3912 adjust_cleared_regs,
3913 (void *) cleared_regs);
3914 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3915 df_insn_rescan (insn);
3916 }
3917 }
3918 }
3919
3920 /* A pass over indirect jumps, converting simple cases to direct jumps.
3921 Combine does this optimization too, but only within a basic block. */
3922 static void
3923 indirect_jump_optimize (void)
3924 {
3925 basic_block bb;
3926 bool rebuild_p = false;
3927
3928 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3929 {
3930 rtx_insn *insn = BB_END (bb);
3931 if (!JUMP_P (insn)
3932 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3933 continue;
3934
3935 rtx x = pc_set (insn);
3936 if (!x || !REG_P (SET_SRC (x)))
3937 continue;
3938
3939 int regno = REGNO (SET_SRC (x));
3940 if (DF_REG_DEF_COUNT (regno) == 1)
3941 {
3942 df_ref def = DF_REG_DEF_CHAIN (regno);
3943 if (!DF_REF_IS_ARTIFICIAL (def))
3944 {
3945 rtx_insn *def_insn = DF_REF_INSN (def);
3946 rtx lab = NULL_RTX;
3947 rtx set = single_set (def_insn);
3948 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3949 lab = SET_SRC (set);
3950 else
3951 {
3952 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3953 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3954 lab = XEXP (eqnote, 0);
3955 }
3956 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3957 rebuild_p = true;
3958 }
3959 }
3960 }
3961
3962 if (rebuild_p)
3963 {
3964 timevar_push (TV_JUMP);
3965 rebuild_jump_labels (get_insns ());
3966 if (purge_all_dead_edges ())
3967 delete_unreachable_blocks ();
3968 timevar_pop (TV_JUMP);
3969 }
3970 }
3971 \f
3972 /* Set up fields memory, constant, and invariant from init_insns in
3973 the structures of array ira_reg_equiv. */
3974 static void
3975 setup_reg_equiv (void)
3976 {
3977 int i;
3978 rtx_insn_list *elem, *prev_elem, *next_elem;
3979 rtx_insn *insn;
3980 rtx set, x;
3981
3982 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3983 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3984 elem;
3985 prev_elem = elem, elem = next_elem)
3986 {
3987 next_elem = elem->next ();
3988 insn = elem->insn ();
3989 set = single_set (insn);
3990
3991 /* Init insns can set up equivalence when the reg is a destination or
3992 a source (in this case the destination is memory). */
3993 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3994 {
3995 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3996 {
3997 x = XEXP (x, 0);
3998 if (REG_P (SET_DEST (set))
3999 && REGNO (SET_DEST (set)) == (unsigned int) i
4000 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
4001 {
4002 /* This insn reporting the equivalence but
4003 actually not setting it. Remove it from the
4004 list. */
4005 if (prev_elem == NULL)
4006 ira_reg_equiv[i].init_insns = next_elem;
4007 else
4008 XEXP (prev_elem, 1) = next_elem;
4009 elem = prev_elem;
4010 }
4011 }
4012 else if (REG_P (SET_DEST (set))
4013 && REGNO (SET_DEST (set)) == (unsigned int) i)
4014 x = SET_SRC (set);
4015 else
4016 {
4017 gcc_assert (REG_P (SET_SRC (set))
4018 && REGNO (SET_SRC (set)) == (unsigned int) i);
4019 x = SET_DEST (set);
4020 }
4021 if (! function_invariant_p (x)
4022 || ! flag_pic
4023 /* A function invariant is often CONSTANT_P but may
4024 include a register. We promise to only pass
4025 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
4026 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4027 {
4028 /* It can happen that a REG_EQUIV note contains a MEM
4029 that is not a legitimate memory operand. As later
4030 stages of reload assume that all addresses found in
4031 the lra_regno_equiv_* arrays were originally
4032 legitimate, we ignore such REG_EQUIV notes. */
4033 if (memory_operand (x, VOIDmode))
4034 {
4035 ira_reg_equiv[i].defined_p = true;
4036 ira_reg_equiv[i].memory = x;
4037 continue;
4038 }
4039 else if (function_invariant_p (x))
4040 {
4041 machine_mode mode;
4042
4043 mode = GET_MODE (SET_DEST (set));
4044 if (GET_CODE (x) == PLUS
4045 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4046 /* This is PLUS of frame pointer and a constant,
4047 or fp, or argp. */
4048 ira_reg_equiv[i].invariant = x;
4049 else if (targetm.legitimate_constant_p (mode, x))
4050 ira_reg_equiv[i].constant = x;
4051 else
4052 {
4053 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4054 if (ira_reg_equiv[i].memory == NULL_RTX)
4055 {
4056 ira_reg_equiv[i].defined_p = false;
4057 ira_reg_equiv[i].init_insns = NULL;
4058 break;
4059 }
4060 }
4061 ira_reg_equiv[i].defined_p = true;
4062 continue;
4063 }
4064 }
4065 }
4066 ira_reg_equiv[i].defined_p = false;
4067 ira_reg_equiv[i].init_insns = NULL;
4068 break;
4069 }
4070 }
4071
4072 \f
4073
4074 /* Print chain C to FILE. */
4075 static void
4076 print_insn_chain (FILE *file, class insn_chain *c)
4077 {
4078 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4079 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4080 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4081 }
4082
4083
4084 /* Print all reload_insn_chains to FILE. */
4085 static void
4086 print_insn_chains (FILE *file)
4087 {
4088 class insn_chain *c;
4089 for (c = reload_insn_chain; c ; c = c->next)
4090 print_insn_chain (file, c);
4091 }
4092
4093 /* Return true if pseudo REGNO should be added to set live_throughout
4094 or dead_or_set of the insn chains for reload consideration. */
4095 static bool
4096 pseudo_for_reload_consideration_p (int regno)
4097 {
4098 /* Consider spilled pseudos too for IRA because they still have a
4099 chance to get hard-registers in the reload when IRA is used. */
4100 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4101 }
4102
4103 /* Return true if we can track the individual bytes of subreg X.
4104 When returning true, set *OUTER_SIZE to the number of bytes in
4105 X itself, *INNER_SIZE to the number of bytes in the inner register
4106 and *START to the offset of the first byte. */
4107 static bool
4108 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4109 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4110 {
4111 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4112 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4113 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4114 && SUBREG_BYTE (x).is_constant (start));
4115 }
4116
4117 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4118 a register with SIZE bytes, making the register live if INIT_VALUE. */
4119 static void
4120 init_live_subregs (bool init_value, sbitmap *live_subregs,
4121 bitmap live_subregs_used, int allocnum, int size)
4122 {
4123 gcc_assert (size > 0);
4124
4125 /* Been there, done that. */
4126 if (bitmap_bit_p (live_subregs_used, allocnum))
4127 return;
4128
4129 /* Create a new one. */
4130 if (live_subregs[allocnum] == NULL)
4131 live_subregs[allocnum] = sbitmap_alloc (size);
4132
4133 /* If the entire reg was live before blasting into subregs, we need
4134 to init all of the subregs to ones else init to 0. */
4135 if (init_value)
4136 bitmap_ones (live_subregs[allocnum]);
4137 else
4138 bitmap_clear (live_subregs[allocnum]);
4139
4140 bitmap_set_bit (live_subregs_used, allocnum);
4141 }
4142
4143 /* Walk the insns of the current function and build reload_insn_chain,
4144 and record register life information. */
4145 static void
4146 build_insn_chain (void)
4147 {
4148 unsigned int i;
4149 class insn_chain **p = &reload_insn_chain;
4150 basic_block bb;
4151 class insn_chain *c = NULL;
4152 class insn_chain *next = NULL;
4153 auto_bitmap live_relevant_regs;
4154 auto_bitmap elim_regset;
4155 /* live_subregs is a vector used to keep accurate information about
4156 which hardregs are live in multiword pseudos. live_subregs and
4157 live_subregs_used are indexed by pseudo number. The live_subreg
4158 entry for a particular pseudo is only used if the corresponding
4159 element is non zero in live_subregs_used. The sbitmap size of
4160 live_subreg[allocno] is number of bytes that the pseudo can
4161 occupy. */
4162 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4163 auto_bitmap live_subregs_used;
4164
4165 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4166 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4167 bitmap_set_bit (elim_regset, i);
4168 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4169 {
4170 bitmap_iterator bi;
4171 rtx_insn *insn;
4172
4173 CLEAR_REG_SET (live_relevant_regs);
4174 bitmap_clear (live_subregs_used);
4175
4176 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4177 {
4178 if (i >= FIRST_PSEUDO_REGISTER)
4179 break;
4180 bitmap_set_bit (live_relevant_regs, i);
4181 }
4182
4183 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4184 FIRST_PSEUDO_REGISTER, i, bi)
4185 {
4186 if (pseudo_for_reload_consideration_p (i))
4187 bitmap_set_bit (live_relevant_regs, i);
4188 }
4189
4190 FOR_BB_INSNS_REVERSE (bb, insn)
4191 {
4192 if (!NOTE_P (insn) && !BARRIER_P (insn))
4193 {
4194 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4195 df_ref def, use;
4196
4197 c = new_insn_chain ();
4198 c->next = next;
4199 next = c;
4200 *p = c;
4201 p = &c->prev;
4202
4203 c->insn = insn;
4204 c->block = bb->index;
4205
4206 if (NONDEBUG_INSN_P (insn))
4207 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4208 {
4209 unsigned int regno = DF_REF_REGNO (def);
4210
4211 /* Ignore may clobbers because these are generated
4212 from calls. However, every other kind of def is
4213 added to dead_or_set. */
4214 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4215 {
4216 if (regno < FIRST_PSEUDO_REGISTER)
4217 {
4218 if (!fixed_regs[regno])
4219 bitmap_set_bit (&c->dead_or_set, regno);
4220 }
4221 else if (pseudo_for_reload_consideration_p (regno))
4222 bitmap_set_bit (&c->dead_or_set, regno);
4223 }
4224
4225 if ((regno < FIRST_PSEUDO_REGISTER
4226 || reg_renumber[regno] >= 0
4227 || ira_conflicts_p)
4228 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4229 {
4230 rtx reg = DF_REF_REG (def);
4231 HOST_WIDE_INT outer_size, inner_size, start;
4232
4233 /* We can usually track the liveness of individual
4234 bytes within a subreg. The only exceptions are
4235 subregs wrapped in ZERO_EXTRACTs and subregs whose
4236 size is not known; in those cases we need to be
4237 conservative and treat the definition as a partial
4238 definition of the full register rather than a full
4239 definition of a specific part of the register. */
4240 if (GET_CODE (reg) == SUBREG
4241 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4242 && get_subreg_tracking_sizes (reg, &outer_size,
4243 &inner_size, &start))
4244 {
4245 HOST_WIDE_INT last = start + outer_size;
4246
4247 init_live_subregs
4248 (bitmap_bit_p (live_relevant_regs, regno),
4249 live_subregs, live_subregs_used, regno,
4250 inner_size);
4251
4252 if (!DF_REF_FLAGS_IS_SET
4253 (def, DF_REF_STRICT_LOW_PART))
4254 {
4255 /* Expand the range to cover entire words.
4256 Bytes added here are "don't care". */
4257 start
4258 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4259 last = ((last + UNITS_PER_WORD - 1)
4260 / UNITS_PER_WORD * UNITS_PER_WORD);
4261 }
4262
4263 /* Ignore the paradoxical bits. */
4264 if (last > SBITMAP_SIZE (live_subregs[regno]))
4265 last = SBITMAP_SIZE (live_subregs[regno]);
4266
4267 while (start < last)
4268 {
4269 bitmap_clear_bit (live_subregs[regno], start);
4270 start++;
4271 }
4272
4273 if (bitmap_empty_p (live_subregs[regno]))
4274 {
4275 bitmap_clear_bit (live_subregs_used, regno);
4276 bitmap_clear_bit (live_relevant_regs, regno);
4277 }
4278 else
4279 /* Set live_relevant_regs here because
4280 that bit has to be true to get us to
4281 look at the live_subregs fields. */
4282 bitmap_set_bit (live_relevant_regs, regno);
4283 }
4284 else
4285 {
4286 /* DF_REF_PARTIAL is generated for
4287 subregs, STRICT_LOW_PART, and
4288 ZERO_EXTRACT. We handle the subreg
4289 case above so here we have to keep from
4290 modeling the def as a killing def. */
4291 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4292 {
4293 bitmap_clear_bit (live_subregs_used, regno);
4294 bitmap_clear_bit (live_relevant_regs, regno);
4295 }
4296 }
4297 }
4298 }
4299
4300 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4301 bitmap_copy (&c->live_throughout, live_relevant_regs);
4302
4303 if (NONDEBUG_INSN_P (insn))
4304 FOR_EACH_INSN_INFO_USE (use, insn_info)
4305 {
4306 unsigned int regno = DF_REF_REGNO (use);
4307 rtx reg = DF_REF_REG (use);
4308
4309 /* DF_REF_READ_WRITE on a use means that this use
4310 is fabricated from a def that is a partial set
4311 to a multiword reg. Here, we only model the
4312 subreg case that is not wrapped in ZERO_EXTRACT
4313 precisely so we do not need to look at the
4314 fabricated use. */
4315 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4316 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4317 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4318 continue;
4319
4320 /* Add the last use of each var to dead_or_set. */
4321 if (!bitmap_bit_p (live_relevant_regs, regno))
4322 {
4323 if (regno < FIRST_PSEUDO_REGISTER)
4324 {
4325 if (!fixed_regs[regno])
4326 bitmap_set_bit (&c->dead_or_set, regno);
4327 }
4328 else if (pseudo_for_reload_consideration_p (regno))
4329 bitmap_set_bit (&c->dead_or_set, regno);
4330 }
4331
4332 if (regno < FIRST_PSEUDO_REGISTER
4333 || pseudo_for_reload_consideration_p (regno))
4334 {
4335 HOST_WIDE_INT outer_size, inner_size, start;
4336 if (GET_CODE (reg) == SUBREG
4337 && !DF_REF_FLAGS_IS_SET (use,
4338 DF_REF_SIGN_EXTRACT
4339 | DF_REF_ZERO_EXTRACT)
4340 && get_subreg_tracking_sizes (reg, &outer_size,
4341 &inner_size, &start))
4342 {
4343 HOST_WIDE_INT last = start + outer_size;
4344
4345 init_live_subregs
4346 (bitmap_bit_p (live_relevant_regs, regno),
4347 live_subregs, live_subregs_used, regno,
4348 inner_size);
4349
4350 /* Ignore the paradoxical bits. */
4351 if (last > SBITMAP_SIZE (live_subregs[regno]))
4352 last = SBITMAP_SIZE (live_subregs[regno]);
4353
4354 while (start < last)
4355 {
4356 bitmap_set_bit (live_subregs[regno], start);
4357 start++;
4358 }
4359 }
4360 else
4361 /* Resetting the live_subregs_used is
4362 effectively saying do not use the subregs
4363 because we are reading the whole
4364 pseudo. */
4365 bitmap_clear_bit (live_subregs_used, regno);
4366 bitmap_set_bit (live_relevant_regs, regno);
4367 }
4368 }
4369 }
4370 }
4371
4372 /* FIXME!! The following code is a disaster. Reload needs to see the
4373 labels and jump tables that are just hanging out in between
4374 the basic blocks. See pr33676. */
4375 insn = BB_HEAD (bb);
4376
4377 /* Skip over the barriers and cruft. */
4378 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4379 || BLOCK_FOR_INSN (insn) == bb))
4380 insn = PREV_INSN (insn);
4381
4382 /* While we add anything except barriers and notes, the focus is
4383 to get the labels and jump tables into the
4384 reload_insn_chain. */
4385 while (insn)
4386 {
4387 if (!NOTE_P (insn) && !BARRIER_P (insn))
4388 {
4389 if (BLOCK_FOR_INSN (insn))
4390 break;
4391
4392 c = new_insn_chain ();
4393 c->next = next;
4394 next = c;
4395 *p = c;
4396 p = &c->prev;
4397
4398 /* The block makes no sense here, but it is what the old
4399 code did. */
4400 c->block = bb->index;
4401 c->insn = insn;
4402 bitmap_copy (&c->live_throughout, live_relevant_regs);
4403 }
4404 insn = PREV_INSN (insn);
4405 }
4406 }
4407
4408 reload_insn_chain = c;
4409 *p = NULL;
4410
4411 for (i = 0; i < (unsigned int) max_regno; i++)
4412 if (live_subregs[i] != NULL)
4413 sbitmap_free (live_subregs[i]);
4414 free (live_subregs);
4415
4416 if (dump_file)
4417 print_insn_chains (dump_file);
4418 }
4419 \f
4420 /* Examine the rtx found in *LOC, which is read or written to as determined
4421 by TYPE. Return false if we find a reason why an insn containing this
4422 rtx should not be moved (such as accesses to non-constant memory), true
4423 otherwise. */
4424 static bool
4425 rtx_moveable_p (rtx *loc, enum op_type type)
4426 {
4427 const char *fmt;
4428 rtx x = *loc;
4429 int i, j;
4430
4431 enum rtx_code code = GET_CODE (x);
4432 switch (code)
4433 {
4434 case CONST:
4435 CASE_CONST_ANY:
4436 case SYMBOL_REF:
4437 case LABEL_REF:
4438 return true;
4439
4440 case PC:
4441 return type == OP_IN;
4442
4443 case CC0:
4444 return false;
4445
4446 case REG:
4447 if (x == frame_pointer_rtx)
4448 return true;
4449 if (HARD_REGISTER_P (x))
4450 return false;
4451
4452 return true;
4453
4454 case MEM:
4455 if (type == OP_IN && MEM_READONLY_P (x))
4456 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4457 return false;
4458
4459 case SET:
4460 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4461 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4462
4463 case STRICT_LOW_PART:
4464 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4465
4466 case ZERO_EXTRACT:
4467 case SIGN_EXTRACT:
4468 return (rtx_moveable_p (&XEXP (x, 0), type)
4469 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4470 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4471
4472 case CLOBBER:
4473 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4474
4475 case UNSPEC_VOLATILE:
4476 /* It is a bad idea to consider insns with such rtl
4477 as moveable ones. The insn scheduler also considers them as barrier
4478 for a reason. */
4479 return false;
4480
4481 case ASM_OPERANDS:
4482 /* The same is true for volatile asm: it has unknown side effects, it
4483 cannot be moved at will. */
4484 if (MEM_VOLATILE_P (x))
4485 return false;
4486
4487 default:
4488 break;
4489 }
4490
4491 fmt = GET_RTX_FORMAT (code);
4492 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4493 {
4494 if (fmt[i] == 'e')
4495 {
4496 if (!rtx_moveable_p (&XEXP (x, i), type))
4497 return false;
4498 }
4499 else if (fmt[i] == 'E')
4500 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4501 {
4502 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4503 return false;
4504 }
4505 }
4506 return true;
4507 }
4508
4509 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4510 to give dominance relationships between two insns I1 and I2. */
4511 static bool
4512 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4513 {
4514 basic_block bb1 = BLOCK_FOR_INSN (i1);
4515 basic_block bb2 = BLOCK_FOR_INSN (i2);
4516
4517 if (bb1 == bb2)
4518 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4519 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4520 }
4521
4522 /* Record the range of register numbers added by find_moveable_pseudos. */
4523 int first_moveable_pseudo, last_moveable_pseudo;
4524
4525 /* These two vectors hold data for every register added by
4526 find_movable_pseudos, with index 0 holding data for the
4527 first_moveable_pseudo. */
4528 /* The original home register. */
4529 static vec<rtx> pseudo_replaced_reg;
4530
4531 /* Look for instances where we have an instruction that is known to increase
4532 register pressure, and whose result is not used immediately. If it is
4533 possible to move the instruction downwards to just before its first use,
4534 split its lifetime into two ranges. We create a new pseudo to compute the
4535 value, and emit a move instruction just before the first use. If, after
4536 register allocation, the new pseudo remains unallocated, the function
4537 move_unallocated_pseudos then deletes the move instruction and places
4538 the computation just before the first use.
4539
4540 Such a move is safe and profitable if all the input registers remain live
4541 and unchanged between the original computation and its first use. In such
4542 a situation, the computation is known to increase register pressure, and
4543 moving it is known to at least not worsen it.
4544
4545 We restrict moves to only those cases where a register remains unallocated,
4546 in order to avoid interfering too much with the instruction schedule. As
4547 an exception, we may move insns which only modify their input register
4548 (typically induction variables), as this increases the freedom for our
4549 intended transformation, and does not limit the second instruction
4550 scheduler pass. */
4551
4552 static void
4553 find_moveable_pseudos (void)
4554 {
4555 unsigned i;
4556 int max_regs = max_reg_num ();
4557 int max_uid = get_max_uid ();
4558 basic_block bb;
4559 int *uid_luid = XNEWVEC (int, max_uid);
4560 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4561 /* A set of registers which are live but not modified throughout a block. */
4562 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4563 last_basic_block_for_fn (cfun));
4564 /* A set of registers which only exist in a given basic block. */
4565 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4566 last_basic_block_for_fn (cfun));
4567 /* A set of registers which are set once, in an instruction that can be
4568 moved freely downwards, but are otherwise transparent to a block. */
4569 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4570 last_basic_block_for_fn (cfun));
4571 auto_bitmap live, used, set, interesting, unusable_as_input;
4572 bitmap_iterator bi;
4573
4574 first_moveable_pseudo = max_regs;
4575 pseudo_replaced_reg.release ();
4576 pseudo_replaced_reg.safe_grow_cleared (max_regs, true);
4577
4578 df_analyze ();
4579 calculate_dominance_info (CDI_DOMINATORS);
4580
4581 i = 0;
4582 FOR_EACH_BB_FN (bb, cfun)
4583 {
4584 rtx_insn *insn;
4585 bitmap transp = bb_transp_live + bb->index;
4586 bitmap moveable = bb_moveable_reg_sets + bb->index;
4587 bitmap local = bb_local + bb->index;
4588
4589 bitmap_initialize (local, 0);
4590 bitmap_initialize (transp, 0);
4591 bitmap_initialize (moveable, 0);
4592 bitmap_copy (live, df_get_live_out (bb));
4593 bitmap_and_into (live, df_get_live_in (bb));
4594 bitmap_copy (transp, live);
4595 bitmap_clear (moveable);
4596 bitmap_clear (live);
4597 bitmap_clear (used);
4598 bitmap_clear (set);
4599 FOR_BB_INSNS (bb, insn)
4600 if (NONDEBUG_INSN_P (insn))
4601 {
4602 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4603 df_ref def, use;
4604
4605 uid_luid[INSN_UID (insn)] = i++;
4606
4607 def = df_single_def (insn_info);
4608 use = df_single_use (insn_info);
4609 if (use
4610 && def
4611 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4612 && !bitmap_bit_p (set, DF_REF_REGNO (use))
4613 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4614 {
4615 unsigned regno = DF_REF_REGNO (use);
4616 bitmap_set_bit (moveable, regno);
4617 bitmap_set_bit (set, regno);
4618 bitmap_set_bit (used, regno);
4619 bitmap_clear_bit (transp, regno);
4620 continue;
4621 }
4622 FOR_EACH_INSN_INFO_USE (use, insn_info)
4623 {
4624 unsigned regno = DF_REF_REGNO (use);
4625 bitmap_set_bit (used, regno);
4626 if (bitmap_clear_bit (moveable, regno))
4627 bitmap_clear_bit (transp, regno);
4628 }
4629
4630 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4631 {
4632 unsigned regno = DF_REF_REGNO (def);
4633 bitmap_set_bit (set, regno);
4634 bitmap_clear_bit (transp, regno);
4635 bitmap_clear_bit (moveable, regno);
4636 }
4637 }
4638 }
4639
4640 FOR_EACH_BB_FN (bb, cfun)
4641 {
4642 bitmap local = bb_local + bb->index;
4643 rtx_insn *insn;
4644
4645 FOR_BB_INSNS (bb, insn)
4646 if (NONDEBUG_INSN_P (insn))
4647 {
4648 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4649 rtx_insn *def_insn;
4650 rtx closest_use, note;
4651 df_ref def, use;
4652 unsigned regno;
4653 bool all_dominated, all_local;
4654 machine_mode mode;
4655
4656 def = df_single_def (insn_info);
4657 /* There must be exactly one def in this insn. */
4658 if (!def || !single_set (insn))
4659 continue;
4660 /* This must be the only definition of the reg. We also limit
4661 which modes we deal with so that we can assume we can generate
4662 move instructions. */
4663 regno = DF_REF_REGNO (def);
4664 mode = GET_MODE (DF_REF_REG (def));
4665 if (DF_REG_DEF_COUNT (regno) != 1
4666 || !DF_REF_INSN_INFO (def)
4667 || HARD_REGISTER_NUM_P (regno)
4668 || DF_REG_EQ_USE_COUNT (regno) > 0
4669 || (!INTEGRAL_MODE_P (mode)
4670 && !FLOAT_MODE_P (mode)
4671 && !OPAQUE_MODE_P (mode)))
4672 continue;
4673 def_insn = DF_REF_INSN (def);
4674
4675 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4676 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4677 break;
4678
4679 if (note)
4680 {
4681 if (dump_file)
4682 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4683 regno);
4684 bitmap_set_bit (unusable_as_input, regno);
4685 continue;
4686 }
4687
4688 use = DF_REG_USE_CHAIN (regno);
4689 all_dominated = true;
4690 all_local = true;
4691 closest_use = NULL_RTX;
4692 for (; use; use = DF_REF_NEXT_REG (use))
4693 {
4694 rtx_insn *insn;
4695 if (!DF_REF_INSN_INFO (use))
4696 {
4697 all_dominated = false;
4698 all_local = false;
4699 break;
4700 }
4701 insn = DF_REF_INSN (use);
4702 if (DEBUG_INSN_P (insn))
4703 continue;
4704 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4705 all_local = false;
4706 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4707 all_dominated = false;
4708 if (closest_use != insn && closest_use != const0_rtx)
4709 {
4710 if (closest_use == NULL_RTX)
4711 closest_use = insn;
4712 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4713 closest_use = insn;
4714 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4715 closest_use = const0_rtx;
4716 }
4717 }
4718 if (!all_dominated)
4719 {
4720 if (dump_file)
4721 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4722 regno);
4723 continue;
4724 }
4725 if (all_local)
4726 bitmap_set_bit (local, regno);
4727 if (closest_use == const0_rtx || closest_use == NULL
4728 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4729 {
4730 if (dump_file)
4731 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4732 closest_use == const0_rtx || closest_use == NULL
4733 ? " (no unique first use)" : "");
4734 continue;
4735 }
4736 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4737 {
4738 if (dump_file)
4739 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4740 regno);
4741 continue;
4742 }
4743
4744 bitmap_set_bit (interesting, regno);
4745 /* If we get here, we know closest_use is a non-NULL insn
4746 (as opposed to const_0_rtx). */
4747 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4748
4749 if (dump_file && (all_local || all_dominated))
4750 {
4751 fprintf (dump_file, "Reg %u:", regno);
4752 if (all_local)
4753 fprintf (dump_file, " local to bb %d", bb->index);
4754 if (all_dominated)
4755 fprintf (dump_file, " def dominates all uses");
4756 if (closest_use != const0_rtx)
4757 fprintf (dump_file, " has unique first use");
4758 fputs ("\n", dump_file);
4759 }
4760 }
4761 }
4762
4763 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4764 {
4765 df_ref def = DF_REG_DEF_CHAIN (i);
4766 rtx_insn *def_insn = DF_REF_INSN (def);
4767 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4768 bitmap def_bb_local = bb_local + def_block->index;
4769 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4770 bitmap def_bb_transp = bb_transp_live + def_block->index;
4771 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4772 rtx_insn *use_insn = closest_uses[i];
4773 df_ref use;
4774 bool all_ok = true;
4775 bool all_transp = true;
4776
4777 if (!REG_P (DF_REF_REG (def)))
4778 continue;
4779
4780 if (!local_to_bb_p)
4781 {
4782 if (dump_file)
4783 fprintf (dump_file, "Reg %u not local to one basic block\n",
4784 i);
4785 continue;
4786 }
4787 if (reg_equiv_init (i) != NULL_RTX)
4788 {
4789 if (dump_file)
4790 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4791 i);
4792 continue;
4793 }
4794 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4795 {
4796 if (dump_file)
4797 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4798 INSN_UID (def_insn), i);
4799 continue;
4800 }
4801 if (dump_file)
4802 fprintf (dump_file, "Examining insn %d, def for %d\n",
4803 INSN_UID (def_insn), i);
4804 FOR_EACH_INSN_USE (use, def_insn)
4805 {
4806 unsigned regno = DF_REF_REGNO (use);
4807 if (bitmap_bit_p (unusable_as_input, regno))
4808 {
4809 all_ok = false;
4810 if (dump_file)
4811 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4812 break;
4813 }
4814 if (!bitmap_bit_p (def_bb_transp, regno))
4815 {
4816 if (bitmap_bit_p (def_bb_moveable, regno)
4817 && !control_flow_insn_p (use_insn)
4818 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4819 {
4820 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4821 {
4822 rtx_insn *x = NEXT_INSN (def_insn);
4823 while (!modified_in_p (DF_REF_REG (use), x))
4824 {
4825 gcc_assert (x != use_insn);
4826 x = NEXT_INSN (x);
4827 }
4828 if (dump_file)
4829 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4830 regno, INSN_UID (x));
4831 emit_insn_after (PATTERN (x), use_insn);
4832 set_insn_deleted (x);
4833 }
4834 else
4835 {
4836 if (dump_file)
4837 fprintf (dump_file, " input reg %u modified between def and use\n",
4838 regno);
4839 all_transp = false;
4840 }
4841 }
4842 else
4843 all_transp = false;
4844 }
4845 }
4846 if (!all_ok)
4847 continue;
4848 if (!dbg_cnt (ira_move))
4849 break;
4850 if (dump_file)
4851 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4852
4853 if (all_transp)
4854 {
4855 rtx def_reg = DF_REF_REG (def);
4856 rtx newreg = ira_create_new_reg (def_reg);
4857 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4858 {
4859 unsigned nregno = REGNO (newreg);
4860 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4861 nregno -= max_regs;
4862 pseudo_replaced_reg[nregno] = def_reg;
4863 }
4864 }
4865 }
4866
4867 FOR_EACH_BB_FN (bb, cfun)
4868 {
4869 bitmap_clear (bb_local + bb->index);
4870 bitmap_clear (bb_transp_live + bb->index);
4871 bitmap_clear (bb_moveable_reg_sets + bb->index);
4872 }
4873 free (uid_luid);
4874 free (closest_uses);
4875 free (bb_local);
4876 free (bb_transp_live);
4877 free (bb_moveable_reg_sets);
4878
4879 last_moveable_pseudo = max_reg_num ();
4880
4881 fix_reg_equiv_init ();
4882 expand_reg_info ();
4883 regstat_free_n_sets_and_refs ();
4884 regstat_free_ri ();
4885 regstat_init_n_sets_and_refs ();
4886 regstat_compute_ri ();
4887 free_dominance_info (CDI_DOMINATORS);
4888 }
4889
4890 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4891 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4892 the destination. Otherwise return NULL. */
4893
4894 static rtx
4895 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4896 {
4897 rtx src = SET_SRC (set);
4898 rtx dest = SET_DEST (set);
4899 if (!REG_P (src) || !HARD_REGISTER_P (src)
4900 || !REG_P (dest) || HARD_REGISTER_P (dest)
4901 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4902 return NULL;
4903 return dest;
4904 }
4905
4906 /* If insn is interesting for parameter range-splitting shrink-wrapping
4907 preparation, i.e. it is a single set from a hard register to a pseudo, which
4908 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4909 parallel statement with only one such statement, return the destination.
4910 Otherwise return NULL. */
4911
4912 static rtx
4913 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4914 {
4915 if (!INSN_P (insn))
4916 return NULL;
4917 rtx pat = PATTERN (insn);
4918 if (GET_CODE (pat) == SET)
4919 return interesting_dest_for_shprep_1 (pat, call_dom);
4920
4921 if (GET_CODE (pat) != PARALLEL)
4922 return NULL;
4923 rtx ret = NULL;
4924 for (int i = 0; i < XVECLEN (pat, 0); i++)
4925 {
4926 rtx sub = XVECEXP (pat, 0, i);
4927 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4928 continue;
4929 if (GET_CODE (sub) != SET
4930 || side_effects_p (sub))
4931 return NULL;
4932 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4933 if (dest && ret)
4934 return NULL;
4935 if (dest)
4936 ret = dest;
4937 }
4938 return ret;
4939 }
4940
4941 /* Split live ranges of pseudos that are loaded from hard registers in the
4942 first BB in a BB that dominates all non-sibling call if such a BB can be
4943 found and is not in a loop. Return true if the function has made any
4944 changes. */
4945
4946 static bool
4947 split_live_ranges_for_shrink_wrap (void)
4948 {
4949 basic_block bb, call_dom = NULL;
4950 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4951 rtx_insn *insn, *last_interesting_insn = NULL;
4952 auto_bitmap need_new, reachable;
4953 vec<basic_block> queue;
4954
4955 if (!SHRINK_WRAPPING_ENABLED)
4956 return false;
4957
4958 queue.create (n_basic_blocks_for_fn (cfun));
4959
4960 FOR_EACH_BB_FN (bb, cfun)
4961 FOR_BB_INSNS (bb, insn)
4962 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4963 {
4964 if (bb == first)
4965 {
4966 queue.release ();
4967 return false;
4968 }
4969
4970 bitmap_set_bit (need_new, bb->index);
4971 bitmap_set_bit (reachable, bb->index);
4972 queue.quick_push (bb);
4973 break;
4974 }
4975
4976 if (queue.is_empty ())
4977 {
4978 queue.release ();
4979 return false;
4980 }
4981
4982 while (!queue.is_empty ())
4983 {
4984 edge e;
4985 edge_iterator ei;
4986
4987 bb = queue.pop ();
4988 FOR_EACH_EDGE (e, ei, bb->succs)
4989 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4990 && bitmap_set_bit (reachable, e->dest->index))
4991 queue.quick_push (e->dest);
4992 }
4993 queue.release ();
4994
4995 FOR_BB_INSNS (first, insn)
4996 {
4997 rtx dest = interesting_dest_for_shprep (insn, NULL);
4998 if (!dest)
4999 continue;
5000
5001 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
5002 return false;
5003
5004 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
5005 use;
5006 use = DF_REF_NEXT_REG (use))
5007 {
5008 int ubbi = DF_REF_BB (use)->index;
5009 if (bitmap_bit_p (reachable, ubbi))
5010 bitmap_set_bit (need_new, ubbi);
5011 }
5012 last_interesting_insn = insn;
5013 }
5014
5015 if (!last_interesting_insn)
5016 return false;
5017
5018 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
5019 if (call_dom == first)
5020 return false;
5021
5022 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5023 while (bb_loop_depth (call_dom) > 0)
5024 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
5025 loop_optimizer_finalize ();
5026
5027 if (call_dom == first)
5028 return false;
5029
5030 calculate_dominance_info (CDI_POST_DOMINATORS);
5031 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
5032 {
5033 free_dominance_info (CDI_POST_DOMINATORS);
5034 return false;
5035 }
5036 free_dominance_info (CDI_POST_DOMINATORS);
5037
5038 if (dump_file)
5039 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5040 call_dom->index);
5041
5042 bool ret = false;
5043 FOR_BB_INSNS (first, insn)
5044 {
5045 rtx dest = interesting_dest_for_shprep (insn, call_dom);
5046 if (!dest || dest == pic_offset_table_rtx)
5047 continue;
5048
5049 bool need_newreg = false;
5050 df_ref use, next;
5051 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5052 {
5053 rtx_insn *uin = DF_REF_INSN (use);
5054 next = DF_REF_NEXT_REG (use);
5055
5056 if (DEBUG_INSN_P (uin))
5057 continue;
5058
5059 basic_block ubb = BLOCK_FOR_INSN (uin);
5060 if (ubb == call_dom
5061 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5062 {
5063 need_newreg = true;
5064 break;
5065 }
5066 }
5067
5068 if (need_newreg)
5069 {
5070 rtx newreg = ira_create_new_reg (dest);
5071
5072 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5073 {
5074 rtx_insn *uin = DF_REF_INSN (use);
5075 next = DF_REF_NEXT_REG (use);
5076
5077 basic_block ubb = BLOCK_FOR_INSN (uin);
5078 if (ubb == call_dom
5079 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5080 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5081 }
5082
5083 rtx_insn *new_move = gen_move_insn (newreg, dest);
5084 emit_insn_after (new_move, bb_note (call_dom));
5085 if (dump_file)
5086 {
5087 fprintf (dump_file, "Split live-range of register ");
5088 print_rtl_single (dump_file, dest);
5089 }
5090 ret = true;
5091 }
5092
5093 if (insn == last_interesting_insn)
5094 break;
5095 }
5096 apply_change_group ();
5097 return ret;
5098 }
5099
5100 /* Perform the second half of the transformation started in
5101 find_moveable_pseudos. We look for instances where the newly introduced
5102 pseudo remains unallocated, and remove it by moving the definition to
5103 just before its use, replacing the move instruction generated by
5104 find_moveable_pseudos. */
5105 static void
5106 move_unallocated_pseudos (void)
5107 {
5108 int i;
5109 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5110 if (reg_renumber[i] < 0)
5111 {
5112 int idx = i - first_moveable_pseudo;
5113 rtx other_reg = pseudo_replaced_reg[idx];
5114 /* The iterating range [first_moveable_pseudo, last_moveable_pseudo)
5115 covers every new pseudo created in find_moveable_pseudos,
5116 regardless of the validation with it is successful or not.
5117 So we need to skip the pseudos which were used in those failed
5118 validations to avoid unexpected DF info and consequent ICE.
5119 We only set pseudo_replaced_reg[] when the validation is successful
5120 in find_moveable_pseudos, it's enough to check it here. */
5121 if (!other_reg)
5122 continue;
5123 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5124 /* The use must follow all definitions of OTHER_REG, so we can
5125 insert the new definition immediately after any of them. */
5126 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5127 rtx_insn *move_insn = DF_REF_INSN (other_def);
5128 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5129 rtx set;
5130 int success;
5131
5132 if (dump_file)
5133 fprintf (dump_file, "moving def of %d (insn %d now) ",
5134 REGNO (other_reg), INSN_UID (def_insn));
5135
5136 delete_insn (move_insn);
5137 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5138 delete_insn (DF_REF_INSN (other_def));
5139 delete_insn (def_insn);
5140
5141 set = single_set (newinsn);
5142 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5143 gcc_assert (success);
5144 if (dump_file)
5145 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5146 INSN_UID (newinsn), i);
5147 SET_REG_N_REFS (i, 0);
5148 }
5149
5150 first_moveable_pseudo = last_moveable_pseudo = 0;
5151 }
5152
5153 \f
5154
5155 /* Code dealing with scratches (changing them onto
5156 pseudos and restoring them from the pseudos).
5157
5158 We change scratches into pseudos at the beginning of IRA to
5159 simplify dealing with them (conflicts, hard register assignments).
5160
5161 If the pseudo denoting scratch was spilled it means that we do not
5162 need a hard register for it. Such pseudos are transformed back to
5163 scratches at the end of LRA. */
5164
5165 /* Description of location of a former scratch operand. */
5166 struct sloc
5167 {
5168 rtx_insn *insn; /* Insn where the scratch was. */
5169 int nop; /* Number of the operand which was a scratch. */
5170 unsigned regno; /* regno gnerated instead of scratch */
5171 int icode; /* Original icode from which scratch was removed. */
5172 };
5173
5174 typedef struct sloc *sloc_t;
5175
5176 /* Locations of the former scratches. */
5177 static vec<sloc_t> scratches;
5178
5179 /* Bitmap of scratch regnos. */
5180 static bitmap_head scratch_bitmap;
5181
5182 /* Bitmap of scratch operands. */
5183 static bitmap_head scratch_operand_bitmap;
5184
5185 /* Return true if pseudo REGNO is made of SCRATCH. */
5186 bool
5187 ira_former_scratch_p (int regno)
5188 {
5189 return bitmap_bit_p (&scratch_bitmap, regno);
5190 }
5191
5192 /* Return true if the operand NOP of INSN is a former scratch. */
5193 bool
5194 ira_former_scratch_operand_p (rtx_insn *insn, int nop)
5195 {
5196 return bitmap_bit_p (&scratch_operand_bitmap,
5197 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
5198 }
5199
5200 /* Register operand NOP in INSN as a former scratch. It will be
5201 changed to scratch back, if it is necessary, at the LRA end. */
5202 void
5203 ira_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
5204 {
5205 rtx op = *recog_data.operand_loc[nop];
5206 sloc_t loc = XNEW (struct sloc);
5207 ira_assert (REG_P (op));
5208 loc->insn = insn;
5209 loc->nop = nop;
5210 loc->regno = REGNO (op);
5211 loc->icode = icode;
5212 scratches.safe_push (loc);
5213 bitmap_set_bit (&scratch_bitmap, REGNO (op));
5214 bitmap_set_bit (&scratch_operand_bitmap,
5215 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
5216 add_reg_note (insn, REG_UNUSED, op);
5217 }
5218
5219 /* Return true if string STR contains constraint 'X'. */
5220 static bool
5221 contains_X_constraint_p (const char *str)
5222 {
5223 int c;
5224
5225 while ((c = *str))
5226 {
5227 str += CONSTRAINT_LEN (c, str);
5228 if (c == 'X') return true;
5229 }
5230 return false;
5231 }
5232
5233 /* Change INSN's scratches into pseudos and save their location.
5234 Return true if we changed any scratch. */
5235 bool
5236 ira_remove_insn_scratches (rtx_insn *insn, bool all_p, FILE *dump_file,
5237 rtx (*get_reg) (rtx original))
5238 {
5239 int i;
5240 bool insn_changed_p;
5241 rtx reg, *loc;
5242
5243 extract_insn (insn);
5244 insn_changed_p = false;
5245 for (i = 0; i < recog_data.n_operands; i++)
5246 {
5247 loc = recog_data.operand_loc[i];
5248 if (GET_CODE (*loc) == SCRATCH && GET_MODE (*loc) != VOIDmode)
5249 {
5250 if (! all_p && contains_X_constraint_p (recog_data.constraints[i]))
5251 continue;
5252 insn_changed_p = true;
5253 *loc = reg = get_reg (*loc);
5254 ira_register_new_scratch_op (insn, i, INSN_CODE (insn));
5255 if (ira_dump_file != NULL)
5256 fprintf (dump_file,
5257 "Removing SCRATCH to p%u in insn #%u (nop %d)\n",
5258 REGNO (reg), INSN_UID (insn), i);
5259 }
5260 }
5261 return insn_changed_p;
5262 }
5263
5264 /* Return new register of the same mode as ORIGINAL. Used in
5265 remove_scratches. */
5266 static rtx
5267 get_scratch_reg (rtx original)
5268 {
5269 return gen_reg_rtx (GET_MODE (original));
5270 }
5271
5272 /* Change scratches into pseudos and save their location. Return true
5273 if we changed any scratch. */
5274 static bool
5275 remove_scratches (void)
5276 {
5277 bool change_p = false;
5278 basic_block bb;
5279 rtx_insn *insn;
5280
5281 scratches.create (get_max_uid ());
5282 bitmap_initialize (&scratch_bitmap, &reg_obstack);
5283 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
5284 FOR_EACH_BB_FN (bb, cfun)
5285 FOR_BB_INSNS (bb, insn)
5286 if (INSN_P (insn)
5287 && ira_remove_insn_scratches (insn, false, ira_dump_file, get_scratch_reg))
5288 {
5289 /* Because we might use DF, we need to keep DF info up to date. */
5290 df_insn_rescan (insn);
5291 change_p = true;
5292 }
5293 return change_p;
5294 }
5295
5296 /* Changes pseudos created by function remove_scratches onto scratches. */
5297 void
5298 ira_restore_scratches (FILE *dump_file)
5299 {
5300 int regno, n;
5301 unsigned i;
5302 rtx *op_loc;
5303 sloc_t loc;
5304
5305 for (i = 0; scratches.iterate (i, &loc); i++)
5306 {
5307 /* Ignore already deleted insns. */
5308 if (NOTE_P (loc->insn)
5309 && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
5310 continue;
5311 extract_insn (loc->insn);
5312 if (loc->icode != INSN_CODE (loc->insn))
5313 {
5314 /* The icode doesn't match, which means the insn has been modified
5315 (e.g. register elimination). The scratch cannot be restored. */
5316 continue;
5317 }
5318 op_loc = recog_data.operand_loc[loc->nop];
5319 if (REG_P (*op_loc)
5320 && ((regno = REGNO (*op_loc)) >= FIRST_PSEUDO_REGISTER)
5321 && reg_renumber[regno] < 0)
5322 {
5323 /* It should be only case when scratch register with chosen
5324 constraint 'X' did not get memory or hard register. */
5325 ira_assert (ira_former_scratch_p (regno));
5326 *op_loc = gen_rtx_SCRATCH (GET_MODE (*op_loc));
5327 for (n = 0; n < recog_data.n_dups; n++)
5328 *recog_data.dup_loc[n]
5329 = *recog_data.operand_loc[(int) recog_data.dup_num[n]];
5330 if (dump_file != NULL)
5331 fprintf (dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
5332 INSN_UID (loc->insn), loc->nop);
5333 }
5334 }
5335 for (i = 0; scratches.iterate (i, &loc); i++)
5336 free (loc);
5337 scratches.release ();
5338 bitmap_clear (&scratch_bitmap);
5339 bitmap_clear (&scratch_operand_bitmap);
5340 }
5341
5342 \f
5343
5344 /* If the backend knows where to allocate pseudos for hard
5345 register initial values, register these allocations now. */
5346 static void
5347 allocate_initial_values (void)
5348 {
5349 if (targetm.allocate_initial_value)
5350 {
5351 rtx hreg, preg, x;
5352 int i, regno;
5353
5354 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5355 {
5356 if (! initial_value_entry (i, &hreg, &preg))
5357 break;
5358
5359 x = targetm.allocate_initial_value (hreg);
5360 regno = REGNO (preg);
5361 if (x && REG_N_SETS (regno) <= 1)
5362 {
5363 if (MEM_P (x))
5364 reg_equiv_memory_loc (regno) = x;
5365 else
5366 {
5367 basic_block bb;
5368 int new_regno;
5369
5370 gcc_assert (REG_P (x));
5371 new_regno = REGNO (x);
5372 reg_renumber[regno] = new_regno;
5373 /* Poke the regno right into regno_reg_rtx so that even
5374 fixed regs are accepted. */
5375 SET_REGNO (preg, new_regno);
5376 /* Update global register liveness information. */
5377 FOR_EACH_BB_FN (bb, cfun)
5378 {
5379 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5380 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5381 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5382 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5383 }
5384 }
5385 }
5386 }
5387
5388 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5389 &hreg, &preg));
5390 }
5391 }
5392
5393 \f
5394
5395
5396 /* True when we use LRA instead of reload pass for the current
5397 function. */
5398 bool ira_use_lra_p;
5399
5400 /* True if we have allocno conflicts. It is false for non-optimized
5401 mode or when the conflict table is too big. */
5402 bool ira_conflicts_p;
5403
5404 /* Saved between IRA and reload. */
5405 static int saved_flag_ira_share_spill_slots;
5406
5407 /* This is the main entry of IRA. */
5408 static void
5409 ira (FILE *f)
5410 {
5411 bool loops_p;
5412 int ira_max_point_before_emit;
5413 bool saved_flag_caller_saves = flag_caller_saves;
5414 enum ira_region saved_flag_ira_region = flag_ira_region;
5415 basic_block bb;
5416 edge_iterator ei;
5417 edge e;
5418 bool output_jump_reload_p = false;
5419
5420 if (ira_use_lra_p)
5421 {
5422 /* First put potential jump output reloads on the output edges
5423 as USE which will be removed at the end of LRA. The major
5424 goal is actually to create BBs for critical edges for LRA and
5425 populate them later by live info. In LRA it will be
5426 difficult to do this. */
5427 FOR_EACH_BB_FN (bb, cfun)
5428 {
5429 rtx_insn *end = BB_END (bb);
5430 if (!JUMP_P (end))
5431 continue;
5432 extract_insn (end);
5433 for (int i = 0; i < recog_data.n_operands; i++)
5434 if (recog_data.operand_type[i] != OP_IN)
5435 {
5436 bool skip_p = false;
5437 FOR_EACH_EDGE (e, ei, bb->succs)
5438 if (EDGE_CRITICAL_P (e)
5439 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
5440 && (e->flags & EDGE_ABNORMAL))
5441 {
5442 skip_p = true;
5443 break;
5444 }
5445 if (skip_p)
5446 break;
5447 output_jump_reload_p = true;
5448 FOR_EACH_EDGE (e, ei, bb->succs)
5449 if (EDGE_CRITICAL_P (e)
5450 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
5451 {
5452 start_sequence ();
5453 /* We need to put some no-op insn here. We can
5454 not put a note as commit_edges insertion will
5455 fail. */
5456 emit_insn (gen_rtx_USE (VOIDmode, const1_rtx));
5457 rtx_insn *insns = get_insns ();
5458 end_sequence ();
5459 insert_insn_on_edge (insns, e);
5460 }
5461 break;
5462 }
5463 }
5464 if (output_jump_reload_p)
5465 commit_edge_insertions ();
5466 }
5467
5468 if (flag_ira_verbose < 10)
5469 {
5470 internal_flag_ira_verbose = flag_ira_verbose;
5471 ira_dump_file = f;
5472 }
5473 else
5474 {
5475 internal_flag_ira_verbose = flag_ira_verbose - 10;
5476 ira_dump_file = stderr;
5477 }
5478
5479 clear_bb_flags ();
5480
5481 /* Determine if the current function is a leaf before running IRA
5482 since this can impact optimizations done by the prologue and
5483 epilogue thus changing register elimination offsets.
5484 Other target callbacks may use crtl->is_leaf too, including
5485 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5486 crtl->is_leaf = leaf_function_p ();
5487
5488 /* Perform target specific PIC register initialization. */
5489 targetm.init_pic_reg ();
5490
5491 ira_conflicts_p = optimize > 0;
5492
5493 /* Determine the number of pseudos actually requiring coloring. */
5494 unsigned int num_used_regs = 0;
5495 for (unsigned int i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5496 if (DF_REG_DEF_COUNT (i) || DF_REG_USE_COUNT (i))
5497 num_used_regs++;
5498
5499 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5500 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5501 use simplified and faster algorithms in LRA. */
5502 lra_simple_p
5503 = ira_use_lra_p
5504 && num_used_regs >= (1U << 26) / last_basic_block_for_fn (cfun);
5505
5506 if (lra_simple_p)
5507 {
5508 /* It permits to skip live range splitting in LRA. */
5509 flag_caller_saves = false;
5510 /* There is no sense to do regional allocation when we use
5511 simplified LRA. */
5512 flag_ira_region = IRA_REGION_ONE;
5513 ira_conflicts_p = false;
5514 }
5515
5516 #ifndef IRA_NO_OBSTACK
5517 gcc_obstack_init (&ira_obstack);
5518 #endif
5519 bitmap_obstack_initialize (&ira_bitmap_obstack);
5520
5521 /* LRA uses its own infrastructure to handle caller save registers. */
5522 if (flag_caller_saves && !ira_use_lra_p)
5523 init_caller_save ();
5524
5525 setup_prohibited_mode_move_regs ();
5526 decrease_live_ranges_number ();
5527 df_note_add_problem ();
5528
5529 /* DF_LIVE can't be used in the register allocator, too many other
5530 parts of the compiler depend on using the "classic" liveness
5531 interpretation of the DF_LR problem. See PR38711.
5532 Remove the problem, so that we don't spend time updating it in
5533 any of the df_analyze() calls during IRA/LRA. */
5534 if (optimize > 1)
5535 df_remove_problem (df_live);
5536 gcc_checking_assert (df_live == NULL);
5537
5538 if (flag_checking)
5539 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5540
5541 df_analyze ();
5542
5543 init_reg_equiv ();
5544 if (ira_conflicts_p)
5545 {
5546 calculate_dominance_info (CDI_DOMINATORS);
5547
5548 if (split_live_ranges_for_shrink_wrap ())
5549 df_analyze ();
5550
5551 free_dominance_info (CDI_DOMINATORS);
5552 }
5553
5554 df_clear_flags (DF_NO_INSN_RESCAN);
5555
5556 indirect_jump_optimize ();
5557 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5558 df_analyze ();
5559
5560 regstat_init_n_sets_and_refs ();
5561 regstat_compute_ri ();
5562
5563 /* If we are not optimizing, then this is the only place before
5564 register allocation where dataflow is done. And that is needed
5565 to generate these warnings. */
5566 if (warn_clobbered)
5567 generate_setjmp_warnings ();
5568
5569 init_alias_analysis ();
5570 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5571 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5572 update_equiv_regs_prescan ();
5573 update_equiv_regs ();
5574
5575 /* Don't move insns if live range shrinkage or register
5576 pressure-sensitive scheduling were done because it will not
5577 improve allocation but likely worsen insn scheduling. */
5578 if (optimize
5579 && !flag_live_range_shrinkage
5580 && !(flag_sched_pressure && flag_schedule_insns))
5581 combine_and_move_insns ();
5582
5583 /* Gather additional equivalences with memory. */
5584 if (optimize)
5585 add_store_equivs ();
5586
5587 loop_optimizer_finalize ();
5588 free_dominance_info (CDI_DOMINATORS);
5589 end_alias_analysis ();
5590 free (reg_equiv);
5591
5592 /* Once max_regno changes, we need to free and re-init/re-compute
5593 some data structures like regstat_n_sets_and_refs and reg_info_p. */
5594 auto regstat_recompute_for_max_regno = []() {
5595 regstat_free_n_sets_and_refs ();
5596 regstat_free_ri ();
5597 regstat_init_n_sets_and_refs ();
5598 regstat_compute_ri ();
5599 };
5600
5601 int max_regno_before_rm = max_reg_num ();
5602 if (ira_use_lra_p && remove_scratches ())
5603 {
5604 ira_expand_reg_equiv ();
5605 /* For now remove_scatches is supposed to create pseudos when it
5606 succeeds, assert this happens all the time. Once it doesn't
5607 hold, we should guard the regstat recompute for the case
5608 max_regno changes. */
5609 gcc_assert (max_regno_before_rm != max_reg_num ());
5610 regstat_recompute_for_max_regno ();
5611 }
5612
5613 if (resize_reg_info () && flag_ira_loop_pressure)
5614 ira_set_pseudo_classes (true, ira_dump_file);
5615
5616 setup_reg_equiv ();
5617 grow_reg_equivs ();
5618 setup_reg_equiv_init ();
5619
5620 allocated_reg_info_size = max_reg_num ();
5621
5622 /* It is not worth to do such improvement when we use a simple
5623 allocation because of -O0 usage or because the function is too
5624 big. */
5625 if (ira_conflicts_p)
5626 find_moveable_pseudos ();
5627
5628 max_regno_before_ira = max_reg_num ();
5629 ira_setup_eliminable_regset ();
5630
5631 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5632 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5633 ira_move_loops_num = ira_additional_jumps_num = 0;
5634
5635 ira_assert (current_loops == NULL);
5636 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5637 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5638
5639 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5640 fprintf (ira_dump_file, "Building IRA IR\n");
5641 loops_p = ira_build ();
5642
5643 ira_assert (ira_conflicts_p || !loops_p);
5644
5645 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5646 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5647 /* It is just wasting compiler's time to pack spilled pseudos into
5648 stack slots in this case -- prohibit it. We also do this if
5649 there is setjmp call because a variable not modified between
5650 setjmp and longjmp the compiler is required to preserve its
5651 value and sharing slots does not guarantee it. */
5652 flag_ira_share_spill_slots = FALSE;
5653
5654 ira_color ();
5655
5656 ira_max_point_before_emit = ira_max_point;
5657
5658 ira_initiate_emit_data ();
5659
5660 ira_emit (loops_p);
5661
5662 max_regno = max_reg_num ();
5663 if (ira_conflicts_p)
5664 {
5665 if (! loops_p)
5666 {
5667 if (! ira_use_lra_p)
5668 ira_initiate_assign ();
5669 }
5670 else
5671 {
5672 expand_reg_info ();
5673
5674 if (ira_use_lra_p)
5675 {
5676 ira_allocno_t a;
5677 ira_allocno_iterator ai;
5678
5679 FOR_EACH_ALLOCNO (a, ai)
5680 {
5681 int old_regno = ALLOCNO_REGNO (a);
5682 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5683
5684 ALLOCNO_REGNO (a) = new_regno;
5685
5686 if (old_regno != new_regno)
5687 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5688 reg_alternate_class (old_regno),
5689 reg_allocno_class (old_regno));
5690 }
5691 }
5692 else
5693 {
5694 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5695 fprintf (ira_dump_file, "Flattening IR\n");
5696 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5697 }
5698 /* New insns were generated: add notes and recalculate live
5699 info. */
5700 df_analyze ();
5701
5702 /* ??? Rebuild the loop tree, but why? Does the loop tree
5703 change if new insns were generated? Can that be handled
5704 by updating the loop tree incrementally? */
5705 loop_optimizer_finalize ();
5706 free_dominance_info (CDI_DOMINATORS);
5707 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5708 | LOOPS_HAVE_RECORDED_EXITS);
5709
5710 if (! ira_use_lra_p)
5711 {
5712 setup_allocno_assignment_flags ();
5713 ira_initiate_assign ();
5714 ira_reassign_conflict_allocnos (max_regno);
5715 }
5716 }
5717 }
5718
5719 ira_finish_emit_data ();
5720
5721 setup_reg_renumber ();
5722
5723 calculate_allocation_cost ();
5724
5725 #ifdef ENABLE_IRA_CHECKING
5726 if (ira_conflicts_p && ! ira_use_lra_p)
5727 /* Opposite to reload pass, LRA does not use any conflict info
5728 from IRA. We don't rebuild conflict info for LRA (through
5729 ira_flattening call) and cannot use the check here. We could
5730 rebuild this info for LRA in the check mode but there is a risk
5731 that code generated with the check and without it will be a bit
5732 different. Calling ira_flattening in any mode would be a
5733 wasting CPU time. So do not check the allocation for LRA. */
5734 check_allocation ();
5735 #endif
5736
5737 if (max_regno != max_regno_before_ira)
5738 regstat_recompute_for_max_regno ();
5739
5740 overall_cost_before = ira_overall_cost;
5741 if (! ira_conflicts_p)
5742 grow_reg_equivs ();
5743 else
5744 {
5745 fix_reg_equiv_init ();
5746
5747 #ifdef ENABLE_IRA_CHECKING
5748 print_redundant_copies ();
5749 #endif
5750 if (! ira_use_lra_p)
5751 {
5752 ira_spilled_reg_stack_slots_num = 0;
5753 ira_spilled_reg_stack_slots
5754 = ((class ira_spilled_reg_stack_slot *)
5755 ira_allocate (max_regno
5756 * sizeof (class ira_spilled_reg_stack_slot)));
5757 memset ((void *)ira_spilled_reg_stack_slots, 0,
5758 max_regno * sizeof (class ira_spilled_reg_stack_slot));
5759 }
5760 }
5761 allocate_initial_values ();
5762
5763 /* See comment for find_moveable_pseudos call. */
5764 if (ira_conflicts_p)
5765 move_unallocated_pseudos ();
5766
5767 /* Restore original values. */
5768 if (lra_simple_p)
5769 {
5770 flag_caller_saves = saved_flag_caller_saves;
5771 flag_ira_region = saved_flag_ira_region;
5772 }
5773 }
5774
5775 /* Modify asm goto to avoid further trouble with this insn. We can
5776 not replace the insn by USE as in other asm insns as we still
5777 need to keep CFG consistency. */
5778 void
5779 ira_nullify_asm_goto (rtx_insn *insn)
5780 {
5781 ira_assert (JUMP_P (insn) && INSN_CODE (insn) < 0);
5782 rtx tmp = extract_asm_operands (PATTERN (insn));
5783 PATTERN (insn) = gen_rtx_ASM_OPERANDS (VOIDmode, ggc_strdup (""), "", 0,
5784 rtvec_alloc (0),
5785 rtvec_alloc (0),
5786 ASM_OPERANDS_LABEL_VEC (tmp),
5787 ASM_OPERANDS_SOURCE_LOCATION(tmp));
5788 }
5789
5790 static void
5791 do_reload (void)
5792 {
5793 basic_block bb;
5794 bool need_dce;
5795 unsigned pic_offset_table_regno = INVALID_REGNUM;
5796
5797 if (flag_ira_verbose < 10)
5798 ira_dump_file = dump_file;
5799
5800 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5801 after reload to avoid possible wrong usages of hard reg assigned
5802 to it. */
5803 if (pic_offset_table_rtx
5804 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5805 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5806
5807 timevar_push (TV_RELOAD);
5808 if (ira_use_lra_p)
5809 {
5810 if (current_loops != NULL)
5811 {
5812 loop_optimizer_finalize ();
5813 free_dominance_info (CDI_DOMINATORS);
5814 }
5815 FOR_ALL_BB_FN (bb, cfun)
5816 bb->loop_father = NULL;
5817 current_loops = NULL;
5818
5819 ira_destroy ();
5820
5821 lra (ira_dump_file);
5822 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5823 LRA. */
5824 vec_free (reg_equivs);
5825 reg_equivs = NULL;
5826 need_dce = false;
5827 }
5828 else
5829 {
5830 df_set_flags (DF_NO_INSN_RESCAN);
5831 build_insn_chain ();
5832
5833 need_dce = reload (get_insns (), ira_conflicts_p);
5834 }
5835
5836 timevar_pop (TV_RELOAD);
5837
5838 timevar_push (TV_IRA);
5839
5840 if (ira_conflicts_p && ! ira_use_lra_p)
5841 {
5842 ira_free (ira_spilled_reg_stack_slots);
5843 ira_finish_assign ();
5844 }
5845
5846 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5847 && overall_cost_before != ira_overall_cost)
5848 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5849 ira_overall_cost);
5850
5851 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5852
5853 if (! ira_use_lra_p)
5854 {
5855 ira_destroy ();
5856 if (current_loops != NULL)
5857 {
5858 loop_optimizer_finalize ();
5859 free_dominance_info (CDI_DOMINATORS);
5860 }
5861 FOR_ALL_BB_FN (bb, cfun)
5862 bb->loop_father = NULL;
5863 current_loops = NULL;
5864
5865 regstat_free_ri ();
5866 regstat_free_n_sets_and_refs ();
5867 }
5868
5869 if (optimize)
5870 cleanup_cfg (CLEANUP_EXPENSIVE);
5871
5872 finish_reg_equiv ();
5873
5874 bitmap_obstack_release (&ira_bitmap_obstack);
5875 #ifndef IRA_NO_OBSTACK
5876 obstack_free (&ira_obstack, NULL);
5877 #endif
5878
5879 /* The code after the reload has changed so much that at this point
5880 we might as well just rescan everything. Note that
5881 df_rescan_all_insns is not going to help here because it does not
5882 touch the artificial uses and defs. */
5883 df_finish_pass (true);
5884 df_scan_alloc (NULL);
5885 df_scan_blocks ();
5886
5887 if (optimize > 1)
5888 {
5889 df_live_add_problem ();
5890 df_live_set_all_dirty ();
5891 }
5892
5893 if (optimize)
5894 df_analyze ();
5895
5896 if (need_dce && optimize)
5897 run_fast_dce ();
5898
5899 /* Diagnose uses of the hard frame pointer when it is used as a global
5900 register. Often we can get away with letting the user appropriate
5901 the frame pointer, but we should let them know when code generation
5902 makes that impossible. */
5903 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5904 {
5905 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5906 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5907 "frame pointer required, but reserved");
5908 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5909 }
5910
5911 /* If we are doing generic stack checking, give a warning if this
5912 function's frame size is larger than we expect. */
5913 if (flag_stack_check == GENERIC_STACK_CHECK)
5914 {
5915 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5916
5917 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5918 if (df_regs_ever_live_p (i)
5919 && !fixed_regs[i]
5920 && !crtl->abi->clobbers_full_reg_p (i))
5921 size += UNITS_PER_WORD;
5922
5923 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
5924 warning (0, "frame size too large for reliable stack checking");
5925 }
5926
5927 if (pic_offset_table_regno != INVALID_REGNUM)
5928 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5929
5930 timevar_pop (TV_IRA);
5931 }
5932 \f
5933 /* Run the integrated register allocator. */
5934
5935 namespace {
5936
5937 const pass_data pass_data_ira =
5938 {
5939 RTL_PASS, /* type */
5940 "ira", /* name */
5941 OPTGROUP_NONE, /* optinfo_flags */
5942 TV_IRA, /* tv_id */
5943 0, /* properties_required */
5944 0, /* properties_provided */
5945 0, /* properties_destroyed */
5946 0, /* todo_flags_start */
5947 TODO_do_not_ggc_collect, /* todo_flags_finish */
5948 };
5949
5950 class pass_ira : public rtl_opt_pass
5951 {
5952 public:
5953 pass_ira (gcc::context *ctxt)
5954 : rtl_opt_pass (pass_data_ira, ctxt)
5955 {}
5956
5957 /* opt_pass methods: */
5958 virtual bool gate (function *)
5959 {
5960 return !targetm.no_register_allocation;
5961 }
5962 virtual unsigned int execute (function *)
5963 {
5964 ira (dump_file);
5965 return 0;
5966 }
5967
5968 }; // class pass_ira
5969
5970 } // anon namespace
5971
5972 rtl_opt_pass *
5973 make_pass_ira (gcc::context *ctxt)
5974 {
5975 return new pass_ira (ctxt);
5976 }
5977
5978 namespace {
5979
5980 const pass_data pass_data_reload =
5981 {
5982 RTL_PASS, /* type */
5983 "reload", /* name */
5984 OPTGROUP_NONE, /* optinfo_flags */
5985 TV_RELOAD, /* tv_id */
5986 0, /* properties_required */
5987 0, /* properties_provided */
5988 0, /* properties_destroyed */
5989 0, /* todo_flags_start */
5990 0, /* todo_flags_finish */
5991 };
5992
5993 class pass_reload : public rtl_opt_pass
5994 {
5995 public:
5996 pass_reload (gcc::context *ctxt)
5997 : rtl_opt_pass (pass_data_reload, ctxt)
5998 {}
5999
6000 /* opt_pass methods: */
6001 virtual bool gate (function *)
6002 {
6003 return !targetm.no_register_allocation;
6004 }
6005 virtual unsigned int execute (function *)
6006 {
6007 do_reload ();
6008 return 0;
6009 }
6010
6011 }; // class pass_reload
6012
6013 } // anon namespace
6014
6015 rtl_opt_pass *
6016 make_pass_reload (gcc::context *ctxt)
6017 {
6018 return new pass_reload (ctxt);
6019 }