Daily bump.
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
36
37 #include "hard-reg-set.h"
38
39 class predefined_function_abi;
40
41 /* Value used by some passes to "recognize" noop moves as valid
42 instructions. */
43 #define NOOP_MOVE_INSN_CODE INT_MAX
44
45 /* Register Transfer Language EXPRESSIONS CODES */
46
47 #define RTX_CODE enum rtx_code
48 enum rtx_code {
49
50 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
51 #include "rtl.def" /* rtl expressions are documented here */
52 #undef DEF_RTL_EXPR
53
54 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
55 NUM_RTX_CODE.
56 Assumes default enum value assignment. */
57
58 /* The cast here, saves many elsewhere. */
59 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
60
61 /* Similar, but since generator files get more entries... */
62 #ifdef GENERATOR_FILE
63 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
64 #endif
65
66 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
67
68 enum rtx_class {
69 /* We check bit 0-1 of some rtx class codes in the predicates below. */
70
71 /* Bit 0 = comparison if 0, arithmetic is 1
72 Bit 1 = 1 if commutative. */
73 RTX_COMPARE, /* 0 */
74 RTX_COMM_COMPARE,
75 RTX_BIN_ARITH,
76 RTX_COMM_ARITH,
77
78 /* Must follow the four preceding values. */
79 RTX_UNARY, /* 4 */
80
81 RTX_EXTRA,
82 RTX_MATCH,
83 RTX_INSN,
84
85 /* Bit 0 = 1 if constant. */
86 RTX_OBJ, /* 8 */
87 RTX_CONST_OBJ,
88
89 RTX_TERNARY,
90 RTX_BITFIELD_OPS,
91 RTX_AUTOINC
92 };
93
94 #define RTX_OBJ_MASK (~1)
95 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
96 #define RTX_COMPARE_MASK (~1)
97 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
98 #define RTX_ARITHMETIC_MASK (~1)
99 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
100 #define RTX_BINARY_MASK (~3)
101 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
102 #define RTX_COMMUTATIVE_MASK (~2)
103 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
104 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
105
106 extern const unsigned char rtx_length[NUM_RTX_CODE];
107 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
108
109 extern const char * const rtx_name[NUM_RTX_CODE];
110 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
111
112 extern const char * const rtx_format[NUM_RTX_CODE];
113 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
114
115 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
116 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
117
118 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
119 and NEXT_INSN fields). */
120 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
121
122 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
123 extern const unsigned char rtx_next[NUM_RTX_CODE];
124 \f
125 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
126 relative to which the offsets are calculated, as explained in rtl.def. */
127 struct addr_diff_vec_flags
128 {
129 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
130 unsigned min_align: 8;
131 /* Flags: */
132 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
133 unsigned min_after_vec: 1; /* minimum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned max_after_vec: 1; /* maximum address target label is
136 after the ADDR_DIFF_VEC. */
137 unsigned min_after_base: 1; /* minimum address target label is
138 after BASE. */
139 unsigned max_after_base: 1; /* maximum address target label is
140 after BASE. */
141 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
142 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
143 unsigned : 2;
144 unsigned scale : 8;
145 };
146
147 /* Structure used to describe the attributes of a MEM. These are hashed
148 so MEMs that the same attributes share a data structure. This means
149 they cannot be modified in place. */
150 class GTY(()) mem_attrs
151 {
152 public:
153 mem_attrs ();
154
155 /* The expression that the MEM accesses, or null if not known.
156 This expression might be larger than the memory reference itself.
157 (In other words, the MEM might access only part of the object.) */
158 tree expr;
159
160 /* The offset of the memory reference from the start of EXPR.
161 Only valid if OFFSET_KNOWN_P. */
162 poly_int64 offset;
163
164 /* The size of the memory reference in bytes. Only valid if
165 SIZE_KNOWN_P. */
166 poly_int64 size;
167
168 /* The alias set of the memory reference. */
169 alias_set_type alias;
170
171 /* The alignment of the reference in bits. Always a multiple of
172 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
173 than the memory reference itself. */
174 unsigned int align;
175
176 /* The address space that the memory reference uses. */
177 unsigned char addrspace;
178
179 /* True if OFFSET is known. */
180 bool offset_known_p;
181
182 /* True if SIZE is known. */
183 bool size_known_p;
184 };
185
186 /* Structure used to describe the attributes of a REG in similar way as
187 mem_attrs does for MEM above. Note that the OFFSET field is calculated
188 in the same way as for mem_attrs, rather than in the same way as a
189 SUBREG_BYTE. For example, if a big-endian target stores a byte
190 object in the low part of a 4-byte register, the OFFSET field
191 will be -3 rather than 0. */
192
193 class GTY((for_user)) reg_attrs {
194 public:
195 tree decl; /* decl corresponding to REG. */
196 poly_int64 offset; /* Offset from start of DECL. */
197 };
198
199 /* Common union for an element of an rtx. */
200
201 union rtunion
202 {
203 int rt_int;
204 unsigned int rt_uint;
205 poly_uint16_pod rt_subreg;
206 const char *rt_str;
207 rtx rt_rtx;
208 rtvec rt_rtvec;
209 machine_mode rt_type;
210 addr_diff_vec_flags rt_addr_diff_vec_flags;
211 struct cselib_val *rt_cselib;
212 tree rt_tree;
213 basic_block rt_bb;
214 mem_attrs *rt_mem;
215 class constant_descriptor_rtx *rt_constant;
216 struct dw_cfi_node *rt_cfi;
217 };
218
219 /* Describes the properties of a REG. */
220 struct GTY(()) reg_info {
221 /* The value of REGNO. */
222 unsigned int regno;
223
224 /* The value of REG_NREGS. */
225 unsigned int nregs : 8;
226 unsigned int unused : 24;
227
228 /* The value of REG_ATTRS. */
229 reg_attrs *attrs;
230 };
231
232 /* This structure remembers the position of a SYMBOL_REF within an
233 object_block structure. A SYMBOL_REF only provides this information
234 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
235 struct GTY(()) block_symbol {
236 /* The usual SYMBOL_REF fields. */
237 rtunion GTY ((skip)) fld[2];
238
239 /* The block that contains this object. */
240 struct object_block *block;
241
242 /* The offset of this object from the start of its block. It is negative
243 if the symbol has not yet been assigned an offset. */
244 HOST_WIDE_INT offset;
245 };
246
247 /* Describes a group of objects that are to be placed together in such
248 a way that their relative positions are known. */
249 struct GTY((for_user)) object_block {
250 /* The section in which these objects should be placed. */
251 section *sect;
252
253 /* The alignment of the first object, measured in bits. */
254 unsigned int alignment;
255
256 /* The total size of the objects, measured in bytes. */
257 HOST_WIDE_INT size;
258
259 /* The SYMBOL_REFs for each object. The vector is sorted in
260 order of increasing offset and the following conditions will
261 hold for each element X:
262
263 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
264 !SYMBOL_REF_ANCHOR_P (X)
265 SYMBOL_REF_BLOCK (X) == [address of this structure]
266 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
267 vec<rtx, va_gc> *objects;
268
269 /* All the anchor SYMBOL_REFs used to address these objects, sorted
270 in order of increasing offset, and then increasing TLS model.
271 The following conditions will hold for each element X in this vector:
272
273 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
274 SYMBOL_REF_ANCHOR_P (X)
275 SYMBOL_REF_BLOCK (X) == [address of this structure]
276 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
277 vec<rtx, va_gc> *anchors;
278 };
279
280 struct GTY((variable_size)) hwivec_def {
281 HOST_WIDE_INT elem[1];
282 };
283
284 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
285 #define CWI_GET_NUM_ELEM(RTX) \
286 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
287 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
288 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
289
290 struct GTY((variable_size)) const_poly_int_def {
291 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
292 };
293
294 /* RTL expression ("rtx"). */
295
296 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
297 field for gengtype to recognize that inheritance is occurring,
298 so that all subclasses are redirected to the traversal hook for the
299 base class.
300 However, all of the fields are in the base class, and special-casing
301 is at work. Hence we use desc and tag of 0, generating a switch
302 statement of the form:
303 switch (0)
304 {
305 case 0: // all the work happens here
306 }
307 in order to work with the existing special-casing in gengtype. */
308
309 struct GTY((desc("0"), tag("0"),
310 chain_next ("RTX_NEXT (&%h)"),
311 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
312 /* The kind of expression this is. */
313 ENUM_BITFIELD(rtx_code) code: 16;
314
315 /* The kind of value the expression has. */
316 ENUM_BITFIELD(machine_mode) mode : 8;
317
318 /* 1 in a MEM if we should keep the alias set for this mem unchanged
319 when we access a component.
320 1 in a JUMP_INSN if it is a crossing jump.
321 1 in a CALL_INSN if it is a sibling call.
322 1 in a SET that is for a return.
323 In a CODE_LABEL, part of the two-bit alternate entry field.
324 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
325 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
326 1 in a SUBREG generated by LRA for reload insns.
327 1 in a REG if this is a static chain register.
328 Dumped as "/j" in RTL dumps. */
329 unsigned int jump : 1;
330 /* In a CODE_LABEL, part of the two-bit alternate entry field.
331 1 in a MEM if it cannot trap.
332 1 in a CALL_INSN logically equivalent to
333 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
334 1 in a VALUE is SP_DERIVED_VALUE_P in cselib.c.
335 Dumped as "/c" in RTL dumps. */
336 unsigned int call : 1;
337 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
338 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
339 1 in a SYMBOL_REF if it addresses something in the per-function
340 constants pool.
341 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
342 1 in a NOTE, or EXPR_LIST for a const call.
343 1 in a JUMP_INSN of an annulling branch.
344 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
345 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
346 1 in a clobber temporarily created for LRA.
347 Dumped as "/u" in RTL dumps. */
348 unsigned int unchanging : 1;
349 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
350 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
351 if it has been deleted.
352 1 in a REG expression if corresponds to a variable declared by the user,
353 0 for an internally generated temporary.
354 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
355 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
356 non-local label.
357 In a SYMBOL_REF, this flag is used for machine-specific purposes.
358 In a PREFETCH, this flag indicates that it should be considered a
359 scheduling barrier.
360 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
361 Dumped as "/v" in RTL dumps. */
362 unsigned int volatil : 1;
363 /* 1 in a REG if the register is used only in exit code a loop.
364 1 in a SUBREG expression if was generated from a variable with a
365 promoted mode.
366 1 in a CODE_LABEL if the label is used for nonlocal gotos
367 and must not be deleted even if its count is zero.
368 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
369 together with the preceding insn. Valid only within sched.
370 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
371 from the target of a branch. Valid from reorg until end of compilation;
372 cleared before used.
373
374 The name of the field is historical. It used to be used in MEMs
375 to record whether the MEM accessed part of a structure.
376 Dumped as "/s" in RTL dumps. */
377 unsigned int in_struct : 1;
378 /* At the end of RTL generation, 1 if this rtx is used. This is used for
379 copying shared structure. See `unshare_all_rtl'.
380 In a REG, this is not needed for that purpose, and used instead
381 in `leaf_renumber_regs_insn'.
382 1 in a SYMBOL_REF, means that emit_library_call
383 has used it as the function.
384 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
385 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
386 unsigned int used : 1;
387 /* 1 in an INSN or a SET if this rtx is related to the call frame,
388 either changing how we compute the frame address or saving and
389 restoring registers in the prologue and epilogue.
390 1 in a REG or MEM if it is a pointer.
391 1 in a SYMBOL_REF if it addresses something in the per-function
392 constant string pool.
393 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
394 Dumped as "/f" in RTL dumps. */
395 unsigned frame_related : 1;
396 /* 1 in a REG or PARALLEL that is the current function's return value.
397 1 in a SYMBOL_REF for a weak symbol.
398 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
399 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
400 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
401 Dumped as "/i" in RTL dumps. */
402 unsigned return_val : 1;
403
404 union {
405 /* The final union field is aligned to 64 bits on LP64 hosts,
406 giving a 32-bit gap after the fields above. We optimize the
407 layout for that case and use the gap for extra code-specific
408 information. */
409
410 /* The ORIGINAL_REGNO of a REG. */
411 unsigned int original_regno;
412
413 /* The INSN_UID of an RTX_INSN-class code. */
414 int insn_uid;
415
416 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
417 unsigned int symbol_ref_flags;
418
419 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
420 enum var_init_status var_location_status;
421
422 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
423 HOST_WIDE_INTs in the hwivec_def. */
424 unsigned int num_elem;
425
426 /* Information about a CONST_VECTOR. */
427 struct
428 {
429 /* The value of CONST_VECTOR_NPATTERNS. */
430 unsigned int npatterns : 16;
431
432 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
433 unsigned int nelts_per_pattern : 8;
434
435 /* For future expansion. */
436 unsigned int unused : 8;
437 } const_vector;
438 } GTY ((skip)) u2;
439
440 /* The first element of the operands of this rtx.
441 The number of operands and their types are controlled
442 by the `code' field, according to rtl.def. */
443 union u {
444 rtunion fld[1];
445 HOST_WIDE_INT hwint[1];
446 struct reg_info reg;
447 struct block_symbol block_sym;
448 struct real_value rv;
449 struct fixed_value fv;
450 struct hwivec_def hwiv;
451 struct const_poly_int_def cpi;
452 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
453 };
454
455 /* A node for constructing singly-linked lists of rtx. */
456
457 struct GTY(()) rtx_expr_list : public rtx_def
458 {
459 private:
460 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
461
462 public:
463 /* Get next in list. */
464 rtx_expr_list *next () const;
465
466 /* Get at the underlying rtx. */
467 rtx element () const;
468 };
469
470 template <>
471 template <>
472 inline bool
473 is_a_helper <rtx_expr_list *>::test (rtx rt)
474 {
475 return rt->code == EXPR_LIST;
476 }
477
478 struct GTY(()) rtx_insn_list : public rtx_def
479 {
480 private:
481 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
482
483 This is an instance of:
484
485 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
486
487 i.e. a node for constructing singly-linked lists of rtx_insn *, where
488 the list is "external" to the insn (as opposed to the doubly-linked
489 list embedded within rtx_insn itself). */
490
491 public:
492 /* Get next in list. */
493 rtx_insn_list *next () const;
494
495 /* Get at the underlying instruction. */
496 rtx_insn *insn () const;
497
498 };
499
500 template <>
501 template <>
502 inline bool
503 is_a_helper <rtx_insn_list *>::test (rtx rt)
504 {
505 return rt->code == INSN_LIST;
506 }
507
508 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
509 typically (but not always) of rtx_insn *, used in the late passes. */
510
511 struct GTY(()) rtx_sequence : public rtx_def
512 {
513 private:
514 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
515
516 public:
517 /* Get number of elements in sequence. */
518 int len () const;
519
520 /* Get i-th element of the sequence. */
521 rtx element (int index) const;
522
523 /* Get i-th element of the sequence, with a checked cast to
524 rtx_insn *. */
525 rtx_insn *insn (int index) const;
526 };
527
528 template <>
529 template <>
530 inline bool
531 is_a_helper <rtx_sequence *>::test (rtx rt)
532 {
533 return rt->code == SEQUENCE;
534 }
535
536 template <>
537 template <>
538 inline bool
539 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
540 {
541 return rt->code == SEQUENCE;
542 }
543
544 struct GTY(()) rtx_insn : public rtx_def
545 {
546 public:
547 /* No extra fields, but adds the invariant:
548
549 (INSN_P (X)
550 || NOTE_P (X)
551 || JUMP_TABLE_DATA_P (X)
552 || BARRIER_P (X)
553 || LABEL_P (X))
554
555 i.e. that we must be able to use the following:
556 INSN_UID ()
557 NEXT_INSN ()
558 PREV_INSN ()
559 i.e. we have an rtx that has an INSN_UID field and can be part of
560 a linked list of insns.
561 */
562
563 /* Returns true if this insn has been deleted. */
564
565 bool deleted () const { return volatil; }
566
567 /* Mark this insn as deleted. */
568
569 void set_deleted () { volatil = true; }
570
571 /* Mark this insn as not deleted. */
572
573 void set_undeleted () { volatil = false; }
574 };
575
576 /* Subclasses of rtx_insn. */
577
578 struct GTY(()) rtx_debug_insn : public rtx_insn
579 {
580 /* No extra fields, but adds the invariant:
581 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
582 i.e. an annotation for tracking variable assignments.
583
584 This is an instance of:
585 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
586 from rtl.def. */
587 };
588
589 struct GTY(()) rtx_nonjump_insn : public rtx_insn
590 {
591 /* No extra fields, but adds the invariant:
592 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
593 i.e an instruction that cannot jump.
594
595 This is an instance of:
596 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
597 from rtl.def. */
598 };
599
600 struct GTY(()) rtx_jump_insn : public rtx_insn
601 {
602 public:
603 /* No extra fields, but adds the invariant:
604 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
605 i.e. an instruction that can possibly jump.
606
607 This is an instance of:
608 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
609 from rtl.def. */
610
611 /* Returns jump target of this instruction. The returned value is not
612 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
613 expression. Also, when the code label is marked "deleted", it is
614 replaced by a NOTE. In some cases the value is NULL_RTX. */
615
616 inline rtx jump_label () const;
617
618 /* Returns jump target cast to rtx_code_label *. */
619
620 inline rtx_code_label *jump_target () const;
621
622 /* Set jump target. */
623
624 inline void set_jump_target (rtx_code_label *);
625 };
626
627 struct GTY(()) rtx_call_insn : public rtx_insn
628 {
629 /* No extra fields, but adds the invariant:
630 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
631 i.e. an instruction that can possibly call a subroutine
632 but which will not change which instruction comes next
633 in the current function.
634
635 This is an instance of:
636 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
637 from rtl.def. */
638 };
639
640 struct GTY(()) rtx_jump_table_data : public rtx_insn
641 {
642 /* No extra fields, but adds the invariant:
643 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
644 i.e. a data for a jump table, considered an instruction for
645 historical reasons.
646
647 This is an instance of:
648 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
649 from rtl.def. */
650
651 /* This can be either:
652
653 (a) a table of absolute jumps, in which case PATTERN (this) is an
654 ADDR_VEC with arg 0 a vector of labels, or
655
656 (b) a table of relative jumps (e.g. for -fPIC), in which case
657 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
658 arg 1 the vector of labels.
659
660 This method gets the underlying vec. */
661
662 inline rtvec get_labels () const;
663 inline scalar_int_mode get_data_mode () const;
664 };
665
666 struct GTY(()) rtx_barrier : public rtx_insn
667 {
668 /* No extra fields, but adds the invariant:
669 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
670 i.e. a marker that indicates that control will not flow through.
671
672 This is an instance of:
673 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
674 from rtl.def. */
675 };
676
677 struct GTY(()) rtx_code_label : public rtx_insn
678 {
679 /* No extra fields, but adds the invariant:
680 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
681 i.e. a label in the assembler.
682
683 This is an instance of:
684 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
685 from rtl.def. */
686 };
687
688 struct GTY(()) rtx_note : public rtx_insn
689 {
690 /* No extra fields, but adds the invariant:
691 NOTE_P(X) aka (GET_CODE (X) == NOTE)
692 i.e. a note about the corresponding source code.
693
694 This is an instance of:
695 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
696 from rtl.def. */
697 };
698
699 /* The size in bytes of an rtx header (code, mode and flags). */
700 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
701
702 /* The size in bytes of an rtx with code CODE. */
703 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
704
705 #define NULL_RTX (rtx) 0
706
707 /* The "next" and "previous" RTX, relative to this one. */
708
709 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
710 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
711
712 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
713 */
714 #define RTX_PREV(X) ((INSN_P (X) \
715 || NOTE_P (X) \
716 || JUMP_TABLE_DATA_P (X) \
717 || BARRIER_P (X) \
718 || LABEL_P (X)) \
719 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
720 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
721 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
722
723 /* Define macros to access the `code' field of the rtx. */
724
725 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
726 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
727
728 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
729 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
730
731 /* RTL vector. These appear inside RTX's when there is a need
732 for a variable number of things. The principle use is inside
733 PARALLEL expressions. */
734
735 struct GTY(()) rtvec_def {
736 int num_elem; /* number of elements */
737 rtx GTY ((length ("%h.num_elem"))) elem[1];
738 };
739
740 #define NULL_RTVEC (rtvec) 0
741
742 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
743 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
744
745 /* Predicate yielding nonzero iff X is an rtx for a register. */
746 #define REG_P(X) (GET_CODE (X) == REG)
747
748 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
749 #define MEM_P(X) (GET_CODE (X) == MEM)
750
751 #if TARGET_SUPPORTS_WIDE_INT
752
753 /* Match CONST_*s that can represent compile-time constant integers. */
754 #define CASE_CONST_SCALAR_INT \
755 case CONST_INT: \
756 case CONST_WIDE_INT
757
758 /* Match CONST_*s for which pointer equality corresponds to value
759 equality. */
760 #define CASE_CONST_UNIQUE \
761 case CONST_INT: \
762 case CONST_WIDE_INT: \
763 case CONST_POLY_INT: \
764 case CONST_DOUBLE: \
765 case CONST_FIXED
766
767 /* Match all CONST_* rtxes. */
768 #define CASE_CONST_ANY \
769 case CONST_INT: \
770 case CONST_WIDE_INT: \
771 case CONST_POLY_INT: \
772 case CONST_DOUBLE: \
773 case CONST_FIXED: \
774 case CONST_VECTOR
775
776 #else
777
778 /* Match CONST_*s that can represent compile-time constant integers. */
779 #define CASE_CONST_SCALAR_INT \
780 case CONST_INT: \
781 case CONST_DOUBLE
782
783 /* Match CONST_*s for which pointer equality corresponds to value
784 equality. */
785 #define CASE_CONST_UNIQUE \
786 case CONST_INT: \
787 case CONST_DOUBLE: \
788 case CONST_FIXED
789
790 /* Match all CONST_* rtxes. */
791 #define CASE_CONST_ANY \
792 case CONST_INT: \
793 case CONST_DOUBLE: \
794 case CONST_FIXED: \
795 case CONST_VECTOR
796 #endif
797
798 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
799 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
800
801 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
802 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
803
804 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
805 integer. */
806 #define CONST_POLY_INT_P(X) \
807 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
808
809 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
810 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
811
812 /* Predicate yielding true iff X is an rtx for a double-int
813 or floating point constant. */
814 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
815
816 /* Predicate yielding true iff X is an rtx for a double-int. */
817 #define CONST_DOUBLE_AS_INT_P(X) \
818 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
819
820 /* Predicate yielding true iff X is an rtx for a integer const. */
821 #if TARGET_SUPPORTS_WIDE_INT
822 #define CONST_SCALAR_INT_P(X) \
823 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
824 #else
825 #define CONST_SCALAR_INT_P(X) \
826 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
827 #endif
828
829 /* Predicate yielding true iff X is an rtx for a double-int. */
830 #define CONST_DOUBLE_AS_FLOAT_P(X) \
831 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
832
833 /* Predicate yielding nonzero iff X is a label insn. */
834 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
835
836 /* Predicate yielding nonzero iff X is a jump insn. */
837 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
838
839 /* Predicate yielding nonzero iff X is a call insn. */
840 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
841
842 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
843 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
844
845 /* Predicate yielding nonzero iff X is a debug note/insn. */
846 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
847
848 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
849 #define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))
850
851 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
852 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
853 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
854 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
855 /* Nonzero if DEBUG_INSN_P may possibly hold. */
856 #define MAY_HAVE_DEBUG_INSNS \
857 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
858
859 /* Predicate yielding nonzero iff X is a real insn. */
860 #define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))
861
862 /* Predicate yielding nonzero iff X is a note insn. */
863 #define NOTE_P(X) (GET_CODE (X) == NOTE)
864
865 /* Predicate yielding nonzero iff X is a barrier insn. */
866 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
867
868 /* Predicate yielding nonzero iff X is a data for a jump table. */
869 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
870
871 /* Predicate yielding nonzero iff RTX is a subreg. */
872 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
873
874 /* Predicate yielding true iff RTX is a symbol ref. */
875 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
876
877 template <>
878 template <>
879 inline bool
880 is_a_helper <rtx_insn *>::test (rtx rt)
881 {
882 return (INSN_P (rt)
883 || NOTE_P (rt)
884 || JUMP_TABLE_DATA_P (rt)
885 || BARRIER_P (rt)
886 || LABEL_P (rt));
887 }
888
889 template <>
890 template <>
891 inline bool
892 is_a_helper <const rtx_insn *>::test (const_rtx rt)
893 {
894 return (INSN_P (rt)
895 || NOTE_P (rt)
896 || JUMP_TABLE_DATA_P (rt)
897 || BARRIER_P (rt)
898 || LABEL_P (rt));
899 }
900
901 template <>
902 template <>
903 inline bool
904 is_a_helper <rtx_debug_insn *>::test (rtx rt)
905 {
906 return DEBUG_INSN_P (rt);
907 }
908
909 template <>
910 template <>
911 inline bool
912 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
913 {
914 return NONJUMP_INSN_P (rt);
915 }
916
917 template <>
918 template <>
919 inline bool
920 is_a_helper <rtx_jump_insn *>::test (rtx rt)
921 {
922 return JUMP_P (rt);
923 }
924
925 template <>
926 template <>
927 inline bool
928 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
929 {
930 return JUMP_P (insn);
931 }
932
933 template <>
934 template <>
935 inline bool
936 is_a_helper <rtx_call_insn *>::test (rtx rt)
937 {
938 return CALL_P (rt);
939 }
940
941 template <>
942 template <>
943 inline bool
944 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
945 {
946 return CALL_P (insn);
947 }
948
949 template <>
950 template <>
951 inline bool
952 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
953 {
954 return JUMP_TABLE_DATA_P (rt);
955 }
956
957 template <>
958 template <>
959 inline bool
960 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
961 {
962 return JUMP_TABLE_DATA_P (insn);
963 }
964
965 template <>
966 template <>
967 inline bool
968 is_a_helper <rtx_barrier *>::test (rtx rt)
969 {
970 return BARRIER_P (rt);
971 }
972
973 template <>
974 template <>
975 inline bool
976 is_a_helper <rtx_code_label *>::test (rtx rt)
977 {
978 return LABEL_P (rt);
979 }
980
981 template <>
982 template <>
983 inline bool
984 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
985 {
986 return LABEL_P (insn);
987 }
988
989 template <>
990 template <>
991 inline bool
992 is_a_helper <rtx_note *>::test (rtx rt)
993 {
994 return NOTE_P (rt);
995 }
996
997 template <>
998 template <>
999 inline bool
1000 is_a_helper <rtx_note *>::test (rtx_insn *insn)
1001 {
1002 return NOTE_P (insn);
1003 }
1004
1005 /* Predicate yielding nonzero iff X is a return or simple_return. */
1006 #define ANY_RETURN_P(X) \
1007 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1008
1009 /* 1 if X is a unary operator. */
1010
1011 #define UNARY_P(X) \
1012 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1013
1014 /* 1 if X is a binary operator. */
1015
1016 #define BINARY_P(X) \
1017 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1018
1019 /* 1 if X is an arithmetic operator. */
1020
1021 #define ARITHMETIC_P(X) \
1022 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1023 == RTX_ARITHMETIC_RESULT)
1024
1025 /* 1 if X is an arithmetic operator. */
1026
1027 #define COMMUTATIVE_ARITH_P(X) \
1028 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1029
1030 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1031 These two are sometimes selected together because it is possible to
1032 swap the two operands. */
1033
1034 #define SWAPPABLE_OPERANDS_P(X) \
1035 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1036 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1037 | (1 << RTX_COMPARE)))
1038
1039 /* 1 if X is a non-commutative operator. */
1040
1041 #define NON_COMMUTATIVE_P(X) \
1042 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1043 == RTX_NON_COMMUTATIVE_RESULT)
1044
1045 /* 1 if X is a commutative operator on integers. */
1046
1047 #define COMMUTATIVE_P(X) \
1048 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1049 == RTX_COMMUTATIVE_RESULT)
1050
1051 /* 1 if X is a relational operator. */
1052
1053 #define COMPARISON_P(X) \
1054 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1055
1056 /* 1 if X is a constant value that is an integer. */
1057
1058 #define CONSTANT_P(X) \
1059 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1060
1061 /* 1 if X is a LABEL_REF. */
1062 #define LABEL_REF_P(X) \
1063 (GET_CODE (X) == LABEL_REF)
1064
1065 /* 1 if X can be used to represent an object. */
1066 #define OBJECT_P(X) \
1067 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1068
1069 /* General accessor macros for accessing the fields of an rtx. */
1070
1071 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1072 /* The bit with a star outside the statement expr and an & inside is
1073 so that N can be evaluated only once. */
1074 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1075 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1076 const enum rtx_code _code = GET_CODE (_rtx); \
1077 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1078 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1079 __FUNCTION__); \
1080 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1081 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1082 __FUNCTION__); \
1083 &_rtx->u.fld[_n]; }))
1084
1085 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1086 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1087 const enum rtx_code _code = GET_CODE (_rtx); \
1088 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1089 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1090 __FUNCTION__); \
1091 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1092 && GET_RTX_FORMAT (_code)[_n] != C2) \
1093 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1094 __FUNCTION__); \
1095 &_rtx->u.fld[_n]; }))
1096
1097 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1098 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1099 if (GET_CODE (_rtx) != (C)) \
1100 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1101 __FUNCTION__); \
1102 &_rtx->u.fld[_n]; }))
1103
1104 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1105 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1106 const enum rtx_code _code = GET_CODE (_rtx); \
1107 if (_code != (C1) && _code != (C2)) \
1108 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1109 __FUNCTION__); \
1110 &_rtx->u.fld[_n]; }))
1111
1112 #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \
1113 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1114 const enum rtx_code _code = GET_CODE (_rtx); \
1115 if (_code != (C1) && _code != (C2) && _code != (C3)) \
1116 rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \
1117 __LINE__, __FUNCTION__); \
1118 &_rtx->u.fld[_n]; }))
1119
1120 #define RTVEC_ELT(RTVEC, I) __extension__ \
1121 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1122 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1123 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1124 __FUNCTION__); \
1125 &_rtvec->elem[_i]; }))
1126
1127 #define XWINT(RTX, N) __extension__ \
1128 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1129 const enum rtx_code _code = GET_CODE (_rtx); \
1130 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1131 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1132 __FUNCTION__); \
1133 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1134 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1135 __FUNCTION__); \
1136 &_rtx->u.hwint[_n]; }))
1137
1138 #define CWI_ELT(RTX, I) __extension__ \
1139 (*({ __typeof (RTX) const _cwi = (RTX); \
1140 int _max = CWI_GET_NUM_ELEM (_cwi); \
1141 const int _i = (I); \
1142 if (_i < 0 || _i >= _max) \
1143 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1144 __FUNCTION__); \
1145 &_cwi->u.hwiv.elem[_i]; }))
1146
1147 #define XCWINT(RTX, N, C) __extension__ \
1148 (*({ __typeof (RTX) const _rtx = (RTX); \
1149 if (GET_CODE (_rtx) != (C)) \
1150 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1151 __FUNCTION__); \
1152 &_rtx->u.hwint[N]; }))
1153
1154 #define XCMWINT(RTX, N, C, M) __extension__ \
1155 (*({ __typeof (RTX) const _rtx = (RTX); \
1156 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1157 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1158 __LINE__, __FUNCTION__); \
1159 &_rtx->u.hwint[N]; }))
1160
1161 #define XCNMPRV(RTX, C, M) __extension__ \
1162 ({ __typeof (RTX) const _rtx = (RTX); \
1163 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1164 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1165 __LINE__, __FUNCTION__); \
1166 &_rtx->u.rv; })
1167
1168 #define XCNMPFV(RTX, C, M) __extension__ \
1169 ({ __typeof (RTX) const _rtx = (RTX); \
1170 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1171 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1172 __LINE__, __FUNCTION__); \
1173 &_rtx->u.fv; })
1174
1175 #define REG_CHECK(RTX) __extension__ \
1176 ({ __typeof (RTX) const _rtx = (RTX); \
1177 if (GET_CODE (_rtx) != REG) \
1178 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1179 __FUNCTION__); \
1180 &_rtx->u.reg; })
1181
1182 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1183 ({ __typeof (RTX) const _symbol = (RTX); \
1184 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1185 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1186 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1187 __FUNCTION__); \
1188 &_symbol->u.block_sym; })
1189
1190 #define HWIVEC_CHECK(RTX,C) __extension__ \
1191 ({ __typeof (RTX) const _symbol = (RTX); \
1192 RTL_CHECKC1 (_symbol, 0, C); \
1193 &_symbol->u.hwiv; })
1194
1195 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1196 const char *)
1197 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1198 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1199 const char *)
1200 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1201 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1202 int, const char *)
1203 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1204 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1205 int, const char *)
1206 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1207 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1208 const char *, int, const char *)
1209 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1210 extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1211 enum rtx_code, const char *, int,
1212 const char *)
1213 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1214 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1215 bool, const char *, int, const char *)
1216 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1217 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1218 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1219 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1220 const char *)
1221 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1222 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1223 const char *)
1224 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1225
1226 #else /* not ENABLE_RTL_CHECKING */
1227
1228 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1229 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1230 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1231 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1232 #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1233 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1234 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1235 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1236 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1237 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1238 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1239 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1240 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1241 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1242 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1243 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1244
1245 #endif
1246
1247 /* General accessor macros for accessing the flags of an rtx. */
1248
1249 /* Access an individual rtx flag, with no checking of any kind. */
1250 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1251
1252 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1253 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1254 ({ __typeof (RTX) const _rtx = (RTX); \
1255 if (GET_CODE (_rtx) != C1) \
1256 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1257 __FUNCTION__); \
1258 _rtx; })
1259
1260 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1261 ({ __typeof (RTX) const _rtx = (RTX); \
1262 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1263 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1264 __FUNCTION__); \
1265 _rtx; })
1266
1267 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1268 ({ __typeof (RTX) const _rtx = (RTX); \
1269 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1270 && GET_CODE (_rtx) != C3) \
1271 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1272 __FUNCTION__); \
1273 _rtx; })
1274
1275 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1276 ({ __typeof (RTX) const _rtx = (RTX); \
1277 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1278 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1279 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1280 __FUNCTION__); \
1281 _rtx; })
1282
1283 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1284 ({ __typeof (RTX) const _rtx = (RTX); \
1285 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1286 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1287 && GET_CODE (_rtx) != C5) \
1288 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1289 __FUNCTION__); \
1290 _rtx; })
1291
1292 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1293 __extension__ \
1294 ({ __typeof (RTX) const _rtx = (RTX); \
1295 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1296 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1297 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1298 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1299 __FUNCTION__); \
1300 _rtx; })
1301
1302 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1303 __extension__ \
1304 ({ __typeof (RTX) const _rtx = (RTX); \
1305 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1306 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1307 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1308 && GET_CODE (_rtx) != C7) \
1309 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1310 __FUNCTION__); \
1311 _rtx; })
1312
1313 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1314 __extension__ \
1315 ({ __typeof (RTX) const _rtx = (RTX); \
1316 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1317 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1318 __FUNCTION__); \
1319 _rtx; })
1320
1321 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1322 int, const char *)
1323 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1324 ;
1325
1326 #else /* not ENABLE_RTL_FLAG_CHECKING */
1327
1328 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1329 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1330 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1331 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1332 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1333 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1334 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1335 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1336 #endif
1337
1338 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1339 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1340 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1341 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1342 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1343 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1344 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1345 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1346 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1347 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1348
1349 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1350 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1351
1352 /* These are like XINT, etc. except that they expect a '0' field instead
1353 of the normal type code. */
1354
1355 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1356 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1357 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1358 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1359 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1360 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1361 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1362 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1363 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1364 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1365 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1366 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1367
1368 /* Access a '0' field with any type. */
1369 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1370
1371 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1372 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1373 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1374 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1375 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1376 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1377 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1378 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1379 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1380 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1381 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1382
1383 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1384 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1385
1386 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1387 #define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1388 \f
1389
1390 /* Methods of rtx_expr_list. */
1391
1392 inline rtx_expr_list *rtx_expr_list::next () const
1393 {
1394 rtx tmp = XEXP (this, 1);
1395 return safe_as_a <rtx_expr_list *> (tmp);
1396 }
1397
1398 inline rtx rtx_expr_list::element () const
1399 {
1400 return XEXP (this, 0);
1401 }
1402
1403 /* Methods of rtx_insn_list. */
1404
1405 inline rtx_insn_list *rtx_insn_list::next () const
1406 {
1407 rtx tmp = XEXP (this, 1);
1408 return safe_as_a <rtx_insn_list *> (tmp);
1409 }
1410
1411 inline rtx_insn *rtx_insn_list::insn () const
1412 {
1413 rtx tmp = XEXP (this, 0);
1414 return safe_as_a <rtx_insn *> (tmp);
1415 }
1416
1417 /* Methods of rtx_sequence. */
1418
1419 inline int rtx_sequence::len () const
1420 {
1421 return XVECLEN (this, 0);
1422 }
1423
1424 inline rtx rtx_sequence::element (int index) const
1425 {
1426 return XVECEXP (this, 0, index);
1427 }
1428
1429 inline rtx_insn *rtx_sequence::insn (int index) const
1430 {
1431 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1432 }
1433
1434 /* ACCESS MACROS for particular fields of insns. */
1435
1436 /* Holds a unique number for each insn.
1437 These are not necessarily sequentially increasing. */
1438 inline int INSN_UID (const_rtx insn)
1439 {
1440 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1441 (insn))->u2.insn_uid;
1442 }
1443 inline int& INSN_UID (rtx insn)
1444 {
1445 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1446 (insn))->u2.insn_uid;
1447 }
1448
1449 /* Chain insns together in sequence. */
1450
1451 /* For now these are split in two: an rvalue form:
1452 PREV_INSN/NEXT_INSN
1453 and an lvalue form:
1454 SET_NEXT_INSN/SET_PREV_INSN. */
1455
1456 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1457 {
1458 rtx prev = XEXP (insn, 0);
1459 return safe_as_a <rtx_insn *> (prev);
1460 }
1461
1462 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1463 {
1464 return XEXP (insn, 0);
1465 }
1466
1467 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1468 {
1469 rtx next = XEXP (insn, 1);
1470 return safe_as_a <rtx_insn *> (next);
1471 }
1472
1473 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1474 {
1475 return XEXP (insn, 1);
1476 }
1477
1478 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1479 {
1480 return XBBDEF (insn, 2);
1481 }
1482
1483 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1484 {
1485 return XBBDEF (insn, 2);
1486 }
1487
1488 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1489 {
1490 BLOCK_FOR_INSN (insn) = bb;
1491 }
1492
1493 /* The body of an insn. */
1494 inline rtx PATTERN (const_rtx insn)
1495 {
1496 return XEXP (insn, 3);
1497 }
1498
1499 inline rtx& PATTERN (rtx insn)
1500 {
1501 return XEXP (insn, 3);
1502 }
1503
1504 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1505 {
1506 return XUINT (insn, 4);
1507 }
1508
1509 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1510 {
1511 return XUINT (insn, 4);
1512 }
1513
1514 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1515 {
1516 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1517 }
1518
1519 /* LOCATION of an RTX if relevant. */
1520 #define RTL_LOCATION(X) (INSN_P (X) ? \
1521 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1522 : UNKNOWN_LOCATION)
1523
1524 /* Code number of instruction, from when it was recognized.
1525 -1 means this instruction has not been recognized yet. */
1526 #define INSN_CODE(INSN) XINT (INSN, 5)
1527
1528 inline rtvec rtx_jump_table_data::get_labels () const
1529 {
1530 rtx pat = PATTERN (this);
1531 if (GET_CODE (pat) == ADDR_VEC)
1532 return XVEC (pat, 0);
1533 else
1534 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1535 }
1536
1537 /* Return the mode of the data in the table, which is always a scalar
1538 integer. */
1539
1540 inline scalar_int_mode
1541 rtx_jump_table_data::get_data_mode () const
1542 {
1543 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1544 }
1545
1546 /* If LABEL is followed by a jump table, return the table, otherwise
1547 return null. */
1548
1549 inline rtx_jump_table_data *
1550 jump_table_for_label (const rtx_code_label *label)
1551 {
1552 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1553 }
1554
1555 #define RTX_FRAME_RELATED_P(RTX) \
1556 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1557 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1558
1559 /* 1 if JUMP RTX is a crossing jump. */
1560 #define CROSSING_JUMP_P(RTX) \
1561 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1562
1563 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1564 TREE_READONLY. */
1565 #define RTL_CONST_CALL_P(RTX) \
1566 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1567
1568 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1569 DECL_PURE_P. */
1570 #define RTL_PURE_CALL_P(RTX) \
1571 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1572
1573 /* 1 if RTX is a call to a const or pure function. */
1574 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1575 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1576
1577 /* 1 if RTX is a call to a looping const or pure function. Built from
1578 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1579 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1580 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1581
1582 /* 1 if RTX is a call_insn for a sibling call. */
1583 #define SIBLING_CALL_P(RTX) \
1584 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1585
1586 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1587 #define INSN_ANNULLED_BRANCH_P(RTX) \
1588 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1589
1590 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1591 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1592 executed if the branch is taken. For annulled branches with this bit
1593 clear, the insn should be executed only if the branch is not taken. */
1594 #define INSN_FROM_TARGET_P(RTX) \
1595 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1596 CALL_INSN)->in_struct)
1597
1598 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1599 See the comments for ADDR_DIFF_VEC in rtl.def. */
1600 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1601
1602 /* In a VALUE, the value cselib has assigned to RTX.
1603 This is a "struct cselib_val", see cselib.h. */
1604 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1605
1606 /* Holds a list of notes on what this insn does to various REGs.
1607 It is a chain of EXPR_LIST rtx's, where the second operand is the
1608 chain pointer and the first operand is the REG being described.
1609 The mode field of the EXPR_LIST contains not a real machine mode
1610 but a value from enum reg_note. */
1611 #define REG_NOTES(INSN) XEXP(INSN, 6)
1612
1613 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1614 question. */
1615 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1616
1617 enum reg_note
1618 {
1619 #define DEF_REG_NOTE(NAME) NAME,
1620 #include "reg-notes.def"
1621 #undef DEF_REG_NOTE
1622 REG_NOTE_MAX
1623 };
1624
1625 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1626 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1627 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1628 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1629
1630 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1631
1632 extern const char * const reg_note_name[];
1633 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1634
1635 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1636 USE, CLOBBER and SET expressions.
1637 USE expressions list the registers filled with arguments that
1638 are passed to the function.
1639 CLOBBER expressions document the registers explicitly clobbered
1640 by this CALL_INSN.
1641 SET expressions say that the return value of the call (the SET_DEST)
1642 is equivalent to a value available before the call (the SET_SRC).
1643 This kind of SET is used when the return value is predictable in
1644 advance. It is purely an optimisation hint; unlike USEs and CLOBBERs,
1645 it does not affect register liveness.
1646
1647 Pseudo registers cannot be mentioned in this list. */
1648 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1649
1650 /* The label-number of a code-label. The assembler label
1651 is made from `L' and the label-number printed in decimal.
1652 Label numbers are unique in a compilation. */
1653 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1654
1655 /* In a NOTE that is a line number, this is a string for the file name that the
1656 line is in. We use the same field to record block numbers temporarily in
1657 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1658 between ints and pointers if we use a different macro for the block number.)
1659 */
1660
1661 /* Opaque data. */
1662 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1663 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1664 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1665 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1666 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1667 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1668 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1669 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1670 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1671 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1672
1673 /* In a NOTE that is a line number, this is the line number.
1674 Other kinds of NOTEs are identified by negative numbers here. */
1675 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1676
1677 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1678 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1679 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1680
1681 /* Nonzero if INSN is a debug nonbind marker note,
1682 for which NOTE_MARKER_LOCATION can be used. */
1683 #define NOTE_MARKER_P(INSN) \
1684 (NOTE_P (INSN) && \
1685 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1686 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1687
1688 /* Variable declaration and the location of a variable. */
1689 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1690 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1691
1692 /* Initialization status of the variable in the location. Status
1693 can be unknown, uninitialized or initialized. See enumeration
1694 type below. */
1695 #define PAT_VAR_LOCATION_STATUS(PAT) \
1696 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1697 ->u2.var_location_status)
1698
1699 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1700 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1701 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1702 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1703 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1704 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1705 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1706
1707 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1708 location/value tracking annotation. */
1709 #define DEBUG_BIND_INSN_P(INSN) \
1710 (DEBUG_INSN_P (INSN) \
1711 && (GET_CODE (PATTERN (INSN)) \
1712 == VAR_LOCATION))
1713 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1714 source location marker. */
1715 #define DEBUG_MARKER_INSN_P(INSN) \
1716 (DEBUG_INSN_P (INSN) \
1717 && (GET_CODE (PATTERN (INSN)) \
1718 != VAR_LOCATION))
1719 /* Evaluate to the marker kind. */
1720 #define INSN_DEBUG_MARKER_KIND(INSN) \
1721 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1722 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1723 ? NOTE_INSN_BEGIN_STMT \
1724 : GET_MODE (PATTERN (INSN)) == BLKmode \
1725 ? NOTE_INSN_INLINE_ENTRY \
1726 : (enum insn_note)-1) \
1727 : (enum insn_note)-1)
1728 /* Create patterns for debug markers. These and the above abstract
1729 the representation, so that it's easier to get rid of the abuse of
1730 the mode to hold the marker kind. Other marker types are
1731 envisioned, so a single bit flag won't do; maybe separate RTL codes
1732 wouldn't be a problem. */
1733 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1734 gen_rtx_DEBUG_MARKER (VOIDmode)
1735 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1736 gen_rtx_DEBUG_MARKER (BLKmode)
1737
1738 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1739 #define INSN_VAR_LOCATION(INSN) \
1740 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1741 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1742 #define INSN_VAR_LOCATION_PTR(INSN) \
1743 (&PATTERN (INSN))
1744
1745 /* Accessors for a tree-expanded var location debug insn. */
1746 #define INSN_VAR_LOCATION_DECL(INSN) \
1747 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1748 #define INSN_VAR_LOCATION_LOC(INSN) \
1749 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1750 #define INSN_VAR_LOCATION_STATUS(INSN) \
1751 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1752
1753 /* Expand to the RTL that denotes an unknown variable location in a
1754 DEBUG_INSN. */
1755 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1756
1757 /* Determine whether X is such an unknown location. */
1758 #define VAR_LOC_UNKNOWN_P(X) \
1759 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1760
1761 /* 1 if RTX is emitted after a call, but it should take effect before
1762 the call returns. */
1763 #define NOTE_DURING_CALL_P(RTX) \
1764 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1765
1766 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1767 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1768
1769 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1770 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1771
1772 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1773 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1774
1775 /* Codes that appear in the NOTE_KIND field for kinds of notes
1776 that are not line numbers. These codes are all negative.
1777
1778 Notice that we do not try to use zero here for any of
1779 the special note codes because sometimes the source line
1780 actually can be zero! This happens (for example) when we
1781 are generating code for the per-translation-unit constructor
1782 and destructor routines for some C++ translation unit. */
1783
1784 enum insn_note
1785 {
1786 #define DEF_INSN_NOTE(NAME) NAME,
1787 #include "insn-notes.def"
1788 #undef DEF_INSN_NOTE
1789
1790 NOTE_INSN_MAX
1791 };
1792
1793 /* Names for NOTE insn's other than line numbers. */
1794
1795 extern const char * const note_insn_name[NOTE_INSN_MAX];
1796 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1797 (note_insn_name[(NOTE_CODE)])
1798
1799 /* The name of a label, in case it corresponds to an explicit label
1800 in the input source code. */
1801 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1802
1803 /* In jump.c, each label contains a count of the number
1804 of LABEL_REFs that point at it, so unused labels can be deleted. */
1805 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1806
1807 /* Labels carry a two-bit field composed of the ->jump and ->call
1808 bits. This field indicates whether the label is an alternate
1809 entry point, and if so, what kind. */
1810 enum label_kind
1811 {
1812 LABEL_NORMAL = 0, /* ordinary label */
1813 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1814 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1815 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1816 };
1817
1818 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1819
1820 /* Retrieve the kind of LABEL. */
1821 #define LABEL_KIND(LABEL) __extension__ \
1822 ({ __typeof (LABEL) const _label = (LABEL); \
1823 if (! LABEL_P (_label)) \
1824 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1825 __FUNCTION__); \
1826 (enum label_kind) ((_label->jump << 1) | _label->call); })
1827
1828 /* Set the kind of LABEL. */
1829 #define SET_LABEL_KIND(LABEL, KIND) do { \
1830 __typeof (LABEL) const _label = (LABEL); \
1831 const unsigned int _kind = (KIND); \
1832 if (! LABEL_P (_label)) \
1833 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1834 __FUNCTION__); \
1835 _label->jump = ((_kind >> 1) & 1); \
1836 _label->call = (_kind & 1); \
1837 } while (0)
1838
1839 #else
1840
1841 /* Retrieve the kind of LABEL. */
1842 #define LABEL_KIND(LABEL) \
1843 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1844
1845 /* Set the kind of LABEL. */
1846 #define SET_LABEL_KIND(LABEL, KIND) do { \
1847 rtx const _label = (LABEL); \
1848 const unsigned int _kind = (KIND); \
1849 _label->jump = ((_kind >> 1) & 1); \
1850 _label->call = (_kind & 1); \
1851 } while (0)
1852
1853 #endif /* rtl flag checking */
1854
1855 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1856
1857 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1858 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1859 be decremented and possibly the label can be deleted. */
1860 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1861
1862 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1863 {
1864 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1865 }
1866
1867 /* Methods of rtx_jump_insn. */
1868
1869 inline rtx rtx_jump_insn::jump_label () const
1870 {
1871 return JUMP_LABEL (this);
1872 }
1873
1874 inline rtx_code_label *rtx_jump_insn::jump_target () const
1875 {
1876 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1877 }
1878
1879 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1880 {
1881 JUMP_LABEL (this) = target;
1882 }
1883
1884 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1885 goes through all the LABEL_REFs that jump to that label. The chain
1886 eventually winds up at the CODE_LABEL: it is circular. */
1887 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1888
1889 /* Get the label that a LABEL_REF references. */
1890 static inline rtx_insn *
1891 label_ref_label (const_rtx ref)
1892 {
1893 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1894 }
1895
1896 /* Set the label that LABEL_REF ref refers to. */
1897
1898 static inline void
1899 set_label_ref_label (rtx ref, rtx_insn *label)
1900 {
1901 XCEXP (ref, 0, LABEL_REF) = label;
1902 }
1903 \f
1904 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1905 be used on RHS. Use SET_REGNO to change the value. */
1906 #define REGNO(RTX) (rhs_regno(RTX))
1907 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1908
1909 /* Return the number of consecutive registers in a REG. This is always
1910 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1911 hard registers. */
1912 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1913
1914 /* ORIGINAL_REGNO holds the number the register originally had; for a
1915 pseudo register turned into a hard reg this will hold the old pseudo
1916 register number. */
1917 #define ORIGINAL_REGNO(RTX) \
1918 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1919
1920 /* Force the REGNO macro to only be used on the lhs. */
1921 static inline unsigned int
1922 rhs_regno (const_rtx x)
1923 {
1924 return REG_CHECK (x)->regno;
1925 }
1926
1927 /* Return the final register in REG X plus one. */
1928 static inline unsigned int
1929 END_REGNO (const_rtx x)
1930 {
1931 return REGNO (x) + REG_NREGS (x);
1932 }
1933
1934 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1935 bypassing the df machinery. */
1936 static inline void
1937 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1938 {
1939 reg_info *reg = REG_CHECK (x);
1940 reg->regno = regno;
1941 reg->nregs = nregs;
1942 }
1943
1944 /* 1 if RTX is a reg or parallel that is the current function's return
1945 value. */
1946 #define REG_FUNCTION_VALUE_P(RTX) \
1947 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1948
1949 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1950 #define REG_USERVAR_P(RTX) \
1951 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1952
1953 /* 1 if RTX is a reg that holds a pointer value. */
1954 #define REG_POINTER(RTX) \
1955 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1956
1957 /* 1 if RTX is a mem that holds a pointer value. */
1958 #define MEM_POINTER(RTX) \
1959 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1960
1961 /* 1 if the given register REG corresponds to a hard register. */
1962 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1963
1964 /* 1 if the given register number REG_NO corresponds to a hard register. */
1965 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1966
1967 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1968 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1969 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1970
1971 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1972 elements actually needed to represent the constant.
1973 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1974 significant HOST_WIDE_INT. */
1975 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1976 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1977 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1978
1979 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1980 individual coefficients, in the form of a trailing_wide_ints structure. */
1981 #define CONST_POLY_INT_COEFFS(RTX) \
1982 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1983 CONST_POLY_INT)->u.cpi.coeffs)
1984
1985 /* For a CONST_DOUBLE:
1986 #if TARGET_SUPPORTS_WIDE_INT == 0
1987 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1988 low-order word and ..._HIGH the high-order.
1989 #endif
1990 For a float, there is a REAL_VALUE_TYPE structure, and
1991 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1992 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1993 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1994 #define CONST_DOUBLE_REAL_VALUE(r) \
1995 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1996
1997 #define CONST_FIXED_VALUE(r) \
1998 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1999 #define CONST_FIXED_VALUE_HIGH(r) \
2000 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
2001 #define CONST_FIXED_VALUE_LOW(r) \
2002 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
2003
2004 /* For a CONST_VECTOR, return element #n. */
2005 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
2006
2007 /* See rtl.texi for a description of these macros. */
2008 #define CONST_VECTOR_NPATTERNS(RTX) \
2009 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
2010 ->u2.const_vector.npatterns)
2011
2012 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
2013 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
2014 ->u2.const_vector.nelts_per_pattern)
2015
2016 #define CONST_VECTOR_DUPLICATE_P(RTX) \
2017 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2018
2019 #define CONST_VECTOR_STEPPED_P(RTX) \
2020 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2021
2022 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2023
2024 /* Return the number of elements encoded directly in a CONST_VECTOR. */
2025
2026 inline unsigned int
2027 const_vector_encoded_nelts (const_rtx x)
2028 {
2029 return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2030 }
2031
2032 /* For a CONST_VECTOR, return the number of elements in a vector. */
2033 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2034
2035 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2036 SUBREG_BYTE extracts the byte-number. */
2037
2038 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2039 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2040
2041 /* in rtlanal.c */
2042 /* Return the right cost to give to an operation
2043 to make the cost of the corresponding register-to-register instruction
2044 N times that of a fast register-to-register instruction. */
2045 #define COSTS_N_INSNS(N) ((N) * 4)
2046
2047 /* Maximum cost of an rtl expression. This value has the special meaning
2048 not to use an rtx with this cost under any circumstances. */
2049 #define MAX_COST INT_MAX
2050
2051 /* Return true if CODE always has VOIDmode. */
2052
2053 static inline bool
2054 always_void_p (enum rtx_code code)
2055 {
2056 return code == SET;
2057 }
2058
2059 /* A structure to hold all available cost information about an rtl
2060 expression. */
2061 struct full_rtx_costs
2062 {
2063 int speed;
2064 int size;
2065 };
2066
2067 /* Initialize a full_rtx_costs structure C to the maximum cost. */
2068 static inline void
2069 init_costs_to_max (struct full_rtx_costs *c)
2070 {
2071 c->speed = MAX_COST;
2072 c->size = MAX_COST;
2073 }
2074
2075 /* Initialize a full_rtx_costs structure C to zero cost. */
2076 static inline void
2077 init_costs_to_zero (struct full_rtx_costs *c)
2078 {
2079 c->speed = 0;
2080 c->size = 0;
2081 }
2082
2083 /* Compare two full_rtx_costs structures A and B, returning true
2084 if A < B when optimizing for speed. */
2085 static inline bool
2086 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2087 bool speed)
2088 {
2089 if (speed)
2090 return (a->speed < b->speed
2091 || (a->speed == b->speed && a->size < b->size));
2092 else
2093 return (a->size < b->size
2094 || (a->size == b->size && a->speed < b->speed));
2095 }
2096
2097 /* Increase both members of the full_rtx_costs structure C by the
2098 cost of N insns. */
2099 static inline void
2100 costs_add_n_insns (struct full_rtx_costs *c, int n)
2101 {
2102 c->speed += COSTS_N_INSNS (n);
2103 c->size += COSTS_N_INSNS (n);
2104 }
2105
2106 /* Describes the shape of a subreg:
2107
2108 inner_mode == the mode of the SUBREG_REG
2109 offset == the SUBREG_BYTE
2110 outer_mode == the mode of the SUBREG itself. */
2111 class subreg_shape {
2112 public:
2113 subreg_shape (machine_mode, poly_uint16, machine_mode);
2114 bool operator == (const subreg_shape &) const;
2115 bool operator != (const subreg_shape &) const;
2116 unsigned HOST_WIDE_INT unique_id () const;
2117
2118 machine_mode inner_mode;
2119 poly_uint16 offset;
2120 machine_mode outer_mode;
2121 };
2122
2123 inline
2124 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2125 poly_uint16 offset_in,
2126 machine_mode outer_mode_in)
2127 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2128 {}
2129
2130 inline bool
2131 subreg_shape::operator == (const subreg_shape &other) const
2132 {
2133 return (inner_mode == other.inner_mode
2134 && known_eq (offset, other.offset)
2135 && outer_mode == other.outer_mode);
2136 }
2137
2138 inline bool
2139 subreg_shape::operator != (const subreg_shape &other) const
2140 {
2141 return !operator == (other);
2142 }
2143
2144 /* Return an integer that uniquely identifies this shape. Structures
2145 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2146 current mode is anywhere near being 65536 bytes in size, so the
2147 id comfortably fits in an int. */
2148
2149 inline unsigned HOST_WIDE_INT
2150 subreg_shape::unique_id () const
2151 {
2152 { STATIC_ASSERT (MAX_MACHINE_MODE <= 256); }
2153 { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2154 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2155 int res = (int) inner_mode + ((int) outer_mode << 8);
2156 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2157 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2158 return res;
2159 }
2160
2161 /* Return the shape of a SUBREG rtx. */
2162
2163 static inline subreg_shape
2164 shape_of_subreg (const_rtx x)
2165 {
2166 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2167 SUBREG_BYTE (x), GET_MODE (x));
2168 }
2169
2170 /* Information about an address. This structure is supposed to be able
2171 to represent all supported target addresses. Please extend it if it
2172 is not yet general enough. */
2173 struct address_info {
2174 /* The mode of the value being addressed, or VOIDmode if this is
2175 a load-address operation with no known address mode. */
2176 machine_mode mode;
2177
2178 /* The address space. */
2179 addr_space_t as;
2180
2181 /* True if this is an RTX_AUTOINC address. */
2182 bool autoinc_p;
2183
2184 /* A pointer to the top-level address. */
2185 rtx *outer;
2186
2187 /* A pointer to the inner address, after all address mutations
2188 have been stripped from the top-level address. It can be one
2189 of the following:
2190
2191 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2192
2193 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2194 points to the step value, depending on whether the step is variable
2195 or constant respectively. SEGMENT is null.
2196
2197 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2198 with null fields evaluating to 0. */
2199 rtx *inner;
2200
2201 /* Components that make up *INNER. Each one may be null or nonnull.
2202 When nonnull, their meanings are as follows:
2203
2204 - *SEGMENT is the "segment" of memory to which the address refers.
2205 This value is entirely target-specific and is only called a "segment"
2206 because that's its most typical use. It contains exactly one UNSPEC,
2207 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2208 reloading.
2209
2210 - *BASE is a variable expression representing a base address.
2211 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2212
2213 - *INDEX is a variable expression representing an index value.
2214 It may be a scaled expression, such as a MULT. It has exactly
2215 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2216
2217 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2218 unmutated RTX_CONST_OBJ. */
2219 rtx *segment;
2220 rtx *base;
2221 rtx *index;
2222 rtx *disp;
2223
2224 rtx *segment_term;
2225 rtx *base_term;
2226 rtx *index_term;
2227 rtx *disp_term;
2228
2229 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2230 of BASE_TERM, otherwise it is null. */
2231 rtx *base_term2;
2232
2233 /* ADDRESS if this structure describes an address operand, MEM if
2234 it describes a MEM address. */
2235 enum rtx_code addr_outer_code;
2236
2237 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2238 enum rtx_code base_outer_code;
2239 };
2240
2241 /* This is used to bundle an rtx and a mode together so that the pair
2242 can be used with the wi:: routines. If we ever put modes into rtx
2243 integer constants, this should go away and then just pass an rtx in. */
2244 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2245
2246 namespace wi
2247 {
2248 template <>
2249 struct int_traits <rtx_mode_t>
2250 {
2251 static const enum precision_type precision_type = VAR_PRECISION;
2252 static const bool host_dependent_precision = false;
2253 /* This ought to be true, except for the special case that BImode
2254 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2255 static const bool is_sign_extended = false;
2256 static unsigned int get_precision (const rtx_mode_t &);
2257 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2258 const rtx_mode_t &);
2259 };
2260 }
2261
2262 inline unsigned int
2263 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2264 {
2265 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2266 }
2267
2268 inline wi::storage_ref
2269 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2270 unsigned int precision,
2271 const rtx_mode_t &x)
2272 {
2273 gcc_checking_assert (precision == get_precision (x));
2274 switch (GET_CODE (x.first))
2275 {
2276 case CONST_INT:
2277 if (precision < HOST_BITS_PER_WIDE_INT)
2278 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2279 targets is 1 rather than -1. */
2280 gcc_checking_assert (INTVAL (x.first)
2281 == sext_hwi (INTVAL (x.first), precision)
2282 || (x.second == BImode && INTVAL (x.first) == 1));
2283
2284 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2285
2286 case CONST_WIDE_INT:
2287 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2288 CONST_WIDE_INT_NUNITS (x.first), precision);
2289
2290 #if TARGET_SUPPORTS_WIDE_INT == 0
2291 case CONST_DOUBLE:
2292 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2293 #endif
2294
2295 default:
2296 gcc_unreachable ();
2297 }
2298 }
2299
2300 namespace wi
2301 {
2302 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2303 wide_int min_value (machine_mode, signop);
2304 wide_int max_value (machine_mode, signop);
2305 }
2306
2307 inline wi::hwi_with_prec
2308 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2309 {
2310 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2311 }
2312
2313 /* Produce the smallest number that is represented in MODE. The precision
2314 is taken from MODE and the sign from SGN. */
2315 inline wide_int
2316 wi::min_value (machine_mode mode, signop sgn)
2317 {
2318 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2319 }
2320
2321 /* Produce the largest number that is represented in MODE. The precision
2322 is taken from MODE and the sign from SGN. */
2323 inline wide_int
2324 wi::max_value (machine_mode mode, signop sgn)
2325 {
2326 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2327 }
2328
2329 namespace wi
2330 {
2331 typedef poly_int<NUM_POLY_INT_COEFFS,
2332 generic_wide_int <wide_int_ref_storage <false, false> > >
2333 rtx_to_poly_wide_ref;
2334 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2335 }
2336
2337 /* Return the value of a CONST_POLY_INT in its native precision. */
2338
2339 inline wi::rtx_to_poly_wide_ref
2340 const_poly_int_value (const_rtx x)
2341 {
2342 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2343 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2344 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2345 return res;
2346 }
2347
2348 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2349 can then be extracted using wi::to_poly_wide. */
2350
2351 inline bool
2352 poly_int_rtx_p (const_rtx x)
2353 {
2354 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2355 }
2356
2357 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2358 MODE is the mode of X. */
2359
2360 inline wi::rtx_to_poly_wide_ref
2361 wi::to_poly_wide (const_rtx x, machine_mode mode)
2362 {
2363 if (CONST_POLY_INT_P (x))
2364 return const_poly_int_value (x);
2365 return rtx_mode_t (const_cast<rtx> (x), mode);
2366 }
2367
2368 /* Return the value of X as a poly_int64. */
2369
2370 inline poly_int64
2371 rtx_to_poly_int64 (const_rtx x)
2372 {
2373 if (CONST_POLY_INT_P (x))
2374 {
2375 poly_int64 res;
2376 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2377 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2378 return res;
2379 }
2380 return INTVAL (x);
2381 }
2382
2383 /* Return true if arbitrary value X is an integer constant that can
2384 be represented as a poly_int64. Store the value in *RES if so,
2385 otherwise leave it unmodified. */
2386
2387 inline bool
2388 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2389 {
2390 if (CONST_INT_P (x))
2391 {
2392 *res = INTVAL (x);
2393 return true;
2394 }
2395 if (CONST_POLY_INT_P (x))
2396 {
2397 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2398 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2399 return false;
2400 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2401 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2402 return true;
2403 }
2404 return false;
2405 }
2406
2407 extern void init_rtlanal (void);
2408 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2409 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2410 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2411 struct full_rtx_costs *);
2412 extern bool native_encode_rtx (machine_mode, rtx, vec<target_unit> &,
2413 unsigned int, unsigned int);
2414 extern rtx native_decode_rtx (machine_mode, vec<target_unit>,
2415 unsigned int);
2416 extern rtx native_decode_vector_rtx (machine_mode, vec<target_unit>,
2417 unsigned int, unsigned int, unsigned int);
2418 extern poly_uint64 subreg_lsb (const_rtx);
2419 extern poly_uint64 subreg_size_lsb (poly_uint64, poly_uint64, poly_uint64);
2420 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2421 poly_uint64);
2422 extern bool read_modify_subreg_p (const_rtx);
2423
2424 /* Given a subreg's OUTER_MODE, INNER_MODE, and SUBREG_BYTE, return the
2425 bit offset at which the subreg begins (counting from the least significant
2426 bit of the operand). */
2427
2428 inline poly_uint64
2429 subreg_lsb_1 (machine_mode outer_mode, machine_mode inner_mode,
2430 poly_uint64 subreg_byte)
2431 {
2432 return subreg_size_lsb (GET_MODE_SIZE (outer_mode),
2433 GET_MODE_SIZE (inner_mode), subreg_byte);
2434 }
2435
2436 /* Return the subreg byte offset for a subreg whose outer mode is
2437 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2438 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2439 the inner value. This is the inverse of subreg_lsb_1 (which converts
2440 byte offsets to bit shifts). */
2441
2442 inline poly_uint64
2443 subreg_offset_from_lsb (machine_mode outer_mode,
2444 machine_mode inner_mode,
2445 poly_uint64 lsb_shift)
2446 {
2447 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2448 GET_MODE_SIZE (inner_mode), lsb_shift);
2449 }
2450
2451 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2452 poly_uint64, machine_mode);
2453 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2454 poly_uint64, machine_mode);
2455 extern unsigned int subreg_regno (const_rtx);
2456 extern int simplify_subreg_regno (unsigned int, machine_mode,
2457 poly_uint64, machine_mode);
2458 extern unsigned int subreg_nregs (const_rtx);
2459 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2460 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2461 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2462 extern bool constant_pool_constant_p (rtx);
2463 extern bool truncated_to_mode (machine_mode, const_rtx);
2464 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2465 extern void split_double (rtx, rtx *, rtx *);
2466 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2467 extern void decompose_address (struct address_info *, rtx *,
2468 machine_mode, addr_space_t, enum rtx_code);
2469 extern void decompose_lea_address (struct address_info *, rtx *);
2470 extern void decompose_mem_address (struct address_info *, rtx);
2471 extern void update_address (struct address_info *);
2472 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2473 extern enum rtx_code get_index_code (const struct address_info *);
2474
2475 /* 1 if RTX is a subreg containing a reg that is already known to be
2476 sign- or zero-extended from the mode of the subreg to the mode of
2477 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2478 extension.
2479
2480 When used as a LHS, is means that this extension must be done
2481 when assigning to SUBREG_REG. */
2482
2483 #define SUBREG_PROMOTED_VAR_P(RTX) \
2484 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2485
2486 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2487 this gives the necessary extensions:
2488 0 - signed (SPR_SIGNED)
2489 1 - normal unsigned (SPR_UNSIGNED)
2490 2 - value is both sign and unsign extended for mode
2491 (SPR_SIGNED_AND_UNSIGNED).
2492 -1 - pointer unsigned, which most often can be handled like unsigned
2493 extension, except for generating instructions where we need to
2494 emit special code (ptr_extend insns) on some architectures
2495 (SPR_POINTER). */
2496
2497 const int SRP_POINTER = -1;
2498 const int SRP_SIGNED = 0;
2499 const int SRP_UNSIGNED = 1;
2500 const int SRP_SIGNED_AND_UNSIGNED = 2;
2501
2502 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2503 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2504 do { \
2505 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2506 (RTX), SUBREG); \
2507 switch (VAL) \
2508 { \
2509 case SRP_POINTER: \
2510 _rtx->volatil = 0; \
2511 _rtx->unchanging = 0; \
2512 break; \
2513 case SRP_SIGNED: \
2514 _rtx->volatil = 0; \
2515 _rtx->unchanging = 1; \
2516 break; \
2517 case SRP_UNSIGNED: \
2518 _rtx->volatil = 1; \
2519 _rtx->unchanging = 0; \
2520 break; \
2521 case SRP_SIGNED_AND_UNSIGNED: \
2522 _rtx->volatil = 1; \
2523 _rtx->unchanging = 1; \
2524 break; \
2525 } \
2526 } while (0)
2527
2528 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2529 including SRP_SIGNED_AND_UNSIGNED if promoted for
2530 both signed and unsigned. */
2531 #define SUBREG_PROMOTED_GET(RTX) \
2532 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2533 + (RTX)->unchanging - 1)
2534
2535 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2536 #define SUBREG_PROMOTED_SIGN(RTX) \
2537 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2538 : (RTX)->unchanging - 1)
2539
2540 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2541 for SIGNED type. */
2542 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2543 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2544
2545 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2546 for UNSIGNED type. */
2547 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2548 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2549
2550 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2551 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2552 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2553 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2554 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2555
2556 /* True if the REG is the static chain register for some CALL_INSN. */
2557 #define STATIC_CHAIN_REG_P(RTX) \
2558 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2559
2560 /* True if the subreg was generated by LRA for reload insns. Such
2561 subregs are valid only during LRA. */
2562 #define LRA_SUBREG_P(RTX) \
2563 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2564
2565 /* Access various components of an ASM_OPERANDS rtx. */
2566
2567 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2568 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2569 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2570 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2571 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2572 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2573 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2574 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2575 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2576 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2577 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2578 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2579 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2580 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2581 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2582 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2583 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2584 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2585
2586 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2587 #define MEM_READONLY_P(RTX) \
2588 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2589
2590 /* 1 if RTX is a mem and we should keep the alias set for this mem
2591 unchanged when we access a component. Set to 1, or example, when we
2592 are already in a non-addressable component of an aggregate. */
2593 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2594 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2595
2596 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2597 #define MEM_VOLATILE_P(RTX) \
2598 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2599 ASM_INPUT)->volatil)
2600
2601 /* 1 if RTX is a mem that cannot trap. */
2602 #define MEM_NOTRAP_P(RTX) \
2603 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2604
2605 /* The memory attribute block. We provide access macros for each value
2606 in the block and provide defaults if none specified. */
2607 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2608
2609 /* The register attribute block. We provide access macros for each value
2610 in the block and provide defaults if none specified. */
2611 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2612
2613 #ifndef GENERATOR_FILE
2614 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2615 set, and may alias anything. Otherwise, the MEM can only alias
2616 MEMs in a conflicting alias set. This value is set in a
2617 language-dependent manner in the front-end, and should not be
2618 altered in the back-end. These set numbers are tested with
2619 alias_sets_conflict_p. */
2620 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2621
2622 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2623 refer to part of a DECL. It may also be a COMPONENT_REF. */
2624 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2625
2626 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2627 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2628
2629 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2630 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2631
2632 /* For a MEM rtx, the address space. */
2633 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2634
2635 /* For a MEM rtx, true if its MEM_SIZE is known. */
2636 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2637
2638 /* For a MEM rtx, the size in bytes of the MEM. */
2639 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2640
2641 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2642 mode as a default when STRICT_ALIGNMENT, but not if not. */
2643 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2644 #else
2645 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2646 #endif
2647
2648 /* For a REG rtx, the decl it is known to refer to, if it is known to
2649 refer to part of a DECL. */
2650 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2651
2652 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2653 HOST_WIDE_INT. */
2654 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2655
2656 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2657 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2658 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2659 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2660 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2661 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2662 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2663 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2664
2665 /* 1 if RTX is a label_ref for a nonlocal label. */
2666 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2667 REG_LABEL_TARGET note. */
2668 #define LABEL_REF_NONLOCAL_P(RTX) \
2669 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2670
2671 /* 1 if RTX is a code_label that should always be considered to be needed. */
2672 #define LABEL_PRESERVE_P(RTX) \
2673 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2674
2675 /* During sched, 1 if RTX is an insn that must be scheduled together
2676 with the preceding insn. */
2677 #define SCHED_GROUP_P(RTX) \
2678 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2679 JUMP_INSN, CALL_INSN)->in_struct)
2680
2681 /* For a SET rtx, SET_DEST is the place that is set
2682 and SET_SRC is the value it is set to. */
2683 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2684 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2685 #define SET_IS_RETURN_P(RTX) \
2686 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2687
2688 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2689 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2690 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2691
2692 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2693 conditionally executing the code on, COND_EXEC_CODE is the code
2694 to execute if the condition is true. */
2695 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2696 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2697
2698 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2699 constants pool. */
2700 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2701 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2702
2703 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2704 tree constant pool. This information is private to varasm.c. */
2705 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2706 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2707 (RTX), SYMBOL_REF)->frame_related)
2708
2709 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2710 #define SYMBOL_REF_FLAG(RTX) \
2711 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2712
2713 /* 1 if RTX is a symbol_ref that has been the library function in
2714 emit_library_call. */
2715 #define SYMBOL_REF_USED(RTX) \
2716 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2717
2718 /* 1 if RTX is a symbol_ref for a weak symbol. */
2719 #define SYMBOL_REF_WEAK(RTX) \
2720 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2721
2722 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2723 SYMBOL_REF_CONSTANT. */
2724 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2725
2726 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2727 pool symbol. */
2728 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2729 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2730
2731 /* The tree (decl or constant) associated with the symbol, or null. */
2732 #define SYMBOL_REF_DECL(RTX) \
2733 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2734
2735 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2736 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2737 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2738
2739 /* The rtx constant pool entry for a symbol, or null. */
2740 #define SYMBOL_REF_CONSTANT(RTX) \
2741 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2742
2743 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2744 information derivable from the tree decl associated with this symbol.
2745 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2746 decl. In some cases this is a bug. But beyond that, it's nice to cache
2747 this information to avoid recomputing it. Finally, this allows space for
2748 the target to store more than one bit of information, as with
2749 SYMBOL_REF_FLAG. */
2750 #define SYMBOL_REF_FLAGS(RTX) \
2751 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2752 ->u2.symbol_ref_flags)
2753
2754 /* These flags are common enough to be defined for all targets. They
2755 are computed by the default version of targetm.encode_section_info. */
2756
2757 /* Set if this symbol is a function. */
2758 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2759 #define SYMBOL_REF_FUNCTION_P(RTX) \
2760 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2761 /* Set if targetm.binds_local_p is true. */
2762 #define SYMBOL_FLAG_LOCAL (1 << 1)
2763 #define SYMBOL_REF_LOCAL_P(RTX) \
2764 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2765 /* Set if targetm.in_small_data_p is true. */
2766 #define SYMBOL_FLAG_SMALL (1 << 2)
2767 #define SYMBOL_REF_SMALL_P(RTX) \
2768 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2769 /* The three-bit field at [5:3] is true for TLS variables; use
2770 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2771 #define SYMBOL_FLAG_TLS_SHIFT 3
2772 #define SYMBOL_REF_TLS_MODEL(RTX) \
2773 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2774 /* Set if this symbol is not defined in this translation unit. */
2775 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2776 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2777 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2778 /* Set if this symbol has a block_symbol structure associated with it. */
2779 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2780 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2781 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2782 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2783 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2784 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2785 #define SYMBOL_REF_ANCHOR_P(RTX) \
2786 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2787
2788 /* Subsequent bits are available for the target to use. */
2789 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2790 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2791
2792 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2793 structure to which the symbol belongs, or NULL if it has not been
2794 assigned a block. */
2795 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2796
2797 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2798 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2799 RTX has not yet been assigned to a block, or it has not been given an
2800 offset within that block. */
2801 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2802
2803 /* True if RTX is flagged to be a scheduling barrier. */
2804 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2805 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2806
2807 /* Indicate whether the machine has any sort of auto increment addressing.
2808 If not, we can avoid checking for REG_INC notes. */
2809
2810 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2811 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2812 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2813 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2814 #define AUTO_INC_DEC 1
2815 #else
2816 #define AUTO_INC_DEC 0
2817 #endif
2818
2819 /* Define a macro to look for REG_INC notes,
2820 but save time on machines where they never exist. */
2821
2822 #if AUTO_INC_DEC
2823 #define FIND_REG_INC_NOTE(INSN, REG) \
2824 ((REG) != NULL_RTX && REG_P ((REG)) \
2825 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2826 : find_reg_note ((INSN), REG_INC, (REG)))
2827 #else
2828 #define FIND_REG_INC_NOTE(INSN, REG) 0
2829 #endif
2830
2831 #ifndef HAVE_PRE_INCREMENT
2832 #define HAVE_PRE_INCREMENT 0
2833 #endif
2834
2835 #ifndef HAVE_PRE_DECREMENT
2836 #define HAVE_PRE_DECREMENT 0
2837 #endif
2838
2839 #ifndef HAVE_POST_INCREMENT
2840 #define HAVE_POST_INCREMENT 0
2841 #endif
2842
2843 #ifndef HAVE_POST_DECREMENT
2844 #define HAVE_POST_DECREMENT 0
2845 #endif
2846
2847 #ifndef HAVE_POST_MODIFY_DISP
2848 #define HAVE_POST_MODIFY_DISP 0
2849 #endif
2850
2851 #ifndef HAVE_POST_MODIFY_REG
2852 #define HAVE_POST_MODIFY_REG 0
2853 #endif
2854
2855 #ifndef HAVE_PRE_MODIFY_DISP
2856 #define HAVE_PRE_MODIFY_DISP 0
2857 #endif
2858
2859 #ifndef HAVE_PRE_MODIFY_REG
2860 #define HAVE_PRE_MODIFY_REG 0
2861 #endif
2862
2863
2864 /* Some architectures do not have complete pre/post increment/decrement
2865 instruction sets, or only move some modes efficiently. These macros
2866 allow us to tune autoincrement generation. */
2867
2868 #ifndef USE_LOAD_POST_INCREMENT
2869 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2870 #endif
2871
2872 #ifndef USE_LOAD_POST_DECREMENT
2873 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2874 #endif
2875
2876 #ifndef USE_LOAD_PRE_INCREMENT
2877 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2878 #endif
2879
2880 #ifndef USE_LOAD_PRE_DECREMENT
2881 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2882 #endif
2883
2884 #ifndef USE_STORE_POST_INCREMENT
2885 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2886 #endif
2887
2888 #ifndef USE_STORE_POST_DECREMENT
2889 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2890 #endif
2891
2892 #ifndef USE_STORE_PRE_INCREMENT
2893 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2894 #endif
2895
2896 #ifndef USE_STORE_PRE_DECREMENT
2897 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2898 #endif
2899 \f
2900 /* Nonzero when we are generating CONCATs. */
2901 extern int generating_concat_p;
2902
2903 /* Nonzero when we are expanding trees to RTL. */
2904 extern int currently_expanding_to_rtl;
2905
2906 /* Generally useful functions. */
2907
2908 #ifndef GENERATOR_FILE
2909 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2910 rather than size. */
2911
2912 static inline int
2913 set_rtx_cost (rtx x, bool speed_p)
2914 {
2915 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2916 }
2917
2918 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2919
2920 static inline void
2921 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2922 {
2923 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2924 }
2925
2926 /* Return the cost of moving X into a register, relative to the cost
2927 of a register move. SPEED_P is true if optimizing for speed rather
2928 than size. */
2929
2930 static inline int
2931 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2932 {
2933 return rtx_cost (x, mode, SET, 1, speed_p);
2934 }
2935
2936 /* Like set_src_cost, but return both the speed and size costs in C. */
2937
2938 static inline void
2939 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2940 {
2941 get_full_rtx_cost (x, mode, SET, 1, c);
2942 }
2943 #endif
2944
2945 /* A convenience macro to validate the arguments of a zero_extract
2946 expression. It determines whether SIZE lies inclusively within
2947 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2948 and the sum lies inclusively within [1, RANGE]. RANGE must be
2949 >= 1, but SIZE and POS may be negative. */
2950 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2951 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2952 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2953 - (unsigned HOST_WIDE_INT)(POS)))
2954
2955 /* In explow.c */
2956 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2957 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2958 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2959 extern HOST_WIDE_INT get_stack_check_protect (void);
2960
2961 /* In rtl.c */
2962 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2963 inline rtx
2964 rtx_init (rtx rt, RTX_CODE code)
2965 {
2966 memset (rt, 0, RTX_HDR_SIZE);
2967 PUT_CODE (rt, code);
2968 return rt;
2969 }
2970 #define rtx_alloca(code) \
2971 rtx_init ((rtx) alloca (RTX_CODE_SIZE ((code))), (code))
2972 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2973 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2974 #define const_wide_int_alloc(NWORDS) \
2975 rtx_alloc_v (CONST_WIDE_INT, \
2976 (sizeof (struct hwivec_def) \
2977 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2978
2979 extern rtvec rtvec_alloc (int);
2980 extern rtvec shallow_copy_rtvec (rtvec);
2981 extern bool shared_const_p (const_rtx);
2982 extern rtx copy_rtx (rtx);
2983 extern enum rtx_code classify_insn (rtx);
2984 extern void dump_rtx_statistics (void);
2985
2986 /* In emit-rtl.c */
2987 extern rtx copy_rtx_if_shared (rtx);
2988
2989 /* In rtl.c */
2990 extern unsigned int rtx_size (const_rtx);
2991 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2992 extern int rtx_equal_p (const_rtx, const_rtx);
2993 extern bool rtvec_all_equal_p (const_rtvec);
2994
2995 /* Return true if X is a vector constant with a duplicated element value. */
2996
2997 inline bool
2998 const_vec_duplicate_p (const_rtx x)
2999 {
3000 return (GET_CODE (x) == CONST_VECTOR
3001 && CONST_VECTOR_NPATTERNS (x) == 1
3002 && CONST_VECTOR_DUPLICATE_P (x));
3003 }
3004
3005 /* Return true if X is a vector constant with a duplicated element value.
3006 Store the duplicated element in *ELT if so. */
3007
3008 template <typename T>
3009 inline bool
3010 const_vec_duplicate_p (T x, T *elt)
3011 {
3012 if (const_vec_duplicate_p (x))
3013 {
3014 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
3015 return true;
3016 }
3017 return false;
3018 }
3019
3020 /* Return true if X is a vector with a duplicated element value, either
3021 constant or nonconstant. Store the duplicated element in *ELT if so. */
3022
3023 template <typename T>
3024 inline bool
3025 vec_duplicate_p (T x, T *elt)
3026 {
3027 if (GET_CODE (x) == VEC_DUPLICATE
3028 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
3029 {
3030 *elt = XEXP (x, 0);
3031 return true;
3032 }
3033 return const_vec_duplicate_p (x, elt);
3034 }
3035
3036 /* If X is a vector constant with a duplicated element value, return that
3037 element value, otherwise return X. */
3038
3039 template <typename T>
3040 inline T
3041 unwrap_const_vec_duplicate (T x)
3042 {
3043 if (const_vec_duplicate_p (x))
3044 x = CONST_VECTOR_ELT (x, 0);
3045 return x;
3046 }
3047
3048 /* In emit-rtl.c. */
3049 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3050 extern rtx const_vector_elt (const_rtx, unsigned int);
3051 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3052
3053 /* Return true if X is an integer constant vector that contains a linear
3054 series of the form:
3055
3056 { B, B + S, B + 2 * S, B + 3 * S, ... }
3057
3058 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3059
3060 inline bool
3061 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3062 {
3063 if (GET_CODE (x) == CONST_VECTOR
3064 && CONST_VECTOR_NPATTERNS (x) == 1
3065 && !CONST_VECTOR_DUPLICATE_P (x))
3066 return const_vec_series_p_1 (x, base_out, step_out);
3067 return false;
3068 }
3069
3070 /* Return true if X is a vector that contains a linear series of the
3071 form:
3072
3073 { B, B + S, B + 2 * S, B + 3 * S, ... }
3074
3075 where B and S are constant or nonconstant. Store B and S in
3076 *BASE_OUT and *STEP_OUT on sucess. */
3077
3078 inline bool
3079 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3080 {
3081 if (GET_CODE (x) == VEC_SERIES)
3082 {
3083 *base_out = XEXP (x, 0);
3084 *step_out = XEXP (x, 1);
3085 return true;
3086 }
3087 return const_vec_series_p (x, base_out, step_out);
3088 }
3089
3090 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3091
3092 inline scalar_int_mode
3093 subreg_unpromoted_mode (rtx x)
3094 {
3095 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3096 return as_a <scalar_int_mode> (GET_MODE (x));
3097 }
3098
3099 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3100
3101 inline scalar_int_mode
3102 subreg_promoted_mode (rtx x)
3103 {
3104 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3105 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3106 }
3107
3108 /* In emit-rtl.c */
3109 extern rtvec gen_rtvec_v (int, rtx *);
3110 extern rtvec gen_rtvec_v (int, rtx_insn **);
3111 extern rtx gen_reg_rtx (machine_mode);
3112 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3113 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3114 extern rtx gen_reg_rtx_and_attrs (rtx);
3115 extern rtx_code_label *gen_label_rtx (void);
3116 extern rtx gen_lowpart_common (machine_mode, rtx);
3117
3118 /* In cse.c */
3119 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3120
3121 /* In emit-rtl.c */
3122 extern rtx gen_highpart (machine_mode, rtx);
3123 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3124 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3125
3126 /* In emit-rtl.c */
3127 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3128 extern int subreg_lowpart_p (const_rtx);
3129 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3130
3131 /* Return true if a subreg of mode OUTERMODE would only access part of
3132 an inner register with mode INNERMODE. The other bits of the inner
3133 register would then be "don't care" on read. The behavior for writes
3134 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3135 chunk would be clobbered but other bits would be preserved. */
3136
3137 inline bool
3138 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3139 {
3140 /* Modes involved in a subreg must be ordered. In particular, we must
3141 always know at compile time whether the subreg is paradoxical. */
3142 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3143 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3144 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3145 return maybe_lt (outer_prec, inner_prec);
3146 }
3147
3148 /* Likewise return true if X is a subreg that is smaller than the inner
3149 register. Use read_modify_subreg_p to test whether writing to such
3150 a subreg preserves any part of the inner register. */
3151
3152 inline bool
3153 partial_subreg_p (const_rtx x)
3154 {
3155 if (GET_CODE (x) != SUBREG)
3156 return false;
3157 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3158 }
3159
3160 /* Return true if a subreg with the given outer and inner modes is
3161 paradoxical. */
3162
3163 inline bool
3164 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3165 {
3166 /* Modes involved in a subreg must be ordered. In particular, we must
3167 always know at compile time whether the subreg is paradoxical. */
3168 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3169 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3170 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3171 return maybe_gt (outer_prec, inner_prec);
3172 }
3173
3174 /* Return true if X is a paradoxical subreg, false otherwise. */
3175
3176 inline bool
3177 paradoxical_subreg_p (const_rtx x)
3178 {
3179 if (GET_CODE (x) != SUBREG)
3180 return false;
3181 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3182 }
3183
3184 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3185
3186 inline poly_uint64
3187 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3188 {
3189 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3190 GET_MODE_SIZE (innermode));
3191 }
3192
3193 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3194 return the smaller of the two modes if they are different sizes,
3195 otherwise return the outer mode. */
3196
3197 inline machine_mode
3198 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3199 {
3200 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3201 }
3202
3203 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3204 return the mode that is big enough to hold both the outer and inner
3205 values. Prefer the outer mode in the event of a tie. */
3206
3207 inline machine_mode
3208 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3209 {
3210 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3211 }
3212
3213 /* Likewise for subreg X. */
3214
3215 inline machine_mode
3216 wider_subreg_mode (const_rtx x)
3217 {
3218 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3219 }
3220
3221 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3222
3223 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3224
3225 inline poly_uint64
3226 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3227 {
3228 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3229 GET_MODE_SIZE (innermode));
3230 }
3231
3232 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3233 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3234 poly_uint64);
3235 extern poly_int64 subreg_memory_offset (const_rtx);
3236 extern rtx make_safe_from (rtx, rtx);
3237 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3238 addr_space_t, bool, bool);
3239 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3240 addr_space_t);
3241 #define convert_memory_address(to_mode,x) \
3242 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3243 extern const char *get_insn_name (int);
3244 extern rtx_insn *get_last_insn_anywhere (void);
3245 extern rtx_insn *get_first_nonnote_insn (void);
3246 extern rtx_insn *get_last_nonnote_insn (void);
3247 extern void start_sequence (void);
3248 extern void push_to_sequence (rtx_insn *);
3249 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3250 extern void end_sequence (void);
3251 #if TARGET_SUPPORTS_WIDE_INT == 0
3252 extern double_int rtx_to_double_int (const_rtx);
3253 #endif
3254 extern void cwi_output_hex (FILE *, const_rtx);
3255 #if TARGET_SUPPORTS_WIDE_INT == 0
3256 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3257 machine_mode);
3258 #endif
3259 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3260
3261 /* In varasm.c */
3262 extern rtx force_const_mem (machine_mode, rtx);
3263
3264 /* In varasm.c */
3265
3266 struct function;
3267 extern rtx get_pool_constant (const_rtx);
3268 extern rtx get_pool_constant_mark (rtx, bool *);
3269 extern fixed_size_mode get_pool_mode (const_rtx);
3270 extern rtx simplify_subtraction (rtx);
3271 extern void decide_function_section (tree);
3272
3273 /* In emit-rtl.c */
3274 extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3275 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3276 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3277 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3278 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3279 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3280 location_t);
3281 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3282 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3283 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3284 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3285 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3286 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3287 extern rtx_barrier *emit_barrier_before (rtx_insn *);
3288 extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3289 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3290 extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3291 extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3292 extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3293 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3294 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3295 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3296 extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3297 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3298 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3299 extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3300 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3301 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3302 extern rtx_barrier *emit_barrier_after (rtx_insn *);
3303 extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3304 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3305 extern rtx_insn *emit_insn (rtx);
3306 extern rtx_insn *emit_debug_insn (rtx);
3307 extern rtx_insn *emit_jump_insn (rtx);
3308 extern rtx_insn *emit_call_insn (rtx);
3309 extern rtx_code_label *emit_label (rtx);
3310 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3311 extern rtx_barrier *emit_barrier (void);
3312 extern rtx_note *emit_note (enum insn_note);
3313 extern rtx_note *emit_note_copy (rtx_note *);
3314 extern rtx_insn *gen_clobber (rtx);
3315 extern rtx_insn *emit_clobber (rtx);
3316 extern rtx_insn *gen_use (rtx);
3317 extern rtx_insn *emit_use (rtx);
3318 extern rtx_insn *make_insn_raw (rtx);
3319 extern void add_function_usage_to (rtx, rtx);
3320 extern rtx_call_insn *last_call_insn (void);
3321 extern rtx_insn *previous_insn (rtx_insn *);
3322 extern rtx_insn *next_insn (rtx_insn *);
3323 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3324 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3325 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3326 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3327 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3328 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3329 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3330 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3331 extern rtx_insn *prev_real_insn (rtx_insn *);
3332 extern rtx_insn *next_real_insn (rtx_insn *);
3333 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3334 extern rtx_insn *next_real_nondebug_insn (rtx);
3335 extern rtx_insn *prev_active_insn (rtx_insn *);
3336 extern rtx_insn *next_active_insn (rtx_insn *);
3337 extern int active_insn_p (const rtx_insn *);
3338 extern rtx_insn *next_cc0_user (rtx_insn *);
3339 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3340
3341 /* In emit-rtl.c */
3342 extern int insn_line (const rtx_insn *);
3343 extern const char * insn_file (const rtx_insn *);
3344 extern tree insn_scope (const rtx_insn *);
3345 extern expanded_location insn_location (const rtx_insn *);
3346 extern location_t prologue_location, epilogue_location;
3347
3348 /* In jump.c */
3349 extern enum rtx_code reverse_condition (enum rtx_code);
3350 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3351 extern enum rtx_code swap_condition (enum rtx_code);
3352 extern enum rtx_code unsigned_condition (enum rtx_code);
3353 extern enum rtx_code signed_condition (enum rtx_code);
3354 extern void mark_jump_label (rtx, rtx_insn *, int);
3355
3356 /* Return true if integer comparison operator CODE interprets its operands
3357 as unsigned. */
3358
3359 inline bool
3360 unsigned_condition_p (enum rtx_code code)
3361 {
3362 return unsigned_condition (code) == code;
3363 }
3364
3365 /* In jump.c */
3366 extern rtx_insn *delete_related_insns (rtx);
3367
3368 /* In recog.c */
3369 extern rtx *find_constant_term_loc (rtx *);
3370
3371 /* In emit-rtl.c */
3372 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3373
3374 /* In insn-recog.c (generated by genrecog). */
3375 extern rtx_insn *split_insns (rtx, rtx_insn *);
3376
3377 /* In simplify-rtx.c */
3378
3379 /* A class that records the context in which a simplification
3380 is being mode. */
3381 class simplify_context
3382 {
3383 public:
3384 rtx simplify_unary_operation (rtx_code, machine_mode, rtx, machine_mode);
3385 rtx simplify_binary_operation (rtx_code, machine_mode, rtx, rtx);
3386 rtx simplify_ternary_operation (rtx_code, machine_mode, machine_mode,
3387 rtx, rtx, rtx);
3388 rtx simplify_relational_operation (rtx_code, machine_mode, machine_mode,
3389 rtx, rtx);
3390 rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3391
3392 rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3393
3394 rtx simplify_merge_mask (rtx, rtx, int);
3395
3396 rtx simplify_gen_unary (rtx_code, machine_mode, rtx, machine_mode);
3397 rtx simplify_gen_binary (rtx_code, machine_mode, rtx, rtx);
3398 rtx simplify_gen_ternary (rtx_code, machine_mode, machine_mode,
3399 rtx, rtx, rtx);
3400 rtx simplify_gen_relational (rtx_code, machine_mode, machine_mode, rtx, rtx);
3401 rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3402
3403 /* Tracks the level of MEM nesting for the value being simplified:
3404 0 means the value is not in a MEM, >0 means it is. This is needed
3405 because the canonical representation of multiplication is different
3406 inside a MEM than outside. */
3407 unsigned int mem_depth = 0;
3408
3409 private:
3410 rtx simplify_truncation (machine_mode, rtx, machine_mode);
3411 rtx simplify_byte_swapping_operation (rtx_code, machine_mode, rtx, rtx);
3412 rtx simplify_associative_operation (rtx_code, machine_mode, rtx, rtx);
3413 rtx simplify_distributive_operation (rtx_code, machine_mode, rtx, rtx);
3414 rtx simplify_logical_relational_operation (rtx_code, machine_mode, rtx, rtx);
3415 rtx simplify_binary_operation_series (rtx_code, machine_mode, rtx, rtx);
3416 rtx simplify_distribute_over_subregs (rtx_code, machine_mode, rtx, rtx);
3417 rtx simplify_shift_const_int (rtx_code, machine_mode, rtx, unsigned int);
3418 rtx simplify_plus_minus (rtx_code, machine_mode, rtx, rtx);
3419 rtx simplify_cond_clz_ctz (rtx, rtx_code, rtx, rtx);
3420
3421 rtx simplify_unary_operation_1 (rtx_code, machine_mode, rtx);
3422 rtx simplify_binary_operation_1 (rtx_code, machine_mode, rtx, rtx, rtx, rtx);
3423 rtx simplify_ternary_operation_1 (rtx_code, machine_mode, machine_mode,
3424 rtx, rtx, rtx);
3425 rtx simplify_relational_operation_1 (rtx_code, machine_mode, machine_mode,
3426 rtx, rtx);
3427 };
3428
3429 inline rtx
3430 simplify_unary_operation (rtx_code code, machine_mode mode, rtx op,
3431 machine_mode op_mode)
3432 {
3433 return simplify_context ().simplify_unary_operation (code, mode, op,
3434 op_mode);
3435 }
3436
3437 inline rtx
3438 simplify_binary_operation (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3439 {
3440 return simplify_context ().simplify_binary_operation (code, mode, op0, op1);
3441 }
3442
3443 inline rtx
3444 simplify_ternary_operation (rtx_code code, machine_mode mode,
3445 machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
3446 {
3447 return simplify_context ().simplify_ternary_operation (code, mode, op0_mode,
3448 op0, op1, op2);
3449 }
3450
3451 inline rtx
3452 simplify_relational_operation (rtx_code code, machine_mode mode,
3453 machine_mode op_mode, rtx op0, rtx op1)
3454 {
3455 return simplify_context ().simplify_relational_operation (code, mode,
3456 op_mode, op0, op1);
3457 }
3458
3459 inline rtx
3460 simplify_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3461 poly_uint64 byte)
3462 {
3463 return simplify_context ().simplify_subreg (outermode, op, innermode, byte);
3464 }
3465
3466 inline rtx
3467 simplify_gen_unary (rtx_code code, machine_mode mode, rtx op,
3468 machine_mode op_mode)
3469 {
3470 return simplify_context ().simplify_gen_unary (code, mode, op, op_mode);
3471 }
3472
3473 inline rtx
3474 simplify_gen_binary (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3475 {
3476 return simplify_context ().simplify_gen_binary (code, mode, op0, op1);
3477 }
3478
3479 inline rtx
3480 simplify_gen_ternary (rtx_code code, machine_mode mode, machine_mode op0_mode,
3481 rtx op0, rtx op1, rtx op2)
3482 {
3483 return simplify_context ().simplify_gen_ternary (code, mode, op0_mode,
3484 op0, op1, op2);
3485 }
3486
3487 inline rtx
3488 simplify_gen_relational (rtx_code code, machine_mode mode,
3489 machine_mode op_mode, rtx op0, rtx op1)
3490 {
3491 return simplify_context ().simplify_gen_relational (code, mode, op_mode,
3492 op0, op1);
3493 }
3494
3495 inline rtx
3496 simplify_gen_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3497 poly_uint64 byte)
3498 {
3499 return simplify_context ().simplify_gen_subreg (outermode, op,
3500 innermode, byte);
3501 }
3502
3503 inline rtx
3504 lowpart_subreg (machine_mode outermode, rtx op, machine_mode innermode)
3505 {
3506 return simplify_context ().lowpart_subreg (outermode, op, innermode);
3507 }
3508
3509 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3510 rtx, machine_mode);
3511 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3512 rtx, rtx);
3513 extern rtx simplify_const_relational_operation (enum rtx_code,
3514 machine_mode, rtx, rtx);
3515 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3516 rtx (*fn) (rtx, const_rtx, void *), void *);
3517 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3518 extern rtx simplify_rtx (const_rtx);
3519 extern rtx avoid_constant_pool_reference (rtx);
3520 extern rtx delegitimize_mem_from_attrs (rtx);
3521 extern bool mode_signbit_p (machine_mode, const_rtx);
3522 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3523 extern bool val_signbit_known_set_p (machine_mode,
3524 unsigned HOST_WIDE_INT);
3525 extern bool val_signbit_known_clear_p (machine_mode,
3526 unsigned HOST_WIDE_INT);
3527
3528 /* In reginfo.c */
3529 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3530 const predefined_function_abi *);
3531 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3532
3533 /* In emit-rtl.c */
3534 extern rtx set_for_reg_notes (rtx);
3535 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3536 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3537 extern void set_insn_deleted (rtx_insn *);
3538
3539 /* Functions in rtlanal.c */
3540
3541 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3542 extern rtx simple_regno_set (rtx, unsigned int);
3543 extern bool contains_symbol_ref_p (const_rtx);
3544 extern bool contains_symbolic_reference_p (const_rtx);
3545 extern bool contains_constant_pool_address_p (const_rtx);
3546 extern void add_auto_inc_notes (rtx_insn *, rtx);
3547
3548 /* Handle the cheap and common cases inline for performance. */
3549
3550 inline rtx single_set (const rtx_insn *insn)
3551 {
3552 if (!INSN_P (insn))
3553 return NULL_RTX;
3554
3555 if (GET_CODE (PATTERN (insn)) == SET)
3556 return PATTERN (insn);
3557
3558 /* Defer to the more expensive case. */
3559 return single_set_2 (insn, PATTERN (insn));
3560 }
3561
3562 extern scalar_int_mode get_address_mode (rtx mem);
3563 extern int rtx_addr_can_trap_p (const_rtx);
3564 extern bool nonzero_address_p (const_rtx);
3565 extern int rtx_unstable_p (const_rtx);
3566 extern bool rtx_varies_p (const_rtx, bool);
3567 extern bool rtx_addr_varies_p (const_rtx, bool);
3568 extern rtx get_call_rtx_from (const rtx_insn *);
3569 extern tree get_call_fndecl (const rtx_insn *);
3570 extern HOST_WIDE_INT get_integer_term (const_rtx);
3571 extern rtx get_related_value (const_rtx);
3572 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3573 extern void split_const (rtx, rtx *, rtx *);
3574 extern rtx strip_offset (rtx, poly_int64_pod *);
3575 extern poly_int64 get_args_size (const_rtx);
3576 extern bool unsigned_reg_p (rtx);
3577 extern int reg_mentioned_p (const_rtx, const_rtx);
3578 extern int count_occurrences (const_rtx, const_rtx, int);
3579 extern int reg_referenced_p (const_rtx, const_rtx);
3580 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3581 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3582 extern int commutative_operand_precedence (rtx);
3583 extern bool swap_commutative_operands_p (rtx, rtx);
3584 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3585 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3586 extern int modified_in_p (const_rtx, const_rtx);
3587 extern int reg_set_p (const_rtx, const_rtx);
3588 extern int multiple_sets (const_rtx);
3589 extern int set_noop_p (const_rtx);
3590 extern int noop_move_p (const rtx_insn *);
3591 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3592 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3593 extern const_rtx set_of (const_rtx, const_rtx);
3594 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3595 extern void record_hard_reg_uses (rtx *, void *);
3596 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3597 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3598 extern void note_pattern_stores (const_rtx,
3599 void (*) (rtx, const_rtx, void *), void *);
3600 extern void note_stores (const rtx_insn *,
3601 void (*) (rtx, const_rtx, void *), void *);
3602 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3603 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3604 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3605 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3606 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3607 extern rtx find_reg_equal_equiv_note (const_rtx);
3608 extern rtx find_constant_src (const rtx_insn *);
3609 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3610 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3611 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3612 extern void add_reg_note (rtx, enum reg_note, rtx);
3613 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3614 extern void add_args_size_note (rtx_insn *, poly_int64);
3615 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3616 extern rtx duplicate_reg_note (rtx);
3617 extern void remove_note (rtx_insn *, const_rtx);
3618 extern bool remove_reg_equal_equiv_notes (rtx_insn *, bool = false);
3619 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3620 extern int side_effects_p (const_rtx);
3621 extern int volatile_refs_p (const_rtx);
3622 extern int volatile_insn_p (const_rtx);
3623 extern int may_trap_p_1 (const_rtx, unsigned);
3624 extern int may_trap_p (const_rtx);
3625 extern int may_trap_or_fault_p (const_rtx);
3626 extern bool can_throw_internal (const_rtx);
3627 extern bool can_throw_external (const_rtx);
3628 extern bool insn_could_throw_p (const_rtx);
3629 extern bool insn_nothrow_p (const_rtx);
3630 extern bool can_nonlocal_goto (const rtx_insn *);
3631 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3632 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3633 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3634 extern void replace_label (rtx *, rtx, rtx, bool);
3635 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3636 extern bool rtx_referenced_p (const_rtx, const_rtx);
3637 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3638 extern rtx tablejump_casesi_pattern (const rtx_insn *insn);
3639 extern int computed_jump_p (const rtx_insn *);
3640 extern bool tls_referenced_p (const_rtx);
3641 extern bool contains_mem_rtx_p (rtx x);
3642 extern bool register_asm_p (const_rtx);
3643
3644 /* Overload for refers_to_regno_p for checking a single register. */
3645 inline bool
3646 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3647 {
3648 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3649 }
3650
3651 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3652 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3653 NULL. The callback is passed the same opaque ARG passed to
3654 for_each_inc_dec. Return zero to continue looking for other
3655 autoinc operations or any other value to interrupt the traversal and
3656 return that value to the caller of for_each_inc_dec. */
3657 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3658 rtx srcoff, void *arg);
3659 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3660
3661 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3662 rtx *, rtx *);
3663 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3664 rtx_equal_p_callback_function);
3665
3666 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3667 machine_mode *);
3668 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3669 bool, hash_rtx_callback_function);
3670
3671 extern rtx regno_use_in (unsigned int, rtx);
3672 extern int auto_inc_p (const_rtx);
3673 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3674 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3675 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3676 extern int loc_mentioned_in_p (rtx *, const_rtx);
3677 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3678 extern bool keep_with_call_p (const rtx_insn *);
3679 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3680 extern int pattern_cost (rtx, bool);
3681 extern int insn_cost (rtx_insn *, bool);
3682 extern unsigned seq_cost (const rtx_insn *, bool);
3683
3684 /* Given an insn and condition, return a canonical description of
3685 the test being made. */
3686 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3687 int, int);
3688
3689 /* Given a JUMP_INSN, return a canonical description of the test
3690 being made. */
3691 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3692
3693 /* Information about a subreg of a hard register. */
3694 struct subreg_info
3695 {
3696 /* Offset of first hard register involved in the subreg. */
3697 int offset;
3698 /* Number of hard registers involved in the subreg. In the case of
3699 a paradoxical subreg, this is the number of registers that would
3700 be modified by writing to the subreg; some of them may be don't-care
3701 when reading from the subreg. */
3702 int nregs;
3703 /* Whether this subreg can be represented as a hard reg with the new
3704 mode (by adding OFFSET to the original hard register). */
3705 bool representable_p;
3706 };
3707
3708 extern void subreg_get_info (unsigned int, machine_mode,
3709 poly_uint64, machine_mode,
3710 struct subreg_info *);
3711
3712 /* lists.c */
3713
3714 extern void free_EXPR_LIST_list (rtx_expr_list **);
3715 extern void free_INSN_LIST_list (rtx_insn_list **);
3716 extern void free_EXPR_LIST_node (rtx);
3717 extern void free_INSN_LIST_node (rtx);
3718 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3719 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3720 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3721 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3722 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3723 extern rtx remove_list_elem (rtx, rtx *);
3724 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3725 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3726
3727
3728 /* reginfo.c */
3729
3730 /* Resize reg info. */
3731 extern bool resize_reg_info (void);
3732 /* Free up register info memory. */
3733 extern void free_reg_info (void);
3734 extern void init_subregs_of_mode (void);
3735 extern void finish_subregs_of_mode (void);
3736
3737 /* recog.c */
3738 extern rtx extract_asm_operands (rtx);
3739 extern int asm_noperands (const_rtx);
3740 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3741 machine_mode *, location_t *);
3742 extern void get_referenced_operands (const char *, bool *, unsigned int);
3743
3744 extern enum reg_class reg_preferred_class (int);
3745 extern enum reg_class reg_alternate_class (int);
3746 extern enum reg_class reg_allocno_class (int);
3747 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3748 enum reg_class);
3749
3750 extern void split_all_insns (void);
3751 extern unsigned int split_all_insns_noflow (void);
3752
3753 #define MAX_SAVED_CONST_INT 64
3754 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3755
3756 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3757 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3758 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3759 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3760 extern GTY(()) rtx const_true_rtx;
3761
3762 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3763
3764 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3765 same as VOIDmode. */
3766
3767 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3768
3769 /* Likewise, for the constants 1 and 2 and -1. */
3770
3771 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3772 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3773 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3774
3775 extern GTY(()) rtx pc_rtx;
3776 extern GTY(()) rtx cc0_rtx;
3777 extern GTY(()) rtx ret_rtx;
3778 extern GTY(()) rtx simple_return_rtx;
3779 extern GTY(()) rtx_insn *invalid_insn_rtx;
3780
3781 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3782 is used to represent the frame pointer. This is because the
3783 hard frame pointer and the automatic variables are separated by an amount
3784 that cannot be determined until after register allocation. We can assume
3785 that in this case ELIMINABLE_REGS will be defined, one action of which
3786 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3787 #ifndef HARD_FRAME_POINTER_REGNUM
3788 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3789 #endif
3790
3791 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3792 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3793 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3794 #endif
3795
3796 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3797 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3798 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3799 #endif
3800
3801 /* Index labels for global_rtl. */
3802 enum global_rtl_index
3803 {
3804 GR_STACK_POINTER,
3805 GR_FRAME_POINTER,
3806 /* For register elimination to work properly these hard_frame_pointer_rtx,
3807 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3808 the same register. */
3809 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3810 GR_ARG_POINTER = GR_FRAME_POINTER,
3811 #endif
3812 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3813 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3814 #else
3815 GR_HARD_FRAME_POINTER,
3816 #endif
3817 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3818 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3819 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3820 #else
3821 GR_ARG_POINTER,
3822 #endif
3823 #endif
3824 GR_VIRTUAL_INCOMING_ARGS,
3825 GR_VIRTUAL_STACK_ARGS,
3826 GR_VIRTUAL_STACK_DYNAMIC,
3827 GR_VIRTUAL_OUTGOING_ARGS,
3828 GR_VIRTUAL_CFA,
3829 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3830
3831 GR_MAX
3832 };
3833
3834 /* Target-dependent globals. */
3835 struct GTY(()) target_rtl {
3836 /* All references to the hard registers in global_rtl_index go through
3837 these unique rtl objects. On machines where the frame-pointer and
3838 arg-pointer are the same register, they use the same unique object.
3839
3840 After register allocation, other rtl objects which used to be pseudo-regs
3841 may be clobbered to refer to the frame-pointer register.
3842 But references that were originally to the frame-pointer can be
3843 distinguished from the others because they contain frame_pointer_rtx.
3844
3845 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3846 tricky: until register elimination has taken place hard_frame_pointer_rtx
3847 should be used if it is being set, and frame_pointer_rtx otherwise. After
3848 register elimination hard_frame_pointer_rtx should always be used.
3849 On machines where the two registers are same (most) then these are the
3850 same. */
3851 rtx x_global_rtl[GR_MAX];
3852
3853 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3854 rtx x_pic_offset_table_rtx;
3855
3856 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3857 This is used to implement __builtin_return_address for some machines;
3858 see for instance the MIPS port. */
3859 rtx x_return_address_pointer_rtx;
3860
3861 /* Commonly used RTL for hard registers. These objects are not
3862 necessarily unique, so we allocate them separately from global_rtl.
3863 They are initialized once per compilation unit, then copied into
3864 regno_reg_rtx at the beginning of each function. */
3865 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3866
3867 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3868 rtx x_top_of_stack[MAX_MACHINE_MODE];
3869
3870 /* Static hunks of RTL used by the aliasing code; these are treated
3871 as persistent to avoid unnecessary RTL allocations. */
3872 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3873
3874 /* The default memory attributes for each mode. */
3875 class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3876
3877 /* Track if RTL has been initialized. */
3878 bool target_specific_initialized;
3879 };
3880
3881 extern GTY(()) struct target_rtl default_target_rtl;
3882 #if SWITCHABLE_TARGET
3883 extern struct target_rtl *this_target_rtl;
3884 #else
3885 #define this_target_rtl (&default_target_rtl)
3886 #endif
3887
3888 #define global_rtl \
3889 (this_target_rtl->x_global_rtl)
3890 #define pic_offset_table_rtx \
3891 (this_target_rtl->x_pic_offset_table_rtx)
3892 #define return_address_pointer_rtx \
3893 (this_target_rtl->x_return_address_pointer_rtx)
3894 #define top_of_stack \
3895 (this_target_rtl->x_top_of_stack)
3896 #define mode_mem_attrs \
3897 (this_target_rtl->x_mode_mem_attrs)
3898
3899 /* All references to certain hard regs, except those created
3900 by allocating pseudo regs into them (when that's possible),
3901 go through these unique rtx objects. */
3902 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3903 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3904 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3905 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3906
3907 #ifndef GENERATOR_FILE
3908 /* Return the attributes of a MEM rtx. */
3909 static inline const class mem_attrs *
3910 get_mem_attrs (const_rtx x)
3911 {
3912 class mem_attrs *attrs;
3913
3914 attrs = MEM_ATTRS (x);
3915 if (!attrs)
3916 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3917 return attrs;
3918 }
3919 #endif
3920
3921 /* Include the RTL generation functions. */
3922
3923 #ifndef GENERATOR_FILE
3924 #include "genrtl.h"
3925 #undef gen_rtx_ASM_INPUT
3926 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3927 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3928 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3929 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3930 #endif
3931
3932 /* There are some RTL codes that require special attention; the
3933 generation functions included above do the raw handling. If you
3934 add to this list, modify special_rtx in gengenrtl.c as well. */
3935
3936 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3937 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3938 extern rtx_insn *
3939 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3940 basic_block bb, rtx pattern, int location, int code,
3941 rtx reg_notes);
3942 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3943 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3944 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3945 extern rtx init_raw_REG (rtx, machine_mode, unsigned int);
3946 extern rtx gen_raw_REG (machine_mode, unsigned int);
3947 #define alloca_raw_REG(mode, regno) \
3948 init_raw_REG (rtx_alloca (REG), (mode), (regno))
3949 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3950 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
3951 extern rtx gen_rtx_MEM (machine_mode, rtx);
3952 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3953 enum var_init_status);
3954
3955 #ifdef GENERATOR_FILE
3956 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3957 #else
3958 static inline void
3959 PUT_MODE (rtx x, machine_mode mode)
3960 {
3961 if (REG_P (x))
3962 set_mode_and_regno (x, mode, REGNO (x));
3963 else
3964 PUT_MODE_RAW (x, mode);
3965 }
3966 #endif
3967
3968 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3969
3970 /* Virtual registers are used during RTL generation to refer to locations into
3971 the stack frame when the actual location isn't known until RTL generation
3972 is complete. The routine instantiate_virtual_regs replaces these with
3973 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3974 a constant. */
3975
3976 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3977
3978 /* This points to the first word of the incoming arguments passed on the stack,
3979 either by the caller or by the callee when pretending it was passed by the
3980 caller. */
3981
3982 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3983
3984 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3985
3986 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3987 variable on the stack. Otherwise, it points to the first variable on
3988 the stack. */
3989
3990 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3991
3992 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3993
3994 /* This points to the location of dynamically-allocated memory on the stack
3995 immediately after the stack pointer has been adjusted by the amount
3996 desired. */
3997
3998 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3999
4000 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
4001
4002 /* This points to the location in the stack at which outgoing arguments should
4003 be written when the stack is pre-pushed (arguments pushed using push
4004 insns always use sp). */
4005
4006 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
4007
4008 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
4009
4010 /* This points to the Canonical Frame Address of the function. This
4011 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
4012 but is calculated relative to the arg pointer for simplicity; the
4013 frame pointer nor stack pointer are necessarily fixed relative to
4014 the CFA until after reload. */
4015
4016 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
4017
4018 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
4019
4020 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
4021
4022 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
4023 when finalized. */
4024
4025 #define virtual_preferred_stack_boundary_rtx \
4026 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
4027
4028 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
4029 ((FIRST_VIRTUAL_REGISTER) + 5)
4030
4031 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
4032
4033 /* Nonzero if REGNUM is a pointer into the stack frame. */
4034 #define REGNO_PTR_FRAME_P(REGNUM) \
4035 ((REGNUM) == STACK_POINTER_REGNUM \
4036 || (REGNUM) == FRAME_POINTER_REGNUM \
4037 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
4038 || (REGNUM) == ARG_POINTER_REGNUM \
4039 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
4040 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
4041
4042 /* REGNUM never really appearing in the INSN stream. */
4043 #define INVALID_REGNUM (~(unsigned int) 0)
4044
4045 /* REGNUM for which no debug information can be generated. */
4046 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
4047
4048 extern rtx output_constant_def (tree, int);
4049 extern rtx lookup_constant_def (tree);
4050
4051 /* Nonzero after end of reload pass.
4052 Set to 1 or 0 by reload1.c. */
4053
4054 extern int reload_completed;
4055
4056 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
4057 extern int epilogue_completed;
4058
4059 /* Set to 1 while reload_as_needed is operating.
4060 Required by some machines to handle any generated moves differently. */
4061
4062 extern int reload_in_progress;
4063
4064 /* Set to 1 while in lra. */
4065 extern int lra_in_progress;
4066
4067 /* This macro indicates whether you may create a new
4068 pseudo-register. */
4069
4070 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
4071
4072 #ifdef STACK_REGS
4073 /* Nonzero after end of regstack pass.
4074 Set to 1 or 0 by reg-stack.c. */
4075 extern int regstack_completed;
4076 #endif
4077
4078 /* If this is nonzero, we do not bother generating VOLATILE
4079 around volatile memory references, and we are willing to
4080 output indirect addresses. If cse is to follow, we reject
4081 indirect addresses so a useful potential cse is generated;
4082 if it is used only once, instruction combination will produce
4083 the same indirect address eventually. */
4084 extern int cse_not_expected;
4085
4086 /* Translates rtx code to tree code, for those codes needed by
4087 real_arithmetic. The function returns an int because the caller may not
4088 know what `enum tree_code' means. */
4089
4090 extern int rtx_to_tree_code (enum rtx_code);
4091
4092 /* In cse.c */
4093 extern int delete_trivially_dead_insns (rtx_insn *, int);
4094 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
4095 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
4096
4097 /* In dse.c */
4098 extern bool check_for_inc_dec (rtx_insn *insn);
4099
4100 /* In jump.c */
4101 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
4102 extern bool jump_to_label_p (const rtx_insn *);
4103 extern int condjump_p (const rtx_insn *);
4104 extern int any_condjump_p (const rtx_insn *);
4105 extern int any_uncondjump_p (const rtx_insn *);
4106 extern rtx pc_set (const rtx_insn *);
4107 extern rtx condjump_label (const rtx_insn *);
4108 extern int simplejump_p (const rtx_insn *);
4109 extern int returnjump_p (const rtx_insn *);
4110 extern int eh_returnjump_p (rtx_insn *);
4111 extern int onlyjump_p (const rtx_insn *);
4112 extern int only_sets_cc0_p (const_rtx);
4113 extern int sets_cc0_p (const_rtx);
4114 extern int invert_jump_1 (rtx_jump_insn *, rtx);
4115 extern int invert_jump (rtx_jump_insn *, rtx, int);
4116 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
4117 extern int true_regnum (const_rtx);
4118 extern unsigned int reg_or_subregno (const_rtx);
4119 extern int redirect_jump_1 (rtx_insn *, rtx);
4120 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
4121 extern int redirect_jump (rtx_jump_insn *, rtx, int);
4122 extern void rebuild_jump_labels (rtx_insn *);
4123 extern void rebuild_jump_labels_chain (rtx_insn *);
4124 extern rtx reversed_comparison (const_rtx, machine_mode);
4125 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
4126 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
4127 const_rtx, const rtx_insn *);
4128 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
4129 extern int condjump_in_parallel_p (const rtx_insn *);
4130
4131 /* In emit-rtl.c. */
4132 extern int max_reg_num (void);
4133 extern int max_label_num (void);
4134 extern int get_first_label_num (void);
4135 extern void maybe_set_first_label_num (rtx_code_label *);
4136 extern void delete_insns_since (rtx_insn *);
4137 extern void mark_reg_pointer (rtx, int);
4138 extern void mark_user_reg (rtx);
4139 extern void reset_used_flags (rtx);
4140 extern void set_used_flags (rtx);
4141 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
4142 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
4143 extern int get_max_insn_count (void);
4144 extern int in_sequence_p (void);
4145 extern void init_emit (void);
4146 extern void init_emit_regs (void);
4147 extern void init_derived_machine_modes (void);
4148 extern void init_emit_once (void);
4149 extern void push_topmost_sequence (void);
4150 extern void pop_topmost_sequence (void);
4151 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
4152 extern unsigned int unshare_all_rtl (void);
4153 extern void unshare_all_rtl_again (rtx_insn *);
4154 extern void unshare_all_rtl_in_chain (rtx_insn *);
4155 extern void verify_rtl_sharing (void);
4156 extern void add_insn (rtx_insn *);
4157 extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4158 extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4159 extern void remove_insn (rtx_insn *);
4160 extern rtx_insn *emit (rtx, bool = true);
4161 extern void emit_insn_at_entry (rtx);
4162 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4163 extern rtx gen_const_mem (machine_mode, rtx);
4164 extern rtx gen_frame_mem (machine_mode, rtx);
4165 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4166 extern bool validate_subreg (machine_mode, machine_mode,
4167 const_rtx, poly_uint64);
4168
4169 /* In combine.c */
4170 extern unsigned int extended_count (const_rtx, machine_mode, int);
4171 extern rtx remove_death (unsigned int, rtx_insn *);
4172 extern void dump_combine_stats (FILE *);
4173 extern void dump_combine_total_stats (FILE *);
4174 extern rtx make_compound_operation (rtx, enum rtx_code);
4175
4176 /* In sched-rgn.c. */
4177 extern void schedule_insns (void);
4178
4179 /* In sched-ebb.c. */
4180 extern void schedule_ebbs (void);
4181
4182 /* In sel-sched-dump.c. */
4183 extern void sel_sched_fix_param (const char *param, const char *val);
4184
4185 /* In print-rtl.c */
4186 extern const char *print_rtx_head;
4187 extern void debug (const rtx_def &ref);
4188 extern void debug (const rtx_def *ptr);
4189 extern void debug_rtx (const_rtx);
4190 extern void debug_rtx_list (const rtx_insn *, int);
4191 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4192 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4193 extern void print_mem_expr (FILE *, const_tree);
4194 extern void print_rtl (FILE *, const_rtx);
4195 extern void print_simple_rtl (FILE *, const_rtx);
4196 extern int print_rtl_single (FILE *, const_rtx);
4197 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
4198 extern void print_inline_rtx (FILE *, const_rtx, int);
4199
4200 /* In stmt.c */
4201 extern void expand_null_return (void);
4202 extern void expand_naked_return (void);
4203 extern void emit_jump (rtx);
4204
4205 /* Memory operation built-ins differ by return value. Mapping
4206 of the enum values is following:
4207 - RETURN_BEGIN - return destination, e.g. memcpy
4208 - RETURN_END - return destination + n, e.g. mempcpy
4209 - RETURN_END_MINUS_ONE - return a pointer to the terminating
4210 null byte of the string, e.g. strcpy
4211 */
4212
4213 enum memop_ret
4214 {
4215 RETURN_BEGIN,
4216 RETURN_END,
4217 RETURN_END_MINUS_ONE
4218 };
4219
4220 /* In expr.c */
4221 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4222 unsigned int, memop_ret);
4223 extern poly_int64 find_args_size_adjust (rtx_insn *);
4224 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4225
4226 /* In expmed.c */
4227 extern void init_expmed (void);
4228 extern void expand_inc (rtx, rtx);
4229 extern void expand_dec (rtx, rtx);
4230
4231 /* In lower-subreg.c */
4232 extern void init_lower_subreg (void);
4233
4234 /* In gcse.c */
4235 extern bool can_copy_p (machine_mode);
4236 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4237 extern rtx_insn *prepare_copy_insn (rtx, rtx);
4238
4239 /* In cprop.c */
4240 extern rtx fis_get_condition (rtx_insn *);
4241
4242 /* In ira.c */
4243 extern HARD_REG_SET eliminable_regset;
4244 extern void mark_elimination (int, int);
4245
4246 /* In reginfo.c */
4247 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
4248 extern int reg_class_subset_p (reg_class_t, reg_class_t);
4249 extern void globalize_reg (tree, int);
4250 extern void init_reg_modes_target (void);
4251 extern void init_regs (void);
4252 extern void reinit_regs (void);
4253 extern void init_fake_stack_mems (void);
4254 extern void save_register_info (void);
4255 extern void init_reg_sets (void);
4256 extern void regclass (rtx, int);
4257 extern void reg_scan (rtx_insn *, unsigned int);
4258 extern void fix_register (const char *, int, int);
4259 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4260
4261 /* In reload1.c */
4262 extern int function_invariant_p (const_rtx);
4263
4264 /* In calls.c */
4265 enum libcall_type
4266 {
4267 LCT_NORMAL = 0,
4268 LCT_CONST = 1,
4269 LCT_PURE = 2,
4270 LCT_NORETURN = 3,
4271 LCT_THROW = 4,
4272 LCT_RETURNS_TWICE = 5
4273 };
4274
4275 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4276 machine_mode, int, rtx_mode_t *);
4277
4278 /* Output a library call and discard the returned value. FUN is the
4279 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4280 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4281 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4282 another LCT_ value for other types of library calls.
4283
4284 There are different overloads of this function for different numbers
4285 of arguments. In each case the argument value is followed by its mode. */
4286
4287 inline void
4288 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4289 {
4290 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4291 }
4292
4293 inline void
4294 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4295 rtx arg1, machine_mode arg1_mode)
4296 {
4297 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4298 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4299 }
4300
4301 inline void
4302 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4303 rtx arg1, machine_mode arg1_mode,
4304 rtx arg2, machine_mode arg2_mode)
4305 {
4306 rtx_mode_t args[] = {
4307 rtx_mode_t (arg1, arg1_mode),
4308 rtx_mode_t (arg2, arg2_mode)
4309 };
4310 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4311 }
4312
4313 inline void
4314 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4315 rtx arg1, machine_mode arg1_mode,
4316 rtx arg2, machine_mode arg2_mode,
4317 rtx arg3, machine_mode arg3_mode)
4318 {
4319 rtx_mode_t args[] = {
4320 rtx_mode_t (arg1, arg1_mode),
4321 rtx_mode_t (arg2, arg2_mode),
4322 rtx_mode_t (arg3, arg3_mode)
4323 };
4324 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4325 }
4326
4327 inline void
4328 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4329 rtx arg1, machine_mode arg1_mode,
4330 rtx arg2, machine_mode arg2_mode,
4331 rtx arg3, machine_mode arg3_mode,
4332 rtx arg4, machine_mode arg4_mode)
4333 {
4334 rtx_mode_t args[] = {
4335 rtx_mode_t (arg1, arg1_mode),
4336 rtx_mode_t (arg2, arg2_mode),
4337 rtx_mode_t (arg3, arg3_mode),
4338 rtx_mode_t (arg4, arg4_mode)
4339 };
4340 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4341 }
4342
4343 /* Like emit_library_call, but return the value produced by the call.
4344 Use VALUE to store the result if it is nonnull, otherwise pick a
4345 convenient location. */
4346
4347 inline rtx
4348 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4349 machine_mode outmode)
4350 {
4351 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4352 }
4353
4354 inline rtx
4355 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4356 machine_mode outmode,
4357 rtx arg1, machine_mode arg1_mode)
4358 {
4359 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4360 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4361 }
4362
4363 inline rtx
4364 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4365 machine_mode outmode,
4366 rtx arg1, machine_mode arg1_mode,
4367 rtx arg2, machine_mode arg2_mode)
4368 {
4369 rtx_mode_t args[] = {
4370 rtx_mode_t (arg1, arg1_mode),
4371 rtx_mode_t (arg2, arg2_mode)
4372 };
4373 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4374 }
4375
4376 inline rtx
4377 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4378 machine_mode outmode,
4379 rtx arg1, machine_mode arg1_mode,
4380 rtx arg2, machine_mode arg2_mode,
4381 rtx arg3, machine_mode arg3_mode)
4382 {
4383 rtx_mode_t args[] = {
4384 rtx_mode_t (arg1, arg1_mode),
4385 rtx_mode_t (arg2, arg2_mode),
4386 rtx_mode_t (arg3, arg3_mode)
4387 };
4388 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4389 }
4390
4391 inline rtx
4392 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4393 machine_mode outmode,
4394 rtx arg1, machine_mode arg1_mode,
4395 rtx arg2, machine_mode arg2_mode,
4396 rtx arg3, machine_mode arg3_mode,
4397 rtx arg4, machine_mode arg4_mode)
4398 {
4399 rtx_mode_t args[] = {
4400 rtx_mode_t (arg1, arg1_mode),
4401 rtx_mode_t (arg2, arg2_mode),
4402 rtx_mode_t (arg3, arg3_mode),
4403 rtx_mode_t (arg4, arg4_mode)
4404 };
4405 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4406 }
4407
4408 /* In varasm.c */
4409 extern void init_varasm_once (void);
4410
4411 extern rtx make_debug_expr_from_rtl (const_rtx);
4412
4413 /* In read-rtl.c */
4414 #ifdef GENERATOR_FILE
4415 extern bool read_rtx (const char *, vec<rtx> *);
4416 #endif
4417
4418 /* In alias.c */
4419 extern rtx canon_rtx (rtx);
4420 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4421 extern rtx get_addr (rtx);
4422 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4423 const_rtx, rtx);
4424 extern int read_dependence (const_rtx, const_rtx);
4425 extern int anti_dependence (const_rtx, const_rtx);
4426 extern int canon_anti_dependence (const_rtx, bool,
4427 const_rtx, machine_mode, rtx);
4428 extern int output_dependence (const_rtx, const_rtx);
4429 extern int canon_output_dependence (const_rtx, bool,
4430 const_rtx, machine_mode, rtx);
4431 extern int may_alias_p (const_rtx, const_rtx);
4432 extern void init_alias_target (void);
4433 extern void init_alias_analysis (void);
4434 extern void end_alias_analysis (void);
4435 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4436 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4437 extern bool may_be_sp_based_p (rtx);
4438 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4439 extern rtx get_reg_known_value (unsigned int);
4440 extern bool get_reg_known_equiv_p (unsigned int);
4441 extern rtx get_reg_base_value (unsigned int);
4442 extern rtx extract_mem_from_operand (rtx);
4443
4444 #ifdef STACK_REGS
4445 extern int stack_regs_mentioned (const_rtx insn);
4446 #endif
4447
4448 /* In toplev.c */
4449 extern GTY(()) rtx stack_limit_rtx;
4450
4451 /* In var-tracking.c */
4452 extern unsigned int variable_tracking_main (void);
4453 extern void delete_vta_debug_insns (bool);
4454
4455 /* In stor-layout.c. */
4456 extern void get_mode_bounds (scalar_int_mode, int,
4457 scalar_int_mode, rtx *, rtx *);
4458
4459 /* In loop-iv.c */
4460 extern rtx canon_condition (rtx);
4461 extern void simplify_using_condition (rtx, rtx *, bitmap);
4462
4463 /* In final.c */
4464 extern unsigned int compute_alignments (void);
4465 extern void update_alignments (vec<rtx> &);
4466 extern int asm_str_count (const char *templ);
4467 \f
4468 struct rtl_hooks
4469 {
4470 rtx (*gen_lowpart) (machine_mode, rtx);
4471 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4472 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4473 unsigned HOST_WIDE_INT *);
4474 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4475 unsigned int *);
4476 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4477
4478 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4479 };
4480
4481 /* Each pass can provide its own. */
4482 extern struct rtl_hooks rtl_hooks;
4483
4484 /* ... but then it has to restore these. */
4485 extern const struct rtl_hooks general_rtl_hooks;
4486
4487 /* Keep this for the nonce. */
4488 #define gen_lowpart rtl_hooks.gen_lowpart
4489
4490 extern void insn_locations_init (void);
4491 extern void insn_locations_finalize (void);
4492 extern void set_curr_insn_location (location_t);
4493 extern location_t curr_insn_location (void);
4494 extern void set_insn_locations (rtx_insn *, location_t);
4495
4496 /* rtl-error.c */
4497 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4498 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4499 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4500 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4501
4502 #define fatal_insn(msgid, insn) \
4503 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4504 #define fatal_insn_not_found(insn) \
4505 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4506
4507 /* reginfo.c */
4508 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4509
4510 /* Information about the function that is propagated by the RTL backend.
4511 Available only for functions that has been already assembled. */
4512
4513 struct GTY(()) cgraph_rtl_info {
4514 unsigned int preferred_incoming_stack_boundary;
4515
4516 /* Which registers the function clobbers, either directly or by
4517 calling another function. */
4518 HARD_REG_SET function_used_regs;
4519 };
4520
4521 /* If loads from memories of mode MODE always sign or zero extend,
4522 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4523 otherwise. */
4524
4525 inline rtx_code
4526 load_extend_op (machine_mode mode)
4527 {
4528 scalar_int_mode int_mode;
4529 if (is_a <scalar_int_mode> (mode, &int_mode)
4530 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4531 return LOAD_EXTEND_OP (int_mode);
4532 return UNKNOWN;
4533 }
4534
4535 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4536 and return the base. Return X otherwise. */
4537
4538 inline rtx
4539 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4540 {
4541 if (GET_CODE (x) == PLUS)
4542 {
4543 poly_int64 suboffset;
4544 x = strip_offset (x, &suboffset);
4545 *offset = poly_uint64 (*offset) + suboffset;
4546 }
4547 return x;
4548 }
4549
4550 /* Return true if X is an operation that always operates on the full
4551 registers for WORD_REGISTER_OPERATIONS architectures. */
4552
4553 inline bool
4554 word_register_operation_p (const_rtx x)
4555 {
4556 switch (GET_CODE (x))
4557 {
4558 case CONST_INT:
4559 case ROTATE:
4560 case ROTATERT:
4561 case SIGN_EXTRACT:
4562 case ZERO_EXTRACT:
4563 return false;
4564
4565 default:
4566 return true;
4567 }
4568 }
4569
4570 /* gtype-desc.c. */
4571 extern void gt_ggc_mx (rtx &);
4572 extern void gt_pch_nx (rtx &);
4573 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4574
4575 #endif /* ! GCC_RTL_H */