Daily bump.
[gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-dfa.h"
38 #include "tree-ssa.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-hasher.h"
41 #include "cfgloop.h"
42 #include "cfganal.h"
43
44
45 /* For each complex ssa name, a lattice value. We're interested in finding
46 out whether a complex number is degenerate in some way, having only real
47 or only complex parts. */
48
49 enum
50 {
51 UNINITIALIZED = 0,
52 ONLY_REAL = 1,
53 ONLY_IMAG = 2,
54 VARYING = 3
55 };
56
57 /* The type complex_lattice_t holds combinations of the above
58 constants. */
59 typedef int complex_lattice_t;
60
61 #define PAIR(a, b) ((a) << 2 | (b))
62
63 class complex_propagate : public ssa_propagation_engine
64 {
65 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
66 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
67 };
68
69 static vec<complex_lattice_t> complex_lattice_values;
70
71 /* For each complex variable, a pair of variables for the components exists in
72 the hashtable. */
73 static int_tree_htab_type *complex_variable_components;
74
75 /* For each complex SSA_NAME, a pair of ssa names for the components. */
76 static vec<tree> complex_ssa_name_components;
77
78 /* Vector of PHI triplets (original complex PHI and corresponding real and
79 imag PHIs if real and/or imag PHIs contain temporarily
80 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
81 static vec<gphi *> phis_to_revisit;
82
83 /* BBs that need EH cleanup. */
84 static bitmap need_eh_cleanup;
85
86 /* Lookup UID in the complex_variable_components hashtable and return the
87 associated tree. */
88 static tree
89 cvc_lookup (unsigned int uid)
90 {
91 struct int_tree_map in;
92 in.uid = uid;
93 return complex_variable_components->find_with_hash (in, uid).to;
94 }
95
96 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
97
98 static void
99 cvc_insert (unsigned int uid, tree to)
100 {
101 int_tree_map h;
102 int_tree_map *loc;
103
104 h.uid = uid;
105 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
106 loc->uid = uid;
107 loc->to = to;
108 }
109
110 /* Return true if T is not a zero constant. In the case of real values,
111 we're only interested in +0.0. */
112
113 static int
114 some_nonzerop (tree t)
115 {
116 int zerop = false;
117
118 /* Operations with real or imaginary part of a complex number zero
119 cannot be treated the same as operations with a real or imaginary
120 operand if we care about the signs of zeros in the result. */
121 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
122 zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
123 else if (TREE_CODE (t) == FIXED_CST)
124 zerop = fixed_zerop (t);
125 else if (TREE_CODE (t) == INTEGER_CST)
126 zerop = integer_zerop (t);
127
128 return !zerop;
129 }
130
131
132 /* Compute a lattice value from the components of a complex type REAL
133 and IMAG. */
134
135 static complex_lattice_t
136 find_lattice_value_parts (tree real, tree imag)
137 {
138 int r, i;
139 complex_lattice_t ret;
140
141 r = some_nonzerop (real);
142 i = some_nonzerop (imag);
143 ret = r * ONLY_REAL + i * ONLY_IMAG;
144
145 /* ??? On occasion we could do better than mapping 0+0i to real, but we
146 certainly don't want to leave it UNINITIALIZED, which eventually gets
147 mapped to VARYING. */
148 if (ret == UNINITIALIZED)
149 ret = ONLY_REAL;
150
151 return ret;
152 }
153
154
155 /* Compute a lattice value from gimple_val T. */
156
157 static complex_lattice_t
158 find_lattice_value (tree t)
159 {
160 tree real, imag;
161
162 switch (TREE_CODE (t))
163 {
164 case SSA_NAME:
165 return complex_lattice_values[SSA_NAME_VERSION (t)];
166
167 case COMPLEX_CST:
168 real = TREE_REALPART (t);
169 imag = TREE_IMAGPART (t);
170 break;
171
172 default:
173 gcc_unreachable ();
174 }
175
176 return find_lattice_value_parts (real, imag);
177 }
178
179 /* Determine if LHS is something for which we're interested in seeing
180 simulation results. */
181
182 static bool
183 is_complex_reg (tree lhs)
184 {
185 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
186 }
187
188 /* Mark the incoming parameters to the function as VARYING. */
189
190 static void
191 init_parameter_lattice_values (void)
192 {
193 tree parm, ssa_name;
194
195 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
196 if (is_complex_reg (parm)
197 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
198 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
199 }
200
201 /* Initialize simulation state for each statement. Return false if we
202 found no statements we want to simulate, and thus there's nothing
203 for the entire pass to do. */
204
205 static bool
206 init_dont_simulate_again (void)
207 {
208 basic_block bb;
209 bool saw_a_complex_op = false;
210
211 FOR_EACH_BB_FN (bb, cfun)
212 {
213 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
214 gsi_next (&gsi))
215 {
216 gphi *phi = gsi.phi ();
217 prop_set_simulate_again (phi,
218 is_complex_reg (gimple_phi_result (phi)));
219 }
220
221 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
222 gsi_next (&gsi))
223 {
224 gimple *stmt;
225 tree op0, op1;
226 bool sim_again_p;
227
228 stmt = gsi_stmt (gsi);
229 op0 = op1 = NULL_TREE;
230
231 /* Most control-altering statements must be initially
232 simulated, else we won't cover the entire cfg. */
233 sim_again_p = stmt_ends_bb_p (stmt);
234
235 switch (gimple_code (stmt))
236 {
237 case GIMPLE_CALL:
238 if (gimple_call_lhs (stmt))
239 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
240 break;
241
242 case GIMPLE_ASSIGN:
243 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
244 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
245 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
246 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
247 else
248 op0 = gimple_assign_rhs1 (stmt);
249 if (gimple_num_ops (stmt) > 2)
250 op1 = gimple_assign_rhs2 (stmt);
251 break;
252
253 case GIMPLE_COND:
254 op0 = gimple_cond_lhs (stmt);
255 op1 = gimple_cond_rhs (stmt);
256 break;
257
258 default:
259 break;
260 }
261
262 if (op0 || op1)
263 switch (gimple_expr_code (stmt))
264 {
265 case EQ_EXPR:
266 case NE_EXPR:
267 case PLUS_EXPR:
268 case MINUS_EXPR:
269 case MULT_EXPR:
270 case TRUNC_DIV_EXPR:
271 case CEIL_DIV_EXPR:
272 case FLOOR_DIV_EXPR:
273 case ROUND_DIV_EXPR:
274 case RDIV_EXPR:
275 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
276 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
277 saw_a_complex_op = true;
278 break;
279
280 case NEGATE_EXPR:
281 case CONJ_EXPR:
282 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
283 saw_a_complex_op = true;
284 break;
285
286 case REALPART_EXPR:
287 case IMAGPART_EXPR:
288 /* The total store transformation performed during
289 gimplification creates such uninitialized loads
290 and we need to lower the statement to be able
291 to fix things up. */
292 if (TREE_CODE (op0) == SSA_NAME
293 && ssa_undefined_value_p (op0))
294 saw_a_complex_op = true;
295 break;
296
297 default:
298 break;
299 }
300
301 prop_set_simulate_again (stmt, sim_again_p);
302 }
303 }
304
305 return saw_a_complex_op;
306 }
307
308
309 /* Evaluate statement STMT against the complex lattice defined above. */
310
311 enum ssa_prop_result
312 complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
313 tree *result_p)
314 {
315 complex_lattice_t new_l, old_l, op1_l, op2_l;
316 unsigned int ver;
317 tree lhs;
318
319 lhs = gimple_get_lhs (stmt);
320 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
321 if (!lhs || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
322 return SSA_PROP_VARYING;
323
324 /* These conditions should be satisfied due to the initial filter
325 set up in init_dont_simulate_again. */
326 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
327 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
328
329 *result_p = lhs;
330 ver = SSA_NAME_VERSION (lhs);
331 old_l = complex_lattice_values[ver];
332
333 switch (gimple_expr_code (stmt))
334 {
335 case SSA_NAME:
336 case COMPLEX_CST:
337 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
338 break;
339
340 case COMPLEX_EXPR:
341 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
342 gimple_assign_rhs2 (stmt));
343 break;
344
345 case PLUS_EXPR:
346 case MINUS_EXPR:
347 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
348 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
349
350 /* We've set up the lattice values such that IOR neatly
351 models addition. */
352 new_l = op1_l | op2_l;
353 break;
354
355 case MULT_EXPR:
356 case RDIV_EXPR:
357 case TRUNC_DIV_EXPR:
358 case CEIL_DIV_EXPR:
359 case FLOOR_DIV_EXPR:
360 case ROUND_DIV_EXPR:
361 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
362 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
363
364 /* Obviously, if either varies, so does the result. */
365 if (op1_l == VARYING || op2_l == VARYING)
366 new_l = VARYING;
367 /* Don't prematurely promote variables if we've not yet seen
368 their inputs. */
369 else if (op1_l == UNINITIALIZED)
370 new_l = op2_l;
371 else if (op2_l == UNINITIALIZED)
372 new_l = op1_l;
373 else
374 {
375 /* At this point both numbers have only one component. If the
376 numbers are of opposite kind, the result is imaginary,
377 otherwise the result is real. The add/subtract translates
378 the real/imag from/to 0/1; the ^ performs the comparison. */
379 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
380
381 /* Don't allow the lattice value to flip-flop indefinitely. */
382 new_l |= old_l;
383 }
384 break;
385
386 case NEGATE_EXPR:
387 case CONJ_EXPR:
388 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
389 break;
390
391 default:
392 new_l = VARYING;
393 break;
394 }
395
396 /* If nothing changed this round, let the propagator know. */
397 if (new_l == old_l)
398 return SSA_PROP_NOT_INTERESTING;
399
400 complex_lattice_values[ver] = new_l;
401 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
402 }
403
404 /* Evaluate a PHI node against the complex lattice defined above. */
405
406 enum ssa_prop_result
407 complex_propagate::visit_phi (gphi *phi)
408 {
409 complex_lattice_t new_l, old_l;
410 unsigned int ver;
411 tree lhs;
412 int i;
413
414 lhs = gimple_phi_result (phi);
415
416 /* This condition should be satisfied due to the initial filter
417 set up in init_dont_simulate_again. */
418 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
419
420 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
421 return SSA_PROP_VARYING;
422
423 /* We've set up the lattice values such that IOR neatly models PHI meet. */
424 new_l = UNINITIALIZED;
425 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
426 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
427
428 ver = SSA_NAME_VERSION (lhs);
429 old_l = complex_lattice_values[ver];
430
431 if (new_l == old_l)
432 return SSA_PROP_NOT_INTERESTING;
433
434 complex_lattice_values[ver] = new_l;
435 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
436 }
437
438 /* Create one backing variable for a complex component of ORIG. */
439
440 static tree
441 create_one_component_var (tree type, tree orig, const char *prefix,
442 const char *suffix, enum tree_code code)
443 {
444 tree r = create_tmp_var (type, prefix);
445
446 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
447 DECL_ARTIFICIAL (r) = 1;
448
449 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
450 {
451 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
452 name = ACONCAT ((name, suffix, NULL));
453 DECL_NAME (r) = get_identifier (name);
454
455 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
456 DECL_HAS_DEBUG_EXPR_P (r) = 1;
457 DECL_IGNORED_P (r) = 0;
458 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
459 }
460 else
461 {
462 DECL_IGNORED_P (r) = 1;
463 TREE_NO_WARNING (r) = 1;
464 }
465
466 return r;
467 }
468
469 /* Retrieve a value for a complex component of VAR. */
470
471 static tree
472 get_component_var (tree var, bool imag_p)
473 {
474 size_t decl_index = DECL_UID (var) * 2 + imag_p;
475 tree ret = cvc_lookup (decl_index);
476
477 if (ret == NULL)
478 {
479 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
480 imag_p ? "CI" : "CR",
481 imag_p ? "$imag" : "$real",
482 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
483 cvc_insert (decl_index, ret);
484 }
485
486 return ret;
487 }
488
489 /* Retrieve a value for a complex component of SSA_NAME. */
490
491 static tree
492 get_component_ssa_name (tree ssa_name, bool imag_p)
493 {
494 complex_lattice_t lattice = find_lattice_value (ssa_name);
495 size_t ssa_name_index;
496 tree ret;
497
498 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
499 {
500 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
501 if (SCALAR_FLOAT_TYPE_P (inner_type))
502 return build_real (inner_type, dconst0);
503 else
504 return build_int_cst (inner_type, 0);
505 }
506
507 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
508 ret = complex_ssa_name_components[ssa_name_index];
509 if (ret == NULL)
510 {
511 if (SSA_NAME_VAR (ssa_name))
512 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
513 else
514 ret = TREE_TYPE (TREE_TYPE (ssa_name));
515 ret = make_ssa_name (ret);
516
517 /* Copy some properties from the original. In particular, whether it
518 is used in an abnormal phi, and whether it's uninitialized. */
519 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
520 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
521 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
522 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
523 {
524 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
525 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
526 }
527
528 complex_ssa_name_components[ssa_name_index] = ret;
529 }
530
531 return ret;
532 }
533
534 /* Set a value for a complex component of SSA_NAME, return a
535 gimple_seq of stuff that needs doing. */
536
537 static gimple_seq
538 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
539 {
540 complex_lattice_t lattice = find_lattice_value (ssa_name);
541 size_t ssa_name_index;
542 tree comp;
543 gimple *last;
544 gimple_seq list;
545
546 /* We know the value must be zero, else there's a bug in our lattice
547 analysis. But the value may well be a variable known to contain
548 zero. We should be safe ignoring it. */
549 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
550 return NULL;
551
552 /* If we've already assigned an SSA_NAME to this component, then this
553 means that our walk of the basic blocks found a use before the set.
554 This is fine. Now we should create an initialization for the value
555 we created earlier. */
556 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
557 comp = complex_ssa_name_components[ssa_name_index];
558 if (comp)
559 ;
560
561 /* If we've nothing assigned, and the value we're given is already stable,
562 then install that as the value for this SSA_NAME. This preemptively
563 copy-propagates the value, which avoids unnecessary memory allocation. */
564 else if (is_gimple_min_invariant (value)
565 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
566 {
567 complex_ssa_name_components[ssa_name_index] = value;
568 return NULL;
569 }
570 else if (TREE_CODE (value) == SSA_NAME
571 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
572 {
573 /* Replace an anonymous base value with the variable from cvc_lookup.
574 This should result in better debug info. */
575 if (!SSA_NAME_IS_DEFAULT_DEF (value)
576 && SSA_NAME_VAR (ssa_name)
577 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
578 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
579 {
580 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
581 replace_ssa_name_symbol (value, comp);
582 }
583
584 complex_ssa_name_components[ssa_name_index] = value;
585 return NULL;
586 }
587
588 /* Finally, we need to stabilize the result by installing the value into
589 a new ssa name. */
590 else
591 comp = get_component_ssa_name (ssa_name, imag_p);
592
593 /* Do all the work to assign VALUE to COMP. */
594 list = NULL;
595 value = force_gimple_operand (value, &list, false, NULL);
596 last = gimple_build_assign (comp, value);
597 gimple_seq_add_stmt (&list, last);
598 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
599
600 return list;
601 }
602
603 /* Extract the real or imaginary part of a complex variable or constant.
604 Make sure that it's a proper gimple_val and gimplify it if not.
605 Emit any new code before gsi. */
606
607 static tree
608 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
609 bool gimple_p, bool phiarg_p = false)
610 {
611 switch (TREE_CODE (t))
612 {
613 case COMPLEX_CST:
614 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
615
616 case COMPLEX_EXPR:
617 gcc_unreachable ();
618
619 case BIT_FIELD_REF:
620 {
621 tree inner_type = TREE_TYPE (TREE_TYPE (t));
622 t = unshare_expr (t);
623 TREE_TYPE (t) = inner_type;
624 TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
625 if (imagpart_p)
626 TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
627 TYPE_SIZE (inner_type));
628 if (gimple_p)
629 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
630 GSI_SAME_STMT);
631 return t;
632 }
633
634 case VAR_DECL:
635 case RESULT_DECL:
636 case PARM_DECL:
637 case COMPONENT_REF:
638 case ARRAY_REF:
639 case VIEW_CONVERT_EXPR:
640 case MEM_REF:
641 {
642 tree inner_type = TREE_TYPE (TREE_TYPE (t));
643
644 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
645 inner_type, unshare_expr (t));
646
647 if (gimple_p)
648 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
649 GSI_SAME_STMT);
650
651 return t;
652 }
653
654 case SSA_NAME:
655 t = get_component_ssa_name (t, imagpart_p);
656 if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
657 gcc_assert (phiarg_p);
658 return t;
659
660 default:
661 gcc_unreachable ();
662 }
663 }
664
665 /* Update the complex components of the ssa name on the lhs of STMT. */
666
667 static void
668 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
669 tree i)
670 {
671 tree lhs;
672 gimple_seq list;
673
674 lhs = gimple_get_lhs (stmt);
675
676 list = set_component_ssa_name (lhs, false, r);
677 if (list)
678 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
679
680 list = set_component_ssa_name (lhs, true, i);
681 if (list)
682 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
683 }
684
685 static void
686 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
687 {
688 gimple_seq list;
689
690 list = set_component_ssa_name (lhs, false, r);
691 if (list)
692 gsi_insert_seq_on_edge (e, list);
693
694 list = set_component_ssa_name (lhs, true, i);
695 if (list)
696 gsi_insert_seq_on_edge (e, list);
697 }
698
699
700 /* Update an assignment to a complex variable in place. */
701
702 static void
703 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
704 {
705 gimple *old_stmt = gsi_stmt (*gsi);
706 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
707 gimple *stmt = gsi_stmt (*gsi);
708 update_stmt (stmt);
709 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
710 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
711
712 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
713 }
714
715
716 /* Generate code at the entry point of the function to initialize the
717 component variables for a complex parameter. */
718
719 static void
720 update_parameter_components (void)
721 {
722 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
723 tree parm;
724
725 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
726 {
727 tree type = TREE_TYPE (parm);
728 tree ssa_name, r, i;
729
730 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
731 continue;
732
733 type = TREE_TYPE (type);
734 ssa_name = ssa_default_def (cfun, parm);
735 if (!ssa_name)
736 continue;
737
738 r = build1 (REALPART_EXPR, type, ssa_name);
739 i = build1 (IMAGPART_EXPR, type, ssa_name);
740 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
741 }
742 }
743
744 /* Generate code to set the component variables of a complex variable
745 to match the PHI statements in block BB. */
746
747 static void
748 update_phi_components (basic_block bb)
749 {
750 gphi_iterator gsi;
751
752 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
753 {
754 gphi *phi = gsi.phi ();
755
756 if (is_complex_reg (gimple_phi_result (phi)))
757 {
758 gphi *p[2] = { NULL, NULL };
759 unsigned int i, j, n;
760 bool revisit_phi = false;
761
762 for (j = 0; j < 2; j++)
763 {
764 tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
765 if (TREE_CODE (l) == SSA_NAME)
766 p[j] = create_phi_node (l, bb);
767 }
768
769 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
770 {
771 tree comp, arg = gimple_phi_arg_def (phi, i);
772 for (j = 0; j < 2; j++)
773 if (p[j])
774 {
775 comp = extract_component (NULL, arg, j > 0, false, true);
776 if (TREE_CODE (comp) == SSA_NAME
777 && SSA_NAME_DEF_STMT (comp) == NULL)
778 {
779 /* For the benefit of any gimple simplification during
780 this pass that might walk SSA_NAME def stmts,
781 don't add SSA_NAMEs without definitions into the
782 PHI arguments, but put a decl in there instead
783 temporarily, and revisit this PHI later on. */
784 if (SSA_NAME_VAR (comp))
785 comp = SSA_NAME_VAR (comp);
786 else
787 comp = create_tmp_reg (TREE_TYPE (comp),
788 get_name (comp));
789 revisit_phi = true;
790 }
791 SET_PHI_ARG_DEF (p[j], i, comp);
792 }
793 }
794
795 if (revisit_phi)
796 {
797 phis_to_revisit.safe_push (phi);
798 phis_to_revisit.safe_push (p[0]);
799 phis_to_revisit.safe_push (p[1]);
800 }
801 }
802 }
803 }
804
805 /* Expand a complex move to scalars. */
806
807 static void
808 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
809 {
810 tree inner_type = TREE_TYPE (type);
811 tree r, i, lhs, rhs;
812 gimple *stmt = gsi_stmt (*gsi);
813
814 if (is_gimple_assign (stmt))
815 {
816 lhs = gimple_assign_lhs (stmt);
817 if (gimple_num_ops (stmt) == 2)
818 rhs = gimple_assign_rhs1 (stmt);
819 else
820 rhs = NULL_TREE;
821 }
822 else if (is_gimple_call (stmt))
823 {
824 lhs = gimple_call_lhs (stmt);
825 rhs = NULL_TREE;
826 }
827 else
828 gcc_unreachable ();
829
830 if (TREE_CODE (lhs) == SSA_NAME)
831 {
832 if (is_ctrl_altering_stmt (stmt))
833 {
834 edge e;
835
836 /* The value is not assigned on the exception edges, so we need not
837 concern ourselves there. We do need to update on the fallthru
838 edge. Find it. */
839 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
840 if (!e)
841 gcc_unreachable ();
842
843 r = build1 (REALPART_EXPR, inner_type, lhs);
844 i = build1 (IMAGPART_EXPR, inner_type, lhs);
845 update_complex_components_on_edge (e, lhs, r, i);
846 }
847 else if (is_gimple_call (stmt)
848 || gimple_has_side_effects (stmt)
849 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
850 {
851 r = build1 (REALPART_EXPR, inner_type, lhs);
852 i = build1 (IMAGPART_EXPR, inner_type, lhs);
853 update_complex_components (gsi, stmt, r, i);
854 }
855 else
856 {
857 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
858 {
859 r = extract_component (gsi, rhs, 0, true);
860 i = extract_component (gsi, rhs, 1, true);
861 }
862 else
863 {
864 r = gimple_assign_rhs1 (stmt);
865 i = gimple_assign_rhs2 (stmt);
866 }
867 update_complex_assignment (gsi, r, i);
868 }
869 }
870 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
871 {
872 tree x;
873 gimple *t;
874 location_t loc;
875
876 loc = gimple_location (stmt);
877 r = extract_component (gsi, rhs, 0, false);
878 i = extract_component (gsi, rhs, 1, false);
879
880 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
881 t = gimple_build_assign (x, r);
882 gimple_set_location (t, loc);
883 gsi_insert_before (gsi, t, GSI_SAME_STMT);
884
885 if (stmt == gsi_stmt (*gsi))
886 {
887 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
888 gimple_assign_set_lhs (stmt, x);
889 gimple_assign_set_rhs1 (stmt, i);
890 }
891 else
892 {
893 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
894 t = gimple_build_assign (x, i);
895 gimple_set_location (t, loc);
896 gsi_insert_before (gsi, t, GSI_SAME_STMT);
897
898 stmt = gsi_stmt (*gsi);
899 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
900 gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
901 }
902
903 update_stmt (stmt);
904 }
905 }
906
907 /* Expand complex addition to scalars:
908 a + b = (ar + br) + i(ai + bi)
909 a - b = (ar - br) + i(ai + bi)
910 */
911
912 static void
913 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
914 tree ar, tree ai, tree br, tree bi,
915 enum tree_code code,
916 complex_lattice_t al, complex_lattice_t bl)
917 {
918 tree rr, ri;
919
920 switch (PAIR (al, bl))
921 {
922 case PAIR (ONLY_REAL, ONLY_REAL):
923 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
924 ri = ai;
925 break;
926
927 case PAIR (ONLY_REAL, ONLY_IMAG):
928 rr = ar;
929 if (code == MINUS_EXPR)
930 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
931 else
932 ri = bi;
933 break;
934
935 case PAIR (ONLY_IMAG, ONLY_REAL):
936 if (code == MINUS_EXPR)
937 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
938 else
939 rr = br;
940 ri = ai;
941 break;
942
943 case PAIR (ONLY_IMAG, ONLY_IMAG):
944 rr = ar;
945 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
946 break;
947
948 case PAIR (VARYING, ONLY_REAL):
949 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
950 ri = ai;
951 break;
952
953 case PAIR (VARYING, ONLY_IMAG):
954 rr = ar;
955 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
956 break;
957
958 case PAIR (ONLY_REAL, VARYING):
959 if (code == MINUS_EXPR)
960 goto general;
961 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
962 ri = bi;
963 break;
964
965 case PAIR (ONLY_IMAG, VARYING):
966 if (code == MINUS_EXPR)
967 goto general;
968 rr = br;
969 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
970 break;
971
972 case PAIR (VARYING, VARYING):
973 general:
974 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
975 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
976 break;
977
978 default:
979 gcc_unreachable ();
980 }
981
982 update_complex_assignment (gsi, rr, ri);
983 }
984
985 /* Expand a complex multiplication or division to a libcall to the c99
986 compliant routines. TYPE is the complex type of the operation.
987 If INPLACE_P replace the statement at GSI with
988 the libcall and return NULL_TREE. Else insert the call, assign its
989 result to an output variable and return that variable. If INPLACE_P
990 is true then the statement being replaced should be an assignment
991 statement. */
992
993 static tree
994 expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai,
995 tree br, tree bi, enum tree_code code, bool inplace_p)
996 {
997 machine_mode mode;
998 enum built_in_function bcode;
999 tree fn, lhs;
1000 gcall *stmt;
1001
1002 mode = TYPE_MODE (type);
1003 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
1004
1005 if (code == MULT_EXPR)
1006 bcode = ((enum built_in_function)
1007 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1008 else if (code == RDIV_EXPR)
1009 bcode = ((enum built_in_function)
1010 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
1011 else
1012 gcc_unreachable ();
1013 fn = builtin_decl_explicit (bcode);
1014 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
1015
1016 if (inplace_p)
1017 {
1018 gimple *old_stmt = gsi_stmt (*gsi);
1019 gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt));
1020 lhs = gimple_assign_lhs (old_stmt);
1021 gimple_call_set_lhs (stmt, lhs);
1022 gsi_replace (gsi, stmt, true);
1023
1024 type = TREE_TYPE (type);
1025 if (stmt_can_throw_internal (cfun, stmt))
1026 {
1027 edge_iterator ei;
1028 edge e;
1029 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
1030 if (!(e->flags & EDGE_EH))
1031 break;
1032 basic_block bb = split_edge (e);
1033 gimple_stmt_iterator gsi2 = gsi_start_bb (bb);
1034 update_complex_components (&gsi2, stmt,
1035 build1 (REALPART_EXPR, type, lhs),
1036 build1 (IMAGPART_EXPR, type, lhs));
1037 return NULL_TREE;
1038 }
1039 else
1040 update_complex_components (gsi, stmt,
1041 build1 (REALPART_EXPR, type, lhs),
1042 build1 (IMAGPART_EXPR, type, lhs));
1043 SSA_NAME_DEF_STMT (lhs) = stmt;
1044 return NULL_TREE;
1045 }
1046
1047 gimple_call_set_nothrow (stmt, true);
1048 lhs = make_ssa_name (type);
1049 gimple_call_set_lhs (stmt, lhs);
1050 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1051
1052 return lhs;
1053 }
1054
1055 /* Perform a complex multiplication on two complex constants A, B represented
1056 by AR, AI, BR, BI of type TYPE.
1057 The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
1058 Insert the GIMPLE statements into GSI. Store the real and imaginary
1059 components of the result into RR and RI. */
1060
1061 static void
1062 expand_complex_multiplication_components (gimple_stmt_iterator *gsi,
1063 tree type, tree ar, tree ai,
1064 tree br, tree bi,
1065 tree *rr, tree *ri)
1066 {
1067 tree t1, t2, t3, t4;
1068
1069 t1 = gimplify_build2 (gsi, MULT_EXPR, type, ar, br);
1070 t2 = gimplify_build2 (gsi, MULT_EXPR, type, ai, bi);
1071 t3 = gimplify_build2 (gsi, MULT_EXPR, type, ar, bi);
1072
1073 /* Avoid expanding redundant multiplication for the common
1074 case of squaring a complex number. */
1075 if (ar == br && ai == bi)
1076 t4 = t3;
1077 else
1078 t4 = gimplify_build2 (gsi, MULT_EXPR, type, ai, br);
1079
1080 *rr = gimplify_build2 (gsi, MINUS_EXPR, type, t1, t2);
1081 *ri = gimplify_build2 (gsi, PLUS_EXPR, type, t3, t4);
1082 }
1083
1084 /* Expand complex multiplication to scalars:
1085 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1086 */
1087
1088 static void
1089 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type,
1090 tree ar, tree ai, tree br, tree bi,
1091 complex_lattice_t al, complex_lattice_t bl)
1092 {
1093 tree rr, ri;
1094 tree inner_type = TREE_TYPE (type);
1095
1096 if (al < bl)
1097 {
1098 complex_lattice_t tl;
1099 rr = ar, ar = br, br = rr;
1100 ri = ai, ai = bi, bi = ri;
1101 tl = al, al = bl, bl = tl;
1102 }
1103
1104 switch (PAIR (al, bl))
1105 {
1106 case PAIR (ONLY_REAL, ONLY_REAL):
1107 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1108 ri = ai;
1109 break;
1110
1111 case PAIR (ONLY_IMAG, ONLY_REAL):
1112 rr = ar;
1113 if (TREE_CODE (ai) == REAL_CST
1114 && real_identical (&TREE_REAL_CST (ai), &dconst1))
1115 ri = br;
1116 else
1117 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1118 break;
1119
1120 case PAIR (ONLY_IMAG, ONLY_IMAG):
1121 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1122 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1123 ri = ar;
1124 break;
1125
1126 case PAIR (VARYING, ONLY_REAL):
1127 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1128 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1129 break;
1130
1131 case PAIR (VARYING, ONLY_IMAG):
1132 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1133 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1134 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1135 break;
1136
1137 case PAIR (VARYING, VARYING):
1138 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1139 {
1140 /* If optimizing for size or not at all just do a libcall.
1141 Same if there are exception-handling edges or signaling NaNs. */
1142 if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi))
1143 || stmt_can_throw_internal (cfun, gsi_stmt (*gsi))
1144 || flag_signaling_nans)
1145 {
1146 expand_complex_libcall (gsi, type, ar, ai, br, bi,
1147 MULT_EXPR, true);
1148 return;
1149 }
1150
1151 if (!HONOR_NANS (inner_type))
1152 {
1153 /* If we are not worrying about NaNs expand to
1154 (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
1155 expand_complex_multiplication_components (gsi, inner_type,
1156 ar, ai, br, bi,
1157 &rr, &ri);
1158 break;
1159 }
1160
1161 /* Else, expand x = a * b into
1162 x = (ar*br - ai*bi) + i(ar*bi + br*ai);
1163 if (isunordered (__real__ x, __imag__ x))
1164 x = __muldc3 (a, b); */
1165
1166 tree tmpr, tmpi;
1167 expand_complex_multiplication_components (gsi, inner_type, ar, ai,
1168 br, bi, &tmpr, &tmpi);
1169
1170 gimple *check
1171 = gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi,
1172 NULL_TREE, NULL_TREE);
1173
1174 basic_block orig_bb = gsi_bb (*gsi);
1175 /* We want to keep track of the original complex multiplication
1176 statement as we're going to modify it later in
1177 update_complex_assignment. Make sure that insert_cond_bb leaves
1178 that statement in the join block. */
1179 gsi_prev (gsi);
1180 basic_block cond_bb
1181 = insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check,
1182 profile_probability::very_unlikely ());
1183
1184 gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb);
1185 gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT);
1186
1187 tree libcall_res
1188 = expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br,
1189 bi, MULT_EXPR, false);
1190 tree cond_real = gimplify_build1 (&cond_bb_gsi, REALPART_EXPR,
1191 inner_type, libcall_res);
1192 tree cond_imag = gimplify_build1 (&cond_bb_gsi, IMAGPART_EXPR,
1193 inner_type, libcall_res);
1194
1195 basic_block join_bb = single_succ_edge (cond_bb)->dest;
1196 *gsi = gsi_start_nondebug_after_labels_bb (join_bb);
1197
1198 /* We have a conditional block with some assignments in cond_bb.
1199 Wire up the PHIs to wrap up. */
1200 rr = make_ssa_name (inner_type);
1201 ri = make_ssa_name (inner_type);
1202 edge cond_to_join = single_succ_edge (cond_bb);
1203 edge orig_to_join = find_edge (orig_bb, join_bb);
1204
1205 gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi));
1206 add_phi_arg (real_phi, cond_real, cond_to_join, UNKNOWN_LOCATION);
1207 add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION);
1208
1209 gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi));
1210 add_phi_arg (imag_phi, cond_imag, cond_to_join, UNKNOWN_LOCATION);
1211 add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION);
1212 }
1213 else
1214 /* If we are not worrying about NaNs expand to
1215 (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
1216 expand_complex_multiplication_components (gsi, inner_type, ar, ai,
1217 br, bi, &rr, &ri);
1218 break;
1219
1220 default:
1221 gcc_unreachable ();
1222 }
1223
1224 update_complex_assignment (gsi, rr, ri);
1225 }
1226
1227 /* Keep this algorithm in sync with fold-const.c:const_binop().
1228
1229 Expand complex division to scalars, straightforward algorithm.
1230 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1231 t = br*br + bi*bi
1232 */
1233
1234 static void
1235 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1236 tree ar, tree ai, tree br, tree bi,
1237 enum tree_code code)
1238 {
1239 tree rr, ri, div, t1, t2, t3;
1240
1241 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1242 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1243 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1244
1245 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1246 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1247 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1248 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1249
1250 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1251 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1252 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1253 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1254
1255 update_complex_assignment (gsi, rr, ri);
1256 }
1257
1258 /* Keep this algorithm in sync with fold-const.c:const_binop().
1259
1260 Expand complex division to scalars, modified algorithm to minimize
1261 overflow with wide input ranges. */
1262
1263 static void
1264 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1265 tree ar, tree ai, tree br, tree bi,
1266 enum tree_code code)
1267 {
1268 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1269 basic_block bb_cond, bb_true, bb_false, bb_join;
1270 gimple *stmt;
1271
1272 /* Examine |br| < |bi|, and branch. */
1273 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1274 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1275 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1276 LT_EXPR, boolean_type_node, t1, t2);
1277 STRIP_NOPS (compare);
1278
1279 bb_cond = bb_true = bb_false = bb_join = NULL;
1280 rr = ri = tr = ti = NULL;
1281 if (TREE_CODE (compare) != INTEGER_CST)
1282 {
1283 edge e;
1284 gimple *stmt;
1285 tree cond, tmp;
1286
1287 tmp = make_ssa_name (boolean_type_node);
1288 stmt = gimple_build_assign (tmp, compare);
1289 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1290
1291 cond = fold_build2_loc (gimple_location (stmt),
1292 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1293 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1294 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1295
1296 /* Split the original block, and create the TRUE and FALSE blocks. */
1297 e = split_block (gsi_bb (*gsi), stmt);
1298 bb_cond = e->src;
1299 bb_join = e->dest;
1300 bb_true = create_empty_bb (bb_cond);
1301 bb_false = create_empty_bb (bb_true);
1302 bb_true->count = bb_false->count
1303 = bb_cond->count.apply_probability (profile_probability::even ());
1304
1305 /* Wire the blocks together. */
1306 e->flags = EDGE_TRUE_VALUE;
1307 /* TODO: With value profile we could add an historgram to determine real
1308 branch outcome. */
1309 e->probability = profile_probability::even ();
1310 redirect_edge_succ (e, bb_true);
1311 edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1312 e2->probability = profile_probability::even ();
1313 make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
1314 make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
1315 add_bb_to_loop (bb_true, bb_cond->loop_father);
1316 add_bb_to_loop (bb_false, bb_cond->loop_father);
1317
1318 /* Update dominance info. Note that bb_join's data was
1319 updated by split_block. */
1320 if (dom_info_available_p (CDI_DOMINATORS))
1321 {
1322 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1323 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1324 }
1325
1326 rr = create_tmp_reg (inner_type);
1327 ri = create_tmp_reg (inner_type);
1328 }
1329
1330 /* In the TRUE branch, we compute
1331 ratio = br/bi;
1332 div = (br * ratio) + bi;
1333 tr = (ar * ratio) + ai;
1334 ti = (ai * ratio) - ar;
1335 tr = tr / div;
1336 ti = ti / div; */
1337 if (bb_true || integer_nonzerop (compare))
1338 {
1339 if (bb_true)
1340 {
1341 *gsi = gsi_last_bb (bb_true);
1342 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1343 }
1344
1345 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1346
1347 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1348 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1349
1350 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1351 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1352
1353 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1354 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1355
1356 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1357 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1358
1359 if (bb_true)
1360 {
1361 stmt = gimple_build_assign (rr, tr);
1362 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1363 stmt = gimple_build_assign (ri, ti);
1364 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1365 gsi_remove (gsi, true);
1366 }
1367 }
1368
1369 /* In the FALSE branch, we compute
1370 ratio = d/c;
1371 divisor = (d * ratio) + c;
1372 tr = (b * ratio) + a;
1373 ti = b - (a * ratio);
1374 tr = tr / div;
1375 ti = ti / div; */
1376 if (bb_false || integer_zerop (compare))
1377 {
1378 if (bb_false)
1379 {
1380 *gsi = gsi_last_bb (bb_false);
1381 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1382 }
1383
1384 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1385
1386 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1387 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1388
1389 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1390 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1391
1392 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1393 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1394
1395 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1396 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1397
1398 if (bb_false)
1399 {
1400 stmt = gimple_build_assign (rr, tr);
1401 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1402 stmt = gimple_build_assign (ri, ti);
1403 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1404 gsi_remove (gsi, true);
1405 }
1406 }
1407
1408 if (bb_join)
1409 *gsi = gsi_start_bb (bb_join);
1410 else
1411 rr = tr, ri = ti;
1412
1413 update_complex_assignment (gsi, rr, ri);
1414 }
1415
1416 /* Expand complex division to scalars. */
1417
1418 static void
1419 expand_complex_division (gimple_stmt_iterator *gsi, tree type,
1420 tree ar, tree ai, tree br, tree bi,
1421 enum tree_code code,
1422 complex_lattice_t al, complex_lattice_t bl)
1423 {
1424 tree rr, ri;
1425
1426 tree inner_type = TREE_TYPE (type);
1427 switch (PAIR (al, bl))
1428 {
1429 case PAIR (ONLY_REAL, ONLY_REAL):
1430 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1431 ri = ai;
1432 break;
1433
1434 case PAIR (ONLY_REAL, ONLY_IMAG):
1435 rr = ai;
1436 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1437 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1438 break;
1439
1440 case PAIR (ONLY_IMAG, ONLY_REAL):
1441 rr = ar;
1442 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1443 break;
1444
1445 case PAIR (ONLY_IMAG, ONLY_IMAG):
1446 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1447 ri = ar;
1448 break;
1449
1450 case PAIR (VARYING, ONLY_REAL):
1451 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1452 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1453 break;
1454
1455 case PAIR (VARYING, ONLY_IMAG):
1456 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1457 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1458 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1459 break;
1460
1461 case PAIR (ONLY_REAL, VARYING):
1462 case PAIR (ONLY_IMAG, VARYING):
1463 case PAIR (VARYING, VARYING):
1464 switch (flag_complex_method)
1465 {
1466 case 0:
1467 /* straightforward implementation of complex divide acceptable. */
1468 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1469 break;
1470
1471 case 2:
1472 if (SCALAR_FLOAT_TYPE_P (inner_type))
1473 {
1474 expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true);
1475 break;
1476 }
1477 /* FALLTHRU */
1478
1479 case 1:
1480 /* wide ranges of inputs must work for complex divide. */
1481 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1482 break;
1483
1484 default:
1485 gcc_unreachable ();
1486 }
1487 return;
1488
1489 default:
1490 gcc_unreachable ();
1491 }
1492
1493 update_complex_assignment (gsi, rr, ri);
1494 }
1495
1496 /* Expand complex negation to scalars:
1497 -a = (-ar) + i(-ai)
1498 */
1499
1500 static void
1501 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1502 tree ar, tree ai)
1503 {
1504 tree rr, ri;
1505
1506 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1507 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1508
1509 update_complex_assignment (gsi, rr, ri);
1510 }
1511
1512 /* Expand complex conjugate to scalars:
1513 ~a = (ar) + i(-ai)
1514 */
1515
1516 static void
1517 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1518 tree ar, tree ai)
1519 {
1520 tree ri;
1521
1522 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1523
1524 update_complex_assignment (gsi, ar, ri);
1525 }
1526
1527 /* Expand complex comparison (EQ or NE only). */
1528
1529 static void
1530 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1531 tree br, tree bi, enum tree_code code)
1532 {
1533 tree cr, ci, cc, type;
1534 gimple *stmt;
1535
1536 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1537 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1538 cc = gimplify_build2 (gsi,
1539 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1540 boolean_type_node, cr, ci);
1541
1542 stmt = gsi_stmt (*gsi);
1543
1544 switch (gimple_code (stmt))
1545 {
1546 case GIMPLE_RETURN:
1547 {
1548 greturn *return_stmt = as_a <greturn *> (stmt);
1549 type = TREE_TYPE (gimple_return_retval (return_stmt));
1550 gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1551 }
1552 break;
1553
1554 case GIMPLE_ASSIGN:
1555 type = TREE_TYPE (gimple_assign_lhs (stmt));
1556 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1557 stmt = gsi_stmt (*gsi);
1558 break;
1559
1560 case GIMPLE_COND:
1561 {
1562 gcond *cond_stmt = as_a <gcond *> (stmt);
1563 gimple_cond_set_code (cond_stmt, EQ_EXPR);
1564 gimple_cond_set_lhs (cond_stmt, cc);
1565 gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1566 }
1567 break;
1568
1569 default:
1570 gcc_unreachable ();
1571 }
1572
1573 update_stmt (stmt);
1574 if (maybe_clean_eh_stmt (stmt))
1575 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
1576 }
1577
1578 /* Expand inline asm that sets some complex SSA_NAMEs. */
1579
1580 static void
1581 expand_complex_asm (gimple_stmt_iterator *gsi)
1582 {
1583 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1584 unsigned int i;
1585
1586 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1587 {
1588 tree link = gimple_asm_output_op (stmt, i);
1589 tree op = TREE_VALUE (link);
1590 if (TREE_CODE (op) == SSA_NAME
1591 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1592 {
1593 tree type = TREE_TYPE (op);
1594 tree inner_type = TREE_TYPE (type);
1595 tree r = build1 (REALPART_EXPR, inner_type, op);
1596 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1597 gimple_seq list = set_component_ssa_name (op, false, r);
1598
1599 if (list)
1600 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1601
1602 list = set_component_ssa_name (op, true, i);
1603 if (list)
1604 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1605 }
1606 }
1607 }
1608
1609 /* Process one statement. If we identify a complex operation, expand it. */
1610
1611 static void
1612 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1613 {
1614 gimple *stmt = gsi_stmt (*gsi);
1615 tree type, inner_type, lhs;
1616 tree ac, ar, ai, bc, br, bi;
1617 complex_lattice_t al, bl;
1618 enum tree_code code;
1619
1620 if (gimple_code (stmt) == GIMPLE_ASM)
1621 {
1622 expand_complex_asm (gsi);
1623 return;
1624 }
1625
1626 lhs = gimple_get_lhs (stmt);
1627 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1628 return;
1629
1630 type = TREE_TYPE (gimple_op (stmt, 0));
1631 code = gimple_expr_code (stmt);
1632
1633 /* Initial filter for operations we handle. */
1634 switch (code)
1635 {
1636 case PLUS_EXPR:
1637 case MINUS_EXPR:
1638 case MULT_EXPR:
1639 case TRUNC_DIV_EXPR:
1640 case CEIL_DIV_EXPR:
1641 case FLOOR_DIV_EXPR:
1642 case ROUND_DIV_EXPR:
1643 case RDIV_EXPR:
1644 case NEGATE_EXPR:
1645 case CONJ_EXPR:
1646 if (TREE_CODE (type) != COMPLEX_TYPE)
1647 return;
1648 inner_type = TREE_TYPE (type);
1649 break;
1650
1651 case EQ_EXPR:
1652 case NE_EXPR:
1653 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1654 subcode, so we need to access the operands using gimple_op. */
1655 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1656 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1657 return;
1658 break;
1659
1660 default:
1661 {
1662 tree rhs;
1663
1664 /* GIMPLE_COND may also fallthru here, but we do not need to
1665 do anything with it. */
1666 if (gimple_code (stmt) == GIMPLE_COND)
1667 return;
1668
1669 if (TREE_CODE (type) == COMPLEX_TYPE)
1670 expand_complex_move (gsi, type);
1671 else if (is_gimple_assign (stmt)
1672 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1673 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1674 && TREE_CODE (lhs) == SSA_NAME)
1675 {
1676 rhs = gimple_assign_rhs1 (stmt);
1677 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1678 gimple_assign_rhs_code (stmt)
1679 == IMAGPART_EXPR,
1680 false);
1681 gimple_assign_set_rhs_from_tree (gsi, rhs);
1682 stmt = gsi_stmt (*gsi);
1683 update_stmt (stmt);
1684 }
1685 }
1686 return;
1687 }
1688
1689 /* Extract the components of the two complex values. Make sure and
1690 handle the common case of the same value used twice specially. */
1691 if (is_gimple_assign (stmt))
1692 {
1693 ac = gimple_assign_rhs1 (stmt);
1694 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1695 }
1696 /* GIMPLE_CALL cannot get here. */
1697 else
1698 {
1699 ac = gimple_cond_lhs (stmt);
1700 bc = gimple_cond_rhs (stmt);
1701 }
1702
1703 ar = extract_component (gsi, ac, false, true);
1704 ai = extract_component (gsi, ac, true, true);
1705
1706 if (ac == bc)
1707 br = ar, bi = ai;
1708 else if (bc)
1709 {
1710 br = extract_component (gsi, bc, 0, true);
1711 bi = extract_component (gsi, bc, 1, true);
1712 }
1713 else
1714 br = bi = NULL_TREE;
1715
1716 al = find_lattice_value (ac);
1717 if (al == UNINITIALIZED)
1718 al = VARYING;
1719
1720 if (TREE_CODE_CLASS (code) == tcc_unary)
1721 bl = UNINITIALIZED;
1722 else if (ac == bc)
1723 bl = al;
1724 else
1725 {
1726 bl = find_lattice_value (bc);
1727 if (bl == UNINITIALIZED)
1728 bl = VARYING;
1729 }
1730
1731 switch (code)
1732 {
1733 case PLUS_EXPR:
1734 case MINUS_EXPR:
1735 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1736 break;
1737
1738 case MULT_EXPR:
1739 expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl);
1740 break;
1741
1742 case TRUNC_DIV_EXPR:
1743 case CEIL_DIV_EXPR:
1744 case FLOOR_DIV_EXPR:
1745 case ROUND_DIV_EXPR:
1746 case RDIV_EXPR:
1747 expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl);
1748 break;
1749
1750 case NEGATE_EXPR:
1751 expand_complex_negation (gsi, inner_type, ar, ai);
1752 break;
1753
1754 case CONJ_EXPR:
1755 expand_complex_conjugate (gsi, inner_type, ar, ai);
1756 break;
1757
1758 case EQ_EXPR:
1759 case NE_EXPR:
1760 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1761 break;
1762
1763 default:
1764 gcc_unreachable ();
1765 }
1766 }
1767
1768 \f
1769 /* Entry point for complex operation lowering during optimization. */
1770
1771 static unsigned int
1772 tree_lower_complex (void)
1773 {
1774 gimple_stmt_iterator gsi;
1775 basic_block bb;
1776 int n_bbs, i;
1777 int *rpo;
1778
1779 if (!init_dont_simulate_again ())
1780 return 0;
1781
1782 complex_lattice_values.create (num_ssa_names);
1783 complex_lattice_values.safe_grow_cleared (num_ssa_names, true);
1784
1785 init_parameter_lattice_values ();
1786 class complex_propagate complex_propagate;
1787 complex_propagate.ssa_propagate ();
1788
1789 need_eh_cleanup = BITMAP_ALLOC (NULL);
1790
1791 complex_variable_components = new int_tree_htab_type (10);
1792
1793 complex_ssa_name_components.create (2 * num_ssa_names);
1794 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names, true);
1795
1796 update_parameter_components ();
1797
1798 rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1799 n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
1800 for (i = 0; i < n_bbs; i++)
1801 {
1802 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
1803 if (!bb)
1804 continue;
1805 update_phi_components (bb);
1806 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1807 expand_complex_operations_1 (&gsi);
1808 }
1809
1810 free (rpo);
1811
1812 if (!phis_to_revisit.is_empty ())
1813 {
1814 unsigned int n = phis_to_revisit.length ();
1815 for (unsigned int j = 0; j < n; j += 3)
1816 for (unsigned int k = 0; k < 2; k++)
1817 if (gphi *phi = phis_to_revisit[j + k + 1])
1818 {
1819 unsigned int m = gimple_phi_num_args (phi);
1820 for (unsigned int l = 0; l < m; ++l)
1821 {
1822 tree op = gimple_phi_arg_def (phi, l);
1823 if (TREE_CODE (op) == SSA_NAME
1824 || is_gimple_min_invariant (op))
1825 continue;
1826 tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
1827 op = extract_component (NULL, arg, k > 0, false, false);
1828 SET_PHI_ARG_DEF (phi, l, op);
1829 }
1830 }
1831 phis_to_revisit.release ();
1832 }
1833
1834 gsi_commit_edge_inserts ();
1835
1836 unsigned todo
1837 = gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0;
1838 BITMAP_FREE (need_eh_cleanup);
1839
1840 delete complex_variable_components;
1841 complex_variable_components = NULL;
1842 complex_ssa_name_components.release ();
1843 complex_lattice_values.release ();
1844 return todo;
1845 }
1846
1847 namespace {
1848
1849 const pass_data pass_data_lower_complex =
1850 {
1851 GIMPLE_PASS, /* type */
1852 "cplxlower", /* name */
1853 OPTGROUP_NONE, /* optinfo_flags */
1854 TV_NONE, /* tv_id */
1855 PROP_ssa, /* properties_required */
1856 PROP_gimple_lcx, /* properties_provided */
1857 0, /* properties_destroyed */
1858 0, /* todo_flags_start */
1859 TODO_update_ssa, /* todo_flags_finish */
1860 };
1861
1862 class pass_lower_complex : public gimple_opt_pass
1863 {
1864 public:
1865 pass_lower_complex (gcc::context *ctxt)
1866 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1867 {}
1868
1869 /* opt_pass methods: */
1870 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1871 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1872
1873 }; // class pass_lower_complex
1874
1875 } // anon namespace
1876
1877 gimple_opt_pass *
1878 make_pass_lower_complex (gcc::context *ctxt)
1879 {
1880 return new pass_lower_complex (ctxt);
1881 }
1882
1883 \f
1884 namespace {
1885
1886 const pass_data pass_data_lower_complex_O0 =
1887 {
1888 GIMPLE_PASS, /* type */
1889 "cplxlower0", /* name */
1890 OPTGROUP_NONE, /* optinfo_flags */
1891 TV_NONE, /* tv_id */
1892 PROP_cfg, /* properties_required */
1893 PROP_gimple_lcx, /* properties_provided */
1894 0, /* properties_destroyed */
1895 0, /* todo_flags_start */
1896 TODO_update_ssa, /* todo_flags_finish */
1897 };
1898
1899 class pass_lower_complex_O0 : public gimple_opt_pass
1900 {
1901 public:
1902 pass_lower_complex_O0 (gcc::context *ctxt)
1903 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1904 {}
1905
1906 /* opt_pass methods: */
1907 virtual bool gate (function *fun)
1908 {
1909 /* With errors, normal optimization passes are not run. If we don't
1910 lower complex operations at all, rtl expansion will abort. */
1911 return !(fun->curr_properties & PROP_gimple_lcx);
1912 }
1913
1914 virtual unsigned int execute (function *) { return tree_lower_complex (); }
1915
1916 }; // class pass_lower_complex_O0
1917
1918 } // anon namespace
1919
1920 gimple_opt_pass *
1921 make_pass_lower_complex_O0 (gcc::context *ctxt)
1922 {
1923 return new pass_lower_complex_O0 (ctxt);
1924 }