Daily bump.
[gcc.git] / gcc / tree-predcom.c
1 /* Predictive commoning.
2 Copyright (C) 2005-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
30
31 Let us demonstrate what is done on an example:
32
33 for (i = 0; i < 100; i++)
34 {
35 a[i+2] = a[i] + a[i+1];
36 b[10] = b[10] + i;
37 c[i] = c[99 - i];
38 d[i] = d[i + 1];
39 }
40
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
46
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
51
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
66
67 In our example, we get the following chains (the chain for c is invalid).
68
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
72
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
82 reuse),
83
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
86
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
92
93 e[i] + f[i+1] + e[i+1] + f[i]
94
95 can be reassociated as
96
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
98
99 and we can combine the chains for e and f into one chain.
100
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
104 R0 .. R(N-1).
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
111
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
115
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
118 {
119 f = phi (a[0], s);
120 s = phi (a[1], f);
121 x = phi (b[10], x);
122
123 f = f + s;
124 a[i+2] = f;
125 x = x + i;
126 b[10] = x;
127 }
128
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
135
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
139
140 In our case, F = 2 and the (main loop of the) result is
141
142 for (i = 0; i < ...; i += 2)
143 {
144 f = phi (a[0], f);
145 s = phi (a[1], s);
146 x = phi (b[10], x);
147
148 f = f + s;
149 a[i+2] = f;
150 x = x + i;
151 b[10] = x;
152
153 s = s + f;
154 a[i+3] = s;
155 x = x + i;
156 b[10] = x;
157 }
158
159 Apart from predictive commoning on Load-Load and Store-Load chains, we
160 also support Store-Store chains -- stores killed by other store can be
161 eliminated. Given below example:
162
163 for (i = 0; i < n; i++)
164 {
165 a[i] = 1;
166 a[i+2] = 2;
167 }
168
169 It can be replaced with:
170
171 t0 = a[0];
172 t1 = a[1];
173 for (i = 0; i < n; i++)
174 {
175 a[i] = 1;
176 t2 = 2;
177 t0 = t1;
178 t1 = t2;
179 }
180 a[n] = t0;
181 a[n+1] = t1;
182
183 If the loop runs more than 1 iterations, it can be further simplified into:
184
185 for (i = 0; i < n; i++)
186 {
187 a[i] = 1;
188 }
189 a[n] = 2;
190 a[n+1] = 2;
191
192 The interesting part is this can be viewed either as general store motion
193 or general dead store elimination in either intra/inter-iterations way.
194
195 With trivial effort, we also support load inside Store-Store chains if the
196 load is dominated by a store statement in the same iteration of loop. You
197 can see this as a restricted Store-Mixed-Load-Store chain.
198
199 TODO: For now, we don't support store-store chains in multi-exit loops. We
200 force to not unroll in case of store-store chain even if other chains might
201 ask for unroll.
202
203 Predictive commoning can be generalized for arbitrary computations (not
204 just memory loads), and also nontrivial transfer functions (e.g., replacing
205 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
206
207 #include "config.h"
208 #include "system.h"
209 #include "coretypes.h"
210 #include "backend.h"
211 #include "rtl.h"
212 #include "tree.h"
213 #include "gimple.h"
214 #include "predict.h"
215 #include "tree-pass.h"
216 #include "ssa.h"
217 #include "gimple-pretty-print.h"
218 #include "alias.h"
219 #include "fold-const.h"
220 #include "cfgloop.h"
221 #include "tree-eh.h"
222 #include "gimplify.h"
223 #include "gimple-iterator.h"
224 #include "gimplify-me.h"
225 #include "tree-ssa-loop-ivopts.h"
226 #include "tree-ssa-loop-manip.h"
227 #include "tree-ssa-loop-niter.h"
228 #include "tree-ssa-loop.h"
229 #include "tree-into-ssa.h"
230 #include "tree-dfa.h"
231 #include "tree-ssa.h"
232 #include "tree-data-ref.h"
233 #include "tree-scalar-evolution.h"
234 #include "tree-affine.h"
235 #include "builtins.h"
236
237 /* The maximum number of iterations between the considered memory
238 references. */
239
240 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
241
242 /* Data references (or phi nodes that carry data reference values across
243 loop iterations). */
244
245 typedef class dref_d
246 {
247 public:
248 /* The reference itself. */
249 struct data_reference *ref;
250
251 /* The statement in that the reference appears. */
252 gimple *stmt;
253
254 /* In case that STMT is a phi node, this field is set to the SSA name
255 defined by it in replace_phis_by_defined_names (in order to avoid
256 pointing to phi node that got reallocated in the meantime). */
257 tree name_defined_by_phi;
258
259 /* Distance of the reference from the root of the chain (in number of
260 iterations of the loop). */
261 unsigned distance;
262
263 /* Number of iterations offset from the first reference in the component. */
264 widest_int offset;
265
266 /* Number of the reference in a component, in dominance ordering. */
267 unsigned pos;
268
269 /* True if the memory reference is always accessed when the loop is
270 entered. */
271 unsigned always_accessed : 1;
272 } *dref;
273
274
275 /* Type of the chain of the references. */
276
277 enum chain_type
278 {
279 /* The addresses of the references in the chain are constant. */
280 CT_INVARIANT,
281
282 /* There are only loads in the chain. */
283 CT_LOAD,
284
285 /* Root of the chain is store, the rest are loads. */
286 CT_STORE_LOAD,
287
288 /* There are only stores in the chain. */
289 CT_STORE_STORE,
290
291 /* A combination of two chains. */
292 CT_COMBINATION
293 };
294
295 /* Chains of data references. */
296
297 typedef struct chain
298 {
299 /* Type of the chain. */
300 enum chain_type type;
301
302 /* For combination chains, the operator and the two chains that are
303 combined, and the type of the result. */
304 enum tree_code op;
305 tree rslt_type;
306 struct chain *ch1, *ch2;
307
308 /* The references in the chain. */
309 vec<dref> refs;
310
311 /* The maximum distance of the reference in the chain from the root. */
312 unsigned length;
313
314 /* The variables used to copy the value throughout iterations. */
315 vec<tree> vars;
316
317 /* Initializers for the variables. */
318 vec<tree> inits;
319
320 /* Finalizers for the eliminated stores. */
321 vec<tree> finis;
322
323 /* gimple stmts intializing the initial variables of the chain. */
324 gimple_seq init_seq;
325
326 /* gimple stmts finalizing the eliminated stores of the chain. */
327 gimple_seq fini_seq;
328
329 /* True if there is a use of a variable with the maximal distance
330 that comes after the root in the loop. */
331 unsigned has_max_use_after : 1;
332
333 /* True if all the memory references in the chain are always accessed. */
334 unsigned all_always_accessed : 1;
335
336 /* True if this chain was combined together with some other chain. */
337 unsigned combined : 1;
338
339 /* True if this is store elimination chain and eliminated stores store
340 loop invariant value into memory. */
341 unsigned inv_store_elimination : 1;
342 } *chain_p;
343
344
345 /* Describes the knowledge about the step of the memory references in
346 the component. */
347
348 enum ref_step_type
349 {
350 /* The step is zero. */
351 RS_INVARIANT,
352
353 /* The step is nonzero. */
354 RS_NONZERO,
355
356 /* The step may or may not be nonzero. */
357 RS_ANY
358 };
359
360 /* Components of the data dependence graph. */
361
362 struct component
363 {
364 /* The references in the component. */
365 vec<dref> refs;
366
367 /* What we know about the step of the references in the component. */
368 enum ref_step_type comp_step;
369
370 /* True if all references in component are stores and we try to do
371 intra/inter loop iteration dead store elimination. */
372 bool eliminate_store_p;
373
374 /* Next component in the list. */
375 struct component *next;
376 };
377
378 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
379
380 static bitmap looparound_phis;
381
382 /* Cache used by tree_to_aff_combination_expand. */
383
384 static hash_map<tree, name_expansion *> *name_expansions;
385
386 /* Dumps data reference REF to FILE. */
387
388 extern void dump_dref (FILE *, dref);
389 void
390 dump_dref (FILE *file, dref ref)
391 {
392 if (ref->ref)
393 {
394 fprintf (file, " ");
395 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
396 fprintf (file, " (id %u%s)\n", ref->pos,
397 DR_IS_READ (ref->ref) ? "" : ", write");
398
399 fprintf (file, " offset ");
400 print_decs (ref->offset, file);
401 fprintf (file, "\n");
402
403 fprintf (file, " distance %u\n", ref->distance);
404 }
405 else
406 {
407 if (gimple_code (ref->stmt) == GIMPLE_PHI)
408 fprintf (file, " looparound ref\n");
409 else
410 fprintf (file, " combination ref\n");
411 fprintf (file, " in statement ");
412 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
413 fprintf (file, "\n");
414 fprintf (file, " distance %u\n", ref->distance);
415 }
416
417 }
418
419 /* Dumps CHAIN to FILE. */
420
421 extern void dump_chain (FILE *, chain_p);
422 void
423 dump_chain (FILE *file, chain_p chain)
424 {
425 dref a;
426 const char *chain_type;
427 unsigned i;
428 tree var;
429
430 switch (chain->type)
431 {
432 case CT_INVARIANT:
433 chain_type = "Load motion";
434 break;
435
436 case CT_LOAD:
437 chain_type = "Loads-only";
438 break;
439
440 case CT_STORE_LOAD:
441 chain_type = "Store-loads";
442 break;
443
444 case CT_STORE_STORE:
445 chain_type = "Store-stores";
446 break;
447
448 case CT_COMBINATION:
449 chain_type = "Combination";
450 break;
451
452 default:
453 gcc_unreachable ();
454 }
455
456 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
457 chain->combined ? " (combined)" : "");
458 if (chain->type != CT_INVARIANT)
459 fprintf (file, " max distance %u%s\n", chain->length,
460 chain->has_max_use_after ? "" : ", may reuse first");
461
462 if (chain->type == CT_COMBINATION)
463 {
464 fprintf (file, " equal to %p %s %p in type ",
465 (void *) chain->ch1, op_symbol_code (chain->op),
466 (void *) chain->ch2);
467 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
468 fprintf (file, "\n");
469 }
470
471 if (chain->vars.exists ())
472 {
473 fprintf (file, " vars");
474 FOR_EACH_VEC_ELT (chain->vars, i, var)
475 {
476 fprintf (file, " ");
477 print_generic_expr (file, var, TDF_SLIM);
478 }
479 fprintf (file, "\n");
480 }
481
482 if (chain->inits.exists ())
483 {
484 fprintf (file, " inits");
485 FOR_EACH_VEC_ELT (chain->inits, i, var)
486 {
487 fprintf (file, " ");
488 print_generic_expr (file, var, TDF_SLIM);
489 }
490 fprintf (file, "\n");
491 }
492
493 fprintf (file, " references:\n");
494 FOR_EACH_VEC_ELT (chain->refs, i, a)
495 dump_dref (file, a);
496
497 fprintf (file, "\n");
498 }
499
500 /* Dumps CHAINS to FILE. */
501
502 extern void dump_chains (FILE *, vec<chain_p> );
503 void
504 dump_chains (FILE *file, vec<chain_p> chains)
505 {
506 chain_p chain;
507 unsigned i;
508
509 FOR_EACH_VEC_ELT (chains, i, chain)
510 dump_chain (file, chain);
511 }
512
513 /* Dumps COMP to FILE. */
514
515 extern void dump_component (FILE *, struct component *);
516 void
517 dump_component (FILE *file, struct component *comp)
518 {
519 dref a;
520 unsigned i;
521
522 fprintf (file, "Component%s:\n",
523 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
524 FOR_EACH_VEC_ELT (comp->refs, i, a)
525 dump_dref (file, a);
526 fprintf (file, "\n");
527 }
528
529 /* Dumps COMPS to FILE. */
530
531 extern void dump_components (FILE *, struct component *);
532 void
533 dump_components (FILE *file, struct component *comps)
534 {
535 struct component *comp;
536
537 for (comp = comps; comp; comp = comp->next)
538 dump_component (file, comp);
539 }
540
541 /* Frees a chain CHAIN. */
542
543 static void
544 release_chain (chain_p chain)
545 {
546 dref ref;
547 unsigned i;
548
549 if (chain == NULL)
550 return;
551
552 FOR_EACH_VEC_ELT (chain->refs, i, ref)
553 free (ref);
554
555 chain->refs.release ();
556 chain->vars.release ();
557 chain->inits.release ();
558 if (chain->init_seq)
559 gimple_seq_discard (chain->init_seq);
560
561 chain->finis.release ();
562 if (chain->fini_seq)
563 gimple_seq_discard (chain->fini_seq);
564
565 free (chain);
566 }
567
568 /* Frees CHAINS. */
569
570 static void
571 release_chains (vec<chain_p> chains)
572 {
573 unsigned i;
574 chain_p chain;
575
576 FOR_EACH_VEC_ELT (chains, i, chain)
577 release_chain (chain);
578 chains.release ();
579 }
580
581 /* Frees a component COMP. */
582
583 static void
584 release_component (struct component *comp)
585 {
586 comp->refs.release ();
587 free (comp);
588 }
589
590 /* Frees list of components COMPS. */
591
592 static void
593 release_components (struct component *comps)
594 {
595 struct component *act, *next;
596
597 for (act = comps; act; act = next)
598 {
599 next = act->next;
600 release_component (act);
601 }
602 }
603
604 /* Finds a root of tree given by FATHERS containing A, and performs path
605 shortening. */
606
607 static unsigned
608 component_of (unsigned fathers[], unsigned a)
609 {
610 unsigned root, n;
611
612 for (root = a; root != fathers[root]; root = fathers[root])
613 continue;
614
615 for (; a != root; a = n)
616 {
617 n = fathers[a];
618 fathers[a] = root;
619 }
620
621 return root;
622 }
623
624 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
625 components, A and B are components to merge. */
626
627 static void
628 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
629 {
630 unsigned ca = component_of (fathers, a);
631 unsigned cb = component_of (fathers, b);
632
633 if (ca == cb)
634 return;
635
636 if (sizes[ca] < sizes[cb])
637 {
638 sizes[cb] += sizes[ca];
639 fathers[ca] = cb;
640 }
641 else
642 {
643 sizes[ca] += sizes[cb];
644 fathers[cb] = ca;
645 }
646 }
647
648 /* Returns true if A is a reference that is suitable for predictive commoning
649 in the innermost loop that contains it. REF_STEP is set according to the
650 step of the reference A. */
651
652 static bool
653 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
654 {
655 tree ref = DR_REF (a), step = DR_STEP (a);
656
657 if (!step
658 || TREE_THIS_VOLATILE (ref)
659 || !is_gimple_reg_type (TREE_TYPE (ref))
660 || tree_could_throw_p (ref))
661 return false;
662
663 if (integer_zerop (step))
664 *ref_step = RS_INVARIANT;
665 else if (integer_nonzerop (step))
666 *ref_step = RS_NONZERO;
667 else
668 *ref_step = RS_ANY;
669
670 return true;
671 }
672
673 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
674
675 static void
676 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
677 {
678 tree type = TREE_TYPE (DR_OFFSET (dr));
679 aff_tree delta;
680
681 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
682 &name_expansions);
683 aff_combination_const (&delta, type, wi::to_poly_widest (DR_INIT (dr)));
684 aff_combination_add (offset, &delta);
685 }
686
687 /* Determines number of iterations of the innermost enclosing loop before B
688 refers to exactly the same location as A and stores it to OFF. If A and
689 B do not have the same step, they never meet, or anything else fails,
690 returns false, otherwise returns true. Both A and B are assumed to
691 satisfy suitable_reference_p. */
692
693 static bool
694 determine_offset (struct data_reference *a, struct data_reference *b,
695 poly_widest_int *off)
696 {
697 aff_tree diff, baseb, step;
698 tree typea, typeb;
699
700 /* Check that both the references access the location in the same type. */
701 typea = TREE_TYPE (DR_REF (a));
702 typeb = TREE_TYPE (DR_REF (b));
703 if (!useless_type_conversion_p (typeb, typea))
704 return false;
705
706 /* Check whether the base address and the step of both references is the
707 same. */
708 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
709 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
710 return false;
711
712 if (integer_zerop (DR_STEP (a)))
713 {
714 /* If the references have loop invariant address, check that they access
715 exactly the same location. */
716 *off = 0;
717 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
718 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
719 }
720
721 /* Compare the offsets of the addresses, and check whether the difference
722 is a multiple of step. */
723 aff_combination_dr_offset (a, &diff);
724 aff_combination_dr_offset (b, &baseb);
725 aff_combination_scale (&baseb, -1);
726 aff_combination_add (&diff, &baseb);
727
728 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
729 &step, &name_expansions);
730 return aff_combination_constant_multiple_p (&diff, &step, off);
731 }
732
733 /* Returns the last basic block in LOOP for that we are sure that
734 it is executed whenever the loop is entered. */
735
736 static basic_block
737 last_always_executed_block (class loop *loop)
738 {
739 unsigned i;
740 auto_vec<edge> exits = get_loop_exit_edges (loop);
741 edge ex;
742 basic_block last = loop->latch;
743
744 FOR_EACH_VEC_ELT (exits, i, ex)
745 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
746
747 return last;
748 }
749
750 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
751
752 static struct component *
753 split_data_refs_to_components (class loop *loop,
754 vec<data_reference_p> datarefs,
755 vec<ddr_p> depends)
756 {
757 unsigned i, n = datarefs.length ();
758 unsigned ca, ia, ib, bad;
759 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
760 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
761 struct component **comps;
762 struct data_reference *dr, *dra, *drb;
763 struct data_dependence_relation *ddr;
764 struct component *comp_list = NULL, *comp;
765 dref dataref;
766 /* Don't do store elimination if loop has multiple exit edges. */
767 bool eliminate_store_p = single_exit (loop) != NULL;
768 basic_block last_always_executed = last_always_executed_block (loop);
769 auto_bitmap no_store_store_comps;
770
771 FOR_EACH_VEC_ELT (datarefs, i, dr)
772 {
773 if (!DR_REF (dr))
774 {
775 /* A fake reference for call or asm_expr that may clobber memory;
776 just fail. */
777 goto end;
778 }
779 /* predcom pass isn't prepared to handle calls with data references. */
780 if (is_gimple_call (DR_STMT (dr)))
781 goto end;
782 dr->aux = (void *) (size_t) i;
783 comp_father[i] = i;
784 comp_size[i] = 1;
785 }
786
787 /* A component reserved for the "bad" data references. */
788 comp_father[n] = n;
789 comp_size[n] = 1;
790
791 FOR_EACH_VEC_ELT (datarefs, i, dr)
792 {
793 enum ref_step_type dummy;
794
795 if (!suitable_reference_p (dr, &dummy))
796 {
797 ia = (unsigned) (size_t) dr->aux;
798 merge_comps (comp_father, comp_size, n, ia);
799 }
800 }
801
802 FOR_EACH_VEC_ELT (depends, i, ddr)
803 {
804 poly_widest_int dummy_off;
805
806 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
807 continue;
808
809 dra = DDR_A (ddr);
810 drb = DDR_B (ddr);
811
812 /* Don't do store elimination if there is any unknown dependence for
813 any store data reference. */
814 if ((DR_IS_WRITE (dra) || DR_IS_WRITE (drb))
815 && (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
816 || DDR_NUM_DIST_VECTS (ddr) == 0))
817 eliminate_store_p = false;
818
819 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
820 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
821 if (ia == ib)
822 continue;
823
824 bad = component_of (comp_father, n);
825
826 /* If both A and B are reads, we may ignore unsuitable dependences. */
827 if (DR_IS_READ (dra) && DR_IS_READ (drb))
828 {
829 if (ia == bad || ib == bad
830 || !determine_offset (dra, drb, &dummy_off))
831 continue;
832 }
833 /* If A is read and B write or vice versa and there is unsuitable
834 dependence, instead of merging both components into a component
835 that will certainly not pass suitable_component_p, just put the
836 read into bad component, perhaps at least the write together with
837 all the other data refs in it's component will be optimizable. */
838 else if (DR_IS_READ (dra) && ib != bad)
839 {
840 if (ia == bad)
841 {
842 bitmap_set_bit (no_store_store_comps, ib);
843 continue;
844 }
845 else if (!determine_offset (dra, drb, &dummy_off))
846 {
847 bitmap_set_bit (no_store_store_comps, ib);
848 merge_comps (comp_father, comp_size, bad, ia);
849 continue;
850 }
851 }
852 else if (DR_IS_READ (drb) && ia != bad)
853 {
854 if (ib == bad)
855 {
856 bitmap_set_bit (no_store_store_comps, ia);
857 continue;
858 }
859 else if (!determine_offset (dra, drb, &dummy_off))
860 {
861 bitmap_set_bit (no_store_store_comps, ia);
862 merge_comps (comp_father, comp_size, bad, ib);
863 continue;
864 }
865 }
866 else if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb)
867 && ia != bad && ib != bad
868 && !determine_offset (dra, drb, &dummy_off))
869 {
870 merge_comps (comp_father, comp_size, bad, ia);
871 merge_comps (comp_father, comp_size, bad, ib);
872 continue;
873 }
874
875 merge_comps (comp_father, comp_size, ia, ib);
876 }
877
878 if (eliminate_store_p)
879 {
880 tree niters = number_of_latch_executions (loop);
881
882 /* Don't do store elimination if niters info is unknown because stores
883 in the last iteration can't be eliminated and we need to recover it
884 after loop. */
885 eliminate_store_p = (niters != NULL_TREE && niters != chrec_dont_know);
886 }
887
888 comps = XCNEWVEC (struct component *, n);
889 bad = component_of (comp_father, n);
890 FOR_EACH_VEC_ELT (datarefs, i, dr)
891 {
892 ia = (unsigned) (size_t) dr->aux;
893 ca = component_of (comp_father, ia);
894 if (ca == bad)
895 continue;
896
897 comp = comps[ca];
898 if (!comp)
899 {
900 comp = XCNEW (struct component);
901 comp->refs.create (comp_size[ca]);
902 comp->eliminate_store_p = eliminate_store_p;
903 comps[ca] = comp;
904 }
905
906 dataref = XCNEW (class dref_d);
907 dataref->ref = dr;
908 dataref->stmt = DR_STMT (dr);
909 dataref->offset = 0;
910 dataref->distance = 0;
911
912 dataref->always_accessed
913 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
914 gimple_bb (dataref->stmt));
915 dataref->pos = comp->refs.length ();
916 comp->refs.quick_push (dataref);
917 }
918
919 if (eliminate_store_p)
920 {
921 bitmap_iterator bi;
922 EXECUTE_IF_SET_IN_BITMAP (no_store_store_comps, 0, ia, bi)
923 {
924 ca = component_of (comp_father, ia);
925 if (ca != bad)
926 comps[ca]->eliminate_store_p = false;
927 }
928 }
929
930 for (i = 0; i < n; i++)
931 {
932 comp = comps[i];
933 if (comp)
934 {
935 comp->next = comp_list;
936 comp_list = comp;
937 }
938 }
939 free (comps);
940
941 end:
942 free (comp_father);
943 free (comp_size);
944 return comp_list;
945 }
946
947 /* Returns true if the component COMP satisfies the conditions
948 described in 2) at the beginning of this file. LOOP is the current
949 loop. */
950
951 static bool
952 suitable_component_p (class loop *loop, struct component *comp)
953 {
954 unsigned i;
955 dref a, first;
956 basic_block ba, bp = loop->header;
957 bool ok, has_write = false;
958
959 FOR_EACH_VEC_ELT (comp->refs, i, a)
960 {
961 ba = gimple_bb (a->stmt);
962
963 if (!just_once_each_iteration_p (loop, ba))
964 return false;
965
966 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
967 bp = ba;
968
969 if (DR_IS_WRITE (a->ref))
970 has_write = true;
971 }
972
973 first = comp->refs[0];
974 ok = suitable_reference_p (first->ref, &comp->comp_step);
975 gcc_assert (ok);
976 first->offset = 0;
977
978 for (i = 1; comp->refs.iterate (i, &a); i++)
979 {
980 /* Polynomial offsets are no use, since we need to know the
981 gap between iteration numbers at compile time. */
982 poly_widest_int offset;
983 if (!determine_offset (first->ref, a->ref, &offset)
984 || !offset.is_constant (&a->offset))
985 return false;
986
987 enum ref_step_type a_step;
988 gcc_checking_assert (suitable_reference_p (a->ref, &a_step)
989 && a_step == comp->comp_step);
990 }
991
992 /* If there is a write inside the component, we must know whether the
993 step is nonzero or not -- we would not otherwise be able to recognize
994 whether the value accessed by reads comes from the OFFSET-th iteration
995 or the previous one. */
996 if (has_write && comp->comp_step == RS_ANY)
997 return false;
998
999 return true;
1000 }
1001
1002 /* Check the conditions on references inside each of components COMPS,
1003 and remove the unsuitable components from the list. The new list
1004 of components is returned. The conditions are described in 2) at
1005 the beginning of this file. LOOP is the current loop. */
1006
1007 static struct component *
1008 filter_suitable_components (class loop *loop, struct component *comps)
1009 {
1010 struct component **comp, *act;
1011
1012 for (comp = &comps; *comp; )
1013 {
1014 act = *comp;
1015 if (suitable_component_p (loop, act))
1016 comp = &act->next;
1017 else
1018 {
1019 dref ref;
1020 unsigned i;
1021
1022 *comp = act->next;
1023 FOR_EACH_VEC_ELT (act->refs, i, ref)
1024 free (ref);
1025 release_component (act);
1026 }
1027 }
1028
1029 return comps;
1030 }
1031
1032 /* Compares two drefs A and B by their offset and position. Callback for
1033 qsort. */
1034
1035 static int
1036 order_drefs (const void *a, const void *b)
1037 {
1038 const dref *const da = (const dref *) a;
1039 const dref *const db = (const dref *) b;
1040 int offcmp = wi::cmps ((*da)->offset, (*db)->offset);
1041
1042 if (offcmp != 0)
1043 return offcmp;
1044
1045 return (*da)->pos - (*db)->pos;
1046 }
1047
1048 /* Compares two drefs A and B by their position. Callback for qsort. */
1049
1050 static int
1051 order_drefs_by_pos (const void *a, const void *b)
1052 {
1053 const dref *const da = (const dref *) a;
1054 const dref *const db = (const dref *) b;
1055
1056 return (*da)->pos - (*db)->pos;
1057 }
1058
1059 /* Returns root of the CHAIN. */
1060
1061 static inline dref
1062 get_chain_root (chain_p chain)
1063 {
1064 return chain->refs[0];
1065 }
1066
1067 /* Given CHAIN, returns the last write ref at DISTANCE, or NULL if it doesn't
1068 exist. */
1069
1070 static inline dref
1071 get_chain_last_write_at (chain_p chain, unsigned distance)
1072 {
1073 for (unsigned i = chain->refs.length (); i > 0; i--)
1074 if (DR_IS_WRITE (chain->refs[i - 1]->ref)
1075 && distance == chain->refs[i - 1]->distance)
1076 return chain->refs[i - 1];
1077
1078 return NULL;
1079 }
1080
1081 /* Given CHAIN, returns the last write ref with the same distance before load
1082 at index LOAD_IDX, or NULL if it doesn't exist. */
1083
1084 static inline dref
1085 get_chain_last_write_before_load (chain_p chain, unsigned load_idx)
1086 {
1087 gcc_assert (load_idx < chain->refs.length ());
1088
1089 unsigned distance = chain->refs[load_idx]->distance;
1090
1091 for (unsigned i = load_idx; i > 0; i--)
1092 if (DR_IS_WRITE (chain->refs[i - 1]->ref)
1093 && distance == chain->refs[i - 1]->distance)
1094 return chain->refs[i - 1];
1095
1096 return NULL;
1097 }
1098
1099 /* Adds REF to the chain CHAIN. */
1100
1101 static void
1102 add_ref_to_chain (chain_p chain, dref ref)
1103 {
1104 dref root = get_chain_root (chain);
1105
1106 gcc_assert (wi::les_p (root->offset, ref->offset));
1107 widest_int dist = ref->offset - root->offset;
1108 gcc_assert (wi::fits_uhwi_p (dist));
1109
1110 chain->refs.safe_push (ref);
1111
1112 ref->distance = dist.to_uhwi ();
1113
1114 if (ref->distance >= chain->length)
1115 {
1116 chain->length = ref->distance;
1117 chain->has_max_use_after = false;
1118 }
1119
1120 /* Promote this chain to CT_STORE_STORE if it has multiple stores. */
1121 if (DR_IS_WRITE (ref->ref))
1122 chain->type = CT_STORE_STORE;
1123
1124 /* Don't set the flag for store-store chain since there is no use. */
1125 if (chain->type != CT_STORE_STORE
1126 && ref->distance == chain->length
1127 && ref->pos > root->pos)
1128 chain->has_max_use_after = true;
1129
1130 chain->all_always_accessed &= ref->always_accessed;
1131 }
1132
1133 /* Returns the chain for invariant component COMP. */
1134
1135 static chain_p
1136 make_invariant_chain (struct component *comp)
1137 {
1138 chain_p chain = XCNEW (struct chain);
1139 unsigned i;
1140 dref ref;
1141
1142 chain->type = CT_INVARIANT;
1143
1144 chain->all_always_accessed = true;
1145
1146 FOR_EACH_VEC_ELT (comp->refs, i, ref)
1147 {
1148 chain->refs.safe_push (ref);
1149 chain->all_always_accessed &= ref->always_accessed;
1150 }
1151
1152 chain->inits = vNULL;
1153 chain->finis = vNULL;
1154
1155 return chain;
1156 }
1157
1158 /* Make a new chain of type TYPE rooted at REF. */
1159
1160 static chain_p
1161 make_rooted_chain (dref ref, enum chain_type type)
1162 {
1163 chain_p chain = XCNEW (struct chain);
1164
1165 chain->type = type;
1166 chain->refs.safe_push (ref);
1167 chain->all_always_accessed = ref->always_accessed;
1168 ref->distance = 0;
1169
1170 chain->inits = vNULL;
1171 chain->finis = vNULL;
1172
1173 return chain;
1174 }
1175
1176 /* Returns true if CHAIN is not trivial. */
1177
1178 static bool
1179 nontrivial_chain_p (chain_p chain)
1180 {
1181 return chain != NULL && chain->refs.length () > 1;
1182 }
1183
1184 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1185 is no such name. */
1186
1187 static tree
1188 name_for_ref (dref ref)
1189 {
1190 tree name;
1191
1192 if (is_gimple_assign (ref->stmt))
1193 {
1194 if (!ref->ref || DR_IS_READ (ref->ref))
1195 name = gimple_assign_lhs (ref->stmt);
1196 else
1197 name = gimple_assign_rhs1 (ref->stmt);
1198 }
1199 else
1200 name = PHI_RESULT (ref->stmt);
1201
1202 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1203 }
1204
1205 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1206 iterations of the innermost enclosing loop). */
1207
1208 static bool
1209 valid_initializer_p (struct data_reference *ref,
1210 unsigned distance, struct data_reference *root)
1211 {
1212 aff_tree diff, base, step;
1213 poly_widest_int off;
1214
1215 /* Both REF and ROOT must be accessing the same object. */
1216 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1217 return false;
1218
1219 /* The initializer is defined outside of loop, hence its address must be
1220 invariant inside the loop. */
1221 gcc_assert (integer_zerop (DR_STEP (ref)));
1222
1223 /* If the address of the reference is invariant, initializer must access
1224 exactly the same location. */
1225 if (integer_zerop (DR_STEP (root)))
1226 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1227 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1228
1229 /* Verify that this index of REF is equal to the root's index at
1230 -DISTANCE-th iteration. */
1231 aff_combination_dr_offset (root, &diff);
1232 aff_combination_dr_offset (ref, &base);
1233 aff_combination_scale (&base, -1);
1234 aff_combination_add (&diff, &base);
1235
1236 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1237 &step, &name_expansions);
1238 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1239 return false;
1240
1241 if (maybe_ne (off, distance))
1242 return false;
1243
1244 return true;
1245 }
1246
1247 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1248 initial value is correct (equal to initial value of REF shifted by one
1249 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1250 is the root of the current chain. */
1251
1252 static gphi *
1253 find_looparound_phi (class loop *loop, dref ref, dref root)
1254 {
1255 tree name, init, init_ref;
1256 gphi *phi = NULL;
1257 gimple *init_stmt;
1258 edge latch = loop_latch_edge (loop);
1259 struct data_reference init_dr;
1260 gphi_iterator psi;
1261
1262 if (is_gimple_assign (ref->stmt))
1263 {
1264 if (DR_IS_READ (ref->ref))
1265 name = gimple_assign_lhs (ref->stmt);
1266 else
1267 name = gimple_assign_rhs1 (ref->stmt);
1268 }
1269 else
1270 name = PHI_RESULT (ref->stmt);
1271 if (!name)
1272 return NULL;
1273
1274 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1275 {
1276 phi = psi.phi ();
1277 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1278 break;
1279 }
1280
1281 if (gsi_end_p (psi))
1282 return NULL;
1283
1284 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1285 if (TREE_CODE (init) != SSA_NAME)
1286 return NULL;
1287 init_stmt = SSA_NAME_DEF_STMT (init);
1288 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1289 return NULL;
1290 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1291
1292 init_ref = gimple_assign_rhs1 (init_stmt);
1293 if (!REFERENCE_CLASS_P (init_ref)
1294 && !DECL_P (init_ref))
1295 return NULL;
1296
1297 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1298 loop enclosing PHI). */
1299 memset (&init_dr, 0, sizeof (struct data_reference));
1300 DR_REF (&init_dr) = init_ref;
1301 DR_STMT (&init_dr) = phi;
1302 if (!dr_analyze_innermost (&DR_INNERMOST (&init_dr), init_ref, loop,
1303 init_stmt))
1304 return NULL;
1305
1306 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1307 return NULL;
1308
1309 return phi;
1310 }
1311
1312 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1313
1314 static void
1315 insert_looparound_copy (chain_p chain, dref ref, gphi *phi)
1316 {
1317 dref nw = XCNEW (class dref_d), aref;
1318 unsigned i;
1319
1320 nw->stmt = phi;
1321 nw->distance = ref->distance + 1;
1322 nw->always_accessed = 1;
1323
1324 FOR_EACH_VEC_ELT (chain->refs, i, aref)
1325 if (aref->distance >= nw->distance)
1326 break;
1327 chain->refs.safe_insert (i, nw);
1328
1329 if (nw->distance > chain->length)
1330 {
1331 chain->length = nw->distance;
1332 chain->has_max_use_after = false;
1333 }
1334 }
1335
1336 /* For references in CHAIN that are copied around the LOOP (created previously
1337 by PRE, or by user), add the results of such copies to the chain. This
1338 enables us to remove the copies by unrolling, and may need less registers
1339 (also, it may allow us to combine chains together). */
1340
1341 static void
1342 add_looparound_copies (class loop *loop, chain_p chain)
1343 {
1344 unsigned i;
1345 dref ref, root = get_chain_root (chain);
1346 gphi *phi;
1347
1348 if (chain->type == CT_STORE_STORE)
1349 return;
1350
1351 FOR_EACH_VEC_ELT (chain->refs, i, ref)
1352 {
1353 phi = find_looparound_phi (loop, ref, root);
1354 if (!phi)
1355 continue;
1356
1357 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1358 insert_looparound_copy (chain, ref, phi);
1359 }
1360 }
1361
1362 /* Find roots of the values and determine distances in the component COMP.
1363 The references are redistributed into CHAINS. LOOP is the current
1364 loop. */
1365
1366 static void
1367 determine_roots_comp (class loop *loop,
1368 struct component *comp,
1369 vec<chain_p> *chains)
1370 {
1371 unsigned i;
1372 dref a;
1373 chain_p chain = NULL;
1374 widest_int last_ofs = 0;
1375 enum chain_type type;
1376
1377 /* Invariants are handled specially. */
1378 if (comp->comp_step == RS_INVARIANT)
1379 {
1380 chain = make_invariant_chain (comp);
1381 chains->safe_push (chain);
1382 return;
1383 }
1384
1385 /* Trivial component. */
1386 if (comp->refs.length () <= 1)
1387 {
1388 if (comp->refs.length () == 1)
1389 {
1390 free (comp->refs[0]);
1391 comp->refs.truncate (0);
1392 }
1393 return;
1394 }
1395
1396 comp->refs.qsort (order_drefs);
1397
1398 /* For Store-Store chain, we only support load if it is dominated by a
1399 store statement in the same iteration of loop. */
1400 if (comp->eliminate_store_p)
1401 for (a = NULL, i = 0; i < comp->refs.length (); i++)
1402 {
1403 if (DR_IS_WRITE (comp->refs[i]->ref))
1404 a = comp->refs[i];
1405 else if (a == NULL || a->offset != comp->refs[i]->offset)
1406 {
1407 /* If there is load that is not dominated by a store in the
1408 same iteration of loop, clear the flag so no Store-Store
1409 chain is generated for this component. */
1410 comp->eliminate_store_p = false;
1411 break;
1412 }
1413 }
1414
1415 /* Determine roots and create chains for components. */
1416 FOR_EACH_VEC_ELT (comp->refs, i, a)
1417 {
1418 if (!chain
1419 || (chain->type == CT_LOAD && DR_IS_WRITE (a->ref))
1420 || (!comp->eliminate_store_p && DR_IS_WRITE (a->ref))
1421 || wi::leu_p (MAX_DISTANCE, a->offset - last_ofs))
1422 {
1423 if (nontrivial_chain_p (chain))
1424 {
1425 add_looparound_copies (loop, chain);
1426 chains->safe_push (chain);
1427 }
1428 else
1429 release_chain (chain);
1430
1431 /* Determine type of the chain. If the root reference is a load,
1432 this can only be a CT_LOAD chain; other chains are intialized
1433 to CT_STORE_LOAD and might be promoted to CT_STORE_STORE when
1434 new reference is added. */
1435 type = DR_IS_READ (a->ref) ? CT_LOAD : CT_STORE_LOAD;
1436 chain = make_rooted_chain (a, type);
1437 last_ofs = a->offset;
1438 continue;
1439 }
1440
1441 add_ref_to_chain (chain, a);
1442 }
1443
1444 if (nontrivial_chain_p (chain))
1445 {
1446 add_looparound_copies (loop, chain);
1447 chains->safe_push (chain);
1448 }
1449 else
1450 release_chain (chain);
1451 }
1452
1453 /* Find roots of the values and determine distances in components COMPS, and
1454 separates the references to CHAINS. LOOP is the current loop. */
1455
1456 static void
1457 determine_roots (class loop *loop,
1458 struct component *comps, vec<chain_p> *chains)
1459 {
1460 struct component *comp;
1461
1462 for (comp = comps; comp; comp = comp->next)
1463 determine_roots_comp (loop, comp, chains);
1464 }
1465
1466 /* Replace the reference in statement STMT with temporary variable
1467 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1468 the reference in the statement. IN_LHS is true if the reference
1469 is in the lhs of STMT, false if it is in rhs. */
1470
1471 static void
1472 replace_ref_with (gimple *stmt, tree new_tree, bool set, bool in_lhs)
1473 {
1474 tree val;
1475 gassign *new_stmt;
1476 gimple_stmt_iterator bsi, psi;
1477
1478 if (gimple_code (stmt) == GIMPLE_PHI)
1479 {
1480 gcc_assert (!in_lhs && !set);
1481
1482 val = PHI_RESULT (stmt);
1483 bsi = gsi_after_labels (gimple_bb (stmt));
1484 psi = gsi_for_stmt (stmt);
1485 remove_phi_node (&psi, false);
1486
1487 /* Turn the phi node into GIMPLE_ASSIGN. */
1488 new_stmt = gimple_build_assign (val, new_tree);
1489 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1490 return;
1491 }
1492
1493 /* Since the reference is of gimple_reg type, it should only
1494 appear as lhs or rhs of modify statement. */
1495 gcc_assert (is_gimple_assign (stmt));
1496
1497 bsi = gsi_for_stmt (stmt);
1498
1499 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1500 if (!set)
1501 {
1502 gcc_assert (!in_lhs);
1503 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1504 stmt = gsi_stmt (bsi);
1505 update_stmt (stmt);
1506 return;
1507 }
1508
1509 if (in_lhs)
1510 {
1511 /* We have statement
1512
1513 OLD = VAL
1514
1515 If OLD is a memory reference, then VAL is gimple_val, and we transform
1516 this to
1517
1518 OLD = VAL
1519 NEW = VAL
1520
1521 Otherwise, we are replacing a combination chain,
1522 VAL is the expression that performs the combination, and OLD is an
1523 SSA name. In this case, we transform the assignment to
1524
1525 OLD = VAL
1526 NEW = OLD
1527
1528 */
1529
1530 val = gimple_assign_lhs (stmt);
1531 if (TREE_CODE (val) != SSA_NAME)
1532 {
1533 val = gimple_assign_rhs1 (stmt);
1534 gcc_assert (gimple_assign_single_p (stmt));
1535 if (TREE_CLOBBER_P (val))
1536 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1537 else
1538 gcc_assert (gimple_assign_copy_p (stmt));
1539 }
1540 }
1541 else
1542 {
1543 /* VAL = OLD
1544
1545 is transformed to
1546
1547 VAL = OLD
1548 NEW = VAL */
1549
1550 val = gimple_assign_lhs (stmt);
1551 }
1552
1553 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1554 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1555 }
1556
1557 /* Returns a memory reference to DR in the (NITERS + ITER)-th iteration
1558 of the loop it was analyzed in. Append init stmts to STMTS. */
1559
1560 static tree
1561 ref_at_iteration (data_reference_p dr, int iter,
1562 gimple_seq *stmts, tree niters = NULL_TREE)
1563 {
1564 tree off = DR_OFFSET (dr);
1565 tree coff = DR_INIT (dr);
1566 tree ref = DR_REF (dr);
1567 enum tree_code ref_code = ERROR_MARK;
1568 tree ref_type = NULL_TREE;
1569 tree ref_op1 = NULL_TREE;
1570 tree ref_op2 = NULL_TREE;
1571 tree new_offset;
1572
1573 if (iter != 0)
1574 {
1575 new_offset = size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter));
1576 if (TREE_CODE (new_offset) == INTEGER_CST)
1577 coff = size_binop (PLUS_EXPR, coff, new_offset);
1578 else
1579 off = size_binop (PLUS_EXPR, off, new_offset);
1580 }
1581
1582 if (niters != NULL_TREE)
1583 {
1584 niters = fold_convert (ssizetype, niters);
1585 new_offset = size_binop (MULT_EXPR, DR_STEP (dr), niters);
1586 if (TREE_CODE (niters) == INTEGER_CST)
1587 coff = size_binop (PLUS_EXPR, coff, new_offset);
1588 else
1589 off = size_binop (PLUS_EXPR, off, new_offset);
1590 }
1591
1592 /* While data-ref analysis punts on bit offsets it still handles
1593 bitfield accesses at byte boundaries. Cope with that. Note that
1594 if the bitfield object also starts at a byte-boundary we can simply
1595 replicate the COMPONENT_REF, but we have to subtract the component's
1596 byte-offset from the MEM_REF address first.
1597 Otherwise we simply build a BIT_FIELD_REF knowing that the bits
1598 start at offset zero. */
1599 if (TREE_CODE (ref) == COMPONENT_REF
1600 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
1601 {
1602 unsigned HOST_WIDE_INT boff;
1603 tree field = TREE_OPERAND (ref, 1);
1604 tree offset = component_ref_field_offset (ref);
1605 ref_type = TREE_TYPE (ref);
1606 boff = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field));
1607 /* This can occur in Ada. See the comment in get_bit_range. */
1608 if (boff % BITS_PER_UNIT != 0
1609 || !tree_fits_uhwi_p (offset))
1610 {
1611 ref_code = BIT_FIELD_REF;
1612 ref_op1 = DECL_SIZE (field);
1613 ref_op2 = bitsize_zero_node;
1614 }
1615 else
1616 {
1617 boff >>= LOG2_BITS_PER_UNIT;
1618 boff += tree_to_uhwi (offset);
1619 coff = size_binop (MINUS_EXPR, coff, ssize_int (boff));
1620 ref_code = COMPONENT_REF;
1621 ref_op1 = field;
1622 ref_op2 = TREE_OPERAND (ref, 2);
1623 ref = TREE_OPERAND (ref, 0);
1624 }
1625 }
1626 tree addr = fold_build_pointer_plus (DR_BASE_ADDRESS (dr), off);
1627 addr = force_gimple_operand_1 (unshare_expr (addr), stmts,
1628 is_gimple_mem_ref_addr, NULL_TREE);
1629 tree alias_ptr = fold_convert (reference_alias_ptr_type (ref), coff);
1630 tree type = build_aligned_type (TREE_TYPE (ref),
1631 get_object_alignment (ref));
1632 ref = build2 (MEM_REF, type, addr, alias_ptr);
1633 if (ref_type)
1634 ref = build3 (ref_code, ref_type, ref, ref_op1, ref_op2);
1635 return ref;
1636 }
1637
1638 /* Get the initialization expression for the INDEX-th temporary variable
1639 of CHAIN. */
1640
1641 static tree
1642 get_init_expr (chain_p chain, unsigned index)
1643 {
1644 if (chain->type == CT_COMBINATION)
1645 {
1646 tree e1 = get_init_expr (chain->ch1, index);
1647 tree e2 = get_init_expr (chain->ch2, index);
1648
1649 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1650 }
1651 else
1652 return chain->inits[index];
1653 }
1654
1655 /* Returns a new temporary variable used for the I-th variable carrying
1656 value of REF. The variable's uid is marked in TMP_VARS. */
1657
1658 static tree
1659 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1660 {
1661 tree type = TREE_TYPE (ref);
1662 /* We never access the components of the temporary variable in predictive
1663 commoning. */
1664 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1665 bitmap_set_bit (tmp_vars, DECL_UID (var));
1666 return var;
1667 }
1668
1669 /* Creates the variables for CHAIN, as well as phi nodes for them and
1670 initialization on entry to LOOP. Uids of the newly created
1671 temporary variables are marked in TMP_VARS. */
1672
1673 static void
1674 initialize_root_vars (class loop *loop, chain_p chain, bitmap tmp_vars)
1675 {
1676 unsigned i;
1677 unsigned n = chain->length;
1678 dref root = get_chain_root (chain);
1679 bool reuse_first = !chain->has_max_use_after;
1680 tree ref, init, var, next;
1681 gphi *phi;
1682 gimple_seq stmts;
1683 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1684
1685 /* If N == 0, then all the references are within the single iteration. And
1686 since this is an nonempty chain, reuse_first cannot be true. */
1687 gcc_assert (n > 0 || !reuse_first);
1688
1689 chain->vars.create (n + 1);
1690
1691 if (chain->type == CT_COMBINATION)
1692 ref = gimple_assign_lhs (root->stmt);
1693 else
1694 ref = DR_REF (root->ref);
1695
1696 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1697 {
1698 var = predcom_tmp_var (ref, i, tmp_vars);
1699 chain->vars.quick_push (var);
1700 }
1701 if (reuse_first)
1702 chain->vars.quick_push (chain->vars[0]);
1703
1704 FOR_EACH_VEC_ELT (chain->vars, i, var)
1705 chain->vars[i] = make_ssa_name (var);
1706
1707 for (i = 0; i < n; i++)
1708 {
1709 var = chain->vars[i];
1710 next = chain->vars[i + 1];
1711 init = get_init_expr (chain, i);
1712
1713 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1714 if (stmts)
1715 gsi_insert_seq_on_edge_immediate (entry, stmts);
1716
1717 phi = create_phi_node (var, loop->header);
1718 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1719 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1720 }
1721 }
1722
1723 /* For inter-iteration store elimination CHAIN in LOOP, returns true if
1724 all stores to be eliminated store loop invariant values into memory.
1725 In this case, we can use these invariant values directly after LOOP. */
1726
1727 static bool
1728 is_inv_store_elimination_chain (class loop *loop, chain_p chain)
1729 {
1730 if (chain->length == 0 || chain->type != CT_STORE_STORE)
1731 return false;
1732
1733 gcc_assert (!chain->has_max_use_after);
1734
1735 /* If loop iterates for unknown times or fewer times than chain->length,
1736 we still need to setup root variable and propagate it with PHI node. */
1737 tree niters = number_of_latch_executions (loop);
1738 if (TREE_CODE (niters) != INTEGER_CST
1739 || wi::leu_p (wi::to_wide (niters), chain->length))
1740 return false;
1741
1742 /* Check stores in chain for elimination if they only store loop invariant
1743 values. */
1744 for (unsigned i = 0; i < chain->length; i++)
1745 {
1746 dref a = get_chain_last_write_at (chain, i);
1747 if (a == NULL)
1748 continue;
1749
1750 gimple *def_stmt, *stmt = a->stmt;
1751 if (!gimple_assign_single_p (stmt))
1752 return false;
1753
1754 tree val = gimple_assign_rhs1 (stmt);
1755 if (TREE_CLOBBER_P (val))
1756 return false;
1757
1758 if (CONSTANT_CLASS_P (val))
1759 continue;
1760
1761 if (TREE_CODE (val) != SSA_NAME)
1762 return false;
1763
1764 def_stmt = SSA_NAME_DEF_STMT (val);
1765 if (gimple_nop_p (def_stmt))
1766 continue;
1767
1768 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
1769 return false;
1770 }
1771 return true;
1772 }
1773
1774 /* Creates root variables for store elimination CHAIN in which stores for
1775 elimination only store loop invariant values. In this case, we neither
1776 need to load root variables before loop nor propagate it with PHI nodes. */
1777
1778 static void
1779 initialize_root_vars_store_elim_1 (chain_p chain)
1780 {
1781 tree var;
1782 unsigned i, n = chain->length;
1783
1784 chain->vars.create (n);
1785 chain->vars.safe_grow_cleared (n, true);
1786
1787 /* Initialize root value for eliminated stores at each distance. */
1788 for (i = 0; i < n; i++)
1789 {
1790 dref a = get_chain_last_write_at (chain, i);
1791 if (a == NULL)
1792 continue;
1793
1794 var = gimple_assign_rhs1 (a->stmt);
1795 chain->vars[a->distance] = var;
1796 }
1797
1798 /* We don't propagate values with PHI nodes, so manually propagate value
1799 to bubble positions. */
1800 var = chain->vars[0];
1801 for (i = 1; i < n; i++)
1802 {
1803 if (chain->vars[i] != NULL_TREE)
1804 {
1805 var = chain->vars[i];
1806 continue;
1807 }
1808 chain->vars[i] = var;
1809 }
1810
1811 /* Revert the vector. */
1812 for (i = 0; i < n / 2; i++)
1813 std::swap (chain->vars[i], chain->vars[n - i - 1]);
1814 }
1815
1816 /* Creates root variables for store elimination CHAIN in which stores for
1817 elimination store loop variant values. In this case, we may need to
1818 load root variables before LOOP and propagate it with PHI nodes. Uids
1819 of the newly created root variables are marked in TMP_VARS. */
1820
1821 static void
1822 initialize_root_vars_store_elim_2 (class loop *loop,
1823 chain_p chain, bitmap tmp_vars)
1824 {
1825 unsigned i, n = chain->length;
1826 tree ref, init, var, next, val, phi_result;
1827 gimple *stmt;
1828 gimple_seq stmts;
1829
1830 chain->vars.create (n);
1831
1832 ref = DR_REF (get_chain_root (chain)->ref);
1833 for (i = 0; i < n; i++)
1834 {
1835 var = predcom_tmp_var (ref, i, tmp_vars);
1836 chain->vars.quick_push (var);
1837 }
1838
1839 FOR_EACH_VEC_ELT (chain->vars, i, var)
1840 chain->vars[i] = make_ssa_name (var);
1841
1842 /* Root values are either rhs operand of stores to be eliminated, or
1843 loaded from memory before loop. */
1844 auto_vec<tree> vtemps;
1845 vtemps.safe_grow_cleared (n, true);
1846 for (i = 0; i < n; i++)
1847 {
1848 init = get_init_expr (chain, i);
1849 if (init == NULL_TREE)
1850 {
1851 /* Root value is rhs operand of the store to be eliminated if
1852 it isn't loaded from memory before loop. */
1853 dref a = get_chain_last_write_at (chain, i);
1854 val = gimple_assign_rhs1 (a->stmt);
1855 if (TREE_CLOBBER_P (val))
1856 {
1857 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (var));
1858 gimple_assign_set_rhs1 (a->stmt, val);
1859 }
1860
1861 vtemps[n - i - 1] = val;
1862 }
1863 else
1864 {
1865 edge latch = loop_latch_edge (loop);
1866 edge entry = loop_preheader_edge (loop);
1867
1868 /* Root value is loaded from memory before loop, we also need
1869 to add PHI nodes to propagate the value across iterations. */
1870 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1871 if (stmts)
1872 gsi_insert_seq_on_edge_immediate (entry, stmts);
1873
1874 next = chain->vars[n - i];
1875 phi_result = copy_ssa_name (next);
1876 gphi *phi = create_phi_node (phi_result, loop->header);
1877 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1878 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1879 vtemps[n - i - 1] = phi_result;
1880 }
1881 }
1882
1883 /* Find the insertion position. */
1884 dref last = get_chain_root (chain);
1885 for (i = 0; i < chain->refs.length (); i++)
1886 {
1887 if (chain->refs[i]->pos > last->pos)
1888 last = chain->refs[i];
1889 }
1890
1891 gimple_stmt_iterator gsi = gsi_for_stmt (last->stmt);
1892
1893 /* Insert statements copying root value to root variable. */
1894 for (i = 0; i < n; i++)
1895 {
1896 var = chain->vars[i];
1897 val = vtemps[i];
1898 stmt = gimple_build_assign (var, val);
1899 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1900 }
1901 }
1902
1903 /* Generates stores for CHAIN's eliminated stores in LOOP's last
1904 (CHAIN->length - 1) iterations. */
1905
1906 static void
1907 finalize_eliminated_stores (class loop *loop, chain_p chain)
1908 {
1909 unsigned i, n = chain->length;
1910
1911 for (i = 0; i < n; i++)
1912 {
1913 tree var = chain->vars[i];
1914 tree fini = chain->finis[n - i - 1];
1915 gimple *stmt = gimple_build_assign (fini, var);
1916
1917 gimple_seq_add_stmt_without_update (&chain->fini_seq, stmt);
1918 }
1919
1920 if (chain->fini_seq)
1921 {
1922 gsi_insert_seq_on_edge_immediate (single_exit (loop), chain->fini_seq);
1923 chain->fini_seq = NULL;
1924 }
1925 }
1926
1927 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1928 initialization on entry to LOOP if necessary. The ssa name for the variable
1929 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1930 around the loop is created. Uid of the newly created temporary variable
1931 is marked in TMP_VARS. INITS is the list containing the (single)
1932 initializer. */
1933
1934 static void
1935 initialize_root_vars_lm (class loop *loop, dref root, bool written,
1936 vec<tree> *vars, vec<tree> inits,
1937 bitmap tmp_vars)
1938 {
1939 unsigned i;
1940 tree ref = DR_REF (root->ref), init, var, next;
1941 gimple_seq stmts;
1942 gphi *phi;
1943 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1944
1945 /* Find the initializer for the variable, and check that it cannot
1946 trap. */
1947 init = inits[0];
1948
1949 vars->create (written ? 2 : 1);
1950 var = predcom_tmp_var (ref, 0, tmp_vars);
1951 vars->quick_push (var);
1952 if (written)
1953 vars->quick_push ((*vars)[0]);
1954
1955 FOR_EACH_VEC_ELT (*vars, i, var)
1956 (*vars)[i] = make_ssa_name (var);
1957
1958 var = (*vars)[0];
1959
1960 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1961 if (stmts)
1962 gsi_insert_seq_on_edge_immediate (entry, stmts);
1963
1964 if (written)
1965 {
1966 next = (*vars)[1];
1967 phi = create_phi_node (var, loop->header);
1968 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1969 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1970 }
1971 else
1972 {
1973 gassign *init_stmt = gimple_build_assign (var, init);
1974 gsi_insert_on_edge_immediate (entry, init_stmt);
1975 }
1976 }
1977
1978
1979 /* Execute load motion for references in chain CHAIN. Uids of the newly
1980 created temporary variables are marked in TMP_VARS. */
1981
1982 static void
1983 execute_load_motion (class loop *loop, chain_p chain, bitmap tmp_vars)
1984 {
1985 auto_vec<tree> vars;
1986 dref a;
1987 unsigned n_writes = 0, ridx, i;
1988 tree var;
1989
1990 gcc_assert (chain->type == CT_INVARIANT);
1991 gcc_assert (!chain->combined);
1992 FOR_EACH_VEC_ELT (chain->refs, i, a)
1993 if (DR_IS_WRITE (a->ref))
1994 n_writes++;
1995
1996 /* If there are no reads in the loop, there is nothing to do. */
1997 if (n_writes == chain->refs.length ())
1998 return;
1999
2000 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
2001 &vars, chain->inits, tmp_vars);
2002
2003 ridx = 0;
2004 FOR_EACH_VEC_ELT (chain->refs, i, a)
2005 {
2006 bool is_read = DR_IS_READ (a->ref);
2007
2008 if (DR_IS_WRITE (a->ref))
2009 {
2010 n_writes--;
2011 if (n_writes)
2012 {
2013 var = vars[0];
2014 var = make_ssa_name (SSA_NAME_VAR (var));
2015 vars[0] = var;
2016 }
2017 else
2018 ridx = 1;
2019 }
2020
2021 replace_ref_with (a->stmt, vars[ridx],
2022 !is_read, !is_read);
2023 }
2024 }
2025
2026 /* Returns the single statement in that NAME is used, excepting
2027 the looparound phi nodes contained in one of the chains. If there is no
2028 such statement, or more statements, NULL is returned. */
2029
2030 static gimple *
2031 single_nonlooparound_use (tree name)
2032 {
2033 use_operand_p use;
2034 imm_use_iterator it;
2035 gimple *stmt, *ret = NULL;
2036
2037 FOR_EACH_IMM_USE_FAST (use, it, name)
2038 {
2039 stmt = USE_STMT (use);
2040
2041 if (gimple_code (stmt) == GIMPLE_PHI)
2042 {
2043 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
2044 could not be processed anyway, so just fail for them. */
2045 if (bitmap_bit_p (looparound_phis,
2046 SSA_NAME_VERSION (PHI_RESULT (stmt))))
2047 continue;
2048
2049 return NULL;
2050 }
2051 else if (is_gimple_debug (stmt))
2052 continue;
2053 else if (ret != NULL)
2054 return NULL;
2055 else
2056 ret = stmt;
2057 }
2058
2059 return ret;
2060 }
2061
2062 /* Remove statement STMT, as well as the chain of assignments in that it is
2063 used. */
2064
2065 static void
2066 remove_stmt (gimple *stmt)
2067 {
2068 tree name;
2069 gimple *next;
2070 gimple_stmt_iterator psi;
2071
2072 if (gimple_code (stmt) == GIMPLE_PHI)
2073 {
2074 name = PHI_RESULT (stmt);
2075 next = single_nonlooparound_use (name);
2076 reset_debug_uses (stmt);
2077 psi = gsi_for_stmt (stmt);
2078 remove_phi_node (&psi, true);
2079
2080 if (!next
2081 || !gimple_assign_ssa_name_copy_p (next)
2082 || gimple_assign_rhs1 (next) != name)
2083 return;
2084
2085 stmt = next;
2086 }
2087
2088 while (1)
2089 {
2090 gimple_stmt_iterator bsi;
2091
2092 bsi = gsi_for_stmt (stmt);
2093
2094 name = gimple_assign_lhs (stmt);
2095 if (TREE_CODE (name) == SSA_NAME)
2096 {
2097 next = single_nonlooparound_use (name);
2098 reset_debug_uses (stmt);
2099 }
2100 else
2101 {
2102 /* This is a store to be eliminated. */
2103 gcc_assert (gimple_vdef (stmt) != NULL);
2104 next = NULL;
2105 }
2106
2107 unlink_stmt_vdef (stmt);
2108 gsi_remove (&bsi, true);
2109 release_defs (stmt);
2110
2111 if (!next
2112 || !gimple_assign_ssa_name_copy_p (next)
2113 || gimple_assign_rhs1 (next) != name)
2114 return;
2115
2116 stmt = next;
2117 }
2118 }
2119
2120 /* Perform the predictive commoning optimization for a chain CHAIN.
2121 Uids of the newly created temporary variables are marked in TMP_VARS.*/
2122
2123 static void
2124 execute_pred_commoning_chain (class loop *loop, chain_p chain,
2125 bitmap tmp_vars)
2126 {
2127 unsigned i;
2128 dref a;
2129 tree var;
2130 bool in_lhs;
2131
2132 if (chain->combined)
2133 {
2134 /* For combined chains, just remove the statements that are used to
2135 compute the values of the expression (except for the root one).
2136 We delay this until after all chains are processed. */
2137 }
2138 else if (chain->type == CT_STORE_STORE)
2139 {
2140 if (chain->length > 0)
2141 {
2142 if (chain->inv_store_elimination)
2143 {
2144 /* If dead stores in this chain only store loop invariant
2145 values, we can simply record the invariant value and use
2146 it directly after loop. */
2147 initialize_root_vars_store_elim_1 (chain);
2148 }
2149 else
2150 {
2151 /* If dead stores in this chain store loop variant values,
2152 we need to set up the variables by loading from memory
2153 before loop and propagating it with PHI nodes. */
2154 initialize_root_vars_store_elim_2 (loop, chain, tmp_vars);
2155 }
2156
2157 /* For inter-iteration store elimination chain, stores at each
2158 distance in loop's last (chain->length - 1) iterations can't
2159 be eliminated, because there is no following killing store.
2160 We need to generate these stores after loop. */
2161 finalize_eliminated_stores (loop, chain);
2162 }
2163
2164 bool last_store_p = true;
2165 for (i = chain->refs.length (); i > 0; i--)
2166 {
2167 a = chain->refs[i - 1];
2168 /* Preserve the last store of the chain. Eliminate other stores
2169 which are killed by the last one. */
2170 if (DR_IS_WRITE (a->ref))
2171 {
2172 if (last_store_p)
2173 last_store_p = false;
2174 else
2175 remove_stmt (a->stmt);
2176
2177 continue;
2178 }
2179
2180 /* Any load in Store-Store chain must be dominated by a previous
2181 store, we replace the load reference with rhs of the store. */
2182 dref b = get_chain_last_write_before_load (chain, i - 1);
2183 gcc_assert (b != NULL);
2184 var = gimple_assign_rhs1 (b->stmt);
2185 replace_ref_with (a->stmt, var, false, false);
2186 }
2187 }
2188 else
2189 {
2190 /* For non-combined chains, set up the variables that hold its value. */
2191 initialize_root_vars (loop, chain, tmp_vars);
2192 a = get_chain_root (chain);
2193 in_lhs = (chain->type == CT_STORE_LOAD
2194 || chain->type == CT_COMBINATION);
2195 replace_ref_with (a->stmt, chain->vars[chain->length], true, in_lhs);
2196
2197 /* Replace the uses of the original references by these variables. */
2198 for (i = 1; chain->refs.iterate (i, &a); i++)
2199 {
2200 var = chain->vars[chain->length - a->distance];
2201 replace_ref_with (a->stmt, var, false, false);
2202 }
2203 }
2204 }
2205
2206 /* Determines the unroll factor necessary to remove as many temporary variable
2207 copies as possible. CHAINS is the list of chains that will be
2208 optimized. */
2209
2210 static unsigned
2211 determine_unroll_factor (vec<chain_p> chains)
2212 {
2213 chain_p chain;
2214 unsigned factor = 1, af, nfactor, i;
2215 unsigned max = param_max_unroll_times;
2216
2217 FOR_EACH_VEC_ELT (chains, i, chain)
2218 {
2219 if (chain->type == CT_INVARIANT)
2220 continue;
2221 /* For now we can't handle unrolling when eliminating stores. */
2222 else if (chain->type == CT_STORE_STORE)
2223 return 1;
2224
2225 if (chain->combined)
2226 {
2227 /* For combined chains, we can't handle unrolling if we replace
2228 looparound PHIs. */
2229 dref a;
2230 unsigned j;
2231 for (j = 1; chain->refs.iterate (j, &a); j++)
2232 if (gimple_code (a->stmt) == GIMPLE_PHI)
2233 return 1;
2234 continue;
2235 }
2236
2237 /* The best unroll factor for this chain is equal to the number of
2238 temporary variables that we create for it. */
2239 af = chain->length;
2240 if (chain->has_max_use_after)
2241 af++;
2242
2243 nfactor = factor * af / gcd (factor, af);
2244 if (nfactor <= max)
2245 factor = nfactor;
2246 }
2247
2248 return factor;
2249 }
2250
2251 /* Perform the predictive commoning optimization for CHAINS.
2252 Uids of the newly created temporary variables are marked in TMP_VARS. */
2253
2254 static void
2255 execute_pred_commoning (class loop *loop, vec<chain_p> chains,
2256 bitmap tmp_vars)
2257 {
2258 chain_p chain;
2259 unsigned i;
2260
2261 FOR_EACH_VEC_ELT (chains, i, chain)
2262 {
2263 if (chain->type == CT_INVARIANT)
2264 execute_load_motion (loop, chain, tmp_vars);
2265 else
2266 execute_pred_commoning_chain (loop, chain, tmp_vars);
2267 }
2268
2269 FOR_EACH_VEC_ELT (chains, i, chain)
2270 {
2271 if (chain->type == CT_INVARIANT)
2272 ;
2273 else if (chain->combined)
2274 {
2275 /* For combined chains, just remove the statements that are used to
2276 compute the values of the expression (except for the root one). */
2277 dref a;
2278 unsigned j;
2279 for (j = 1; chain->refs.iterate (j, &a); j++)
2280 remove_stmt (a->stmt);
2281 }
2282 }
2283
2284 update_ssa (TODO_update_ssa_only_virtuals);
2285 }
2286
2287 /* For each reference in CHAINS, if its defining statement is
2288 phi node, record the ssa name that is defined by it. */
2289
2290 static void
2291 replace_phis_by_defined_names (vec<chain_p> chains)
2292 {
2293 chain_p chain;
2294 dref a;
2295 unsigned i, j;
2296
2297 FOR_EACH_VEC_ELT (chains, i, chain)
2298 FOR_EACH_VEC_ELT (chain->refs, j, a)
2299 {
2300 if (gimple_code (a->stmt) == GIMPLE_PHI)
2301 {
2302 a->name_defined_by_phi = PHI_RESULT (a->stmt);
2303 a->stmt = NULL;
2304 }
2305 }
2306 }
2307
2308 /* For each reference in CHAINS, if name_defined_by_phi is not
2309 NULL, use it to set the stmt field. */
2310
2311 static void
2312 replace_names_by_phis (vec<chain_p> chains)
2313 {
2314 chain_p chain;
2315 dref a;
2316 unsigned i, j;
2317
2318 FOR_EACH_VEC_ELT (chains, i, chain)
2319 FOR_EACH_VEC_ELT (chain->refs, j, a)
2320 if (a->stmt == NULL)
2321 {
2322 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
2323 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
2324 a->name_defined_by_phi = NULL_TREE;
2325 }
2326 }
2327
2328 /* Wrapper over execute_pred_commoning, to pass it as a callback
2329 to tree_transform_and_unroll_loop. */
2330
2331 struct epcc_data
2332 {
2333 vec<chain_p> chains;
2334 bitmap tmp_vars;
2335 };
2336
2337 static void
2338 execute_pred_commoning_cbck (class loop *loop, void *data)
2339 {
2340 struct epcc_data *const dta = (struct epcc_data *) data;
2341
2342 /* Restore phi nodes that were replaced by ssa names before
2343 tree_transform_and_unroll_loop (see detailed description in
2344 tree_predictive_commoning_loop). */
2345 replace_names_by_phis (dta->chains);
2346 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
2347 }
2348
2349 /* Base NAME and all the names in the chain of phi nodes that use it
2350 on variable VAR. The phi nodes are recognized by being in the copies of
2351 the header of the LOOP. */
2352
2353 static void
2354 base_names_in_chain_on (class loop *loop, tree name, tree var)
2355 {
2356 gimple *stmt, *phi;
2357 imm_use_iterator iter;
2358
2359 replace_ssa_name_symbol (name, var);
2360
2361 while (1)
2362 {
2363 phi = NULL;
2364 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2365 {
2366 if (gimple_code (stmt) == GIMPLE_PHI
2367 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
2368 {
2369 phi = stmt;
2370 break;
2371 }
2372 }
2373 if (!phi)
2374 return;
2375
2376 name = PHI_RESULT (phi);
2377 replace_ssa_name_symbol (name, var);
2378 }
2379 }
2380
2381 /* Given an unrolled LOOP after predictive commoning, remove the
2382 register copies arising from phi nodes by changing the base
2383 variables of SSA names. TMP_VARS is the set of the temporary variables
2384 for those we want to perform this. */
2385
2386 static void
2387 eliminate_temp_copies (class loop *loop, bitmap tmp_vars)
2388 {
2389 edge e;
2390 gphi *phi;
2391 gimple *stmt;
2392 tree name, use, var;
2393 gphi_iterator psi;
2394
2395 e = loop_latch_edge (loop);
2396 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
2397 {
2398 phi = psi.phi ();
2399 name = PHI_RESULT (phi);
2400 var = SSA_NAME_VAR (name);
2401 if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
2402 continue;
2403 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
2404 gcc_assert (TREE_CODE (use) == SSA_NAME);
2405
2406 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
2407 stmt = SSA_NAME_DEF_STMT (use);
2408 while (gimple_code (stmt) == GIMPLE_PHI
2409 /* In case we could not unroll the loop enough to eliminate
2410 all copies, we may reach the loop header before the defining
2411 statement (in that case, some register copies will be present
2412 in loop latch in the final code, corresponding to the newly
2413 created looparound phi nodes). */
2414 && gimple_bb (stmt) != loop->header)
2415 {
2416 gcc_assert (single_pred_p (gimple_bb (stmt)));
2417 use = PHI_ARG_DEF (stmt, 0);
2418 stmt = SSA_NAME_DEF_STMT (use);
2419 }
2420
2421 base_names_in_chain_on (loop, use, var);
2422 }
2423 }
2424
2425 /* Returns true if CHAIN is suitable to be combined. */
2426
2427 static bool
2428 chain_can_be_combined_p (chain_p chain)
2429 {
2430 return (!chain->combined
2431 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
2432 }
2433
2434 /* Returns the modify statement that uses NAME. Skips over assignment
2435 statements, NAME is replaced with the actual name used in the returned
2436 statement. */
2437
2438 static gimple *
2439 find_use_stmt (tree *name)
2440 {
2441 gimple *stmt;
2442 tree rhs, lhs;
2443
2444 /* Skip over assignments. */
2445 while (1)
2446 {
2447 stmt = single_nonlooparound_use (*name);
2448 if (!stmt)
2449 return NULL;
2450
2451 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2452 return NULL;
2453
2454 lhs = gimple_assign_lhs (stmt);
2455 if (TREE_CODE (lhs) != SSA_NAME)
2456 return NULL;
2457
2458 if (gimple_assign_copy_p (stmt))
2459 {
2460 rhs = gimple_assign_rhs1 (stmt);
2461 if (rhs != *name)
2462 return NULL;
2463
2464 *name = lhs;
2465 }
2466 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
2467 == GIMPLE_BINARY_RHS)
2468 return stmt;
2469 else
2470 return NULL;
2471 }
2472 }
2473
2474 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2475
2476 static bool
2477 may_reassociate_p (tree type, enum tree_code code)
2478 {
2479 if (FLOAT_TYPE_P (type)
2480 && !flag_unsafe_math_optimizations)
2481 return false;
2482
2483 return (commutative_tree_code (code)
2484 && associative_tree_code (code));
2485 }
2486
2487 /* If the operation used in STMT is associative and commutative, go through the
2488 tree of the same operations and returns its root. Distance to the root
2489 is stored in DISTANCE. */
2490
2491 static gimple *
2492 find_associative_operation_root (gimple *stmt, unsigned *distance)
2493 {
2494 tree lhs;
2495 gimple *next;
2496 enum tree_code code = gimple_assign_rhs_code (stmt);
2497 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2498 unsigned dist = 0;
2499
2500 if (!may_reassociate_p (type, code))
2501 return NULL;
2502
2503 while (1)
2504 {
2505 lhs = gimple_assign_lhs (stmt);
2506 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2507
2508 next = find_use_stmt (&lhs);
2509 if (!next
2510 || gimple_assign_rhs_code (next) != code)
2511 break;
2512
2513 stmt = next;
2514 dist++;
2515 }
2516
2517 if (distance)
2518 *distance = dist;
2519 return stmt;
2520 }
2521
2522 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2523 is no such statement, returns NULL_TREE. In case the operation used on
2524 NAME1 and NAME2 is associative and commutative, returns the root of the
2525 tree formed by this operation instead of the statement that uses NAME1 or
2526 NAME2. */
2527
2528 static gimple *
2529 find_common_use_stmt (tree *name1, tree *name2)
2530 {
2531 gimple *stmt1, *stmt2;
2532
2533 stmt1 = find_use_stmt (name1);
2534 if (!stmt1)
2535 return NULL;
2536
2537 stmt2 = find_use_stmt (name2);
2538 if (!stmt2)
2539 return NULL;
2540
2541 if (stmt1 == stmt2)
2542 return stmt1;
2543
2544 stmt1 = find_associative_operation_root (stmt1, NULL);
2545 if (!stmt1)
2546 return NULL;
2547 stmt2 = find_associative_operation_root (stmt2, NULL);
2548 if (!stmt2)
2549 return NULL;
2550
2551 return (stmt1 == stmt2 ? stmt1 : NULL);
2552 }
2553
2554 /* Checks whether R1 and R2 are combined together using CODE, with the result
2555 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2556 if it is true. If CODE is ERROR_MARK, set these values instead. */
2557
2558 static bool
2559 combinable_refs_p (dref r1, dref r2,
2560 enum tree_code *code, bool *swap, tree *rslt_type)
2561 {
2562 enum tree_code acode;
2563 bool aswap;
2564 tree atype;
2565 tree name1, name2;
2566 gimple *stmt;
2567
2568 name1 = name_for_ref (r1);
2569 name2 = name_for_ref (r2);
2570 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2571
2572 stmt = find_common_use_stmt (&name1, &name2);
2573
2574 if (!stmt
2575 /* A simple post-dominance check - make sure the combination
2576 is executed under the same condition as the references. */
2577 || (gimple_bb (stmt) != gimple_bb (r1->stmt)
2578 && gimple_bb (stmt) != gimple_bb (r2->stmt)))
2579 return false;
2580
2581 acode = gimple_assign_rhs_code (stmt);
2582 aswap = (!commutative_tree_code (acode)
2583 && gimple_assign_rhs1 (stmt) != name1);
2584 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2585
2586 if (*code == ERROR_MARK)
2587 {
2588 *code = acode;
2589 *swap = aswap;
2590 *rslt_type = atype;
2591 return true;
2592 }
2593
2594 return (*code == acode
2595 && *swap == aswap
2596 && *rslt_type == atype);
2597 }
2598
2599 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2600 an assignment of the remaining operand. */
2601
2602 static void
2603 remove_name_from_operation (gimple *stmt, tree op)
2604 {
2605 tree other_op;
2606 gimple_stmt_iterator si;
2607
2608 gcc_assert (is_gimple_assign (stmt));
2609
2610 if (gimple_assign_rhs1 (stmt) == op)
2611 other_op = gimple_assign_rhs2 (stmt);
2612 else
2613 other_op = gimple_assign_rhs1 (stmt);
2614
2615 si = gsi_for_stmt (stmt);
2616 gimple_assign_set_rhs_from_tree (&si, other_op);
2617
2618 /* We should not have reallocated STMT. */
2619 gcc_assert (gsi_stmt (si) == stmt);
2620
2621 update_stmt (stmt);
2622 }
2623
2624 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2625 are combined in a single statement, and returns this statement. */
2626
2627 static gimple *
2628 reassociate_to_the_same_stmt (tree name1, tree name2)
2629 {
2630 gimple *stmt1, *stmt2, *root1, *root2, *s1, *s2;
2631 gassign *new_stmt, *tmp_stmt;
2632 tree new_name, tmp_name, var, r1, r2;
2633 unsigned dist1, dist2;
2634 enum tree_code code;
2635 tree type = TREE_TYPE (name1);
2636 gimple_stmt_iterator bsi;
2637
2638 stmt1 = find_use_stmt (&name1);
2639 stmt2 = find_use_stmt (&name2);
2640 root1 = find_associative_operation_root (stmt1, &dist1);
2641 root2 = find_associative_operation_root (stmt2, &dist2);
2642 code = gimple_assign_rhs_code (stmt1);
2643
2644 gcc_assert (root1 && root2 && root1 == root2
2645 && code == gimple_assign_rhs_code (stmt2));
2646
2647 /* Find the root of the nearest expression in that both NAME1 and NAME2
2648 are used. */
2649 r1 = name1;
2650 s1 = stmt1;
2651 r2 = name2;
2652 s2 = stmt2;
2653
2654 while (dist1 > dist2)
2655 {
2656 s1 = find_use_stmt (&r1);
2657 r1 = gimple_assign_lhs (s1);
2658 dist1--;
2659 }
2660 while (dist2 > dist1)
2661 {
2662 s2 = find_use_stmt (&r2);
2663 r2 = gimple_assign_lhs (s2);
2664 dist2--;
2665 }
2666
2667 while (s1 != s2)
2668 {
2669 s1 = find_use_stmt (&r1);
2670 r1 = gimple_assign_lhs (s1);
2671 s2 = find_use_stmt (&r2);
2672 r2 = gimple_assign_lhs (s2);
2673 }
2674
2675 /* Remove NAME1 and NAME2 from the statements in that they are used
2676 currently. */
2677 remove_name_from_operation (stmt1, name1);
2678 remove_name_from_operation (stmt2, name2);
2679
2680 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2681 combine it with the rhs of S1. */
2682 var = create_tmp_reg (type, "predreastmp");
2683 new_name = make_ssa_name (var);
2684 new_stmt = gimple_build_assign (new_name, code, name1, name2);
2685
2686 var = create_tmp_reg (type, "predreastmp");
2687 tmp_name = make_ssa_name (var);
2688
2689 /* Rhs of S1 may now be either a binary expression with operation
2690 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2691 so that name1 or name2 was removed from it). */
2692 tmp_stmt = gimple_build_assign (tmp_name, gimple_assign_rhs_code (s1),
2693 gimple_assign_rhs1 (s1),
2694 gimple_assign_rhs2 (s1));
2695
2696 bsi = gsi_for_stmt (s1);
2697 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2698 s1 = gsi_stmt (bsi);
2699 update_stmt (s1);
2700
2701 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2702 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2703
2704 return new_stmt;
2705 }
2706
2707 /* Returns the statement that combines references R1 and R2. In case R1
2708 and R2 are not used in the same statement, but they are used with an
2709 associative and commutative operation in the same expression, reassociate
2710 the expression so that they are used in the same statement. */
2711
2712 static gimple *
2713 stmt_combining_refs (dref r1, dref r2)
2714 {
2715 gimple *stmt1, *stmt2;
2716 tree name1 = name_for_ref (r1);
2717 tree name2 = name_for_ref (r2);
2718
2719 stmt1 = find_use_stmt (&name1);
2720 stmt2 = find_use_stmt (&name2);
2721 if (stmt1 == stmt2)
2722 return stmt1;
2723
2724 return reassociate_to_the_same_stmt (name1, name2);
2725 }
2726
2727 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2728 description of the new chain is returned, otherwise we return NULL. */
2729
2730 static chain_p
2731 combine_chains (chain_p ch1, chain_p ch2)
2732 {
2733 dref r1, r2, nw;
2734 enum tree_code op = ERROR_MARK;
2735 bool swap = false;
2736 chain_p new_chain;
2737 unsigned i;
2738 tree rslt_type = NULL_TREE;
2739
2740 if (ch1 == ch2)
2741 return NULL;
2742 if (ch1->length != ch2->length)
2743 return NULL;
2744
2745 if (ch1->refs.length () != ch2->refs.length ())
2746 return NULL;
2747
2748 for (i = 0; (ch1->refs.iterate (i, &r1)
2749 && ch2->refs.iterate (i, &r2)); i++)
2750 {
2751 if (r1->distance != r2->distance)
2752 return NULL;
2753
2754 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2755 return NULL;
2756 }
2757
2758 if (swap)
2759 std::swap (ch1, ch2);
2760
2761 new_chain = XCNEW (struct chain);
2762 new_chain->type = CT_COMBINATION;
2763 new_chain->op = op;
2764 new_chain->ch1 = ch1;
2765 new_chain->ch2 = ch2;
2766 new_chain->rslt_type = rslt_type;
2767 new_chain->length = ch1->length;
2768
2769 for (i = 0; (ch1->refs.iterate (i, &r1)
2770 && ch2->refs.iterate (i, &r2)); i++)
2771 {
2772 nw = XCNEW (class dref_d);
2773 nw->stmt = stmt_combining_refs (r1, r2);
2774 nw->distance = r1->distance;
2775
2776 new_chain->refs.safe_push (nw);
2777 }
2778
2779 ch1->combined = true;
2780 ch2->combined = true;
2781 return new_chain;
2782 }
2783
2784 /* Recursively update position information of all offspring chains to ROOT
2785 chain's position information. */
2786
2787 static void
2788 update_pos_for_combined_chains (chain_p root)
2789 {
2790 chain_p ch1 = root->ch1, ch2 = root->ch2;
2791 dref ref, ref1, ref2;
2792 for (unsigned j = 0; (root->refs.iterate (j, &ref)
2793 && ch1->refs.iterate (j, &ref1)
2794 && ch2->refs.iterate (j, &ref2)); ++j)
2795 ref1->pos = ref2->pos = ref->pos;
2796
2797 if (ch1->type == CT_COMBINATION)
2798 update_pos_for_combined_chains (ch1);
2799 if (ch2->type == CT_COMBINATION)
2800 update_pos_for_combined_chains (ch2);
2801 }
2802
2803 /* Returns true if statement S1 dominates statement S2. */
2804
2805 static bool
2806 pcom_stmt_dominates_stmt_p (gimple *s1, gimple *s2)
2807 {
2808 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
2809
2810 if (!bb1 || s1 == s2)
2811 return true;
2812
2813 if (bb1 == bb2)
2814 return gimple_uid (s1) < gimple_uid (s2);
2815
2816 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
2817 }
2818
2819 /* Try to combine the CHAINS in LOOP. */
2820
2821 static void
2822 try_combine_chains (class loop *loop, vec<chain_p> *chains)
2823 {
2824 unsigned i, j;
2825 chain_p ch1, ch2, cch;
2826 auto_vec<chain_p> worklist;
2827 bool combined_p = false;
2828
2829 FOR_EACH_VEC_ELT (*chains, i, ch1)
2830 if (chain_can_be_combined_p (ch1))
2831 worklist.safe_push (ch1);
2832
2833 while (!worklist.is_empty ())
2834 {
2835 ch1 = worklist.pop ();
2836 if (!chain_can_be_combined_p (ch1))
2837 continue;
2838
2839 FOR_EACH_VEC_ELT (*chains, j, ch2)
2840 {
2841 if (!chain_can_be_combined_p (ch2))
2842 continue;
2843
2844 cch = combine_chains (ch1, ch2);
2845 if (cch)
2846 {
2847 worklist.safe_push (cch);
2848 chains->safe_push (cch);
2849 combined_p = true;
2850 break;
2851 }
2852 }
2853 }
2854 if (!combined_p)
2855 return;
2856
2857 /* Setup UID for all statements in dominance order. */
2858 basic_block *bbs = get_loop_body_in_dom_order (loop);
2859 renumber_gimple_stmt_uids_in_blocks (bbs, loop->num_nodes);
2860 free (bbs);
2861
2862 /* Re-association in combined chains may generate statements different to
2863 order of references of the original chain. We need to keep references
2864 of combined chain in dominance order so that all uses will be inserted
2865 after definitions. Note:
2866 A) This is necessary for all combined chains.
2867 B) This is only necessary for ZERO distance references because other
2868 references inherit value from loop carried PHIs.
2869
2870 We first update position information for all combined chains. */
2871 dref ref;
2872 for (i = 0; chains->iterate (i, &ch1); ++i)
2873 {
2874 if (ch1->type != CT_COMBINATION || ch1->combined)
2875 continue;
2876
2877 for (j = 0; ch1->refs.iterate (j, &ref); ++j)
2878 ref->pos = gimple_uid (ref->stmt);
2879
2880 update_pos_for_combined_chains (ch1);
2881 }
2882 /* Then sort references according to newly updated position information. */
2883 for (i = 0; chains->iterate (i, &ch1); ++i)
2884 {
2885 if (ch1->type != CT_COMBINATION && !ch1->combined)
2886 continue;
2887
2888 /* Find the first reference with non-ZERO distance. */
2889 if (ch1->length == 0)
2890 j = ch1->refs.length();
2891 else
2892 {
2893 for (j = 0; ch1->refs.iterate (j, &ref); ++j)
2894 if (ref->distance != 0)
2895 break;
2896 }
2897
2898 /* Sort all ZERO distance references by position. */
2899 qsort (&ch1->refs[0], j, sizeof (ch1->refs[0]), order_drefs_by_pos);
2900
2901 if (ch1->combined)
2902 continue;
2903
2904 /* For ZERO length chain, has_max_use_after must be true since root
2905 combined stmt must dominates others. */
2906 if (ch1->length == 0)
2907 {
2908 ch1->has_max_use_after = true;
2909 continue;
2910 }
2911 /* Check if there is use at max distance after root for combined chains
2912 and set flag accordingly. */
2913 ch1->has_max_use_after = false;
2914 gimple *root_stmt = get_chain_root (ch1)->stmt;
2915 for (j = 1; ch1->refs.iterate (j, &ref); ++j)
2916 {
2917 if (ref->distance == ch1->length
2918 && !pcom_stmt_dominates_stmt_p (ref->stmt, root_stmt))
2919 {
2920 ch1->has_max_use_after = true;
2921 break;
2922 }
2923 }
2924 }
2925 }
2926
2927 /* Prepare initializers for store elimination CHAIN in LOOP. Returns false
2928 if this is impossible because one of these initializers may trap, true
2929 otherwise. */
2930
2931 static bool
2932 prepare_initializers_chain_store_elim (class loop *loop, chain_p chain)
2933 {
2934 unsigned i, n = chain->length;
2935
2936 /* For now we can't eliminate stores if some of them are conditional
2937 executed. */
2938 if (!chain->all_always_accessed)
2939 return false;
2940
2941 /* Nothing to intialize for intra-iteration store elimination. */
2942 if (n == 0 && chain->type == CT_STORE_STORE)
2943 return true;
2944
2945 /* For store elimination chain, there is nothing to initialize if stores
2946 to be eliminated only store loop invariant values into memory. */
2947 if (chain->type == CT_STORE_STORE
2948 && is_inv_store_elimination_chain (loop, chain))
2949 {
2950 chain->inv_store_elimination = true;
2951 return true;
2952 }
2953
2954 chain->inits.create (n);
2955 chain->inits.safe_grow_cleared (n, true);
2956
2957 /* For store eliminatin chain like below:
2958
2959 for (i = 0; i < len; i++)
2960 {
2961 a[i] = 1;
2962 // a[i + 1] = ...
2963 a[i + 2] = 3;
2964 }
2965
2966 store to a[i + 1] is missed in loop body, it acts like bubbles. The
2967 content of a[i + 1] remain the same if the loop iterates fewer times
2968 than chain->length. We need to set up root variables for such stores
2969 by loading from memory before loop. Note we only need to load bubble
2970 elements because loop body is guaranteed to be executed at least once
2971 after loop's preheader edge. */
2972 auto_vec<bool> bubbles;
2973 bubbles.safe_grow_cleared (n + 1, true);
2974 for (i = 0; i < chain->refs.length (); i++)
2975 bubbles[chain->refs[i]->distance] = true;
2976
2977 struct data_reference *dr = get_chain_root (chain)->ref;
2978 for (i = 0; i < n; i++)
2979 {
2980 if (bubbles[i])
2981 continue;
2982
2983 gimple_seq stmts = NULL;
2984
2985 tree init = ref_at_iteration (dr, (int) 0 - i, &stmts);
2986 if (stmts)
2987 gimple_seq_add_seq_without_update (&chain->init_seq, stmts);
2988
2989 chain->inits[i] = init;
2990 }
2991
2992 return true;
2993 }
2994
2995 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2996 impossible because one of these initializers may trap, true otherwise. */
2997
2998 static bool
2999 prepare_initializers_chain (class loop *loop, chain_p chain)
3000 {
3001 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
3002 struct data_reference *dr = get_chain_root (chain)->ref;
3003 tree init;
3004 dref laref;
3005 edge entry = loop_preheader_edge (loop);
3006
3007 if (chain->type == CT_STORE_STORE)
3008 return prepare_initializers_chain_store_elim (loop, chain);
3009
3010 /* Find the initializers for the variables, and check that they cannot
3011 trap. */
3012 chain->inits.create (n);
3013 for (i = 0; i < n; i++)
3014 chain->inits.quick_push (NULL_TREE);
3015
3016 /* If we have replaced some looparound phi nodes, use their initializers
3017 instead of creating our own. */
3018 FOR_EACH_VEC_ELT (chain->refs, i, laref)
3019 {
3020 if (gimple_code (laref->stmt) != GIMPLE_PHI)
3021 continue;
3022
3023 gcc_assert (laref->distance > 0);
3024 chain->inits[n - laref->distance]
3025 = PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry);
3026 }
3027
3028 for (i = 0; i < n; i++)
3029 {
3030 gimple_seq stmts = NULL;
3031
3032 if (chain->inits[i] != NULL_TREE)
3033 continue;
3034
3035 init = ref_at_iteration (dr, (int) i - n, &stmts);
3036 if (!chain->all_always_accessed && tree_could_trap_p (init))
3037 {
3038 gimple_seq_discard (stmts);
3039 return false;
3040 }
3041
3042 if (stmts)
3043 gimple_seq_add_seq_without_update (&chain->init_seq, stmts);
3044
3045 chain->inits[i] = init;
3046 }
3047
3048 return true;
3049 }
3050
3051 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
3052 be used because the initializers might trap. */
3053
3054 static void
3055 prepare_initializers (class loop *loop, vec<chain_p> chains)
3056 {
3057 chain_p chain;
3058 unsigned i;
3059
3060 for (i = 0; i < chains.length (); )
3061 {
3062 chain = chains[i];
3063 if (prepare_initializers_chain (loop, chain))
3064 i++;
3065 else
3066 {
3067 release_chain (chain);
3068 chains.unordered_remove (i);
3069 }
3070 }
3071 }
3072
3073 /* Generates finalizer memory references for CHAIN in LOOP. Returns true
3074 if finalizer code for CHAIN can be generated, otherwise false. */
3075
3076 static bool
3077 prepare_finalizers_chain (class loop *loop, chain_p chain)
3078 {
3079 unsigned i, n = chain->length;
3080 struct data_reference *dr = get_chain_root (chain)->ref;
3081 tree fini, niters = number_of_latch_executions (loop);
3082
3083 /* For now we can't eliminate stores if some of them are conditional
3084 executed. */
3085 if (!chain->all_always_accessed)
3086 return false;
3087
3088 chain->finis.create (n);
3089 for (i = 0; i < n; i++)
3090 chain->finis.quick_push (NULL_TREE);
3091
3092 /* We never use looparound phi node for store elimination chains. */
3093
3094 /* Find the finalizers for the variables, and check that they cannot
3095 trap. */
3096 for (i = 0; i < n; i++)
3097 {
3098 gimple_seq stmts = NULL;
3099 gcc_assert (chain->finis[i] == NULL_TREE);
3100
3101 if (TREE_CODE (niters) != INTEGER_CST && TREE_CODE (niters) != SSA_NAME)
3102 {
3103 niters = unshare_expr (niters);
3104 niters = force_gimple_operand (niters, &stmts, true, NULL);
3105 if (stmts)
3106 {
3107 gimple_seq_add_seq_without_update (&chain->fini_seq, stmts);
3108 stmts = NULL;
3109 }
3110 }
3111 fini = ref_at_iteration (dr, (int) 0 - i, &stmts, niters);
3112 if (stmts)
3113 gimple_seq_add_seq_without_update (&chain->fini_seq, stmts);
3114
3115 chain->finis[i] = fini;
3116 }
3117
3118 return true;
3119 }
3120
3121 /* Generates finalizer memory reference for CHAINS in LOOP. Returns true
3122 if finalizer code generation for CHAINS breaks loop closed ssa form. */
3123
3124 static bool
3125 prepare_finalizers (class loop *loop, vec<chain_p> chains)
3126 {
3127 chain_p chain;
3128 unsigned i;
3129 bool loop_closed_ssa = false;
3130
3131 for (i = 0; i < chains.length ();)
3132 {
3133 chain = chains[i];
3134
3135 /* Finalizer is only necessary for inter-iteration store elimination
3136 chains. */
3137 if (chain->length == 0 || chain->type != CT_STORE_STORE)
3138 {
3139 i++;
3140 continue;
3141 }
3142
3143 if (prepare_finalizers_chain (loop, chain))
3144 {
3145 i++;
3146 /* Be conservative, assume loop closed ssa form is corrupted
3147 by store-store chain. Though it's not always the case if
3148 eliminated stores only store loop invariant values into
3149 memory. */
3150 loop_closed_ssa = true;
3151 }
3152 else
3153 {
3154 release_chain (chain);
3155 chains.unordered_remove (i);
3156 }
3157 }
3158 return loop_closed_ssa;
3159 }
3160
3161 /* Insert all initializing gimple stmts into loop's entry edge. */
3162
3163 static void
3164 insert_init_seqs (class loop *loop, vec<chain_p> chains)
3165 {
3166 unsigned i;
3167 edge entry = loop_preheader_edge (loop);
3168
3169 for (i = 0; i < chains.length (); ++i)
3170 if (chains[i]->init_seq)
3171 {
3172 gsi_insert_seq_on_edge_immediate (entry, chains[i]->init_seq);
3173 chains[i]->init_seq = NULL;
3174 }
3175 }
3176
3177 /* Performs predictive commoning for LOOP. Sets bit 1<<0 of return value
3178 if LOOP was unrolled; Sets bit 1<<1 of return value if loop closed ssa
3179 form was corrupted. */
3180
3181 static unsigned
3182 tree_predictive_commoning_loop (class loop *loop)
3183 {
3184 vec<data_reference_p> datarefs;
3185 vec<ddr_p> dependences;
3186 struct component *components;
3187 vec<chain_p> chains = vNULL;
3188 unsigned unroll_factor;
3189 class tree_niter_desc desc;
3190 bool unroll = false, loop_closed_ssa = false;
3191 edge exit;
3192
3193 if (dump_file && (dump_flags & TDF_DETAILS))
3194 fprintf (dump_file, "Processing loop %d\n", loop->num);
3195
3196 /* Nothing for predicitive commoning if loop only iterates 1 time. */
3197 if (get_max_loop_iterations_int (loop) == 0)
3198 {
3199 if (dump_file && (dump_flags & TDF_DETAILS))
3200 fprintf (dump_file, "Loop iterates only 1 time, nothing to do.\n");
3201
3202 return 0;
3203 }
3204
3205 /* Find the data references and split them into components according to their
3206 dependence relations. */
3207 auto_vec<loop_p, 3> loop_nest;
3208 dependences.create (10);
3209 datarefs.create (10);
3210 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
3211 &dependences))
3212 {
3213 if (dump_file && (dump_flags & TDF_DETAILS))
3214 fprintf (dump_file, "Cannot analyze data dependencies\n");
3215 free_data_refs (datarefs);
3216 free_dependence_relations (dependences);
3217 return 0;
3218 }
3219
3220 if (dump_file && (dump_flags & TDF_DETAILS))
3221 dump_data_dependence_relations (dump_file, dependences);
3222
3223 components = split_data_refs_to_components (loop, datarefs, dependences);
3224 loop_nest.release ();
3225 free_dependence_relations (dependences);
3226 if (!components)
3227 {
3228 free_data_refs (datarefs);
3229 free_affine_expand_cache (&name_expansions);
3230 return 0;
3231 }
3232
3233 if (dump_file && (dump_flags & TDF_DETAILS))
3234 {
3235 fprintf (dump_file, "Initial state:\n\n");
3236 dump_components (dump_file, components);
3237 }
3238
3239 /* Find the suitable components and split them into chains. */
3240 components = filter_suitable_components (loop, components);
3241
3242 auto_bitmap tmp_vars;
3243 looparound_phis = BITMAP_ALLOC (NULL);
3244 determine_roots (loop, components, &chains);
3245 release_components (components);
3246
3247 if (!chains.exists ())
3248 {
3249 if (dump_file && (dump_flags & TDF_DETAILS))
3250 fprintf (dump_file,
3251 "Predictive commoning failed: no suitable chains\n");
3252 goto end;
3253 }
3254 prepare_initializers (loop, chains);
3255 loop_closed_ssa = prepare_finalizers (loop, chains);
3256
3257 /* Try to combine the chains that are always worked with together. */
3258 try_combine_chains (loop, &chains);
3259
3260 insert_init_seqs (loop, chains);
3261
3262 if (dump_file && (dump_flags & TDF_DETAILS))
3263 {
3264 fprintf (dump_file, "Before commoning:\n\n");
3265 dump_chains (dump_file, chains);
3266 }
3267
3268 /* Determine the unroll factor, and if the loop should be unrolled, ensure
3269 that its number of iterations is divisible by the factor. */
3270 unroll_factor = determine_unroll_factor (chains);
3271 scev_reset ();
3272 unroll = (unroll_factor > 1
3273 && can_unroll_loop_p (loop, unroll_factor, &desc));
3274 exit = single_dom_exit (loop);
3275
3276 /* Execute the predictive commoning transformations, and possibly unroll the
3277 loop. */
3278 if (unroll)
3279 {
3280 struct epcc_data dta;
3281
3282 if (dump_file && (dump_flags & TDF_DETAILS))
3283 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
3284
3285 dta.chains = chains;
3286 dta.tmp_vars = tmp_vars;
3287
3288 update_ssa (TODO_update_ssa_only_virtuals);
3289
3290 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
3291 execute_pred_commoning_cbck is called may cause phi nodes to be
3292 reallocated, which is a problem since CHAINS may point to these
3293 statements. To fix this, we store the ssa names defined by the
3294 phi nodes here instead of the phi nodes themselves, and restore
3295 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
3296 replace_phis_by_defined_names (chains);
3297
3298 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
3299 execute_pred_commoning_cbck, &dta);
3300 eliminate_temp_copies (loop, tmp_vars);
3301 }
3302 else
3303 {
3304 if (dump_file && (dump_flags & TDF_DETAILS))
3305 fprintf (dump_file,
3306 "Executing predictive commoning without unrolling.\n");
3307 execute_pred_commoning (loop, chains, tmp_vars);
3308 }
3309
3310 end: ;
3311 release_chains (chains);
3312 free_data_refs (datarefs);
3313 BITMAP_FREE (looparound_phis);
3314
3315 free_affine_expand_cache (&name_expansions);
3316
3317 return (unroll ? 1 : 0) | (loop_closed_ssa ? 2 : 0);
3318 }
3319
3320 /* Runs predictive commoning. */
3321
3322 unsigned
3323 tree_predictive_commoning (void)
3324 {
3325 class loop *loop;
3326 unsigned ret = 0, changed = 0;
3327
3328 initialize_original_copy_tables ();
3329 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
3330 if (optimize_loop_for_speed_p (loop))
3331 {
3332 changed |= tree_predictive_commoning_loop (loop);
3333 }
3334 free_original_copy_tables ();
3335
3336 if (changed > 0)
3337 {
3338 scev_reset ();
3339
3340 if (changed > 1)
3341 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3342
3343 ret = TODO_cleanup_cfg;
3344 }
3345
3346 return ret;
3347 }
3348
3349 /* Predictive commoning Pass. */
3350
3351 static unsigned
3352 run_tree_predictive_commoning (struct function *fun)
3353 {
3354 if (number_of_loops (fun) <= 1)
3355 return 0;
3356
3357 return tree_predictive_commoning ();
3358 }
3359
3360 namespace {
3361
3362 const pass_data pass_data_predcom =
3363 {
3364 GIMPLE_PASS, /* type */
3365 "pcom", /* name */
3366 OPTGROUP_LOOP, /* optinfo_flags */
3367 TV_PREDCOM, /* tv_id */
3368 PROP_cfg, /* properties_required */
3369 0, /* properties_provided */
3370 0, /* properties_destroyed */
3371 0, /* todo_flags_start */
3372 TODO_update_ssa_only_virtuals, /* todo_flags_finish */
3373 };
3374
3375 class pass_predcom : public gimple_opt_pass
3376 {
3377 public:
3378 pass_predcom (gcc::context *ctxt)
3379 : gimple_opt_pass (pass_data_predcom, ctxt)
3380 {}
3381
3382 /* opt_pass methods: */
3383 virtual bool gate (function *) { return flag_predictive_commoning != 0; }
3384 virtual unsigned int execute (function *fun)
3385 {
3386 return run_tree_predictive_commoning (fun);
3387 }
3388
3389 }; // class pass_predcom
3390
3391 } // anon namespace
3392
3393 gimple_opt_pass *
3394 make_pass_predcom (gcc::context *ctxt)
3395 {
3396 return new pass_predcom (ctxt);
3397 }
3398
3399