Daily bump.
[gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2021 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "cfgloop.h"
33 #include "gimple-fold.h"
34 #include "tree-eh.h"
35 #include "tree-inline.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-into-ssa.h"
39 #include "domwalk.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-ssa-threadupdate.h"
42 #include "tree-ssa-scopedtables.h"
43 #include "tree-ssa-threadedge.h"
44 #include "tree-ssa-dom.h"
45 #include "gimplify.h"
46 #include "tree-cfgcleanup.h"
47 #include "dbgcnt.h"
48 #include "alloc-pool.h"
49 #include "tree-vrp.h"
50 #include "vr-values.h"
51 #include "gimple-ssa-evrp-analyze.h"
52 #include "alias.h"
53
54 /* This file implements optimizations on the dominator tree. */
55
56 /* Structure for recording edge equivalences.
57
58 Computing and storing the edge equivalences instead of creating
59 them on-demand can save significant amounts of time, particularly
60 for pathological cases involving switch statements.
61
62 These structures live for a single iteration of the dominator
63 optimizer in the edge's AUX field. At the end of an iteration we
64 free each of these structures. */
65 class edge_info
66 {
67 public:
68 typedef std::pair <tree, tree> equiv_pair;
69 edge_info (edge);
70 ~edge_info ();
71
72 /* Record a simple LHS = RHS equivalence. This may trigger
73 calls to derive_equivalences. */
74 void record_simple_equiv (tree, tree);
75
76 /* If traversing this edge creates simple equivalences, we store
77 them as LHS/RHS pairs within this vector. */
78 vec<equiv_pair> simple_equivalences;
79
80 /* Traversing an edge may also indicate one or more particular conditions
81 are true or false. */
82 vec<cond_equivalence> cond_equivalences;
83
84 private:
85 /* Derive equivalences by walking the use-def chains. */
86 void derive_equivalences (tree, tree, int);
87 };
88
89 /* Track whether or not we have changed the control flow graph. */
90 static bool cfg_altered;
91
92 /* Bitmap of blocks that have had EH statements cleaned. We should
93 remove their dead edges eventually. */
94 static bitmap need_eh_cleanup;
95 static vec<gimple *> need_noreturn_fixup;
96
97 /* Statistics for dominator optimizations. */
98 struct opt_stats_d
99 {
100 long num_stmts;
101 long num_exprs_considered;
102 long num_re;
103 long num_const_prop;
104 long num_copy_prop;
105 };
106
107 static struct opt_stats_d opt_stats;
108
109 /* Local functions. */
110 static void record_equality (tree, tree, class const_and_copies *);
111 static void record_equivalences_from_phis (basic_block);
112 static void record_equivalences_from_incoming_edge (basic_block,
113 class const_and_copies *,
114 class avail_exprs_stack *);
115 static void eliminate_redundant_computations (gimple_stmt_iterator *,
116 class const_and_copies *,
117 class avail_exprs_stack *);
118 static void record_equivalences_from_stmt (gimple *, int,
119 class avail_exprs_stack *);
120 static void dump_dominator_optimization_stats (FILE *file,
121 hash_table<expr_elt_hasher> *);
122
123 /* Constructor for EDGE_INFO. An EDGE_INFO instance is always
124 associated with an edge E. */
125
126 edge_info::edge_info (edge e)
127 {
128 /* Free the old one associated with E, if it exists and
129 associate our new object with E. */
130 free_dom_edge_info (e);
131 e->aux = this;
132
133 /* And initialize the embedded vectors. */
134 simple_equivalences = vNULL;
135 cond_equivalences = vNULL;
136 }
137
138 /* Destructor just needs to release the vectors. */
139
140 edge_info::~edge_info (void)
141 {
142 this->cond_equivalences.release ();
143 this->simple_equivalences.release ();
144 }
145
146 /* NAME is known to have the value VALUE, which must be a constant.
147
148 Walk through its use-def chain to see if there are other equivalences
149 we might be able to derive.
150
151 RECURSION_LIMIT controls how far back we recurse through the use-def
152 chains. */
153
154 void
155 edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
156 {
157 if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
158 return;
159
160 /* This records the equivalence for the toplevel object. Do
161 this before checking the recursion limit. */
162 simple_equivalences.safe_push (equiv_pair (name, value));
163
164 /* Limit how far up the use-def chains we are willing to walk. */
165 if (recursion_limit == 0)
166 return;
167
168 /* We can walk up the use-def chains to potentially find more
169 equivalences. */
170 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
171 if (is_gimple_assign (def_stmt))
172 {
173 enum tree_code code = gimple_assign_rhs_code (def_stmt);
174 switch (code)
175 {
176 /* If the result of an OR is zero, then its operands are, too. */
177 case BIT_IOR_EXPR:
178 if (integer_zerop (value))
179 {
180 tree rhs1 = gimple_assign_rhs1 (def_stmt);
181 tree rhs2 = gimple_assign_rhs2 (def_stmt);
182
183 value = build_zero_cst (TREE_TYPE (rhs1));
184 derive_equivalences (rhs1, value, recursion_limit - 1);
185 value = build_zero_cst (TREE_TYPE (rhs2));
186 derive_equivalences (rhs2, value, recursion_limit - 1);
187 }
188 break;
189
190 /* If the result of an AND is nonzero, then its operands are, too. */
191 case BIT_AND_EXPR:
192 if (!integer_zerop (value))
193 {
194 tree rhs1 = gimple_assign_rhs1 (def_stmt);
195 tree rhs2 = gimple_assign_rhs2 (def_stmt);
196
197 /* If either operand has a boolean range, then we
198 know its value must be one, otherwise we just know it
199 is nonzero. The former is clearly useful, I haven't
200 seen cases where the latter is helpful yet. */
201 if (TREE_CODE (rhs1) == SSA_NAME)
202 {
203 if (ssa_name_has_boolean_range (rhs1))
204 {
205 value = build_one_cst (TREE_TYPE (rhs1));
206 derive_equivalences (rhs1, value, recursion_limit - 1);
207 }
208 }
209 if (TREE_CODE (rhs2) == SSA_NAME)
210 {
211 if (ssa_name_has_boolean_range (rhs2))
212 {
213 value = build_one_cst (TREE_TYPE (rhs2));
214 derive_equivalences (rhs2, value, recursion_limit - 1);
215 }
216 }
217 }
218 break;
219
220 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
221 set via a widening type conversion, then we may be able to record
222 additional equivalences. */
223 case NOP_EXPR:
224 case CONVERT_EXPR:
225 {
226 tree rhs = gimple_assign_rhs1 (def_stmt);
227 tree rhs_type = TREE_TYPE (rhs);
228 if (INTEGRAL_TYPE_P (rhs_type)
229 && (TYPE_PRECISION (TREE_TYPE (name))
230 >= TYPE_PRECISION (rhs_type))
231 && int_fits_type_p (value, rhs_type))
232 derive_equivalences (rhs,
233 fold_convert (rhs_type, value),
234 recursion_limit - 1);
235 break;
236 }
237
238 /* We can invert the operation of these codes trivially if
239 one of the RHS operands is a constant to produce a known
240 value for the other RHS operand. */
241 case POINTER_PLUS_EXPR:
242 case PLUS_EXPR:
243 {
244 tree rhs1 = gimple_assign_rhs1 (def_stmt);
245 tree rhs2 = gimple_assign_rhs2 (def_stmt);
246
247 /* If either argument is a constant, then we can compute
248 a constant value for the nonconstant argument. */
249 if (TREE_CODE (rhs1) == INTEGER_CST
250 && TREE_CODE (rhs2) == SSA_NAME)
251 derive_equivalences (rhs2,
252 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
253 value, rhs1),
254 recursion_limit - 1);
255 else if (TREE_CODE (rhs2) == INTEGER_CST
256 && TREE_CODE (rhs1) == SSA_NAME)
257 derive_equivalences (rhs1,
258 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
259 value, rhs2),
260 recursion_limit - 1);
261 break;
262 }
263
264 /* If one of the operands is a constant, then we can compute
265 the value of the other operand. If both operands are
266 SSA_NAMEs, then they must be equal if the result is zero. */
267 case MINUS_EXPR:
268 {
269 tree rhs1 = gimple_assign_rhs1 (def_stmt);
270 tree rhs2 = gimple_assign_rhs2 (def_stmt);
271
272 /* If either argument is a constant, then we can compute
273 a constant value for the nonconstant argument. */
274 if (TREE_CODE (rhs1) == INTEGER_CST
275 && TREE_CODE (rhs2) == SSA_NAME)
276 derive_equivalences (rhs2,
277 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
278 rhs1, value),
279 recursion_limit - 1);
280 else if (TREE_CODE (rhs2) == INTEGER_CST
281 && TREE_CODE (rhs1) == SSA_NAME)
282 derive_equivalences (rhs1,
283 fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
284 value, rhs2),
285 recursion_limit - 1);
286 else if (integer_zerop (value))
287 {
288 tree cond = build2 (EQ_EXPR, boolean_type_node,
289 gimple_assign_rhs1 (def_stmt),
290 gimple_assign_rhs2 (def_stmt));
291 tree inverted = invert_truthvalue (cond);
292 record_conditions (&this->cond_equivalences, cond, inverted);
293 }
294 break;
295 }
296
297 case EQ_EXPR:
298 case NE_EXPR:
299 {
300 if ((code == EQ_EXPR && integer_onep (value))
301 || (code == NE_EXPR && integer_zerop (value)))
302 {
303 tree rhs1 = gimple_assign_rhs1 (def_stmt);
304 tree rhs2 = gimple_assign_rhs2 (def_stmt);
305
306 /* If either argument is a constant, then record the
307 other argument as being the same as that constant.
308
309 If neither operand is a constant, then we have a
310 conditional name == name equivalence. */
311 if (TREE_CODE (rhs1) == INTEGER_CST)
312 derive_equivalences (rhs2, rhs1, recursion_limit - 1);
313 else if (TREE_CODE (rhs2) == INTEGER_CST)
314 derive_equivalences (rhs1, rhs2, recursion_limit - 1);
315 }
316 else
317 {
318 tree cond = build2 (code, boolean_type_node,
319 gimple_assign_rhs1 (def_stmt),
320 gimple_assign_rhs2 (def_stmt));
321 tree inverted = invert_truthvalue (cond);
322 if (integer_zerop (value))
323 std::swap (cond, inverted);
324 record_conditions (&this->cond_equivalences, cond, inverted);
325 }
326 break;
327 }
328
329 /* For BIT_NOT and NEGATE, we can just apply the operation to the
330 VALUE to get the new equivalence. It will always be a constant
331 so we can recurse. */
332 case BIT_NOT_EXPR:
333 case NEGATE_EXPR:
334 {
335 tree rhs = gimple_assign_rhs1 (def_stmt);
336 tree res;
337 /* If this is a NOT and the operand has a boolean range, then we
338 know its value must be zero or one. We are not supposed to
339 have a BIT_NOT_EXPR for boolean types with precision > 1 in
340 the general case, see e.g. the handling of TRUTH_NOT_EXPR in
341 the gimplifier, but it can be generated by match.pd out of
342 a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR. Now the handling
343 of BIT_AND_EXPR above already forces a specific semantics for
344 boolean types with precision > 1 so we must do the same here,
345 otherwise we could change the semantics of TRUTH_NOT_EXPR for
346 boolean types with precision > 1. */
347 if (code == BIT_NOT_EXPR
348 && TREE_CODE (rhs) == SSA_NAME
349 && ssa_name_has_boolean_range (rhs))
350 {
351 if ((TREE_INT_CST_LOW (value) & 1) == 0)
352 res = build_one_cst (TREE_TYPE (rhs));
353 else
354 res = build_zero_cst (TREE_TYPE (rhs));
355 }
356 else
357 res = fold_build1 (code, TREE_TYPE (rhs), value);
358 derive_equivalences (rhs, res, recursion_limit - 1);
359 break;
360 }
361
362 default:
363 {
364 if (TREE_CODE_CLASS (code) == tcc_comparison)
365 {
366 tree cond = build2 (code, boolean_type_node,
367 gimple_assign_rhs1 (def_stmt),
368 gimple_assign_rhs2 (def_stmt));
369 tree inverted = invert_truthvalue (cond);
370 if (integer_zerop (value))
371 std::swap (cond, inverted);
372 record_conditions (&this->cond_equivalences, cond, inverted);
373 break;
374 }
375 break;
376 }
377 }
378 }
379 }
380
381 void
382 edge_info::record_simple_equiv (tree lhs, tree rhs)
383 {
384 /* If the RHS is a constant, then we may be able to derive
385 further equivalences. Else just record the name = name
386 equivalence. */
387 if (TREE_CODE (rhs) == INTEGER_CST)
388 derive_equivalences (lhs, rhs, 4);
389 else
390 simple_equivalences.safe_push (equiv_pair (lhs, rhs));
391 }
392
393 /* Free the edge_info data attached to E, if it exists. */
394
395 void
396 free_dom_edge_info (edge e)
397 {
398 class edge_info *edge_info = (class edge_info *)e->aux;
399
400 if (edge_info)
401 delete edge_info;
402 }
403
404 /* Free all EDGE_INFO structures associated with edges in the CFG.
405 If a particular edge can be threaded, copy the redirection
406 target from the EDGE_INFO structure into the edge's AUX field
407 as required by code to update the CFG and SSA graph for
408 jump threading. */
409
410 static void
411 free_all_edge_infos (void)
412 {
413 basic_block bb;
414 edge_iterator ei;
415 edge e;
416
417 FOR_EACH_BB_FN (bb, cfun)
418 {
419 FOR_EACH_EDGE (e, ei, bb->preds)
420 {
421 free_dom_edge_info (e);
422 e->aux = NULL;
423 }
424 }
425 }
426
427 /* We have finished optimizing BB, record any information implied by
428 taking a specific outgoing edge from BB. */
429
430 static void
431 record_edge_info (basic_block bb)
432 {
433 gimple_stmt_iterator gsi = gsi_last_bb (bb);
434 class edge_info *edge_info;
435
436 if (! gsi_end_p (gsi))
437 {
438 gimple *stmt = gsi_stmt (gsi);
439 location_t loc = gimple_location (stmt);
440
441 if (gimple_code (stmt) == GIMPLE_SWITCH)
442 {
443 gswitch *switch_stmt = as_a <gswitch *> (stmt);
444 tree index = gimple_switch_index (switch_stmt);
445
446 if (TREE_CODE (index) == SSA_NAME)
447 {
448 int i;
449 int n_labels = gimple_switch_num_labels (switch_stmt);
450 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
451 edge e;
452 edge_iterator ei;
453
454 for (i = 0; i < n_labels; i++)
455 {
456 tree label = gimple_switch_label (switch_stmt, i);
457 basic_block target_bb
458 = label_to_block (cfun, CASE_LABEL (label));
459 if (CASE_HIGH (label)
460 || !CASE_LOW (label)
461 || info[target_bb->index])
462 info[target_bb->index] = error_mark_node;
463 else
464 info[target_bb->index] = label;
465 }
466
467 FOR_EACH_EDGE (e, ei, bb->succs)
468 {
469 basic_block target_bb = e->dest;
470 tree label = info[target_bb->index];
471
472 if (label != NULL && label != error_mark_node)
473 {
474 tree x = fold_convert_loc (loc, TREE_TYPE (index),
475 CASE_LOW (label));
476 edge_info = new class edge_info (e);
477 edge_info->record_simple_equiv (index, x);
478 }
479 }
480 free (info);
481 }
482 }
483
484 /* A COND_EXPR may create equivalences too. */
485 if (gimple_code (stmt) == GIMPLE_COND)
486 {
487 edge true_edge;
488 edge false_edge;
489
490 tree op0 = gimple_cond_lhs (stmt);
491 tree op1 = gimple_cond_rhs (stmt);
492 enum tree_code code = gimple_cond_code (stmt);
493
494 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
495
496 /* Special case comparing booleans against a constant as we
497 know the value of OP0 on both arms of the branch. i.e., we
498 can record an equivalence for OP0 rather than COND.
499
500 However, don't do this if the constant isn't zero or one.
501 Such conditionals will get optimized more thoroughly during
502 the domwalk. */
503 if ((code == EQ_EXPR || code == NE_EXPR)
504 && TREE_CODE (op0) == SSA_NAME
505 && ssa_name_has_boolean_range (op0)
506 && is_gimple_min_invariant (op1)
507 && (integer_zerop (op1) || integer_onep (op1)))
508 {
509 tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
510 tree false_val = constant_boolean_node (false, TREE_TYPE (op0));
511
512 if (code == EQ_EXPR)
513 {
514 edge_info = new class edge_info (true_edge);
515 edge_info->record_simple_equiv (op0,
516 (integer_zerop (op1)
517 ? false_val : true_val));
518 edge_info = new class edge_info (false_edge);
519 edge_info->record_simple_equiv (op0,
520 (integer_zerop (op1)
521 ? true_val : false_val));
522 }
523 else
524 {
525 edge_info = new class edge_info (true_edge);
526 edge_info->record_simple_equiv (op0,
527 (integer_zerop (op1)
528 ? true_val : false_val));
529 edge_info = new class edge_info (false_edge);
530 edge_info->record_simple_equiv (op0,
531 (integer_zerop (op1)
532 ? false_val : true_val));
533 }
534 }
535 /* This can show up in the IL as a result of copy propagation
536 it will eventually be canonicalized, but we have to cope
537 with this case within the pass. */
538 else if (is_gimple_min_invariant (op0)
539 && TREE_CODE (op1) == SSA_NAME)
540 {
541 tree cond = build2 (code, boolean_type_node, op0, op1);
542 tree inverted = invert_truthvalue_loc (loc, cond);
543 bool can_infer_simple_equiv
544 = !(HONOR_SIGNED_ZEROS (op0)
545 && real_zerop (op0));
546 class edge_info *edge_info;
547
548 edge_info = new class edge_info (true_edge);
549 record_conditions (&edge_info->cond_equivalences, cond, inverted);
550
551 if (can_infer_simple_equiv && code == EQ_EXPR)
552 edge_info->record_simple_equiv (op1, op0);
553
554 edge_info = new class edge_info (false_edge);
555 record_conditions (&edge_info->cond_equivalences, inverted, cond);
556
557 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
558 edge_info->record_simple_equiv (op1, op0);
559 }
560
561 else if (TREE_CODE (op0) == SSA_NAME
562 && (TREE_CODE (op1) == SSA_NAME
563 || is_gimple_min_invariant (op1)))
564 {
565 tree cond = build2 (code, boolean_type_node, op0, op1);
566 tree inverted = invert_truthvalue_loc (loc, cond);
567 bool can_infer_simple_equiv
568 = !(HONOR_SIGNED_ZEROS (op1)
569 && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
570 class edge_info *edge_info;
571
572 edge_info = new class edge_info (true_edge);
573 record_conditions (&edge_info->cond_equivalences, cond, inverted);
574
575 if (can_infer_simple_equiv && code == EQ_EXPR)
576 edge_info->record_simple_equiv (op0, op1);
577
578 edge_info = new class edge_info (false_edge);
579 record_conditions (&edge_info->cond_equivalences, inverted, cond);
580
581 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
582 edge_info->record_simple_equiv (op0, op1);
583 }
584 }
585 }
586 }
587
588
589 class dom_opt_dom_walker : public dom_walker
590 {
591 public:
592 dom_opt_dom_walker (cdi_direction direction,
593 class const_and_copies *const_and_copies,
594 class avail_exprs_stack *avail_exprs_stack,
595 gcond *dummy_cond)
596 : dom_walker (direction, REACHABLE_BLOCKS),
597 m_const_and_copies (const_and_copies),
598 m_avail_exprs_stack (avail_exprs_stack),
599 evrp_range_analyzer (true),
600 m_dummy_cond (dummy_cond) { }
601
602 virtual edge before_dom_children (basic_block);
603 virtual void after_dom_children (basic_block);
604
605 private:
606
607 /* Unwindable equivalences, both const/copy and expression varieties. */
608 class const_and_copies *m_const_and_copies;
609 class avail_exprs_stack *m_avail_exprs_stack;
610
611 /* VRP data. */
612 class evrp_range_analyzer evrp_range_analyzer;
613
614 /* Dummy condition to avoid creating lots of throw away statements. */
615 gcond *m_dummy_cond;
616
617 /* Optimize a single statement within a basic block using the
618 various tables mantained by DOM. Returns the taken edge if
619 the statement is a conditional with a statically determined
620 value. */
621 edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);
622 };
623
624 /* Jump threading, redundancy elimination and const/copy propagation.
625
626 This pass may expose new symbols that need to be renamed into SSA. For
627 every new symbol exposed, its corresponding bit will be set in
628 VARS_TO_RENAME. */
629
630 namespace {
631
632 const pass_data pass_data_dominator =
633 {
634 GIMPLE_PASS, /* type */
635 "dom", /* name */
636 OPTGROUP_NONE, /* optinfo_flags */
637 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
638 ( PROP_cfg | PROP_ssa ), /* properties_required */
639 0, /* properties_provided */
640 0, /* properties_destroyed */
641 0, /* todo_flags_start */
642 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
643 };
644
645 class pass_dominator : public gimple_opt_pass
646 {
647 public:
648 pass_dominator (gcc::context *ctxt)
649 : gimple_opt_pass (pass_data_dominator, ctxt),
650 may_peel_loop_headers_p (false)
651 {}
652
653 /* opt_pass methods: */
654 opt_pass * clone () { return new pass_dominator (m_ctxt); }
655 void set_pass_param (unsigned int n, bool param)
656 {
657 gcc_assert (n == 0);
658 may_peel_loop_headers_p = param;
659 }
660 virtual bool gate (function *) { return flag_tree_dom != 0; }
661 virtual unsigned int execute (function *);
662
663 private:
664 /* This flag is used to prevent loops from being peeled repeatedly in jump
665 threading; it will be removed once we preserve loop structures throughout
666 the compilation -- we will be able to mark the affected loops directly in
667 jump threading, and avoid peeling them next time. */
668 bool may_peel_loop_headers_p;
669 }; // class pass_dominator
670
671 unsigned int
672 pass_dominator::execute (function *fun)
673 {
674 memset (&opt_stats, 0, sizeof (opt_stats));
675
676 /* Create our hash tables. */
677 hash_table<expr_elt_hasher> *avail_exprs
678 = new hash_table<expr_elt_hasher> (1024);
679 class avail_exprs_stack *avail_exprs_stack
680 = new class avail_exprs_stack (avail_exprs);
681 class const_and_copies *const_and_copies = new class const_and_copies ();
682 need_eh_cleanup = BITMAP_ALLOC (NULL);
683 need_noreturn_fixup.create (0);
684
685 calculate_dominance_info (CDI_DOMINATORS);
686 cfg_altered = false;
687
688 /* We need to know loop structures in order to avoid destroying them
689 in jump threading. Note that we still can e.g. thread through loop
690 headers to an exit edge, or through loop header to the loop body, assuming
691 that we update the loop info.
692
693 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
694 to several overly conservative bail-outs in jump threading, case
695 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
696 missing. We should improve jump threading in future then
697 LOOPS_HAVE_PREHEADERS won't be needed here. */
698 loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);
699
700 /* Initialize the value-handle array. */
701 threadedge_initialize_values ();
702
703 /* We need accurate information regarding back edges in the CFG
704 for jump threading; this may include back edges that are not part of
705 a single loop. */
706 mark_dfs_back_edges ();
707
708 /* We want to create the edge info structures before the dominator walk
709 so that they'll be in place for the jump threader, particularly when
710 threading through a join block.
711
712 The conditions will be lazily updated with global equivalences as
713 we reach them during the dominator walk. */
714 basic_block bb;
715 FOR_EACH_BB_FN (bb, fun)
716 record_edge_info (bb);
717
718 gcond *dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
719 integer_zero_node, NULL, NULL);
720
721 /* Recursively walk the dominator tree optimizing statements. */
722 dom_opt_dom_walker walker (CDI_DOMINATORS, const_and_copies,
723 avail_exprs_stack, dummy_cond);
724 walker.walk (fun->cfg->x_entry_block_ptr);
725
726 /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
727 edge. When found, remove jump threads which contain any outgoing
728 edge from the affected block. */
729 if (cfg_altered)
730 {
731 FOR_EACH_BB_FN (bb, fun)
732 {
733 edge_iterator ei;
734 edge e;
735
736 /* First see if there are any edges without EDGE_EXECUTABLE
737 set. */
738 bool found = false;
739 FOR_EACH_EDGE (e, ei, bb->succs)
740 {
741 if ((e->flags & EDGE_EXECUTABLE) == 0)
742 {
743 found = true;
744 break;
745 }
746 }
747
748 /* If there were any such edges found, then remove jump threads
749 containing any edge leaving BB. */
750 if (found)
751 FOR_EACH_EDGE (e, ei, bb->succs)
752 remove_jump_threads_including (e);
753 }
754 }
755
756 {
757 gimple_stmt_iterator gsi;
758 basic_block bb;
759 FOR_EACH_BB_FN (bb, fun)
760 {
761 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
762 update_stmt_if_modified (gsi_stmt (gsi));
763 }
764 }
765
766 /* If we exposed any new variables, go ahead and put them into
767 SSA form now, before we handle jump threading. This simplifies
768 interactions between rewriting of _DECL nodes into SSA form
769 and rewriting SSA_NAME nodes into SSA form after block
770 duplication and CFG manipulation. */
771 update_ssa (TODO_update_ssa);
772
773 free_all_edge_infos ();
774
775 /* Thread jumps, creating duplicate blocks as needed. */
776 cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p);
777
778 if (cfg_altered)
779 free_dominance_info (CDI_DOMINATORS);
780
781 /* Removal of statements may make some EH edges dead. Purge
782 such edges from the CFG as needed. */
783 if (!bitmap_empty_p (need_eh_cleanup))
784 {
785 unsigned i;
786 bitmap_iterator bi;
787
788 /* Jump threading may have created forwarder blocks from blocks
789 needing EH cleanup; the new successor of these blocks, which
790 has inherited from the original block, needs the cleanup.
791 Don't clear bits in the bitmap, as that can break the bitmap
792 iterator. */
793 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
794 {
795 basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
796 if (bb == NULL)
797 continue;
798 while (single_succ_p (bb)
799 && (single_succ_edge (bb)->flags
800 & (EDGE_EH|EDGE_DFS_BACK)) == 0)
801 bb = single_succ (bb);
802 if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
803 continue;
804 if ((unsigned) bb->index != i)
805 bitmap_set_bit (need_eh_cleanup, bb->index);
806 }
807
808 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
809 bitmap_clear (need_eh_cleanup);
810 }
811
812 /* Fixup stmts that became noreturn calls. This may require splitting
813 blocks and thus isn't possible during the dominator walk or before
814 jump threading finished. Do this in reverse order so we don't
815 inadvertedly remove a stmt we want to fixup by visiting a dominating
816 now noreturn call first. */
817 while (!need_noreturn_fixup.is_empty ())
818 {
819 gimple *stmt = need_noreturn_fixup.pop ();
820 if (dump_file && dump_flags & TDF_DETAILS)
821 {
822 fprintf (dump_file, "Fixing up noreturn call ");
823 print_gimple_stmt (dump_file, stmt, 0);
824 fprintf (dump_file, "\n");
825 }
826 fixup_noreturn_call (stmt);
827 }
828
829 statistics_counter_event (fun, "Redundant expressions eliminated",
830 opt_stats.num_re);
831 statistics_counter_event (fun, "Constants propagated",
832 opt_stats.num_const_prop);
833 statistics_counter_event (fun, "Copies propagated",
834 opt_stats.num_copy_prop);
835
836 /* Debugging dumps. */
837 if (dump_file && (dump_flags & TDF_STATS))
838 dump_dominator_optimization_stats (dump_file, avail_exprs);
839
840 loop_optimizer_finalize ();
841
842 /* Delete our main hashtable. */
843 delete avail_exprs;
844 avail_exprs = NULL;
845
846 /* Free asserted bitmaps and stacks. */
847 BITMAP_FREE (need_eh_cleanup);
848 need_noreturn_fixup.release ();
849 delete avail_exprs_stack;
850 delete const_and_copies;
851
852 /* Free the value-handle array. */
853 threadedge_finalize_values ();
854
855 return 0;
856 }
857
858 } // anon namespace
859
860 gimple_opt_pass *
861 make_pass_dominator (gcc::context *ctxt)
862 {
863 return new pass_dominator (ctxt);
864 }
865
866 /* A hack until we remove threading from tree-vrp.c and bring the
867 simplification routine into the dom_opt_dom_walker class. */
868 static class vr_values *x_vr_values;
869
870 /* A trivial wrapper so that we can present the generic jump
871 threading code with a simple API for simplifying statements.
872
873 ?? This should be cleaned up. There's a virtually identical copy
874 of this function in tree-vrp.c. */
875
876 static tree
877 simplify_stmt_for_jump_threading (gimple *stmt,
878 gimple *within_stmt ATTRIBUTE_UNUSED,
879 class avail_exprs_stack *avail_exprs_stack,
880 basic_block bb ATTRIBUTE_UNUSED)
881 {
882 /* First query our hash table to see if the expression is available
883 there. A non-NULL return value will be either a constant or another
884 SSA_NAME. */
885 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
886 if (cached_lhs)
887 return cached_lhs;
888
889 /* If the hash table query failed, query VRP information. This is
890 essentially the same as tree-vrp's simplification routine. The
891 copy in tree-vrp is scheduled for removal in gcc-9. */
892 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
893 {
894 simplify_using_ranges simplifier (x_vr_values);
895 return simplifier.vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
896 gimple_cond_lhs (cond_stmt),
897 gimple_cond_rhs (cond_stmt),
898 within_stmt);
899 }
900
901 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
902 {
903 tree op = gimple_switch_index (switch_stmt);
904 if (TREE_CODE (op) != SSA_NAME)
905 return NULL_TREE;
906
907 const value_range_equiv *vr = x_vr_values->get_value_range (op);
908 return find_case_label_range (switch_stmt, vr);
909 }
910
911 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
912 {
913 tree lhs = gimple_assign_lhs (assign_stmt);
914 if (TREE_CODE (lhs) == SSA_NAME
915 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
916 || POINTER_TYPE_P (TREE_TYPE (lhs)))
917 && stmt_interesting_for_vrp (stmt))
918 {
919 edge dummy_e;
920 tree dummy_tree;
921 value_range_equiv new_vr;
922 x_vr_values->extract_range_from_stmt (stmt, &dummy_e,
923 &dummy_tree, &new_vr);
924 tree singleton;
925 if (new_vr.singleton_p (&singleton))
926 return singleton;
927 }
928 }
929 return NULL;
930 }
931
932 /* Valueize hook for gimple_fold_stmt_to_constant_1. */
933
934 static tree
935 dom_valueize (tree t)
936 {
937 if (TREE_CODE (t) == SSA_NAME)
938 {
939 tree tem = SSA_NAME_VALUE (t);
940 if (tem)
941 return tem;
942 }
943 return t;
944 }
945
946 /* We have just found an equivalence for LHS on an edge E.
947 Look backwards to other uses of LHS and see if we can derive
948 additional equivalences that are valid on edge E. */
949 static void
950 back_propagate_equivalences (tree lhs, edge e,
951 class const_and_copies *const_and_copies)
952 {
953 use_operand_p use_p;
954 imm_use_iterator iter;
955 bitmap domby = NULL;
956 basic_block dest = e->dest;
957
958 /* Iterate over the uses of LHS to see if any dominate E->dest.
959 If so, they may create useful equivalences too.
960
961 ??? If the code gets re-organized to a worklist to catch more
962 indirect opportunities and it is made to handle PHIs then this
963 should only consider use_stmts in basic-blocks we have already visited. */
964 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
965 {
966 gimple *use_stmt = USE_STMT (use_p);
967
968 /* Often the use is in DEST, which we trivially know we can't use.
969 This is cheaper than the dominator set tests below. */
970 if (dest == gimple_bb (use_stmt))
971 continue;
972
973 /* Filter out statements that can never produce a useful
974 equivalence. */
975 tree lhs2 = gimple_get_lhs (use_stmt);
976 if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
977 continue;
978
979 /* Profiling has shown the domination tests here can be fairly
980 expensive. We get significant improvements by building the
981 set of blocks that dominate BB. We can then just test
982 for set membership below.
983
984 We also initialize the set lazily since often the only uses
985 are going to be in the same block as DEST. */
986 if (!domby)
987 {
988 domby = BITMAP_ALLOC (NULL);
989 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest);
990 while (bb)
991 {
992 bitmap_set_bit (domby, bb->index);
993 bb = get_immediate_dominator (CDI_DOMINATORS, bb);
994 }
995 }
996
997 /* This tests if USE_STMT does not dominate DEST. */
998 if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
999 continue;
1000
1001 /* At this point USE_STMT dominates DEST and may result in a
1002 useful equivalence. Try to simplify its RHS to a constant
1003 or SSA_NAME. */
1004 tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
1005 no_follow_ssa_edges);
1006 if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
1007 record_equality (lhs2, res, const_and_copies);
1008 }
1009
1010 if (domby)
1011 BITMAP_FREE (domby);
1012 }
1013
1014 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
1015 by traversing edge E (which are cached in E->aux).
1016
1017 Callers are responsible for managing the unwinding markers. */
1018 void
1019 record_temporary_equivalences (edge e,
1020 class const_and_copies *const_and_copies,
1021 class avail_exprs_stack *avail_exprs_stack)
1022 {
1023 int i;
1024 class edge_info *edge_info = (class edge_info *) e->aux;
1025
1026 /* If we have info associated with this edge, record it into
1027 our equivalence tables. */
1028 if (edge_info)
1029 {
1030 cond_equivalence *eq;
1031 /* If we have 0 = COND or 1 = COND equivalences, record them
1032 into our expression hash tables. */
1033 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1034 avail_exprs_stack->record_cond (eq);
1035
1036 edge_info::equiv_pair *seq;
1037 for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1038 {
1039 tree lhs = seq->first;
1040 if (!lhs || TREE_CODE (lhs) != SSA_NAME)
1041 continue;
1042
1043 /* Record the simple NAME = VALUE equivalence. */
1044 tree rhs = seq->second;
1045
1046 /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
1047 cheaper to compute than the other, then set up the equivalence
1048 such that we replace the expensive one with the cheap one.
1049
1050 If they are the same cost to compute, then do not record
1051 anything. */
1052 if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
1053 {
1054 gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
1055 int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);
1056
1057 gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
1058 int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);
1059
1060 if (rhs_cost > lhs_cost)
1061 record_equality (rhs, lhs, const_and_copies);
1062 else if (rhs_cost < lhs_cost)
1063 record_equality (lhs, rhs, const_and_copies);
1064 }
1065 else
1066 record_equality (lhs, rhs, const_and_copies);
1067
1068
1069 /* Any equivalence found for LHS may result in additional
1070 equivalences for other uses of LHS that we have already
1071 processed. */
1072 back_propagate_equivalences (lhs, e, const_and_copies);
1073 }
1074 }
1075 }
1076
1077 /* PHI nodes can create equivalences too.
1078
1079 Ignoring any alternatives which are the same as the result, if
1080 all the alternatives are equal, then the PHI node creates an
1081 equivalence. */
1082
1083 static void
1084 record_equivalences_from_phis (basic_block bb)
1085 {
1086 gphi_iterator gsi;
1087
1088 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
1089 {
1090 gphi *phi = gsi.phi ();
1091
1092 /* We might eliminate the PHI, so advance GSI now. */
1093 gsi_next (&gsi);
1094
1095 tree lhs = gimple_phi_result (phi);
1096 tree rhs = NULL;
1097 size_t i;
1098
1099 for (i = 0; i < gimple_phi_num_args (phi); i++)
1100 {
1101 tree t = gimple_phi_arg_def (phi, i);
1102
1103 /* Ignore alternatives which are the same as our LHS. Since
1104 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1105 can simply compare pointers. */
1106 if (lhs == t)
1107 continue;
1108
1109 /* If the associated edge is not marked as executable, then it
1110 can be ignored. */
1111 if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
1112 continue;
1113
1114 t = dom_valueize (t);
1115
1116 /* If T is an SSA_NAME and its associated edge is a backedge,
1117 then quit as we cannot utilize this equivalence. */
1118 if (TREE_CODE (t) == SSA_NAME
1119 && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
1120 break;
1121
1122 /* If we have not processed an alternative yet, then set
1123 RHS to this alternative. */
1124 if (rhs == NULL)
1125 rhs = t;
1126 /* If we have processed an alternative (stored in RHS), then
1127 see if it is equal to this one. If it isn't, then stop
1128 the search. */
1129 else if (! operand_equal_for_phi_arg_p (rhs, t))
1130 break;
1131 }
1132
1133 /* If we had no interesting alternatives, then all the RHS alternatives
1134 must have been the same as LHS. */
1135 if (!rhs)
1136 rhs = lhs;
1137
1138 /* If we managed to iterate through each PHI alternative without
1139 breaking out of the loop, then we have a PHI which may create
1140 a useful equivalence. We do not need to record unwind data for
1141 this, since this is a true assignment and not an equivalence
1142 inferred from a comparison. All uses of this ssa name are dominated
1143 by this assignment, so unwinding just costs time and space. */
1144 if (i == gimple_phi_num_args (phi))
1145 {
1146 if (may_propagate_copy (lhs, rhs))
1147 set_ssa_name_value (lhs, rhs);
1148 else if (virtual_operand_p (lhs))
1149 {
1150 gimple *use_stmt;
1151 imm_use_iterator iter;
1152 use_operand_p use_p;
1153 /* For virtual operands we have to propagate into all uses as
1154 otherwise we will create overlapping life-ranges. */
1155 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
1156 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1157 SET_USE (use_p, rhs);
1158 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
1159 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
1160 gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi);
1161 remove_phi_node (&tmp_gsi, true);
1162 }
1163 }
1164 }
1165 }
1166
1167 /* Record any equivalences created by the incoming edge to BB into
1168 CONST_AND_COPIES and AVAIL_EXPRS_STACK. If BB has more than one
1169 incoming edge, then no equivalence is created. */
1170
1171 static void
1172 record_equivalences_from_incoming_edge (basic_block bb,
1173 class const_and_copies *const_and_copies,
1174 class avail_exprs_stack *avail_exprs_stack)
1175 {
1176 edge e;
1177 basic_block parent;
1178
1179 /* If our parent block ended with a control statement, then we may be
1180 able to record some equivalences based on which outgoing edge from
1181 the parent was followed. */
1182 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1183
1184 e = single_pred_edge_ignoring_loop_edges (bb, true);
1185
1186 /* If we had a single incoming edge from our parent block, then enter
1187 any data associated with the edge into our tables. */
1188 if (e && e->src == parent)
1189 record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1190 }
1191
1192 /* Dump statistics for the hash table HTAB. */
1193
1194 static void
1195 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1196 {
1197 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1198 (long) htab.size (),
1199 (long) htab.elements (),
1200 htab.collisions ());
1201 }
1202
1203 /* Dump SSA statistics on FILE. */
1204
1205 static void
1206 dump_dominator_optimization_stats (FILE *file,
1207 hash_table<expr_elt_hasher> *avail_exprs)
1208 {
1209 fprintf (file, "Total number of statements: %6ld\n\n",
1210 opt_stats.num_stmts);
1211 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1212 opt_stats.num_exprs_considered);
1213
1214 fprintf (file, "\nHash table statistics:\n");
1215
1216 fprintf (file, " avail_exprs: ");
1217 htab_statistics (file, *avail_exprs);
1218 }
1219
1220
1221 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1222 This constrains the cases in which we may treat this as assignment. */
1223
1224 static void
1225 record_equality (tree x, tree y, class const_and_copies *const_and_copies)
1226 {
1227 tree prev_x = NULL, prev_y = NULL;
1228
1229 if (tree_swap_operands_p (x, y))
1230 std::swap (x, y);
1231
1232 /* Most of the time tree_swap_operands_p does what we want. But there
1233 are cases where we know one operand is better for copy propagation than
1234 the other. Given no other code cares about ordering of equality
1235 comparison operators for that purpose, we just handle the special cases
1236 here. */
1237 if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1238 {
1239 /* If one operand is a single use operand, then make it
1240 X. This will preserve its single use properly and if this
1241 conditional is eliminated, the computation of X can be
1242 eliminated as well. */
1243 if (has_single_use (y) && ! has_single_use (x))
1244 std::swap (x, y);
1245 }
1246 if (TREE_CODE (x) == SSA_NAME)
1247 prev_x = SSA_NAME_VALUE (x);
1248 if (TREE_CODE (y) == SSA_NAME)
1249 prev_y = SSA_NAME_VALUE (y);
1250
1251 /* If one of the previous values is invariant, or invariant in more loops
1252 (by depth), then use that.
1253 Otherwise it doesn't matter which value we choose, just so
1254 long as we canonicalize on one value. */
1255 if (is_gimple_min_invariant (y))
1256 ;
1257 else if (is_gimple_min_invariant (x))
1258 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1259 else if (prev_x && is_gimple_min_invariant (prev_x))
1260 x = y, y = prev_x, prev_x = prev_y;
1261 else if (prev_y)
1262 y = prev_y;
1263
1264 /* After the swapping, we must have one SSA_NAME. */
1265 if (TREE_CODE (x) != SSA_NAME)
1266 return;
1267
1268 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1269 variable compared against zero. If we're honoring signed zeros,
1270 then we cannot record this value unless we know that the value is
1271 nonzero. */
1272 if (HONOR_SIGNED_ZEROS (x)
1273 && (TREE_CODE (y) != REAL_CST
1274 || real_equal (&dconst0, &TREE_REAL_CST (y))))
1275 return;
1276
1277 const_and_copies->record_const_or_copy (x, y, prev_x);
1278 }
1279
1280 /* Returns true when STMT is a simple iv increment. It detects the
1281 following situation:
1282
1283 i_1 = phi (..., i_k)
1284 [...]
1285 i_j = i_{j-1} for each j : 2 <= j <= k-1
1286 [...]
1287 i_k = i_{k-1} +/- ... */
1288
1289 bool
1290 simple_iv_increment_p (gimple *stmt)
1291 {
1292 enum tree_code code;
1293 tree lhs, preinc;
1294 gimple *phi;
1295 size_t i;
1296
1297 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1298 return false;
1299
1300 lhs = gimple_assign_lhs (stmt);
1301 if (TREE_CODE (lhs) != SSA_NAME)
1302 return false;
1303
1304 code = gimple_assign_rhs_code (stmt);
1305 if (code != PLUS_EXPR
1306 && code != MINUS_EXPR
1307 && code != POINTER_PLUS_EXPR)
1308 return false;
1309
1310 preinc = gimple_assign_rhs1 (stmt);
1311 if (TREE_CODE (preinc) != SSA_NAME)
1312 return false;
1313
1314 phi = SSA_NAME_DEF_STMT (preinc);
1315 while (gimple_code (phi) != GIMPLE_PHI)
1316 {
1317 /* Follow trivial copies, but not the DEF used in a back edge,
1318 so that we don't prevent coalescing. */
1319 if (!gimple_assign_ssa_name_copy_p (phi))
1320 return false;
1321 preinc = gimple_assign_rhs1 (phi);
1322 phi = SSA_NAME_DEF_STMT (preinc);
1323 }
1324
1325 for (i = 0; i < gimple_phi_num_args (phi); i++)
1326 if (gimple_phi_arg_def (phi, i) == lhs)
1327 return true;
1328
1329 return false;
1330 }
1331
1332 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1333 successors of BB. */
1334
1335 static void
1336 cprop_into_successor_phis (basic_block bb,
1337 class const_and_copies *const_and_copies)
1338 {
1339 edge e;
1340 edge_iterator ei;
1341
1342 FOR_EACH_EDGE (e, ei, bb->succs)
1343 {
1344 int indx;
1345 gphi_iterator gsi;
1346
1347 /* If this is an abnormal edge, then we do not want to copy propagate
1348 into the PHI alternative associated with this edge. */
1349 if (e->flags & EDGE_ABNORMAL)
1350 continue;
1351
1352 gsi = gsi_start_phis (e->dest);
1353 if (gsi_end_p (gsi))
1354 continue;
1355
1356 /* We may have an equivalence associated with this edge. While
1357 we cannot propagate it into non-dominated blocks, we can
1358 propagate them into PHIs in non-dominated blocks. */
1359
1360 /* Push the unwind marker so we can reset the const and copies
1361 table back to its original state after processing this edge. */
1362 const_and_copies->push_marker ();
1363
1364 /* Extract and record any simple NAME = VALUE equivalences.
1365
1366 Don't bother with [01] = COND equivalences, they're not useful
1367 here. */
1368 class edge_info *edge_info = (class edge_info *) e->aux;
1369
1370 if (edge_info)
1371 {
1372 edge_info::equiv_pair *seq;
1373 for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1374 {
1375 tree lhs = seq->first;
1376 tree rhs = seq->second;
1377
1378 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1379 const_and_copies->record_const_or_copy (lhs, rhs);
1380 }
1381
1382 }
1383
1384 indx = e->dest_idx;
1385 for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1386 {
1387 tree new_val;
1388 use_operand_p orig_p;
1389 tree orig_val;
1390 gphi *phi = gsi.phi ();
1391
1392 /* The alternative may be associated with a constant, so verify
1393 it is an SSA_NAME before doing anything with it. */
1394 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1395 orig_val = get_use_from_ptr (orig_p);
1396 if (TREE_CODE (orig_val) != SSA_NAME)
1397 continue;
1398
1399 /* If we have *ORIG_P in our constant/copy table, then replace
1400 ORIG_P with its value in our constant/copy table. */
1401 new_val = SSA_NAME_VALUE (orig_val);
1402 if (new_val
1403 && new_val != orig_val
1404 && may_propagate_copy (orig_val, new_val))
1405 propagate_value (orig_p, new_val);
1406 }
1407
1408 const_and_copies->pop_to_marker ();
1409 }
1410 }
1411
1412 edge
1413 dom_opt_dom_walker::before_dom_children (basic_block bb)
1414 {
1415 gimple_stmt_iterator gsi;
1416
1417 if (dump_file && (dump_flags & TDF_DETAILS))
1418 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1419
1420 evrp_range_analyzer.enter (bb);
1421
1422 /* Push a marker on the stacks of local information so that we know how
1423 far to unwind when we finalize this block. */
1424 m_avail_exprs_stack->push_marker ();
1425 m_const_and_copies->push_marker ();
1426
1427 record_equivalences_from_incoming_edge (bb, m_const_and_copies,
1428 m_avail_exprs_stack);
1429
1430 /* PHI nodes can create equivalences too. */
1431 record_equivalences_from_phis (bb);
1432
1433 /* Create equivalences from redundant PHIs. PHIs are only truly
1434 redundant when they exist in the same block, so push another
1435 marker and unwind right afterwards. */
1436 m_avail_exprs_stack->push_marker ();
1437 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1438 eliminate_redundant_computations (&gsi, m_const_and_copies,
1439 m_avail_exprs_stack);
1440 m_avail_exprs_stack->pop_to_marker ();
1441
1442 edge taken_edge = NULL;
1443 /* Initialize visited flag ahead of us, it has undefined state on
1444 pass entry. */
1445 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1446 gimple_set_visited (gsi_stmt (gsi), false);
1447 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1448 {
1449 /* Do not optimize a stmt twice, substitution might end up with
1450 _3 = _3 which is not valid. */
1451 if (gimple_visited_p (gsi_stmt (gsi)))
1452 {
1453 gsi_next (&gsi);
1454 continue;
1455 }
1456
1457 /* Compute range information and optimize the stmt. */
1458 evrp_range_analyzer.record_ranges_from_stmt (gsi_stmt (gsi), false);
1459 bool removed_p = false;
1460 taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
1461 if (!removed_p)
1462 gimple_set_visited (gsi_stmt (gsi), true);
1463
1464 /* Go back and visit stmts inserted by folding after substituting
1465 into the stmt at gsi. */
1466 if (gsi_end_p (gsi))
1467 {
1468 gcc_checking_assert (removed_p);
1469 gsi = gsi_last_bb (bb);
1470 while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)))
1471 gsi_prev (&gsi);
1472 }
1473 else
1474 {
1475 do
1476 {
1477 gsi_prev (&gsi);
1478 }
1479 while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)));
1480 }
1481 if (gsi_end_p (gsi))
1482 gsi = gsi_start_bb (bb);
1483 else
1484 gsi_next (&gsi);
1485 }
1486
1487 /* Now prepare to process dominated blocks. */
1488 record_edge_info (bb);
1489 cprop_into_successor_phis (bb, m_const_and_copies);
1490 if (taken_edge && !dbg_cnt (dom_unreachable_edges))
1491 return NULL;
1492
1493 return taken_edge;
1494 }
1495
1496 /* We have finished processing the dominator children of BB, perform
1497 any finalization actions in preparation for leaving this node in
1498 the dominator tree. */
1499
1500 void
1501 dom_opt_dom_walker::after_dom_children (basic_block bb)
1502 {
1503 x_vr_values = &evrp_range_analyzer;
1504 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
1505 m_avail_exprs_stack,
1506 &evrp_range_analyzer,
1507 simplify_stmt_for_jump_threading);
1508 x_vr_values = NULL;
1509
1510 /* These remove expressions local to BB from the tables. */
1511 m_avail_exprs_stack->pop_to_marker ();
1512 m_const_and_copies->pop_to_marker ();
1513 evrp_range_analyzer.leave (bb);
1514 }
1515
1516 /* Search for redundant computations in STMT. If any are found, then
1517 replace them with the variable holding the result of the computation.
1518
1519 If safe, record this expression into AVAIL_EXPRS_STACK and
1520 CONST_AND_COPIES. */
1521
1522 static void
1523 eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1524 class const_and_copies *const_and_copies,
1525 class avail_exprs_stack *avail_exprs_stack)
1526 {
1527 tree expr_type;
1528 tree cached_lhs;
1529 tree def;
1530 bool insert = true;
1531 bool assigns_var_p = false;
1532
1533 gimple *stmt = gsi_stmt (*gsi);
1534
1535 if (gimple_code (stmt) == GIMPLE_PHI)
1536 def = gimple_phi_result (stmt);
1537 else
1538 def = gimple_get_lhs (stmt);
1539
1540 /* Certain expressions on the RHS can be optimized away, but cannot
1541 themselves be entered into the hash tables. */
1542 if (! def
1543 || TREE_CODE (def) != SSA_NAME
1544 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1545 || gimple_vdef (stmt)
1546 /* Do not record equivalences for increments of ivs. This would create
1547 overlapping live ranges for a very questionable gain. */
1548 || simple_iv_increment_p (stmt))
1549 insert = false;
1550
1551 /* Check if the expression has been computed before. */
1552 cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);
1553
1554 opt_stats.num_exprs_considered++;
1555
1556 /* Get the type of the expression we are trying to optimize. */
1557 if (is_gimple_assign (stmt))
1558 {
1559 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1560 assigns_var_p = true;
1561 }
1562 else if (gimple_code (stmt) == GIMPLE_COND)
1563 expr_type = boolean_type_node;
1564 else if (is_gimple_call (stmt))
1565 {
1566 gcc_assert (gimple_call_lhs (stmt));
1567 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1568 assigns_var_p = true;
1569 }
1570 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1571 expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1572 else if (gimple_code (stmt) == GIMPLE_PHI)
1573 /* We can't propagate into a phi, so the logic below doesn't apply.
1574 Instead record an equivalence between the cached LHS and the
1575 PHI result of this statement, provided they are in the same block.
1576 This should be sufficient to kill the redundant phi. */
1577 {
1578 if (def && cached_lhs)
1579 const_and_copies->record_const_or_copy (def, cached_lhs);
1580 return;
1581 }
1582 else
1583 gcc_unreachable ();
1584
1585 if (!cached_lhs)
1586 return;
1587
1588 /* It is safe to ignore types here since we have already done
1589 type checking in the hashing and equality routines. In fact
1590 type checking here merely gets in the way of constant
1591 propagation. Also, make sure that it is safe to propagate
1592 CACHED_LHS into the expression in STMT. */
1593 if ((TREE_CODE (cached_lhs) != SSA_NAME
1594 && (assigns_var_p
1595 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1596 || may_propagate_copy_into_stmt (stmt, cached_lhs))
1597 {
1598 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1599 || is_gimple_min_invariant (cached_lhs));
1600
1601 if (dump_file && (dump_flags & TDF_DETAILS))
1602 {
1603 fprintf (dump_file, " Replaced redundant expr '");
1604 print_gimple_expr (dump_file, stmt, 0, dump_flags);
1605 fprintf (dump_file, "' with '");
1606 print_generic_expr (dump_file, cached_lhs, dump_flags);
1607 fprintf (dump_file, "'\n");
1608 }
1609
1610 opt_stats.num_re++;
1611
1612 if (assigns_var_p
1613 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1614 cached_lhs = fold_convert (expr_type, cached_lhs);
1615
1616 propagate_tree_value_into_stmt (gsi, cached_lhs);
1617
1618 /* Since it is always necessary to mark the result as modified,
1619 perhaps we should move this into propagate_tree_value_into_stmt
1620 itself. */
1621 gimple_set_modified (gsi_stmt (*gsi), true);
1622 }
1623 }
1624
1625 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1626 the available expressions table or the const_and_copies table.
1627 Detect and record those equivalences into AVAIL_EXPRS_STACK.
1628
1629 We handle only very simple copy equivalences here. The heavy
1630 lifing is done by eliminate_redundant_computations. */
1631
1632 static void
1633 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1634 class avail_exprs_stack *avail_exprs_stack)
1635 {
1636 tree lhs;
1637 enum tree_code lhs_code;
1638
1639 gcc_assert (is_gimple_assign (stmt));
1640
1641 lhs = gimple_assign_lhs (stmt);
1642 lhs_code = TREE_CODE (lhs);
1643
1644 if (lhs_code == SSA_NAME
1645 && gimple_assign_single_p (stmt))
1646 {
1647 tree rhs = gimple_assign_rhs1 (stmt);
1648
1649 /* If the RHS of the assignment is a constant or another variable that
1650 may be propagated, register it in the CONST_AND_COPIES table. We
1651 do not need to record unwind data for this, since this is a true
1652 assignment and not an equivalence inferred from a comparison. All
1653 uses of this ssa name are dominated by this assignment, so unwinding
1654 just costs time and space. */
1655 if (may_optimize_p
1656 && (TREE_CODE (rhs) == SSA_NAME
1657 || is_gimple_min_invariant (rhs)))
1658 {
1659 rhs = dom_valueize (rhs);
1660
1661 if (dump_file && (dump_flags & TDF_DETAILS))
1662 {
1663 fprintf (dump_file, "==== ASGN ");
1664 print_generic_expr (dump_file, lhs);
1665 fprintf (dump_file, " = ");
1666 print_generic_expr (dump_file, rhs);
1667 fprintf (dump_file, "\n");
1668 }
1669
1670 set_ssa_name_value (lhs, rhs);
1671 }
1672 }
1673
1674 /* Make sure we can propagate &x + CST. */
1675 if (lhs_code == SSA_NAME
1676 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1677 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1678 && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1679 {
1680 tree op0 = gimple_assign_rhs1 (stmt);
1681 tree op1 = gimple_assign_rhs2 (stmt);
1682 tree new_rhs
1683 = build1 (ADDR_EXPR, TREE_TYPE (op0),
1684 fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)),
1685 unshare_expr (op0), fold_convert (ptr_type_node,
1686 op1)));
1687 if (dump_file && (dump_flags & TDF_DETAILS))
1688 {
1689 fprintf (dump_file, "==== ASGN ");
1690 print_generic_expr (dump_file, lhs);
1691 fprintf (dump_file, " = ");
1692 print_generic_expr (dump_file, new_rhs);
1693 fprintf (dump_file, "\n");
1694 }
1695
1696 set_ssa_name_value (lhs, new_rhs);
1697 }
1698
1699 /* A memory store, even an aliased store, creates a useful
1700 equivalence. By exchanging the LHS and RHS, creating suitable
1701 vops and recording the result in the available expression table,
1702 we may be able to expose more redundant loads. */
1703 if (!gimple_has_volatile_ops (stmt)
1704 && gimple_references_memory_p (stmt)
1705 && gimple_assign_single_p (stmt)
1706 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1707 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1708 && !is_gimple_reg (lhs))
1709 {
1710 tree rhs = gimple_assign_rhs1 (stmt);
1711 gassign *new_stmt;
1712
1713 /* Build a new statement with the RHS and LHS exchanged. */
1714 if (TREE_CODE (rhs) == SSA_NAME)
1715 {
1716 /* NOTE tuples. The call to gimple_build_assign below replaced
1717 a call to build_gimple_modify_stmt, which did not set the
1718 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
1719 may cause an SSA validation failure, as the LHS may be a
1720 default-initialized name and should have no definition. I'm
1721 a bit dubious of this, as the artificial statement that we
1722 generate here may in fact be ill-formed, but it is simply
1723 used as an internal device in this pass, and never becomes
1724 part of the CFG. */
1725 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1726 new_stmt = gimple_build_assign (rhs, lhs);
1727 SSA_NAME_DEF_STMT (rhs) = defstmt;
1728 }
1729 else
1730 new_stmt = gimple_build_assign (rhs, lhs);
1731
1732 gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1733
1734 /* Finally enter the statement into the available expression
1735 table. */
1736 avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
1737 }
1738 }
1739
1740 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1741 CONST_AND_COPIES. */
1742
1743 static void
1744 cprop_operand (gimple *stmt, use_operand_p op_p, vr_values *vr_values)
1745 {
1746 tree val;
1747 tree op = USE_FROM_PTR (op_p);
1748
1749 /* If the operand has a known constant value or it is known to be a
1750 copy of some other variable, use the value or copy stored in
1751 CONST_AND_COPIES. */
1752 val = SSA_NAME_VALUE (op);
1753 if (!val)
1754 val = vr_values->op_with_constant_singleton_value_range (op);
1755
1756 if (val && val != op)
1757 {
1758 /* Do not replace hard register operands in asm statements. */
1759 if (gimple_code (stmt) == GIMPLE_ASM
1760 && !may_propagate_copy_into_asm (op))
1761 return;
1762
1763 /* Certain operands are not allowed to be copy propagated due
1764 to their interaction with exception handling and some GCC
1765 extensions. */
1766 if (!may_propagate_copy (op, val))
1767 return;
1768
1769 /* Do not propagate copies into BIVs.
1770 See PR23821 and PR62217 for how this can disturb IV and
1771 number of iteration analysis. */
1772 if (TREE_CODE (val) != INTEGER_CST)
1773 {
1774 gimple *def = SSA_NAME_DEF_STMT (op);
1775 if (gimple_code (def) == GIMPLE_PHI
1776 && gimple_bb (def)->loop_father->header == gimple_bb (def))
1777 return;
1778 }
1779
1780 /* Dump details. */
1781 if (dump_file && (dump_flags & TDF_DETAILS))
1782 {
1783 fprintf (dump_file, " Replaced '");
1784 print_generic_expr (dump_file, op, dump_flags);
1785 fprintf (dump_file, "' with %s '",
1786 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
1787 print_generic_expr (dump_file, val, dump_flags);
1788 fprintf (dump_file, "'\n");
1789 }
1790
1791 if (TREE_CODE (val) != SSA_NAME)
1792 opt_stats.num_const_prop++;
1793 else
1794 opt_stats.num_copy_prop++;
1795
1796 propagate_value (op_p, val);
1797
1798 /* And note that we modified this statement. This is now
1799 safe, even if we changed virtual operands since we will
1800 rescan the statement and rewrite its operands again. */
1801 gimple_set_modified (stmt, true);
1802 }
1803 }
1804
1805 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1806 known value for that SSA_NAME (or NULL if no value is known).
1807
1808 Propagate values from CONST_AND_COPIES into the uses, vuses and
1809 vdef_ops of STMT. */
1810
1811 static void
1812 cprop_into_stmt (gimple *stmt, vr_values *vr_values)
1813 {
1814 use_operand_p op_p;
1815 ssa_op_iter iter;
1816 tree last_copy_propagated_op = NULL;
1817
1818 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
1819 {
1820 tree old_op = USE_FROM_PTR (op_p);
1821
1822 /* If we have A = B and B = A in the copy propagation tables
1823 (due to an equality comparison), avoid substituting B for A
1824 then A for B in the trivially discovered cases. This allows
1825 optimization of statements were A and B appear as input
1826 operands. */
1827 if (old_op != last_copy_propagated_op)
1828 {
1829 cprop_operand (stmt, op_p, vr_values);
1830
1831 tree new_op = USE_FROM_PTR (op_p);
1832 if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
1833 last_copy_propagated_op = new_op;
1834 }
1835 }
1836 }
1837
1838 /* If STMT contains a relational test, try to convert it into an
1839 equality test if there is only a single value which can ever
1840 make the test true.
1841
1842 For example, if the expression hash table contains:
1843
1844 TRUE = (i <= 1)
1845
1846 And we have a test within statement of i >= 1, then we can safely
1847 rewrite the test as i == 1 since there only a single value where
1848 the test is true.
1849
1850 This is similar to code in VRP. */
1851
1852 static void
1853 test_for_singularity (gimple *stmt, gcond *dummy_cond,
1854 avail_exprs_stack *avail_exprs_stack)
1855 {
1856 /* We want to support gimple conditionals as well as assignments
1857 where the RHS contains a conditional. */
1858 if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
1859 {
1860 enum tree_code code = ERROR_MARK;
1861 tree lhs, rhs;
1862
1863 /* Extract the condition of interest from both forms we support. */
1864 if (is_gimple_assign (stmt))
1865 {
1866 code = gimple_assign_rhs_code (stmt);
1867 lhs = gimple_assign_rhs1 (stmt);
1868 rhs = gimple_assign_rhs2 (stmt);
1869 }
1870 else if (gimple_code (stmt) == GIMPLE_COND)
1871 {
1872 code = gimple_cond_code (as_a <gcond *> (stmt));
1873 lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
1874 rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
1875 }
1876
1877 /* We're looking for a relational test using LE/GE. Also note we can
1878 canonicalize LT/GT tests against constants into LE/GT tests. */
1879 if (code == LE_EXPR || code == GE_EXPR
1880 || ((code == LT_EXPR || code == GT_EXPR)
1881 && TREE_CODE (rhs) == INTEGER_CST))
1882 {
1883 /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR. */
1884 if (code == LT_EXPR)
1885 rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
1886 rhs, build_int_cst (TREE_TYPE (rhs), 1));
1887
1888 if (code == GT_EXPR)
1889 rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
1890 rhs, build_int_cst (TREE_TYPE (rhs), 1));
1891
1892 /* Determine the code we want to check for in the hash table. */
1893 enum tree_code test_code;
1894 if (code == GE_EXPR || code == GT_EXPR)
1895 test_code = LE_EXPR;
1896 else
1897 test_code = GE_EXPR;
1898
1899 /* Update the dummy statement so we can query the hash tables. */
1900 gimple_cond_set_code (dummy_cond, test_code);
1901 gimple_cond_set_lhs (dummy_cond, lhs);
1902 gimple_cond_set_rhs (dummy_cond, rhs);
1903 tree cached_lhs
1904 = avail_exprs_stack->lookup_avail_expr (dummy_cond, false, false);
1905
1906 /* If the lookup returned 1 (true), then the expression we
1907 queried was in the hash table. As a result there is only
1908 one value that makes the original conditional true. Update
1909 STMT accordingly. */
1910 if (cached_lhs && integer_onep (cached_lhs))
1911 {
1912 if (is_gimple_assign (stmt))
1913 {
1914 gimple_assign_set_rhs_code (stmt, EQ_EXPR);
1915 gimple_assign_set_rhs2 (stmt, rhs);
1916 gimple_set_modified (stmt, true);
1917 }
1918 else
1919 {
1920 gimple_set_modified (stmt, true);
1921 gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
1922 gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
1923 gimple_set_modified (stmt, true);
1924 }
1925 }
1926 }
1927 }
1928 }
1929
1930 /* Optimize the statement in block BB pointed to by iterator SI.
1931
1932 We try to perform some simplistic global redundancy elimination and
1933 constant propagation:
1934
1935 1- To detect global redundancy, we keep track of expressions that have
1936 been computed in this block and its dominators. If we find that the
1937 same expression is computed more than once, we eliminate repeated
1938 computations by using the target of the first one.
1939
1940 2- Constant values and copy assignments. This is used to do very
1941 simplistic constant and copy propagation. When a constant or copy
1942 assignment is found, we map the value on the RHS of the assignment to
1943 the variable in the LHS in the CONST_AND_COPIES table.
1944
1945 3- Very simple redundant store elimination is performed.
1946
1947 4- We can simplify a condition to a constant or from a relational
1948 condition to an equality condition. */
1949
1950 edge
1951 dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
1952 bool *removed_p)
1953 {
1954 gimple *stmt, *old_stmt;
1955 bool may_optimize_p;
1956 bool modified_p = false;
1957 bool was_noreturn;
1958 edge retval = NULL;
1959
1960 old_stmt = stmt = gsi_stmt (*si);
1961 was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
1962
1963 if (dump_file && (dump_flags & TDF_DETAILS))
1964 {
1965 fprintf (dump_file, "Optimizing statement ");
1966 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1967 }
1968
1969 update_stmt_if_modified (stmt);
1970 opt_stats.num_stmts++;
1971
1972 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
1973 cprop_into_stmt (stmt, &evrp_range_analyzer);
1974
1975 /* If the statement has been modified with constant replacements,
1976 fold its RHS before checking for redundant computations. */
1977 if (gimple_modified_p (stmt))
1978 {
1979 tree rhs = NULL;
1980
1981 /* Try to fold the statement making sure that STMT is kept
1982 up to date. */
1983 if (fold_stmt (si))
1984 {
1985 stmt = gsi_stmt (*si);
1986 gimple_set_modified (stmt, true);
1987
1988 if (dump_file && (dump_flags & TDF_DETAILS))
1989 {
1990 fprintf (dump_file, " Folded to: ");
1991 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1992 }
1993 }
1994
1995 /* We only need to consider cases that can yield a gimple operand. */
1996 if (gimple_assign_single_p (stmt))
1997 rhs = gimple_assign_rhs1 (stmt);
1998 else if (gimple_code (stmt) == GIMPLE_GOTO)
1999 rhs = gimple_goto_dest (stmt);
2000 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2001 /* This should never be an ADDR_EXPR. */
2002 rhs = gimple_switch_index (swtch_stmt);
2003
2004 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2005 recompute_tree_invariant_for_addr_expr (rhs);
2006
2007 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2008 even if fold_stmt updated the stmt already and thus cleared
2009 gimple_modified_p flag on it. */
2010 modified_p = true;
2011 }
2012
2013 /* Check for redundant computations. Do this optimization only
2014 for assignments that have no volatile ops and conditionals. */
2015 may_optimize_p = (!gimple_has_side_effects (stmt)
2016 && (is_gimple_assign (stmt)
2017 || (is_gimple_call (stmt)
2018 && gimple_call_lhs (stmt) != NULL_TREE)
2019 || gimple_code (stmt) == GIMPLE_COND
2020 || gimple_code (stmt) == GIMPLE_SWITCH));
2021
2022 if (may_optimize_p)
2023 {
2024 if (gimple_code (stmt) == GIMPLE_CALL)
2025 {
2026 /* Resolve __builtin_constant_p. If it hasn't been
2027 folded to integer_one_node by now, it's fairly
2028 certain that the value simply isn't constant. */
2029 tree callee = gimple_call_fndecl (stmt);
2030 if (callee
2031 && fndecl_built_in_p (callee, BUILT_IN_CONSTANT_P))
2032 {
2033 propagate_tree_value_into_stmt (si, integer_zero_node);
2034 stmt = gsi_stmt (*si);
2035 }
2036 }
2037
2038 if (gimple_code (stmt) == GIMPLE_COND)
2039 {
2040 tree lhs = gimple_cond_lhs (stmt);
2041 tree rhs = gimple_cond_rhs (stmt);
2042
2043 /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
2044 then this conditional is computable at compile time. We can just
2045 shove either 0 or 1 into the LHS, mark the statement as modified
2046 and all the right things will just happen below.
2047
2048 Note this would apply to any case where LHS has a range
2049 narrower than its type implies and RHS is outside that
2050 narrower range. Future work. */
2051 if (TREE_CODE (lhs) == SSA_NAME
2052 && ssa_name_has_boolean_range (lhs)
2053 && TREE_CODE (rhs) == INTEGER_CST
2054 && ! (integer_zerop (rhs) || integer_onep (rhs)))
2055 {
2056 gimple_cond_set_lhs (as_a <gcond *> (stmt),
2057 fold_convert (TREE_TYPE (lhs),
2058 integer_zero_node));
2059 gimple_set_modified (stmt, true);
2060 }
2061 else if (TREE_CODE (lhs) == SSA_NAME)
2062 {
2063 /* Exploiting EVRP data is not yet fully integrated into DOM
2064 but we need to do something for this case to avoid regressing
2065 udr4.f90 and new1.C which have unexecutable blocks with
2066 undefined behavior that get diagnosed if they're left in the
2067 IL because we've attached range information to new
2068 SSA_NAMES. */
2069 update_stmt_if_modified (stmt);
2070 edge taken_edge = NULL;
2071 evrp_range_analyzer.vrp_visit_cond_stmt (as_a <gcond *> (stmt),
2072 &taken_edge);
2073 if (taken_edge)
2074 {
2075 if (taken_edge->flags & EDGE_TRUE_VALUE)
2076 gimple_cond_make_true (as_a <gcond *> (stmt));
2077 else if (taken_edge->flags & EDGE_FALSE_VALUE)
2078 gimple_cond_make_false (as_a <gcond *> (stmt));
2079 else
2080 gcc_unreachable ();
2081 gimple_set_modified (stmt, true);
2082 update_stmt (stmt);
2083 cfg_altered = true;
2084 return taken_edge;
2085 }
2086 }
2087 }
2088
2089 update_stmt_if_modified (stmt);
2090 eliminate_redundant_computations (si, m_const_and_copies,
2091 m_avail_exprs_stack);
2092 stmt = gsi_stmt (*si);
2093
2094 /* Perform simple redundant store elimination. */
2095 if (gimple_assign_single_p (stmt)
2096 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2097 {
2098 tree lhs = gimple_assign_lhs (stmt);
2099 tree rhs = gimple_assign_rhs1 (stmt);
2100 tree cached_lhs;
2101 gassign *new_stmt;
2102 rhs = dom_valueize (rhs);
2103 /* Build a new statement with the RHS and LHS exchanged. */
2104 if (TREE_CODE (rhs) == SSA_NAME)
2105 {
2106 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
2107 new_stmt = gimple_build_assign (rhs, lhs);
2108 SSA_NAME_DEF_STMT (rhs) = defstmt;
2109 }
2110 else
2111 new_stmt = gimple_build_assign (rhs, lhs);
2112 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2113 expr_hash_elt *elt = NULL;
2114 cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
2115 false, &elt);
2116 if (cached_lhs
2117 && operand_equal_p (rhs, cached_lhs, 0)
2118 && refs_same_for_tbaa_p (elt->expr ()->kind == EXPR_SINGLE
2119 ? elt->expr ()->ops.single.rhs
2120 : NULL_TREE, lhs))
2121 {
2122 basic_block bb = gimple_bb (stmt);
2123 unlink_stmt_vdef (stmt);
2124 if (gsi_remove (si, true))
2125 {
2126 bitmap_set_bit (need_eh_cleanup, bb->index);
2127 if (dump_file && (dump_flags & TDF_DETAILS))
2128 fprintf (dump_file, " Flagged to clear EH edges.\n");
2129 }
2130 release_defs (stmt);
2131 *removed_p = true;
2132 return retval;
2133 }
2134 }
2135
2136 /* If this statement was not redundant, we may still be able to simplify
2137 it, which may in turn allow other part of DOM or other passes to do
2138 a better job. */
2139 test_for_singularity (stmt, m_dummy_cond, m_avail_exprs_stack);
2140 }
2141
2142 /* Record any additional equivalences created by this statement. */
2143 if (is_gimple_assign (stmt))
2144 record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack);
2145
2146 /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
2147 know where it goes. */
2148 if (gimple_modified_p (stmt) || modified_p)
2149 {
2150 tree val = NULL;
2151
2152 if (gimple_code (stmt) == GIMPLE_COND)
2153 val = fold_binary_loc (gimple_location (stmt),
2154 gimple_cond_code (stmt), boolean_type_node,
2155 gimple_cond_lhs (stmt),
2156 gimple_cond_rhs (stmt));
2157 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2158 val = gimple_switch_index (swtch_stmt);
2159
2160 if (val && TREE_CODE (val) == INTEGER_CST)
2161 {
2162 retval = find_taken_edge (bb, val);
2163 if (retval)
2164 {
2165 /* Fix the condition to be either true or false. */
2166 if (gimple_code (stmt) == GIMPLE_COND)
2167 {
2168 if (integer_zerop (val))
2169 gimple_cond_make_false (as_a <gcond *> (stmt));
2170 else if (integer_onep (val))
2171 gimple_cond_make_true (as_a <gcond *> (stmt));
2172 else
2173 gcc_unreachable ();
2174
2175 gimple_set_modified (stmt, true);
2176 }
2177
2178 /* Further simplifications may be possible. */
2179 cfg_altered = true;
2180 }
2181 }
2182
2183 update_stmt_if_modified (stmt);
2184
2185 /* If we simplified a statement in such a way as to be shown that it
2186 cannot trap, update the eh information and the cfg to match. */
2187 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2188 {
2189 bitmap_set_bit (need_eh_cleanup, bb->index);
2190 if (dump_file && (dump_flags & TDF_DETAILS))
2191 fprintf (dump_file, " Flagged to clear EH edges.\n");
2192 }
2193
2194 if (!was_noreturn
2195 && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
2196 need_noreturn_fixup.safe_push (stmt);
2197 }
2198 return retval;
2199 }