Daily bump.
[gcc.git] / gcc / tree-ssa-tail-merge.c
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2021 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Pass overview.
22
23
24 MOTIVATIONAL EXAMPLE
25
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
27
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
29 {
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
34
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
53
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
62
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
75
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
84
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
92
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
97
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
104 }
105
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
108
109
110 CONTEXT
111
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
119
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
126
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
132
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
136
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
143
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
151
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
155
156
157 IMPLEMENTATION
158
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
165
166
167 LIMITATIONS/TODO
168
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
177
178
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
182
183
184 SWITCHES
185
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "backend.h"
192 #include "tree.h"
193 #include "gimple.h"
194 #include "cfghooks.h"
195 #include "tree-pass.h"
196 #include "ssa.h"
197 #include "fold-const.h"
198 #include "trans-mem.h"
199 #include "cfganal.h"
200 #include "cfgcleanup.h"
201 #include "gimple-iterator.h"
202 #include "tree-cfg.h"
203 #include "tree-into-ssa.h"
204 #include "tree-ssa-sccvn.h"
205 #include "cfgloop.h"
206 #include "tree-eh.h"
207 #include "tree-cfgcleanup.h"
208
209 const int ignore_edge_flags = EDGE_DFS_BACK | EDGE_EXECUTABLE;
210
211 /* Describes a group of bbs with the same successors. The successor bbs are
212 cached in succs, and the successor edge flags are cached in succ_flags.
213 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
214 it's marked in inverse.
215 Additionally, the hash value for the struct is cached in hashval, and
216 in_worklist indicates whether it's currently part of worklist. */
217
218 struct same_succ : pointer_hash <same_succ>
219 {
220 /* The bbs that have the same successor bbs. */
221 bitmap bbs;
222 /* The successor bbs. */
223 bitmap succs;
224 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
225 bb. */
226 bitmap inverse;
227 /* The edge flags for each of the successor bbs. */
228 vec<int> succ_flags;
229 /* Indicates whether the struct is currently in the worklist. */
230 bool in_worklist;
231 /* The hash value of the struct. */
232 hashval_t hashval;
233
234 /* hash_table support. */
235 static inline hashval_t hash (const same_succ *);
236 static int equal (const same_succ *, const same_succ *);
237 static void remove (same_succ *);
238 };
239
240 /* hash routine for hash_table support, returns hashval of E. */
241
242 inline hashval_t
243 same_succ::hash (const same_succ *e)
244 {
245 return e->hashval;
246 }
247
248 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
249
250 struct bb_cluster
251 {
252 /* The bbs in the cluster. */
253 bitmap bbs;
254 /* The preds of the bbs in the cluster. */
255 bitmap preds;
256 /* Index in all_clusters vector. */
257 int index;
258 /* The bb to replace the cluster with. */
259 basic_block rep_bb;
260 };
261
262 /* Per bb-info. */
263
264 struct aux_bb_info
265 {
266 /* The number of non-debug statements in the bb. */
267 int size;
268 /* The same_succ that this bb is a member of. */
269 same_succ *bb_same_succ;
270 /* The cluster that this bb is a member of. */
271 bb_cluster *cluster;
272 /* The vop state at the exit of a bb. This is shortlived data, used to
273 communicate data between update_block_by and update_vuses. */
274 tree vop_at_exit;
275 /* The bb that either contains or is dominated by the dependencies of the
276 bb. */
277 basic_block dep_bb;
278 };
279
280 /* Macros to access the fields of struct aux_bb_info. */
281
282 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
283 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
284 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
285 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
286 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
287
288 /* Valueization helper querying the VN lattice. */
289
290 static tree
291 tail_merge_valueize (tree name)
292 {
293 if (TREE_CODE (name) == SSA_NAME
294 && has_VN_INFO (name))
295 {
296 tree tem = VN_INFO (name)->valnum;
297 if (tem != VN_TOP)
298 return tem;
299 }
300 return name;
301 }
302
303 /* Returns true if the only effect a statement STMT has, is to define locally
304 used SSA_NAMEs. */
305
306 static bool
307 stmt_local_def (gimple *stmt)
308 {
309 basic_block bb, def_bb;
310 imm_use_iterator iter;
311 use_operand_p use_p;
312 tree val;
313 def_operand_p def_p;
314
315 if (gimple_vdef (stmt) != NULL_TREE
316 || gimple_has_side_effects (stmt)
317 || gimple_could_trap_p_1 (stmt, false, false)
318 || gimple_vuse (stmt) != NULL_TREE
319 /* Copied from tree-ssa-ifcombine.c:bb_no_side_effects_p():
320 const calls don't match any of the above, yet they could
321 still have some side-effects - they could contain
322 gimple_could_trap_p statements, like floating point
323 exceptions or integer division by zero. See PR70586.
324 FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
325 should handle this. */
326 || is_gimple_call (stmt))
327 return false;
328
329 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
330 if (def_p == NULL)
331 return false;
332
333 val = DEF_FROM_PTR (def_p);
334 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
335 return false;
336
337 def_bb = gimple_bb (stmt);
338
339 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
340 {
341 if (is_gimple_debug (USE_STMT (use_p)))
342 continue;
343 bb = gimple_bb (USE_STMT (use_p));
344 if (bb == def_bb)
345 continue;
346
347 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
348 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
349 continue;
350
351 return false;
352 }
353
354 return true;
355 }
356
357 /* Let GSI skip forwards over local defs. */
358
359 static void
360 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
361 {
362 gimple *stmt;
363
364 while (true)
365 {
366 if (gsi_end_p (*gsi))
367 return;
368 stmt = gsi_stmt (*gsi);
369 if (!stmt_local_def (stmt))
370 return;
371 gsi_next_nondebug (gsi);
372 }
373 }
374
375 /* VAL1 and VAL2 are either:
376 - uses in BB1 and BB2, or
377 - phi alternatives for BB1 and BB2.
378 Return true if the uses have the same gvn value. */
379
380 static bool
381 gvn_uses_equal (tree val1, tree val2)
382 {
383 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
384
385 if (val1 == val2)
386 return true;
387
388 if (tail_merge_valueize (val1) != tail_merge_valueize (val2))
389 return false;
390
391 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
392 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
393 }
394
395 /* Prints E to FILE. */
396
397 static void
398 same_succ_print (FILE *file, const same_succ *e)
399 {
400 unsigned int i;
401 bitmap_print (file, e->bbs, "bbs:", "\n");
402 bitmap_print (file, e->succs, "succs:", "\n");
403 bitmap_print (file, e->inverse, "inverse:", "\n");
404 fprintf (file, "flags:");
405 for (i = 0; i < e->succ_flags.length (); ++i)
406 fprintf (file, " %x", e->succ_flags[i]);
407 fprintf (file, "\n");
408 }
409
410 /* Prints same_succ VE to VFILE. */
411
412 inline int
413 ssa_same_succ_print_traverse (same_succ **pe, FILE *file)
414 {
415 const same_succ *e = *pe;
416 same_succ_print (file, e);
417 return 1;
418 }
419
420 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
421
422 static void
423 update_dep_bb (basic_block use_bb, tree val)
424 {
425 basic_block dep_bb;
426
427 /* Not a dep. */
428 if (TREE_CODE (val) != SSA_NAME)
429 return;
430
431 /* Skip use of global def. */
432 if (SSA_NAME_IS_DEFAULT_DEF (val))
433 return;
434
435 /* Skip use of local def. */
436 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
437 if (dep_bb == use_bb)
438 return;
439
440 if (BB_DEP_BB (use_bb) == NULL
441 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
442 BB_DEP_BB (use_bb) = dep_bb;
443 }
444
445 /* Update BB_DEP_BB, given the dependencies in STMT. */
446
447 static void
448 stmt_update_dep_bb (gimple *stmt)
449 {
450 ssa_op_iter iter;
451 use_operand_p use;
452
453 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
454 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
455 }
456
457 /* Calculates hash value for same_succ VE. */
458
459 static hashval_t
460 same_succ_hash (const same_succ *e)
461 {
462 inchash::hash hstate (bitmap_hash (e->succs));
463 int flags;
464 unsigned int i;
465 unsigned int first = bitmap_first_set_bit (e->bbs);
466 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
467 int size = 0;
468 gimple *stmt;
469 tree arg;
470 unsigned int s;
471 bitmap_iterator bs;
472
473 for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
474 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
475 {
476 stmt = gsi_stmt (gsi);
477 stmt_update_dep_bb (stmt);
478 if (stmt_local_def (stmt))
479 continue;
480 size++;
481
482 hstate.add_int (gimple_code (stmt));
483 if (is_gimple_assign (stmt))
484 hstate.add_int (gimple_assign_rhs_code (stmt));
485 if (!is_gimple_call (stmt))
486 continue;
487 if (gimple_call_internal_p (stmt))
488 hstate.add_int (gimple_call_internal_fn (stmt));
489 else
490 {
491 inchash::add_expr (gimple_call_fn (stmt), hstate);
492 if (gimple_call_chain (stmt))
493 inchash::add_expr (gimple_call_chain (stmt), hstate);
494 }
495 for (i = 0; i < gimple_call_num_args (stmt); i++)
496 {
497 arg = gimple_call_arg (stmt, i);
498 arg = tail_merge_valueize (arg);
499 inchash::add_expr (arg, hstate);
500 }
501 }
502
503 hstate.add_int (size);
504 BB_SIZE (bb) = size;
505
506 hstate.add_int (bb->loop_father->num);
507
508 for (i = 0; i < e->succ_flags.length (); ++i)
509 {
510 flags = e->succ_flags[i];
511 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
512 hstate.add_int (flags);
513 }
514
515 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
516 {
517 int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
518 for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s));
519 !gsi_end_p (gsi);
520 gsi_next (&gsi))
521 {
522 gphi *phi = gsi.phi ();
523 tree lhs = gimple_phi_result (phi);
524 tree val = gimple_phi_arg_def (phi, n);
525
526 if (virtual_operand_p (lhs))
527 continue;
528 update_dep_bb (bb, val);
529 }
530 }
531
532 return hstate.end ();
533 }
534
535 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
536 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
537 the other edge flags. */
538
539 static bool
540 inverse_flags (const same_succ *e1, const same_succ *e2)
541 {
542 int f1a, f1b, f2a, f2b;
543 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
544
545 if (e1->succ_flags.length () != 2)
546 return false;
547
548 f1a = e1->succ_flags[0];
549 f1b = e1->succ_flags[1];
550 f2a = e2->succ_flags[0];
551 f2b = e2->succ_flags[1];
552
553 if (f1a == f2a && f1b == f2b)
554 return false;
555
556 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
557 }
558
559 /* Compares SAME_SUCCs E1 and E2. */
560
561 int
562 same_succ::equal (const same_succ *e1, const same_succ *e2)
563 {
564 unsigned int i, first1, first2;
565 gimple_stmt_iterator gsi1, gsi2;
566 gimple *s1, *s2;
567 basic_block bb1, bb2;
568
569 if (e1 == e2)
570 return 1;
571
572 if (e1->hashval != e2->hashval)
573 return 0;
574
575 if (e1->succ_flags.length () != e2->succ_flags.length ())
576 return 0;
577
578 if (!bitmap_equal_p (e1->succs, e2->succs))
579 return 0;
580
581 if (!inverse_flags (e1, e2))
582 {
583 for (i = 0; i < e1->succ_flags.length (); ++i)
584 if (e1->succ_flags[i] != e2->succ_flags[i])
585 return 0;
586 }
587
588 first1 = bitmap_first_set_bit (e1->bbs);
589 first2 = bitmap_first_set_bit (e2->bbs);
590
591 bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
592 bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
593
594 if (BB_SIZE (bb1) != BB_SIZE (bb2))
595 return 0;
596
597 if (bb1->loop_father != bb2->loop_father)
598 return 0;
599
600 gsi1 = gsi_start_nondebug_bb (bb1);
601 gsi2 = gsi_start_nondebug_bb (bb2);
602 gsi_advance_fw_nondebug_nonlocal (&gsi1);
603 gsi_advance_fw_nondebug_nonlocal (&gsi2);
604 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
605 {
606 s1 = gsi_stmt (gsi1);
607 s2 = gsi_stmt (gsi2);
608 if (gimple_code (s1) != gimple_code (s2))
609 return 0;
610 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
611 return 0;
612 gsi_next_nondebug (&gsi1);
613 gsi_next_nondebug (&gsi2);
614 gsi_advance_fw_nondebug_nonlocal (&gsi1);
615 gsi_advance_fw_nondebug_nonlocal (&gsi2);
616 }
617
618 return 1;
619 }
620
621 /* Alloc and init a new SAME_SUCC. */
622
623 static same_succ *
624 same_succ_alloc (void)
625 {
626 same_succ *same = XNEW (struct same_succ);
627
628 same->bbs = BITMAP_ALLOC (NULL);
629 same->succs = BITMAP_ALLOC (NULL);
630 same->inverse = BITMAP_ALLOC (NULL);
631 same->succ_flags.create (10);
632 same->in_worklist = false;
633
634 return same;
635 }
636
637 /* Delete same_succ E. */
638
639 void
640 same_succ::remove (same_succ *e)
641 {
642 BITMAP_FREE (e->bbs);
643 BITMAP_FREE (e->succs);
644 BITMAP_FREE (e->inverse);
645 e->succ_flags.release ();
646
647 XDELETE (e);
648 }
649
650 /* Reset same_succ SAME. */
651
652 static void
653 same_succ_reset (same_succ *same)
654 {
655 bitmap_clear (same->bbs);
656 bitmap_clear (same->succs);
657 bitmap_clear (same->inverse);
658 same->succ_flags.truncate (0);
659 }
660
661 static hash_table<same_succ> *same_succ_htab;
662
663 /* Array that is used to store the edge flags for a successor. */
664
665 static int *same_succ_edge_flags;
666
667 /* Bitmap that is used to mark bbs that are recently deleted. */
668
669 static bitmap deleted_bbs;
670
671 /* Bitmap that is used to mark predecessors of bbs that are
672 deleted. */
673
674 static bitmap deleted_bb_preds;
675
676 /* Prints same_succ_htab to stderr. */
677
678 extern void debug_same_succ (void);
679 DEBUG_FUNCTION void
680 debug_same_succ ( void)
681 {
682 same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
683 }
684
685
686 /* Vector of bbs to process. */
687
688 static vec<same_succ *> worklist;
689
690 /* Prints worklist to FILE. */
691
692 static void
693 print_worklist (FILE *file)
694 {
695 unsigned int i;
696 for (i = 0; i < worklist.length (); ++i)
697 same_succ_print (file, worklist[i]);
698 }
699
700 /* Adds SAME to worklist. */
701
702 static void
703 add_to_worklist (same_succ *same)
704 {
705 if (same->in_worklist)
706 return;
707
708 if (bitmap_count_bits (same->bbs) < 2)
709 return;
710
711 same->in_worklist = true;
712 worklist.safe_push (same);
713 }
714
715 /* Add BB to same_succ_htab. */
716
717 static void
718 find_same_succ_bb (basic_block bb, same_succ **same_p)
719 {
720 unsigned int j;
721 bitmap_iterator bj;
722 same_succ *same = *same_p;
723 same_succ **slot;
724 edge_iterator ei;
725 edge e;
726
727 if (bb == NULL)
728 return;
729 bitmap_set_bit (same->bbs, bb->index);
730 FOR_EACH_EDGE (e, ei, bb->succs)
731 {
732 int index = e->dest->index;
733 bitmap_set_bit (same->succs, index);
734 same_succ_edge_flags[index] = (e->flags & ~ignore_edge_flags);
735 }
736 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
737 same->succ_flags.safe_push (same_succ_edge_flags[j]);
738
739 same->hashval = same_succ_hash (same);
740
741 slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT);
742 if (*slot == NULL)
743 {
744 *slot = same;
745 BB_SAME_SUCC (bb) = same;
746 add_to_worklist (same);
747 *same_p = NULL;
748 }
749 else
750 {
751 bitmap_set_bit ((*slot)->bbs, bb->index);
752 BB_SAME_SUCC (bb) = *slot;
753 add_to_worklist (*slot);
754 if (inverse_flags (same, *slot))
755 bitmap_set_bit ((*slot)->inverse, bb->index);
756 same_succ_reset (same);
757 }
758 }
759
760 /* Find bbs with same successors. */
761
762 static void
763 find_same_succ (void)
764 {
765 same_succ *same = same_succ_alloc ();
766 basic_block bb;
767
768 FOR_EACH_BB_FN (bb, cfun)
769 {
770 find_same_succ_bb (bb, &same);
771 if (same == NULL)
772 same = same_succ_alloc ();
773 }
774
775 same_succ::remove (same);
776 }
777
778 /* Initializes worklist administration. */
779
780 static void
781 init_worklist (void)
782 {
783 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
784 same_succ_htab = new hash_table<same_succ> (n_basic_blocks_for_fn (cfun));
785 same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
786 deleted_bbs = BITMAP_ALLOC (NULL);
787 deleted_bb_preds = BITMAP_ALLOC (NULL);
788 worklist.create (n_basic_blocks_for_fn (cfun));
789 find_same_succ ();
790
791 if (dump_file && (dump_flags & TDF_DETAILS))
792 {
793 fprintf (dump_file, "initial worklist:\n");
794 print_worklist (dump_file);
795 }
796 }
797
798 /* Deletes worklist administration. */
799
800 static void
801 delete_worklist (void)
802 {
803 free_aux_for_blocks ();
804 delete same_succ_htab;
805 same_succ_htab = NULL;
806 XDELETEVEC (same_succ_edge_flags);
807 same_succ_edge_flags = NULL;
808 BITMAP_FREE (deleted_bbs);
809 BITMAP_FREE (deleted_bb_preds);
810 worklist.release ();
811 }
812
813 /* Mark BB as deleted, and mark its predecessors. */
814
815 static void
816 mark_basic_block_deleted (basic_block bb)
817 {
818 edge e;
819 edge_iterator ei;
820
821 bitmap_set_bit (deleted_bbs, bb->index);
822
823 FOR_EACH_EDGE (e, ei, bb->preds)
824 bitmap_set_bit (deleted_bb_preds, e->src->index);
825 }
826
827 /* Removes BB from its corresponding same_succ. */
828
829 static void
830 same_succ_flush_bb (basic_block bb)
831 {
832 same_succ *same = BB_SAME_SUCC (bb);
833 if (! same)
834 return;
835
836 BB_SAME_SUCC (bb) = NULL;
837 if (bitmap_single_bit_set_p (same->bbs))
838 same_succ_htab->remove_elt_with_hash (same, same->hashval);
839 else
840 bitmap_clear_bit (same->bbs, bb->index);
841 }
842
843 /* Removes all bbs in BBS from their corresponding same_succ. */
844
845 static void
846 same_succ_flush_bbs (bitmap bbs)
847 {
848 unsigned int i;
849 bitmap_iterator bi;
850
851 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
852 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
853 }
854
855 /* Release the last vdef in BB, either normal or phi result. */
856
857 static void
858 release_last_vdef (basic_block bb)
859 {
860 for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i);
861 gsi_prev_nondebug (&i))
862 {
863 gimple *stmt = gsi_stmt (i);
864 if (gimple_vdef (stmt) == NULL_TREE)
865 continue;
866
867 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
868 return;
869 }
870
871 for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i);
872 gsi_next (&i))
873 {
874 gphi *phi = i.phi ();
875 tree res = gimple_phi_result (phi);
876
877 if (!virtual_operand_p (res))
878 continue;
879
880 mark_virtual_phi_result_for_renaming (phi);
881 return;
882 }
883 }
884
885 /* For deleted_bb_preds, find bbs with same successors. */
886
887 static void
888 update_worklist (void)
889 {
890 unsigned int i;
891 bitmap_iterator bi;
892 basic_block bb;
893 same_succ *same;
894
895 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
896 bitmap_clear (deleted_bbs);
897
898 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
899 same_succ_flush_bbs (deleted_bb_preds);
900
901 same = same_succ_alloc ();
902 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
903 {
904 bb = BASIC_BLOCK_FOR_FN (cfun, i);
905 gcc_assert (bb != NULL);
906 find_same_succ_bb (bb, &same);
907 if (same == NULL)
908 same = same_succ_alloc ();
909 }
910 same_succ::remove (same);
911 bitmap_clear (deleted_bb_preds);
912 }
913
914 /* Prints cluster C to FILE. */
915
916 static void
917 print_cluster (FILE *file, bb_cluster *c)
918 {
919 if (c == NULL)
920 return;
921 bitmap_print (file, c->bbs, "bbs:", "\n");
922 bitmap_print (file, c->preds, "preds:", "\n");
923 }
924
925 /* Prints cluster C to stderr. */
926
927 extern void debug_cluster (bb_cluster *);
928 DEBUG_FUNCTION void
929 debug_cluster (bb_cluster *c)
930 {
931 print_cluster (stderr, c);
932 }
933
934 /* Update C->rep_bb, given that BB is added to the cluster. */
935
936 static void
937 update_rep_bb (bb_cluster *c, basic_block bb)
938 {
939 /* Initial. */
940 if (c->rep_bb == NULL)
941 {
942 c->rep_bb = bb;
943 return;
944 }
945
946 /* Current needs no deps, keep it. */
947 if (BB_DEP_BB (c->rep_bb) == NULL)
948 return;
949
950 /* Bb needs no deps, change rep_bb. */
951 if (BB_DEP_BB (bb) == NULL)
952 {
953 c->rep_bb = bb;
954 return;
955 }
956
957 /* Bb needs last deps earlier than current, change rep_bb. A potential
958 problem with this, is that the first deps might also be earlier, which
959 would mean we prefer longer lifetimes for the deps. To be able to check
960 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
961 BB_DEP_BB, which is really BB_LAST_DEP_BB.
962 The benefit of choosing the bb with last deps earlier, is that it can
963 potentially be used as replacement for more bbs. */
964 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
965 c->rep_bb = bb;
966 }
967
968 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
969
970 static void
971 add_bb_to_cluster (bb_cluster *c, basic_block bb)
972 {
973 edge e;
974 edge_iterator ei;
975
976 bitmap_set_bit (c->bbs, bb->index);
977
978 FOR_EACH_EDGE (e, ei, bb->preds)
979 bitmap_set_bit (c->preds, e->src->index);
980
981 update_rep_bb (c, bb);
982 }
983
984 /* Allocate and init new cluster. */
985
986 static bb_cluster *
987 new_cluster (void)
988 {
989 bb_cluster *c;
990 c = XCNEW (bb_cluster);
991 c->bbs = BITMAP_ALLOC (NULL);
992 c->preds = BITMAP_ALLOC (NULL);
993 c->rep_bb = NULL;
994 return c;
995 }
996
997 /* Delete clusters. */
998
999 static void
1000 delete_cluster (bb_cluster *c)
1001 {
1002 if (c == NULL)
1003 return;
1004 BITMAP_FREE (c->bbs);
1005 BITMAP_FREE (c->preds);
1006 XDELETE (c);
1007 }
1008
1009
1010 /* Array that contains all clusters. */
1011
1012 static vec<bb_cluster *> all_clusters;
1013
1014 /* Allocate all cluster vectors. */
1015
1016 static void
1017 alloc_cluster_vectors (void)
1018 {
1019 all_clusters.create (n_basic_blocks_for_fn (cfun));
1020 }
1021
1022 /* Reset all cluster vectors. */
1023
1024 static void
1025 reset_cluster_vectors (void)
1026 {
1027 unsigned int i;
1028 basic_block bb;
1029 for (i = 0; i < all_clusters.length (); ++i)
1030 delete_cluster (all_clusters[i]);
1031 all_clusters.truncate (0);
1032 FOR_EACH_BB_FN (bb, cfun)
1033 BB_CLUSTER (bb) = NULL;
1034 }
1035
1036 /* Delete all cluster vectors. */
1037
1038 static void
1039 delete_cluster_vectors (void)
1040 {
1041 unsigned int i;
1042 for (i = 0; i < all_clusters.length (); ++i)
1043 delete_cluster (all_clusters[i]);
1044 all_clusters.release ();
1045 }
1046
1047 /* Merge cluster C2 into C1. */
1048
1049 static void
1050 merge_clusters (bb_cluster *c1, bb_cluster *c2)
1051 {
1052 bitmap_ior_into (c1->bbs, c2->bbs);
1053 bitmap_ior_into (c1->preds, c2->preds);
1054 }
1055
1056 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1057 all_clusters, or merge c with existing cluster. */
1058
1059 static void
1060 set_cluster (basic_block bb1, basic_block bb2)
1061 {
1062 basic_block merge_bb, other_bb;
1063 bb_cluster *merge, *old, *c;
1064
1065 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1066 {
1067 c = new_cluster ();
1068 add_bb_to_cluster (c, bb1);
1069 add_bb_to_cluster (c, bb2);
1070 BB_CLUSTER (bb1) = c;
1071 BB_CLUSTER (bb2) = c;
1072 c->index = all_clusters.length ();
1073 all_clusters.safe_push (c);
1074 }
1075 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1076 {
1077 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1078 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1079 merge = BB_CLUSTER (merge_bb);
1080 add_bb_to_cluster (merge, other_bb);
1081 BB_CLUSTER (other_bb) = merge;
1082 }
1083 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1084 {
1085 unsigned int i;
1086 bitmap_iterator bi;
1087
1088 old = BB_CLUSTER (bb2);
1089 merge = BB_CLUSTER (bb1);
1090 merge_clusters (merge, old);
1091 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1092 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1093 all_clusters[old->index] = NULL;
1094 update_rep_bb (merge, old->rep_bb);
1095 delete_cluster (old);
1096 }
1097 else
1098 gcc_unreachable ();
1099 }
1100
1101 /* Return true if gimple operands T1 and T2 have the same value. */
1102
1103 static bool
1104 gimple_operand_equal_value_p (tree t1, tree t2)
1105 {
1106 if (t1 == t2)
1107 return true;
1108
1109 if (t1 == NULL_TREE
1110 || t2 == NULL_TREE)
1111 return false;
1112
1113 if (operand_equal_p (t1, t2, OEP_MATCH_SIDE_EFFECTS))
1114 return true;
1115
1116 return gvn_uses_equal (t1, t2);
1117 }
1118
1119 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1120 gimple_bb (s2) are members of SAME_SUCC. */
1121
1122 static bool
1123 gimple_equal_p (same_succ *same_succ, gimple *s1, gimple *s2)
1124 {
1125 unsigned int i;
1126 tree lhs1, lhs2;
1127 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1128 tree t1, t2;
1129 bool inv_cond;
1130 enum tree_code code1, code2;
1131
1132 if (gimple_code (s1) != gimple_code (s2))
1133 return false;
1134
1135 switch (gimple_code (s1))
1136 {
1137 case GIMPLE_CALL:
1138 if (!gimple_call_same_target_p (s1, s2))
1139 return false;
1140
1141 t1 = gimple_call_chain (s1);
1142 t2 = gimple_call_chain (s2);
1143 if (!gimple_operand_equal_value_p (t1, t2))
1144 return false;
1145
1146 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1147 return false;
1148
1149 for (i = 0; i < gimple_call_num_args (s1); ++i)
1150 {
1151 t1 = gimple_call_arg (s1, i);
1152 t2 = gimple_call_arg (s2, i);
1153 if (!gimple_operand_equal_value_p (t1, t2))
1154 return false;
1155 }
1156
1157 lhs1 = gimple_get_lhs (s1);
1158 lhs2 = gimple_get_lhs (s2);
1159 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1160 return true;
1161 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1162 return false;
1163 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1164 return tail_merge_valueize (lhs1) == tail_merge_valueize (lhs2);
1165 return operand_equal_p (lhs1, lhs2, 0);
1166
1167 case GIMPLE_ASSIGN:
1168 lhs1 = gimple_get_lhs (s1);
1169 lhs2 = gimple_get_lhs (s2);
1170 if (TREE_CODE (lhs1) != SSA_NAME
1171 && TREE_CODE (lhs2) != SSA_NAME)
1172 return (operand_equal_p (lhs1, lhs2, 0)
1173 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1174 gimple_assign_rhs1 (s2)));
1175 else if (TREE_CODE (lhs1) == SSA_NAME
1176 && TREE_CODE (lhs2) == SSA_NAME)
1177 return operand_equal_p (gimple_assign_rhs1 (s1),
1178 gimple_assign_rhs1 (s2), 0);
1179 return false;
1180
1181 case GIMPLE_COND:
1182 t1 = gimple_cond_lhs (s1);
1183 t2 = gimple_cond_lhs (s2);
1184 if (!gimple_operand_equal_value_p (t1, t2))
1185 return false;
1186
1187 t1 = gimple_cond_rhs (s1);
1188 t2 = gimple_cond_rhs (s2);
1189 if (!gimple_operand_equal_value_p (t1, t2))
1190 return false;
1191
1192 code1 = gimple_cond_code (s1);
1193 code2 = gimple_cond_code (s2);
1194 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1195 != bitmap_bit_p (same_succ->inverse, bb2->index));
1196 if (inv_cond)
1197 {
1198 bool honor_nans = HONOR_NANS (t1);
1199 code2 = invert_tree_comparison (code2, honor_nans);
1200 }
1201 return code1 == code2;
1202
1203 default:
1204 return false;
1205 }
1206 }
1207
1208 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1209 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1210 processed statements. */
1211
1212 static void
1213 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1214 bool *vuse_escaped)
1215 {
1216 gimple *stmt;
1217 tree lvuse;
1218
1219 while (true)
1220 {
1221 if (gsi_end_p (*gsi))
1222 return;
1223 stmt = gsi_stmt (*gsi);
1224
1225 lvuse = gimple_vuse (stmt);
1226 if (lvuse != NULL_TREE)
1227 {
1228 *vuse = lvuse;
1229 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1230 *vuse_escaped = true;
1231 }
1232
1233 if (!stmt_local_def (stmt))
1234 return;
1235 gsi_prev_nondebug (gsi);
1236 }
1237 }
1238
1239 /* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and
1240 STMT2 are allowed to be merged. */
1241
1242 static bool
1243 merge_stmts_p (gimple *stmt1, gimple *stmt2)
1244 {
1245 /* What could be better than this here is to blacklist the bb
1246 containing the stmt, when encountering the stmt f.i. in
1247 same_succ_hash. */
1248 if (is_tm_ending (stmt1))
1249 return false;
1250
1251 /* Verify EH landing pads. */
1252 if (lookup_stmt_eh_lp_fn (cfun, stmt1) != lookup_stmt_eh_lp_fn (cfun, stmt2))
1253 return false;
1254
1255 if (is_gimple_call (stmt1)
1256 && gimple_call_internal_p (stmt1))
1257 switch (gimple_call_internal_fn (stmt1))
1258 {
1259 case IFN_UBSAN_NULL:
1260 case IFN_UBSAN_BOUNDS:
1261 case IFN_UBSAN_VPTR:
1262 case IFN_UBSAN_CHECK_ADD:
1263 case IFN_UBSAN_CHECK_SUB:
1264 case IFN_UBSAN_CHECK_MUL:
1265 case IFN_UBSAN_OBJECT_SIZE:
1266 case IFN_UBSAN_PTR:
1267 case IFN_ASAN_CHECK:
1268 /* For these internal functions, gimple_location is an implicit
1269 parameter, which will be used explicitly after expansion.
1270 Merging these statements may cause confusing line numbers in
1271 sanitizer messages. */
1272 return gimple_location (stmt1) == gimple_location (stmt2);
1273 default:
1274 break;
1275 }
1276
1277 return true;
1278 }
1279
1280 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1281 clusters them. */
1282
1283 static void
1284 find_duplicate (same_succ *same_succ, basic_block bb1, basic_block bb2)
1285 {
1286 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1287 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1288 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1289 bool vuse_escaped = false;
1290
1291 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1292 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1293
1294 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1295 {
1296 gimple *stmt1 = gsi_stmt (gsi1);
1297 gimple *stmt2 = gsi_stmt (gsi2);
1298
1299 if (gimple_code (stmt1) == GIMPLE_LABEL
1300 && gimple_code (stmt2) == GIMPLE_LABEL)
1301 break;
1302
1303 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1304 return;
1305
1306 if (!merge_stmts_p (stmt1, stmt2))
1307 return;
1308
1309 gsi_prev_nondebug (&gsi1);
1310 gsi_prev_nondebug (&gsi2);
1311 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1312 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1313 }
1314
1315 while (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1316 {
1317 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1)));
1318 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
1319 return;
1320 gsi_prev (&gsi1);
1321 }
1322 while (!gsi_end_p (gsi2) && gimple_code (gsi_stmt (gsi2)) == GIMPLE_LABEL)
1323 {
1324 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi2)));
1325 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
1326 return;
1327 gsi_prev (&gsi2);
1328 }
1329 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1330 return;
1331
1332 /* If the incoming vuses are not the same, and the vuse escaped into an
1333 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1334 which potentially means the semantics of one of the blocks will be changed.
1335 TODO: make this check more precise. */
1336 if (vuse_escaped && vuse1 != vuse2)
1337 return;
1338
1339 if (dump_file)
1340 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1341 bb1->index, bb2->index);
1342
1343 set_cluster (bb1, bb2);
1344 }
1345
1346 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1347 E2 are equal. */
1348
1349 static bool
1350 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1351 {
1352 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1353 gphi_iterator gsi;
1354
1355 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1356 {
1357 gphi *phi = gsi.phi ();
1358 tree lhs = gimple_phi_result (phi);
1359 tree val1 = gimple_phi_arg_def (phi, n1);
1360 tree val2 = gimple_phi_arg_def (phi, n2);
1361
1362 if (virtual_operand_p (lhs))
1363 continue;
1364
1365 if (operand_equal_for_phi_arg_p (val1, val2))
1366 continue;
1367 if (gvn_uses_equal (val1, val2))
1368 continue;
1369
1370 return false;
1371 }
1372
1373 return true;
1374 }
1375
1376 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1377 phi alternatives for BB1 and BB2 are equal. */
1378
1379 static bool
1380 same_phi_alternatives (same_succ *same_succ, basic_block bb1, basic_block bb2)
1381 {
1382 unsigned int s;
1383 bitmap_iterator bs;
1384 edge e1, e2;
1385 basic_block succ;
1386
1387 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1388 {
1389 succ = BASIC_BLOCK_FOR_FN (cfun, s);
1390 e1 = find_edge (bb1, succ);
1391 e2 = find_edge (bb2, succ);
1392 if (e1->flags & EDGE_COMPLEX
1393 || e2->flags & EDGE_COMPLEX)
1394 return false;
1395
1396 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1397 the same value. */
1398 if (!same_phi_alternatives_1 (succ, e1, e2))
1399 return false;
1400 }
1401
1402 return true;
1403 }
1404
1405 /* Return true if BB has non-vop phis. */
1406
1407 static bool
1408 bb_has_non_vop_phi (basic_block bb)
1409 {
1410 gimple_seq phis = phi_nodes (bb);
1411 gimple *phi;
1412
1413 if (phis == NULL)
1414 return false;
1415
1416 if (!gimple_seq_singleton_p (phis))
1417 return true;
1418
1419 phi = gimple_seq_first_stmt (phis);
1420 return !virtual_operand_p (gimple_phi_result (phi));
1421 }
1422
1423 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1424 invariant that uses in FROM are dominates by their defs. */
1425
1426 static bool
1427 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1428 {
1429 basic_block cd, dep_bb = BB_DEP_BB (to);
1430 edge_iterator ei;
1431 edge e;
1432
1433 if (dep_bb == NULL)
1434 return true;
1435
1436 bitmap from_preds = BITMAP_ALLOC (NULL);
1437 FOR_EACH_EDGE (e, ei, from->preds)
1438 bitmap_set_bit (from_preds, e->src->index);
1439 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1440 BITMAP_FREE (from_preds);
1441
1442 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1443 }
1444
1445 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1446 replacement bb) and vice versa maintains the invariant that uses in the
1447 replacement are dominates by their defs. */
1448
1449 static bool
1450 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1451 {
1452 if (BB_CLUSTER (bb1) != NULL)
1453 bb1 = BB_CLUSTER (bb1)->rep_bb;
1454
1455 if (BB_CLUSTER (bb2) != NULL)
1456 bb2 = BB_CLUSTER (bb2)->rep_bb;
1457
1458 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1459 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1460 }
1461
1462 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1463
1464 static void
1465 find_clusters_1 (same_succ *same_succ)
1466 {
1467 basic_block bb1, bb2;
1468 unsigned int i, j;
1469 bitmap_iterator bi, bj;
1470 int nr_comparisons;
1471 int max_comparisons = param_max_tail_merge_comparisons;
1472
1473 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1474 {
1475 bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1476
1477 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1478 phi-nodes in bb1 and bb2, with the same alternatives for the same
1479 preds. */
1480 if (bb_has_non_vop_phi (bb1) || bb_has_eh_pred (bb1)
1481 || bb_has_abnormal_pred (bb1))
1482 continue;
1483
1484 nr_comparisons = 0;
1485 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1486 {
1487 bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1488
1489 if (bb_has_non_vop_phi (bb2) || bb_has_eh_pred (bb2)
1490 || bb_has_abnormal_pred (bb2))
1491 continue;
1492
1493 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1494 continue;
1495
1496 /* Limit quadratic behavior. */
1497 nr_comparisons++;
1498 if (nr_comparisons > max_comparisons)
1499 break;
1500
1501 /* This is a conservative dependency check. We could test more
1502 precise for allowed replacement direction. */
1503 if (!deps_ok_for_redirect (bb1, bb2))
1504 continue;
1505
1506 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1507 continue;
1508
1509 find_duplicate (same_succ, bb1, bb2);
1510 }
1511 }
1512 }
1513
1514 /* Find clusters of bbs which can be merged. */
1515
1516 static void
1517 find_clusters (void)
1518 {
1519 same_succ *same;
1520
1521 while (!worklist.is_empty ())
1522 {
1523 same = worklist.pop ();
1524 same->in_worklist = false;
1525 if (dump_file && (dump_flags & TDF_DETAILS))
1526 {
1527 fprintf (dump_file, "processing worklist entry\n");
1528 same_succ_print (dump_file, same);
1529 }
1530 find_clusters_1 (same);
1531 }
1532 }
1533
1534 /* Returns the vop phi of BB, if any. */
1535
1536 static gphi *
1537 vop_phi (basic_block bb)
1538 {
1539 gphi *stmt;
1540 gphi_iterator gsi;
1541 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1542 {
1543 stmt = gsi.phi ();
1544 if (! virtual_operand_p (gimple_phi_result (stmt)))
1545 continue;
1546 return stmt;
1547 }
1548 return NULL;
1549 }
1550
1551 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1552
1553 static void
1554 replace_block_by (basic_block bb1, basic_block bb2)
1555 {
1556 edge pred_edge;
1557 unsigned int i;
1558 gphi *bb2_phi;
1559
1560 bb2_phi = vop_phi (bb2);
1561
1562 /* Mark the basic block as deleted. */
1563 mark_basic_block_deleted (bb1);
1564
1565 /* Redirect the incoming edges of bb1 to bb2. */
1566 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1567 {
1568 pred_edge = EDGE_PRED (bb1, i - 1);
1569 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1570 gcc_assert (pred_edge != NULL);
1571
1572 if (bb2_phi == NULL)
1573 continue;
1574
1575 /* The phi might have run out of capacity when the redirect added an
1576 argument, which means it could have been replaced. Refresh it. */
1577 bb2_phi = vop_phi (bb2);
1578
1579 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1580 pred_edge, UNKNOWN_LOCATION);
1581 }
1582
1583
1584 /* Merge the outgoing edge counts from bb1 onto bb2. */
1585 edge e1, e2;
1586 edge_iterator ei;
1587
1588 if (bb2->count.initialized_p ())
1589 FOR_EACH_EDGE (e1, ei, bb1->succs)
1590 {
1591 e2 = find_edge (bb2, e1->dest);
1592 gcc_assert (e2);
1593
1594 /* If probabilities are same, we are done.
1595 If counts are nonzero we can distribute accordingly. In remaining
1596 cases just avreage the values and hope for the best. */
1597 e2->probability = e1->probability.combine_with_count
1598 (bb1->count, e2->probability, bb2->count);
1599 }
1600 bb2->count += bb1->count;
1601
1602 /* Move over any user labels from bb1 after the bb2 labels. */
1603 gimple_stmt_iterator gsi1 = gsi_start_bb (bb1);
1604 if (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1605 {
1606 gimple_stmt_iterator gsi2 = gsi_after_labels (bb2);
1607 while (!gsi_end_p (gsi1)
1608 && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1609 {
1610 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1)));
1611 gcc_assert (!DECL_NONLOCAL (label) && !FORCED_LABEL (label));
1612 if (DECL_ARTIFICIAL (label))
1613 gsi_next (&gsi1);
1614 else
1615 gsi_move_before (&gsi1, &gsi2);
1616 }
1617 }
1618
1619 /* Clear range info from all stmts in BB2 -- this transformation
1620 could make them out of date. */
1621 reset_flow_sensitive_info_in_bb (bb2);
1622
1623 /* Do updates that use bb1, before deleting bb1. */
1624 release_last_vdef (bb1);
1625 same_succ_flush_bb (bb1);
1626
1627 delete_basic_block (bb1);
1628 }
1629
1630 /* Bbs for which update_debug_stmt need to be called. */
1631
1632 static bitmap update_bbs;
1633
1634 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1635 number of bbs removed. */
1636
1637 static int
1638 apply_clusters (void)
1639 {
1640 basic_block bb1, bb2;
1641 bb_cluster *c;
1642 unsigned int i, j;
1643 bitmap_iterator bj;
1644 int nr_bbs_removed = 0;
1645
1646 for (i = 0; i < all_clusters.length (); ++i)
1647 {
1648 c = all_clusters[i];
1649 if (c == NULL)
1650 continue;
1651
1652 bb2 = c->rep_bb;
1653 bitmap_set_bit (update_bbs, bb2->index);
1654
1655 bitmap_clear_bit (c->bbs, bb2->index);
1656 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1657 {
1658 bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1659 bitmap_clear_bit (update_bbs, bb1->index);
1660
1661 replace_block_by (bb1, bb2);
1662 nr_bbs_removed++;
1663 }
1664 }
1665
1666 return nr_bbs_removed;
1667 }
1668
1669 /* Resets debug statement STMT if it has uses that are not dominated by their
1670 defs. */
1671
1672 static void
1673 update_debug_stmt (gimple *stmt)
1674 {
1675 use_operand_p use_p;
1676 ssa_op_iter oi;
1677 basic_block bbuse;
1678
1679 if (!gimple_debug_bind_p (stmt))
1680 return;
1681
1682 bbuse = gimple_bb (stmt);
1683 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1684 {
1685 tree name = USE_FROM_PTR (use_p);
1686 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1687 basic_block bbdef = gimple_bb (def_stmt);
1688 if (bbdef == NULL || bbuse == bbdef
1689 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1690 continue;
1691
1692 gimple_debug_bind_reset_value (stmt);
1693 update_stmt (stmt);
1694 break;
1695 }
1696 }
1697
1698 /* Resets all debug statements that have uses that are not
1699 dominated by their defs. */
1700
1701 static void
1702 update_debug_stmts (void)
1703 {
1704 basic_block bb;
1705 bitmap_iterator bi;
1706 unsigned int i;
1707
1708 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1709 {
1710 gimple *stmt;
1711 gimple_stmt_iterator gsi;
1712
1713 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1714 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1715 {
1716 stmt = gsi_stmt (gsi);
1717 if (!is_gimple_debug (stmt))
1718 continue;
1719 update_debug_stmt (stmt);
1720 }
1721 }
1722 }
1723
1724 /* Runs tail merge optimization. */
1725
1726 unsigned int
1727 tail_merge_optimize (unsigned int todo)
1728 {
1729 int nr_bbs_removed_total = 0;
1730 int nr_bbs_removed;
1731 bool loop_entered = false;
1732 int iteration_nr = 0;
1733 int max_iterations = param_max_tail_merge_iterations;
1734
1735 if (!flag_tree_tail_merge
1736 || max_iterations == 0)
1737 return 0;
1738
1739 timevar_push (TV_TREE_TAIL_MERGE);
1740
1741 /* We enter from PRE which has critical edges split. Elimination
1742 does not process trivially dead code so cleanup the CFG if we
1743 are told so. And re-split critical edges then. */
1744 if (todo & TODO_cleanup_cfg)
1745 {
1746 cleanup_tree_cfg ();
1747 todo &= ~TODO_cleanup_cfg;
1748 split_edges_for_insertion ();
1749 }
1750
1751 if (!dom_info_available_p (CDI_DOMINATORS))
1752 {
1753 /* PRE can leave us with unreachable blocks, remove them now. */
1754 delete_unreachable_blocks ();
1755 calculate_dominance_info (CDI_DOMINATORS);
1756 }
1757 init_worklist ();
1758
1759 while (!worklist.is_empty ())
1760 {
1761 if (!loop_entered)
1762 {
1763 loop_entered = true;
1764 alloc_cluster_vectors ();
1765 update_bbs = BITMAP_ALLOC (NULL);
1766 }
1767 else
1768 reset_cluster_vectors ();
1769
1770 iteration_nr++;
1771 if (dump_file && (dump_flags & TDF_DETAILS))
1772 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1773
1774 find_clusters ();
1775 gcc_assert (worklist.is_empty ());
1776 if (all_clusters.is_empty ())
1777 break;
1778
1779 nr_bbs_removed = apply_clusters ();
1780 nr_bbs_removed_total += nr_bbs_removed;
1781 if (nr_bbs_removed == 0)
1782 break;
1783
1784 free_dominance_info (CDI_DOMINATORS);
1785
1786 if (iteration_nr == max_iterations)
1787 break;
1788
1789 calculate_dominance_info (CDI_DOMINATORS);
1790 update_worklist ();
1791 }
1792
1793 if (dump_file && (dump_flags & TDF_DETAILS))
1794 fprintf (dump_file, "htab collision / search: %f\n",
1795 same_succ_htab->collisions ());
1796
1797 if (nr_bbs_removed_total > 0)
1798 {
1799 if (MAY_HAVE_DEBUG_BIND_STMTS)
1800 {
1801 calculate_dominance_info (CDI_DOMINATORS);
1802 update_debug_stmts ();
1803 }
1804
1805 if (dump_file && (dump_flags & TDF_DETAILS))
1806 {
1807 fprintf (dump_file, "Before TODOs.\n");
1808 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1809 }
1810
1811 mark_virtual_operands_for_renaming (cfun);
1812 }
1813
1814 delete_worklist ();
1815 if (loop_entered)
1816 {
1817 delete_cluster_vectors ();
1818 BITMAP_FREE (update_bbs);
1819 }
1820
1821 timevar_pop (TV_TREE_TAIL_MERGE);
1822
1823 return todo;
1824 }