3a197e637549c9abea7fc3c5082d2f1a8dab8cbc
[binutils-gdb.git] / gdb / block.h
1 /* Code dealing with blocks for GDB.
2
3 Copyright (C) 2003-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #ifndef BLOCK_H
21 #define BLOCK_H
22
23 #include "dictionary.h"
24 #include "gdbsupport/array-view.h"
25
26 /* Opaque declarations. */
27
28 struct symbol;
29 struct compunit_symtab;
30 struct block_namespace_info;
31 struct using_direct;
32 struct obstack;
33 struct addrmap;
34
35 /* Blocks can occupy non-contiguous address ranges. When this occurs,
36 startaddr and endaddr within struct block (still) specify the lowest
37 and highest addresses of all ranges, but each individual range is
38 specified by the addresses in struct blockrange. */
39
40 struct blockrange
41 {
42 blockrange (CORE_ADDR start, CORE_ADDR end)
43 : m_start (start),
44 m_end (end)
45 {
46 }
47
48 /* Return this blockrange's start address. */
49 CORE_ADDR start () const
50 { return m_start; }
51
52 /* Set this blockrange's start address. */
53 void set_start (CORE_ADDR start)
54 { m_start = start; }
55
56 /* Return this blockrange's end address. */
57 CORE_ADDR end () const
58 { return m_end; }
59
60 /* Set this blockrange's end address. */
61 void set_end (CORE_ADDR end)
62 { m_end = end; }
63
64 /* Lowest address in this range. */
65
66 CORE_ADDR m_start;
67
68 /* One past the highest address in the range. */
69
70 CORE_ADDR m_end;
71 };
72
73 /* Two or more non-contiguous ranges in the same order as that provided
74 via the debug info. */
75
76 struct blockranges
77 {
78 int nranges;
79 struct blockrange range[1];
80 };
81
82 /* All of the name-scope contours of the program
83 are represented by `struct block' objects.
84 All of these objects are pointed to by the blockvector.
85
86 Each block represents one name scope.
87 Each lexical context has its own block.
88
89 The blockvector begins with some special blocks.
90 The GLOBAL_BLOCK contains all the symbols defined in this compilation
91 whose scope is the entire program linked together.
92 The STATIC_BLOCK contains all the symbols whose scope is the
93 entire compilation excluding other separate compilations.
94 Blocks starting with the FIRST_LOCAL_BLOCK are not special.
95
96 Each block records a range of core addresses for the code that
97 is in the scope of the block. The STATIC_BLOCK and GLOBAL_BLOCK
98 give, for the range of code, the entire range of code produced
99 by the compilation that the symbol segment belongs to.
100
101 The blocks appear in the blockvector
102 in order of increasing starting-address,
103 and, within that, in order of decreasing ending-address.
104
105 This implies that within the body of one function
106 the blocks appear in the order of a depth-first tree walk. */
107
108 struct block : public allocate_on_obstack
109 {
110 /* Return this block's start address. */
111 CORE_ADDR start () const
112 { return m_start; }
113
114 /* Set this block's start address. */
115 void set_start (CORE_ADDR start)
116 { m_start = start; }
117
118 /* Return this block's end address. */
119 CORE_ADDR end () const
120 { return m_end; }
121
122 /* Set this block's end address. */
123 void set_end (CORE_ADDR end)
124 { m_end = end; }
125
126 /* Return this block's function symbol. */
127 symbol *function () const
128 { return m_function; }
129
130 /* Set this block's function symbol. */
131 void set_function (symbol *function)
132 { m_function = function; }
133
134 /* Return this block's superblock. */
135 const block *superblock () const
136 { return m_superblock; }
137
138 /* Set this block's superblock. */
139 void set_superblock (const block *superblock)
140 { m_superblock = superblock; }
141
142 /* Return this block's multidict. */
143 multidictionary *multidict () const
144 { return m_multidict; }
145
146 /* Return an iterator range for this block's multidict. */
147 iterator_range<mdict_iterator_wrapper> multidict_symbols () const
148 { return iterator_range<mdict_iterator_wrapper> (m_multidict); }
149
150 /* Set this block's multidict. */
151 void set_multidict (multidictionary *multidict)
152 { m_multidict = multidict; }
153
154 /* Return a view on this block's ranges. */
155 gdb::array_view<blockrange> ranges ()
156 {
157 if (m_ranges == nullptr)
158 return {};
159 else
160 return gdb::make_array_view (m_ranges->range, m_ranges->nranges);
161 }
162
163 /* Const version of the above. */
164 gdb::array_view<const blockrange> ranges () const
165 {
166 if (m_ranges == nullptr)
167 return {};
168 else
169 return gdb::make_array_view (m_ranges->range, m_ranges->nranges);
170 }
171
172 /* Set this block's ranges array. */
173 void set_ranges (blockranges *ranges)
174 { m_ranges = ranges; }
175
176 /* Return true if all addresses within this block are contiguous. */
177 bool is_contiguous () const
178 { return this->ranges ().size () <= 1; }
179
180 /* Return the "entry PC" of this block.
181
182 The entry PC is the lowest (start) address for the block when all addresses
183 within the block are contiguous. If non-contiguous, then use the start
184 address for the first range in the block.
185
186 At the moment, this almost matches what DWARF specifies as the entry
187 pc. (The missing bit is support for DW_AT_entry_pc which should be
188 preferred over range data and the low_pc.)
189
190 Once support for DW_AT_entry_pc is added, I expect that an entry_pc
191 field will be added to one of these data structures. Once that's done,
192 the entry_pc field can be set from the dwarf reader (and other readers
193 too). ENTRY_PC can then be redefined to be less DWARF-centric. */
194
195 CORE_ADDR entry_pc () const
196 {
197 if (this->is_contiguous ())
198 return this->start ();
199 else
200 return this->ranges ()[0].start ();
201 }
202
203 /* Return the objfile of this block. */
204
205 struct objfile *objfile () const;
206
207 /* Return the architecture of this block. */
208
209 struct gdbarch *gdbarch () const;
210
211 /* Return true if BL represents an inlined function. */
212
213 bool inlined_p () const;
214
215 /* This returns the namespace that this block is enclosed in, or ""
216 if it isn't enclosed in a namespace at all. This travels the
217 chain of superblocks looking for a scope, if necessary. */
218
219 const char *scope () const;
220
221 /* Set this block's scope member to SCOPE; if needed, allocate
222 memory via OBSTACK. (It won't make a copy of SCOPE, however, so
223 that already has to be allocated correctly.) */
224
225 void set_scope (const char *scope, struct obstack *obstack);
226
227 /* This returns the using directives list associated with this
228 block, if any. */
229
230 struct using_direct *get_using () const;
231
232 /* Set this block's using member to USING; if needed, allocate
233 memory via OBSTACK. (It won't make a copy of USING, however, so
234 that already has to be allocated correctly.) */
235
236 void set_using (struct using_direct *using_decl, struct obstack *obstack);
237
238 /* Return the symbol for the function which contains a specified
239 lexical block, described by a struct block. The return value
240 will not be an inlined function; the containing function will be
241 returned instead. */
242
243 struct symbol *linkage_function () const;
244
245 /* Return the symbol for the function which contains a specified
246 block, described by a struct block. The return value will be the
247 closest enclosing function, which might be an inline
248 function. */
249
250 struct symbol *containing_function () const;
251
252 /* Return the static block associated with this block. Return NULL
253 if block is a global block. */
254
255 const struct block *static_block () const;
256
257 /* Return the static block associated with block. */
258
259 const struct block *global_block () const;
260
261 /* Set the compunit of this block, which must be a global block. */
262
263 void set_compunit_symtab (struct compunit_symtab *);
264
265 /* Return a property to evaluate the static link associated to this
266 block.
267
268 In the context of nested functions (available in Pascal, Ada and
269 GNU C, for instance), a static link (as in DWARF's
270 DW_AT_static_link attribute) for a function is a way to get the
271 frame corresponding to the enclosing function.
272
273 Note that only objfile-owned and function-level blocks can have a
274 static link. Return NULL if there is no such property. */
275
276 struct dynamic_prop *static_link () const;
277
278 /* Return true if block A is lexically nested within this block, or
279 if A and this block have the same pc range. Return false
280 otherwise. If ALLOW_NESTED is true, then block A is considered
281 to be in this block if A is in a nested function in this block's
282 function. If ALLOW_NESTED is false (the default), then blocks in
283 nested functions are not considered to be contained. */
284
285 bool contains (const struct block *a, bool allow_nested = false) const;
286
287 private:
288
289 /* If the namespace_info is NULL, allocate it via OBSTACK and
290 initialize its members to zero. */
291 void initialize_namespace (struct obstack *obstack);
292
293 /* Addresses in the executable code that are in this block. */
294
295 CORE_ADDR m_start = 0;
296 CORE_ADDR m_end = 0;
297
298 /* The symbol that names this block, if the block is the body of a
299 function (real or inlined); otherwise, zero. */
300
301 struct symbol *m_function = nullptr;
302
303 /* The `struct block' for the containing block, or 0 if none.
304
305 The superblock of a top-level local block (i.e. a function in the
306 case of C) is the STATIC_BLOCK. The superblock of the
307 STATIC_BLOCK is the GLOBAL_BLOCK. */
308
309 const struct block *m_superblock = nullptr;
310
311 /* This is used to store the symbols in the block. */
312
313 struct multidictionary *m_multidict = nullptr;
314
315 /* Contains information about namespace-related info relevant to this block:
316 using directives and the current namespace scope. */
317
318 struct block_namespace_info *m_namespace_info = nullptr;
319
320 /* Address ranges for blocks with non-contiguous ranges. If this
321 is NULL, then there is only one range which is specified by
322 startaddr and endaddr above. */
323
324 struct blockranges *m_ranges = nullptr;
325 };
326
327 /* The global block is singled out so that we can provide a back-link
328 to the compunit symtab. */
329
330 struct global_block : public block
331 {
332 /* This holds a pointer to the compunit symtab holding this block. */
333
334 struct compunit_symtab *compunit_symtab = nullptr;
335 };
336
337 struct blockvector
338 {
339 /* Return a view on the blocks of this blockvector. */
340 gdb::array_view<struct block *> blocks ()
341 {
342 return gdb::array_view<struct block *> (m_blocks, m_num_blocks);
343 }
344
345 /* Const version of the above. */
346 gdb::array_view<const struct block *const> blocks () const
347 {
348 const struct block **blocks = (const struct block **) m_blocks;
349 return gdb::array_view<const struct block *const> (blocks, m_num_blocks);
350 }
351
352 /* Return the block at index I. */
353 struct block *block (size_t i)
354 { return this->blocks ()[i]; }
355
356 /* Const version of the above. */
357 const struct block *block (size_t i) const
358 { return this->blocks ()[i]; }
359
360 /* Set the block at index I. */
361 void set_block (int i, struct block *block)
362 { m_blocks[i] = block; }
363
364 /* Set the number of blocks of this blockvector.
365
366 The storage of blocks is done using a flexible array member, so the number
367 of blocks set here must agree with what was effectively allocated. */
368 void set_num_blocks (int num_blocks)
369 { m_num_blocks = num_blocks; }
370
371 /* Return the number of blocks in this blockvector. */
372 int num_blocks () const
373 { return m_num_blocks; }
374
375 /* Return the global block of this blockvector. */
376 struct block *global_block ()
377 { return this->block (GLOBAL_BLOCK); }
378
379 /* Const version of the above. */
380 const struct block *global_block () const
381 { return this->block (GLOBAL_BLOCK); }
382
383 /* Return the static block of this blockvector. */
384 struct block *static_block ()
385 { return this->block (STATIC_BLOCK); }
386
387 /* Const version of the above. */
388 const struct block *static_block () const
389 { return this->block (STATIC_BLOCK); }
390
391 /* Return the address -> block map of this blockvector. */
392 addrmap *map ()
393 { return m_map; }
394
395 /* Const version of the above. */
396 const addrmap *map () const
397 { return m_map; }
398
399 /* Set this blockvector's address -> block map. */
400 void set_map (addrmap *map)
401 { m_map = map; }
402
403 private:
404 /* An address map mapping addresses to blocks in this blockvector.
405 This pointer is zero if the blocks' start and end addresses are
406 enough. */
407 struct addrmap *m_map;
408
409 /* Number of blocks in the list. */
410 int m_num_blocks;
411
412 /* The blocks themselves. */
413 struct block *m_blocks[1];
414 };
415
416 extern const struct blockvector *blockvector_for_pc (CORE_ADDR,
417 const struct block **);
418
419 extern const struct blockvector *
420 blockvector_for_pc_sect (CORE_ADDR, struct obj_section *,
421 const struct block **, struct compunit_symtab *);
422
423 extern int blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc);
424
425 extern struct call_site *call_site_for_pc (struct gdbarch *gdbarch,
426 CORE_ADDR pc);
427
428 extern const struct block *block_for_pc (CORE_ADDR);
429
430 extern const struct block *block_for_pc_sect (CORE_ADDR, struct obj_section *);
431
432 /* A block iterator. This structure should be treated as though it
433 were opaque; it is only defined here because we want to support
434 stack allocation of iterators. */
435
436 struct block_iterator
437 {
438 /* If we're iterating over a single block, this holds the block.
439 Otherwise, it holds the canonical compunit. */
440
441 union
442 {
443 struct compunit_symtab *compunit_symtab;
444 const struct block *block;
445 } d;
446
447 /* If we're trying to match a name, this will be non-NULL. */
448 const lookup_name_info *name;
449
450 /* If we're iterating over a single block, this is always -1.
451 Otherwise, it holds the index of the current "included" symtab in
452 the canonical symtab (that is, d.symtab->includes[idx]), with -1
453 meaning the canonical symtab itself. */
454
455 int idx;
456
457 /* Which block, either static or global, to iterate over. If this
458 is FIRST_LOCAL_BLOCK, then we are iterating over a single block.
459 This is used to select which field of 'd' is in use. */
460
461 enum block_enum which;
462
463 /* The underlying multidictionary iterator. */
464
465 struct mdict_iterator mdict_iter;
466 };
467
468 /* Initialize ITERATOR to point at the first symbol in BLOCK, and
469 return that first symbol, or NULL if BLOCK is empty. If NAME is
470 not NULL, only return symbols matching that name. */
471
472 extern struct symbol *block_iterator_first
473 (const struct block *block,
474 struct block_iterator *iterator,
475 const lookup_name_info *name = nullptr);
476
477 /* Advance ITERATOR, and return the next symbol, or NULL if there are
478 no more symbols. Don't call this if you've previously received
479 NULL from block_iterator_first or block_iterator_next on this
480 iteration. */
481
482 extern struct symbol *block_iterator_next (struct block_iterator *iterator);
483
484 /* An iterator that wraps a block_iterator. The naming here is
485 unfortunate, but block_iterator was named before gdb switched to
486 C++. */
487 struct block_iterator_wrapper
488 {
489 typedef block_iterator_wrapper self_type;
490 typedef struct symbol *value_type;
491
492 explicit block_iterator_wrapper (const struct block *block,
493 const lookup_name_info *name = nullptr)
494 : m_sym (block_iterator_first (block, &m_iter, name))
495 {
496 }
497
498 block_iterator_wrapper ()
499 : m_sym (nullptr)
500 {
501 }
502
503 value_type operator* () const
504 {
505 return m_sym;
506 }
507
508 bool operator== (const self_type &other) const
509 {
510 return m_sym == other.m_sym;
511 }
512
513 bool operator!= (const self_type &other) const
514 {
515 return m_sym != other.m_sym;
516 }
517
518 self_type &operator++ ()
519 {
520 m_sym = block_iterator_next (&m_iter);
521 return *this;
522 }
523
524 private:
525
526 struct symbol *m_sym;
527 struct block_iterator m_iter;
528 };
529
530 /* An iterator range for block_iterator_wrapper. */
531
532 typedef iterator_range<block_iterator_wrapper> block_iterator_range;
533
534 /* Return true if symbol A is the best match possible for DOMAIN. */
535
536 extern bool best_symbol (struct symbol *a, const domain_enum domain);
537
538 /* Return symbol B if it is a better match than symbol A for DOMAIN.
539 Otherwise return A. */
540
541 extern struct symbol *better_symbol (struct symbol *a, struct symbol *b,
542 const domain_enum domain);
543
544 /* Search BLOCK for symbol NAME in DOMAIN. */
545
546 extern struct symbol *block_lookup_symbol (const struct block *block,
547 const char *name,
548 symbol_name_match_type match_type,
549 const domain_enum domain);
550
551 /* Search BLOCK for symbol NAME in DOMAIN but only in primary symbol table of
552 BLOCK. BLOCK must be STATIC_BLOCK or GLOBAL_BLOCK. Function is useful if
553 one iterates all global/static blocks of an objfile. */
554
555 extern struct symbol *block_lookup_symbol_primary (const struct block *block,
556 const char *name,
557 const domain_enum domain);
558
559 /* Find symbol NAME in BLOCK and in DOMAIN. This will return a
560 matching symbol whose type is not a "opaque", see TYPE_IS_OPAQUE.
561 If STUB is non-NULL, an otherwise matching symbol whose type is a
562 opaque will be stored here. */
563
564 extern struct symbol *block_find_symbol (const struct block *block,
565 const lookup_name_info &name,
566 const domain_enum domain,
567 struct symbol **stub);
568
569 /* Given a vector of pairs, allocate and build an obstack allocated
570 blockranges struct for a block. */
571 struct blockranges *make_blockranges (struct objfile *objfile,
572 const std::vector<blockrange> &rangevec);
573
574 #endif /* BLOCK_H */