Add block::function_block
[binutils-gdb.git] / gdb / block.h
1 /* Code dealing with blocks for GDB.
2
3 Copyright (C) 2003-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #ifndef BLOCK_H
21 #define BLOCK_H
22
23 #include "dictionary.h"
24 #include "gdbsupport/array-view.h"
25
26 /* Opaque declarations. */
27
28 struct symbol;
29 struct compunit_symtab;
30 struct block_namespace_info;
31 struct using_direct;
32 struct obstack;
33 struct addrmap;
34
35 /* Blocks can occupy non-contiguous address ranges. When this occurs,
36 startaddr and endaddr within struct block (still) specify the lowest
37 and highest addresses of all ranges, but each individual range is
38 specified by the addresses in struct blockrange. */
39
40 struct blockrange
41 {
42 blockrange (CORE_ADDR start, CORE_ADDR end)
43 : m_start (start),
44 m_end (end)
45 {
46 }
47
48 /* Return this blockrange's start address. */
49 CORE_ADDR start () const
50 { return m_start; }
51
52 /* Set this blockrange's start address. */
53 void set_start (CORE_ADDR start)
54 { m_start = start; }
55
56 /* Return this blockrange's end address. */
57 CORE_ADDR end () const
58 { return m_end; }
59
60 /* Set this blockrange's end address. */
61 void set_end (CORE_ADDR end)
62 { m_end = end; }
63
64 /* Lowest address in this range. */
65
66 CORE_ADDR m_start;
67
68 /* One past the highest address in the range. */
69
70 CORE_ADDR m_end;
71 };
72
73 /* Two or more non-contiguous ranges in the same order as that provided
74 via the debug info. */
75
76 struct blockranges
77 {
78 int nranges;
79 struct blockrange range[1];
80 };
81
82 /* All of the name-scope contours of the program
83 are represented by `struct block' objects.
84 All of these objects are pointed to by the blockvector.
85
86 Each block represents one name scope.
87 Each lexical context has its own block.
88
89 The blockvector begins with some special blocks.
90 The GLOBAL_BLOCK contains all the symbols defined in this compilation
91 whose scope is the entire program linked together.
92 The STATIC_BLOCK contains all the symbols whose scope is the
93 entire compilation excluding other separate compilations.
94 Blocks starting with the FIRST_LOCAL_BLOCK are not special.
95
96 Each block records a range of core addresses for the code that
97 is in the scope of the block. The STATIC_BLOCK and GLOBAL_BLOCK
98 give, for the range of code, the entire range of code produced
99 by the compilation that the symbol segment belongs to.
100
101 The blocks appear in the blockvector
102 in order of increasing starting-address,
103 and, within that, in order of decreasing ending-address.
104
105 This implies that within the body of one function
106 the blocks appear in the order of a depth-first tree walk. */
107
108 struct block : public allocate_on_obstack
109 {
110 /* Return this block's start address. */
111 CORE_ADDR start () const
112 { return m_start; }
113
114 /* Set this block's start address. */
115 void set_start (CORE_ADDR start)
116 { m_start = start; }
117
118 /* Return this block's end address. */
119 CORE_ADDR end () const
120 { return m_end; }
121
122 /* Set this block's end address. */
123 void set_end (CORE_ADDR end)
124 { m_end = end; }
125
126 /* Return this block's function symbol. */
127 symbol *function () const
128 { return m_function; }
129
130 /* Set this block's function symbol. */
131 void set_function (symbol *function)
132 { m_function = function; }
133
134 /* Return this block's superblock. */
135 const block *superblock () const
136 { return m_superblock; }
137
138 /* Set this block's superblock. */
139 void set_superblock (const block *superblock)
140 { m_superblock = superblock; }
141
142 /* Return this block's multidict. */
143 multidictionary *multidict () const
144 { return m_multidict; }
145
146 /* Return an iterator range for this block's multidict. */
147 iterator_range<mdict_iterator_wrapper> multidict_symbols () const
148 { return iterator_range<mdict_iterator_wrapper> (m_multidict); }
149
150 /* Set this block's multidict. */
151 void set_multidict (multidictionary *multidict)
152 { m_multidict = multidict; }
153
154 /* Return a view on this block's ranges. */
155 gdb::array_view<blockrange> ranges ()
156 {
157 if (m_ranges == nullptr)
158 return {};
159 else
160 return gdb::make_array_view (m_ranges->range, m_ranges->nranges);
161 }
162
163 /* Const version of the above. */
164 gdb::array_view<const blockrange> ranges () const
165 {
166 if (m_ranges == nullptr)
167 return {};
168 else
169 return gdb::make_array_view (m_ranges->range, m_ranges->nranges);
170 }
171
172 /* Set this block's ranges array. */
173 void set_ranges (blockranges *ranges)
174 { m_ranges = ranges; }
175
176 /* Return true if all addresses within this block are contiguous. */
177 bool is_contiguous () const
178 { return this->ranges ().size () <= 1; }
179
180 /* Return the "entry PC" of this block.
181
182 The entry PC is the lowest (start) address for the block when all addresses
183 within the block are contiguous. If non-contiguous, then use the start
184 address for the first range in the block.
185
186 At the moment, this almost matches what DWARF specifies as the entry
187 pc. (The missing bit is support for DW_AT_entry_pc which should be
188 preferred over range data and the low_pc.)
189
190 Once support for DW_AT_entry_pc is added, I expect that an entry_pc
191 field will be added to one of these data structures. Once that's done,
192 the entry_pc field can be set from the dwarf reader (and other readers
193 too). ENTRY_PC can then be redefined to be less DWARF-centric. */
194
195 CORE_ADDR entry_pc () const
196 {
197 if (this->is_contiguous ())
198 return this->start ();
199 else
200 return this->ranges ()[0].start ();
201 }
202
203 /* Return the objfile of this block. */
204
205 struct objfile *objfile () const;
206
207 /* Return the architecture of this block. */
208
209 struct gdbarch *gdbarch () const;
210
211 /* Return true if BL represents an inlined function. */
212
213 bool inlined_p () const;
214
215 /* This returns the namespace that this block is enclosed in, or ""
216 if it isn't enclosed in a namespace at all. This travels the
217 chain of superblocks looking for a scope, if necessary. */
218
219 const char *scope () const;
220
221 /* Set this block's scope member to SCOPE; if needed, allocate
222 memory via OBSTACK. (It won't make a copy of SCOPE, however, so
223 that already has to be allocated correctly.) */
224
225 void set_scope (const char *scope, struct obstack *obstack);
226
227 /* This returns the using directives list associated with this
228 block, if any. */
229
230 struct using_direct *get_using () const;
231
232 /* Set this block's using member to USING; if needed, allocate
233 memory via OBSTACK. (It won't make a copy of USING, however, so
234 that already has to be allocated correctly.) */
235
236 void set_using (struct using_direct *using_decl, struct obstack *obstack);
237
238 /* Return the symbol for the function which contains a specified
239 lexical block, described by a struct block. The return value
240 will not be an inlined function; the containing function will be
241 returned instead. */
242
243 struct symbol *linkage_function () const;
244
245 /* Return the symbol for the function which contains a specified
246 block, described by a struct block. The return value will be the
247 closest enclosing function, which might be an inline
248 function. */
249
250 struct symbol *containing_function () const;
251
252 /* Return the static block associated with this block. Return NULL
253 if block is a global block. */
254
255 const struct block *static_block () const;
256
257 /* Return true if this block is a static block. */
258
259 bool is_static_block () const
260 {
261 const block *sup = superblock ();
262 if (sup == nullptr)
263 return false;
264 return sup->is_global_block ();
265 }
266
267 /* Return the static block associated with block. */
268
269 const struct block *global_block () const;
270
271 /* Return true if this block is a global block. */
272
273 bool is_global_block () const
274 { return superblock () == nullptr; }
275
276 /* Return the function block for this block. Returns nullptr if
277 there is no enclosing function, i.e., if this block is a static
278 or global block. */
279
280 const struct block *function_block () const;
281
282 /* Set the compunit of this block, which must be a global block. */
283
284 void set_compunit_symtab (struct compunit_symtab *);
285
286 /* Return a property to evaluate the static link associated to this
287 block.
288
289 In the context of nested functions (available in Pascal, Ada and
290 GNU C, for instance), a static link (as in DWARF's
291 DW_AT_static_link attribute) for a function is a way to get the
292 frame corresponding to the enclosing function.
293
294 Note that only objfile-owned and function-level blocks can have a
295 static link. Return NULL if there is no such property. */
296
297 struct dynamic_prop *static_link () const;
298
299 /* Return true if block A is lexically nested within this block, or
300 if A and this block have the same pc range. Return false
301 otherwise. If ALLOW_NESTED is true, then block A is considered
302 to be in this block if A is in a nested function in this block's
303 function. If ALLOW_NESTED is false (the default), then blocks in
304 nested functions are not considered to be contained. */
305
306 bool contains (const struct block *a, bool allow_nested = false) const;
307
308 private:
309
310 /* If the namespace_info is NULL, allocate it via OBSTACK and
311 initialize its members to zero. */
312 void initialize_namespace (struct obstack *obstack);
313
314 /* Addresses in the executable code that are in this block. */
315
316 CORE_ADDR m_start = 0;
317 CORE_ADDR m_end = 0;
318
319 /* The symbol that names this block, if the block is the body of a
320 function (real or inlined); otherwise, zero. */
321
322 struct symbol *m_function = nullptr;
323
324 /* The `struct block' for the containing block, or 0 if none.
325
326 The superblock of a top-level local block (i.e. a function in the
327 case of C) is the STATIC_BLOCK. The superblock of the
328 STATIC_BLOCK is the GLOBAL_BLOCK. */
329
330 const struct block *m_superblock = nullptr;
331
332 /* This is used to store the symbols in the block. */
333
334 struct multidictionary *m_multidict = nullptr;
335
336 /* Contains information about namespace-related info relevant to this block:
337 using directives and the current namespace scope. */
338
339 struct block_namespace_info *m_namespace_info = nullptr;
340
341 /* Address ranges for blocks with non-contiguous ranges. If this
342 is NULL, then there is only one range which is specified by
343 startaddr and endaddr above. */
344
345 struct blockranges *m_ranges = nullptr;
346 };
347
348 /* The global block is singled out so that we can provide a back-link
349 to the compunit symtab. */
350
351 struct global_block : public block
352 {
353 /* This holds a pointer to the compunit symtab holding this block. */
354
355 struct compunit_symtab *compunit_symtab = nullptr;
356 };
357
358 struct blockvector
359 {
360 /* Return a view on the blocks of this blockvector. */
361 gdb::array_view<struct block *> blocks ()
362 {
363 return gdb::array_view<struct block *> (m_blocks, m_num_blocks);
364 }
365
366 /* Const version of the above. */
367 gdb::array_view<const struct block *const> blocks () const
368 {
369 const struct block **blocks = (const struct block **) m_blocks;
370 return gdb::array_view<const struct block *const> (blocks, m_num_blocks);
371 }
372
373 /* Return the block at index I. */
374 struct block *block (size_t i)
375 { return this->blocks ()[i]; }
376
377 /* Const version of the above. */
378 const struct block *block (size_t i) const
379 { return this->blocks ()[i]; }
380
381 /* Set the block at index I. */
382 void set_block (int i, struct block *block)
383 { m_blocks[i] = block; }
384
385 /* Set the number of blocks of this blockvector.
386
387 The storage of blocks is done using a flexible array member, so the number
388 of blocks set here must agree with what was effectively allocated. */
389 void set_num_blocks (int num_blocks)
390 { m_num_blocks = num_blocks; }
391
392 /* Return the number of blocks in this blockvector. */
393 int num_blocks () const
394 { return m_num_blocks; }
395
396 /* Return the global block of this blockvector. */
397 struct block *global_block ()
398 { return this->block (GLOBAL_BLOCK); }
399
400 /* Const version of the above. */
401 const struct block *global_block () const
402 { return this->block (GLOBAL_BLOCK); }
403
404 /* Return the static block of this blockvector. */
405 struct block *static_block ()
406 { return this->block (STATIC_BLOCK); }
407
408 /* Const version of the above. */
409 const struct block *static_block () const
410 { return this->block (STATIC_BLOCK); }
411
412 /* Return the address -> block map of this blockvector. */
413 addrmap *map ()
414 { return m_map; }
415
416 /* Const version of the above. */
417 const addrmap *map () const
418 { return m_map; }
419
420 /* Set this blockvector's address -> block map. */
421 void set_map (addrmap *map)
422 { m_map = map; }
423
424 private:
425 /* An address map mapping addresses to blocks in this blockvector.
426 This pointer is zero if the blocks' start and end addresses are
427 enough. */
428 struct addrmap *m_map;
429
430 /* Number of blocks in the list. */
431 int m_num_blocks;
432
433 /* The blocks themselves. */
434 struct block *m_blocks[1];
435 };
436
437 extern const struct blockvector *blockvector_for_pc (CORE_ADDR,
438 const struct block **);
439
440 extern const struct blockvector *
441 blockvector_for_pc_sect (CORE_ADDR, struct obj_section *,
442 const struct block **, struct compunit_symtab *);
443
444 extern int blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc);
445
446 extern struct call_site *call_site_for_pc (struct gdbarch *gdbarch,
447 CORE_ADDR pc);
448
449 extern const struct block *block_for_pc (CORE_ADDR);
450
451 extern const struct block *block_for_pc_sect (CORE_ADDR, struct obj_section *);
452
453 /* A block iterator. This structure should be treated as though it
454 were opaque; it is only defined here because we want to support
455 stack allocation of iterators. */
456
457 struct block_iterator
458 {
459 /* If we're iterating over a single block, this holds the block.
460 Otherwise, it holds the canonical compunit. */
461
462 union
463 {
464 struct compunit_symtab *compunit_symtab;
465 const struct block *block;
466 } d;
467
468 /* If we're trying to match a name, this will be non-NULL. */
469 const lookup_name_info *name;
470
471 /* If we're iterating over a single block, this is always -1.
472 Otherwise, it holds the index of the current "included" symtab in
473 the canonical symtab (that is, d.symtab->includes[idx]), with -1
474 meaning the canonical symtab itself. */
475
476 int idx;
477
478 /* Which block, either static or global, to iterate over. If this
479 is FIRST_LOCAL_BLOCK, then we are iterating over a single block.
480 This is used to select which field of 'd' is in use. */
481
482 enum block_enum which;
483
484 /* The underlying multidictionary iterator. */
485
486 struct mdict_iterator mdict_iter;
487 };
488
489 /* Initialize ITERATOR to point at the first symbol in BLOCK, and
490 return that first symbol, or NULL if BLOCK is empty. If NAME is
491 not NULL, only return symbols matching that name. */
492
493 extern struct symbol *block_iterator_first
494 (const struct block *block,
495 struct block_iterator *iterator,
496 const lookup_name_info *name = nullptr);
497
498 /* Advance ITERATOR, and return the next symbol, or NULL if there are
499 no more symbols. Don't call this if you've previously received
500 NULL from block_iterator_first or block_iterator_next on this
501 iteration. */
502
503 extern struct symbol *block_iterator_next (struct block_iterator *iterator);
504
505 /* An iterator that wraps a block_iterator. The naming here is
506 unfortunate, but block_iterator was named before gdb switched to
507 C++. */
508 struct block_iterator_wrapper
509 {
510 typedef block_iterator_wrapper self_type;
511 typedef struct symbol *value_type;
512
513 explicit block_iterator_wrapper (const struct block *block,
514 const lookup_name_info *name = nullptr)
515 : m_sym (block_iterator_first (block, &m_iter, name))
516 {
517 }
518
519 block_iterator_wrapper ()
520 : m_sym (nullptr)
521 {
522 }
523
524 value_type operator* () const
525 {
526 return m_sym;
527 }
528
529 bool operator== (const self_type &other) const
530 {
531 return m_sym == other.m_sym;
532 }
533
534 bool operator!= (const self_type &other) const
535 {
536 return m_sym != other.m_sym;
537 }
538
539 self_type &operator++ ()
540 {
541 m_sym = block_iterator_next (&m_iter);
542 return *this;
543 }
544
545 private:
546
547 struct symbol *m_sym;
548 struct block_iterator m_iter;
549 };
550
551 /* An iterator range for block_iterator_wrapper. */
552
553 typedef iterator_range<block_iterator_wrapper> block_iterator_range;
554
555 /* Return true if symbol A is the best match possible for DOMAIN. */
556
557 extern bool best_symbol (struct symbol *a, const domain_enum domain);
558
559 /* Return symbol B if it is a better match than symbol A for DOMAIN.
560 Otherwise return A. */
561
562 extern struct symbol *better_symbol (struct symbol *a, struct symbol *b,
563 const domain_enum domain);
564
565 /* Search BLOCK for symbol NAME in DOMAIN. */
566
567 extern struct symbol *block_lookup_symbol (const struct block *block,
568 const char *name,
569 symbol_name_match_type match_type,
570 const domain_enum domain);
571
572 /* Search BLOCK for symbol NAME in DOMAIN but only in primary symbol table of
573 BLOCK. BLOCK must be STATIC_BLOCK or GLOBAL_BLOCK. Function is useful if
574 one iterates all global/static blocks of an objfile. */
575
576 extern struct symbol *block_lookup_symbol_primary (const struct block *block,
577 const char *name,
578 const domain_enum domain);
579
580 /* Find symbol NAME in BLOCK and in DOMAIN. This will return a
581 matching symbol whose type is not a "opaque", see TYPE_IS_OPAQUE.
582 If STUB is non-NULL, an otherwise matching symbol whose type is a
583 opaque will be stored here. */
584
585 extern struct symbol *block_find_symbol (const struct block *block,
586 const lookup_name_info &name,
587 const domain_enum domain,
588 struct symbol **stub);
589
590 /* Given a vector of pairs, allocate and build an obstack allocated
591 blockranges struct for a block. */
592 struct blockranges *make_blockranges (struct objfile *objfile,
593 const std::vector<blockrange> &rangevec);
594
595 #endif /* BLOCK_H */