Remove path name from test case
[binutils-gdb.git] / gdb / d-exp.y
1 /* YACC parser for D expressions, for GDB.
2
3 Copyright (C) 2014-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* This file is derived from c-exp.y, jv-exp.y. */
21
22 /* Parse a D expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "d-lang.h"
49 #include "charset.h"
50 #include "block.h"
51 #include "type-stack.h"
52 #include "expop.h"
53
54 #define parse_type(ps) builtin_type (ps->gdbarch ())
55 #define parse_d_type(ps) builtin_d_type (ps->gdbarch ())
56
57 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
58 etc). */
59 #define GDB_YY_REMAP_PREFIX d_
60 #include "yy-remap.h"
61
62 /* The state of the parser, used internally when we are parsing the
63 expression. */
64
65 static struct parser_state *pstate = NULL;
66
67 /* The current type stack. */
68 static struct type_stack *type_stack;
69
70 int yyparse (void);
71
72 static int yylex (void);
73
74 static void yyerror (const char *);
75
76 static int type_aggregate_p (struct type *);
77
78 using namespace expr;
79
80 %}
81
82 /* Although the yacc "value" of an expression is not used,
83 since the result is stored in the structure being created,
84 other node types do have values. */
85
86 %union
87 {
88 struct {
89 LONGEST val;
90 struct type *type;
91 } typed_val_int;
92 struct {
93 gdb_byte val[16];
94 struct type *type;
95 } typed_val_float;
96 struct symbol *sym;
97 struct type *tval;
98 struct typed_stoken tsval;
99 struct stoken sval;
100 struct ttype tsym;
101 struct symtoken ssym;
102 int ival;
103 int voidval;
104 enum exp_opcode opcode;
105 struct stoken_vector svec;
106 }
107
108 %{
109 /* YYSTYPE gets defined by %union */
110 static int parse_number (struct parser_state *, const char *,
111 int, int, YYSTYPE *);
112 %}
113
114 %token <sval> IDENTIFIER UNKNOWN_NAME
115 %token <tsym> TYPENAME
116 %token <voidval> COMPLETE
117
118 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
119 but which would parse as a valid number in the current input radix.
120 E.g. "c" when input_radix==16. Depending on the parse, it will be
121 turned into a name or into a number. */
122
123 %token <sval> NAME_OR_INT
124
125 %token <typed_val_int> INTEGER_LITERAL
126 %token <typed_val_float> FLOAT_LITERAL
127 %token <tsval> CHARACTER_LITERAL
128 %token <tsval> STRING_LITERAL
129
130 %type <svec> StringExp
131 %type <tval> BasicType TypeExp
132 %type <sval> IdentifierExp
133 %type <ival> ArrayLiteral
134
135 %token ENTRY
136 %token ERROR
137
138 /* Keywords that have a constant value. */
139 %token TRUE_KEYWORD FALSE_KEYWORD NULL_KEYWORD
140 /* Class 'super' accessor. */
141 %token SUPER_KEYWORD
142 /* Properties. */
143 %token CAST_KEYWORD SIZEOF_KEYWORD
144 %token TYPEOF_KEYWORD TYPEID_KEYWORD
145 %token INIT_KEYWORD
146 /* Comparison keywords. */
147 /* Type storage classes. */
148 %token IMMUTABLE_KEYWORD CONST_KEYWORD SHARED_KEYWORD
149 /* Non-scalar type keywords. */
150 %token STRUCT_KEYWORD UNION_KEYWORD
151 %token CLASS_KEYWORD INTERFACE_KEYWORD
152 %token ENUM_KEYWORD TEMPLATE_KEYWORD
153 %token DELEGATE_KEYWORD FUNCTION_KEYWORD
154
155 %token <sval> DOLLAR_VARIABLE
156
157 %token <opcode> ASSIGN_MODIFY
158
159 %left ','
160 %right '=' ASSIGN_MODIFY
161 %right '?'
162 %left OROR
163 %left ANDAND
164 %left '|'
165 %left '^'
166 %left '&'
167 %left EQUAL NOTEQUAL '<' '>' LEQ GEQ
168 %right LSH RSH
169 %left '+' '-'
170 %left '*' '/' '%'
171 %right HATHAT
172 %left IDENTITY NOTIDENTITY
173 %right INCREMENT DECREMENT
174 %right '.' '[' '('
175 %token DOTDOT
176
177 \f
178 %%
179
180 start :
181 Expression
182 | TypeExp
183 ;
184
185 /* Expressions, including the comma operator. */
186
187 Expression:
188 CommaExpression
189 ;
190
191 CommaExpression:
192 AssignExpression
193 | AssignExpression ',' CommaExpression
194 { pstate->wrap2<comma_operation> (); }
195 ;
196
197 AssignExpression:
198 ConditionalExpression
199 | ConditionalExpression '=' AssignExpression
200 { pstate->wrap2<assign_operation> (); }
201 | ConditionalExpression ASSIGN_MODIFY AssignExpression
202 {
203 operation_up rhs = pstate->pop ();
204 operation_up lhs = pstate->pop ();
205 pstate->push_new<assign_modify_operation>
206 ($2, std::move (lhs), std::move (rhs));
207 }
208 ;
209
210 ConditionalExpression:
211 OrOrExpression
212 | OrOrExpression '?' Expression ':' ConditionalExpression
213 {
214 operation_up last = pstate->pop ();
215 operation_up mid = pstate->pop ();
216 operation_up first = pstate->pop ();
217 pstate->push_new<ternop_cond_operation>
218 (std::move (first), std::move (mid),
219 std::move (last));
220 }
221 ;
222
223 OrOrExpression:
224 AndAndExpression
225 | OrOrExpression OROR AndAndExpression
226 { pstate->wrap2<logical_or_operation> (); }
227 ;
228
229 AndAndExpression:
230 OrExpression
231 | AndAndExpression ANDAND OrExpression
232 { pstate->wrap2<logical_and_operation> (); }
233 ;
234
235 OrExpression:
236 XorExpression
237 | OrExpression '|' XorExpression
238 { pstate->wrap2<bitwise_ior_operation> (); }
239 ;
240
241 XorExpression:
242 AndExpression
243 | XorExpression '^' AndExpression
244 { pstate->wrap2<bitwise_xor_operation> (); }
245 ;
246
247 AndExpression:
248 CmpExpression
249 | AndExpression '&' CmpExpression
250 { pstate->wrap2<bitwise_and_operation> (); }
251 ;
252
253 CmpExpression:
254 ShiftExpression
255 | EqualExpression
256 | IdentityExpression
257 | RelExpression
258 ;
259
260 EqualExpression:
261 ShiftExpression EQUAL ShiftExpression
262 { pstate->wrap2<equal_operation> (); }
263 | ShiftExpression NOTEQUAL ShiftExpression
264 { pstate->wrap2<notequal_operation> (); }
265 ;
266
267 IdentityExpression:
268 ShiftExpression IDENTITY ShiftExpression
269 { pstate->wrap2<equal_operation> (); }
270 | ShiftExpression NOTIDENTITY ShiftExpression
271 { pstate->wrap2<notequal_operation> (); }
272 ;
273
274 RelExpression:
275 ShiftExpression '<' ShiftExpression
276 { pstate->wrap2<less_operation> (); }
277 | ShiftExpression LEQ ShiftExpression
278 { pstate->wrap2<leq_operation> (); }
279 | ShiftExpression '>' ShiftExpression
280 { pstate->wrap2<gtr_operation> (); }
281 | ShiftExpression GEQ ShiftExpression
282 { pstate->wrap2<geq_operation> (); }
283 ;
284
285 ShiftExpression:
286 AddExpression
287 | ShiftExpression LSH AddExpression
288 { pstate->wrap2<lsh_operation> (); }
289 | ShiftExpression RSH AddExpression
290 { pstate->wrap2<rsh_operation> (); }
291 ;
292
293 AddExpression:
294 MulExpression
295 | AddExpression '+' MulExpression
296 { pstate->wrap2<add_operation> (); }
297 | AddExpression '-' MulExpression
298 { pstate->wrap2<sub_operation> (); }
299 | AddExpression '~' MulExpression
300 { pstate->wrap2<concat_operation> (); }
301 ;
302
303 MulExpression:
304 UnaryExpression
305 | MulExpression '*' UnaryExpression
306 { pstate->wrap2<mul_operation> (); }
307 | MulExpression '/' UnaryExpression
308 { pstate->wrap2<div_operation> (); }
309 | MulExpression '%' UnaryExpression
310 { pstate->wrap2<rem_operation> (); }
311
312 UnaryExpression:
313 '&' UnaryExpression
314 { pstate->wrap<unop_addr_operation> (); }
315 | INCREMENT UnaryExpression
316 { pstate->wrap<preinc_operation> (); }
317 | DECREMENT UnaryExpression
318 { pstate->wrap<predec_operation> (); }
319 | '*' UnaryExpression
320 { pstate->wrap<unop_ind_operation> (); }
321 | '-' UnaryExpression
322 { pstate->wrap<unary_neg_operation> (); }
323 | '+' UnaryExpression
324 { pstate->wrap<unary_plus_operation> (); }
325 | '!' UnaryExpression
326 { pstate->wrap<unary_logical_not_operation> (); }
327 | '~' UnaryExpression
328 { pstate->wrap<unary_complement_operation> (); }
329 | TypeExp '.' SIZEOF_KEYWORD
330 { pstate->wrap<unop_sizeof_operation> (); }
331 | CastExpression
332 | PowExpression
333 ;
334
335 CastExpression:
336 CAST_KEYWORD '(' TypeExp ')' UnaryExpression
337 { pstate->wrap2<unop_cast_type_operation> (); }
338 /* C style cast is illegal D, but is still recognised in
339 the grammar, so we keep this around for convenience. */
340 | '(' TypeExp ')' UnaryExpression
341 { pstate->wrap2<unop_cast_type_operation> (); }
342 ;
343
344 PowExpression:
345 PostfixExpression
346 | PostfixExpression HATHAT UnaryExpression
347 { pstate->wrap2<exp_operation> (); }
348 ;
349
350 PostfixExpression:
351 PrimaryExpression
352 | PostfixExpression '.' COMPLETE
353 {
354 structop_base_operation *op
355 = new structop_ptr_operation (pstate->pop (), "");
356 pstate->mark_struct_expression (op);
357 pstate->push (operation_up (op));
358 }
359 | PostfixExpression '.' IDENTIFIER
360 {
361 pstate->push_new<structop_operation>
362 (pstate->pop (), copy_name ($3));
363 }
364 | PostfixExpression '.' IDENTIFIER COMPLETE
365 {
366 structop_base_operation *op
367 = new structop_operation (pstate->pop (), copy_name ($3));
368 pstate->mark_struct_expression (op);
369 pstate->push (operation_up (op));
370 }
371 | PostfixExpression '.' SIZEOF_KEYWORD
372 { pstate->wrap<unop_sizeof_operation> (); }
373 | PostfixExpression INCREMENT
374 { pstate->wrap<postinc_operation> (); }
375 | PostfixExpression DECREMENT
376 { pstate->wrap<postdec_operation> (); }
377 | CallExpression
378 | IndexExpression
379 | SliceExpression
380 ;
381
382 ArgumentList:
383 AssignExpression
384 { pstate->arglist_len = 1; }
385 | ArgumentList ',' AssignExpression
386 { pstate->arglist_len++; }
387 ;
388
389 ArgumentList_opt:
390 /* EMPTY */
391 { pstate->arglist_len = 0; }
392 | ArgumentList
393 ;
394
395 CallExpression:
396 PostfixExpression '('
397 { pstate->start_arglist (); }
398 ArgumentList_opt ')'
399 {
400 std::vector<operation_up> args
401 = pstate->pop_vector (pstate->end_arglist ());
402 pstate->push_new<funcall_operation>
403 (pstate->pop (), std::move (args));
404 }
405 ;
406
407 IndexExpression:
408 PostfixExpression '[' ArgumentList ']'
409 { if (pstate->arglist_len > 0)
410 {
411 std::vector<operation_up> args
412 = pstate->pop_vector (pstate->arglist_len);
413 pstate->push_new<multi_subscript_operation>
414 (pstate->pop (), std::move (args));
415 }
416 else
417 pstate->wrap2<subscript_operation> ();
418 }
419 ;
420
421 SliceExpression:
422 PostfixExpression '[' ']'
423 { /* Do nothing. */ }
424 | PostfixExpression '[' AssignExpression DOTDOT AssignExpression ']'
425 {
426 operation_up last = pstate->pop ();
427 operation_up mid = pstate->pop ();
428 operation_up first = pstate->pop ();
429 pstate->push_new<ternop_slice_operation>
430 (std::move (first), std::move (mid),
431 std::move (last));
432 }
433 ;
434
435 PrimaryExpression:
436 '(' Expression ')'
437 { /* Do nothing. */ }
438 | IdentifierExp
439 { struct bound_minimal_symbol msymbol;
440 std::string copy = copy_name ($1);
441 struct field_of_this_result is_a_field_of_this;
442 struct block_symbol sym;
443
444 /* Handle VAR, which could be local or global. */
445 sym = lookup_symbol (copy.c_str (),
446 pstate->expression_context_block,
447 VAR_DOMAIN, &is_a_field_of_this);
448 if (sym.symbol && sym.symbol->aclass () != LOC_TYPEDEF)
449 {
450 if (symbol_read_needs_frame (sym.symbol))
451 pstate->block_tracker->update (sym);
452 pstate->push_new<var_value_operation> (sym);
453 }
454 else if (is_a_field_of_this.type != NULL)
455 {
456 /* It hangs off of `this'. Must not inadvertently convert from a
457 method call to data ref. */
458 pstate->block_tracker->update (sym);
459 operation_up thisop
460 = make_operation<op_this_operation> ();
461 pstate->push_new<structop_ptr_operation>
462 (std::move (thisop), std::move (copy));
463 }
464 else
465 {
466 /* Lookup foreign name in global static symbols. */
467 msymbol = lookup_bound_minimal_symbol (copy.c_str ());
468 if (msymbol.minsym != NULL)
469 pstate->push_new<var_msym_value_operation> (msymbol);
470 else if (!have_full_symbols () && !have_partial_symbols ())
471 error (_("No symbol table is loaded. Use the \"file\" command"));
472 else
473 error (_("No symbol \"%s\" in current context."),
474 copy.c_str ());
475 }
476 }
477 | TypeExp '.' IdentifierExp
478 { struct type *type = check_typedef ($1);
479
480 /* Check if the qualified name is in the global
481 context. However if the symbol has not already
482 been resolved, it's not likely to be found. */
483 if (type->code () == TYPE_CODE_MODULE)
484 {
485 struct block_symbol sym;
486 const char *type_name = TYPE_SAFE_NAME (type);
487 int type_name_len = strlen (type_name);
488 std::string name
489 = string_printf ("%.*s.%.*s",
490 type_name_len, type_name,
491 $3.length, $3.ptr);
492
493 sym =
494 lookup_symbol (name.c_str (),
495 (const struct block *) NULL,
496 VAR_DOMAIN, NULL);
497 pstate->push_symbol (name.c_str (), sym);
498 }
499 else
500 {
501 /* Check if the qualified name resolves as a member
502 of an aggregate or an enum type. */
503 if (!type_aggregate_p (type))
504 error (_("`%s' is not defined as an aggregate type."),
505 TYPE_SAFE_NAME (type));
506
507 pstate->push_new<scope_operation>
508 (type, copy_name ($3));
509 }
510 }
511 | DOLLAR_VARIABLE
512 { pstate->push_dollar ($1); }
513 | NAME_OR_INT
514 { YYSTYPE val;
515 parse_number (pstate, $1.ptr, $1.length, 0, &val);
516 pstate->push_new<long_const_operation>
517 (val.typed_val_int.type, val.typed_val_int.val); }
518 | NULL_KEYWORD
519 { struct type *type = parse_d_type (pstate)->builtin_void;
520 type = lookup_pointer_type (type);
521 pstate->push_new<long_const_operation> (type, 0); }
522 | TRUE_KEYWORD
523 { pstate->push_new<bool_operation> (true); }
524 | FALSE_KEYWORD
525 { pstate->push_new<bool_operation> (false); }
526 | INTEGER_LITERAL
527 { pstate->push_new<long_const_operation> ($1.type, $1.val); }
528 | FLOAT_LITERAL
529 {
530 float_data data;
531 std::copy (std::begin ($1.val), std::end ($1.val),
532 std::begin (data));
533 pstate->push_new<float_const_operation> ($1.type, data);
534 }
535 | CHARACTER_LITERAL
536 { struct stoken_vector vec;
537 vec.len = 1;
538 vec.tokens = &$1;
539 pstate->push_c_string (0, &vec); }
540 | StringExp
541 { int i;
542 pstate->push_c_string (0, &$1);
543 for (i = 0; i < $1.len; ++i)
544 free ($1.tokens[i].ptr);
545 free ($1.tokens); }
546 | ArrayLiteral
547 {
548 std::vector<operation_up> args
549 = pstate->pop_vector ($1);
550 pstate->push_new<array_operation>
551 (0, $1 - 1, std::move (args));
552 }
553 | TYPEOF_KEYWORD '(' Expression ')'
554 { pstate->wrap<typeof_operation> (); }
555 ;
556
557 ArrayLiteral:
558 '[' ArgumentList_opt ']'
559 { $$ = pstate->arglist_len; }
560 ;
561
562 IdentifierExp:
563 IDENTIFIER
564 ;
565
566 StringExp:
567 STRING_LITERAL
568 { /* We copy the string here, and not in the
569 lexer, to guarantee that we do not leak a
570 string. Note that we follow the
571 NUL-termination convention of the
572 lexer. */
573 struct typed_stoken *vec = XNEW (struct typed_stoken);
574 $$.len = 1;
575 $$.tokens = vec;
576
577 vec->type = $1.type;
578 vec->length = $1.length;
579 vec->ptr = (char *) malloc ($1.length + 1);
580 memcpy (vec->ptr, $1.ptr, $1.length + 1);
581 }
582 | StringExp STRING_LITERAL
583 { /* Note that we NUL-terminate here, but just
584 for convenience. */
585 char *p;
586 ++$$.len;
587 $$.tokens
588 = XRESIZEVEC (struct typed_stoken, $$.tokens, $$.len);
589
590 p = (char *) malloc ($2.length + 1);
591 memcpy (p, $2.ptr, $2.length + 1);
592
593 $$.tokens[$$.len - 1].type = $2.type;
594 $$.tokens[$$.len - 1].length = $2.length;
595 $$.tokens[$$.len - 1].ptr = p;
596 }
597 ;
598
599 TypeExp:
600 '(' TypeExp ')'
601 { /* Do nothing. */ }
602 | BasicType
603 { pstate->push_new<type_operation> ($1); }
604 | BasicType BasicType2
605 { $$ = type_stack->follow_types ($1);
606 pstate->push_new<type_operation> ($$);
607 }
608 ;
609
610 BasicType2:
611 '*'
612 { type_stack->push (tp_pointer); }
613 | '*' BasicType2
614 { type_stack->push (tp_pointer); }
615 | '[' INTEGER_LITERAL ']'
616 { type_stack->push ($2.val);
617 type_stack->push (tp_array); }
618 | '[' INTEGER_LITERAL ']' BasicType2
619 { type_stack->push ($2.val);
620 type_stack->push (tp_array); }
621 ;
622
623 BasicType:
624 TYPENAME
625 { $$ = $1.type; }
626 ;
627
628 %%
629
630 /* Return true if the type is aggregate-like. */
631
632 static int
633 type_aggregate_p (struct type *type)
634 {
635 return (type->code () == TYPE_CODE_STRUCT
636 || type->code () == TYPE_CODE_UNION
637 || type->code () == TYPE_CODE_MODULE
638 || (type->code () == TYPE_CODE_ENUM
639 && type->is_declared_class ()));
640 }
641
642 /* Take care of parsing a number (anything that starts with a digit).
643 Set yylval and return the token type; update lexptr.
644 LEN is the number of characters in it. */
645
646 /*** Needs some error checking for the float case ***/
647
648 static int
649 parse_number (struct parser_state *ps, const char *p,
650 int len, int parsed_float, YYSTYPE *putithere)
651 {
652 ULONGEST n = 0;
653 ULONGEST prevn = 0;
654 ULONGEST un;
655
656 int i = 0;
657 int c;
658 int base = input_radix;
659 int unsigned_p = 0;
660 int long_p = 0;
661
662 /* We have found a "L" or "U" suffix. */
663 int found_suffix = 0;
664
665 ULONGEST high_bit;
666 struct type *signed_type;
667 struct type *unsigned_type;
668
669 if (parsed_float)
670 {
671 char *s, *sp;
672
673 /* Strip out all embedded '_' before passing to parse_float. */
674 s = (char *) alloca (len + 1);
675 sp = s;
676 while (len-- > 0)
677 {
678 if (*p != '_')
679 *sp++ = *p;
680 p++;
681 }
682 *sp = '\0';
683 len = strlen (s);
684
685 /* Check suffix for `i' , `fi' or `li' (idouble, ifloat or ireal). */
686 if (len >= 1 && tolower (s[len - 1]) == 'i')
687 {
688 if (len >= 2 && tolower (s[len - 2]) == 'f')
689 {
690 putithere->typed_val_float.type
691 = parse_d_type (ps)->builtin_ifloat;
692 len -= 2;
693 }
694 else if (len >= 2 && tolower (s[len - 2]) == 'l')
695 {
696 putithere->typed_val_float.type
697 = parse_d_type (ps)->builtin_ireal;
698 len -= 2;
699 }
700 else
701 {
702 putithere->typed_val_float.type
703 = parse_d_type (ps)->builtin_idouble;
704 len -= 1;
705 }
706 }
707 /* Check suffix for `f' or `l'' (float or real). */
708 else if (len >= 1 && tolower (s[len - 1]) == 'f')
709 {
710 putithere->typed_val_float.type
711 = parse_d_type (ps)->builtin_float;
712 len -= 1;
713 }
714 else if (len >= 1 && tolower (s[len - 1]) == 'l')
715 {
716 putithere->typed_val_float.type
717 = parse_d_type (ps)->builtin_real;
718 len -= 1;
719 }
720 /* Default type if no suffix. */
721 else
722 {
723 putithere->typed_val_float.type
724 = parse_d_type (ps)->builtin_double;
725 }
726
727 if (!parse_float (s, len,
728 putithere->typed_val_float.type,
729 putithere->typed_val_float.val))
730 return ERROR;
731
732 return FLOAT_LITERAL;
733 }
734
735 /* Handle base-switching prefixes 0x, 0b, 0 */
736 if (p[0] == '0')
737 switch (p[1])
738 {
739 case 'x':
740 case 'X':
741 if (len >= 3)
742 {
743 p += 2;
744 base = 16;
745 len -= 2;
746 }
747 break;
748
749 case 'b':
750 case 'B':
751 if (len >= 3)
752 {
753 p += 2;
754 base = 2;
755 len -= 2;
756 }
757 break;
758
759 default:
760 base = 8;
761 break;
762 }
763
764 while (len-- > 0)
765 {
766 c = *p++;
767 if (c == '_')
768 continue; /* Ignore embedded '_'. */
769 if (c >= 'A' && c <= 'Z')
770 c += 'a' - 'A';
771 if (c != 'l' && c != 'u')
772 n *= base;
773 if (c >= '0' && c <= '9')
774 {
775 if (found_suffix)
776 return ERROR;
777 n += i = c - '0';
778 }
779 else
780 {
781 if (base > 10 && c >= 'a' && c <= 'f')
782 {
783 if (found_suffix)
784 return ERROR;
785 n += i = c - 'a' + 10;
786 }
787 else if (c == 'l' && long_p == 0)
788 {
789 long_p = 1;
790 found_suffix = 1;
791 }
792 else if (c == 'u' && unsigned_p == 0)
793 {
794 unsigned_p = 1;
795 found_suffix = 1;
796 }
797 else
798 return ERROR; /* Char not a digit */
799 }
800 if (i >= base)
801 return ERROR; /* Invalid digit in this base. */
802 /* Portably test for integer overflow. */
803 if (c != 'l' && c != 'u')
804 {
805 ULONGEST n2 = prevn * base;
806 if ((n2 / base != prevn) || (n2 + i < prevn))
807 error (_("Numeric constant too large."));
808 }
809 prevn = n;
810 }
811
812 /* An integer constant is an int or a long. An L suffix forces it to
813 be long, and a U suffix forces it to be unsigned. To figure out
814 whether it fits, we shift it right and see whether anything remains.
815 Note that we can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or
816 more in one operation, because many compilers will warn about such a
817 shift (which always produces a zero result). To deal with the case
818 where it is we just always shift the value more than once, with fewer
819 bits each time. */
820 un = (ULONGEST) n >> 2;
821 if (long_p == 0 && (un >> 30) == 0)
822 {
823 high_bit = ((ULONGEST) 1) << 31;
824 signed_type = parse_d_type (ps)->builtin_int;
825 /* For decimal notation, keep the sign of the worked out type. */
826 if (base == 10 && !unsigned_p)
827 unsigned_type = parse_d_type (ps)->builtin_long;
828 else
829 unsigned_type = parse_d_type (ps)->builtin_uint;
830 }
831 else
832 {
833 int shift;
834 if (sizeof (ULONGEST) * HOST_CHAR_BIT < 64)
835 /* A long long does not fit in a LONGEST. */
836 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
837 else
838 shift = 63;
839 high_bit = (ULONGEST) 1 << shift;
840 signed_type = parse_d_type (ps)->builtin_long;
841 unsigned_type = parse_d_type (ps)->builtin_ulong;
842 }
843
844 putithere->typed_val_int.val = n;
845
846 /* If the high bit of the worked out type is set then this number
847 has to be unsigned_type. */
848 if (unsigned_p || (n & high_bit))
849 putithere->typed_val_int.type = unsigned_type;
850 else
851 putithere->typed_val_int.type = signed_type;
852
853 return INTEGER_LITERAL;
854 }
855
856 /* Temporary obstack used for holding strings. */
857 static struct obstack tempbuf;
858 static int tempbuf_init;
859
860 /* Parse a string or character literal from TOKPTR. The string or
861 character may be wide or unicode. *OUTPTR is set to just after the
862 end of the literal in the input string. The resulting token is
863 stored in VALUE. This returns a token value, either STRING or
864 CHAR, depending on what was parsed. *HOST_CHARS is set to the
865 number of host characters in the literal. */
866
867 static int
868 parse_string_or_char (const char *tokptr, const char **outptr,
869 struct typed_stoken *value, int *host_chars)
870 {
871 int quote;
872
873 /* Build the gdb internal form of the input string in tempbuf. Note
874 that the buffer is null byte terminated *only* for the
875 convenience of debugging gdb itself and printing the buffer
876 contents when the buffer contains no embedded nulls. Gdb does
877 not depend upon the buffer being null byte terminated, it uses
878 the length string instead. This allows gdb to handle C strings
879 (as well as strings in other languages) with embedded null
880 bytes */
881
882 if (!tempbuf_init)
883 tempbuf_init = 1;
884 else
885 obstack_free (&tempbuf, NULL);
886 obstack_init (&tempbuf);
887
888 /* Skip the quote. */
889 quote = *tokptr;
890 ++tokptr;
891
892 *host_chars = 0;
893
894 while (*tokptr)
895 {
896 char c = *tokptr;
897 if (c == '\\')
898 {
899 ++tokptr;
900 *host_chars += c_parse_escape (&tokptr, &tempbuf);
901 }
902 else if (c == quote)
903 break;
904 else
905 {
906 obstack_1grow (&tempbuf, c);
907 ++tokptr;
908 /* FIXME: this does the wrong thing with multi-byte host
909 characters. We could use mbrlen here, but that would
910 make "set host-charset" a bit less useful. */
911 ++*host_chars;
912 }
913 }
914
915 if (*tokptr != quote)
916 {
917 if (quote == '"' || quote == '`')
918 error (_("Unterminated string in expression."));
919 else
920 error (_("Unmatched single quote."));
921 }
922 ++tokptr;
923
924 /* FIXME: should instead use own language string_type enum
925 and handle D-specific string suffixes here. */
926 if (quote == '\'')
927 value->type = C_CHAR;
928 else
929 value->type = C_STRING;
930
931 value->ptr = (char *) obstack_base (&tempbuf);
932 value->length = obstack_object_size (&tempbuf);
933
934 *outptr = tokptr;
935
936 return quote == '\'' ? CHARACTER_LITERAL : STRING_LITERAL;
937 }
938
939 struct d_token
940 {
941 const char *oper;
942 int token;
943 enum exp_opcode opcode;
944 };
945
946 static const struct d_token tokentab3[] =
947 {
948 {"^^=", ASSIGN_MODIFY, BINOP_EXP},
949 {"<<=", ASSIGN_MODIFY, BINOP_LSH},
950 {">>=", ASSIGN_MODIFY, BINOP_RSH},
951 };
952
953 static const struct d_token tokentab2[] =
954 {
955 {"+=", ASSIGN_MODIFY, BINOP_ADD},
956 {"-=", ASSIGN_MODIFY, BINOP_SUB},
957 {"*=", ASSIGN_MODIFY, BINOP_MUL},
958 {"/=", ASSIGN_MODIFY, BINOP_DIV},
959 {"%=", ASSIGN_MODIFY, BINOP_REM},
960 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
961 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
962 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
963 {"++", INCREMENT, OP_NULL},
964 {"--", DECREMENT, OP_NULL},
965 {"&&", ANDAND, OP_NULL},
966 {"||", OROR, OP_NULL},
967 {"^^", HATHAT, OP_NULL},
968 {"<<", LSH, OP_NULL},
969 {">>", RSH, OP_NULL},
970 {"==", EQUAL, OP_NULL},
971 {"!=", NOTEQUAL, OP_NULL},
972 {"<=", LEQ, OP_NULL},
973 {">=", GEQ, OP_NULL},
974 {"..", DOTDOT, OP_NULL},
975 };
976
977 /* Identifier-like tokens. */
978 static const struct d_token ident_tokens[] =
979 {
980 {"is", IDENTITY, OP_NULL},
981 {"!is", NOTIDENTITY, OP_NULL},
982
983 {"cast", CAST_KEYWORD, OP_NULL},
984 {"const", CONST_KEYWORD, OP_NULL},
985 {"immutable", IMMUTABLE_KEYWORD, OP_NULL},
986 {"shared", SHARED_KEYWORD, OP_NULL},
987 {"super", SUPER_KEYWORD, OP_NULL},
988
989 {"null", NULL_KEYWORD, OP_NULL},
990 {"true", TRUE_KEYWORD, OP_NULL},
991 {"false", FALSE_KEYWORD, OP_NULL},
992
993 {"init", INIT_KEYWORD, OP_NULL},
994 {"sizeof", SIZEOF_KEYWORD, OP_NULL},
995 {"typeof", TYPEOF_KEYWORD, OP_NULL},
996 {"typeid", TYPEID_KEYWORD, OP_NULL},
997
998 {"delegate", DELEGATE_KEYWORD, OP_NULL},
999 {"function", FUNCTION_KEYWORD, OP_NULL},
1000 {"struct", STRUCT_KEYWORD, OP_NULL},
1001 {"union", UNION_KEYWORD, OP_NULL},
1002 {"class", CLASS_KEYWORD, OP_NULL},
1003 {"interface", INTERFACE_KEYWORD, OP_NULL},
1004 {"enum", ENUM_KEYWORD, OP_NULL},
1005 {"template", TEMPLATE_KEYWORD, OP_NULL},
1006 };
1007
1008 /* This is set if a NAME token appeared at the very end of the input
1009 string, with no whitespace separating the name from the EOF. This
1010 is used only when parsing to do field name completion. */
1011 static int saw_name_at_eof;
1012
1013 /* This is set if the previously-returned token was a structure operator.
1014 This is used only when parsing to do field name completion. */
1015 static int last_was_structop;
1016
1017 /* Depth of parentheses. */
1018 static int paren_depth;
1019
1020 /* Read one token, getting characters through lexptr. */
1021
1022 static int
1023 lex_one_token (struct parser_state *par_state)
1024 {
1025 int c;
1026 int namelen;
1027 const char *tokstart;
1028 int saw_structop = last_was_structop;
1029
1030 last_was_structop = 0;
1031
1032 retry:
1033
1034 pstate->prev_lexptr = pstate->lexptr;
1035
1036 tokstart = pstate->lexptr;
1037 /* See if it is a special token of length 3. */
1038 for (const auto &token : tokentab3)
1039 if (strncmp (tokstart, token.oper, 3) == 0)
1040 {
1041 pstate->lexptr += 3;
1042 yylval.opcode = token.opcode;
1043 return token.token;
1044 }
1045
1046 /* See if it is a special token of length 2. */
1047 for (const auto &token : tokentab2)
1048 if (strncmp (tokstart, token.oper, 2) == 0)
1049 {
1050 pstate->lexptr += 2;
1051 yylval.opcode = token.opcode;
1052 return token.token;
1053 }
1054
1055 switch (c = *tokstart)
1056 {
1057 case 0:
1058 /* If we're parsing for field name completion, and the previous
1059 token allows such completion, return a COMPLETE token.
1060 Otherwise, we were already scanning the original text, and
1061 we're really done. */
1062 if (saw_name_at_eof)
1063 {
1064 saw_name_at_eof = 0;
1065 return COMPLETE;
1066 }
1067 else if (saw_structop)
1068 return COMPLETE;
1069 else
1070 return 0;
1071
1072 case ' ':
1073 case '\t':
1074 case '\n':
1075 pstate->lexptr++;
1076 goto retry;
1077
1078 case '[':
1079 case '(':
1080 paren_depth++;
1081 pstate->lexptr++;
1082 return c;
1083
1084 case ']':
1085 case ')':
1086 if (paren_depth == 0)
1087 return 0;
1088 paren_depth--;
1089 pstate->lexptr++;
1090 return c;
1091
1092 case ',':
1093 if (pstate->comma_terminates && paren_depth == 0)
1094 return 0;
1095 pstate->lexptr++;
1096 return c;
1097
1098 case '.':
1099 /* Might be a floating point number. */
1100 if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9')
1101 {
1102 if (pstate->parse_completion)
1103 last_was_structop = 1;
1104 goto symbol; /* Nope, must be a symbol. */
1105 }
1106 /* FALL THRU. */
1107
1108 case '0':
1109 case '1':
1110 case '2':
1111 case '3':
1112 case '4':
1113 case '5':
1114 case '6':
1115 case '7':
1116 case '8':
1117 case '9':
1118 {
1119 /* It's a number. */
1120 int got_dot = 0, got_e = 0, toktype;
1121 const char *p = tokstart;
1122 int hex = input_radix > 10;
1123
1124 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1125 {
1126 p += 2;
1127 hex = 1;
1128 }
1129
1130 for (;; ++p)
1131 {
1132 /* Hex exponents start with 'p', because 'e' is a valid hex
1133 digit and thus does not indicate a floating point number
1134 when the radix is hex. */
1135 if ((!hex && !got_e && tolower (p[0]) == 'e')
1136 || (hex && !got_e && tolower (p[0] == 'p')))
1137 got_dot = got_e = 1;
1138 /* A '.' always indicates a decimal floating point number
1139 regardless of the radix. If we have a '..' then its the
1140 end of the number and the beginning of a slice. */
1141 else if (!got_dot && (p[0] == '.' && p[1] != '.'))
1142 got_dot = 1;
1143 /* This is the sign of the exponent, not the end of the number. */
1144 else if (got_e && (tolower (p[-1]) == 'e' || tolower (p[-1]) == 'p')
1145 && (*p == '-' || *p == '+'))
1146 continue;
1147 /* We will take any letters or digits, ignoring any embedded '_'.
1148 parse_number will complain if past the radix, or if L or U are
1149 not final. */
1150 else if ((*p < '0' || *p > '9') && (*p != '_')
1151 && ((*p < 'a' || *p > 'z') && (*p < 'A' || *p > 'Z')))
1152 break;
1153 }
1154
1155 toktype = parse_number (par_state, tokstart, p - tokstart,
1156 got_dot|got_e, &yylval);
1157 if (toktype == ERROR)
1158 {
1159 char *err_copy = (char *) alloca (p - tokstart + 1);
1160
1161 memcpy (err_copy, tokstart, p - tokstart);
1162 err_copy[p - tokstart] = 0;
1163 error (_("Invalid number \"%s\"."), err_copy);
1164 }
1165 pstate->lexptr = p;
1166 return toktype;
1167 }
1168
1169 case '@':
1170 {
1171 const char *p = &tokstart[1];
1172 size_t len = strlen ("entry");
1173
1174 while (isspace (*p))
1175 p++;
1176 if (strncmp (p, "entry", len) == 0 && !isalnum (p[len])
1177 && p[len] != '_')
1178 {
1179 pstate->lexptr = &p[len];
1180 return ENTRY;
1181 }
1182 }
1183 /* FALLTHRU */
1184 case '+':
1185 case '-':
1186 case '*':
1187 case '/':
1188 case '%':
1189 case '|':
1190 case '&':
1191 case '^':
1192 case '~':
1193 case '!':
1194 case '<':
1195 case '>':
1196 case '?':
1197 case ':':
1198 case '=':
1199 case '{':
1200 case '}':
1201 symbol:
1202 pstate->lexptr++;
1203 return c;
1204
1205 case '\'':
1206 case '"':
1207 case '`':
1208 {
1209 int host_len;
1210 int result = parse_string_or_char (tokstart, &pstate->lexptr,
1211 &yylval.tsval, &host_len);
1212 if (result == CHARACTER_LITERAL)
1213 {
1214 if (host_len == 0)
1215 error (_("Empty character constant."));
1216 else if (host_len > 2 && c == '\'')
1217 {
1218 ++tokstart;
1219 namelen = pstate->lexptr - tokstart - 1;
1220 goto tryname;
1221 }
1222 else if (host_len > 1)
1223 error (_("Invalid character constant."));
1224 }
1225 return result;
1226 }
1227 }
1228
1229 if (!(c == '_' || c == '$'
1230 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1231 /* We must have come across a bad character (e.g. ';'). */
1232 error (_("Invalid character '%c' in expression"), c);
1233
1234 /* It's a name. See how long it is. */
1235 namelen = 0;
1236 for (c = tokstart[namelen];
1237 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1238 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));)
1239 c = tokstart[++namelen];
1240
1241 /* The token "if" terminates the expression and is NOT
1242 removed from the input stream. */
1243 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1244 return 0;
1245
1246 /* For the same reason (breakpoint conditions), "thread N"
1247 terminates the expression. "thread" could be an identifier, but
1248 an identifier is never followed by a number without intervening
1249 punctuation. "task" is similar. Handle abbreviations of these,
1250 similarly to breakpoint.c:find_condition_and_thread. */
1251 if (namelen >= 1
1252 && (strncmp (tokstart, "thread", namelen) == 0
1253 || strncmp (tokstart, "task", namelen) == 0)
1254 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t'))
1255 {
1256 const char *p = tokstart + namelen + 1;
1257
1258 while (*p == ' ' || *p == '\t')
1259 p++;
1260 if (*p >= '0' && *p <= '9')
1261 return 0;
1262 }
1263
1264 pstate->lexptr += namelen;
1265
1266 tryname:
1267
1268 yylval.sval.ptr = tokstart;
1269 yylval.sval.length = namelen;
1270
1271 /* Catch specific keywords. */
1272 std::string copy = copy_name (yylval.sval);
1273 for (const auto &token : ident_tokens)
1274 if (copy == token.oper)
1275 {
1276 /* It is ok to always set this, even though we don't always
1277 strictly need to. */
1278 yylval.opcode = token.opcode;
1279 return token.token;
1280 }
1281
1282 if (*tokstart == '$')
1283 return DOLLAR_VARIABLE;
1284
1285 yylval.tsym.type
1286 = language_lookup_primitive_type (par_state->language (),
1287 par_state->gdbarch (), copy.c_str ());
1288 if (yylval.tsym.type != NULL)
1289 return TYPENAME;
1290
1291 /* Input names that aren't symbols but ARE valid hex numbers,
1292 when the input radix permits them, can be names or numbers
1293 depending on the parse. Note we support radixes > 16 here. */
1294 if ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1295 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))
1296 {
1297 YYSTYPE newlval; /* Its value is ignored. */
1298 int hextype = parse_number (par_state, tokstart, namelen, 0, &newlval);
1299 if (hextype == INTEGER_LITERAL)
1300 return NAME_OR_INT;
1301 }
1302
1303 if (pstate->parse_completion && *pstate->lexptr == '\0')
1304 saw_name_at_eof = 1;
1305
1306 return IDENTIFIER;
1307 }
1308
1309 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
1310 struct d_token_and_value
1311 {
1312 int token;
1313 YYSTYPE value;
1314 };
1315
1316
1317 /* A FIFO of tokens that have been read but not yet returned to the
1318 parser. */
1319 static std::vector<d_token_and_value> token_fifo;
1320
1321 /* Non-zero if the lexer should return tokens from the FIFO. */
1322 static int popping;
1323
1324 /* Temporary storage for yylex; this holds symbol names as they are
1325 built up. */
1326 static auto_obstack name_obstack;
1327
1328 /* Classify an IDENTIFIER token. The contents of the token are in `yylval'.
1329 Updates yylval and returns the new token type. BLOCK is the block
1330 in which lookups start; this can be NULL to mean the global scope. */
1331
1332 static int
1333 classify_name (struct parser_state *par_state, const struct block *block)
1334 {
1335 struct block_symbol sym;
1336 struct field_of_this_result is_a_field_of_this;
1337
1338 std::string copy = copy_name (yylval.sval);
1339
1340 sym = lookup_symbol (copy.c_str (), block, VAR_DOMAIN, &is_a_field_of_this);
1341 if (sym.symbol && sym.symbol->aclass () == LOC_TYPEDEF)
1342 {
1343 yylval.tsym.type = sym.symbol->type ();
1344 return TYPENAME;
1345 }
1346 else if (sym.symbol == NULL)
1347 {
1348 /* Look-up first for a module name, then a type. */
1349 sym = lookup_symbol (copy.c_str (), block, MODULE_DOMAIN, NULL);
1350 if (sym.symbol == NULL)
1351 sym = lookup_symbol (copy.c_str (), block, STRUCT_DOMAIN, NULL);
1352
1353 if (sym.symbol != NULL)
1354 {
1355 yylval.tsym.type = sym.symbol->type ();
1356 return TYPENAME;
1357 }
1358
1359 return UNKNOWN_NAME;
1360 }
1361
1362 return IDENTIFIER;
1363 }
1364
1365 /* Like classify_name, but used by the inner loop of the lexer, when a
1366 name might have already been seen. CONTEXT is the context type, or
1367 NULL if this is the first component of a name. */
1368
1369 static int
1370 classify_inner_name (struct parser_state *par_state,
1371 const struct block *block, struct type *context)
1372 {
1373 struct type *type;
1374
1375 if (context == NULL)
1376 return classify_name (par_state, block);
1377
1378 type = check_typedef (context);
1379 if (!type_aggregate_p (type))
1380 return ERROR;
1381
1382 std::string copy = copy_name (yylval.ssym.stoken);
1383 yylval.ssym.sym = d_lookup_nested_symbol (type, copy.c_str (), block);
1384
1385 if (yylval.ssym.sym.symbol == NULL)
1386 return ERROR;
1387
1388 if (yylval.ssym.sym.symbol->aclass () == LOC_TYPEDEF)
1389 {
1390 yylval.tsym.type = yylval.ssym.sym.symbol->type ();
1391 return TYPENAME;
1392 }
1393
1394 return IDENTIFIER;
1395 }
1396
1397 /* The outer level of a two-level lexer. This calls the inner lexer
1398 to return tokens. It then either returns these tokens, or
1399 aggregates them into a larger token. This lets us work around a
1400 problem in our parsing approach, where the parser could not
1401 distinguish between qualified names and qualified types at the
1402 right point. */
1403
1404 static int
1405 yylex (void)
1406 {
1407 d_token_and_value current;
1408 int last_was_dot;
1409 struct type *context_type = NULL;
1410 int last_to_examine, next_to_examine, checkpoint;
1411 const struct block *search_block;
1412
1413 if (popping && !token_fifo.empty ())
1414 goto do_pop;
1415 popping = 0;
1416
1417 /* Read the first token and decide what to do. */
1418 current.token = lex_one_token (pstate);
1419 if (current.token != IDENTIFIER && current.token != '.')
1420 return current.token;
1421
1422 /* Read any sequence of alternating "." and identifier tokens into
1423 the token FIFO. */
1424 current.value = yylval;
1425 token_fifo.push_back (current);
1426 last_was_dot = current.token == '.';
1427
1428 while (1)
1429 {
1430 current.token = lex_one_token (pstate);
1431 current.value = yylval;
1432 token_fifo.push_back (current);
1433
1434 if ((last_was_dot && current.token != IDENTIFIER)
1435 || (!last_was_dot && current.token != '.'))
1436 break;
1437
1438 last_was_dot = !last_was_dot;
1439 }
1440 popping = 1;
1441
1442 /* We always read one extra token, so compute the number of tokens
1443 to examine accordingly. */
1444 last_to_examine = token_fifo.size () - 2;
1445 next_to_examine = 0;
1446
1447 current = token_fifo[next_to_examine];
1448 ++next_to_examine;
1449
1450 /* If we are not dealing with a typename, now is the time to find out. */
1451 if (current.token == IDENTIFIER)
1452 {
1453 yylval = current.value;
1454 current.token = classify_name (pstate, pstate->expression_context_block);
1455 current.value = yylval;
1456 }
1457
1458 /* If the IDENTIFIER is not known, it could be a package symbol,
1459 first try building up a name until we find the qualified module. */
1460 if (current.token == UNKNOWN_NAME)
1461 {
1462 name_obstack.clear ();
1463 obstack_grow (&name_obstack, current.value.sval.ptr,
1464 current.value.sval.length);
1465
1466 last_was_dot = 0;
1467
1468 while (next_to_examine <= last_to_examine)
1469 {
1470 d_token_and_value next;
1471
1472 next = token_fifo[next_to_examine];
1473 ++next_to_examine;
1474
1475 if (next.token == IDENTIFIER && last_was_dot)
1476 {
1477 /* Update the partial name we are constructing. */
1478 obstack_grow_str (&name_obstack, ".");
1479 obstack_grow (&name_obstack, next.value.sval.ptr,
1480 next.value.sval.length);
1481
1482 yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1483 yylval.sval.length = obstack_object_size (&name_obstack);
1484
1485 current.token = classify_name (pstate,
1486 pstate->expression_context_block);
1487 current.value = yylval;
1488
1489 /* We keep going until we find a TYPENAME. */
1490 if (current.token == TYPENAME)
1491 {
1492 /* Install it as the first token in the FIFO. */
1493 token_fifo[0] = current;
1494 token_fifo.erase (token_fifo.begin () + 1,
1495 token_fifo.begin () + next_to_examine);
1496 break;
1497 }
1498 }
1499 else if (next.token == '.' && !last_was_dot)
1500 last_was_dot = 1;
1501 else
1502 {
1503 /* We've reached the end of the name. */
1504 break;
1505 }
1506 }
1507
1508 /* Reset our current token back to the start, if we found nothing
1509 this means that we will just jump to do pop. */
1510 current = token_fifo[0];
1511 next_to_examine = 1;
1512 }
1513 if (current.token != TYPENAME && current.token != '.')
1514 goto do_pop;
1515
1516 name_obstack.clear ();
1517 checkpoint = 0;
1518 if (current.token == '.')
1519 search_block = NULL;
1520 else
1521 {
1522 gdb_assert (current.token == TYPENAME);
1523 search_block = pstate->expression_context_block;
1524 obstack_grow (&name_obstack, current.value.sval.ptr,
1525 current.value.sval.length);
1526 context_type = current.value.tsym.type;
1527 checkpoint = 1;
1528 }
1529
1530 last_was_dot = current.token == '.';
1531
1532 while (next_to_examine <= last_to_examine)
1533 {
1534 d_token_and_value next;
1535
1536 next = token_fifo[next_to_examine];
1537 ++next_to_examine;
1538
1539 if (next.token == IDENTIFIER && last_was_dot)
1540 {
1541 int classification;
1542
1543 yylval = next.value;
1544 classification = classify_inner_name (pstate, search_block,
1545 context_type);
1546 /* We keep going until we either run out of names, or until
1547 we have a qualified name which is not a type. */
1548 if (classification != TYPENAME && classification != IDENTIFIER)
1549 break;
1550
1551 /* Accept up to this token. */
1552 checkpoint = next_to_examine;
1553
1554 /* Update the partial name we are constructing. */
1555 if (context_type != NULL)
1556 {
1557 /* We don't want to put a leading "." into the name. */
1558 obstack_grow_str (&name_obstack, ".");
1559 }
1560 obstack_grow (&name_obstack, next.value.sval.ptr,
1561 next.value.sval.length);
1562
1563 yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1564 yylval.sval.length = obstack_object_size (&name_obstack);
1565 current.value = yylval;
1566 current.token = classification;
1567
1568 last_was_dot = 0;
1569
1570 if (classification == IDENTIFIER)
1571 break;
1572
1573 context_type = yylval.tsym.type;
1574 }
1575 else if (next.token == '.' && !last_was_dot)
1576 last_was_dot = 1;
1577 else
1578 {
1579 /* We've reached the end of the name. */
1580 break;
1581 }
1582 }
1583
1584 /* If we have a replacement token, install it as the first token in
1585 the FIFO, and delete the other constituent tokens. */
1586 if (checkpoint > 0)
1587 {
1588 token_fifo[0] = current;
1589 if (checkpoint > 1)
1590 token_fifo.erase (token_fifo.begin () + 1,
1591 token_fifo.begin () + checkpoint);
1592 }
1593
1594 do_pop:
1595 current = token_fifo[0];
1596 token_fifo.erase (token_fifo.begin ());
1597 yylval = current.value;
1598 return current.token;
1599 }
1600
1601 int
1602 d_parse (struct parser_state *par_state)
1603 {
1604 /* Setting up the parser state. */
1605 scoped_restore pstate_restore = make_scoped_restore (&pstate);
1606 gdb_assert (par_state != NULL);
1607 pstate = par_state;
1608
1609 scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
1610 par_state->debug);
1611
1612 struct type_stack stack;
1613 scoped_restore restore_type_stack = make_scoped_restore (&type_stack,
1614 &stack);
1615
1616 /* Initialize some state used by the lexer. */
1617 last_was_structop = 0;
1618 saw_name_at_eof = 0;
1619 paren_depth = 0;
1620
1621 token_fifo.clear ();
1622 popping = 0;
1623 name_obstack.clear ();
1624
1625 int result = yyparse ();
1626 if (!result)
1627 pstate->set_operation (pstate->pop ());
1628 return result;
1629 }
1630
1631 static void
1632 yyerror (const char *msg)
1633 {
1634 if (pstate->prev_lexptr)
1635 pstate->lexptr = pstate->prev_lexptr;
1636
1637 error (_("A %s in expression, near `%s'."), msg, pstate->lexptr);
1638 }
1639