Remove path name from test case
[binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2/frame.h"
30 #include "i386-tdep.h"
31 #include "i386-linux-tdep.h"
32 #include "linux-tdep.h"
33 #include "utils.h"
34 #include "glibc-tdep.h"
35 #include "solib-svr4.h"
36 #include "symtab.h"
37 #include "arch-utils.h"
38 #include "xml-syscall.h"
39 #include "infrun.h"
40
41 #include "i387-tdep.h"
42 #include "gdbsupport/x86-xstate.h"
43
44 /* The syscall's XML filename for i386. */
45 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
46
47 #include "record-full.h"
48 #include "linux-record.h"
49
50 #include "arch/i386.h"
51 #include "target-descriptions.h"
52
53 /* Return non-zero, when the register is in the corresponding register
54 group. Put the LINUX_ORIG_EAX register in the system group. */
55 static int
56 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
57 const struct reggroup *group)
58 {
59 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
60 return (group == system_reggroup
61 || group == save_reggroup
62 || group == restore_reggroup);
63 return i386_register_reggroup_p (gdbarch, regnum, group);
64 }
65
66 \f
67 /* Recognizing signal handler frames. */
68
69 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
70 "realtime" (RT) signals. The RT signals can provide additional
71 information to the signal handler if the SA_SIGINFO flag is set
72 when establishing a signal handler using `sigaction'. It is not
73 unlikely that future versions of GNU/Linux will support SA_SIGINFO
74 for normal signals too. */
75
76 /* When the i386 Linux kernel calls a signal handler and the
77 SA_RESTORER flag isn't set, the return address points to a bit of
78 code on the stack. This function returns whether the PC appears to
79 be within this bit of code.
80
81 The instruction sequence for normal signals is
82 pop %eax
83 mov $0x77, %eax
84 int $0x80
85 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
86
87 Checking for the code sequence should be somewhat reliable, because
88 the effect is to call the system call sigreturn. This is unlikely
89 to occur anywhere other than in a signal trampoline.
90
91 It kind of sucks that we have to read memory from the process in
92 order to identify a signal trampoline, but there doesn't seem to be
93 any other way. Therefore we only do the memory reads if no
94 function name could be identified, which should be the case since
95 the code is on the stack.
96
97 Detection of signal trampolines for handlers that set the
98 SA_RESTORER flag is in general not possible. Unfortunately this is
99 what the GNU C Library has been doing for quite some time now.
100 However, as of version 2.1.2, the GNU C Library uses signal
101 trampolines (named __restore and __restore_rt) that are identical
102 to the ones used by the kernel. Therefore, these trampolines are
103 supported too. */
104
105 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
106 #define LINUX_SIGTRAMP_OFFSET0 0
107 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
108 #define LINUX_SIGTRAMP_OFFSET1 1
109 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
110 #define LINUX_SIGTRAMP_OFFSET2 6
111
112 static const gdb_byte linux_sigtramp_code[] =
113 {
114 LINUX_SIGTRAMP_INSN0, /* pop %eax */
115 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
116 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
117 };
118
119 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
120
121 /* If THIS_FRAME is a sigtramp routine, return the address of the
122 start of the routine. Otherwise, return 0. */
123
124 static CORE_ADDR
125 i386_linux_sigtramp_start (frame_info_ptr this_frame)
126 {
127 CORE_ADDR pc = get_frame_pc (this_frame);
128 gdb_byte buf[LINUX_SIGTRAMP_LEN];
129
130 /* We only recognize a signal trampoline if PC is at the start of
131 one of the three instructions. We optimize for finding the PC at
132 the start, as will be the case when the trampoline is not the
133 first frame on the stack. We assume that in the case where the
134 PC is not at the start of the instruction sequence, there will be
135 a few trailing readable bytes on the stack. */
136
137 if (!safe_frame_unwind_memory (this_frame, pc, buf))
138 return 0;
139
140 if (buf[0] != LINUX_SIGTRAMP_INSN0)
141 {
142 int adjust;
143
144 switch (buf[0])
145 {
146 case LINUX_SIGTRAMP_INSN1:
147 adjust = LINUX_SIGTRAMP_OFFSET1;
148 break;
149 case LINUX_SIGTRAMP_INSN2:
150 adjust = LINUX_SIGTRAMP_OFFSET2;
151 break;
152 default:
153 return 0;
154 }
155
156 pc -= adjust;
157
158 if (!safe_frame_unwind_memory (this_frame, pc, buf))
159 return 0;
160 }
161
162 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
163 return 0;
164
165 return pc;
166 }
167
168 /* This function does the same for RT signals. Here the instruction
169 sequence is
170 mov $0xad, %eax
171 int $0x80
172 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
173
174 The effect is to call the system call rt_sigreturn. */
175
176 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
177 #define LINUX_RT_SIGTRAMP_OFFSET0 0
178 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
179 #define LINUX_RT_SIGTRAMP_OFFSET1 5
180
181 static const gdb_byte linux_rt_sigtramp_code[] =
182 {
183 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
184 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
185 };
186
187 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
188
189 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
190 start of the routine. Otherwise, return 0. */
191
192 static CORE_ADDR
193 i386_linux_rt_sigtramp_start (frame_info_ptr this_frame)
194 {
195 CORE_ADDR pc = get_frame_pc (this_frame);
196 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
197
198 /* We only recognize a signal trampoline if PC is at the start of
199 one of the two instructions. We optimize for finding the PC at
200 the start, as will be the case when the trampoline is not the
201 first frame on the stack. We assume that in the case where the
202 PC is not at the start of the instruction sequence, there will be
203 a few trailing readable bytes on the stack. */
204
205 if (!safe_frame_unwind_memory (this_frame, pc, buf))
206 return 0;
207
208 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
209 {
210 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
211 return 0;
212
213 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
214
215 if (!safe_frame_unwind_memory (this_frame, pc,
216 buf))
217 return 0;
218 }
219
220 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
221 return 0;
222
223 return pc;
224 }
225
226 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
227 routine. */
228
229 static int
230 i386_linux_sigtramp_p (frame_info_ptr this_frame)
231 {
232 CORE_ADDR pc = get_frame_pc (this_frame);
233 const char *name;
234
235 find_pc_partial_function (pc, &name, NULL, NULL);
236
237 /* If we have NAME, we can optimize the search. The trampolines are
238 named __restore and __restore_rt. However, they aren't dynamically
239 exported from the shared C library, so the trampoline may appear to
240 be part of the preceding function. This should always be sigaction,
241 __sigaction, or __libc_sigaction (all aliases to the same function). */
242 if (name == NULL || strstr (name, "sigaction") != NULL)
243 return (i386_linux_sigtramp_start (this_frame) != 0
244 || i386_linux_rt_sigtramp_start (this_frame) != 0);
245
246 return (strcmp ("__restore", name) == 0
247 || strcmp ("__restore_rt", name) == 0);
248 }
249
250 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
251 may have DWARF-2 CFI. */
252
253 static int
254 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
255 frame_info_ptr this_frame)
256 {
257 CORE_ADDR pc = get_frame_pc (this_frame);
258 const char *name;
259
260 find_pc_partial_function (pc, &name, NULL, NULL);
261
262 /* If a vsyscall DSO is in use, the signal trampolines may have these
263 names. */
264 if (name && (strcmp (name, "__kernel_sigreturn") == 0
265 || strcmp (name, "__kernel_rt_sigreturn") == 0))
266 return 1;
267
268 return 0;
269 }
270
271 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
272 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
273
274 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
275 address of the associated sigcontext structure. */
276
277 static CORE_ADDR
278 i386_linux_sigcontext_addr (frame_info_ptr this_frame)
279 {
280 struct gdbarch *gdbarch = get_frame_arch (this_frame);
281 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
282 CORE_ADDR pc;
283 CORE_ADDR sp;
284 gdb_byte buf[4];
285
286 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
287 sp = extract_unsigned_integer (buf, 4, byte_order);
288
289 pc = i386_linux_sigtramp_start (this_frame);
290 if (pc)
291 {
292 /* The sigcontext structure lives on the stack, right after
293 the signum argument. We determine the address of the
294 sigcontext structure by looking at the frame's stack
295 pointer. Keep in mind that the first instruction of the
296 sigtramp code is "pop %eax". If the PC is after this
297 instruction, adjust the returned value accordingly. */
298 if (pc == get_frame_pc (this_frame))
299 return sp + 4;
300 return sp;
301 }
302
303 pc = i386_linux_rt_sigtramp_start (this_frame);
304 if (pc)
305 {
306 CORE_ADDR ucontext_addr;
307
308 /* The sigcontext structure is part of the user context. A
309 pointer to the user context is passed as the third argument
310 to the signal handler. */
311 read_memory (sp + 8, buf, 4);
312 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
313 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
314 }
315
316 error (_("Couldn't recognize signal trampoline."));
317 return 0;
318 }
319
320 /* Set the program counter for process PTID to PC. */
321
322 static void
323 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
324 {
325 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
326
327 /* We must be careful with modifying the program counter. If we
328 just interrupted a system call, the kernel might try to restart
329 it when we resume the inferior. On restarting the system call,
330 the kernel will try backing up the program counter even though it
331 no longer points at the system call. This typically results in a
332 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
333 "orig_eax" pseudo-register.
334
335 Note that "orig_eax" is saved when setting up a dummy call frame.
336 This means that it is properly restored when that frame is
337 popped, and that the interrupted system call will be restarted
338 when we resume the inferior on return from a function call from
339 within GDB. In all other cases the system call will not be
340 restarted. */
341 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
342 }
343
344 /* Record all registers but IP register for process-record. */
345
346 static int
347 i386_all_but_ip_registers_record (struct regcache *regcache)
348 {
349 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
350 return -1;
351 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
352 return -1;
353 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
354 return -1;
355 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
356 return -1;
357 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
358 return -1;
359 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
360 return -1;
361 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
362 return -1;
363 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
364 return -1;
365 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
366 return -1;
367
368 return 0;
369 }
370
371 /* i386_canonicalize_syscall maps from the native i386 Linux set
372 of syscall ids into a canonical set of syscall ids used by
373 process record (a mostly trivial mapping, since the canonical
374 set was originally taken from the i386 set). */
375
376 static enum gdb_syscall
377 i386_canonicalize_syscall (int syscall)
378 {
379 enum { i386_syscall_max = 499 };
380
381 if (syscall <= i386_syscall_max)
382 return (enum gdb_syscall) syscall;
383 else
384 return gdb_sys_no_syscall;
385 }
386
387 /* Value of the sigcode in case of a boundary fault. */
388
389 #define SIG_CODE_BOUNDARY_FAULT 3
390
391 /* i386 GNU/Linux implementation of the report_signal_info
392 gdbarch hook. Displays information related to MPX bound
393 violations. */
394 void
395 i386_linux_report_signal_info (struct gdbarch *gdbarch, struct ui_out *uiout,
396 enum gdb_signal siggnal)
397 {
398 /* -Wmaybe-uninitialized */
399 CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
400 int is_upper;
401 long sig_code = 0;
402
403 if (!i386_mpx_enabled () || siggnal != GDB_SIGNAL_SEGV)
404 return;
405
406 try
407 {
408 /* Sigcode evaluates if the actual segfault is a boundary violation. */
409 sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
410
411 lower_bound
412 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
413 upper_bound
414 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
415 access
416 = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
417 }
418 catch (const gdb_exception_error &exception)
419 {
420 return;
421 }
422
423 /* If this is not a boundary violation just return. */
424 if (sig_code != SIG_CODE_BOUNDARY_FAULT)
425 return;
426
427 is_upper = (access > upper_bound ? 1 : 0);
428
429 uiout->text ("\n");
430 if (is_upper)
431 uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
432 else
433 uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
434
435 uiout->text (_(" while accessing address "));
436 uiout->field_core_addr ("bound-access", gdbarch, access);
437
438 uiout->text (_("\nBounds: [lower = "));
439 uiout->field_core_addr ("lower-bound", gdbarch, lower_bound);
440
441 uiout->text (_(", upper = "));
442 uiout->field_core_addr ("upper-bound", gdbarch, upper_bound);
443
444 uiout->text (_("]"));
445 }
446
447 /* Parse the arguments of current system call instruction and record
448 the values of the registers and memory that will be changed into
449 "record_arch_list". This instruction is "int 0x80" (Linux
450 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
451
452 Return -1 if something wrong. */
453
454 static struct linux_record_tdep i386_linux_record_tdep;
455
456 static int
457 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
458 {
459 int ret;
460 LONGEST syscall_native;
461 enum gdb_syscall syscall_gdb;
462
463 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
464
465 syscall_gdb = i386_canonicalize_syscall (syscall_native);
466
467 if (syscall_gdb < 0)
468 {
469 gdb_printf (gdb_stderr,
470 _("Process record and replay target doesn't "
471 "support syscall number %s\n"),
472 plongest (syscall_native));
473 return -1;
474 }
475
476 if (syscall_gdb == gdb_sys_sigreturn
477 || syscall_gdb == gdb_sys_rt_sigreturn)
478 {
479 if (i386_all_but_ip_registers_record (regcache))
480 return -1;
481 return 0;
482 }
483
484 ret = record_linux_system_call (syscall_gdb, regcache,
485 &i386_linux_record_tdep);
486 if (ret)
487 return ret;
488
489 /* Record the return value of the system call. */
490 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
491 return -1;
492
493 return 0;
494 }
495
496 #define I386_LINUX_xstate 270
497 #define I386_LINUX_frame_size 732
498
499 static int
500 i386_linux_record_signal (struct gdbarch *gdbarch,
501 struct regcache *regcache,
502 enum gdb_signal signal)
503 {
504 ULONGEST esp;
505
506 if (i386_all_but_ip_registers_record (regcache))
507 return -1;
508
509 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
510 return -1;
511
512 /* Record the change in the stack. */
513 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
514 /* This is for xstate.
515 sp -= sizeof (struct _fpstate); */
516 esp -= I386_LINUX_xstate;
517 /* This is for frame_size.
518 sp -= sizeof (struct rt_sigframe); */
519 esp -= I386_LINUX_frame_size;
520 if (record_full_arch_list_add_mem (esp,
521 I386_LINUX_xstate + I386_LINUX_frame_size))
522 return -1;
523
524 if (record_full_arch_list_add_end ())
525 return -1;
526
527 return 0;
528 }
529 \f
530
531 /* Core of the implementation for gdbarch get_syscall_number. Get pending
532 syscall number from REGCACHE. If there is no pending syscall -1 will be
533 returned. Pending syscall means ptrace has stepped into the syscall but
534 another ptrace call will step out. PC is right after the int $0x80
535 / syscall / sysenter instruction in both cases, PC does not change during
536 the second ptrace step. */
537
538 static LONGEST
539 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
540 {
541 struct gdbarch *gdbarch = regcache->arch ();
542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
543 /* The content of a register. */
544 gdb_byte buf[4];
545 /* The result. */
546 LONGEST ret;
547
548 /* Getting the system call number from the register.
549 When dealing with x86 architecture, this information
550 is stored at %eax register. */
551 regcache->cooked_read (I386_LINUX_ORIG_EAX_REGNUM, buf);
552
553 ret = extract_signed_integer (buf, byte_order);
554
555 return ret;
556 }
557
558 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
559 compatible with gdbarch get_syscall_number method prototype. */
560
561 static LONGEST
562 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
563 thread_info *thread)
564 {
565 struct regcache *regcache = get_thread_regcache (thread);
566
567 return i386_linux_get_syscall_number_from_regcache (regcache);
568 }
569
570 /* The register sets used in GNU/Linux ELF core-dumps are identical to
571 the register sets in `struct user' that are used for a.out
572 core-dumps. These are also used by ptrace(2). The corresponding
573 types are `elf_gregset_t' for the general-purpose registers (with
574 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
575 for the floating-point registers.
576
577 Those types used to be available under the names `gregset_t' and
578 `fpregset_t' too, and GDB used those names in the past. But those
579 names are now used for the register sets used in the `mcontext_t'
580 type, which have a different size and layout. */
581
582 /* Mapping between the general-purpose registers in `struct user'
583 format and GDB's register cache layout. */
584
585 /* From <sys/reg.h>. */
586 int i386_linux_gregset_reg_offset[] =
587 {
588 6 * 4, /* %eax */
589 1 * 4, /* %ecx */
590 2 * 4, /* %edx */
591 0 * 4, /* %ebx */
592 15 * 4, /* %esp */
593 5 * 4, /* %ebp */
594 3 * 4, /* %esi */
595 4 * 4, /* %edi */
596 12 * 4, /* %eip */
597 14 * 4, /* %eflags */
598 13 * 4, /* %cs */
599 16 * 4, /* %ss */
600 7 * 4, /* %ds */
601 8 * 4, /* %es */
602 9 * 4, /* %fs */
603 10 * 4, /* %gs */
604 -1, -1, -1, -1, -1, -1, -1, -1,
605 -1, -1, -1, -1, -1, -1, -1, -1,
606 -1, -1, -1, -1, -1, -1, -1, -1,
607 -1,
608 -1, -1, -1, -1, -1, -1, -1, -1,
609 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
610 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
611 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
612 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
613 -1, /* PKRU register */
614 11 * 4, /* "orig_eax" */
615 };
616
617 /* Mapping between the general-purpose registers in `struct
618 sigcontext' format and GDB's register cache layout. */
619
620 /* From <asm/sigcontext.h>. */
621 static int i386_linux_sc_reg_offset[] =
622 {
623 11 * 4, /* %eax */
624 10 * 4, /* %ecx */
625 9 * 4, /* %edx */
626 8 * 4, /* %ebx */
627 7 * 4, /* %esp */
628 6 * 4, /* %ebp */
629 5 * 4, /* %esi */
630 4 * 4, /* %edi */
631 14 * 4, /* %eip */
632 16 * 4, /* %eflags */
633 15 * 4, /* %cs */
634 18 * 4, /* %ss */
635 3 * 4, /* %ds */
636 2 * 4, /* %es */
637 1 * 4, /* %fs */
638 0 * 4 /* %gs */
639 };
640
641 /* See i386-linux-tdep.h. */
642
643 uint64_t
644 i386_linux_core_read_xsave_info (bfd *abfd, x86_xsave_layout &layout)
645 {
646 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
647 if (xstate == nullptr)
648 return 0;
649
650 /* Check extended state size. */
651 size_t size = bfd_section_size (xstate);
652 if (size < X86_XSTATE_AVX_SIZE)
653 return 0;
654
655 char contents[8];
656 if (! bfd_get_section_contents (abfd, xstate, contents,
657 I386_LINUX_XSAVE_XCR0_OFFSET, 8))
658 {
659 warning (_("Couldn't read `xcr0' bytes from "
660 "`.reg-xstate' section in core file."));
661 return 0;
662 }
663
664 uint64_t xcr0 = bfd_get_64 (abfd, contents);
665
666 if (!i387_guess_xsave_layout (xcr0, size, layout))
667 return 0;
668
669 return xcr0;
670 }
671
672 /* See i386-linux-tdep.h. */
673
674 bool
675 i386_linux_core_read_x86_xsave_layout (struct gdbarch *gdbarch,
676 x86_xsave_layout &layout)
677 {
678 return i386_linux_core_read_xsave_info (core_bfd, layout) != 0;
679 }
680
681 /* See i386-linux-tdep.h. */
682
683 const struct target_desc *
684 i386_linux_read_description (uint64_t xcr0)
685 {
686 if (xcr0 == 0)
687 return NULL;
688
689 static struct target_desc *i386_linux_tdescs \
690 [2/*X87*/][2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
691 struct target_desc **tdesc;
692
693 tdesc = &i386_linux_tdescs[(xcr0 & X86_XSTATE_X87) ? 1 : 0]
694 [(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
695 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
696 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
697 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
698 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
699
700 if (*tdesc == NULL)
701 *tdesc = i386_create_target_description (xcr0, true, false);
702
703 return *tdesc;
704 }
705
706 /* Get Linux/x86 target description from core dump. */
707
708 static const struct target_desc *
709 i386_linux_core_read_description (struct gdbarch *gdbarch,
710 struct target_ops *target,
711 bfd *abfd)
712 {
713 /* Linux/i386. */
714 x86_xsave_layout layout;
715 uint64_t xcr0 = i386_linux_core_read_xsave_info (abfd, layout);
716 const struct target_desc *tdesc = i386_linux_read_description (xcr0);
717
718 if (tdesc != NULL)
719 return tdesc;
720
721 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
722 return i386_linux_read_description (X86_XSTATE_SSE_MASK);
723 else
724 return i386_linux_read_description (X86_XSTATE_X87_MASK);
725 }
726
727 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
728
729 static void
730 i386_linux_supply_xstateregset (const struct regset *regset,
731 struct regcache *regcache, int regnum,
732 const void *xstateregs, size_t len)
733 {
734 i387_supply_xsave (regcache, regnum, xstateregs);
735 }
736
737 struct type *
738 x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
739 {
740 return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
741 }
742
743 /* Similar to i386_collect_fpregset, but use XSAVE extended state. */
744
745 static void
746 i386_linux_collect_xstateregset (const struct regset *regset,
747 const struct regcache *regcache,
748 int regnum, void *xstateregs, size_t len)
749 {
750 i387_collect_xsave (regcache, regnum, xstateregs, 1);
751 }
752
753 /* Register set definitions. */
754
755 static const struct regset i386_linux_xstateregset =
756 {
757 NULL,
758 i386_linux_supply_xstateregset,
759 i386_linux_collect_xstateregset
760 };
761
762 /* Iterate over core file register note sections. */
763
764 static void
765 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
766 iterate_over_regset_sections_cb *cb,
767 void *cb_data,
768 const struct regcache *regcache)
769 {
770 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
771
772 cb (".reg", 68, 68, &i386_gregset, NULL, cb_data);
773
774 if (tdep->xsave_layout.sizeof_xsave != 0)
775 cb (".reg-xstate", tdep->xsave_layout.sizeof_xsave,
776 tdep->xsave_layout.sizeof_xsave, &i386_linux_xstateregset,
777 "XSAVE extended state", cb_data);
778 else if (tdep->xcr0 & X86_XSTATE_SSE)
779 cb (".reg-xfp", 512, 512, &i386_fpregset, "extended floating-point",
780 cb_data);
781 else
782 cb (".reg2", 108, 108, &i386_fpregset, NULL, cb_data);
783 }
784
785 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
786 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
787 finish the syscall but PC will not change.
788
789 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
790 i386_displaced_step_fixup would keep PC at the displaced pad location.
791 As PC is pointing to the 'ret' instruction before the step
792 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
793 and PC should not be adjusted. In reality it finished syscall instead and
794 PC should get relocated back to its vDSO address. Hide the 'ret'
795 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
796
797 It is not fully correct as the bytes in struct
798 displaced_step_copy_insn_closure will not match the inferior code. But we
799 would need some new flag in displaced_step_copy_insn_closure otherwise to
800 keep the state that syscall is finishing for the later
801 i386_displaced_step_fixup execution as the syscall execution is already no
802 longer detectable there. The new flag field would mean i386-linux-tdep.c
803 needs to wrap all the displacement methods of i386-tdep.c which does not seem
804 worth it. The same effect is achieved by patching that 'nop' instruction
805 there instead. */
806
807 static displaced_step_copy_insn_closure_up
808 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
809 CORE_ADDR from, CORE_ADDR to,
810 struct regcache *regs)
811 {
812 displaced_step_copy_insn_closure_up closure_
813 = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
814
815 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
816 {
817 /* The closure returned by i386_displaced_step_copy_insn is simply a
818 buffer with a copy of the instruction. */
819 i386_displaced_step_copy_insn_closure *closure
820 = (i386_displaced_step_copy_insn_closure *) closure_.get ();
821
822 /* Fake nop. */
823 closure->buf[0] = 0x90;
824 }
825
826 return closure_;
827 }
828
829 static void
830 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
831 {
832 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
833 const struct target_desc *tdesc = info.target_desc;
834 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
835 const struct tdesc_feature *feature;
836 int valid_p;
837
838 gdb_assert (tdesc_data);
839
840 linux_init_abi (info, gdbarch, 1);
841
842 /* GNU/Linux uses ELF. */
843 i386_elf_init_abi (info, gdbarch);
844
845 /* Reserve a number for orig_eax. */
846 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
847
848 if (! tdesc_has_registers (tdesc))
849 tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK);
850 tdep->tdesc = tdesc;
851
852 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
853 if (feature == NULL)
854 return;
855
856 valid_p = tdesc_numbered_register (feature, tdesc_data,
857 I386_LINUX_ORIG_EAX_REGNUM,
858 "orig_eax");
859 if (!valid_p)
860 return;
861
862 /* Add the %orig_eax register used for syscall restarting. */
863 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
864
865 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
866
867 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
868 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
869 tdep->sizeof_gregset = 17 * 4;
870
871 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
872
873 tdep->sigtramp_p = i386_linux_sigtramp_p;
874 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
875 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
876 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
877
878 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
879 set_gdbarch_core_read_x86_xsave_layout
880 (gdbarch, i386_linux_core_read_x86_xsave_layout);
881
882 set_gdbarch_process_record (gdbarch, i386_process_record);
883 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
884
885 /* Initialize the i386_linux_record_tdep. */
886 /* These values are the size of the type that will be used in a system
887 call. They are obtained from Linux Kernel source. */
888 i386_linux_record_tdep.size_pointer
889 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
890 i386_linux_record_tdep.size__old_kernel_stat = 32;
891 i386_linux_record_tdep.size_tms = 16;
892 i386_linux_record_tdep.size_loff_t = 8;
893 i386_linux_record_tdep.size_flock = 16;
894 i386_linux_record_tdep.size_oldold_utsname = 45;
895 i386_linux_record_tdep.size_ustat = 20;
896 i386_linux_record_tdep.size_old_sigaction = 16;
897 i386_linux_record_tdep.size_old_sigset_t = 4;
898 i386_linux_record_tdep.size_rlimit = 8;
899 i386_linux_record_tdep.size_rusage = 72;
900 i386_linux_record_tdep.size_timeval = 8;
901 i386_linux_record_tdep.size_timezone = 8;
902 i386_linux_record_tdep.size_old_gid_t = 2;
903 i386_linux_record_tdep.size_old_uid_t = 2;
904 i386_linux_record_tdep.size_fd_set = 128;
905 i386_linux_record_tdep.size_old_dirent = 268;
906 i386_linux_record_tdep.size_statfs = 64;
907 i386_linux_record_tdep.size_statfs64 = 84;
908 i386_linux_record_tdep.size_sockaddr = 16;
909 i386_linux_record_tdep.size_int
910 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
911 i386_linux_record_tdep.size_long
912 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
913 i386_linux_record_tdep.size_ulong
914 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
915 i386_linux_record_tdep.size_msghdr = 28;
916 i386_linux_record_tdep.size_itimerval = 16;
917 i386_linux_record_tdep.size_stat = 88;
918 i386_linux_record_tdep.size_old_utsname = 325;
919 i386_linux_record_tdep.size_sysinfo = 64;
920 i386_linux_record_tdep.size_msqid_ds = 88;
921 i386_linux_record_tdep.size_shmid_ds = 84;
922 i386_linux_record_tdep.size_new_utsname = 390;
923 i386_linux_record_tdep.size_timex = 128;
924 i386_linux_record_tdep.size_mem_dqinfo = 24;
925 i386_linux_record_tdep.size_if_dqblk = 68;
926 i386_linux_record_tdep.size_fs_quota_stat = 68;
927 i386_linux_record_tdep.size_timespec = 8;
928 i386_linux_record_tdep.size_pollfd = 8;
929 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
930 i386_linux_record_tdep.size_knfsd_fh = 132;
931 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
932 i386_linux_record_tdep.size_sigaction = 20;
933 i386_linux_record_tdep.size_sigset_t = 8;
934 i386_linux_record_tdep.size_siginfo_t = 128;
935 i386_linux_record_tdep.size_cap_user_data_t = 12;
936 i386_linux_record_tdep.size_stack_t = 12;
937 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
938 i386_linux_record_tdep.size_stat64 = 96;
939 i386_linux_record_tdep.size_gid_t = 4;
940 i386_linux_record_tdep.size_uid_t = 4;
941 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
942 i386_linux_record_tdep.size_flock64 = 24;
943 i386_linux_record_tdep.size_user_desc = 16;
944 i386_linux_record_tdep.size_io_event = 32;
945 i386_linux_record_tdep.size_iocb = 64;
946 i386_linux_record_tdep.size_epoll_event = 12;
947 i386_linux_record_tdep.size_itimerspec
948 = i386_linux_record_tdep.size_timespec * 2;
949 i386_linux_record_tdep.size_mq_attr = 32;
950 i386_linux_record_tdep.size_termios = 36;
951 i386_linux_record_tdep.size_termios2 = 44;
952 i386_linux_record_tdep.size_pid_t = 4;
953 i386_linux_record_tdep.size_winsize = 8;
954 i386_linux_record_tdep.size_serial_struct = 60;
955 i386_linux_record_tdep.size_serial_icounter_struct = 80;
956 i386_linux_record_tdep.size_hayes_esp_config = 12;
957 i386_linux_record_tdep.size_size_t = 4;
958 i386_linux_record_tdep.size_iovec = 8;
959 i386_linux_record_tdep.size_time_t = 4;
960
961 /* These values are the second argument of system call "sys_ioctl".
962 They are obtained from Linux Kernel source. */
963 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
964 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
965 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
966 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
967 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
968 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
969 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
970 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
971 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
972 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
973 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
974 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
975 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
976 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
977 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
978 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
979 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
980 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
981 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
982 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
983 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
984 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
985 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
986 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
987 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
988 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
989 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
990 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
991 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
992 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
993 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
994 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
995 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
996 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
997 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
998 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
999 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1000 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1001 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1002 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1003 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1004 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1005 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1006 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1007 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1008 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1009 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1010 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1011 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1012 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1013 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1014 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1015 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1016 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1017 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1018 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1019 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1020 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1021 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1022 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1023 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1024 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1025 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1026 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1027 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1028
1029 /* These values are the second argument of system call "sys_fcntl"
1030 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1031 i386_linux_record_tdep.fcntl_F_GETLK = 5;
1032 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1033 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1034 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1035
1036 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1037 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1038 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1039 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1040 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
1041 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
1042
1043 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1044 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1045 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
1046
1047 /* N_FUN symbols in shared libraries have 0 for their values and need
1048 to be relocated. */
1049 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1050
1051 /* GNU/Linux uses SVR4-style shared libraries. */
1052 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1053 set_solib_svr4_fetch_link_map_offsets
1054 (gdbarch, linux_ilp32_fetch_link_map_offsets);
1055
1056 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
1057 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1058
1059 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
1060
1061 /* Enable TLS support. */
1062 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1063 svr4_fetch_objfile_link_map);
1064
1065 /* Core file support. */
1066 set_gdbarch_iterate_over_regset_sections
1067 (gdbarch, i386_linux_iterate_over_regset_sections);
1068 set_gdbarch_core_read_description (gdbarch,
1069 i386_linux_core_read_description);
1070
1071 /* Displaced stepping. */
1072 set_gdbarch_displaced_step_copy_insn (gdbarch,
1073 i386_linux_displaced_step_copy_insn);
1074 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
1075
1076 /* Functions for 'catch syscall'. */
1077 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
1078 set_gdbarch_get_syscall_number (gdbarch,
1079 i386_linux_get_syscall_number);
1080
1081 set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
1082 set_gdbarch_report_signal_info (gdbarch, i386_linux_report_signal_info);
1083 }
1084
1085 void _initialize_i386_linux_tdep ();
1086 void
1087 _initialize_i386_linux_tdep ()
1088 {
1089 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1090 i386_linux_init_abi);
1091 }