Remove path name from test case
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70 #include "infcall.h"
71 #include "maint.h"
72
73 /* Register names. */
74
75 static const char * const i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char * const i386_zmm_names[] =
91 {
92 "zmm0", "zmm1", "zmm2", "zmm3",
93 "zmm4", "zmm5", "zmm6", "zmm7"
94 };
95
96 static const char * const i386_zmmh_names[] =
97 {
98 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
99 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
100 };
101
102 static const char * const i386_k_names[] =
103 {
104 "k0", "k1", "k2", "k3",
105 "k4", "k5", "k6", "k7"
106 };
107
108 static const char * const i386_ymm_names[] =
109 {
110 "ymm0", "ymm1", "ymm2", "ymm3",
111 "ymm4", "ymm5", "ymm6", "ymm7",
112 };
113
114 static const char * const i386_ymmh_names[] =
115 {
116 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
117 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
118 };
119
120 static const char * const i386_mpx_names[] =
121 {
122 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
123 };
124
125 static const char * const i386_pkeys_names[] =
126 {
127 "pkru"
128 };
129
130 /* Register names for MPX pseudo-registers. */
131
132 static const char * const i386_bnd_names[] =
133 {
134 "bnd0", "bnd1", "bnd2", "bnd3"
135 };
136
137 /* Register names for MMX pseudo-registers. */
138
139 static const char * const i386_mmx_names[] =
140 {
141 "mm0", "mm1", "mm2", "mm3",
142 "mm4", "mm5", "mm6", "mm7"
143 };
144
145 /* Register names for byte pseudo-registers. */
146
147 static const char * const i386_byte_names[] =
148 {
149 "al", "cl", "dl", "bl",
150 "ah", "ch", "dh", "bh"
151 };
152
153 /* Register names for word pseudo-registers. */
154
155 static const char * const i386_word_names[] =
156 {
157 "ax", "cx", "dx", "bx",
158 "", "bp", "si", "di"
159 };
160
161 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
162 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
163 we have 16 upper ZMM regs that have to be handled differently. */
164
165 const int num_lower_zmm_regs = 16;
166
167 /* MMX register? */
168
169 static int
170 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
171 {
172 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
173 int mm0_regnum = tdep->mm0_regnum;
174
175 if (mm0_regnum < 0)
176 return 0;
177
178 regnum -= mm0_regnum;
179 return regnum >= 0 && regnum < tdep->num_mmx_regs;
180 }
181
182 /* Byte register? */
183
184 int
185 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
186 {
187 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
188
189 regnum -= tdep->al_regnum;
190 return regnum >= 0 && regnum < tdep->num_byte_regs;
191 }
192
193 /* Word register? */
194
195 int
196 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
197 {
198 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
199
200 regnum -= tdep->ax_regnum;
201 return regnum >= 0 && regnum < tdep->num_word_regs;
202 }
203
204 /* Dword register? */
205
206 int
207 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
210 int eax_regnum = tdep->eax_regnum;
211
212 if (eax_regnum < 0)
213 return 0;
214
215 regnum -= eax_regnum;
216 return regnum >= 0 && regnum < tdep->num_dword_regs;
217 }
218
219 /* AVX512 register? */
220
221 int
222 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
223 {
224 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
225 int zmm0h_regnum = tdep->zmm0h_regnum;
226
227 if (zmm0h_regnum < 0)
228 return 0;
229
230 regnum -= zmm0h_regnum;
231 return regnum >= 0 && regnum < tdep->num_zmm_regs;
232 }
233
234 int
235 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
236 {
237 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
238 int zmm0_regnum = tdep->zmm0_regnum;
239
240 if (zmm0_regnum < 0)
241 return 0;
242
243 regnum -= zmm0_regnum;
244 return regnum >= 0 && regnum < tdep->num_zmm_regs;
245 }
246
247 int
248 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
249 {
250 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
251 int k0_regnum = tdep->k0_regnum;
252
253 if (k0_regnum < 0)
254 return 0;
255
256 regnum -= k0_regnum;
257 return regnum >= 0 && regnum < I387_NUM_K_REGS;
258 }
259
260 static int
261 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
262 {
263 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
264 int ymm0h_regnum = tdep->ymm0h_regnum;
265
266 if (ymm0h_regnum < 0)
267 return 0;
268
269 regnum -= ymm0h_regnum;
270 return regnum >= 0 && regnum < tdep->num_ymm_regs;
271 }
272
273 /* AVX register? */
274
275 int
276 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
277 {
278 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
279 int ymm0_regnum = tdep->ymm0_regnum;
280
281 if (ymm0_regnum < 0)
282 return 0;
283
284 regnum -= ymm0_regnum;
285 return regnum >= 0 && regnum < tdep->num_ymm_regs;
286 }
287
288 static int
289 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
290 {
291 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
292 int ymm16h_regnum = tdep->ymm16h_regnum;
293
294 if (ymm16h_regnum < 0)
295 return 0;
296
297 regnum -= ymm16h_regnum;
298 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
299 }
300
301 int
302 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
305 int ymm16_regnum = tdep->ymm16_regnum;
306
307 if (ymm16_regnum < 0)
308 return 0;
309
310 regnum -= ymm16_regnum;
311 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
312 }
313
314 /* BND register? */
315
316 int
317 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
318 {
319 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
320 int bnd0_regnum = tdep->bnd0_regnum;
321
322 if (bnd0_regnum < 0)
323 return 0;
324
325 regnum -= bnd0_regnum;
326 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
327 }
328
329 /* SSE register? */
330
331 int
332 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
333 {
334 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
335 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
336
337 if (num_xmm_regs == 0)
338 return 0;
339
340 regnum -= I387_XMM0_REGNUM (tdep);
341 return regnum >= 0 && regnum < num_xmm_regs;
342 }
343
344 /* XMM_512 register? */
345
346 int
347 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
348 {
349 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
350 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
351
352 if (num_xmm_avx512_regs == 0)
353 return 0;
354
355 regnum -= I387_XMM16_REGNUM (tdep);
356 return regnum >= 0 && regnum < num_xmm_avx512_regs;
357 }
358
359 static int
360 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
361 {
362 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
363
364 if (I387_NUM_XMM_REGS (tdep) == 0)
365 return 0;
366
367 return (regnum == I387_MXCSR_REGNUM (tdep));
368 }
369
370 /* FP register? */
371
372 int
373 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
374 {
375 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
376
377 if (I387_ST0_REGNUM (tdep) < 0)
378 return 0;
379
380 return (I387_ST0_REGNUM (tdep) <= regnum
381 && regnum < I387_FCTRL_REGNUM (tdep));
382 }
383
384 int
385 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
386 {
387 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
388
389 if (I387_ST0_REGNUM (tdep) < 0)
390 return 0;
391
392 return (I387_FCTRL_REGNUM (tdep) <= regnum
393 && regnum < I387_XMM0_REGNUM (tdep));
394 }
395
396 /* BNDr (raw) register? */
397
398 static int
399 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
400 {
401 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
402
403 if (I387_BND0R_REGNUM (tdep) < 0)
404 return 0;
405
406 regnum -= tdep->bnd0r_regnum;
407 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
408 }
409
410 /* BND control register? */
411
412 static int
413 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
414 {
415 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
416
417 if (I387_BNDCFGU_REGNUM (tdep) < 0)
418 return 0;
419
420 regnum -= I387_BNDCFGU_REGNUM (tdep);
421 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
422 }
423
424 /* PKRU register? */
425
426 bool
427 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
428 {
429 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
430 int pkru_regnum = tdep->pkru_regnum;
431
432 if (pkru_regnum < 0)
433 return false;
434
435 regnum -= pkru_regnum;
436 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
437 }
438
439 /* Return the name of register REGNUM, or the empty string if it is
440 an anonymous register. */
441
442 static const char *
443 i386_register_name (struct gdbarch *gdbarch, int regnum)
444 {
445 /* Hide the upper YMM registers. */
446 if (i386_ymmh_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper YMM16-31 registers. */
450 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
451 return "";
452
453 /* Hide the upper ZMM registers. */
454 if (i386_zmmh_regnum_p (gdbarch, regnum))
455 return "";
456
457 return tdesc_register_name (gdbarch, regnum);
458 }
459
460 /* Return the name of register REGNUM. */
461
462 const char *
463 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
464 {
465 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
466 if (i386_bnd_regnum_p (gdbarch, regnum))
467 return i386_bnd_names[regnum - tdep->bnd0_regnum];
468 if (i386_mmx_regnum_p (gdbarch, regnum))
469 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
470 else if (i386_ymm_regnum_p (gdbarch, regnum))
471 return i386_ymm_names[regnum - tdep->ymm0_regnum];
472 else if (i386_zmm_regnum_p (gdbarch, regnum))
473 return i386_zmm_names[regnum - tdep->zmm0_regnum];
474 else if (i386_byte_regnum_p (gdbarch, regnum))
475 return i386_byte_names[regnum - tdep->al_regnum];
476 else if (i386_word_regnum_p (gdbarch, regnum))
477 return i386_word_names[regnum - tdep->ax_regnum];
478
479 internal_error (_("invalid regnum"));
480 }
481
482 /* Convert a dbx register number REG to the appropriate register
483 number used by GDB. */
484
485 static int
486 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
487 {
488 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
489
490 /* This implements what GCC calls the "default" register map
491 (dbx_register_map[]). */
492
493 if (reg >= 0 && reg <= 7)
494 {
495 /* General-purpose registers. The debug info calls %ebp
496 register 4, and %esp register 5. */
497 if (reg == 4)
498 return 5;
499 else if (reg == 5)
500 return 4;
501 else return reg;
502 }
503 else if (reg >= 12 && reg <= 19)
504 {
505 /* Floating-point registers. */
506 return reg - 12 + I387_ST0_REGNUM (tdep);
507 }
508 else if (reg >= 21 && reg <= 28)
509 {
510 /* SSE registers. */
511 int ymm0_regnum = tdep->ymm0_regnum;
512
513 if (ymm0_regnum >= 0
514 && i386_xmm_regnum_p (gdbarch, reg))
515 return reg - 21 + ymm0_regnum;
516 else
517 return reg - 21 + I387_XMM0_REGNUM (tdep);
518 }
519 else if (reg >= 29 && reg <= 36)
520 {
521 /* MMX registers. */
522 return reg - 29 + I387_MM0_REGNUM (tdep);
523 }
524
525 /* This will hopefully provoke a warning. */
526 return gdbarch_num_cooked_regs (gdbarch);
527 }
528
529 /* Convert SVR4 DWARF register number REG to the appropriate register number
530 used by GDB. */
531
532 static int
533 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
534 {
535 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
536
537 /* This implements the GCC register map that tries to be compatible
538 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
539
540 /* The SVR4 register numbering includes %eip and %eflags, and
541 numbers the floating point registers differently. */
542 if (reg >= 0 && reg <= 9)
543 {
544 /* General-purpose registers. */
545 return reg;
546 }
547 else if (reg >= 11 && reg <= 18)
548 {
549 /* Floating-point registers. */
550 return reg - 11 + I387_ST0_REGNUM (tdep);
551 }
552 else if (reg >= 21 && reg <= 36)
553 {
554 /* The SSE and MMX registers have the same numbers as with dbx. */
555 return i386_dbx_reg_to_regnum (gdbarch, reg);
556 }
557
558 switch (reg)
559 {
560 case 37: return I387_FCTRL_REGNUM (tdep);
561 case 38: return I387_FSTAT_REGNUM (tdep);
562 case 39: return I387_MXCSR_REGNUM (tdep);
563 case 40: return I386_ES_REGNUM;
564 case 41: return I386_CS_REGNUM;
565 case 42: return I386_SS_REGNUM;
566 case 43: return I386_DS_REGNUM;
567 case 44: return I386_FS_REGNUM;
568 case 45: return I386_GS_REGNUM;
569 }
570
571 return -1;
572 }
573
574 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
575 num_regs + num_pseudo_regs for other debug formats. */
576
577 int
578 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
579 {
580 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
581
582 if (regnum == -1)
583 return gdbarch_num_cooked_regs (gdbarch);
584 return regnum;
585 }
586
587 \f
588
589 /* This is the variable that is set with "set disassembly-flavor", and
590 its legitimate values. */
591 static const char att_flavor[] = "att";
592 static const char intel_flavor[] = "intel";
593 static const char *const valid_flavors[] =
594 {
595 att_flavor,
596 intel_flavor,
597 NULL
598 };
599 static const char *disassembly_flavor = att_flavor;
600 \f
601
602 /* Use the program counter to determine the contents and size of a
603 breakpoint instruction. Return a pointer to a string of bytes that
604 encode a breakpoint instruction, store the length of the string in
605 *LEN and optionally adjust *PC to point to the correct memory
606 location for inserting the breakpoint.
607
608 On the i386 we have a single breakpoint that fits in a single byte
609 and can be inserted anywhere.
610
611 This function is 64-bit safe. */
612
613 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
614
615 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
616
617 \f
618 /* Displaced instruction handling. */
619
620 /* Skip the legacy instruction prefixes in INSN.
621 Not all prefixes are valid for any particular insn
622 but we needn't care, the insn will fault if it's invalid.
623 The result is a pointer to the first opcode byte,
624 or NULL if we run off the end of the buffer. */
625
626 static gdb_byte *
627 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
628 {
629 gdb_byte *end = insn + max_len;
630
631 while (insn < end)
632 {
633 switch (*insn)
634 {
635 case DATA_PREFIX_OPCODE:
636 case ADDR_PREFIX_OPCODE:
637 case CS_PREFIX_OPCODE:
638 case DS_PREFIX_OPCODE:
639 case ES_PREFIX_OPCODE:
640 case FS_PREFIX_OPCODE:
641 case GS_PREFIX_OPCODE:
642 case SS_PREFIX_OPCODE:
643 case LOCK_PREFIX_OPCODE:
644 case REPE_PREFIX_OPCODE:
645 case REPNE_PREFIX_OPCODE:
646 ++insn;
647 continue;
648 default:
649 return insn;
650 }
651 }
652
653 return NULL;
654 }
655
656 static int
657 i386_absolute_jmp_p (const gdb_byte *insn)
658 {
659 /* jmp far (absolute address in operand). */
660 if (insn[0] == 0xea)
661 return 1;
662
663 if (insn[0] == 0xff)
664 {
665 /* jump near, absolute indirect (/4). */
666 if ((insn[1] & 0x38) == 0x20)
667 return 1;
668
669 /* jump far, absolute indirect (/5). */
670 if ((insn[1] & 0x38) == 0x28)
671 return 1;
672 }
673
674 return 0;
675 }
676
677 /* Return non-zero if INSN is a jump, zero otherwise. */
678
679 static int
680 i386_jmp_p (const gdb_byte *insn)
681 {
682 /* jump short, relative. */
683 if (insn[0] == 0xeb)
684 return 1;
685
686 /* jump near, relative. */
687 if (insn[0] == 0xe9)
688 return 1;
689
690 return i386_absolute_jmp_p (insn);
691 }
692
693 static int
694 i386_absolute_call_p (const gdb_byte *insn)
695 {
696 /* call far, absolute. */
697 if (insn[0] == 0x9a)
698 return 1;
699
700 if (insn[0] == 0xff)
701 {
702 /* Call near, absolute indirect (/2). */
703 if ((insn[1] & 0x38) == 0x10)
704 return 1;
705
706 /* Call far, absolute indirect (/3). */
707 if ((insn[1] & 0x38) == 0x18)
708 return 1;
709 }
710
711 return 0;
712 }
713
714 static int
715 i386_ret_p (const gdb_byte *insn)
716 {
717 switch (insn[0])
718 {
719 case 0xc2: /* ret near, pop N bytes. */
720 case 0xc3: /* ret near */
721 case 0xca: /* ret far, pop N bytes. */
722 case 0xcb: /* ret far */
723 case 0xcf: /* iret */
724 return 1;
725
726 default:
727 return 0;
728 }
729 }
730
731 static int
732 i386_call_p (const gdb_byte *insn)
733 {
734 if (i386_absolute_call_p (insn))
735 return 1;
736
737 /* call near, relative. */
738 if (insn[0] == 0xe8)
739 return 1;
740
741 return 0;
742 }
743
744 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
745 length in bytes. Otherwise, return zero. */
746
747 static int
748 i386_syscall_p (const gdb_byte *insn, int *lengthp)
749 {
750 /* Is it 'int $0x80'? */
751 if ((insn[0] == 0xcd && insn[1] == 0x80)
752 /* Or is it 'sysenter'? */
753 || (insn[0] == 0x0f && insn[1] == 0x34)
754 /* Or is it 'syscall'? */
755 || (insn[0] == 0x0f && insn[1] == 0x05))
756 {
757 *lengthp = 2;
758 return 1;
759 }
760
761 return 0;
762 }
763
764 /* The gdbarch insn_is_call method. */
765
766 static int
767 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
768 {
769 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
770
771 read_code (addr, buf, I386_MAX_INSN_LEN);
772 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
773
774 return i386_call_p (insn);
775 }
776
777 /* The gdbarch insn_is_ret method. */
778
779 static int
780 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
781 {
782 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
783
784 read_code (addr, buf, I386_MAX_INSN_LEN);
785 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
786
787 return i386_ret_p (insn);
788 }
789
790 /* The gdbarch insn_is_jump method. */
791
792 static int
793 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
794 {
795 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
796
797 read_code (addr, buf, I386_MAX_INSN_LEN);
798 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
799
800 return i386_jmp_p (insn);
801 }
802
803 /* Some kernels may run one past a syscall insn, so we have to cope. */
804
805 displaced_step_copy_insn_closure_up
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
812 (new i386_displaced_step_copy_insn_closure (len));
813 gdb_byte *buf = closure->buf.data ();
814
815 read_memory (from, buf, len);
816
817 /* GDB may get control back after the insn after the syscall.
818 Presumably this is a kernel bug.
819 If this is a syscall, make sure there's a nop afterwards. */
820 {
821 int syscall_length;
822 gdb_byte *insn;
823
824 insn = i386_skip_prefixes (buf, len);
825 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
826 insn[syscall_length] = NOP_OPCODE;
827 }
828
829 write_memory (to, buf, len);
830
831 displaced_debug_printf ("%s->%s: %s",
832 paddress (gdbarch, from), paddress (gdbarch, to),
833 bytes_to_string (buf, len).c_str ());
834
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_copy_insn_closure_up (closure.release ());
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_copy_insn_closure *closure_,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs, bool completed_p)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 i386_displaced_step_copy_insn_closure *closure
857 = (i386_displaced_step_copy_insn_closure *) closure_;
858 gdb_byte *insn = closure->buf.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
863 paddress (gdbarch, from), paddress (gdbarch, to),
864 insn[0], insn[1]);
865
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
869
870 /* Relocate the %eip, if necessary. */
871
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
874 {
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
877 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
880 if (opcode != NULL)
881 insn = opcode;
882 }
883
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (!completed_p
890 || (!i386_absolute_jmp_p (insn)
891 && !i386_absolute_call_p (insn)
892 && !i386_ret_p (insn)))
893 {
894 int insn_len;
895
896 CORE_ADDR pc = regcache_read_pc (regs);
897
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
902
903 But most system calls don't, and we do need to relocate %eip.
904
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
911 system calls. */
912 if (i386_syscall_p (insn, &insn_len)
913 && pc != to + (insn - insn_start) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures it's a nop,
917 we add one to the length for it. */
918 && pc != to + (insn - insn_start) + insn_len + 1)
919 displaced_debug_printf ("syscall changed %%eip; not relocating");
920 else
921 {
922 ULONGEST eip = (pc - insn_offset) & 0xffffffffUL;
923
924 /* If we just stepped over a breakpoint insn, we don't backup
925 the pc on purpose; this is to match behaviour without
926 stepping. */
927
928 regcache_write_pc (regs, eip);
929
930 displaced_debug_printf ("relocated %%eip from %s to %s",
931 paddress (gdbarch, pc),
932 paddress (gdbarch, eip));
933 }
934 }
935
936 /* If the instruction was PUSHFL, then the TF bit will be set in the
937 pushed value, and should be cleared. We'll leave this for later,
938 since GDB already messes up the TF flag when stepping over a
939 pushfl. */
940
941 /* If the instruction was a call, the return address now atop the
942 stack is the address following the copied instruction. We need
943 to make it the address following the original instruction. */
944 if (completed_p && i386_call_p (insn))
945 {
946 ULONGEST esp;
947 ULONGEST retaddr;
948 const ULONGEST retaddr_len = 4;
949
950 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
951 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
952 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
953 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
954
955 displaced_debug_printf ("relocated return addr at %s to %s",
956 paddress (gdbarch, esp),
957 paddress (gdbarch, retaddr));
958 }
959 }
960
961 static void
962 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
963 {
964 target_write_memory (*to, buf, len);
965 *to += len;
966 }
967
968 static void
969 i386_relocate_instruction (struct gdbarch *gdbarch,
970 CORE_ADDR *to, CORE_ADDR oldloc)
971 {
972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
973 gdb_byte buf[I386_MAX_INSN_LEN];
974 int offset = 0, rel32, newrel;
975 int insn_length;
976 gdb_byte *insn = buf;
977
978 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
979
980 insn_length = gdb_buffered_insn_length (gdbarch, insn,
981 I386_MAX_INSN_LEN, oldloc);
982
983 /* Get past the prefixes. */
984 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
985
986 /* Adjust calls with 32-bit relative addresses as push/jump, with
987 the address pushed being the location where the original call in
988 the user program would return to. */
989 if (insn[0] == 0xe8)
990 {
991 gdb_byte push_buf[16];
992 unsigned int ret_addr;
993
994 /* Where "ret" in the original code will return to. */
995 ret_addr = oldloc + insn_length;
996 push_buf[0] = 0x68; /* pushq $... */
997 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
998 /* Push the push. */
999 append_insns (to, 5, push_buf);
1000
1001 /* Convert the relative call to a relative jump. */
1002 insn[0] = 0xe9;
1003
1004 /* Adjust the destination offset. */
1005 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1006 newrel = (oldloc - *to) + rel32;
1007 store_signed_integer (insn + 1, 4, byte_order, newrel);
1008
1009 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1010 hex_string (rel32), paddress (gdbarch, oldloc),
1011 hex_string (newrel), paddress (gdbarch, *to));
1012
1013 /* Write the adjusted jump into its displaced location. */
1014 append_insns (to, 5, insn);
1015 return;
1016 }
1017
1018 /* Adjust jumps with 32-bit relative addresses. Calls are already
1019 handled above. */
1020 if (insn[0] == 0xe9)
1021 offset = 1;
1022 /* Adjust conditional jumps. */
1023 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1024 offset = 2;
1025
1026 if (offset)
1027 {
1028 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1029 newrel = (oldloc - *to) + rel32;
1030 store_signed_integer (insn + offset, 4, byte_order, newrel);
1031 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1032 hex_string (rel32), paddress (gdbarch, oldloc),
1033 hex_string (newrel), paddress (gdbarch, *to));
1034 }
1035
1036 /* Write the adjusted instructions into their displaced
1037 location. */
1038 append_insns (to, insn_length, buf);
1039 }
1040
1041 \f
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1044 #endif
1045
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1049
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1053
1054 struct i386_frame_cache
1055 {
1056 /* Base address. */
1057 CORE_ADDR base;
1058 int base_p;
1059 LONGEST sp_offset;
1060 CORE_ADDR pc;
1061
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1064 CORE_ADDR saved_sp;
1065 int saved_sp_reg;
1066 int pc_in_eax;
1067
1068 /* Stack space reserved for local variables. */
1069 long locals;
1070 };
1071
1072 /* Allocate and initialize a frame cache. */
1073
1074 static struct i386_frame_cache *
1075 i386_alloc_frame_cache (void)
1076 {
1077 struct i386_frame_cache *cache;
1078 int i;
1079
1080 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1081
1082 /* Base address. */
1083 cache->base_p = 0;
1084 cache->base = 0;
1085 cache->sp_offset = -4;
1086 cache->pc = 0;
1087
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091 cache->saved_regs[i] = -1;
1092 cache->saved_sp = 0;
1093 cache->saved_sp_reg = -1;
1094 cache->pc_in_eax = 0;
1095
1096 /* Frameless until proven otherwise. */
1097 cache->locals = -1;
1098
1099 return cache;
1100 }
1101
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1104
1105 static CORE_ADDR
1106 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1107 {
1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1109 gdb_byte op;
1110 long delta = 0;
1111 int data16 = 0;
1112
1113 if (target_read_code (pc, &op, 1))
1114 return pc;
1115
1116 if (op == 0x66)
1117 {
1118 data16 = 1;
1119
1120 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1121 }
1122
1123 switch (op)
1124 {
1125 case 0xe9:
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1127 if (data16)
1128 {
1129 delta = read_memory_integer (pc + 2, 2, byte_order);
1130
1131 /* Include the size of the jmp instruction (including the
1132 0x66 prefix). */
1133 delta += 4;
1134 }
1135 else
1136 {
1137 delta = read_memory_integer (pc + 1, 4, byte_order);
1138
1139 /* Include the size of the jmp instruction. */
1140 delta += 5;
1141 }
1142 break;
1143 case 0xeb:
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1146
1147 delta += data16 + 2;
1148 break;
1149 }
1150
1151 return pc + delta;
1152 }
1153
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1159
1160 static CORE_ADDR
1161 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 struct i386_frame_cache *cache)
1163 {
1164 /* Functions that return a structure or union start with:
1165
1166 popl %eax 0x58
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1169
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1176 gdb_byte buf[4];
1177 gdb_byte op;
1178
1179 if (current_pc <= pc)
1180 return pc;
1181
1182 if (target_read_code (pc, &op, 1))
1183 return pc;
1184
1185 if (op != 0x58) /* popl %eax */
1186 return pc;
1187
1188 if (target_read_code (pc + 1, buf, 4))
1189 return pc;
1190
1191 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1192 return pc;
1193
1194 if (current_pc == pc)
1195 {
1196 cache->sp_offset += 4;
1197 return current_pc;
1198 }
1199
1200 if (current_pc == pc + 1)
1201 {
1202 cache->pc_in_eax = 1;
1203 return current_pc;
1204 }
1205
1206 if (buf[1] == proto1[1])
1207 return pc + 4;
1208 else
1209 return pc + 5;
1210 }
1211
1212 static CORE_ADDR
1213 i386_skip_probe (CORE_ADDR pc)
1214 {
1215 /* A function may start with
1216
1217 pushl constant
1218 call _probe
1219 addl $4, %esp
1220
1221 followed by
1222
1223 pushl %ebp
1224
1225 etc. */
1226 gdb_byte buf[8];
1227 gdb_byte op;
1228
1229 if (target_read_code (pc, &op, 1))
1230 return pc;
1231
1232 if (op == 0x68 || op == 0x6a)
1233 {
1234 int delta;
1235
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1238 if (op == 0x68)
1239 delta = 5;
1240 else
1241 delta = 2;
1242
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc + delta, buf, sizeof (buf));
1246 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1247 pc += delta + sizeof (buf);
1248 }
1249
1250 return pc;
1251 }
1252
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1258
1259 static CORE_ADDR
1260 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 struct i386_frame_cache *cache)
1262 {
1263 /* There are 2 code sequences to re-align stack before the frame
1264 gets set up:
1265
1266 1. Use a caller-saved saved register:
1267
1268 leal 4(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 2. Use a callee-saved saved register:
1273
1274 pushl %reg
1275 leal 8(%esp), %reg
1276 andl $-XXX, %esp
1277 pushl -4(%reg)
1278
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1280
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1283 */
1284
1285 gdb_byte buf[14];
1286 int reg;
1287 int offset, offset_and;
1288 static int regnums[8] = {
1289 I386_EAX_REGNUM, /* %eax */
1290 I386_ECX_REGNUM, /* %ecx */
1291 I386_EDX_REGNUM, /* %edx */
1292 I386_EBX_REGNUM, /* %ebx */
1293 I386_ESP_REGNUM, /* %esp */
1294 I386_EBP_REGNUM, /* %ebp */
1295 I386_ESI_REGNUM, /* %esi */
1296 I386_EDI_REGNUM /* %edi */
1297 };
1298
1299 if (target_read_code (pc, buf, sizeof buf))
1300 return pc;
1301
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1305 {
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf[1] & 0xc7) != 0x44)
1308 return pc;
1309
1310 /* REG has register number. */
1311 reg = (buf[1] >> 3) & 7;
1312 offset = 4;
1313 }
1314 else
1315 {
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf[0] & 0xf8) != 0x50)
1319 return pc;
1320
1321 /* Get register. */
1322 reg = buf[0] & 0x7;
1323
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1326 return pc;
1327
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf[2] & 0xc7) != 0x44)
1330 return pc;
1331
1332 /* REG has register number. Registers in pushl and leal have to
1333 be the same. */
1334 if (reg != ((buf[2] >> 3) & 7))
1335 return pc;
1336
1337 offset = 5;
1338 }
1339
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg == 4 || reg == 5)
1342 return pc;
1343
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf[offset + 1] != 0xe4
1346 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1347 return pc;
1348
1349 offset_and = offset;
1350 offset += buf[offset] == 0x81 ? 6 : 3;
1351
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf[offset] != 0xff
1355 || buf[offset + 2] != 0xfc
1356 || (buf[offset + 1] & 0xf8) != 0x70)
1357 return pc;
1358
1359 /* R/M has register. Registers in leal and pushl have to be the
1360 same. */
1361 if (reg != (buf[offset + 1] & 7))
1362 return pc;
1363
1364 if (current_pc > pc + offset_and)
1365 cache->saved_sp_reg = regnums[reg];
1366
1367 return std::min (pc + offset + 3, current_pc);
1368 }
1369
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1372
1373 /* Instruction description. */
1374 struct i386_insn
1375 {
1376 size_t len;
1377 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1379 };
1380
1381 /* Return whether instruction at PC matches PATTERN. */
1382
1383 static int
1384 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1385 {
1386 gdb_byte op;
1387
1388 if (target_read_code (pc, &op, 1))
1389 return 0;
1390
1391 if ((op & pattern.mask[0]) == pattern.insn[0])
1392 {
1393 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394 int insn_matched = 1;
1395 size_t i;
1396
1397 gdb_assert (pattern.len > 1);
1398 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1399
1400 if (target_read_code (pc + 1, buf, pattern.len - 1))
1401 return 0;
1402
1403 for (i = 1; i < pattern.len; i++)
1404 {
1405 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1406 insn_matched = 0;
1407 }
1408 return insn_matched;
1409 }
1410 return 0;
1411 }
1412
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1415 NULL. */
1416
1417 static struct i386_insn *
1418 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1419 {
1420 struct i386_insn *pattern;
1421
1422 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1423 {
1424 if (i386_match_pattern (pc, *pattern))
1425 return pattern;
1426 }
1427
1428 return NULL;
1429 }
1430
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1433
1434 static int
1435 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 {
1437 CORE_ADDR current_pc;
1438 int ix, i;
1439 struct i386_insn *insn;
1440
1441 insn = i386_match_insn (pc, insn_patterns);
1442 if (insn == NULL)
1443 return 0;
1444
1445 current_pc = pc;
1446 ix = insn - insn_patterns;
1447 for (i = ix - 1; i >= 0; i--)
1448 {
1449 current_pc -= insn_patterns[i].len;
1450
1451 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1452 return 0;
1453 }
1454
1455 current_pc = pc + insn->len;
1456 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1457 {
1458 if (!i386_match_pattern (current_pc, *insn))
1459 return 0;
1460
1461 current_pc += insn->len;
1462 }
1463
1464 return 1;
1465 }
1466
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1471 touched. */
1472
1473 static i386_insn i386_frame_setup_skip_insns[] =
1474 {
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1476
1477 ??? Should we handle 16-bit operand-sizes here? */
1478
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1488
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1491
1492 ??? Should we handle SIB addressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1501
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1506
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519 { 0 }
1520 };
1521
1522 /* Check whether PC points to an endbr32 instruction. */
1523 static CORE_ADDR
1524 i386_skip_endbr (CORE_ADDR pc)
1525 {
1526 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1527
1528 gdb_byte buf[sizeof (endbr32)];
1529
1530 /* Stop there if we can't read the code */
1531 if (target_read_code (pc, buf, sizeof (endbr32)))
1532 return pc;
1533
1534 /* If the instruction isn't an endbr32, stop */
1535 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1536 return pc;
1537
1538 return pc + sizeof (endbr32);
1539 }
1540
1541 /* Check whether PC points to a no-op instruction. */
1542 static CORE_ADDR
1543 i386_skip_noop (CORE_ADDR pc)
1544 {
1545 gdb_byte op;
1546 int check = 1;
1547
1548 if (target_read_code (pc, &op, 1))
1549 return pc;
1550
1551 while (check)
1552 {
1553 check = 0;
1554 /* Ignore `nop' instruction. */
1555 if (op == 0x90)
1556 {
1557 pc += 1;
1558 if (target_read_code (pc, &op, 1))
1559 return pc;
1560 check = 1;
1561 }
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1572
1573 else if (op == 0x8b)
1574 {
1575 if (target_read_code (pc + 1, &op, 1))
1576 return pc;
1577
1578 if (op == 0xff)
1579 {
1580 pc += 2;
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 check = 1;
1585 }
1586 }
1587 }
1588 return pc;
1589 }
1590
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
1595
1596 static CORE_ADDR
1597 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 CORE_ADDR pc, CORE_ADDR limit,
1599 struct i386_frame_cache *cache)
1600 {
1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602 struct i386_insn *insn;
1603 gdb_byte op;
1604 int skip = 0;
1605
1606 if (limit <= pc)
1607 return limit;
1608
1609 if (target_read_code (pc, &op, 1))
1610 return pc;
1611
1612 if (op == 0x55) /* pushl %ebp */
1613 {
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
1616 cache->saved_regs[I386_EBP_REGNUM] = 0;
1617 cache->sp_offset += 4;
1618 pc++;
1619
1620 /* If that's all, return now. */
1621 if (limit <= pc)
1622 return limit;
1623
1624 /* Check for some special instructions that might be migrated by
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
1627 %ecx and %edx, so while the number of possibilities is sheer,
1628 it is limited.
1629
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
1632 while (pc + skip < limit)
1633 {
1634 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 if (insn == NULL)
1636 break;
1637
1638 skip += insn->len;
1639 }
1640
1641 /* If that's all, return now. */
1642 if (limit <= pc + skip)
1643 return limit;
1644
1645 if (target_read_code (pc + skip, &op, 1))
1646 return pc + skip;
1647
1648 /* The i386 prologue looks like
1649
1650 push %ebp
1651 mov %esp,%ebp
1652 sub $0x10,%esp
1653
1654 and a different prologue can be generated for atom.
1655
1656 push %ebp
1657 lea (%esp),%ebp
1658 lea -0x10(%esp),%esp
1659
1660 We handle both of them here. */
1661
1662 switch (op)
1663 {
1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1665 case 0x8b:
1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1667 != 0xec)
1668 return pc;
1669 pc += (skip + 2);
1670 break;
1671 case 0x89:
1672 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 != 0xe5)
1674 return pc;
1675 pc += (skip + 2);
1676 break;
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1678 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1679 != 0x242c)
1680 return pc;
1681 pc += (skip + 3);
1682 break;
1683 default:
1684 return pc;
1685 }
1686
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
1691 cache->locals = 0;
1692
1693 /* If that's all, return now. */
1694 if (limit <= pc)
1695 return limit;
1696
1697 /* Check for stack adjustment
1698
1699 subl $XXX, %esp
1700 or
1701 lea -XXX(%esp),%esp
1702
1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 reg, so we don't have to worry about a data16 prefix. */
1705 if (target_read_code (pc, &op, 1))
1706 return pc;
1707 if (op == 0x83)
1708 {
1709 /* `subl' with 8-bit immediate. */
1710 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1711 /* Some instruction starting with 0x83 other than `subl'. */
1712 return pc;
1713
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
1716 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1717 return pc + 3;
1718 }
1719 else if (op == 0x81)
1720 {
1721 /* Maybe it is `subl' with a 32-bit immediate. */
1722 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1723 /* Some instruction starting with 0x81 other than `subl'. */
1724 return pc;
1725
1726 /* It is `subl' with a 32-bit immediate. */
1727 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1728 return pc + 6;
1729 }
1730 else if (op == 0x8d)
1731 {
1732 /* The ModR/M byte is 0x64. */
1733 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1734 return pc;
1735 /* 'lea' with 8-bit displacement. */
1736 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1737 return pc + 4;
1738 }
1739 else
1740 {
1741 /* Some instruction other than `subl' nor 'lea'. */
1742 return pc;
1743 }
1744 }
1745 else if (op == 0xc8) /* enter */
1746 {
1747 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1748 return pc + 4;
1749 }
1750
1751 return pc;
1752 }
1753
1754 /* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
1758
1759 static CORE_ADDR
1760 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 struct i386_frame_cache *cache)
1762 {
1763 CORE_ADDR offset = 0;
1764 gdb_byte op;
1765 int i;
1766
1767 if (cache->locals > 0)
1768 offset -= cache->locals;
1769 for (i = 0; i < 8 && pc < current_pc; i++)
1770 {
1771 if (target_read_code (pc, &op, 1))
1772 return pc;
1773 if (op < 0x50 || op > 0x57)
1774 break;
1775
1776 offset -= 4;
1777 cache->saved_regs[op - 0x50] = offset;
1778 cache->sp_offset += 4;
1779 pc++;
1780 }
1781
1782 return pc;
1783 }
1784
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
1788
1789 We handle these cases:
1790
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1793
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1797
1798 Local space is allocated just below the saved %ebp by either the
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
1802
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1808
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
1811
1812 static CORE_ADDR
1813 i386_analyze_prologue (struct gdbarch *gdbarch,
1814 CORE_ADDR pc, CORE_ADDR current_pc,
1815 struct i386_frame_cache *cache)
1816 {
1817 pc = i386_skip_endbr (pc);
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang and newer Intel
1853 compilers to emit usable line notes. */
1854 if (post_prologue_pc
1855 && (cust != NULL
1856 && cust->producer () != NULL
1857 && (producer_is_llvm (cust->producer ())
1858 || producer_is_icc_ge_19 (cust->producer ()))))
1859 return std::max (start_pc, post_prologue_pc);
1860 }
1861
1862 cache.locals = -1;
1863 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1864 if (cache.locals < 0)
1865 return start_pc;
1866
1867 /* Found valid frame setup. */
1868
1869 /* The native cc on SVR4 in -K PIC mode inserts the following code
1870 to get the address of the global offset table (GOT) into register
1871 %ebx:
1872
1873 call 0x0
1874 popl %ebx
1875 movl %ebx,x(%ebp) (optional)
1876 addl y,%ebx
1877
1878 This code is with the rest of the prologue (at the end of the
1879 function), so we have to skip it to get to the first real
1880 instruction at the start of the function. */
1881
1882 for (i = 0; i < 6; i++)
1883 {
1884 if (target_read_code (pc + i, &op, 1))
1885 return pc;
1886
1887 if (pic_pat[i] != op)
1888 break;
1889 }
1890 if (i == 6)
1891 {
1892 int delta = 6;
1893
1894 if (target_read_code (pc + delta, &op, 1))
1895 return pc;
1896
1897 if (op == 0x89) /* movl %ebx, x(%ebp) */
1898 {
1899 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1900
1901 if (op == 0x5d) /* One byte offset from %ebp. */
1902 delta += 3;
1903 else if (op == 0x9d) /* Four byte offset from %ebp. */
1904 delta += 6;
1905 else /* Unexpected instruction. */
1906 delta = 0;
1907
1908 if (target_read_code (pc + delta, &op, 1))
1909 return pc;
1910 }
1911
1912 /* addl y,%ebx */
1913 if (delta > 0 && op == 0x81
1914 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1915 == 0xc3)
1916 {
1917 pc += delta + 6;
1918 }
1919 }
1920
1921 /* If the function starts with a branch (to startup code at the end)
1922 the last instruction should bring us back to the first
1923 instruction of the real code. */
1924 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1925 pc = i386_follow_jump (gdbarch, pc);
1926
1927 return pc;
1928 }
1929
1930 /* Check that the code pointed to by PC corresponds to a call to
1931 __main, skip it if so. Return PC otherwise. */
1932
1933 CORE_ADDR
1934 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1935 {
1936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937 gdb_byte op;
1938
1939 if (target_read_code (pc, &op, 1))
1940 return pc;
1941 if (op == 0xe8)
1942 {
1943 gdb_byte buf[4];
1944
1945 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1946 {
1947 /* Make sure address is computed correctly as a 32bit
1948 integer even if CORE_ADDR is 64 bit wide. */
1949 struct bound_minimal_symbol s;
1950 CORE_ADDR call_dest;
1951
1952 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1953 call_dest = call_dest & 0xffffffffU;
1954 s = lookup_minimal_symbol_by_pc (call_dest);
1955 if (s.minsym != NULL
1956 && s.minsym->linkage_name () != NULL
1957 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1958 pc += 5;
1959 }
1960 }
1961
1962 return pc;
1963 }
1964
1965 /* This function is 64-bit safe. */
1966
1967 static CORE_ADDR
1968 i386_unwind_pc (struct gdbarch *gdbarch, frame_info_ptr next_frame)
1969 {
1970 gdb_byte buf[8];
1971
1972 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1973 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1974 }
1975 \f
1976
1977 /* Normal frames. */
1978
1979 static void
1980 i386_frame_cache_1 (frame_info_ptr this_frame,
1981 struct i386_frame_cache *cache)
1982 {
1983 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1985 gdb_byte buf[4];
1986 int i;
1987
1988 cache->pc = get_frame_func (this_frame);
1989
1990 /* In principle, for normal frames, %ebp holds the frame pointer,
1991 which holds the base address for the current stack frame.
1992 However, for functions that don't need it, the frame pointer is
1993 optional. For these "frameless" functions the frame pointer is
1994 actually the frame pointer of the calling frame. Signal
1995 trampolines are just a special case of a "frameless" function.
1996 They (usually) share their frame pointer with the frame that was
1997 in progress when the signal occurred. */
1998
1999 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
2000 cache->base = extract_unsigned_integer (buf, 4, byte_order);
2001 if (cache->base == 0)
2002 {
2003 cache->base_p = 1;
2004 return;
2005 }
2006
2007 /* For normal frames, %eip is stored at 4(%ebp). */
2008 cache->saved_regs[I386_EIP_REGNUM] = 4;
2009
2010 if (cache->pc != 0)
2011 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2012 cache);
2013
2014 if (cache->locals < 0)
2015 {
2016 /* We didn't find a valid frame, which means that CACHE->base
2017 currently holds the frame pointer for our calling frame. If
2018 we're at the start of a function, or somewhere half-way its
2019 prologue, the function's frame probably hasn't been fully
2020 setup yet. Try to reconstruct the base address for the stack
2021 frame by looking at the stack pointer. For truly "frameless"
2022 functions this might work too. */
2023
2024 if (cache->saved_sp_reg != -1)
2025 {
2026 /* Saved stack pointer has been saved. */
2027 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2028 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2029
2030 /* We're halfway aligning the stack. */
2031 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2032 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2033
2034 /* This will be added back below. */
2035 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2036 }
2037 else if (cache->pc != 0
2038 || target_read_code (get_frame_pc (this_frame), buf, 1))
2039 {
2040 /* We're in a known function, but did not find a frame
2041 setup. Assume that the function does not use %ebp.
2042 Alternatively, we may have jumped to an invalid
2043 address; in that case there is definitely no new
2044 frame in %ebp. */
2045 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2046 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2047 + cache->sp_offset;
2048 }
2049 else
2050 /* We're in an unknown function. We could not find the start
2051 of the function to analyze the prologue; our best option is
2052 to assume a typical frame layout with the caller's %ebp
2053 saved. */
2054 cache->saved_regs[I386_EBP_REGNUM] = 0;
2055 }
2056
2057 if (cache->saved_sp_reg != -1)
2058 {
2059 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2060 register may be unavailable). */
2061 if (cache->saved_sp == 0
2062 && deprecated_frame_register_read (this_frame,
2063 cache->saved_sp_reg, buf))
2064 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2065 }
2066 /* Now that we have the base address for the stack frame we can
2067 calculate the value of %esp in the calling frame. */
2068 else if (cache->saved_sp == 0)
2069 cache->saved_sp = cache->base + 8;
2070
2071 /* Adjust all the saved registers such that they contain addresses
2072 instead of offsets. */
2073 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2074 if (cache->saved_regs[i] != -1)
2075 cache->saved_regs[i] += cache->base;
2076
2077 cache->base_p = 1;
2078 }
2079
2080 static struct i386_frame_cache *
2081 i386_frame_cache (frame_info_ptr this_frame, void **this_cache)
2082 {
2083 struct i386_frame_cache *cache;
2084
2085 if (*this_cache)
2086 return (struct i386_frame_cache *) *this_cache;
2087
2088 cache = i386_alloc_frame_cache ();
2089 *this_cache = cache;
2090
2091 try
2092 {
2093 i386_frame_cache_1 (this_frame, cache);
2094 }
2095 catch (const gdb_exception_error &ex)
2096 {
2097 if (ex.error != NOT_AVAILABLE_ERROR)
2098 throw;
2099 }
2100
2101 return cache;
2102 }
2103
2104 static void
2105 i386_frame_this_id (frame_info_ptr this_frame, void **this_cache,
2106 struct frame_id *this_id)
2107 {
2108 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2109
2110 if (!cache->base_p)
2111 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2112 else if (cache->base == 0)
2113 {
2114 /* This marks the outermost frame. */
2115 }
2116 else
2117 {
2118 /* See the end of i386_push_dummy_call. */
2119 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2120 }
2121 }
2122
2123 static enum unwind_stop_reason
2124 i386_frame_unwind_stop_reason (frame_info_ptr this_frame,
2125 void **this_cache)
2126 {
2127 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2128
2129 if (!cache->base_p)
2130 return UNWIND_UNAVAILABLE;
2131
2132 /* This marks the outermost frame. */
2133 if (cache->base == 0)
2134 return UNWIND_OUTERMOST;
2135
2136 return UNWIND_NO_REASON;
2137 }
2138
2139 static struct value *
2140 i386_frame_prev_register (frame_info_ptr this_frame, void **this_cache,
2141 int regnum)
2142 {
2143 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2144
2145 gdb_assert (regnum >= 0);
2146
2147 /* The System V ABI says that:
2148
2149 "The flags register contains the system flags, such as the
2150 direction flag and the carry flag. The direction flag must be
2151 set to the forward (that is, zero) direction before entry and
2152 upon exit from a function. Other user flags have no specified
2153 role in the standard calling sequence and are not preserved."
2154
2155 To guarantee the "upon exit" part of that statement we fake a
2156 saved flags register that has its direction flag cleared.
2157
2158 Note that GCC doesn't seem to rely on the fact that the direction
2159 flag is cleared after a function return; it always explicitly
2160 clears the flag before operations where it matters.
2161
2162 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2163 right thing to do. The way we fake the flags register here makes
2164 it impossible to change it. */
2165
2166 if (regnum == I386_EFLAGS_REGNUM)
2167 {
2168 ULONGEST val;
2169
2170 val = get_frame_register_unsigned (this_frame, regnum);
2171 val &= ~(1 << 10);
2172 return frame_unwind_got_constant (this_frame, regnum, val);
2173 }
2174
2175 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2176 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2177
2178 if (regnum == I386_ESP_REGNUM
2179 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2180 {
2181 /* If the SP has been saved, but we don't know where, then this
2182 means that SAVED_SP_REG register was found unavailable back
2183 when we built the cache. */
2184 if (cache->saved_sp == 0)
2185 return frame_unwind_got_register (this_frame, regnum,
2186 cache->saved_sp_reg);
2187 else
2188 return frame_unwind_got_constant (this_frame, regnum,
2189 cache->saved_sp);
2190 }
2191
2192 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2193 return frame_unwind_got_memory (this_frame, regnum,
2194 cache->saved_regs[regnum]);
2195
2196 return frame_unwind_got_register (this_frame, regnum, regnum);
2197 }
2198
2199 static const struct frame_unwind i386_frame_unwind =
2200 {
2201 "i386 prologue",
2202 NORMAL_FRAME,
2203 i386_frame_unwind_stop_reason,
2204 i386_frame_this_id,
2205 i386_frame_prev_register,
2206 NULL,
2207 default_frame_sniffer
2208 };
2209
2210 /* Normal frames, but in a function epilogue. */
2211
2212 /* Implement the stack_frame_destroyed_p gdbarch method.
2213
2214 The epilogue is defined here as the 'ret' instruction, which will
2215 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2216 the function's stack frame. */
2217
2218 static int
2219 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2220 {
2221 gdb_byte insn;
2222 if (target_read_memory (pc, &insn, 1))
2223 return 0; /* Can't read memory at pc. */
2224
2225 if (insn != 0xc3) /* 'ret' instruction. */
2226 return 0;
2227
2228 return 1;
2229 }
2230
2231 static int
2232 i386_epilogue_frame_sniffer_1 (const struct frame_unwind *self,
2233 frame_info_ptr this_frame,
2234 void **this_prologue_cache, bool override_p)
2235 {
2236 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2237 CORE_ADDR pc = get_frame_pc (this_frame);
2238
2239 if (frame_relative_level (this_frame) != 0)
2240 /* We're not in the inner frame, so assume we're not in an epilogue. */
2241 return 0;
2242
2243 bool unwind_valid_p
2244 = compunit_epilogue_unwind_valid (find_pc_compunit_symtab (pc));
2245 if (override_p)
2246 {
2247 if (unwind_valid_p)
2248 /* Don't override the symtab unwinders, skip
2249 "i386 epilogue override". */
2250 return 0;
2251 }
2252 else
2253 {
2254 if (!unwind_valid_p)
2255 /* "i386 epilogue override" unwinder already ran, skip
2256 "i386 epilogue". */
2257 return 0;
2258 }
2259
2260 /* Check whether we're in an epilogue. */
2261 return i386_stack_frame_destroyed_p (gdbarch, pc);
2262 }
2263
2264 static int
2265 i386_epilogue_override_frame_sniffer (const struct frame_unwind *self,
2266 frame_info_ptr this_frame,
2267 void **this_prologue_cache)
2268 {
2269 return i386_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache,
2270 true);
2271 }
2272
2273 static int
2274 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2275 frame_info_ptr this_frame,
2276 void **this_prologue_cache)
2277 {
2278 return i386_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache,
2279 false);
2280 }
2281
2282 static struct i386_frame_cache *
2283 i386_epilogue_frame_cache (frame_info_ptr this_frame, void **this_cache)
2284 {
2285 struct i386_frame_cache *cache;
2286 CORE_ADDR sp;
2287
2288 if (*this_cache)
2289 return (struct i386_frame_cache *) *this_cache;
2290
2291 cache = i386_alloc_frame_cache ();
2292 *this_cache = cache;
2293
2294 try
2295 {
2296 cache->pc = get_frame_func (this_frame);
2297
2298 /* At this point the stack looks as if we just entered the
2299 function, with the return address at the top of the
2300 stack. */
2301 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2302 cache->base = sp + cache->sp_offset;
2303 cache->saved_sp = cache->base + 8;
2304 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2305
2306 cache->base_p = 1;
2307 }
2308 catch (const gdb_exception_error &ex)
2309 {
2310 if (ex.error != NOT_AVAILABLE_ERROR)
2311 throw;
2312 }
2313
2314 return cache;
2315 }
2316
2317 static enum unwind_stop_reason
2318 i386_epilogue_frame_unwind_stop_reason (frame_info_ptr this_frame,
2319 void **this_cache)
2320 {
2321 struct i386_frame_cache *cache =
2322 i386_epilogue_frame_cache (this_frame, this_cache);
2323
2324 if (!cache->base_p)
2325 return UNWIND_UNAVAILABLE;
2326
2327 return UNWIND_NO_REASON;
2328 }
2329
2330 static void
2331 i386_epilogue_frame_this_id (frame_info_ptr this_frame,
2332 void **this_cache,
2333 struct frame_id *this_id)
2334 {
2335 struct i386_frame_cache *cache =
2336 i386_epilogue_frame_cache (this_frame, this_cache);
2337
2338 if (!cache->base_p)
2339 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2340 else
2341 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2342 }
2343
2344 static struct value *
2345 i386_epilogue_frame_prev_register (frame_info_ptr this_frame,
2346 void **this_cache, int regnum)
2347 {
2348 /* Make sure we've initialized the cache. */
2349 i386_epilogue_frame_cache (this_frame, this_cache);
2350
2351 return i386_frame_prev_register (this_frame, this_cache, regnum);
2352 }
2353
2354 static const struct frame_unwind i386_epilogue_override_frame_unwind =
2355 {
2356 "i386 epilogue override",
2357 NORMAL_FRAME,
2358 i386_epilogue_frame_unwind_stop_reason,
2359 i386_epilogue_frame_this_id,
2360 i386_epilogue_frame_prev_register,
2361 NULL,
2362 i386_epilogue_override_frame_sniffer
2363 };
2364
2365 static const struct frame_unwind i386_epilogue_frame_unwind =
2366 {
2367 "i386 epilogue",
2368 NORMAL_FRAME,
2369 i386_epilogue_frame_unwind_stop_reason,
2370 i386_epilogue_frame_this_id,
2371 i386_epilogue_frame_prev_register,
2372 NULL,
2373 i386_epilogue_frame_sniffer
2374 };
2375 \f
2376
2377 /* Stack-based trampolines. */
2378
2379 /* These trampolines are used on cross x86 targets, when taking the
2380 address of a nested function. When executing these trampolines,
2381 no stack frame is set up, so we are in a similar situation as in
2382 epilogues and i386_epilogue_frame_this_id can be re-used. */
2383
2384 /* Static chain passed in register. */
2385
2386 static i386_insn i386_tramp_chain_in_reg_insns[] =
2387 {
2388 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2389 { 5, { 0xb8 }, { 0xfe } },
2390
2391 /* `jmp imm32' */
2392 { 5, { 0xe9 }, { 0xff } },
2393
2394 {0}
2395 };
2396
2397 /* Static chain passed on stack (when regparm=3). */
2398
2399 static i386_insn i386_tramp_chain_on_stack_insns[] =
2400 {
2401 /* `push imm32' */
2402 { 5, { 0x68 }, { 0xff } },
2403
2404 /* `jmp imm32' */
2405 { 5, { 0xe9 }, { 0xff } },
2406
2407 {0}
2408 };
2409
2410 /* Return whether PC points inside a stack trampoline. */
2411
2412 static int
2413 i386_in_stack_tramp_p (CORE_ADDR pc)
2414 {
2415 gdb_byte insn;
2416 const char *name;
2417
2418 /* A stack trampoline is detected if no name is associated
2419 to the current pc and if it points inside a trampoline
2420 sequence. */
2421
2422 find_pc_partial_function (pc, &name, NULL, NULL);
2423 if (name)
2424 return 0;
2425
2426 if (target_read_memory (pc, &insn, 1))
2427 return 0;
2428
2429 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2430 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2431 return 0;
2432
2433 return 1;
2434 }
2435
2436 static int
2437 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2438 frame_info_ptr this_frame,
2439 void **this_cache)
2440 {
2441 if (frame_relative_level (this_frame) == 0)
2442 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2443 else
2444 return 0;
2445 }
2446
2447 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2448 {
2449 "i386 stack tramp",
2450 NORMAL_FRAME,
2451 i386_epilogue_frame_unwind_stop_reason,
2452 i386_epilogue_frame_this_id,
2453 i386_epilogue_frame_prev_register,
2454 NULL,
2455 i386_stack_tramp_frame_sniffer
2456 };
2457 \f
2458 /* Generate a bytecode expression to get the value of the saved PC. */
2459
2460 static void
2461 i386_gen_return_address (struct gdbarch *gdbarch,
2462 struct agent_expr *ax, struct axs_value *value,
2463 CORE_ADDR scope)
2464 {
2465 /* The following sequence assumes the traditional use of the base
2466 register. */
2467 ax_reg (ax, I386_EBP_REGNUM);
2468 ax_const_l (ax, 4);
2469 ax_simple (ax, aop_add);
2470 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2471 value->kind = axs_lvalue_memory;
2472 }
2473 \f
2474
2475 /* Signal trampolines. */
2476
2477 static struct i386_frame_cache *
2478 i386_sigtramp_frame_cache (frame_info_ptr this_frame, void **this_cache)
2479 {
2480 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2481 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2483 struct i386_frame_cache *cache;
2484 CORE_ADDR addr;
2485 gdb_byte buf[4];
2486
2487 if (*this_cache)
2488 return (struct i386_frame_cache *) *this_cache;
2489
2490 cache = i386_alloc_frame_cache ();
2491
2492 try
2493 {
2494 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2495 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2496
2497 addr = tdep->sigcontext_addr (this_frame);
2498 if (tdep->sc_reg_offset)
2499 {
2500 int i;
2501
2502 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2503
2504 for (i = 0; i < tdep->sc_num_regs; i++)
2505 if (tdep->sc_reg_offset[i] != -1)
2506 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2507 }
2508 else
2509 {
2510 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2511 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2512 }
2513
2514 cache->base_p = 1;
2515 }
2516 catch (const gdb_exception_error &ex)
2517 {
2518 if (ex.error != NOT_AVAILABLE_ERROR)
2519 throw;
2520 }
2521
2522 *this_cache = cache;
2523 return cache;
2524 }
2525
2526 static enum unwind_stop_reason
2527 i386_sigtramp_frame_unwind_stop_reason (frame_info_ptr this_frame,
2528 void **this_cache)
2529 {
2530 struct i386_frame_cache *cache =
2531 i386_sigtramp_frame_cache (this_frame, this_cache);
2532
2533 if (!cache->base_p)
2534 return UNWIND_UNAVAILABLE;
2535
2536 return UNWIND_NO_REASON;
2537 }
2538
2539 static void
2540 i386_sigtramp_frame_this_id (frame_info_ptr this_frame, void **this_cache,
2541 struct frame_id *this_id)
2542 {
2543 struct i386_frame_cache *cache =
2544 i386_sigtramp_frame_cache (this_frame, this_cache);
2545
2546 if (!cache->base_p)
2547 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2548 else
2549 {
2550 /* See the end of i386_push_dummy_call. */
2551 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2552 }
2553 }
2554
2555 static struct value *
2556 i386_sigtramp_frame_prev_register (frame_info_ptr this_frame,
2557 void **this_cache, int regnum)
2558 {
2559 /* Make sure we've initialized the cache. */
2560 i386_sigtramp_frame_cache (this_frame, this_cache);
2561
2562 return i386_frame_prev_register (this_frame, this_cache, regnum);
2563 }
2564
2565 static int
2566 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2567 frame_info_ptr this_frame,
2568 void **this_prologue_cache)
2569 {
2570 gdbarch *arch = get_frame_arch (this_frame);
2571 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
2572
2573 /* We shouldn't even bother if we don't have a sigcontext_addr
2574 handler. */
2575 if (tdep->sigcontext_addr == NULL)
2576 return 0;
2577
2578 if (tdep->sigtramp_p != NULL)
2579 {
2580 if (tdep->sigtramp_p (this_frame))
2581 return 1;
2582 }
2583
2584 if (tdep->sigtramp_start != 0)
2585 {
2586 CORE_ADDR pc = get_frame_pc (this_frame);
2587
2588 gdb_assert (tdep->sigtramp_end != 0);
2589 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2590 return 1;
2591 }
2592
2593 return 0;
2594 }
2595
2596 static const struct frame_unwind i386_sigtramp_frame_unwind =
2597 {
2598 "i386 sigtramp",
2599 SIGTRAMP_FRAME,
2600 i386_sigtramp_frame_unwind_stop_reason,
2601 i386_sigtramp_frame_this_id,
2602 i386_sigtramp_frame_prev_register,
2603 NULL,
2604 i386_sigtramp_frame_sniffer
2605 };
2606 \f
2607
2608 static CORE_ADDR
2609 i386_frame_base_address (frame_info_ptr this_frame, void **this_cache)
2610 {
2611 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2612
2613 return cache->base;
2614 }
2615
2616 static const struct frame_base i386_frame_base =
2617 {
2618 &i386_frame_unwind,
2619 i386_frame_base_address,
2620 i386_frame_base_address,
2621 i386_frame_base_address
2622 };
2623
2624 static struct frame_id
2625 i386_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
2626 {
2627 CORE_ADDR fp;
2628
2629 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2630
2631 /* See the end of i386_push_dummy_call. */
2632 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2633 }
2634
2635 /* _Decimal128 function return values need 16-byte alignment on the
2636 stack. */
2637
2638 static CORE_ADDR
2639 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2640 {
2641 return sp & -(CORE_ADDR)16;
2642 }
2643 \f
2644
2645 /* Figure out where the longjmp will land. Slurp the args out of the
2646 stack. We expect the first arg to be a pointer to the jmp_buf
2647 structure from which we extract the address that we will land at.
2648 This address is copied into PC. This routine returns non-zero on
2649 success. */
2650
2651 static int
2652 i386_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc)
2653 {
2654 gdb_byte buf[4];
2655 CORE_ADDR sp, jb_addr;
2656 struct gdbarch *gdbarch = get_frame_arch (frame);
2657 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2658 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2659 int jb_pc_offset = tdep->jb_pc_offset;
2660
2661 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2662 longjmp will land. */
2663 if (jb_pc_offset == -1)
2664 return 0;
2665
2666 get_frame_register (frame, I386_ESP_REGNUM, buf);
2667 sp = extract_unsigned_integer (buf, 4, byte_order);
2668 if (target_read_memory (sp + 4, buf, 4))
2669 return 0;
2670
2671 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2672 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2673 return 0;
2674
2675 *pc = extract_unsigned_integer (buf, 4, byte_order);
2676 return 1;
2677 }
2678 \f
2679
2680 /* Check whether TYPE must be 16-byte-aligned when passed as a
2681 function argument. 16-byte vectors, _Decimal128 and structures or
2682 unions containing such types must be 16-byte-aligned; other
2683 arguments are 4-byte-aligned. */
2684
2685 static int
2686 i386_16_byte_align_p (struct type *type)
2687 {
2688 type = check_typedef (type);
2689 if ((type->code () == TYPE_CODE_DECFLOAT
2690 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2691 && type->length () == 16)
2692 return 1;
2693 if (type->code () == TYPE_CODE_ARRAY)
2694 return i386_16_byte_align_p (type->target_type ());
2695 if (type->code () == TYPE_CODE_STRUCT
2696 || type->code () == TYPE_CODE_UNION)
2697 {
2698 int i;
2699 for (i = 0; i < type->num_fields (); i++)
2700 {
2701 if (type->field (i).is_static ())
2702 continue;
2703 if (i386_16_byte_align_p (type->field (i).type ()))
2704 return 1;
2705 }
2706 }
2707 return 0;
2708 }
2709
2710 /* Implementation for set_gdbarch_push_dummy_code. */
2711
2712 static CORE_ADDR
2713 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2714 struct value **args, int nargs, struct type *value_type,
2715 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2716 struct regcache *regcache)
2717 {
2718 /* Use 0xcc breakpoint - 1 byte. */
2719 *bp_addr = sp - 1;
2720 *real_pc = funaddr;
2721
2722 /* Keep the stack aligned. */
2723 return sp - 16;
2724 }
2725
2726 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2727 calling convention. */
2728
2729 CORE_ADDR
2730 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2731 struct regcache *regcache, CORE_ADDR bp_addr,
2732 int nargs, struct value **args, CORE_ADDR sp,
2733 function_call_return_method return_method,
2734 CORE_ADDR struct_addr, bool thiscall)
2735 {
2736 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2737 gdb_byte buf[4];
2738 int i;
2739 int write_pass;
2740 int args_space = 0;
2741
2742 /* BND registers can be in arbitrary values at the moment of the
2743 inferior call. This can cause boundary violations that are not
2744 due to a real bug or even desired by the user. The best to be done
2745 is set the BND registers to allow access to the whole memory, INIT
2746 state, before pushing the inferior call. */
2747 i387_reset_bnd_regs (gdbarch, regcache);
2748
2749 /* Determine the total space required for arguments and struct
2750 return address in a first pass (allowing for 16-byte-aligned
2751 arguments), then push arguments in a second pass. */
2752
2753 for (write_pass = 0; write_pass < 2; write_pass++)
2754 {
2755 int args_space_used = 0;
2756
2757 if (return_method == return_method_struct)
2758 {
2759 if (write_pass)
2760 {
2761 /* Push value address. */
2762 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2763 write_memory (sp, buf, 4);
2764 args_space_used += 4;
2765 }
2766 else
2767 args_space += 4;
2768 }
2769
2770 for (i = thiscall ? 1 : 0; i < nargs; i++)
2771 {
2772 int len = args[i]->enclosing_type ()->length ();
2773
2774 if (write_pass)
2775 {
2776 if (i386_16_byte_align_p (args[i]->enclosing_type ()))
2777 args_space_used = align_up (args_space_used, 16);
2778
2779 write_memory (sp + args_space_used,
2780 args[i]->contents_all ().data (), len);
2781 /* The System V ABI says that:
2782
2783 "An argument's size is increased, if necessary, to make it a
2784 multiple of [32-bit] words. This may require tail padding,
2785 depending on the size of the argument."
2786
2787 This makes sure the stack stays word-aligned. */
2788 args_space_used += align_up (len, 4);
2789 }
2790 else
2791 {
2792 if (i386_16_byte_align_p (args[i]->enclosing_type ()))
2793 args_space = align_up (args_space, 16);
2794 args_space += align_up (len, 4);
2795 }
2796 }
2797
2798 if (!write_pass)
2799 {
2800 sp -= args_space;
2801
2802 /* The original System V ABI only requires word alignment,
2803 but modern incarnations need 16-byte alignment in order
2804 to support SSE. Since wasting a few bytes here isn't
2805 harmful we unconditionally enforce 16-byte alignment. */
2806 sp &= ~0xf;
2807 }
2808 }
2809
2810 /* Store return address. */
2811 sp -= 4;
2812 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2813 write_memory (sp, buf, 4);
2814
2815 /* Finally, update the stack pointer... */
2816 store_unsigned_integer (buf, 4, byte_order, sp);
2817 regcache->cooked_write (I386_ESP_REGNUM, buf);
2818
2819 /* ...and fake a frame pointer. */
2820 regcache->cooked_write (I386_EBP_REGNUM, buf);
2821
2822 /* The 'this' pointer needs to be in ECX. */
2823 if (thiscall)
2824 regcache->cooked_write (I386_ECX_REGNUM,
2825 args[0]->contents_all ().data ());
2826
2827 /* If the PLT is position-independent, the SYSTEM V ABI requires %ebx to be
2828 set to the address of the GOT when doing a call to a PLT address.
2829 Note that we do not try to determine whether the PLT is
2830 position-independent, we just set the register regardless. */
2831 CORE_ADDR func_addr = find_function_addr (function, nullptr, nullptr);
2832 if (in_plt_section (func_addr))
2833 {
2834 struct objfile *objf = nullptr;
2835 asection *asect = nullptr;
2836 obj_section *osect = nullptr;
2837
2838 /* Get object file containing func_addr. */
2839 obj_section *func_section = find_pc_section (func_addr);
2840 if (func_section != nullptr)
2841 objf = func_section->objfile;
2842
2843 if (objf != nullptr)
2844 {
2845 /* Get corresponding .got.plt or .got section. */
2846 asect = bfd_get_section_by_name (objf->obfd.get (), ".got.plt");
2847 if (asect == nullptr)
2848 asect = bfd_get_section_by_name (objf->obfd.get (), ".got");
2849 }
2850
2851 if (asect != nullptr)
2852 /* Translate asection to obj_section. */
2853 osect = maint_obj_section_from_bfd_section (objf->obfd.get (),
2854 asect, objf);
2855
2856 if (osect != nullptr)
2857 {
2858 /* Store the section address in %ebx. */
2859 store_unsigned_integer (buf, 4, byte_order, osect->addr ());
2860 regcache->cooked_write (I386_EBX_REGNUM, buf);
2861 }
2862 else
2863 {
2864 /* If we would only do this for a position-independent PLT, it would
2865 make sense to issue a warning here. */
2866 }
2867 }
2868
2869 /* MarkK wrote: This "+ 8" is all over the place:
2870 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2871 i386_dummy_id). It's there, since all frame unwinders for
2872 a given target have to agree (within a certain margin) on the
2873 definition of the stack address of a frame. Otherwise frame id
2874 comparison might not work correctly. Since DWARF2/GCC uses the
2875 stack address *before* the function call as a frame's CFA. On
2876 the i386, when %ebp is used as a frame pointer, the offset
2877 between the contents %ebp and the CFA as defined by GCC. */
2878 return sp + 8;
2879 }
2880
2881 /* Implement the "push_dummy_call" gdbarch method. */
2882
2883 static CORE_ADDR
2884 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2885 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2886 struct value **args, CORE_ADDR sp,
2887 function_call_return_method return_method,
2888 CORE_ADDR struct_addr)
2889 {
2890 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2891 nargs, args, sp, return_method,
2892 struct_addr, false);
2893 }
2894
2895 /* These registers are used for returning integers (and on some
2896 targets also for returning `struct' and `union' values when their
2897 size and alignment match an integer type). */
2898 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2899 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2900
2901 /* Read, for architecture GDBARCH, a function return value of TYPE
2902 from REGCACHE, and copy that into VALBUF. */
2903
2904 static void
2905 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2906 struct regcache *regcache, gdb_byte *valbuf)
2907 {
2908 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2909 int len = type->length ();
2910 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2911
2912 /* _Float16 and _Float16 _Complex values are returned via xmm0. */
2913 if (((type->code () == TYPE_CODE_FLT) && len == 2)
2914 || ((type->code () == TYPE_CODE_COMPLEX) && len == 4))
2915 {
2916 regcache->raw_read (I387_XMM0_REGNUM (tdep), valbuf);
2917 return;
2918 }
2919 else if (type->code () == TYPE_CODE_FLT)
2920 {
2921 if (tdep->st0_regnum < 0)
2922 {
2923 warning (_("Cannot find floating-point return value."));
2924 memset (valbuf, 0, len);
2925 return;
2926 }
2927
2928 /* Floating-point return values can be found in %st(0). Convert
2929 its contents to the desired type. This is probably not
2930 exactly how it would happen on the target itself, but it is
2931 the best we can do. */
2932 regcache->raw_read (I386_ST0_REGNUM, buf);
2933 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2934 }
2935 else
2936 {
2937 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2938 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2939
2940 if (len <= low_size)
2941 {
2942 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2943 memcpy (valbuf, buf, len);
2944 }
2945 else if (len <= (low_size + high_size))
2946 {
2947 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2948 memcpy (valbuf, buf, low_size);
2949 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2950 memcpy (valbuf + low_size, buf, len - low_size);
2951 }
2952 else
2953 internal_error (_("Cannot extract return value of %d bytes long."),
2954 len);
2955 }
2956 }
2957
2958 /* Write, for architecture GDBARCH, a function return value of TYPE
2959 from VALBUF into REGCACHE. */
2960
2961 static void
2962 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2963 struct regcache *regcache, const gdb_byte *valbuf)
2964 {
2965 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2966 int len = type->length ();
2967
2968 if (type->code () == TYPE_CODE_FLT)
2969 {
2970 ULONGEST fstat;
2971 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2972
2973 if (tdep->st0_regnum < 0)
2974 {
2975 warning (_("Cannot set floating-point return value."));
2976 return;
2977 }
2978
2979 /* Returning floating-point values is a bit tricky. Apart from
2980 storing the return value in %st(0), we have to simulate the
2981 state of the FPU at function return point. */
2982
2983 /* Convert the value found in VALBUF to the extended
2984 floating-point format used by the FPU. This is probably
2985 not exactly how it would happen on the target itself, but
2986 it is the best we can do. */
2987 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2988 regcache->raw_write (I386_ST0_REGNUM, buf);
2989
2990 /* Set the top of the floating-point register stack to 7. The
2991 actual value doesn't really matter, but 7 is what a normal
2992 function return would end up with if the program started out
2993 with a freshly initialized FPU. */
2994 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2995 fstat |= (7 << 11);
2996 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2997
2998 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2999 the floating-point register stack to 7, the appropriate value
3000 for the tag word is 0x3fff. */
3001 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
3002 }
3003 else
3004 {
3005 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
3006 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
3007
3008 if (len <= low_size)
3009 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
3010 else if (len <= (low_size + high_size))
3011 {
3012 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
3013 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
3014 valbuf + low_size);
3015 }
3016 else
3017 internal_error (_("Cannot store return value of %d bytes long."), len);
3018 }
3019 }
3020 \f
3021
3022 /* This is the variable that is set with "set struct-convention", and
3023 its legitimate values. */
3024 static const char default_struct_convention[] = "default";
3025 static const char pcc_struct_convention[] = "pcc";
3026 static const char reg_struct_convention[] = "reg";
3027 static const char *const valid_conventions[] =
3028 {
3029 default_struct_convention,
3030 pcc_struct_convention,
3031 reg_struct_convention,
3032 NULL
3033 };
3034 static const char *struct_convention = default_struct_convention;
3035
3036 /* Return non-zero if TYPE, which is assumed to be a structure,
3037 a union type, or an array type, should be returned in registers
3038 for architecture GDBARCH. */
3039
3040 static int
3041 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
3042 {
3043 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3044 enum type_code code = type->code ();
3045 int len = type->length ();
3046
3047 gdb_assert (code == TYPE_CODE_STRUCT
3048 || code == TYPE_CODE_UNION
3049 || code == TYPE_CODE_ARRAY);
3050
3051 if (struct_convention == pcc_struct_convention
3052 || (struct_convention == default_struct_convention
3053 && tdep->struct_return == pcc_struct_return)
3054 || TYPE_HAS_DYNAMIC_LENGTH (type))
3055 return 0;
3056
3057 /* Structures consisting of a single `float', `double' or 'long
3058 double' member are returned in %st(0). */
3059 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3060 {
3061 type = check_typedef (type->field (0).type ());
3062 if (type->code () == TYPE_CODE_FLT)
3063 return (len == 4 || len == 8 || len == 12);
3064 }
3065
3066 return (len == 1 || len == 2 || len == 4 || len == 8);
3067 }
3068
3069 /* Determine, for architecture GDBARCH, how a return value of TYPE
3070 should be returned. If it is supposed to be returned in registers,
3071 and READBUF is non-zero, read the appropriate value from REGCACHE,
3072 and copy it into READBUF. If WRITEBUF is non-zero, write the value
3073 from WRITEBUF into REGCACHE. */
3074
3075 static enum return_value_convention
3076 i386_return_value (struct gdbarch *gdbarch, struct value *function,
3077 struct type *type, struct regcache *regcache,
3078 struct value **read_value, const gdb_byte *writebuf)
3079 {
3080 enum type_code code = type->code ();
3081
3082 if (((code == TYPE_CODE_STRUCT
3083 || code == TYPE_CODE_UNION
3084 || code == TYPE_CODE_ARRAY)
3085 && !i386_reg_struct_return_p (gdbarch, type))
3086 /* Complex double and long double uses the struct return convention. */
3087 || (code == TYPE_CODE_COMPLEX && type->length () == 16)
3088 || (code == TYPE_CODE_COMPLEX && type->length () == 24)
3089 /* 128-bit decimal float uses the struct return convention. */
3090 || (code == TYPE_CODE_DECFLOAT && type->length () == 16))
3091 {
3092 /* The System V ABI says that:
3093
3094 "A function that returns a structure or union also sets %eax
3095 to the value of the original address of the caller's area
3096 before it returns. Thus when the caller receives control
3097 again, the address of the returned object resides in register
3098 %eax and can be used to access the object."
3099
3100 So the ABI guarantees that we can always find the return
3101 value just after the function has returned. */
3102
3103 /* Note that the ABI doesn't mention functions returning arrays,
3104 which is something possible in certain languages such as Ada.
3105 In this case, the value is returned as if it was wrapped in
3106 a record, so the convention applied to records also applies
3107 to arrays. */
3108
3109 if (read_value != nullptr)
3110 {
3111 ULONGEST addr;
3112
3113 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3114 *read_value = value_at_non_lval (type, addr);
3115 }
3116
3117 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3118 }
3119
3120 /* This special case is for structures consisting of a single
3121 `float', `double' or 'long double' member. These structures are
3122 returned in %st(0). For these structures, we call ourselves
3123 recursively, changing TYPE into the type of the first member of
3124 the structure. Since that should work for all structures that
3125 have only one member, we don't bother to check the member's type
3126 here. */
3127 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3128 {
3129 struct type *inner_type = check_typedef (type->field (0).type ());
3130 enum return_value_convention result
3131 = i386_return_value (gdbarch, function, inner_type, regcache,
3132 read_value, writebuf);
3133 if (read_value != nullptr)
3134 (*read_value)->deprecated_set_type (type);
3135 return result;
3136 }
3137
3138 if (read_value != nullptr)
3139 {
3140 *read_value = value::allocate (type);
3141 i386_extract_return_value (gdbarch, type, regcache,
3142 (*read_value)->contents_raw ().data ());
3143 }
3144 if (writebuf)
3145 i386_store_return_value (gdbarch, type, regcache, writebuf);
3146
3147 return RETURN_VALUE_REGISTER_CONVENTION;
3148 }
3149 \f
3150
3151 struct type *
3152 i387_ext_type (struct gdbarch *gdbarch)
3153 {
3154 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3155
3156 if (!tdep->i387_ext_type)
3157 {
3158 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3159 gdb_assert (tdep->i387_ext_type != NULL);
3160 }
3161
3162 return tdep->i387_ext_type;
3163 }
3164
3165 /* Construct type for pseudo BND registers. We can't use
3166 tdesc_find_type since a complement of one value has to be used
3167 to describe the upper bound. */
3168
3169 static struct type *
3170 i386_bnd_type (struct gdbarch *gdbarch)
3171 {
3172 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3173
3174
3175 if (!tdep->i386_bnd_type)
3176 {
3177 struct type *t;
3178 const struct builtin_type *bt = builtin_type (gdbarch);
3179
3180 /* The type we're building is described bellow: */
3181 #if 0
3182 struct __bound128
3183 {
3184 void *lbound;
3185 void *ubound; /* One complement of raw ubound field. */
3186 };
3187 #endif
3188
3189 t = arch_composite_type (gdbarch,
3190 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3191
3192 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3193 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3194
3195 t->set_name ("builtin_type_bound128");
3196 tdep->i386_bnd_type = t;
3197 }
3198
3199 return tdep->i386_bnd_type;
3200 }
3201
3202 /* Construct vector type for pseudo ZMM registers. We can't use
3203 tdesc_find_type since ZMM isn't described in target description. */
3204
3205 static struct type *
3206 i386_zmm_type (struct gdbarch *gdbarch)
3207 {
3208 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3209
3210 if (!tdep->i386_zmm_type)
3211 {
3212 const struct builtin_type *bt = builtin_type (gdbarch);
3213
3214 /* The type we're building is this: */
3215 #if 0
3216 union __gdb_builtin_type_vec512i
3217 {
3218 int128_t v4_int128[4];
3219 int64_t v8_int64[8];
3220 int32_t v16_int32[16];
3221 int16_t v32_int16[32];
3222 int8_t v64_int8[64];
3223 double v8_double[8];
3224 float v16_float[16];
3225 float16_t v32_half[32];
3226 bfloat16_t v32_bfloat16[32];
3227 };
3228 #endif
3229
3230 struct type *t;
3231
3232 t = arch_composite_type (gdbarch,
3233 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3234 append_composite_type_field (t, "v32_bfloat16",
3235 init_vector_type (bt->builtin_bfloat16, 32));
3236 append_composite_type_field (t, "v32_half",
3237 init_vector_type (bt->builtin_half, 32));
3238 append_composite_type_field (t, "v16_float",
3239 init_vector_type (bt->builtin_float, 16));
3240 append_composite_type_field (t, "v8_double",
3241 init_vector_type (bt->builtin_double, 8));
3242 append_composite_type_field (t, "v64_int8",
3243 init_vector_type (bt->builtin_int8, 64));
3244 append_composite_type_field (t, "v32_int16",
3245 init_vector_type (bt->builtin_int16, 32));
3246 append_composite_type_field (t, "v16_int32",
3247 init_vector_type (bt->builtin_int32, 16));
3248 append_composite_type_field (t, "v8_int64",
3249 init_vector_type (bt->builtin_int64, 8));
3250 append_composite_type_field (t, "v4_int128",
3251 init_vector_type (bt->builtin_int128, 4));
3252
3253 t->set_is_vector (true);
3254 t->set_name ("builtin_type_vec512i");
3255 tdep->i386_zmm_type = t;
3256 }
3257
3258 return tdep->i386_zmm_type;
3259 }
3260
3261 /* Construct vector type for pseudo YMM registers. We can't use
3262 tdesc_find_type since YMM isn't described in target description. */
3263
3264 static struct type *
3265 i386_ymm_type (struct gdbarch *gdbarch)
3266 {
3267 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3268
3269 if (!tdep->i386_ymm_type)
3270 {
3271 const struct builtin_type *bt = builtin_type (gdbarch);
3272
3273 /* The type we're building is this: */
3274 #if 0
3275 union __gdb_builtin_type_vec256i
3276 {
3277 int128_t v2_int128[2];
3278 int64_t v4_int64[4];
3279 int32_t v8_int32[8];
3280 int16_t v16_int16[16];
3281 int8_t v32_int8[32];
3282 double v4_double[4];
3283 float v8_float[8];
3284 float16_t v16_half[16];
3285 bfloat16_t v16_bfloat16[16];
3286 };
3287 #endif
3288
3289 struct type *t;
3290
3291 t = arch_composite_type (gdbarch,
3292 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3293 append_composite_type_field (t, "v16_bfloat16",
3294 init_vector_type (bt->builtin_bfloat16, 16));
3295 append_composite_type_field (t, "v16_half",
3296 init_vector_type (bt->builtin_half, 16));
3297 append_composite_type_field (t, "v8_float",
3298 init_vector_type (bt->builtin_float, 8));
3299 append_composite_type_field (t, "v4_double",
3300 init_vector_type (bt->builtin_double, 4));
3301 append_composite_type_field (t, "v32_int8",
3302 init_vector_type (bt->builtin_int8, 32));
3303 append_composite_type_field (t, "v16_int16",
3304 init_vector_type (bt->builtin_int16, 16));
3305 append_composite_type_field (t, "v8_int32",
3306 init_vector_type (bt->builtin_int32, 8));
3307 append_composite_type_field (t, "v4_int64",
3308 init_vector_type (bt->builtin_int64, 4));
3309 append_composite_type_field (t, "v2_int128",
3310 init_vector_type (bt->builtin_int128, 2));
3311
3312 t->set_is_vector (true);
3313 t->set_name ("builtin_type_vec256i");
3314 tdep->i386_ymm_type = t;
3315 }
3316
3317 return tdep->i386_ymm_type;
3318 }
3319
3320 /* Construct vector type for MMX registers. */
3321 static struct type *
3322 i386_mmx_type (struct gdbarch *gdbarch)
3323 {
3324 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3325
3326 if (!tdep->i386_mmx_type)
3327 {
3328 const struct builtin_type *bt = builtin_type (gdbarch);
3329
3330 /* The type we're building is this: */
3331 #if 0
3332 union __gdb_builtin_type_vec64i
3333 {
3334 int64_t uint64;
3335 int32_t v2_int32[2];
3336 int16_t v4_int16[4];
3337 int8_t v8_int8[8];
3338 };
3339 #endif
3340
3341 struct type *t;
3342
3343 t = arch_composite_type (gdbarch,
3344 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3345
3346 append_composite_type_field (t, "uint64", bt->builtin_int64);
3347 append_composite_type_field (t, "v2_int32",
3348 init_vector_type (bt->builtin_int32, 2));
3349 append_composite_type_field (t, "v4_int16",
3350 init_vector_type (bt->builtin_int16, 4));
3351 append_composite_type_field (t, "v8_int8",
3352 init_vector_type (bt->builtin_int8, 8));
3353
3354 t->set_is_vector (true);
3355 t->set_name ("builtin_type_vec64i");
3356 tdep->i386_mmx_type = t;
3357 }
3358
3359 return tdep->i386_mmx_type;
3360 }
3361
3362 /* Return the GDB type object for the "standard" data type of data in
3363 register REGNUM. */
3364
3365 struct type *
3366 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3367 {
3368 if (i386_bnd_regnum_p (gdbarch, regnum))
3369 return i386_bnd_type (gdbarch);
3370 if (i386_mmx_regnum_p (gdbarch, regnum))
3371 return i386_mmx_type (gdbarch);
3372 else if (i386_ymm_regnum_p (gdbarch, regnum))
3373 return i386_ymm_type (gdbarch);
3374 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3375 return i386_ymm_type (gdbarch);
3376 else if (i386_zmm_regnum_p (gdbarch, regnum))
3377 return i386_zmm_type (gdbarch);
3378 else
3379 {
3380 const struct builtin_type *bt = builtin_type (gdbarch);
3381 if (i386_byte_regnum_p (gdbarch, regnum))
3382 return bt->builtin_int8;
3383 else if (i386_word_regnum_p (gdbarch, regnum))
3384 return bt->builtin_int16;
3385 else if (i386_dword_regnum_p (gdbarch, regnum))
3386 return bt->builtin_int32;
3387 else if (i386_k_regnum_p (gdbarch, regnum))
3388 return bt->builtin_int64;
3389 }
3390
3391 internal_error (_("invalid regnum"));
3392 }
3393
3394 /* Map a cooked register onto a raw register or memory. For the i386,
3395 the MMX registers need to be mapped onto floating point registers. */
3396
3397 static int
3398 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3399 {
3400 gdbarch *arch = regcache->arch ();
3401 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
3402 int mmxreg, fpreg;
3403 ULONGEST fstat;
3404 int tos;
3405
3406 mmxreg = regnum - tdep->mm0_regnum;
3407 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3408 tos = (fstat >> 11) & 0x7;
3409 fpreg = (mmxreg + tos) % 8;
3410
3411 return (I387_ST0_REGNUM (tdep) + fpreg);
3412 }
3413
3414 /* A helper function for us by i386_pseudo_register_read_value and
3415 amd64_pseudo_register_read_value. It does all the work but reads
3416 the data into an already-allocated value. */
3417
3418 void
3419 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3420 readable_regcache *regcache,
3421 int regnum,
3422 struct value *result_value)
3423 {
3424 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3425 enum register_status status;
3426 gdb_byte *buf = result_value->contents_raw ().data ();
3427
3428 if (i386_mmx_regnum_p (gdbarch, regnum))
3429 {
3430 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3431
3432 /* Extract (always little endian). */
3433 status = regcache->raw_read (fpnum, raw_buf);
3434 if (status != REG_VALID)
3435 result_value->mark_bytes_unavailable (0,
3436 result_value->type ()->length ());
3437 else
3438 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3439 }
3440 else
3441 {
3442 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3443 if (i386_bnd_regnum_p (gdbarch, regnum))
3444 {
3445 regnum -= tdep->bnd0_regnum;
3446
3447 /* Extract (always little endian). Read lower 128bits. */
3448 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3449 raw_buf);
3450 if (status != REG_VALID)
3451 result_value->mark_bytes_unavailable (0, 16);
3452 else
3453 {
3454 bfd_endian byte_order
3455 = gdbarch_byte_order (current_inferior ()->arch ());
3456 LONGEST upper, lower;
3457 int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
3458
3459 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3460 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3461 upper = ~upper;
3462
3463 memcpy (buf, &lower, size);
3464 memcpy (buf + size, &upper, size);
3465 }
3466 }
3467 else if (i386_k_regnum_p (gdbarch, regnum))
3468 {
3469 regnum -= tdep->k0_regnum;
3470
3471 /* Extract (always little endian). */
3472 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3473 if (status != REG_VALID)
3474 result_value->mark_bytes_unavailable (0, 8);
3475 else
3476 memcpy (buf, raw_buf, 8);
3477 }
3478 else if (i386_zmm_regnum_p (gdbarch, regnum))
3479 {
3480 regnum -= tdep->zmm0_regnum;
3481
3482 if (regnum < num_lower_zmm_regs)
3483 {
3484 /* Extract (always little endian). Read lower 128bits. */
3485 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3486 raw_buf);
3487 if (status != REG_VALID)
3488 result_value->mark_bytes_unavailable (0, 16);
3489 else
3490 memcpy (buf, raw_buf, 16);
3491
3492 /* Extract (always little endian). Read upper 128bits. */
3493 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3494 raw_buf);
3495 if (status != REG_VALID)
3496 result_value->mark_bytes_unavailable (16, 16);
3497 else
3498 memcpy (buf + 16, raw_buf, 16);
3499 }
3500 else
3501 {
3502 /* Extract (always little endian). Read lower 128bits. */
3503 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3504 - num_lower_zmm_regs,
3505 raw_buf);
3506 if (status != REG_VALID)
3507 result_value->mark_bytes_unavailable (0, 16);
3508 else
3509 memcpy (buf, raw_buf, 16);
3510
3511 /* Extract (always little endian). Read upper 128bits. */
3512 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3513 - num_lower_zmm_regs,
3514 raw_buf);
3515 if (status != REG_VALID)
3516 result_value->mark_bytes_unavailable (16, 16);
3517 else
3518 memcpy (buf + 16, raw_buf, 16);
3519 }
3520
3521 /* Read upper 256bits. */
3522 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3523 raw_buf);
3524 if (status != REG_VALID)
3525 result_value->mark_bytes_unavailable (32, 32);
3526 else
3527 memcpy (buf + 32, raw_buf, 32);
3528 }
3529 else if (i386_ymm_regnum_p (gdbarch, regnum))
3530 {
3531 regnum -= tdep->ymm0_regnum;
3532
3533 /* Extract (always little endian). Read lower 128bits. */
3534 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3535 raw_buf);
3536 if (status != REG_VALID)
3537 result_value->mark_bytes_unavailable (0, 16);
3538 else
3539 memcpy (buf, raw_buf, 16);
3540 /* Read upper 128bits. */
3541 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3542 raw_buf);
3543 if (status != REG_VALID)
3544 result_value->mark_bytes_unavailable (16, 32);
3545 else
3546 memcpy (buf + 16, raw_buf, 16);
3547 }
3548 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3549 {
3550 regnum -= tdep->ymm16_regnum;
3551 /* Extract (always little endian). Read lower 128bits. */
3552 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3553 raw_buf);
3554 if (status != REG_VALID)
3555 result_value->mark_bytes_unavailable (0, 16);
3556 else
3557 memcpy (buf, raw_buf, 16);
3558 /* Read upper 128bits. */
3559 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3560 raw_buf);
3561 if (status != REG_VALID)
3562 result_value->mark_bytes_unavailable (16, 16);
3563 else
3564 memcpy (buf + 16, raw_buf, 16);
3565 }
3566 else if (i386_word_regnum_p (gdbarch, regnum))
3567 {
3568 int gpnum = regnum - tdep->ax_regnum;
3569
3570 /* Extract (always little endian). */
3571 status = regcache->raw_read (gpnum, raw_buf);
3572 if (status != REG_VALID)
3573 result_value->mark_bytes_unavailable (0,
3574 result_value->type ()->length ());
3575 else
3576 memcpy (buf, raw_buf, 2);
3577 }
3578 else if (i386_byte_regnum_p (gdbarch, regnum))
3579 {
3580 int gpnum = regnum - tdep->al_regnum;
3581
3582 /* Extract (always little endian). We read both lower and
3583 upper registers. */
3584 status = regcache->raw_read (gpnum % 4, raw_buf);
3585 if (status != REG_VALID)
3586 result_value->mark_bytes_unavailable (0,
3587 result_value->type ()->length ());
3588 else if (gpnum >= 4)
3589 memcpy (buf, raw_buf + 1, 1);
3590 else
3591 memcpy (buf, raw_buf, 1);
3592 }
3593 else
3594 internal_error (_("invalid regnum"));
3595 }
3596 }
3597
3598 static struct value *
3599 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3600 readable_regcache *regcache,
3601 int regnum)
3602 {
3603 struct value *result;
3604
3605 result = value::allocate (register_type (gdbarch, regnum));
3606 result->set_lval (lval_register);
3607 VALUE_REGNUM (result) = regnum;
3608
3609 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3610
3611 return result;
3612 }
3613
3614 void
3615 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3616 int regnum, const gdb_byte *buf)
3617 {
3618 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3619
3620 if (i386_mmx_regnum_p (gdbarch, regnum))
3621 {
3622 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3623
3624 /* Read ... */
3625 regcache->raw_read (fpnum, raw_buf);
3626 /* ... Modify ... (always little endian). */
3627 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3628 /* ... Write. */
3629 regcache->raw_write (fpnum, raw_buf);
3630 }
3631 else
3632 {
3633 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3634
3635 if (i386_bnd_regnum_p (gdbarch, regnum))
3636 {
3637 ULONGEST upper, lower;
3638 int size = builtin_type (gdbarch)->builtin_data_ptr->length ();
3639 bfd_endian byte_order
3640 = gdbarch_byte_order (current_inferior ()->arch ());
3641
3642 /* New values from input value. */
3643 regnum -= tdep->bnd0_regnum;
3644 lower = extract_unsigned_integer (buf, size, byte_order);
3645 upper = extract_unsigned_integer (buf + size, size, byte_order);
3646
3647 /* Fetching register buffer. */
3648 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3649 raw_buf);
3650
3651 upper = ~upper;
3652
3653 /* Set register bits. */
3654 memcpy (raw_buf, &lower, 8);
3655 memcpy (raw_buf + 8, &upper, 8);
3656
3657 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3658 }
3659 else if (i386_k_regnum_p (gdbarch, regnum))
3660 {
3661 regnum -= tdep->k0_regnum;
3662
3663 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3664 }
3665 else if (i386_zmm_regnum_p (gdbarch, regnum))
3666 {
3667 regnum -= tdep->zmm0_regnum;
3668
3669 if (regnum < num_lower_zmm_regs)
3670 {
3671 /* Write lower 128bits. */
3672 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3673 /* Write upper 128bits. */
3674 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3675 }
3676 else
3677 {
3678 /* Write lower 128bits. */
3679 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3680 - num_lower_zmm_regs, buf);
3681 /* Write upper 128bits. */
3682 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3683 - num_lower_zmm_regs, buf + 16);
3684 }
3685 /* Write upper 256bits. */
3686 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3687 }
3688 else if (i386_ymm_regnum_p (gdbarch, regnum))
3689 {
3690 regnum -= tdep->ymm0_regnum;
3691
3692 /* ... Write lower 128bits. */
3693 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3694 /* ... Write upper 128bits. */
3695 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3696 }
3697 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3698 {
3699 regnum -= tdep->ymm16_regnum;
3700
3701 /* ... Write lower 128bits. */
3702 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3703 /* ... Write upper 128bits. */
3704 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3705 }
3706 else if (i386_word_regnum_p (gdbarch, regnum))
3707 {
3708 int gpnum = regnum - tdep->ax_regnum;
3709
3710 /* Read ... */
3711 regcache->raw_read (gpnum, raw_buf);
3712 /* ... Modify ... (always little endian). */
3713 memcpy (raw_buf, buf, 2);
3714 /* ... Write. */
3715 regcache->raw_write (gpnum, raw_buf);
3716 }
3717 else if (i386_byte_regnum_p (gdbarch, regnum))
3718 {
3719 int gpnum = regnum - tdep->al_regnum;
3720
3721 /* Read ... We read both lower and upper registers. */
3722 regcache->raw_read (gpnum % 4, raw_buf);
3723 /* ... Modify ... (always little endian). */
3724 if (gpnum >= 4)
3725 memcpy (raw_buf + 1, buf, 1);
3726 else
3727 memcpy (raw_buf, buf, 1);
3728 /* ... Write. */
3729 regcache->raw_write (gpnum % 4, raw_buf);
3730 }
3731 else
3732 internal_error (_("invalid regnum"));
3733 }
3734 }
3735
3736 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3737
3738 int
3739 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3740 struct agent_expr *ax, int regnum)
3741 {
3742 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3743
3744 if (i386_mmx_regnum_p (gdbarch, regnum))
3745 {
3746 /* MMX to FPU register mapping depends on current TOS. Let's just
3747 not care and collect everything... */
3748 int i;
3749
3750 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3751 for (i = 0; i < 8; i++)
3752 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3753 return 0;
3754 }
3755 else if (i386_bnd_regnum_p (gdbarch, regnum))
3756 {
3757 regnum -= tdep->bnd0_regnum;
3758 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3759 return 0;
3760 }
3761 else if (i386_k_regnum_p (gdbarch, regnum))
3762 {
3763 regnum -= tdep->k0_regnum;
3764 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3765 return 0;
3766 }
3767 else if (i386_zmm_regnum_p (gdbarch, regnum))
3768 {
3769 regnum -= tdep->zmm0_regnum;
3770 if (regnum < num_lower_zmm_regs)
3771 {
3772 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3773 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3774 }
3775 else
3776 {
3777 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3778 - num_lower_zmm_regs);
3779 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3780 - num_lower_zmm_regs);
3781 }
3782 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3783 return 0;
3784 }
3785 else if (i386_ymm_regnum_p (gdbarch, regnum))
3786 {
3787 regnum -= tdep->ymm0_regnum;
3788 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3789 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3790 return 0;
3791 }
3792 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3793 {
3794 regnum -= tdep->ymm16_regnum;
3795 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3796 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3797 return 0;
3798 }
3799 else if (i386_word_regnum_p (gdbarch, regnum))
3800 {
3801 int gpnum = regnum - tdep->ax_regnum;
3802
3803 ax_reg_mask (ax, gpnum);
3804 return 0;
3805 }
3806 else if (i386_byte_regnum_p (gdbarch, regnum))
3807 {
3808 int gpnum = regnum - tdep->al_regnum;
3809
3810 ax_reg_mask (ax, gpnum % 4);
3811 return 0;
3812 }
3813 else
3814 internal_error (_("invalid regnum"));
3815 return 1;
3816 }
3817 \f
3818
3819 /* Return the register number of the register allocated by GCC after
3820 REGNUM, or -1 if there is no such register. */
3821
3822 static int
3823 i386_next_regnum (int regnum)
3824 {
3825 /* GCC allocates the registers in the order:
3826
3827 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3828
3829 Since storing a variable in %esp doesn't make any sense we return
3830 -1 for %ebp and for %esp itself. */
3831 static int next_regnum[] =
3832 {
3833 I386_EDX_REGNUM, /* Slot for %eax. */
3834 I386_EBX_REGNUM, /* Slot for %ecx. */
3835 I386_ECX_REGNUM, /* Slot for %edx. */
3836 I386_ESI_REGNUM, /* Slot for %ebx. */
3837 -1, -1, /* Slots for %esp and %ebp. */
3838 I386_EDI_REGNUM, /* Slot for %esi. */
3839 I386_EBP_REGNUM /* Slot for %edi. */
3840 };
3841
3842 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3843 return next_regnum[regnum];
3844
3845 return -1;
3846 }
3847
3848 /* Return nonzero if a value of type TYPE stored in register REGNUM
3849 needs any special handling. */
3850
3851 static int
3852 i386_convert_register_p (struct gdbarch *gdbarch,
3853 int regnum, struct type *type)
3854 {
3855 int len = type->length ();
3856
3857 /* Values may be spread across multiple registers. Most debugging
3858 formats aren't expressive enough to specify the locations, so
3859 some heuristics is involved. Right now we only handle types that
3860 have a length that is a multiple of the word size, since GCC
3861 doesn't seem to put any other types into registers. */
3862 if (len > 4 && len % 4 == 0)
3863 {
3864 int last_regnum = regnum;
3865
3866 while (len > 4)
3867 {
3868 last_regnum = i386_next_regnum (last_regnum);
3869 len -= 4;
3870 }
3871
3872 if (last_regnum != -1)
3873 return 1;
3874 }
3875
3876 return i387_convert_register_p (gdbarch, regnum, type);
3877 }
3878
3879 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3880 return its contents in TO. */
3881
3882 static int
3883 i386_register_to_value (frame_info_ptr frame, int regnum,
3884 struct type *type, gdb_byte *to,
3885 int *optimizedp, int *unavailablep)
3886 {
3887 struct gdbarch *gdbarch = get_frame_arch (frame);
3888 int len = type->length ();
3889
3890 if (i386_fp_regnum_p (gdbarch, regnum))
3891 return i387_register_to_value (frame, regnum, type, to,
3892 optimizedp, unavailablep);
3893
3894 /* Read a value spread across multiple registers. */
3895
3896 gdb_assert (len > 4 && len % 4 == 0);
3897
3898 while (len > 0)
3899 {
3900 gdb_assert (regnum != -1);
3901 gdb_assert (register_size (gdbarch, regnum) == 4);
3902
3903 if (!get_frame_register_bytes (frame, regnum, 0,
3904 gdb::make_array_view (to,
3905 register_size (gdbarch,
3906 regnum)),
3907 optimizedp, unavailablep))
3908 return 0;
3909
3910 regnum = i386_next_regnum (regnum);
3911 len -= 4;
3912 to += 4;
3913 }
3914
3915 *optimizedp = *unavailablep = 0;
3916 return 1;
3917 }
3918
3919 /* Write the contents FROM of a value of type TYPE into register
3920 REGNUM in frame FRAME. */
3921
3922 static void
3923 i386_value_to_register (frame_info_ptr frame, int regnum,
3924 struct type *type, const gdb_byte *from)
3925 {
3926 int len = type->length ();
3927
3928 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3929 {
3930 i387_value_to_register (frame, regnum, type, from);
3931 return;
3932 }
3933
3934 /* Write a value spread across multiple registers. */
3935
3936 gdb_assert (len > 4 && len % 4 == 0);
3937
3938 while (len > 0)
3939 {
3940 gdb_assert (regnum != -1);
3941 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3942
3943 put_frame_register (frame, regnum, from);
3944 regnum = i386_next_regnum (regnum);
3945 len -= 4;
3946 from += 4;
3947 }
3948 }
3949 \f
3950 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3951 in the general-purpose register set REGSET to register cache
3952 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3953
3954 void
3955 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3956 int regnum, const void *gregs, size_t len)
3957 {
3958 struct gdbarch *gdbarch = regcache->arch ();
3959 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3960 const gdb_byte *regs = (const gdb_byte *) gregs;
3961 int i;
3962
3963 gdb_assert (len >= tdep->sizeof_gregset);
3964
3965 for (i = 0; i < tdep->gregset_num_regs; i++)
3966 {
3967 if ((regnum == i || regnum == -1)
3968 && tdep->gregset_reg_offset[i] != -1)
3969 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3970 }
3971 }
3972
3973 /* Collect register REGNUM from the register cache REGCACHE and store
3974 it in the buffer specified by GREGS and LEN as described by the
3975 general-purpose register set REGSET. If REGNUM is -1, do this for
3976 all registers in REGSET. */
3977
3978 static void
3979 i386_collect_gregset (const struct regset *regset,
3980 const struct regcache *regcache,
3981 int regnum, void *gregs, size_t len)
3982 {
3983 struct gdbarch *gdbarch = regcache->arch ();
3984 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3985 gdb_byte *regs = (gdb_byte *) gregs;
3986 int i;
3987
3988 gdb_assert (len >= tdep->sizeof_gregset);
3989
3990 for (i = 0; i < tdep->gregset_num_regs; i++)
3991 {
3992 if ((regnum == i || regnum == -1)
3993 && tdep->gregset_reg_offset[i] != -1)
3994 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3995 }
3996 }
3997
3998 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3999 in the floating-point register set REGSET to register cache
4000 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
4001
4002 static void
4003 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
4004 int regnum, const void *fpregs, size_t len)
4005 {
4006 struct gdbarch *gdbarch = regcache->arch ();
4007 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4008
4009 if (len == I387_SIZEOF_FXSAVE)
4010 {
4011 i387_supply_fxsave (regcache, regnum, fpregs);
4012 return;
4013 }
4014
4015 gdb_assert (len >= tdep->sizeof_fpregset);
4016 i387_supply_fsave (regcache, regnum, fpregs);
4017 }
4018
4019 /* Collect register REGNUM from the register cache REGCACHE and store
4020 it in the buffer specified by FPREGS and LEN as described by the
4021 floating-point register set REGSET. If REGNUM is -1, do this for
4022 all registers in REGSET. */
4023
4024 static void
4025 i386_collect_fpregset (const struct regset *regset,
4026 const struct regcache *regcache,
4027 int regnum, void *fpregs, size_t len)
4028 {
4029 struct gdbarch *gdbarch = regcache->arch ();
4030 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4031
4032 if (len == I387_SIZEOF_FXSAVE)
4033 {
4034 i387_collect_fxsave (regcache, regnum, fpregs);
4035 return;
4036 }
4037
4038 gdb_assert (len >= tdep->sizeof_fpregset);
4039 i387_collect_fsave (regcache, regnum, fpregs);
4040 }
4041
4042 /* Register set definitions. */
4043
4044 const struct regset i386_gregset =
4045 {
4046 NULL, i386_supply_gregset, i386_collect_gregset
4047 };
4048
4049 const struct regset i386_fpregset =
4050 {
4051 NULL, i386_supply_fpregset, i386_collect_fpregset
4052 };
4053
4054 /* Default iterator over core file register note sections. */
4055
4056 void
4057 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
4058 iterate_over_regset_sections_cb *cb,
4059 void *cb_data,
4060 const struct regcache *regcache)
4061 {
4062 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4063
4064 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
4065 cb_data);
4066 if (tdep->sizeof_fpregset)
4067 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
4068 NULL, cb_data);
4069 }
4070 \f
4071
4072 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
4073
4074 CORE_ADDR
4075 i386_pe_skip_trampoline_code (frame_info_ptr frame,
4076 CORE_ADDR pc, char *name)
4077 {
4078 struct gdbarch *gdbarch = get_frame_arch (frame);
4079 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4080
4081 /* jmp *(dest) */
4082 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
4083 {
4084 unsigned long indirect =
4085 read_memory_unsigned_integer (pc + 2, 4, byte_order);
4086 struct minimal_symbol *indsym =
4087 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
4088 const char *symname = indsym ? indsym->linkage_name () : 0;
4089
4090 if (symname)
4091 {
4092 if (startswith (symname, "__imp_")
4093 || startswith (symname, "_imp_"))
4094 return name ? 1 :
4095 read_memory_unsigned_integer (indirect, 4, byte_order);
4096 }
4097 }
4098 return 0; /* Not a trampoline. */
4099 }
4100 \f
4101
4102 /* Return whether the THIS_FRAME corresponds to a sigtramp
4103 routine. */
4104
4105 int
4106 i386_sigtramp_p (frame_info_ptr this_frame)
4107 {
4108 CORE_ADDR pc = get_frame_pc (this_frame);
4109 const char *name;
4110
4111 find_pc_partial_function (pc, &name, NULL, NULL);
4112 return (name && strcmp ("_sigtramp", name) == 0);
4113 }
4114 \f
4115
4116 /* We have two flavours of disassembly. The machinery on this page
4117 deals with switching between those. */
4118
4119 static int
4120 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4121 {
4122 gdb_assert (disassembly_flavor == att_flavor
4123 || disassembly_flavor == intel_flavor);
4124
4125 info->disassembler_options = disassembly_flavor;
4126
4127 return default_print_insn (pc, info);
4128 }
4129 \f
4130
4131 /* There are a few i386 architecture variants that differ only
4132 slightly from the generic i386 target. For now, we don't give them
4133 their own source file, but include them here. As a consequence,
4134 they'll always be included. */
4135
4136 /* System V Release 4 (SVR4). */
4137
4138 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4139 routine. */
4140
4141 static int
4142 i386_svr4_sigtramp_p (frame_info_ptr this_frame)
4143 {
4144 CORE_ADDR pc = get_frame_pc (this_frame);
4145 const char *name;
4146
4147 /* The origin of these symbols is currently unknown. */
4148 find_pc_partial_function (pc, &name, NULL, NULL);
4149 return (name && (strcmp ("_sigreturn", name) == 0
4150 || strcmp ("sigvechandler", name) == 0));
4151 }
4152
4153 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4154 address of the associated sigcontext (ucontext) structure. */
4155
4156 static CORE_ADDR
4157 i386_svr4_sigcontext_addr (frame_info_ptr this_frame)
4158 {
4159 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4160 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4161 gdb_byte buf[4];
4162 CORE_ADDR sp;
4163
4164 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4165 sp = extract_unsigned_integer (buf, 4, byte_order);
4166
4167 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4168 }
4169
4170 \f
4171
4172 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4173 gdbarch.h. */
4174
4175 int
4176 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4177 {
4178 return (*s == '$' /* Literal number. */
4179 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4180 || (*s == '(' && s[1] == '%') /* Register indirection. */
4181 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4182 }
4183
4184 /* Helper function for i386_stap_parse_special_token.
4185
4186 This function parses operands of the form `-8+3+1(%rbp)', which
4187 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4188
4189 Return true if the operand was parsed successfully, false
4190 otherwise. */
4191
4192 static expr::operation_up
4193 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4194 struct stap_parse_info *p)
4195 {
4196 const char *s = p->arg;
4197
4198 if (isdigit (*s) || *s == '-' || *s == '+')
4199 {
4200 bool got_minus[3];
4201 int i;
4202 long displacements[3];
4203 const char *start;
4204 int len;
4205 char *endp;
4206
4207 got_minus[0] = false;
4208 if (*s == '+')
4209 ++s;
4210 else if (*s == '-')
4211 {
4212 ++s;
4213 got_minus[0] = true;
4214 }
4215
4216 if (!isdigit ((unsigned char) *s))
4217 return {};
4218
4219 displacements[0] = strtol (s, &endp, 10);
4220 s = endp;
4221
4222 if (*s != '+' && *s != '-')
4223 {
4224 /* We are not dealing with a triplet. */
4225 return {};
4226 }
4227
4228 got_minus[1] = false;
4229 if (*s == '+')
4230 ++s;
4231 else
4232 {
4233 ++s;
4234 got_minus[1] = true;
4235 }
4236
4237 if (!isdigit ((unsigned char) *s))
4238 return {};
4239
4240 displacements[1] = strtol (s, &endp, 10);
4241 s = endp;
4242
4243 if (*s != '+' && *s != '-')
4244 {
4245 /* We are not dealing with a triplet. */
4246 return {};
4247 }
4248
4249 got_minus[2] = false;
4250 if (*s == '+')
4251 ++s;
4252 else
4253 {
4254 ++s;
4255 got_minus[2] = true;
4256 }
4257
4258 if (!isdigit ((unsigned char) *s))
4259 return {};
4260
4261 displacements[2] = strtol (s, &endp, 10);
4262 s = endp;
4263
4264 if (*s != '(' || s[1] != '%')
4265 return {};
4266
4267 s += 2;
4268 start = s;
4269
4270 while (isalnum (*s))
4271 ++s;
4272
4273 if (*s++ != ')')
4274 return {};
4275
4276 len = s - start - 1;
4277 std::string regname (start, len);
4278
4279 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4280 error (_("Invalid register name `%s' on expression `%s'."),
4281 regname.c_str (), p->saved_arg);
4282
4283 LONGEST value = 0;
4284 for (i = 0; i < 3; i++)
4285 {
4286 LONGEST this_val = displacements[i];
4287 if (got_minus[i])
4288 this_val = -this_val;
4289 value += this_val;
4290 }
4291
4292 p->arg = s;
4293
4294 using namespace expr;
4295
4296 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4297 operation_up offset
4298 = make_operation<long_const_operation> (long_type, value);
4299
4300 operation_up reg
4301 = make_operation<register_operation> (std::move (regname));
4302 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4303 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4304
4305 operation_up sum
4306 = make_operation<add_operation> (std::move (reg), std::move (offset));
4307 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4308 sum = make_operation<unop_cast_operation> (std::move (sum),
4309 arg_ptr_type);
4310 return make_operation<unop_ind_operation> (std::move (sum));
4311 }
4312
4313 return {};
4314 }
4315
4316 /* Helper function for i386_stap_parse_special_token.
4317
4318 This function parses operands of the form `register base +
4319 (register index * size) + offset', as represented in
4320 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4321
4322 Return true if the operand was parsed successfully, false
4323 otherwise. */
4324
4325 static expr::operation_up
4326 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4327 struct stap_parse_info *p)
4328 {
4329 const char *s = p->arg;
4330
4331 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4332 {
4333 bool offset_minus = false;
4334 long offset = 0;
4335 bool size_minus = false;
4336 long size = 0;
4337 const char *start;
4338 int len_base;
4339 int len_index;
4340
4341 if (*s == '+')
4342 ++s;
4343 else if (*s == '-')
4344 {
4345 ++s;
4346 offset_minus = true;
4347 }
4348
4349 if (offset_minus && !isdigit (*s))
4350 return {};
4351
4352 if (isdigit (*s))
4353 {
4354 char *endp;
4355
4356 offset = strtol (s, &endp, 10);
4357 s = endp;
4358 }
4359
4360 if (*s != '(' || s[1] != '%')
4361 return {};
4362
4363 s += 2;
4364 start = s;
4365
4366 while (isalnum (*s))
4367 ++s;
4368
4369 if (*s != ',' || s[1] != '%')
4370 return {};
4371
4372 len_base = s - start;
4373 std::string base (start, len_base);
4374
4375 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4376 error (_("Invalid register name `%s' on expression `%s'."),
4377 base.c_str (), p->saved_arg);
4378
4379 s += 2;
4380 start = s;
4381
4382 while (isalnum (*s))
4383 ++s;
4384
4385 len_index = s - start;
4386 std::string index (start, len_index);
4387
4388 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4389 len_index) == -1)
4390 error (_("Invalid register name `%s' on expression `%s'."),
4391 index.c_str (), p->saved_arg);
4392
4393 if (*s != ',' && *s != ')')
4394 return {};
4395
4396 if (*s == ',')
4397 {
4398 char *endp;
4399
4400 ++s;
4401 if (*s == '+')
4402 ++s;
4403 else if (*s == '-')
4404 {
4405 ++s;
4406 size_minus = true;
4407 }
4408
4409 size = strtol (s, &endp, 10);
4410 s = endp;
4411
4412 if (*s != ')')
4413 return {};
4414 }
4415
4416 ++s;
4417 p->arg = s;
4418
4419 using namespace expr;
4420
4421 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4422 operation_up reg = make_operation<register_operation> (std::move (base));
4423
4424 if (offset != 0)
4425 {
4426 if (offset_minus)
4427 offset = -offset;
4428 operation_up value
4429 = make_operation<long_const_operation> (long_type, offset);
4430 reg = make_operation<add_operation> (std::move (reg),
4431 std::move (value));
4432 }
4433
4434 operation_up ind_reg
4435 = make_operation<register_operation> (std::move (index));
4436
4437 if (size != 0)
4438 {
4439 if (size_minus)
4440 size = -size;
4441 operation_up value
4442 = make_operation<long_const_operation> (long_type, size);
4443 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4444 std::move (value));
4445 }
4446
4447 operation_up sum
4448 = make_operation<add_operation> (std::move (reg),
4449 std::move (ind_reg));
4450
4451 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4452 sum = make_operation<unop_cast_operation> (std::move (sum),
4453 arg_ptr_type);
4454 return make_operation<unop_ind_operation> (std::move (sum));
4455 }
4456
4457 return {};
4458 }
4459
4460 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4461 gdbarch.h. */
4462
4463 expr::operation_up
4464 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4465 struct stap_parse_info *p)
4466 {
4467 /* The special tokens to be parsed here are:
4468
4469 - `register base + (register index * size) + offset', as represented
4470 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4471
4472 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4473 `*(-8 + 3 - 1 + (void *) $eax)'. */
4474
4475 expr::operation_up result
4476 = i386_stap_parse_special_token_triplet (gdbarch, p);
4477
4478 if (result == nullptr)
4479 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4480
4481 return result;
4482 }
4483
4484 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4485 gdbarch.h. */
4486
4487 static std::string
4488 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4489 const std::string &regname, int regnum)
4490 {
4491 static const std::unordered_set<std::string> reg_assoc
4492 = { "ax", "bx", "cx", "dx",
4493 "si", "di", "bp", "sp" };
4494
4495 /* If we are dealing with a register whose size is less than the size
4496 specified by the "[-]N@" prefix, and it is one of the registers that
4497 we know has an extended variant available, then use the extended
4498 version of the register instead. */
4499 if (register_size (gdbarch, regnum) < p->arg_type->length ()
4500 && reg_assoc.find (regname) != reg_assoc.end ())
4501 return "e" + regname;
4502
4503 /* Otherwise, just use the requested register. */
4504 return regname;
4505 }
4506
4507 \f
4508
4509 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4510 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4511
4512 static const char *
4513 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4514 {
4515 return "(x86_64|i.86)";
4516 }
4517
4518 \f
4519
4520 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4521
4522 static bool
4523 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4524 {
4525 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4526 I386_EAX_REGNUM, I386_EIP_REGNUM);
4527 }
4528
4529 /* Generic ELF. */
4530
4531 void
4532 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4533 {
4534 static const char *const stap_integer_prefixes[] = { "$", NULL };
4535 static const char *const stap_register_prefixes[] = { "%", NULL };
4536 static const char *const stap_register_indirection_prefixes[] = { "(",
4537 NULL };
4538 static const char *const stap_register_indirection_suffixes[] = { ")",
4539 NULL };
4540
4541 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4542 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4543
4544 /* Registering SystemTap handlers. */
4545 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4546 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4547 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4548 stap_register_indirection_prefixes);
4549 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4550 stap_register_indirection_suffixes);
4551 set_gdbarch_stap_is_single_operand (gdbarch,
4552 i386_stap_is_single_operand);
4553 set_gdbarch_stap_parse_special_token (gdbarch,
4554 i386_stap_parse_special_token);
4555 set_gdbarch_stap_adjust_register (gdbarch,
4556 i386_stap_adjust_register);
4557
4558 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4559 i386_in_indirect_branch_thunk);
4560 }
4561
4562 /* System V Release 4 (SVR4). */
4563
4564 void
4565 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4566 {
4567 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4568
4569 /* System V Release 4 uses ELF. */
4570 i386_elf_init_abi (info, gdbarch);
4571
4572 /* System V Release 4 has shared libraries. */
4573 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4574
4575 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4576 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4577 tdep->sc_pc_offset = 36 + 14 * 4;
4578 tdep->sc_sp_offset = 36 + 17 * 4;
4579
4580 tdep->jb_pc_offset = 20;
4581 }
4582
4583 \f
4584
4585 /* i386 register groups. In addition to the normal groups, add "mmx"
4586 and "sse". */
4587
4588 static const reggroup *i386_sse_reggroup;
4589 static const reggroup *i386_mmx_reggroup;
4590
4591 static void
4592 i386_init_reggroups (void)
4593 {
4594 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4595 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4596 }
4597
4598 static void
4599 i386_add_reggroups (struct gdbarch *gdbarch)
4600 {
4601 reggroup_add (gdbarch, i386_sse_reggroup);
4602 reggroup_add (gdbarch, i386_mmx_reggroup);
4603 }
4604
4605 int
4606 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4607 const struct reggroup *group)
4608 {
4609 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
4610 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4611 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4612 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4613 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4614 avx512_p, avx_p, sse_p, pkru_regnum_p;
4615
4616 /* Don't include pseudo registers, except for MMX, in any register
4617 groups. */
4618 if (i386_byte_regnum_p (gdbarch, regnum))
4619 return 0;
4620
4621 if (i386_word_regnum_p (gdbarch, regnum))
4622 return 0;
4623
4624 if (i386_dword_regnum_p (gdbarch, regnum))
4625 return 0;
4626
4627 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4628 if (group == i386_mmx_reggroup)
4629 return mmx_regnum_p;
4630
4631 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4632 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4633 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4634 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4635 if (group == i386_sse_reggroup)
4636 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4637
4638 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4639 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4640 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4641
4642 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4643 == X86_XSTATE_AVX_AVX512_MASK);
4644 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4645 == X86_XSTATE_AVX_MASK) && !avx512_p;
4646 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4647 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4648
4649 if (group == vector_reggroup)
4650 return (mmx_regnum_p
4651 || (zmm_regnum_p && avx512_p)
4652 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4653 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4654 || mxcsr_regnum_p);
4655
4656 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4657 || i386_fpc_regnum_p (gdbarch, regnum));
4658 if (group == float_reggroup)
4659 return fp_regnum_p;
4660
4661 /* For "info reg all", don't include upper YMM registers nor XMM
4662 registers when AVX is supported. */
4663 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4664 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4665 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4666 if (group == all_reggroup
4667 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4668 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4669 || ymmh_regnum_p
4670 || ymmh_avx512_regnum_p
4671 || zmmh_regnum_p))
4672 return 0;
4673
4674 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4675 if (group == all_reggroup
4676 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4677 return bnd_regnum_p;
4678
4679 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4680 if (group == all_reggroup
4681 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4682 return 0;
4683
4684 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4685 if (group == all_reggroup
4686 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4687 return mpx_ctrl_regnum_p;
4688
4689 if (group == general_reggroup)
4690 return (!fp_regnum_p
4691 && !mmx_regnum_p
4692 && !mxcsr_regnum_p
4693 && !xmm_regnum_p
4694 && !xmm_avx512_regnum_p
4695 && !ymm_regnum_p
4696 && !ymmh_regnum_p
4697 && !ymm_avx512_regnum_p
4698 && !ymmh_avx512_regnum_p
4699 && !bndr_regnum_p
4700 && !bnd_regnum_p
4701 && !mpx_ctrl_regnum_p
4702 && !zmm_regnum_p
4703 && !zmmh_regnum_p
4704 && !pkru_regnum_p);
4705
4706 return default_register_reggroup_p (gdbarch, regnum, group);
4707 }
4708 \f
4709
4710 /* Get the ARGIth function argument for the current function. */
4711
4712 static CORE_ADDR
4713 i386_fetch_pointer_argument (frame_info_ptr frame, int argi,
4714 struct type *type)
4715 {
4716 struct gdbarch *gdbarch = get_frame_arch (frame);
4717 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4718 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4719 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4720 }
4721
4722 #define PREFIX_REPZ 0x01
4723 #define PREFIX_REPNZ 0x02
4724 #define PREFIX_LOCK 0x04
4725 #define PREFIX_DATA 0x08
4726 #define PREFIX_ADDR 0x10
4727
4728 /* operand size */
4729 enum
4730 {
4731 OT_BYTE = 0,
4732 OT_WORD,
4733 OT_LONG,
4734 OT_QUAD,
4735 OT_DQUAD,
4736 };
4737
4738 /* i386 arith/logic operations */
4739 enum
4740 {
4741 OP_ADDL,
4742 OP_ORL,
4743 OP_ADCL,
4744 OP_SBBL,
4745 OP_ANDL,
4746 OP_SUBL,
4747 OP_XORL,
4748 OP_CMPL,
4749 };
4750
4751 struct i386_record_s
4752 {
4753 struct gdbarch *gdbarch;
4754 struct regcache *regcache;
4755 CORE_ADDR orig_addr;
4756 CORE_ADDR addr;
4757 int aflag;
4758 int dflag;
4759 int override;
4760 uint8_t modrm;
4761 uint8_t mod, reg, rm;
4762 int ot;
4763 uint8_t rex_x;
4764 uint8_t rex_b;
4765 int rip_offset;
4766 int popl_esp_hack;
4767 const int *regmap;
4768 };
4769
4770 /* Parse the "modrm" part of the memory address irp->addr points at.
4771 Returns -1 if something goes wrong, 0 otherwise. */
4772
4773 static int
4774 i386_record_modrm (struct i386_record_s *irp)
4775 {
4776 struct gdbarch *gdbarch = irp->gdbarch;
4777
4778 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4779 return -1;
4780
4781 irp->addr++;
4782 irp->mod = (irp->modrm >> 6) & 3;
4783 irp->reg = (irp->modrm >> 3) & 7;
4784 irp->rm = irp->modrm & 7;
4785
4786 return 0;
4787 }
4788
4789 /* Extract the memory address that the current instruction writes to,
4790 and return it in *ADDR. Return -1 if something goes wrong. */
4791
4792 static int
4793 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4794 {
4795 struct gdbarch *gdbarch = irp->gdbarch;
4796 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4797 gdb_byte buf[4];
4798 ULONGEST offset64;
4799
4800 *addr = 0;
4801 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4802 {
4803 /* 32/64 bits */
4804 int havesib = 0;
4805 uint8_t scale = 0;
4806 uint8_t byte;
4807 uint8_t index = 0;
4808 uint8_t base = irp->rm;
4809
4810 if (base == 4)
4811 {
4812 havesib = 1;
4813 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4814 return -1;
4815 irp->addr++;
4816 scale = (byte >> 6) & 3;
4817 index = ((byte >> 3) & 7) | irp->rex_x;
4818 base = (byte & 7);
4819 }
4820 base |= irp->rex_b;
4821
4822 switch (irp->mod)
4823 {
4824 case 0:
4825 if ((base & 7) == 5)
4826 {
4827 base = 0xff;
4828 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4829 return -1;
4830 irp->addr += 4;
4831 *addr = extract_signed_integer (buf, 4, byte_order);
4832 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4833 *addr += irp->addr + irp->rip_offset;
4834 }
4835 break;
4836 case 1:
4837 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4838 return -1;
4839 irp->addr++;
4840 *addr = (int8_t) buf[0];
4841 break;
4842 case 2:
4843 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4844 return -1;
4845 *addr = extract_signed_integer (buf, 4, byte_order);
4846 irp->addr += 4;
4847 break;
4848 }
4849
4850 offset64 = 0;
4851 if (base != 0xff)
4852 {
4853 if (base == 4 && irp->popl_esp_hack)
4854 *addr += irp->popl_esp_hack;
4855 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4856 &offset64);
4857 }
4858 if (irp->aflag == 2)
4859 {
4860 *addr += offset64;
4861 }
4862 else
4863 *addr = (uint32_t) (offset64 + *addr);
4864
4865 if (havesib && (index != 4 || scale != 0))
4866 {
4867 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4868 &offset64);
4869 if (irp->aflag == 2)
4870 *addr += offset64 << scale;
4871 else
4872 *addr = (uint32_t) (*addr + (offset64 << scale));
4873 }
4874
4875 if (!irp->aflag)
4876 {
4877 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4878 address from 32-bit to 64-bit. */
4879 *addr = (uint32_t) *addr;
4880 }
4881 }
4882 else
4883 {
4884 /* 16 bits */
4885 switch (irp->mod)
4886 {
4887 case 0:
4888 if (irp->rm == 6)
4889 {
4890 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4891 return -1;
4892 irp->addr += 2;
4893 *addr = extract_signed_integer (buf, 2, byte_order);
4894 irp->rm = 0;
4895 goto no_rm;
4896 }
4897 break;
4898 case 1:
4899 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4900 return -1;
4901 irp->addr++;
4902 *addr = (int8_t) buf[0];
4903 break;
4904 case 2:
4905 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4906 return -1;
4907 irp->addr += 2;
4908 *addr = extract_signed_integer (buf, 2, byte_order);
4909 break;
4910 }
4911
4912 switch (irp->rm)
4913 {
4914 case 0:
4915 regcache_raw_read_unsigned (irp->regcache,
4916 irp->regmap[X86_RECORD_REBX_REGNUM],
4917 &offset64);
4918 *addr = (uint32_t) (*addr + offset64);
4919 regcache_raw_read_unsigned (irp->regcache,
4920 irp->regmap[X86_RECORD_RESI_REGNUM],
4921 &offset64);
4922 *addr = (uint32_t) (*addr + offset64);
4923 break;
4924 case 1:
4925 regcache_raw_read_unsigned (irp->regcache,
4926 irp->regmap[X86_RECORD_REBX_REGNUM],
4927 &offset64);
4928 *addr = (uint32_t) (*addr + offset64);
4929 regcache_raw_read_unsigned (irp->regcache,
4930 irp->regmap[X86_RECORD_REDI_REGNUM],
4931 &offset64);
4932 *addr = (uint32_t) (*addr + offset64);
4933 break;
4934 case 2:
4935 regcache_raw_read_unsigned (irp->regcache,
4936 irp->regmap[X86_RECORD_REBP_REGNUM],
4937 &offset64);
4938 *addr = (uint32_t) (*addr + offset64);
4939 regcache_raw_read_unsigned (irp->regcache,
4940 irp->regmap[X86_RECORD_RESI_REGNUM],
4941 &offset64);
4942 *addr = (uint32_t) (*addr + offset64);
4943 break;
4944 case 3:
4945 regcache_raw_read_unsigned (irp->regcache,
4946 irp->regmap[X86_RECORD_REBP_REGNUM],
4947 &offset64);
4948 *addr = (uint32_t) (*addr + offset64);
4949 regcache_raw_read_unsigned (irp->regcache,
4950 irp->regmap[X86_RECORD_REDI_REGNUM],
4951 &offset64);
4952 *addr = (uint32_t) (*addr + offset64);
4953 break;
4954 case 4:
4955 regcache_raw_read_unsigned (irp->regcache,
4956 irp->regmap[X86_RECORD_RESI_REGNUM],
4957 &offset64);
4958 *addr = (uint32_t) (*addr + offset64);
4959 break;
4960 case 5:
4961 regcache_raw_read_unsigned (irp->regcache,
4962 irp->regmap[X86_RECORD_REDI_REGNUM],
4963 &offset64);
4964 *addr = (uint32_t) (*addr + offset64);
4965 break;
4966 case 6:
4967 regcache_raw_read_unsigned (irp->regcache,
4968 irp->regmap[X86_RECORD_REBP_REGNUM],
4969 &offset64);
4970 *addr = (uint32_t) (*addr + offset64);
4971 break;
4972 case 7:
4973 regcache_raw_read_unsigned (irp->regcache,
4974 irp->regmap[X86_RECORD_REBX_REGNUM],
4975 &offset64);
4976 *addr = (uint32_t) (*addr + offset64);
4977 break;
4978 }
4979 *addr &= 0xffff;
4980 }
4981
4982 no_rm:
4983 return 0;
4984 }
4985
4986 /* Record the address and contents of the memory that will be changed
4987 by the current instruction. Return -1 if something goes wrong, 0
4988 otherwise. */
4989
4990 static int
4991 i386_record_lea_modrm (struct i386_record_s *irp)
4992 {
4993 struct gdbarch *gdbarch = irp->gdbarch;
4994 uint64_t addr;
4995
4996 if (irp->override >= 0)
4997 {
4998 if (record_full_memory_query)
4999 {
5000 if (yquery (_("\
5001 Process record ignores the memory change of instruction at address %s\n\
5002 because it can't get the value of the segment register.\n\
5003 Do you want to stop the program?"),
5004 paddress (gdbarch, irp->orig_addr)))
5005 return -1;
5006 }
5007
5008 return 0;
5009 }
5010
5011 if (i386_record_lea_modrm_addr (irp, &addr))
5012 return -1;
5013
5014 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
5015 return -1;
5016
5017 return 0;
5018 }
5019
5020 /* Record the effects of a push operation. Return -1 if something
5021 goes wrong, 0 otherwise. */
5022
5023 static int
5024 i386_record_push (struct i386_record_s *irp, int size)
5025 {
5026 ULONGEST addr;
5027
5028 if (record_full_arch_list_add_reg (irp->regcache,
5029 irp->regmap[X86_RECORD_RESP_REGNUM]))
5030 return -1;
5031 regcache_raw_read_unsigned (irp->regcache,
5032 irp->regmap[X86_RECORD_RESP_REGNUM],
5033 &addr);
5034 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
5035 return -1;
5036
5037 return 0;
5038 }
5039
5040
5041 /* Defines contents to record. */
5042 #define I386_SAVE_FPU_REGS 0xfffd
5043 #define I386_SAVE_FPU_ENV 0xfffe
5044 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
5045
5046 /* Record the values of the floating point registers which will be
5047 changed by the current instruction. Returns -1 if something is
5048 wrong, 0 otherwise. */
5049
5050 static int i386_record_floats (struct gdbarch *gdbarch,
5051 struct i386_record_s *ir,
5052 uint32_t iregnum)
5053 {
5054 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
5055 int i;
5056
5057 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5058 happen. Currently we store st0-st7 registers, but we need not store all
5059 registers all the time, in future we use ftag register and record only
5060 those who are not marked as an empty. */
5061
5062 if (I386_SAVE_FPU_REGS == iregnum)
5063 {
5064 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5065 {
5066 if (record_full_arch_list_add_reg (ir->regcache, i))
5067 return -1;
5068 }
5069 }
5070 else if (I386_SAVE_FPU_ENV == iregnum)
5071 {
5072 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5073 {
5074 if (record_full_arch_list_add_reg (ir->regcache, i))
5075 return -1;
5076 }
5077 }
5078 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5079 {
5080 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5081 if (record_full_arch_list_add_reg (ir->regcache, i))
5082 return -1;
5083 }
5084 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5085 (iregnum <= I387_FOP_REGNUM (tdep)))
5086 {
5087 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5088 return -1;
5089 }
5090 else
5091 {
5092 /* Parameter error. */
5093 return -1;
5094 }
5095 if(I386_SAVE_FPU_ENV != iregnum)
5096 {
5097 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5098 {
5099 if (record_full_arch_list_add_reg (ir->regcache, i))
5100 return -1;
5101 }
5102 }
5103 return 0;
5104 }
5105
5106 /* Parse the current instruction, and record the values of the
5107 registers and memory that will be changed by the current
5108 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5109
5110 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5111 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5112
5113 int
5114 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5115 CORE_ADDR input_addr)
5116 {
5117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5118 int prefixes = 0;
5119 int regnum = 0;
5120 uint32_t opcode;
5121 uint8_t opcode8;
5122 ULONGEST addr;
5123 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5124 struct i386_record_s ir;
5125 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
5126 uint8_t rex_w = -1;
5127 uint8_t rex_r = 0;
5128
5129 memset (&ir, 0, sizeof (struct i386_record_s));
5130 ir.regcache = regcache;
5131 ir.addr = input_addr;
5132 ir.orig_addr = input_addr;
5133 ir.aflag = 1;
5134 ir.dflag = 1;
5135 ir.override = -1;
5136 ir.popl_esp_hack = 0;
5137 ir.regmap = tdep->record_regmap;
5138 ir.gdbarch = gdbarch;
5139
5140 if (record_debug > 1)
5141 gdb_printf (gdb_stdlog, "Process record: i386_process_record "
5142 "addr = %s\n",
5143 paddress (gdbarch, ir.addr));
5144
5145 /* prefixes */
5146 while (1)
5147 {
5148 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5149 return -1;
5150 ir.addr++;
5151 switch (opcode8) /* Instruction prefixes */
5152 {
5153 case REPE_PREFIX_OPCODE:
5154 prefixes |= PREFIX_REPZ;
5155 break;
5156 case REPNE_PREFIX_OPCODE:
5157 prefixes |= PREFIX_REPNZ;
5158 break;
5159 case LOCK_PREFIX_OPCODE:
5160 prefixes |= PREFIX_LOCK;
5161 break;
5162 case CS_PREFIX_OPCODE:
5163 ir.override = X86_RECORD_CS_REGNUM;
5164 break;
5165 case SS_PREFIX_OPCODE:
5166 ir.override = X86_RECORD_SS_REGNUM;
5167 break;
5168 case DS_PREFIX_OPCODE:
5169 ir.override = X86_RECORD_DS_REGNUM;
5170 break;
5171 case ES_PREFIX_OPCODE:
5172 ir.override = X86_RECORD_ES_REGNUM;
5173 break;
5174 case FS_PREFIX_OPCODE:
5175 ir.override = X86_RECORD_FS_REGNUM;
5176 break;
5177 case GS_PREFIX_OPCODE:
5178 ir.override = X86_RECORD_GS_REGNUM;
5179 break;
5180 case DATA_PREFIX_OPCODE:
5181 prefixes |= PREFIX_DATA;
5182 break;
5183 case ADDR_PREFIX_OPCODE:
5184 prefixes |= PREFIX_ADDR;
5185 break;
5186 case 0x40: /* i386 inc %eax */
5187 case 0x41: /* i386 inc %ecx */
5188 case 0x42: /* i386 inc %edx */
5189 case 0x43: /* i386 inc %ebx */
5190 case 0x44: /* i386 inc %esp */
5191 case 0x45: /* i386 inc %ebp */
5192 case 0x46: /* i386 inc %esi */
5193 case 0x47: /* i386 inc %edi */
5194 case 0x48: /* i386 dec %eax */
5195 case 0x49: /* i386 dec %ecx */
5196 case 0x4a: /* i386 dec %edx */
5197 case 0x4b: /* i386 dec %ebx */
5198 case 0x4c: /* i386 dec %esp */
5199 case 0x4d: /* i386 dec %ebp */
5200 case 0x4e: /* i386 dec %esi */
5201 case 0x4f: /* i386 dec %edi */
5202 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5203 {
5204 /* REX */
5205 rex_w = (opcode8 >> 3) & 1;
5206 rex_r = (opcode8 & 0x4) << 1;
5207 ir.rex_x = (opcode8 & 0x2) << 2;
5208 ir.rex_b = (opcode8 & 0x1) << 3;
5209 }
5210 else /* 32 bit target */
5211 goto out_prefixes;
5212 break;
5213 default:
5214 goto out_prefixes;
5215 break;
5216 }
5217 }
5218 out_prefixes:
5219 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5220 {
5221 ir.dflag = 2;
5222 }
5223 else
5224 {
5225 if (prefixes & PREFIX_DATA)
5226 ir.dflag ^= 1;
5227 }
5228 if (prefixes & PREFIX_ADDR)
5229 ir.aflag ^= 1;
5230 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5231 ir.aflag = 2;
5232
5233 /* Now check op code. */
5234 opcode = (uint32_t) opcode8;
5235 reswitch:
5236 switch (opcode)
5237 {
5238 case 0x0f:
5239 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5240 return -1;
5241 ir.addr++;
5242 opcode = (uint32_t) opcode8 | 0x0f00;
5243 goto reswitch;
5244 break;
5245
5246 case 0x00: /* arith & logic */
5247 case 0x01:
5248 case 0x02:
5249 case 0x03:
5250 case 0x04:
5251 case 0x05:
5252 case 0x08:
5253 case 0x09:
5254 case 0x0a:
5255 case 0x0b:
5256 case 0x0c:
5257 case 0x0d:
5258 case 0x10:
5259 case 0x11:
5260 case 0x12:
5261 case 0x13:
5262 case 0x14:
5263 case 0x15:
5264 case 0x18:
5265 case 0x19:
5266 case 0x1a:
5267 case 0x1b:
5268 case 0x1c:
5269 case 0x1d:
5270 case 0x20:
5271 case 0x21:
5272 case 0x22:
5273 case 0x23:
5274 case 0x24:
5275 case 0x25:
5276 case 0x28:
5277 case 0x29:
5278 case 0x2a:
5279 case 0x2b:
5280 case 0x2c:
5281 case 0x2d:
5282 case 0x30:
5283 case 0x31:
5284 case 0x32:
5285 case 0x33:
5286 case 0x34:
5287 case 0x35:
5288 case 0x38:
5289 case 0x39:
5290 case 0x3a:
5291 case 0x3b:
5292 case 0x3c:
5293 case 0x3d:
5294 if (((opcode >> 3) & 7) != OP_CMPL)
5295 {
5296 if ((opcode & 1) == 0)
5297 ir.ot = OT_BYTE;
5298 else
5299 ir.ot = ir.dflag + OT_WORD;
5300
5301 switch ((opcode >> 1) & 3)
5302 {
5303 case 0: /* OP Ev, Gv */
5304 if (i386_record_modrm (&ir))
5305 return -1;
5306 if (ir.mod != 3)
5307 {
5308 if (i386_record_lea_modrm (&ir))
5309 return -1;
5310 }
5311 else
5312 {
5313 ir.rm |= ir.rex_b;
5314 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5315 ir.rm &= 0x3;
5316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5317 }
5318 break;
5319 case 1: /* OP Gv, Ev */
5320 if (i386_record_modrm (&ir))
5321 return -1;
5322 ir.reg |= rex_r;
5323 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5324 ir.reg &= 0x3;
5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5326 break;
5327 case 2: /* OP A, Iv */
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5329 break;
5330 }
5331 }
5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5333 break;
5334
5335 case 0x80: /* GRP1 */
5336 case 0x81:
5337 case 0x82:
5338 case 0x83:
5339 if (i386_record_modrm (&ir))
5340 return -1;
5341
5342 if (ir.reg != OP_CMPL)
5343 {
5344 if ((opcode & 1) == 0)
5345 ir.ot = OT_BYTE;
5346 else
5347 ir.ot = ir.dflag + OT_WORD;
5348
5349 if (ir.mod != 3)
5350 {
5351 if (opcode == 0x83)
5352 ir.rip_offset = 1;
5353 else
5354 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5355 if (i386_record_lea_modrm (&ir))
5356 return -1;
5357 }
5358 else
5359 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5360 }
5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5362 break;
5363
5364 case 0x40: /* inc */
5365 case 0x41:
5366 case 0x42:
5367 case 0x43:
5368 case 0x44:
5369 case 0x45:
5370 case 0x46:
5371 case 0x47:
5372
5373 case 0x48: /* dec */
5374 case 0x49:
5375 case 0x4a:
5376 case 0x4b:
5377 case 0x4c:
5378 case 0x4d:
5379 case 0x4e:
5380 case 0x4f:
5381
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5384 break;
5385
5386 case 0xf6: /* GRP3 */
5387 case 0xf7:
5388 if ((opcode & 1) == 0)
5389 ir.ot = OT_BYTE;
5390 else
5391 ir.ot = ir.dflag + OT_WORD;
5392 if (i386_record_modrm (&ir))
5393 return -1;
5394
5395 if (ir.mod != 3 && ir.reg == 0)
5396 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5397
5398 switch (ir.reg)
5399 {
5400 case 0: /* test */
5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5402 break;
5403 case 2: /* not */
5404 case 3: /* neg */
5405 if (ir.mod != 3)
5406 {
5407 if (i386_record_lea_modrm (&ir))
5408 return -1;
5409 }
5410 else
5411 {
5412 ir.rm |= ir.rex_b;
5413 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5414 ir.rm &= 0x3;
5415 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5416 }
5417 if (ir.reg == 3) /* neg */
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5419 break;
5420 case 4: /* mul */
5421 case 5: /* imul */
5422 case 6: /* div */
5423 case 7: /* idiv */
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5425 if (ir.ot != OT_BYTE)
5426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5428 break;
5429 default:
5430 ir.addr -= 2;
5431 opcode = opcode << 8 | ir.modrm;
5432 goto no_support;
5433 break;
5434 }
5435 break;
5436
5437 case 0xfe: /* GRP4 */
5438 case 0xff: /* GRP5 */
5439 if (i386_record_modrm (&ir))
5440 return -1;
5441 if (ir.reg >= 2 && opcode == 0xfe)
5442 {
5443 ir.addr -= 2;
5444 opcode = opcode << 8 | ir.modrm;
5445 goto no_support;
5446 }
5447 switch (ir.reg)
5448 {
5449 case 0: /* inc */
5450 case 1: /* dec */
5451 if ((opcode & 1) == 0)
5452 ir.ot = OT_BYTE;
5453 else
5454 ir.ot = ir.dflag + OT_WORD;
5455 if (ir.mod != 3)
5456 {
5457 if (i386_record_lea_modrm (&ir))
5458 return -1;
5459 }
5460 else
5461 {
5462 ir.rm |= ir.rex_b;
5463 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5464 ir.rm &= 0x3;
5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5466 }
5467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5468 break;
5469 case 2: /* call */
5470 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5471 ir.dflag = 2;
5472 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5473 return -1;
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5475 break;
5476 case 3: /* lcall */
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5478 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5479 return -1;
5480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5481 break;
5482 case 4: /* jmp */
5483 case 5: /* ljmp */
5484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5485 break;
5486 case 6: /* push */
5487 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5488 ir.dflag = 2;
5489 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5490 return -1;
5491 break;
5492 default:
5493 ir.addr -= 2;
5494 opcode = opcode << 8 | ir.modrm;
5495 goto no_support;
5496 break;
5497 }
5498 break;
5499
5500 case 0x84: /* test */
5501 case 0x85:
5502 case 0xa8:
5503 case 0xa9:
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5505 break;
5506
5507 case 0x98: /* CWDE/CBW */
5508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5509 break;
5510
5511 case 0x99: /* CDQ/CWD */
5512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5514 break;
5515
5516 case 0x0faf: /* imul */
5517 case 0x69:
5518 case 0x6b:
5519 ir.ot = ir.dflag + OT_WORD;
5520 if (i386_record_modrm (&ir))
5521 return -1;
5522 if (opcode == 0x69)
5523 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5524 else if (opcode == 0x6b)
5525 ir.rip_offset = 1;
5526 ir.reg |= rex_r;
5527 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5528 ir.reg &= 0x3;
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5531 break;
5532
5533 case 0x0fc0: /* xadd */
5534 case 0x0fc1:
5535 if ((opcode & 1) == 0)
5536 ir.ot = OT_BYTE;
5537 else
5538 ir.ot = ir.dflag + OT_WORD;
5539 if (i386_record_modrm (&ir))
5540 return -1;
5541 ir.reg |= rex_r;
5542 if (ir.mod == 3)
5543 {
5544 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5545 ir.reg &= 0x3;
5546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5547 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5548 ir.rm &= 0x3;
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5550 }
5551 else
5552 {
5553 if (i386_record_lea_modrm (&ir))
5554 return -1;
5555 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5556 ir.reg &= 0x3;
5557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5558 }
5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5560 break;
5561
5562 case 0x0fb0: /* cmpxchg */
5563 case 0x0fb1:
5564 if ((opcode & 1) == 0)
5565 ir.ot = OT_BYTE;
5566 else
5567 ir.ot = ir.dflag + OT_WORD;
5568 if (i386_record_modrm (&ir))
5569 return -1;
5570 if (ir.mod == 3)
5571 {
5572 ir.reg |= rex_r;
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5574 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5575 ir.reg &= 0x3;
5576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5577 }
5578 else
5579 {
5580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5581 if (i386_record_lea_modrm (&ir))
5582 return -1;
5583 }
5584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5585 break;
5586
5587 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5588 if (i386_record_modrm (&ir))
5589 return -1;
5590 if (ir.mod == 3)
5591 {
5592 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5593 an extended opcode. rdrand has bits 110 (/6) and rdseed
5594 has bits 111 (/7). */
5595 if (ir.reg == 6 || ir.reg == 7)
5596 {
5597 /* The storage register is described by the 3 R/M bits, but the
5598 REX.B prefix may be used to give access to registers
5599 R8~R15. In this case ir.rex_b + R/M will give us the register
5600 in the range R8~R15.
5601
5602 REX.W may also be used to access 64-bit registers, but we
5603 already record entire registers and not just partial bits
5604 of them. */
5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5606 /* These instructions also set conditional bits. */
5607 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5608 break;
5609 }
5610 else
5611 {
5612 /* We don't handle this particular instruction yet. */
5613 ir.addr -= 2;
5614 opcode = opcode << 8 | ir.modrm;
5615 goto no_support;
5616 }
5617 }
5618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5620 if (i386_record_lea_modrm (&ir))
5621 return -1;
5622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5623 break;
5624
5625 case 0x50: /* push */
5626 case 0x51:
5627 case 0x52:
5628 case 0x53:
5629 case 0x54:
5630 case 0x55:
5631 case 0x56:
5632 case 0x57:
5633 case 0x68:
5634 case 0x6a:
5635 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5636 ir.dflag = 2;
5637 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5638 return -1;
5639 break;
5640
5641 case 0x06: /* push es */
5642 case 0x0e: /* push cs */
5643 case 0x16: /* push ss */
5644 case 0x1e: /* push ds */
5645 if (ir.regmap[X86_RECORD_R8_REGNUM])
5646 {
5647 ir.addr -= 1;
5648 goto no_support;
5649 }
5650 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5651 return -1;
5652 break;
5653
5654 case 0x0fa0: /* push fs */
5655 case 0x0fa8: /* push gs */
5656 if (ir.regmap[X86_RECORD_R8_REGNUM])
5657 {
5658 ir.addr -= 2;
5659 goto no_support;
5660 }
5661 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5662 return -1;
5663 break;
5664
5665 case 0x60: /* pusha */
5666 if (ir.regmap[X86_RECORD_R8_REGNUM])
5667 {
5668 ir.addr -= 1;
5669 goto no_support;
5670 }
5671 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5672 return -1;
5673 break;
5674
5675 case 0x58: /* pop */
5676 case 0x59:
5677 case 0x5a:
5678 case 0x5b:
5679 case 0x5c:
5680 case 0x5d:
5681 case 0x5e:
5682 case 0x5f:
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5685 break;
5686
5687 case 0x61: /* popa */
5688 if (ir.regmap[X86_RECORD_R8_REGNUM])
5689 {
5690 ir.addr -= 1;
5691 goto no_support;
5692 }
5693 for (regnum = X86_RECORD_REAX_REGNUM;
5694 regnum <= X86_RECORD_REDI_REGNUM;
5695 regnum++)
5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5697 break;
5698
5699 case 0x8f: /* pop */
5700 if (ir.regmap[X86_RECORD_R8_REGNUM])
5701 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5702 else
5703 ir.ot = ir.dflag + OT_WORD;
5704 if (i386_record_modrm (&ir))
5705 return -1;
5706 if (ir.mod == 3)
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5708 else
5709 {
5710 ir.popl_esp_hack = 1 << ir.ot;
5711 if (i386_record_lea_modrm (&ir))
5712 return -1;
5713 }
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5715 break;
5716
5717 case 0xc8: /* enter */
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5719 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5720 ir.dflag = 2;
5721 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5722 return -1;
5723 break;
5724
5725 case 0xc9: /* leave */
5726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5728 break;
5729
5730 case 0x07: /* pop es */
5731 if (ir.regmap[X86_RECORD_R8_REGNUM])
5732 {
5733 ir.addr -= 1;
5734 goto no_support;
5735 }
5736 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5738 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5739 break;
5740
5741 case 0x17: /* pop ss */
5742 if (ir.regmap[X86_RECORD_R8_REGNUM])
5743 {
5744 ir.addr -= 1;
5745 goto no_support;
5746 }
5747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5748 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5749 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5750 break;
5751
5752 case 0x1f: /* pop ds */
5753 if (ir.regmap[X86_RECORD_R8_REGNUM])
5754 {
5755 ir.addr -= 1;
5756 goto no_support;
5757 }
5758 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5759 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5761 break;
5762
5763 case 0x0fa1: /* pop fs */
5764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5767 break;
5768
5769 case 0x0fa9: /* pop gs */
5770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5773 break;
5774
5775 case 0x88: /* mov */
5776 case 0x89:
5777 case 0xc6:
5778 case 0xc7:
5779 if ((opcode & 1) == 0)
5780 ir.ot = OT_BYTE;
5781 else
5782 ir.ot = ir.dflag + OT_WORD;
5783
5784 if (i386_record_modrm (&ir))
5785 return -1;
5786
5787 if (ir.mod != 3)
5788 {
5789 if (opcode == 0xc6 || opcode == 0xc7)
5790 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5791 if (i386_record_lea_modrm (&ir))
5792 return -1;
5793 }
5794 else
5795 {
5796 if (opcode == 0xc6 || opcode == 0xc7)
5797 ir.rm |= ir.rex_b;
5798 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5799 ir.rm &= 0x3;
5800 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5801 }
5802 break;
5803
5804 case 0x8a: /* mov */
5805 case 0x8b:
5806 if ((opcode & 1) == 0)
5807 ir.ot = OT_BYTE;
5808 else
5809 ir.ot = ir.dflag + OT_WORD;
5810 if (i386_record_modrm (&ir))
5811 return -1;
5812 ir.reg |= rex_r;
5813 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5814 ir.reg &= 0x3;
5815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5816 break;
5817
5818 case 0x8c: /* mov seg */
5819 if (i386_record_modrm (&ir))
5820 return -1;
5821 if (ir.reg > 5)
5822 {
5823 ir.addr -= 2;
5824 opcode = opcode << 8 | ir.modrm;
5825 goto no_support;
5826 }
5827
5828 if (ir.mod == 3)
5829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5830 else
5831 {
5832 ir.ot = OT_WORD;
5833 if (i386_record_lea_modrm (&ir))
5834 return -1;
5835 }
5836 break;
5837
5838 case 0x8e: /* mov seg */
5839 if (i386_record_modrm (&ir))
5840 return -1;
5841 switch (ir.reg)
5842 {
5843 case 0:
5844 regnum = X86_RECORD_ES_REGNUM;
5845 break;
5846 case 2:
5847 regnum = X86_RECORD_SS_REGNUM;
5848 break;
5849 case 3:
5850 regnum = X86_RECORD_DS_REGNUM;
5851 break;
5852 case 4:
5853 regnum = X86_RECORD_FS_REGNUM;
5854 break;
5855 case 5:
5856 regnum = X86_RECORD_GS_REGNUM;
5857 break;
5858 default:
5859 ir.addr -= 2;
5860 opcode = opcode << 8 | ir.modrm;
5861 goto no_support;
5862 break;
5863 }
5864 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5865 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5866 break;
5867
5868 case 0x0fb6: /* movzbS */
5869 case 0x0fb7: /* movzwS */
5870 case 0x0fbe: /* movsbS */
5871 case 0x0fbf: /* movswS */
5872 if (i386_record_modrm (&ir))
5873 return -1;
5874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5875 break;
5876
5877 case 0x8d: /* lea */
5878 if (i386_record_modrm (&ir))
5879 return -1;
5880 if (ir.mod == 3)
5881 {
5882 ir.addr -= 2;
5883 opcode = opcode << 8 | ir.modrm;
5884 goto no_support;
5885 }
5886 ir.ot = ir.dflag;
5887 ir.reg |= rex_r;
5888 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5889 ir.reg &= 0x3;
5890 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5891 break;
5892
5893 case 0xa0: /* mov EAX */
5894 case 0xa1:
5895
5896 case 0xd7: /* xlat */
5897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5898 break;
5899
5900 case 0xa2: /* mov EAX */
5901 case 0xa3:
5902 if (ir.override >= 0)
5903 {
5904 if (record_full_memory_query)
5905 {
5906 if (yquery (_("\
5907 Process record ignores the memory change of instruction at address %s\n\
5908 because it can't get the value of the segment register.\n\
5909 Do you want to stop the program?"),
5910 paddress (gdbarch, ir.orig_addr)))
5911 return -1;
5912 }
5913 }
5914 else
5915 {
5916 if ((opcode & 1) == 0)
5917 ir.ot = OT_BYTE;
5918 else
5919 ir.ot = ir.dflag + OT_WORD;
5920 if (ir.aflag == 2)
5921 {
5922 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5923 return -1;
5924 ir.addr += 8;
5925 addr = extract_unsigned_integer (buf, 8, byte_order);
5926 }
5927 else if (ir.aflag)
5928 {
5929 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5930 return -1;
5931 ir.addr += 4;
5932 addr = extract_unsigned_integer (buf, 4, byte_order);
5933 }
5934 else
5935 {
5936 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5937 return -1;
5938 ir.addr += 2;
5939 addr = extract_unsigned_integer (buf, 2, byte_order);
5940 }
5941 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5942 return -1;
5943 }
5944 break;
5945
5946 case 0xb0: /* mov R, Ib */
5947 case 0xb1:
5948 case 0xb2:
5949 case 0xb3:
5950 case 0xb4:
5951 case 0xb5:
5952 case 0xb6:
5953 case 0xb7:
5954 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5955 ? ((opcode & 0x7) | ir.rex_b)
5956 : ((opcode & 0x7) & 0x3));
5957 break;
5958
5959 case 0xb8: /* mov R, Iv */
5960 case 0xb9:
5961 case 0xba:
5962 case 0xbb:
5963 case 0xbc:
5964 case 0xbd:
5965 case 0xbe:
5966 case 0xbf:
5967 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5968 break;
5969
5970 case 0x91: /* xchg R, EAX */
5971 case 0x92:
5972 case 0x93:
5973 case 0x94:
5974 case 0x95:
5975 case 0x96:
5976 case 0x97:
5977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5979 break;
5980
5981 case 0x86: /* xchg Ev, Gv */
5982 case 0x87:
5983 if ((opcode & 1) == 0)
5984 ir.ot = OT_BYTE;
5985 else
5986 ir.ot = ir.dflag + OT_WORD;
5987 if (i386_record_modrm (&ir))
5988 return -1;
5989 if (ir.mod == 3)
5990 {
5991 ir.rm |= ir.rex_b;
5992 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5993 ir.rm &= 0x3;
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5995 }
5996 else
5997 {
5998 if (i386_record_lea_modrm (&ir))
5999 return -1;
6000 }
6001 ir.reg |= rex_r;
6002 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6003 ir.reg &= 0x3;
6004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6005 break;
6006
6007 case 0xc4: /* les Gv */
6008 case 0xc5: /* lds Gv */
6009 if (ir.regmap[X86_RECORD_R8_REGNUM])
6010 {
6011 ir.addr -= 1;
6012 goto no_support;
6013 }
6014 /* FALLTHROUGH */
6015 case 0x0fb2: /* lss Gv */
6016 case 0x0fb4: /* lfs Gv */
6017 case 0x0fb5: /* lgs Gv */
6018 if (i386_record_modrm (&ir))
6019 return -1;
6020 if (ir.mod == 3)
6021 {
6022 if (opcode > 0xff)
6023 ir.addr -= 3;
6024 else
6025 ir.addr -= 2;
6026 opcode = opcode << 8 | ir.modrm;
6027 goto no_support;
6028 }
6029 switch (opcode)
6030 {
6031 case 0xc4: /* les Gv */
6032 regnum = X86_RECORD_ES_REGNUM;
6033 break;
6034 case 0xc5: /* lds Gv */
6035 regnum = X86_RECORD_DS_REGNUM;
6036 break;
6037 case 0x0fb2: /* lss Gv */
6038 regnum = X86_RECORD_SS_REGNUM;
6039 break;
6040 case 0x0fb4: /* lfs Gv */
6041 regnum = X86_RECORD_FS_REGNUM;
6042 break;
6043 case 0x0fb5: /* lgs Gv */
6044 regnum = X86_RECORD_GS_REGNUM;
6045 break;
6046 }
6047 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
6048 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6049 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6050 break;
6051
6052 case 0xc0: /* shifts */
6053 case 0xc1:
6054 case 0xd0:
6055 case 0xd1:
6056 case 0xd2:
6057 case 0xd3:
6058 if ((opcode & 1) == 0)
6059 ir.ot = OT_BYTE;
6060 else
6061 ir.ot = ir.dflag + OT_WORD;
6062 if (i386_record_modrm (&ir))
6063 return -1;
6064 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6065 {
6066 if (i386_record_lea_modrm (&ir))
6067 return -1;
6068 }
6069 else
6070 {
6071 ir.rm |= ir.rex_b;
6072 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6073 ir.rm &= 0x3;
6074 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6075 }
6076 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6077 break;
6078
6079 case 0x0fa4:
6080 case 0x0fa5:
6081 case 0x0fac:
6082 case 0x0fad:
6083 if (i386_record_modrm (&ir))
6084 return -1;
6085 if (ir.mod == 3)
6086 {
6087 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6088 return -1;
6089 }
6090 else
6091 {
6092 if (i386_record_lea_modrm (&ir))
6093 return -1;
6094 }
6095 break;
6096
6097 case 0xd8: /* Floats. */
6098 case 0xd9:
6099 case 0xda:
6100 case 0xdb:
6101 case 0xdc:
6102 case 0xdd:
6103 case 0xde:
6104 case 0xdf:
6105 if (i386_record_modrm (&ir))
6106 return -1;
6107 ir.reg |= ((opcode & 7) << 3);
6108 if (ir.mod != 3)
6109 {
6110 /* Memory. */
6111 uint64_t addr64;
6112
6113 if (i386_record_lea_modrm_addr (&ir, &addr64))
6114 return -1;
6115 switch (ir.reg)
6116 {
6117 case 0x02:
6118 case 0x12:
6119 case 0x22:
6120 case 0x32:
6121 /* For fcom, ficom nothing to do. */
6122 break;
6123 case 0x03:
6124 case 0x13:
6125 case 0x23:
6126 case 0x33:
6127 /* For fcomp, ficomp pop FPU stack, store all. */
6128 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6129 return -1;
6130 break;
6131 case 0x00:
6132 case 0x01:
6133 case 0x04:
6134 case 0x05:
6135 case 0x06:
6136 case 0x07:
6137 case 0x10:
6138 case 0x11:
6139 case 0x14:
6140 case 0x15:
6141 case 0x16:
6142 case 0x17:
6143 case 0x20:
6144 case 0x21:
6145 case 0x24:
6146 case 0x25:
6147 case 0x26:
6148 case 0x27:
6149 case 0x30:
6150 case 0x31:
6151 case 0x34:
6152 case 0x35:
6153 case 0x36:
6154 case 0x37:
6155 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6156 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6157 of code, always affects st(0) register. */
6158 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6159 return -1;
6160 break;
6161 case 0x08:
6162 case 0x0a:
6163 case 0x0b:
6164 case 0x18:
6165 case 0x19:
6166 case 0x1a:
6167 case 0x1b:
6168 case 0x1d:
6169 case 0x28:
6170 case 0x29:
6171 case 0x2a:
6172 case 0x2b:
6173 case 0x38:
6174 case 0x39:
6175 case 0x3a:
6176 case 0x3b:
6177 case 0x3c:
6178 case 0x3d:
6179 switch (ir.reg & 7)
6180 {
6181 case 0:
6182 /* Handling fld, fild. */
6183 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6184 return -1;
6185 break;
6186 case 1:
6187 switch (ir.reg >> 4)
6188 {
6189 case 0:
6190 if (record_full_arch_list_add_mem (addr64, 4))
6191 return -1;
6192 break;
6193 case 2:
6194 if (record_full_arch_list_add_mem (addr64, 8))
6195 return -1;
6196 break;
6197 case 3:
6198 break;
6199 default:
6200 if (record_full_arch_list_add_mem (addr64, 2))
6201 return -1;
6202 break;
6203 }
6204 break;
6205 default:
6206 switch (ir.reg >> 4)
6207 {
6208 case 0:
6209 if (record_full_arch_list_add_mem (addr64, 4))
6210 return -1;
6211 if (3 == (ir.reg & 7))
6212 {
6213 /* For fstp m32fp. */
6214 if (i386_record_floats (gdbarch, &ir,
6215 I386_SAVE_FPU_REGS))
6216 return -1;
6217 }
6218 break;
6219 case 1:
6220 if (record_full_arch_list_add_mem (addr64, 4))
6221 return -1;
6222 if ((3 == (ir.reg & 7))
6223 || (5 == (ir.reg & 7))
6224 || (7 == (ir.reg & 7)))
6225 {
6226 /* For fstp insn. */
6227 if (i386_record_floats (gdbarch, &ir,
6228 I386_SAVE_FPU_REGS))
6229 return -1;
6230 }
6231 break;
6232 case 2:
6233 if (record_full_arch_list_add_mem (addr64, 8))
6234 return -1;
6235 if (3 == (ir.reg & 7))
6236 {
6237 /* For fstp m64fp. */
6238 if (i386_record_floats (gdbarch, &ir,
6239 I386_SAVE_FPU_REGS))
6240 return -1;
6241 }
6242 break;
6243 case 3:
6244 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6245 {
6246 /* For fistp, fbld, fild, fbstp. */
6247 if (i386_record_floats (gdbarch, &ir,
6248 I386_SAVE_FPU_REGS))
6249 return -1;
6250 }
6251 /* Fall through */
6252 default:
6253 if (record_full_arch_list_add_mem (addr64, 2))
6254 return -1;
6255 break;
6256 }
6257 break;
6258 }
6259 break;
6260 case 0x0c:
6261 /* Insn fldenv. */
6262 if (i386_record_floats (gdbarch, &ir,
6263 I386_SAVE_FPU_ENV_REG_STACK))
6264 return -1;
6265 break;
6266 case 0x0d:
6267 /* Insn fldcw. */
6268 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6269 return -1;
6270 break;
6271 case 0x2c:
6272 /* Insn frstor. */
6273 if (i386_record_floats (gdbarch, &ir,
6274 I386_SAVE_FPU_ENV_REG_STACK))
6275 return -1;
6276 break;
6277 case 0x0e:
6278 if (ir.dflag)
6279 {
6280 if (record_full_arch_list_add_mem (addr64, 28))
6281 return -1;
6282 }
6283 else
6284 {
6285 if (record_full_arch_list_add_mem (addr64, 14))
6286 return -1;
6287 }
6288 break;
6289 case 0x0f:
6290 case 0x2f:
6291 if (record_full_arch_list_add_mem (addr64, 2))
6292 return -1;
6293 /* Insn fstp, fbstp. */
6294 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6295 return -1;
6296 break;
6297 case 0x1f:
6298 case 0x3e:
6299 if (record_full_arch_list_add_mem (addr64, 10))
6300 return -1;
6301 break;
6302 case 0x2e:
6303 if (ir.dflag)
6304 {
6305 if (record_full_arch_list_add_mem (addr64, 28))
6306 return -1;
6307 addr64 += 28;
6308 }
6309 else
6310 {
6311 if (record_full_arch_list_add_mem (addr64, 14))
6312 return -1;
6313 addr64 += 14;
6314 }
6315 if (record_full_arch_list_add_mem (addr64, 80))
6316 return -1;
6317 /* Insn fsave. */
6318 if (i386_record_floats (gdbarch, &ir,
6319 I386_SAVE_FPU_ENV_REG_STACK))
6320 return -1;
6321 break;
6322 case 0x3f:
6323 if (record_full_arch_list_add_mem (addr64, 8))
6324 return -1;
6325 /* Insn fistp. */
6326 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6327 return -1;
6328 break;
6329 default:
6330 ir.addr -= 2;
6331 opcode = opcode << 8 | ir.modrm;
6332 goto no_support;
6333 break;
6334 }
6335 }
6336 /* Opcode is an extension of modR/M byte. */
6337 else
6338 {
6339 switch (opcode)
6340 {
6341 case 0xd8:
6342 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6343 return -1;
6344 break;
6345 case 0xd9:
6346 if (0x0c == (ir.modrm >> 4))
6347 {
6348 if ((ir.modrm & 0x0f) <= 7)
6349 {
6350 if (i386_record_floats (gdbarch, &ir,
6351 I386_SAVE_FPU_REGS))
6352 return -1;
6353 }
6354 else
6355 {
6356 if (i386_record_floats (gdbarch, &ir,
6357 I387_ST0_REGNUM (tdep)))
6358 return -1;
6359 /* If only st(0) is changing, then we have already
6360 recorded. */
6361 if ((ir.modrm & 0x0f) - 0x08)
6362 {
6363 if (i386_record_floats (gdbarch, &ir,
6364 I387_ST0_REGNUM (tdep) +
6365 ((ir.modrm & 0x0f) - 0x08)))
6366 return -1;
6367 }
6368 }
6369 }
6370 else
6371 {
6372 switch (ir.modrm)
6373 {
6374 case 0xe0:
6375 case 0xe1:
6376 case 0xf0:
6377 case 0xf5:
6378 case 0xf8:
6379 case 0xfa:
6380 case 0xfc:
6381 case 0xfe:
6382 case 0xff:
6383 if (i386_record_floats (gdbarch, &ir,
6384 I387_ST0_REGNUM (tdep)))
6385 return -1;
6386 break;
6387 case 0xf1:
6388 case 0xf2:
6389 case 0xf3:
6390 case 0xf4:
6391 case 0xf6:
6392 case 0xf7:
6393 case 0xe8:
6394 case 0xe9:
6395 case 0xea:
6396 case 0xeb:
6397 case 0xec:
6398 case 0xed:
6399 case 0xee:
6400 case 0xf9:
6401 case 0xfb:
6402 if (i386_record_floats (gdbarch, &ir,
6403 I386_SAVE_FPU_REGS))
6404 return -1;
6405 break;
6406 case 0xfd:
6407 if (i386_record_floats (gdbarch, &ir,
6408 I387_ST0_REGNUM (tdep)))
6409 return -1;
6410 if (i386_record_floats (gdbarch, &ir,
6411 I387_ST0_REGNUM (tdep) + 1))
6412 return -1;
6413 break;
6414 }
6415 }
6416 break;
6417 case 0xda:
6418 if (0xe9 == ir.modrm)
6419 {
6420 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6421 return -1;
6422 }
6423 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6424 {
6425 if (i386_record_floats (gdbarch, &ir,
6426 I387_ST0_REGNUM (tdep)))
6427 return -1;
6428 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6429 {
6430 if (i386_record_floats (gdbarch, &ir,
6431 I387_ST0_REGNUM (tdep) +
6432 (ir.modrm & 0x0f)))
6433 return -1;
6434 }
6435 else if ((ir.modrm & 0x0f) - 0x08)
6436 {
6437 if (i386_record_floats (gdbarch, &ir,
6438 I387_ST0_REGNUM (tdep) +
6439 ((ir.modrm & 0x0f) - 0x08)))
6440 return -1;
6441 }
6442 }
6443 break;
6444 case 0xdb:
6445 if (0xe3 == ir.modrm)
6446 {
6447 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6448 return -1;
6449 }
6450 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6451 {
6452 if (i386_record_floats (gdbarch, &ir,
6453 I387_ST0_REGNUM (tdep)))
6454 return -1;
6455 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6456 {
6457 if (i386_record_floats (gdbarch, &ir,
6458 I387_ST0_REGNUM (tdep) +
6459 (ir.modrm & 0x0f)))
6460 return -1;
6461 }
6462 else if ((ir.modrm & 0x0f) - 0x08)
6463 {
6464 if (i386_record_floats (gdbarch, &ir,
6465 I387_ST0_REGNUM (tdep) +
6466 ((ir.modrm & 0x0f) - 0x08)))
6467 return -1;
6468 }
6469 }
6470 break;
6471 case 0xdc:
6472 if ((0x0c == ir.modrm >> 4)
6473 || (0x0d == ir.modrm >> 4)
6474 || (0x0f == ir.modrm >> 4))
6475 {
6476 if ((ir.modrm & 0x0f) <= 7)
6477 {
6478 if (i386_record_floats (gdbarch, &ir,
6479 I387_ST0_REGNUM (tdep) +
6480 (ir.modrm & 0x0f)))
6481 return -1;
6482 }
6483 else
6484 {
6485 if (i386_record_floats (gdbarch, &ir,
6486 I387_ST0_REGNUM (tdep) +
6487 ((ir.modrm & 0x0f) - 0x08)))
6488 return -1;
6489 }
6490 }
6491 break;
6492 case 0xdd:
6493 if (0x0c == ir.modrm >> 4)
6494 {
6495 if (i386_record_floats (gdbarch, &ir,
6496 I387_FTAG_REGNUM (tdep)))
6497 return -1;
6498 }
6499 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6500 {
6501 if ((ir.modrm & 0x0f) <= 7)
6502 {
6503 if (i386_record_floats (gdbarch, &ir,
6504 I387_ST0_REGNUM (tdep) +
6505 (ir.modrm & 0x0f)))
6506 return -1;
6507 }
6508 else
6509 {
6510 if (i386_record_floats (gdbarch, &ir,
6511 I386_SAVE_FPU_REGS))
6512 return -1;
6513 }
6514 }
6515 break;
6516 case 0xde:
6517 if ((0x0c == ir.modrm >> 4)
6518 || (0x0e == ir.modrm >> 4)
6519 || (0x0f == ir.modrm >> 4)
6520 || (0xd9 == ir.modrm))
6521 {
6522 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6523 return -1;
6524 }
6525 break;
6526 case 0xdf:
6527 if (0xe0 == ir.modrm)
6528 {
6529 if (record_full_arch_list_add_reg (ir.regcache,
6530 I386_EAX_REGNUM))
6531 return -1;
6532 }
6533 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6534 {
6535 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6536 return -1;
6537 }
6538 break;
6539 }
6540 }
6541 break;
6542 /* string ops */
6543 case 0xa4: /* movsS */
6544 case 0xa5:
6545 case 0xaa: /* stosS */
6546 case 0xab:
6547 case 0x6c: /* insS */
6548 case 0x6d:
6549 regcache_raw_read_unsigned (ir.regcache,
6550 ir.regmap[X86_RECORD_RECX_REGNUM],
6551 &addr);
6552 if (addr)
6553 {
6554 ULONGEST es, ds;
6555
6556 if ((opcode & 1) == 0)
6557 ir.ot = OT_BYTE;
6558 else
6559 ir.ot = ir.dflag + OT_WORD;
6560 regcache_raw_read_unsigned (ir.regcache,
6561 ir.regmap[X86_RECORD_REDI_REGNUM],
6562 &addr);
6563
6564 regcache_raw_read_unsigned (ir.regcache,
6565 ir.regmap[X86_RECORD_ES_REGNUM],
6566 &es);
6567 regcache_raw_read_unsigned (ir.regcache,
6568 ir.regmap[X86_RECORD_DS_REGNUM],
6569 &ds);
6570 if (ir.aflag && (es != ds))
6571 {
6572 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6573 if (record_full_memory_query)
6574 {
6575 if (yquery (_("\
6576 Process record ignores the memory change of instruction at address %s\n\
6577 because it can't get the value of the segment register.\n\
6578 Do you want to stop the program?"),
6579 paddress (gdbarch, ir.orig_addr)))
6580 return -1;
6581 }
6582 }
6583 else
6584 {
6585 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6586 return -1;
6587 }
6588
6589 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6591 if (opcode == 0xa4 || opcode == 0xa5)
6592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6595 }
6596 break;
6597
6598 case 0xa6: /* cmpsS */
6599 case 0xa7:
6600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6602 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6605 break;
6606
6607 case 0xac: /* lodsS */
6608 case 0xad:
6609 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6610 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6611 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6613 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6614 break;
6615
6616 case 0xae: /* scasS */
6617 case 0xaf:
6618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6619 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6622 break;
6623
6624 case 0x6e: /* outsS */
6625 case 0x6f:
6626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6627 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6630 break;
6631
6632 case 0xe4: /* port I/O */
6633 case 0xe5:
6634 case 0xec:
6635 case 0xed:
6636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6638 break;
6639
6640 case 0xe6:
6641 case 0xe7:
6642 case 0xee:
6643 case 0xef:
6644 break;
6645
6646 /* control */
6647 case 0xc2: /* ret im */
6648 case 0xc3: /* ret */
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6651 break;
6652
6653 case 0xca: /* lret im */
6654 case 0xcb: /* lret */
6655 case 0xcf: /* iret */
6656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6659 break;
6660
6661 case 0xe8: /* call im */
6662 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6663 ir.dflag = 2;
6664 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6665 return -1;
6666 break;
6667
6668 case 0x9a: /* lcall im */
6669 if (ir.regmap[X86_RECORD_R8_REGNUM])
6670 {
6671 ir.addr -= 1;
6672 goto no_support;
6673 }
6674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6675 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6676 return -1;
6677 break;
6678
6679 case 0xe9: /* jmp im */
6680 case 0xea: /* ljmp im */
6681 case 0xeb: /* jmp Jb */
6682 case 0x70: /* jcc Jb */
6683 case 0x71:
6684 case 0x72:
6685 case 0x73:
6686 case 0x74:
6687 case 0x75:
6688 case 0x76:
6689 case 0x77:
6690 case 0x78:
6691 case 0x79:
6692 case 0x7a:
6693 case 0x7b:
6694 case 0x7c:
6695 case 0x7d:
6696 case 0x7e:
6697 case 0x7f:
6698 case 0x0f80: /* jcc Jv */
6699 case 0x0f81:
6700 case 0x0f82:
6701 case 0x0f83:
6702 case 0x0f84:
6703 case 0x0f85:
6704 case 0x0f86:
6705 case 0x0f87:
6706 case 0x0f88:
6707 case 0x0f89:
6708 case 0x0f8a:
6709 case 0x0f8b:
6710 case 0x0f8c:
6711 case 0x0f8d:
6712 case 0x0f8e:
6713 case 0x0f8f:
6714 break;
6715
6716 case 0x0f90: /* setcc Gv */
6717 case 0x0f91:
6718 case 0x0f92:
6719 case 0x0f93:
6720 case 0x0f94:
6721 case 0x0f95:
6722 case 0x0f96:
6723 case 0x0f97:
6724 case 0x0f98:
6725 case 0x0f99:
6726 case 0x0f9a:
6727 case 0x0f9b:
6728 case 0x0f9c:
6729 case 0x0f9d:
6730 case 0x0f9e:
6731 case 0x0f9f:
6732 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6733 ir.ot = OT_BYTE;
6734 if (i386_record_modrm (&ir))
6735 return -1;
6736 if (ir.mod == 3)
6737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6738 : (ir.rm & 0x3));
6739 else
6740 {
6741 if (i386_record_lea_modrm (&ir))
6742 return -1;
6743 }
6744 break;
6745
6746 case 0x0f40: /* cmov Gv, Ev */
6747 case 0x0f41:
6748 case 0x0f42:
6749 case 0x0f43:
6750 case 0x0f44:
6751 case 0x0f45:
6752 case 0x0f46:
6753 case 0x0f47:
6754 case 0x0f48:
6755 case 0x0f49:
6756 case 0x0f4a:
6757 case 0x0f4b:
6758 case 0x0f4c:
6759 case 0x0f4d:
6760 case 0x0f4e:
6761 case 0x0f4f:
6762 if (i386_record_modrm (&ir))
6763 return -1;
6764 ir.reg |= rex_r;
6765 if (ir.dflag == OT_BYTE)
6766 ir.reg &= 0x3;
6767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6768 break;
6769
6770 /* flags */
6771 case 0x9c: /* pushf */
6772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6773 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6774 ir.dflag = 2;
6775 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6776 return -1;
6777 break;
6778
6779 case 0x9d: /* popf */
6780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6782 break;
6783
6784 case 0x9e: /* sahf */
6785 if (ir.regmap[X86_RECORD_R8_REGNUM])
6786 {
6787 ir.addr -= 1;
6788 goto no_support;
6789 }
6790 /* FALLTHROUGH */
6791 case 0xf5: /* cmc */
6792 case 0xf8: /* clc */
6793 case 0xf9: /* stc */
6794 case 0xfc: /* cld */
6795 case 0xfd: /* std */
6796 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6797 break;
6798
6799 case 0x9f: /* lahf */
6800 if (ir.regmap[X86_RECORD_R8_REGNUM])
6801 {
6802 ir.addr -= 1;
6803 goto no_support;
6804 }
6805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6807 break;
6808
6809 /* bit operations */
6810 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6811 ir.ot = ir.dflag + OT_WORD;
6812 if (i386_record_modrm (&ir))
6813 return -1;
6814 if (ir.reg < 4)
6815 {
6816 ir.addr -= 2;
6817 opcode = opcode << 8 | ir.modrm;
6818 goto no_support;
6819 }
6820 if (ir.reg != 4)
6821 {
6822 if (ir.mod == 3)
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6824 else
6825 {
6826 if (i386_record_lea_modrm (&ir))
6827 return -1;
6828 }
6829 }
6830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6831 break;
6832
6833 case 0x0fa3: /* bt Gv, Ev */
6834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6835 break;
6836
6837 case 0x0fab: /* bts */
6838 case 0x0fb3: /* btr */
6839 case 0x0fbb: /* btc */
6840 ir.ot = ir.dflag + OT_WORD;
6841 if (i386_record_modrm (&ir))
6842 return -1;
6843 if (ir.mod == 3)
6844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6845 else
6846 {
6847 uint64_t addr64;
6848 if (i386_record_lea_modrm_addr (&ir, &addr64))
6849 return -1;
6850 regcache_raw_read_unsigned (ir.regcache,
6851 ir.regmap[ir.reg | rex_r],
6852 &addr);
6853 switch (ir.dflag)
6854 {
6855 case 0:
6856 addr64 += ((int16_t) addr >> 4) << 4;
6857 break;
6858 case 1:
6859 addr64 += ((int32_t) addr >> 5) << 5;
6860 break;
6861 case 2:
6862 addr64 += ((int64_t) addr >> 6) << 6;
6863 break;
6864 }
6865 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6866 return -1;
6867 if (i386_record_lea_modrm (&ir))
6868 return -1;
6869 }
6870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6871 break;
6872
6873 case 0x0fbc: /* bsf */
6874 case 0x0fbd: /* bsr */
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6877 break;
6878
6879 /* bcd */
6880 case 0x27: /* daa */
6881 case 0x2f: /* das */
6882 case 0x37: /* aaa */
6883 case 0x3f: /* aas */
6884 case 0xd4: /* aam */
6885 case 0xd5: /* aad */
6886 if (ir.regmap[X86_RECORD_R8_REGNUM])
6887 {
6888 ir.addr -= 1;
6889 goto no_support;
6890 }
6891 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6893 break;
6894
6895 /* misc */
6896 case 0x90: /* nop */
6897 if (prefixes & PREFIX_LOCK)
6898 {
6899 ir.addr -= 1;
6900 goto no_support;
6901 }
6902 break;
6903
6904 case 0x9b: /* fwait */
6905 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6906 return -1;
6907 opcode = (uint32_t) opcode8;
6908 ir.addr++;
6909 goto reswitch;
6910 break;
6911
6912 /* XXX */
6913 case 0xcc: /* int3 */
6914 gdb_printf (gdb_stderr,
6915 _("Process record does not support instruction "
6916 "int3.\n"));
6917 ir.addr -= 1;
6918 goto no_support;
6919 break;
6920
6921 /* XXX */
6922 case 0xcd: /* int */
6923 {
6924 int ret;
6925 uint8_t interrupt;
6926 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6927 return -1;
6928 ir.addr++;
6929 if (interrupt != 0x80
6930 || tdep->i386_intx80_record == NULL)
6931 {
6932 gdb_printf (gdb_stderr,
6933 _("Process record does not support "
6934 "instruction int 0x%02x.\n"),
6935 interrupt);
6936 ir.addr -= 2;
6937 goto no_support;
6938 }
6939 ret = tdep->i386_intx80_record (ir.regcache);
6940 if (ret)
6941 return ret;
6942 }
6943 break;
6944
6945 /* XXX */
6946 case 0xce: /* into */
6947 gdb_printf (gdb_stderr,
6948 _("Process record does not support "
6949 "instruction into.\n"));
6950 ir.addr -= 1;
6951 goto no_support;
6952 break;
6953
6954 case 0xfa: /* cli */
6955 case 0xfb: /* sti */
6956 break;
6957
6958 case 0x62: /* bound */
6959 gdb_printf (gdb_stderr,
6960 _("Process record does not support "
6961 "instruction bound.\n"));
6962 ir.addr -= 1;
6963 goto no_support;
6964 break;
6965
6966 case 0x0fc8: /* bswap reg */
6967 case 0x0fc9:
6968 case 0x0fca:
6969 case 0x0fcb:
6970 case 0x0fcc:
6971 case 0x0fcd:
6972 case 0x0fce:
6973 case 0x0fcf:
6974 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6975 break;
6976
6977 case 0xd6: /* salc */
6978 if (ir.regmap[X86_RECORD_R8_REGNUM])
6979 {
6980 ir.addr -= 1;
6981 goto no_support;
6982 }
6983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6985 break;
6986
6987 case 0xe0: /* loopnz */
6988 case 0xe1: /* loopz */
6989 case 0xe2: /* loop */
6990 case 0xe3: /* jecxz */
6991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6993 break;
6994
6995 case 0x0f30: /* wrmsr */
6996 gdb_printf (gdb_stderr,
6997 _("Process record does not support "
6998 "instruction wrmsr.\n"));
6999 ir.addr -= 2;
7000 goto no_support;
7001 break;
7002
7003 case 0x0f32: /* rdmsr */
7004 gdb_printf (gdb_stderr,
7005 _("Process record does not support "
7006 "instruction rdmsr.\n"));
7007 ir.addr -= 2;
7008 goto no_support;
7009 break;
7010
7011 case 0x0f31: /* rdtsc */
7012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7014 break;
7015
7016 case 0x0f34: /* sysenter */
7017 {
7018 int ret;
7019 if (ir.regmap[X86_RECORD_R8_REGNUM])
7020 {
7021 ir.addr -= 2;
7022 goto no_support;
7023 }
7024 if (tdep->i386_sysenter_record == NULL)
7025 {
7026 gdb_printf (gdb_stderr,
7027 _("Process record does not support "
7028 "instruction sysenter.\n"));
7029 ir.addr -= 2;
7030 goto no_support;
7031 }
7032 ret = tdep->i386_sysenter_record (ir.regcache);
7033 if (ret)
7034 return ret;
7035 }
7036 break;
7037
7038 case 0x0f35: /* sysexit */
7039 gdb_printf (gdb_stderr,
7040 _("Process record does not support "
7041 "instruction sysexit.\n"));
7042 ir.addr -= 2;
7043 goto no_support;
7044 break;
7045
7046 case 0x0f05: /* syscall */
7047 {
7048 int ret;
7049 if (tdep->i386_syscall_record == NULL)
7050 {
7051 gdb_printf (gdb_stderr,
7052 _("Process record does not support "
7053 "instruction syscall.\n"));
7054 ir.addr -= 2;
7055 goto no_support;
7056 }
7057 ret = tdep->i386_syscall_record (ir.regcache);
7058 if (ret)
7059 return ret;
7060 }
7061 break;
7062
7063 case 0x0f07: /* sysret */
7064 gdb_printf (gdb_stderr,
7065 _("Process record does not support "
7066 "instruction sysret.\n"));
7067 ir.addr -= 2;
7068 goto no_support;
7069 break;
7070
7071 case 0x0fa2: /* cpuid */
7072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7073 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7074 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7075 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7076 break;
7077
7078 case 0xf4: /* hlt */
7079 gdb_printf (gdb_stderr,
7080 _("Process record does not support "
7081 "instruction hlt.\n"));
7082 ir.addr -= 1;
7083 goto no_support;
7084 break;
7085
7086 case 0x0f00:
7087 if (i386_record_modrm (&ir))
7088 return -1;
7089 switch (ir.reg)
7090 {
7091 case 0: /* sldt */
7092 case 1: /* str */
7093 if (ir.mod == 3)
7094 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7095 else
7096 {
7097 ir.ot = OT_WORD;
7098 if (i386_record_lea_modrm (&ir))
7099 return -1;
7100 }
7101 break;
7102 case 2: /* lldt */
7103 case 3: /* ltr */
7104 break;
7105 case 4: /* verr */
7106 case 5: /* verw */
7107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7108 break;
7109 default:
7110 ir.addr -= 3;
7111 opcode = opcode << 8 | ir.modrm;
7112 goto no_support;
7113 break;
7114 }
7115 break;
7116
7117 case 0x0f01:
7118 if (i386_record_modrm (&ir))
7119 return -1;
7120 switch (ir.reg)
7121 {
7122 case 0: /* sgdt */
7123 {
7124 uint64_t addr64;
7125
7126 if (ir.mod == 3)
7127 {
7128 ir.addr -= 3;
7129 opcode = opcode << 8 | ir.modrm;
7130 goto no_support;
7131 }
7132 if (ir.override >= 0)
7133 {
7134 if (record_full_memory_query)
7135 {
7136 if (yquery (_("\
7137 Process record ignores the memory change of instruction at address %s\n\
7138 because it can't get the value of the segment register.\n\
7139 Do you want to stop the program?"),
7140 paddress (gdbarch, ir.orig_addr)))
7141 return -1;
7142 }
7143 }
7144 else
7145 {
7146 if (i386_record_lea_modrm_addr (&ir, &addr64))
7147 return -1;
7148 if (record_full_arch_list_add_mem (addr64, 2))
7149 return -1;
7150 addr64 += 2;
7151 if (ir.regmap[X86_RECORD_R8_REGNUM])
7152 {
7153 if (record_full_arch_list_add_mem (addr64, 8))
7154 return -1;
7155 }
7156 else
7157 {
7158 if (record_full_arch_list_add_mem (addr64, 4))
7159 return -1;
7160 }
7161 }
7162 }
7163 break;
7164 case 1:
7165 if (ir.mod == 3)
7166 {
7167 switch (ir.rm)
7168 {
7169 case 0: /* monitor */
7170 break;
7171 case 1: /* mwait */
7172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7173 break;
7174 default:
7175 ir.addr -= 3;
7176 opcode = opcode << 8 | ir.modrm;
7177 goto no_support;
7178 break;
7179 }
7180 }
7181 else
7182 {
7183 /* sidt */
7184 if (ir.override >= 0)
7185 {
7186 if (record_full_memory_query)
7187 {
7188 if (yquery (_("\
7189 Process record ignores the memory change of instruction at address %s\n\
7190 because it can't get the value of the segment register.\n\
7191 Do you want to stop the program?"),
7192 paddress (gdbarch, ir.orig_addr)))
7193 return -1;
7194 }
7195 }
7196 else
7197 {
7198 uint64_t addr64;
7199
7200 if (i386_record_lea_modrm_addr (&ir, &addr64))
7201 return -1;
7202 if (record_full_arch_list_add_mem (addr64, 2))
7203 return -1;
7204 addr64 += 2;
7205 if (ir.regmap[X86_RECORD_R8_REGNUM])
7206 {
7207 if (record_full_arch_list_add_mem (addr64, 8))
7208 return -1;
7209 }
7210 else
7211 {
7212 if (record_full_arch_list_add_mem (addr64, 4))
7213 return -1;
7214 }
7215 }
7216 }
7217 break;
7218 case 2: /* lgdt */
7219 if (ir.mod == 3)
7220 {
7221 /* xgetbv */
7222 if (ir.rm == 0)
7223 {
7224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7226 break;
7227 }
7228 /* xsetbv */
7229 else if (ir.rm == 1)
7230 break;
7231 }
7232 /* Fall through. */
7233 case 3: /* lidt */
7234 if (ir.mod == 3)
7235 {
7236 ir.addr -= 3;
7237 opcode = opcode << 8 | ir.modrm;
7238 goto no_support;
7239 }
7240 break;
7241 case 4: /* smsw */
7242 if (ir.mod == 3)
7243 {
7244 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7245 return -1;
7246 }
7247 else
7248 {
7249 ir.ot = OT_WORD;
7250 if (i386_record_lea_modrm (&ir))
7251 return -1;
7252 }
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7254 break;
7255 case 6: /* lmsw */
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7257 break;
7258 case 7: /* invlpg */
7259 if (ir.mod == 3)
7260 {
7261 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7263 else
7264 {
7265 ir.addr -= 3;
7266 opcode = opcode << 8 | ir.modrm;
7267 goto no_support;
7268 }
7269 }
7270 else
7271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7272 break;
7273 default:
7274 ir.addr -= 3;
7275 opcode = opcode << 8 | ir.modrm;
7276 goto no_support;
7277 break;
7278 }
7279 break;
7280
7281 case 0x0f08: /* invd */
7282 case 0x0f09: /* wbinvd */
7283 break;
7284
7285 case 0x63: /* arpl */
7286 if (i386_record_modrm (&ir))
7287 return -1;
7288 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7289 {
7290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7291 ? (ir.reg | rex_r) : ir.rm);
7292 }
7293 else
7294 {
7295 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7296 if (i386_record_lea_modrm (&ir))
7297 return -1;
7298 }
7299 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7301 break;
7302
7303 case 0x0f02: /* lar */
7304 case 0x0f03: /* lsl */
7305 if (i386_record_modrm (&ir))
7306 return -1;
7307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7309 break;
7310
7311 case 0x0f18:
7312 if (i386_record_modrm (&ir))
7313 return -1;
7314 if (ir.mod == 3 && ir.reg == 3)
7315 {
7316 ir.addr -= 3;
7317 opcode = opcode << 8 | ir.modrm;
7318 goto no_support;
7319 }
7320 break;
7321
7322 case 0x0f19:
7323 case 0x0f1a:
7324 case 0x0f1b:
7325 case 0x0f1c:
7326 case 0x0f1d:
7327 case 0x0f1e:
7328 case 0x0f1f:
7329 /* nop (multi byte) */
7330 break;
7331
7332 case 0x0f20: /* mov reg, crN */
7333 case 0x0f22: /* mov crN, reg */
7334 if (i386_record_modrm (&ir))
7335 return -1;
7336 if ((ir.modrm & 0xc0) != 0xc0)
7337 {
7338 ir.addr -= 3;
7339 opcode = opcode << 8 | ir.modrm;
7340 goto no_support;
7341 }
7342 switch (ir.reg)
7343 {
7344 case 0:
7345 case 2:
7346 case 3:
7347 case 4:
7348 case 8:
7349 if (opcode & 2)
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7351 else
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7353 break;
7354 default:
7355 ir.addr -= 3;
7356 opcode = opcode << 8 | ir.modrm;
7357 goto no_support;
7358 break;
7359 }
7360 break;
7361
7362 case 0x0f21: /* mov reg, drN */
7363 case 0x0f23: /* mov drN, reg */
7364 if (i386_record_modrm (&ir))
7365 return -1;
7366 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7367 || ir.reg == 5 || ir.reg >= 8)
7368 {
7369 ir.addr -= 3;
7370 opcode = opcode << 8 | ir.modrm;
7371 goto no_support;
7372 }
7373 if (opcode & 2)
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7375 else
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7377 break;
7378
7379 case 0x0f06: /* clts */
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7381 break;
7382
7383 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7384
7385 case 0x0f0d: /* 3DNow! prefetch */
7386 break;
7387
7388 case 0x0f0e: /* 3DNow! femms */
7389 case 0x0f77: /* emms */
7390 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7391 goto no_support;
7392 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7393 break;
7394
7395 case 0x0f0f: /* 3DNow! data */
7396 if (i386_record_modrm (&ir))
7397 return -1;
7398 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7399 return -1;
7400 ir.addr++;
7401 switch (opcode8)
7402 {
7403 case 0x0c: /* 3DNow! pi2fw */
7404 case 0x0d: /* 3DNow! pi2fd */
7405 case 0x1c: /* 3DNow! pf2iw */
7406 case 0x1d: /* 3DNow! pf2id */
7407 case 0x8a: /* 3DNow! pfnacc */
7408 case 0x8e: /* 3DNow! pfpnacc */
7409 case 0x90: /* 3DNow! pfcmpge */
7410 case 0x94: /* 3DNow! pfmin */
7411 case 0x96: /* 3DNow! pfrcp */
7412 case 0x97: /* 3DNow! pfrsqrt */
7413 case 0x9a: /* 3DNow! pfsub */
7414 case 0x9e: /* 3DNow! pfadd */
7415 case 0xa0: /* 3DNow! pfcmpgt */
7416 case 0xa4: /* 3DNow! pfmax */
7417 case 0xa6: /* 3DNow! pfrcpit1 */
7418 case 0xa7: /* 3DNow! pfrsqit1 */
7419 case 0xaa: /* 3DNow! pfsubr */
7420 case 0xae: /* 3DNow! pfacc */
7421 case 0xb0: /* 3DNow! pfcmpeq */
7422 case 0xb4: /* 3DNow! pfmul */
7423 case 0xb6: /* 3DNow! pfrcpit2 */
7424 case 0xb7: /* 3DNow! pmulhrw */
7425 case 0xbb: /* 3DNow! pswapd */
7426 case 0xbf: /* 3DNow! pavgusb */
7427 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7428 goto no_support_3dnow_data;
7429 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7430 break;
7431
7432 default:
7433 no_support_3dnow_data:
7434 opcode = (opcode << 8) | opcode8;
7435 goto no_support;
7436 break;
7437 }
7438 break;
7439
7440 case 0x0faa: /* rsm */
7441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7442 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7443 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7450 break;
7451
7452 case 0x0fae:
7453 if (i386_record_modrm (&ir))
7454 return -1;
7455 switch(ir.reg)
7456 {
7457 case 0: /* fxsave */
7458 {
7459 uint64_t tmpu64;
7460
7461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7462 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7463 return -1;
7464 if (record_full_arch_list_add_mem (tmpu64, 512))
7465 return -1;
7466 }
7467 break;
7468
7469 case 1: /* fxrstor */
7470 {
7471 int i;
7472
7473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7474
7475 for (i = I387_MM0_REGNUM (tdep);
7476 i386_mmx_regnum_p (gdbarch, i); i++)
7477 record_full_arch_list_add_reg (ir.regcache, i);
7478
7479 for (i = I387_XMM0_REGNUM (tdep);
7480 i386_xmm_regnum_p (gdbarch, i); i++)
7481 record_full_arch_list_add_reg (ir.regcache, i);
7482
7483 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7484 record_full_arch_list_add_reg (ir.regcache,
7485 I387_MXCSR_REGNUM(tdep));
7486
7487 for (i = I387_ST0_REGNUM (tdep);
7488 i386_fp_regnum_p (gdbarch, i); i++)
7489 record_full_arch_list_add_reg (ir.regcache, i);
7490
7491 for (i = I387_FCTRL_REGNUM (tdep);
7492 i386_fpc_regnum_p (gdbarch, i); i++)
7493 record_full_arch_list_add_reg (ir.regcache, i);
7494 }
7495 break;
7496
7497 case 2: /* ldmxcsr */
7498 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7499 goto no_support;
7500 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7501 break;
7502
7503 case 3: /* stmxcsr */
7504 ir.ot = OT_LONG;
7505 if (i386_record_lea_modrm (&ir))
7506 return -1;
7507 break;
7508
7509 case 5: /* lfence */
7510 case 6: /* mfence */
7511 case 7: /* sfence clflush */
7512 break;
7513
7514 default:
7515 opcode = (opcode << 8) | ir.modrm;
7516 goto no_support;
7517 break;
7518 }
7519 break;
7520
7521 case 0x0fc3: /* movnti */
7522 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7523 if (i386_record_modrm (&ir))
7524 return -1;
7525 if (ir.mod == 3)
7526 goto no_support;
7527 ir.reg |= rex_r;
7528 if (i386_record_lea_modrm (&ir))
7529 return -1;
7530 break;
7531
7532 /* Add prefix to opcode. */
7533 case 0x0f10:
7534 case 0x0f11:
7535 case 0x0f12:
7536 case 0x0f13:
7537 case 0x0f14:
7538 case 0x0f15:
7539 case 0x0f16:
7540 case 0x0f17:
7541 case 0x0f28:
7542 case 0x0f29:
7543 case 0x0f2a:
7544 case 0x0f2b:
7545 case 0x0f2c:
7546 case 0x0f2d:
7547 case 0x0f2e:
7548 case 0x0f2f:
7549 case 0x0f38:
7550 case 0x0f39:
7551 case 0x0f3a:
7552 case 0x0f50:
7553 case 0x0f51:
7554 case 0x0f52:
7555 case 0x0f53:
7556 case 0x0f54:
7557 case 0x0f55:
7558 case 0x0f56:
7559 case 0x0f57:
7560 case 0x0f58:
7561 case 0x0f59:
7562 case 0x0f5a:
7563 case 0x0f5b:
7564 case 0x0f5c:
7565 case 0x0f5d:
7566 case 0x0f5e:
7567 case 0x0f5f:
7568 case 0x0f60:
7569 case 0x0f61:
7570 case 0x0f62:
7571 case 0x0f63:
7572 case 0x0f64:
7573 case 0x0f65:
7574 case 0x0f66:
7575 case 0x0f67:
7576 case 0x0f68:
7577 case 0x0f69:
7578 case 0x0f6a:
7579 case 0x0f6b:
7580 case 0x0f6c:
7581 case 0x0f6d:
7582 case 0x0f6e:
7583 case 0x0f6f:
7584 case 0x0f70:
7585 case 0x0f71:
7586 case 0x0f72:
7587 case 0x0f73:
7588 case 0x0f74:
7589 case 0x0f75:
7590 case 0x0f76:
7591 case 0x0f7c:
7592 case 0x0f7d:
7593 case 0x0f7e:
7594 case 0x0f7f:
7595 case 0x0fb8:
7596 case 0x0fc2:
7597 case 0x0fc4:
7598 case 0x0fc5:
7599 case 0x0fc6:
7600 case 0x0fd0:
7601 case 0x0fd1:
7602 case 0x0fd2:
7603 case 0x0fd3:
7604 case 0x0fd4:
7605 case 0x0fd5:
7606 case 0x0fd6:
7607 case 0x0fd7:
7608 case 0x0fd8:
7609 case 0x0fd9:
7610 case 0x0fda:
7611 case 0x0fdb:
7612 case 0x0fdc:
7613 case 0x0fdd:
7614 case 0x0fde:
7615 case 0x0fdf:
7616 case 0x0fe0:
7617 case 0x0fe1:
7618 case 0x0fe2:
7619 case 0x0fe3:
7620 case 0x0fe4:
7621 case 0x0fe5:
7622 case 0x0fe6:
7623 case 0x0fe7:
7624 case 0x0fe8:
7625 case 0x0fe9:
7626 case 0x0fea:
7627 case 0x0feb:
7628 case 0x0fec:
7629 case 0x0fed:
7630 case 0x0fee:
7631 case 0x0fef:
7632 case 0x0ff0:
7633 case 0x0ff1:
7634 case 0x0ff2:
7635 case 0x0ff3:
7636 case 0x0ff4:
7637 case 0x0ff5:
7638 case 0x0ff6:
7639 case 0x0ff7:
7640 case 0x0ff8:
7641 case 0x0ff9:
7642 case 0x0ffa:
7643 case 0x0ffb:
7644 case 0x0ffc:
7645 case 0x0ffd:
7646 case 0x0ffe:
7647 /* Mask out PREFIX_ADDR. */
7648 switch ((prefixes & ~PREFIX_ADDR))
7649 {
7650 case PREFIX_REPNZ:
7651 opcode |= 0xf20000;
7652 break;
7653 case PREFIX_DATA:
7654 opcode |= 0x660000;
7655 break;
7656 case PREFIX_REPZ:
7657 opcode |= 0xf30000;
7658 break;
7659 }
7660 reswitch_prefix_add:
7661 switch (opcode)
7662 {
7663 case 0x0f38:
7664 case 0x660f38:
7665 case 0xf20f38:
7666 case 0x0f3a:
7667 case 0x660f3a:
7668 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7669 return -1;
7670 ir.addr++;
7671 opcode = (uint32_t) opcode8 | opcode << 8;
7672 goto reswitch_prefix_add;
7673 break;
7674
7675 case 0x0f10: /* movups */
7676 case 0x660f10: /* movupd */
7677 case 0xf30f10: /* movss */
7678 case 0xf20f10: /* movsd */
7679 case 0x0f12: /* movlps */
7680 case 0x660f12: /* movlpd */
7681 case 0xf30f12: /* movsldup */
7682 case 0xf20f12: /* movddup */
7683 case 0x0f14: /* unpcklps */
7684 case 0x660f14: /* unpcklpd */
7685 case 0x0f15: /* unpckhps */
7686 case 0x660f15: /* unpckhpd */
7687 case 0x0f16: /* movhps */
7688 case 0x660f16: /* movhpd */
7689 case 0xf30f16: /* movshdup */
7690 case 0x0f28: /* movaps */
7691 case 0x660f28: /* movapd */
7692 case 0x0f2a: /* cvtpi2ps */
7693 case 0x660f2a: /* cvtpi2pd */
7694 case 0xf30f2a: /* cvtsi2ss */
7695 case 0xf20f2a: /* cvtsi2sd */
7696 case 0x0f2c: /* cvttps2pi */
7697 case 0x660f2c: /* cvttpd2pi */
7698 case 0x0f2d: /* cvtps2pi */
7699 case 0x660f2d: /* cvtpd2pi */
7700 case 0x660f3800: /* pshufb */
7701 case 0x660f3801: /* phaddw */
7702 case 0x660f3802: /* phaddd */
7703 case 0x660f3803: /* phaddsw */
7704 case 0x660f3804: /* pmaddubsw */
7705 case 0x660f3805: /* phsubw */
7706 case 0x660f3806: /* phsubd */
7707 case 0x660f3807: /* phsubsw */
7708 case 0x660f3808: /* psignb */
7709 case 0x660f3809: /* psignw */
7710 case 0x660f380a: /* psignd */
7711 case 0x660f380b: /* pmulhrsw */
7712 case 0x660f3810: /* pblendvb */
7713 case 0x660f3814: /* blendvps */
7714 case 0x660f3815: /* blendvpd */
7715 case 0x660f381c: /* pabsb */
7716 case 0x660f381d: /* pabsw */
7717 case 0x660f381e: /* pabsd */
7718 case 0x660f3820: /* pmovsxbw */
7719 case 0x660f3821: /* pmovsxbd */
7720 case 0x660f3822: /* pmovsxbq */
7721 case 0x660f3823: /* pmovsxwd */
7722 case 0x660f3824: /* pmovsxwq */
7723 case 0x660f3825: /* pmovsxdq */
7724 case 0x660f3828: /* pmuldq */
7725 case 0x660f3829: /* pcmpeqq */
7726 case 0x660f382a: /* movntdqa */
7727 case 0x660f3a08: /* roundps */
7728 case 0x660f3a09: /* roundpd */
7729 case 0x660f3a0a: /* roundss */
7730 case 0x660f3a0b: /* roundsd */
7731 case 0x660f3a0c: /* blendps */
7732 case 0x660f3a0d: /* blendpd */
7733 case 0x660f3a0e: /* pblendw */
7734 case 0x660f3a0f: /* palignr */
7735 case 0x660f3a20: /* pinsrb */
7736 case 0x660f3a21: /* insertps */
7737 case 0x660f3a22: /* pinsrd pinsrq */
7738 case 0x660f3a40: /* dpps */
7739 case 0x660f3a41: /* dppd */
7740 case 0x660f3a42: /* mpsadbw */
7741 case 0x660f3a60: /* pcmpestrm */
7742 case 0x660f3a61: /* pcmpestri */
7743 case 0x660f3a62: /* pcmpistrm */
7744 case 0x660f3a63: /* pcmpistri */
7745 case 0x0f51: /* sqrtps */
7746 case 0x660f51: /* sqrtpd */
7747 case 0xf20f51: /* sqrtsd */
7748 case 0xf30f51: /* sqrtss */
7749 case 0x0f52: /* rsqrtps */
7750 case 0xf30f52: /* rsqrtss */
7751 case 0x0f53: /* rcpps */
7752 case 0xf30f53: /* rcpss */
7753 case 0x0f54: /* andps */
7754 case 0x660f54: /* andpd */
7755 case 0x0f55: /* andnps */
7756 case 0x660f55: /* andnpd */
7757 case 0x0f56: /* orps */
7758 case 0x660f56: /* orpd */
7759 case 0x0f57: /* xorps */
7760 case 0x660f57: /* xorpd */
7761 case 0x0f58: /* addps */
7762 case 0x660f58: /* addpd */
7763 case 0xf20f58: /* addsd */
7764 case 0xf30f58: /* addss */
7765 case 0x0f59: /* mulps */
7766 case 0x660f59: /* mulpd */
7767 case 0xf20f59: /* mulsd */
7768 case 0xf30f59: /* mulss */
7769 case 0x0f5a: /* cvtps2pd */
7770 case 0x660f5a: /* cvtpd2ps */
7771 case 0xf20f5a: /* cvtsd2ss */
7772 case 0xf30f5a: /* cvtss2sd */
7773 case 0x0f5b: /* cvtdq2ps */
7774 case 0x660f5b: /* cvtps2dq */
7775 case 0xf30f5b: /* cvttps2dq */
7776 case 0x0f5c: /* subps */
7777 case 0x660f5c: /* subpd */
7778 case 0xf20f5c: /* subsd */
7779 case 0xf30f5c: /* subss */
7780 case 0x0f5d: /* minps */
7781 case 0x660f5d: /* minpd */
7782 case 0xf20f5d: /* minsd */
7783 case 0xf30f5d: /* minss */
7784 case 0x0f5e: /* divps */
7785 case 0x660f5e: /* divpd */
7786 case 0xf20f5e: /* divsd */
7787 case 0xf30f5e: /* divss */
7788 case 0x0f5f: /* maxps */
7789 case 0x660f5f: /* maxpd */
7790 case 0xf20f5f: /* maxsd */
7791 case 0xf30f5f: /* maxss */
7792 case 0x660f60: /* punpcklbw */
7793 case 0x660f61: /* punpcklwd */
7794 case 0x660f62: /* punpckldq */
7795 case 0x660f63: /* packsswb */
7796 case 0x660f64: /* pcmpgtb */
7797 case 0x660f65: /* pcmpgtw */
7798 case 0x660f66: /* pcmpgtd */
7799 case 0x660f67: /* packuswb */
7800 case 0x660f68: /* punpckhbw */
7801 case 0x660f69: /* punpckhwd */
7802 case 0x660f6a: /* punpckhdq */
7803 case 0x660f6b: /* packssdw */
7804 case 0x660f6c: /* punpcklqdq */
7805 case 0x660f6d: /* punpckhqdq */
7806 case 0x660f6e: /* movd */
7807 case 0x660f6f: /* movdqa */
7808 case 0xf30f6f: /* movdqu */
7809 case 0x660f70: /* pshufd */
7810 case 0xf20f70: /* pshuflw */
7811 case 0xf30f70: /* pshufhw */
7812 case 0x660f74: /* pcmpeqb */
7813 case 0x660f75: /* pcmpeqw */
7814 case 0x660f76: /* pcmpeqd */
7815 case 0x660f7c: /* haddpd */
7816 case 0xf20f7c: /* haddps */
7817 case 0x660f7d: /* hsubpd */
7818 case 0xf20f7d: /* hsubps */
7819 case 0xf30f7e: /* movq */
7820 case 0x0fc2: /* cmpps */
7821 case 0x660fc2: /* cmppd */
7822 case 0xf20fc2: /* cmpsd */
7823 case 0xf30fc2: /* cmpss */
7824 case 0x660fc4: /* pinsrw */
7825 case 0x0fc6: /* shufps */
7826 case 0x660fc6: /* shufpd */
7827 case 0x660fd0: /* addsubpd */
7828 case 0xf20fd0: /* addsubps */
7829 case 0x660fd1: /* psrlw */
7830 case 0x660fd2: /* psrld */
7831 case 0x660fd3: /* psrlq */
7832 case 0x660fd4: /* paddq */
7833 case 0x660fd5: /* pmullw */
7834 case 0xf30fd6: /* movq2dq */
7835 case 0x660fd8: /* psubusb */
7836 case 0x660fd9: /* psubusw */
7837 case 0x660fda: /* pminub */
7838 case 0x660fdb: /* pand */
7839 case 0x660fdc: /* paddusb */
7840 case 0x660fdd: /* paddusw */
7841 case 0x660fde: /* pmaxub */
7842 case 0x660fdf: /* pandn */
7843 case 0x660fe0: /* pavgb */
7844 case 0x660fe1: /* psraw */
7845 case 0x660fe2: /* psrad */
7846 case 0x660fe3: /* pavgw */
7847 case 0x660fe4: /* pmulhuw */
7848 case 0x660fe5: /* pmulhw */
7849 case 0x660fe6: /* cvttpd2dq */
7850 case 0xf20fe6: /* cvtpd2dq */
7851 case 0xf30fe6: /* cvtdq2pd */
7852 case 0x660fe8: /* psubsb */
7853 case 0x660fe9: /* psubsw */
7854 case 0x660fea: /* pminsw */
7855 case 0x660feb: /* por */
7856 case 0x660fec: /* paddsb */
7857 case 0x660fed: /* paddsw */
7858 case 0x660fee: /* pmaxsw */
7859 case 0x660fef: /* pxor */
7860 case 0xf20ff0: /* lddqu */
7861 case 0x660ff1: /* psllw */
7862 case 0x660ff2: /* pslld */
7863 case 0x660ff3: /* psllq */
7864 case 0x660ff4: /* pmuludq */
7865 case 0x660ff5: /* pmaddwd */
7866 case 0x660ff6: /* psadbw */
7867 case 0x660ff8: /* psubb */
7868 case 0x660ff9: /* psubw */
7869 case 0x660ffa: /* psubd */
7870 case 0x660ffb: /* psubq */
7871 case 0x660ffc: /* paddb */
7872 case 0x660ffd: /* paddw */
7873 case 0x660ffe: /* paddd */
7874 if (i386_record_modrm (&ir))
7875 return -1;
7876 ir.reg |= rex_r;
7877 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7878 goto no_support;
7879 record_full_arch_list_add_reg (ir.regcache,
7880 I387_XMM0_REGNUM (tdep) + ir.reg);
7881 if ((opcode & 0xfffffffc) == 0x660f3a60)
7882 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7883 break;
7884
7885 case 0x0f11: /* movups */
7886 case 0x660f11: /* movupd */
7887 case 0xf30f11: /* movss */
7888 case 0xf20f11: /* movsd */
7889 case 0x0f13: /* movlps */
7890 case 0x660f13: /* movlpd */
7891 case 0x0f17: /* movhps */
7892 case 0x660f17: /* movhpd */
7893 case 0x0f29: /* movaps */
7894 case 0x660f29: /* movapd */
7895 case 0x660f3a14: /* pextrb */
7896 case 0x660f3a15: /* pextrw */
7897 case 0x660f3a16: /* pextrd pextrq */
7898 case 0x660f3a17: /* extractps */
7899 case 0x660f7f: /* movdqa */
7900 case 0xf30f7f: /* movdqu */
7901 if (i386_record_modrm (&ir))
7902 return -1;
7903 if (ir.mod == 3)
7904 {
7905 if (opcode == 0x0f13 || opcode == 0x660f13
7906 || opcode == 0x0f17 || opcode == 0x660f17)
7907 goto no_support;
7908 ir.rm |= ir.rex_b;
7909 if (!i386_xmm_regnum_p (gdbarch,
7910 I387_XMM0_REGNUM (tdep) + ir.rm))
7911 goto no_support;
7912 record_full_arch_list_add_reg (ir.regcache,
7913 I387_XMM0_REGNUM (tdep) + ir.rm);
7914 }
7915 else
7916 {
7917 switch (opcode)
7918 {
7919 case 0x660f3a14:
7920 ir.ot = OT_BYTE;
7921 break;
7922 case 0x660f3a15:
7923 ir.ot = OT_WORD;
7924 break;
7925 case 0x660f3a16:
7926 ir.ot = OT_LONG;
7927 break;
7928 case 0x660f3a17:
7929 ir.ot = OT_QUAD;
7930 break;
7931 default:
7932 ir.ot = OT_DQUAD;
7933 break;
7934 }
7935 if (i386_record_lea_modrm (&ir))
7936 return -1;
7937 }
7938 break;
7939
7940 case 0x0f2b: /* movntps */
7941 case 0x660f2b: /* movntpd */
7942 case 0x0fe7: /* movntq */
7943 case 0x660fe7: /* movntdq */
7944 if (ir.mod == 3)
7945 goto no_support;
7946 if (opcode == 0x0fe7)
7947 ir.ot = OT_QUAD;
7948 else
7949 ir.ot = OT_DQUAD;
7950 if (i386_record_lea_modrm (&ir))
7951 return -1;
7952 break;
7953
7954 case 0xf30f2c: /* cvttss2si */
7955 case 0xf20f2c: /* cvttsd2si */
7956 case 0xf30f2d: /* cvtss2si */
7957 case 0xf20f2d: /* cvtsd2si */
7958 case 0xf20f38f0: /* crc32 */
7959 case 0xf20f38f1: /* crc32 */
7960 case 0x0f50: /* movmskps */
7961 case 0x660f50: /* movmskpd */
7962 case 0x0fc5: /* pextrw */
7963 case 0x660fc5: /* pextrw */
7964 case 0x0fd7: /* pmovmskb */
7965 case 0x660fd7: /* pmovmskb */
7966 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7967 break;
7968
7969 case 0x0f3800: /* pshufb */
7970 case 0x0f3801: /* phaddw */
7971 case 0x0f3802: /* phaddd */
7972 case 0x0f3803: /* phaddsw */
7973 case 0x0f3804: /* pmaddubsw */
7974 case 0x0f3805: /* phsubw */
7975 case 0x0f3806: /* phsubd */
7976 case 0x0f3807: /* phsubsw */
7977 case 0x0f3808: /* psignb */
7978 case 0x0f3809: /* psignw */
7979 case 0x0f380a: /* psignd */
7980 case 0x0f380b: /* pmulhrsw */
7981 case 0x0f381c: /* pabsb */
7982 case 0x0f381d: /* pabsw */
7983 case 0x0f381e: /* pabsd */
7984 case 0x0f382b: /* packusdw */
7985 case 0x0f3830: /* pmovzxbw */
7986 case 0x0f3831: /* pmovzxbd */
7987 case 0x0f3832: /* pmovzxbq */
7988 case 0x0f3833: /* pmovzxwd */
7989 case 0x0f3834: /* pmovzxwq */
7990 case 0x0f3835: /* pmovzxdq */
7991 case 0x0f3837: /* pcmpgtq */
7992 case 0x0f3838: /* pminsb */
7993 case 0x0f3839: /* pminsd */
7994 case 0x0f383a: /* pminuw */
7995 case 0x0f383b: /* pminud */
7996 case 0x0f383c: /* pmaxsb */
7997 case 0x0f383d: /* pmaxsd */
7998 case 0x0f383e: /* pmaxuw */
7999 case 0x0f383f: /* pmaxud */
8000 case 0x0f3840: /* pmulld */
8001 case 0x0f3841: /* phminposuw */
8002 case 0x0f3a0f: /* palignr */
8003 case 0x0f60: /* punpcklbw */
8004 case 0x0f61: /* punpcklwd */
8005 case 0x0f62: /* punpckldq */
8006 case 0x0f63: /* packsswb */
8007 case 0x0f64: /* pcmpgtb */
8008 case 0x0f65: /* pcmpgtw */
8009 case 0x0f66: /* pcmpgtd */
8010 case 0x0f67: /* packuswb */
8011 case 0x0f68: /* punpckhbw */
8012 case 0x0f69: /* punpckhwd */
8013 case 0x0f6a: /* punpckhdq */
8014 case 0x0f6b: /* packssdw */
8015 case 0x0f6e: /* movd */
8016 case 0x0f6f: /* movq */
8017 case 0x0f70: /* pshufw */
8018 case 0x0f74: /* pcmpeqb */
8019 case 0x0f75: /* pcmpeqw */
8020 case 0x0f76: /* pcmpeqd */
8021 case 0x0fc4: /* pinsrw */
8022 case 0x0fd1: /* psrlw */
8023 case 0x0fd2: /* psrld */
8024 case 0x0fd3: /* psrlq */
8025 case 0x0fd4: /* paddq */
8026 case 0x0fd5: /* pmullw */
8027 case 0xf20fd6: /* movdq2q */
8028 case 0x0fd8: /* psubusb */
8029 case 0x0fd9: /* psubusw */
8030 case 0x0fda: /* pminub */
8031 case 0x0fdb: /* pand */
8032 case 0x0fdc: /* paddusb */
8033 case 0x0fdd: /* paddusw */
8034 case 0x0fde: /* pmaxub */
8035 case 0x0fdf: /* pandn */
8036 case 0x0fe0: /* pavgb */
8037 case 0x0fe1: /* psraw */
8038 case 0x0fe2: /* psrad */
8039 case 0x0fe3: /* pavgw */
8040 case 0x0fe4: /* pmulhuw */
8041 case 0x0fe5: /* pmulhw */
8042 case 0x0fe8: /* psubsb */
8043 case 0x0fe9: /* psubsw */
8044 case 0x0fea: /* pminsw */
8045 case 0x0feb: /* por */
8046 case 0x0fec: /* paddsb */
8047 case 0x0fed: /* paddsw */
8048 case 0x0fee: /* pmaxsw */
8049 case 0x0fef: /* pxor */
8050 case 0x0ff1: /* psllw */
8051 case 0x0ff2: /* pslld */
8052 case 0x0ff3: /* psllq */
8053 case 0x0ff4: /* pmuludq */
8054 case 0x0ff5: /* pmaddwd */
8055 case 0x0ff6: /* psadbw */
8056 case 0x0ff8: /* psubb */
8057 case 0x0ff9: /* psubw */
8058 case 0x0ffa: /* psubd */
8059 case 0x0ffb: /* psubq */
8060 case 0x0ffc: /* paddb */
8061 case 0x0ffd: /* paddw */
8062 case 0x0ffe: /* paddd */
8063 if (i386_record_modrm (&ir))
8064 return -1;
8065 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8066 goto no_support;
8067 record_full_arch_list_add_reg (ir.regcache,
8068 I387_MM0_REGNUM (tdep) + ir.reg);
8069 break;
8070
8071 case 0x0f71: /* psllw */
8072 case 0x0f72: /* pslld */
8073 case 0x0f73: /* psllq */
8074 if (i386_record_modrm (&ir))
8075 return -1;
8076 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8077 goto no_support;
8078 record_full_arch_list_add_reg (ir.regcache,
8079 I387_MM0_REGNUM (tdep) + ir.rm);
8080 break;
8081
8082 case 0x660f71: /* psllw */
8083 case 0x660f72: /* pslld */
8084 case 0x660f73: /* psllq */
8085 if (i386_record_modrm (&ir))
8086 return -1;
8087 ir.rm |= ir.rex_b;
8088 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8089 goto no_support;
8090 record_full_arch_list_add_reg (ir.regcache,
8091 I387_XMM0_REGNUM (tdep) + ir.rm);
8092 break;
8093
8094 case 0x0f7e: /* movd */
8095 case 0x660f7e: /* movd */
8096 if (i386_record_modrm (&ir))
8097 return -1;
8098 if (ir.mod == 3)
8099 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8100 else
8101 {
8102 if (ir.dflag == 2)
8103 ir.ot = OT_QUAD;
8104 else
8105 ir.ot = OT_LONG;
8106 if (i386_record_lea_modrm (&ir))
8107 return -1;
8108 }
8109 break;
8110
8111 case 0x0f7f: /* movq */
8112 if (i386_record_modrm (&ir))
8113 return -1;
8114 if (ir.mod == 3)
8115 {
8116 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8117 goto no_support;
8118 record_full_arch_list_add_reg (ir.regcache,
8119 I387_MM0_REGNUM (tdep) + ir.rm);
8120 }
8121 else
8122 {
8123 ir.ot = OT_QUAD;
8124 if (i386_record_lea_modrm (&ir))
8125 return -1;
8126 }
8127 break;
8128
8129 case 0xf30fb8: /* popcnt */
8130 if (i386_record_modrm (&ir))
8131 return -1;
8132 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8134 break;
8135
8136 case 0x660fd6: /* movq */
8137 if (i386_record_modrm (&ir))
8138 return -1;
8139 if (ir.mod == 3)
8140 {
8141 ir.rm |= ir.rex_b;
8142 if (!i386_xmm_regnum_p (gdbarch,
8143 I387_XMM0_REGNUM (tdep) + ir.rm))
8144 goto no_support;
8145 record_full_arch_list_add_reg (ir.regcache,
8146 I387_XMM0_REGNUM (tdep) + ir.rm);
8147 }
8148 else
8149 {
8150 ir.ot = OT_QUAD;
8151 if (i386_record_lea_modrm (&ir))
8152 return -1;
8153 }
8154 break;
8155
8156 case 0x660f3817: /* ptest */
8157 case 0x0f2e: /* ucomiss */
8158 case 0x660f2e: /* ucomisd */
8159 case 0x0f2f: /* comiss */
8160 case 0x660f2f: /* comisd */
8161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8162 break;
8163
8164 case 0x0ff7: /* maskmovq */
8165 regcache_raw_read_unsigned (ir.regcache,
8166 ir.regmap[X86_RECORD_REDI_REGNUM],
8167 &addr);
8168 if (record_full_arch_list_add_mem (addr, 64))
8169 return -1;
8170 break;
8171
8172 case 0x660ff7: /* maskmovdqu */
8173 regcache_raw_read_unsigned (ir.regcache,
8174 ir.regmap[X86_RECORD_REDI_REGNUM],
8175 &addr);
8176 if (record_full_arch_list_add_mem (addr, 128))
8177 return -1;
8178 break;
8179
8180 default:
8181 goto no_support;
8182 break;
8183 }
8184 break;
8185
8186 default:
8187 goto no_support;
8188 break;
8189 }
8190
8191 /* In the future, maybe still need to deal with need_dasm. */
8192 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8193 if (record_full_arch_list_add_end ())
8194 return -1;
8195
8196 return 0;
8197
8198 no_support:
8199 gdb_printf (gdb_stderr,
8200 _("Process record does not support instruction 0x%02x "
8201 "at address %s.\n"),
8202 (unsigned int) (opcode),
8203 paddress (gdbarch, ir.orig_addr));
8204 return -1;
8205 }
8206
8207 static const int i386_record_regmap[] =
8208 {
8209 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8210 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8211 0, 0, 0, 0, 0, 0, 0, 0,
8212 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8213 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8214 };
8215
8216 /* Check that the given address appears suitable for a fast
8217 tracepoint, which on x86-64 means that we need an instruction of at
8218 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8219 jump and not have to worry about program jumps to an address in the
8220 middle of the tracepoint jump. On x86, it may be possible to use
8221 4-byte jumps with a 2-byte offset to a trampoline located in the
8222 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8223 of instruction to replace, and 0 if not, plus an explanatory
8224 string. */
8225
8226 static int
8227 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8228 std::string *msg)
8229 {
8230 int len, jumplen;
8231
8232 /* Ask the target for the minimum instruction length supported. */
8233 jumplen = target_get_min_fast_tracepoint_insn_len ();
8234
8235 if (jumplen < 0)
8236 {
8237 /* If the target does not support the get_min_fast_tracepoint_insn_len
8238 operation, assume that fast tracepoints will always be implemented
8239 using 4-byte relative jumps on both x86 and x86-64. */
8240 jumplen = 5;
8241 }
8242 else if (jumplen == 0)
8243 {
8244 /* If the target does support get_min_fast_tracepoint_insn_len but
8245 returns zero, then the IPA has not loaded yet. In this case,
8246 we optimistically assume that truncated 2-byte relative jumps
8247 will be available on x86, and compensate later if this assumption
8248 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8249 jumps will always be used. */
8250 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8251 }
8252
8253 /* Check for fit. */
8254 len = gdb_insn_length (gdbarch, addr);
8255
8256 if (len < jumplen)
8257 {
8258 /* Return a bit of target-specific detail to add to the caller's
8259 generic failure message. */
8260 if (msg)
8261 *msg = string_printf (_("; instruction is only %d bytes long, "
8262 "need at least %d bytes for the jump"),
8263 len, jumplen);
8264 return 0;
8265 }
8266 else
8267 {
8268 if (msg)
8269 msg->clear ();
8270 return 1;
8271 }
8272 }
8273
8274 /* Return a floating-point format for a floating-point variable of
8275 length LEN in bits. If non-NULL, NAME is the name of its type.
8276 If no suitable type is found, return NULL. */
8277
8278 static const struct floatformat **
8279 i386_floatformat_for_type (struct gdbarch *gdbarch,
8280 const char *name, int len)
8281 {
8282 if (len == 128 && name)
8283 if (strcmp (name, "__float128") == 0
8284 || strcmp (name, "_Float128") == 0
8285 || strcmp (name, "complex _Float128") == 0
8286 || strcmp (name, "complex(kind=16)") == 0
8287 || strcmp (name, "COMPLEX(16)") == 0
8288 || strcmp (name, "complex*32") == 0
8289 || strcmp (name, "COMPLEX*32") == 0
8290 || strcmp (name, "quad complex") == 0
8291 || strcmp (name, "real(kind=16)") == 0
8292 || strcmp (name, "real*16") == 0
8293 || strcmp (name, "REAL*16") == 0
8294 || strcmp (name, "REAL(16)") == 0)
8295 return floatformats_ieee_quad;
8296
8297 return default_floatformat_for_type (gdbarch, name, len);
8298 }
8299
8300 static int
8301 i386_validate_tdesc_p (i386_gdbarch_tdep *tdep,
8302 struct tdesc_arch_data *tdesc_data)
8303 {
8304 const struct target_desc *tdesc = tdep->tdesc;
8305 const struct tdesc_feature *feature_core;
8306
8307 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8308 *feature_avx512, *feature_pkeys, *feature_segments;
8309 int i, num_regs, valid_p;
8310
8311 if (! tdesc_has_registers (tdesc))
8312 return 0;
8313
8314 /* Get core registers. */
8315 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8316 if (feature_core == NULL)
8317 return 0;
8318
8319 /* Get SSE registers. */
8320 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8321
8322 /* Try AVX registers. */
8323 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8324
8325 /* Try MPX registers. */
8326 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8327
8328 /* Try AVX512 registers. */
8329 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8330
8331 /* Try segment base registers. */
8332 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8333
8334 /* Try PKEYS */
8335 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8336
8337 valid_p = 1;
8338
8339 /* The XCR0 bits. */
8340 if (feature_avx512)
8341 {
8342 /* AVX512 register description requires AVX register description. */
8343 if (!feature_avx)
8344 return 0;
8345
8346 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8347
8348 /* It may have been set by OSABI initialization function. */
8349 if (tdep->k0_regnum < 0)
8350 {
8351 tdep->k_register_names = i386_k_names;
8352 tdep->k0_regnum = I386_K0_REGNUM;
8353 }
8354
8355 for (i = 0; i < I387_NUM_K_REGS; i++)
8356 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8357 tdep->k0_regnum + i,
8358 i386_k_names[i]);
8359
8360 if (tdep->num_zmm_regs == 0)
8361 {
8362 tdep->zmmh_register_names = i386_zmmh_names;
8363 tdep->num_zmm_regs = 8;
8364 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8365 }
8366
8367 for (i = 0; i < tdep->num_zmm_regs; i++)
8368 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8369 tdep->zmm0h_regnum + i,
8370 tdep->zmmh_register_names[i]);
8371
8372 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8373 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8374 tdep->xmm16_regnum + i,
8375 tdep->xmm_avx512_register_names[i]);
8376
8377 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8378 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8379 tdep->ymm16h_regnum + i,
8380 tdep->ymm16h_register_names[i]);
8381 }
8382 if (feature_avx)
8383 {
8384 /* AVX register description requires SSE register description. */
8385 if (!feature_sse)
8386 return 0;
8387
8388 if (!feature_avx512)
8389 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8390
8391 /* It may have been set by OSABI initialization function. */
8392 if (tdep->num_ymm_regs == 0)
8393 {
8394 tdep->ymmh_register_names = i386_ymmh_names;
8395 tdep->num_ymm_regs = 8;
8396 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8397 }
8398
8399 for (i = 0; i < tdep->num_ymm_regs; i++)
8400 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8401 tdep->ymm0h_regnum + i,
8402 tdep->ymmh_register_names[i]);
8403 }
8404 else if (feature_sse)
8405 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8406 else
8407 {
8408 tdep->xcr0 = X86_XSTATE_X87_MASK;
8409 tdep->num_xmm_regs = 0;
8410 }
8411
8412 num_regs = tdep->num_core_regs;
8413 for (i = 0; i < num_regs; i++)
8414 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8415 tdep->register_names[i]);
8416
8417 if (feature_sse)
8418 {
8419 /* Need to include %mxcsr, so add one. */
8420 num_regs += tdep->num_xmm_regs + 1;
8421 for (; i < num_regs; i++)
8422 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8423 tdep->register_names[i]);
8424 }
8425
8426 if (feature_mpx)
8427 {
8428 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8429
8430 if (tdep->bnd0r_regnum < 0)
8431 {
8432 tdep->mpx_register_names = i386_mpx_names;
8433 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8434 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8435 }
8436
8437 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8438 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8439 I387_BND0R_REGNUM (tdep) + i,
8440 tdep->mpx_register_names[i]);
8441 }
8442
8443 if (feature_segments)
8444 {
8445 if (tdep->fsbase_regnum < 0)
8446 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8447 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8448 tdep->fsbase_regnum, "fs_base");
8449 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8450 tdep->fsbase_regnum + 1, "gs_base");
8451 }
8452
8453 if (feature_pkeys)
8454 {
8455 tdep->xcr0 |= X86_XSTATE_PKRU;
8456 if (tdep->pkru_regnum < 0)
8457 {
8458 tdep->pkeys_register_names = i386_pkeys_names;
8459 tdep->pkru_regnum = I386_PKRU_REGNUM;
8460 tdep->num_pkeys_regs = 1;
8461 }
8462
8463 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8464 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8465 I387_PKRU_REGNUM (tdep) + i,
8466 tdep->pkeys_register_names[i]);
8467 }
8468
8469 return valid_p;
8470 }
8471
8472 \f
8473
8474 /* Implement the type_align gdbarch function. */
8475
8476 static ULONGEST
8477 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8478 {
8479 type = check_typedef (type);
8480
8481 if (gdbarch_ptr_bit (gdbarch) == 32)
8482 {
8483 if ((type->code () == TYPE_CODE_INT
8484 || type->code () == TYPE_CODE_FLT)
8485 && type->length () > 4)
8486 return 4;
8487
8488 /* Handle x86's funny long double. */
8489 if (type->code () == TYPE_CODE_FLT
8490 && gdbarch_long_double_bit (gdbarch) == type->length () * 8)
8491 return 4;
8492 }
8493
8494 return 0;
8495 }
8496
8497 \f
8498 /* Note: This is called for both i386 and amd64. */
8499
8500 static struct gdbarch *
8501 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8502 {
8503 const struct target_desc *tdesc;
8504 int mm0_regnum;
8505 int ymm0_regnum;
8506 int bnd0_regnum;
8507 int num_bnd_cooked;
8508
8509 x86_xsave_layout xsave_layout = target_fetch_x86_xsave_layout ();
8510
8511 /* If there is already a candidate, use it. */
8512 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8513 arches != NULL;
8514 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8515 {
8516 /* Check that the XSAVE layout of ARCHES matches the layout for
8517 the current target. */
8518 i386_gdbarch_tdep *other_tdep
8519 = gdbarch_tdep<i386_gdbarch_tdep> (arches->gdbarch);
8520
8521 if (other_tdep->xsave_layout == xsave_layout)
8522 return arches->gdbarch;
8523 }
8524
8525 /* Allocate space for the new architecture. Assume i386 for now. */
8526 gdbarch *gdbarch
8527 = gdbarch_alloc (&info, gdbarch_tdep_up (new i386_gdbarch_tdep));
8528 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
8529
8530 /* General-purpose registers. */
8531 tdep->gregset_reg_offset = NULL;
8532 tdep->gregset_num_regs = I386_NUM_GREGS;
8533 tdep->sizeof_gregset = 0;
8534
8535 /* Floating-point registers. */
8536 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8537 tdep->fpregset = &i386_fpregset;
8538
8539 /* The default settings include the FPU registers, the MMX registers
8540 and the SSE registers. This can be overridden for a specific ABI
8541 by adjusting the members `st0_regnum', `mm0_regnum' and
8542 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8543 will show up in the output of "info all-registers". */
8544
8545 tdep->st0_regnum = I386_ST0_REGNUM;
8546
8547 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8548 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8549
8550 tdep->jb_pc_offset = -1;
8551 tdep->struct_return = pcc_struct_return;
8552 tdep->sigtramp_start = 0;
8553 tdep->sigtramp_end = 0;
8554 tdep->sigtramp_p = i386_sigtramp_p;
8555 tdep->sigcontext_addr = NULL;
8556 tdep->sc_reg_offset = NULL;
8557 tdep->sc_pc_offset = -1;
8558 tdep->sc_sp_offset = -1;
8559
8560 tdep->xsave_xcr0_offset = -1;
8561
8562 tdep->record_regmap = i386_record_regmap;
8563
8564 set_gdbarch_type_align (gdbarch, i386_type_align);
8565
8566 /* The format used for `long double' on almost all i386 targets is
8567 the i387 extended floating-point format. In fact, of all targets
8568 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8569 on having a `long double' that's not `long' at all. */
8570 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8571
8572 /* Although the i387 extended floating-point has only 80 significant
8573 bits, a `long double' actually takes up 96, probably to enforce
8574 alignment. */
8575 set_gdbarch_long_double_bit (gdbarch, 96);
8576
8577 /* Support of bfloat16 format. */
8578 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8579
8580 /* Support for floating-point data type variants. */
8581 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8582
8583 /* Register numbers of various important registers. */
8584 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8585 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8586 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8587 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8588
8589 /* NOTE: kettenis/20040418: GCC does have two possible register
8590 numbering schemes on the i386: dbx and SVR4. These schemes
8591 differ in how they number %ebp, %esp, %eflags, and the
8592 floating-point registers, and are implemented by the arrays
8593 dbx_register_map[] and svr4_dbx_register_map in
8594 gcc/config/i386.c. GCC also defines a third numbering scheme in
8595 gcc/config/i386.c, which it designates as the "default" register
8596 map used in 64bit mode. This last register numbering scheme is
8597 implemented in dbx64_register_map, and is used for AMD64; see
8598 amd64-tdep.c.
8599
8600 Currently, each GCC i386 target always uses the same register
8601 numbering scheme across all its supported debugging formats
8602 i.e. SDB (COFF), stabs and DWARF 2. This is because
8603 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8604 DBX_REGISTER_NUMBER macro which is defined by each target's
8605 respective config header in a manner independent of the requested
8606 output debugging format.
8607
8608 This does not match the arrangement below, which presumes that
8609 the SDB and stabs numbering schemes differ from the DWARF and
8610 DWARF 2 ones. The reason for this arrangement is that it is
8611 likely to get the numbering scheme for the target's
8612 default/native debug format right. For targets where GCC is the
8613 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8614 targets where the native toolchain uses a different numbering
8615 scheme for a particular debug format (stabs-in-ELF on Solaris)
8616 the defaults below will have to be overridden, like
8617 i386_elf_init_abi() does. */
8618
8619 /* Use the dbx register numbering scheme for stabs and COFF. */
8620 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8621 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8622
8623 /* Use the SVR4 register numbering scheme for DWARF 2. */
8624 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8625
8626 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8627 be in use on any of the supported i386 targets. */
8628
8629 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8630
8631 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8632
8633 /* Call dummy code. */
8634 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8635 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8636 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8637 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8638
8639 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8640 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8641 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8642
8643 set_gdbarch_return_value_as_value (gdbarch, i386_return_value);
8644
8645 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8646
8647 /* Stack grows downward. */
8648 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8649
8650 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8651 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8652
8653 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8654 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8655
8656 set_gdbarch_frame_args_skip (gdbarch, 8);
8657
8658 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8659
8660 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8661
8662 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8663
8664 /* Add the i386 register groups. */
8665 i386_add_reggroups (gdbarch);
8666 tdep->register_reggroup_p = i386_register_reggroup_p;
8667
8668 /* Helper for function argument information. */
8669 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8670
8671 /* Hook the function epilogue frame unwinder. This unwinder is
8672 appended to the list first, so that it supersedes the DWARF
8673 unwinder in function epilogues (where the DWARF unwinder
8674 currently fails). */
8675 if (info.bfd_arch_info->bits_per_word == 32)
8676 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_override_frame_unwind);
8677
8678 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8679 to the list before the prologue-based unwinders, so that DWARF
8680 CFI info will be used if it is available. */
8681 dwarf2_append_unwinders (gdbarch);
8682
8683 if (info.bfd_arch_info->bits_per_word == 32)
8684 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8685
8686 frame_base_set_default (gdbarch, &i386_frame_base);
8687
8688 /* Pseudo registers may be changed by amd64_init_abi. */
8689 set_gdbarch_pseudo_register_read_value (gdbarch,
8690 i386_pseudo_register_read_value);
8691 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8692 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8693 i386_ax_pseudo_register_collect);
8694
8695 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8696 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8697
8698 /* Override the normal target description method to make the AVX
8699 upper halves anonymous. */
8700 set_gdbarch_register_name (gdbarch, i386_register_name);
8701
8702 /* Even though the default ABI only includes general-purpose registers,
8703 floating-point registers and the SSE registers, we have to leave a
8704 gap for the upper AVX, MPX and AVX512 registers. */
8705 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8706
8707 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8708
8709 /* Get the x86 target description from INFO. */
8710 tdesc = info.target_desc;
8711 if (! tdesc_has_registers (tdesc))
8712 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8713 tdep->tdesc = tdesc;
8714
8715 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8716 tdep->register_names = i386_register_names;
8717
8718 /* No upper YMM registers. */
8719 tdep->ymmh_register_names = NULL;
8720 tdep->ymm0h_regnum = -1;
8721
8722 /* No upper ZMM registers. */
8723 tdep->zmmh_register_names = NULL;
8724 tdep->zmm0h_regnum = -1;
8725
8726 /* No high XMM registers. */
8727 tdep->xmm_avx512_register_names = NULL;
8728 tdep->xmm16_regnum = -1;
8729
8730 /* No upper YMM16-31 registers. */
8731 tdep->ymm16h_register_names = NULL;
8732 tdep->ymm16h_regnum = -1;
8733
8734 tdep->num_byte_regs = 8;
8735 tdep->num_word_regs = 8;
8736 tdep->num_dword_regs = 0;
8737 tdep->num_mmx_regs = 8;
8738 tdep->num_ymm_regs = 0;
8739
8740 /* No MPX registers. */
8741 tdep->bnd0r_regnum = -1;
8742 tdep->bndcfgu_regnum = -1;
8743
8744 /* No AVX512 registers. */
8745 tdep->k0_regnum = -1;
8746 tdep->num_zmm_regs = 0;
8747 tdep->num_ymm_avx512_regs = 0;
8748 tdep->num_xmm_avx512_regs = 0;
8749
8750 /* No PKEYS registers */
8751 tdep->pkru_regnum = -1;
8752 tdep->num_pkeys_regs = 0;
8753
8754 /* No segment base registers. */
8755 tdep->fsbase_regnum = -1;
8756
8757 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8758
8759 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8760
8761 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8762
8763 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8764 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8765 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8766
8767 /* Hook in ABI-specific overrides, if they have been registered.
8768 Note: If INFO specifies a 64 bit arch, this is where we turn
8769 a 32-bit i386 into a 64-bit amd64. */
8770 info.tdesc_data = tdesc_data.get ();
8771 gdbarch_init_osabi (info, gdbarch);
8772
8773 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8774 {
8775 gdbarch_free (gdbarch);
8776 return NULL;
8777 }
8778 tdep->xsave_layout = xsave_layout;
8779
8780 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8781
8782 /* Wire in pseudo registers. Number of pseudo registers may be
8783 changed. */
8784 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8785 + tdep->num_word_regs
8786 + tdep->num_dword_regs
8787 + tdep->num_mmx_regs
8788 + tdep->num_ymm_regs
8789 + num_bnd_cooked
8790 + tdep->num_ymm_avx512_regs
8791 + tdep->num_zmm_regs));
8792
8793 /* Target description may be changed. */
8794 tdesc = tdep->tdesc;
8795
8796 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8797
8798 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8799 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8800
8801 /* Make %al the first pseudo-register. */
8802 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8803 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8804
8805 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8806 if (tdep->num_dword_regs)
8807 {
8808 /* Support dword pseudo-register if it hasn't been disabled. */
8809 tdep->eax_regnum = ymm0_regnum;
8810 ymm0_regnum += tdep->num_dword_regs;
8811 }
8812 else
8813 tdep->eax_regnum = -1;
8814
8815 mm0_regnum = ymm0_regnum;
8816 if (tdep->num_ymm_regs)
8817 {
8818 /* Support YMM pseudo-register if it is available. */
8819 tdep->ymm0_regnum = ymm0_regnum;
8820 mm0_regnum += tdep->num_ymm_regs;
8821 }
8822 else
8823 tdep->ymm0_regnum = -1;
8824
8825 if (tdep->num_ymm_avx512_regs)
8826 {
8827 /* Support YMM16-31 pseudo registers if available. */
8828 tdep->ymm16_regnum = mm0_regnum;
8829 mm0_regnum += tdep->num_ymm_avx512_regs;
8830 }
8831 else
8832 tdep->ymm16_regnum = -1;
8833
8834 if (tdep->num_zmm_regs)
8835 {
8836 /* Support ZMM pseudo-register if it is available. */
8837 tdep->zmm0_regnum = mm0_regnum;
8838 mm0_regnum += tdep->num_zmm_regs;
8839 }
8840 else
8841 tdep->zmm0_regnum = -1;
8842
8843 bnd0_regnum = mm0_regnum;
8844 if (tdep->num_mmx_regs != 0)
8845 {
8846 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8847 tdep->mm0_regnum = mm0_regnum;
8848 bnd0_regnum += tdep->num_mmx_regs;
8849 }
8850 else
8851 tdep->mm0_regnum = -1;
8852
8853 if (tdep->bnd0r_regnum > 0)
8854 tdep->bnd0_regnum = bnd0_regnum;
8855 else
8856 tdep-> bnd0_regnum = -1;
8857
8858 /* Hook in the legacy prologue-based unwinders last (fallback). */
8859 if (info.bfd_arch_info->bits_per_word == 32)
8860 {
8861 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8862 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8863 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8864 }
8865
8866 /* If we have a register mapping, enable the generic core file
8867 support, unless it has already been enabled. */
8868 if (tdep->gregset_reg_offset
8869 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8870 set_gdbarch_iterate_over_regset_sections
8871 (gdbarch, i386_iterate_over_regset_sections);
8872
8873 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8874 i386_fast_tracepoint_valid_at);
8875
8876 return gdbarch;
8877 }
8878
8879 \f
8880
8881 /* Return the target description for a specified XSAVE feature mask. */
8882
8883 const struct target_desc *
8884 i386_target_description (uint64_t xcr0, bool segments)
8885 {
8886 static target_desc *i386_tdescs \
8887 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8888 target_desc **tdesc;
8889
8890 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8891 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8892 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8893 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8894 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8895 [segments ? 1 : 0];
8896
8897 if (*tdesc == NULL)
8898 *tdesc = i386_create_target_description (xcr0, false, segments);
8899
8900 return *tdesc;
8901 }
8902
8903 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8904
8905 /* Find the bound directory base address. */
8906
8907 static unsigned long
8908 i386_mpx_bd_base (void)
8909 {
8910 struct regcache *rcache;
8911 ULONGEST ret;
8912 enum register_status regstatus;
8913
8914 rcache = get_current_regcache ();
8915 gdbarch *arch = rcache->arch ();
8916 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
8917
8918 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8919
8920 if (regstatus != REG_VALID)
8921 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8922
8923 return ret & MPX_BASE_MASK;
8924 }
8925
8926 int
8927 i386_mpx_enabled (void)
8928 {
8929 gdbarch *arch = get_current_arch ();
8930 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
8931 const struct target_desc *tdesc = tdep->tdesc;
8932
8933 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8934 }
8935
8936 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8937 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8938 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8939 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8940
8941 /* Find the bound table entry given the pointer location and the base
8942 address of the table. */
8943
8944 static CORE_ADDR
8945 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8946 {
8947 CORE_ADDR offset1;
8948 CORE_ADDR offset2;
8949 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8950 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8951 CORE_ADDR bd_entry_addr;
8952 CORE_ADDR bt_addr;
8953 CORE_ADDR bd_entry;
8954 struct gdbarch *gdbarch = get_current_arch ();
8955 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8956
8957
8958 if (gdbarch_ptr_bit (gdbarch) == 64)
8959 {
8960 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8961 bd_ptr_r_shift = 20;
8962 bd_ptr_l_shift = 3;
8963 bt_select_r_shift = 3;
8964 bt_select_l_shift = 5;
8965 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8966
8967 if ( sizeof (CORE_ADDR) == 4)
8968 error (_("bound table examination not supported\
8969 for 64-bit process with 32-bit GDB"));
8970 }
8971 else
8972 {
8973 mpx_bd_mask = MPX_BD_MASK_32;
8974 bd_ptr_r_shift = 12;
8975 bd_ptr_l_shift = 2;
8976 bt_select_r_shift = 2;
8977 bt_select_l_shift = 4;
8978 bt_mask = MPX_BT_MASK_32;
8979 }
8980
8981 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8982 bd_entry_addr = bd_base + offset1;
8983 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8984
8985 if ((bd_entry & 0x1) == 0)
8986 error (_("Invalid bounds directory entry at %s."),
8987 paddress (get_current_arch (), bd_entry_addr));
8988
8989 /* Clearing status bit. */
8990 bd_entry--;
8991 bt_addr = bd_entry & ~bt_select_r_shift;
8992 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8993
8994 return bt_addr + offset2;
8995 }
8996
8997 /* Print routine for the mpx bounds. */
8998
8999 static void
9000 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
9001 {
9002 struct ui_out *uiout = current_uiout;
9003 LONGEST size;
9004 struct gdbarch *gdbarch = get_current_arch ();
9005 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
9006 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
9007
9008 if (bounds_in_map == 1)
9009 {
9010 uiout->text ("Null bounds on map:");
9011 uiout->text (" pointer value = ");
9012 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
9013 uiout->text (".");
9014 uiout->text ("\n");
9015 }
9016 else
9017 {
9018 uiout->text ("{lbound = ");
9019 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
9020 uiout->text (", ubound = ");
9021
9022 /* The upper bound is stored in 1's complement. */
9023 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
9024 uiout->text ("}: pointer value = ");
9025 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
9026
9027 if (gdbarch_ptr_bit (gdbarch) == 64)
9028 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
9029 else
9030 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
9031
9032 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
9033 -1 represents in this sense full memory access, and there is no need
9034 one to the size. */
9035
9036 size = (size > -1 ? size + 1 : size);
9037 uiout->text (", size = ");
9038 uiout->field_string ("size", plongest (size));
9039
9040 uiout->text (", metadata = ");
9041 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
9042 uiout->text ("\n");
9043 }
9044 }
9045
9046 /* Implement the command "show mpx bound". */
9047
9048 static void
9049 i386_mpx_info_bounds (const char *args, int from_tty)
9050 {
9051 CORE_ADDR bd_base = 0;
9052 CORE_ADDR addr;
9053 CORE_ADDR bt_entry_addr = 0;
9054 CORE_ADDR bt_entry[4];
9055 int i;
9056 struct gdbarch *gdbarch = get_current_arch ();
9057 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9058
9059 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9060 || !i386_mpx_enabled ())
9061 {
9062 gdb_printf (_("Intel Memory Protection Extensions not "
9063 "supported on this target.\n"));
9064 return;
9065 }
9066
9067 if (args == NULL)
9068 {
9069 gdb_printf (_("Address of pointer variable expected.\n"));
9070 return;
9071 }
9072
9073 addr = parse_and_eval_address (args);
9074
9075 bd_base = i386_mpx_bd_base ();
9076 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9077
9078 memset (bt_entry, 0, sizeof (bt_entry));
9079
9080 for (i = 0; i < 4; i++)
9081 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9082 + i * data_ptr_type->length (),
9083 data_ptr_type);
9084
9085 i386_mpx_print_bounds (bt_entry);
9086 }
9087
9088 /* Implement the command "set mpx bound". */
9089
9090 static void
9091 i386_mpx_set_bounds (const char *args, int from_tty)
9092 {
9093 CORE_ADDR bd_base = 0;
9094 CORE_ADDR addr, lower, upper;
9095 CORE_ADDR bt_entry_addr = 0;
9096 CORE_ADDR bt_entry[2];
9097 const char *input = args;
9098 int i;
9099 struct gdbarch *gdbarch = get_current_arch ();
9100 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9101 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9102
9103 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9104 || !i386_mpx_enabled ())
9105 error (_("Intel Memory Protection Extensions not supported\
9106 on this target."));
9107
9108 if (args == NULL)
9109 error (_("Pointer value expected."));
9110
9111 addr = value_as_address (parse_to_comma_and_eval (&input));
9112
9113 if (input[0] == ',')
9114 ++input;
9115 if (input[0] == '\0')
9116 error (_("wrong number of arguments: missing lower and upper bound."));
9117 lower = value_as_address (parse_to_comma_and_eval (&input));
9118
9119 if (input[0] == ',')
9120 ++input;
9121 if (input[0] == '\0')
9122 error (_("Wrong number of arguments; Missing upper bound."));
9123 upper = value_as_address (parse_to_comma_and_eval (&input));
9124
9125 bd_base = i386_mpx_bd_base ();
9126 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9127 for (i = 0; i < 2; i++)
9128 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9129 + i * data_ptr_type->length (),
9130 data_ptr_type);
9131 bt_entry[0] = (uint64_t) lower;
9132 bt_entry[1] = ~(uint64_t) upper;
9133
9134 for (i = 0; i < 2; i++)
9135 write_memory_unsigned_integer (bt_entry_addr
9136 + i * data_ptr_type->length (),
9137 data_ptr_type->length (), byte_order,
9138 bt_entry[i]);
9139 }
9140
9141 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9142
9143 void _initialize_i386_tdep ();
9144 void
9145 _initialize_i386_tdep ()
9146 {
9147 gdbarch_register (bfd_arch_i386, i386_gdbarch_init);
9148
9149 /* Add the variable that controls the disassembly flavor. */
9150 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9151 &disassembly_flavor, _("\
9152 Set the disassembly flavor."), _("\
9153 Show the disassembly flavor."), _("\
9154 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9155 NULL,
9156 NULL, /* FIXME: i18n: */
9157 &setlist, &showlist);
9158
9159 /* Add the variable that controls the convention for returning
9160 structs. */
9161 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9162 &struct_convention, _("\
9163 Set the convention for returning small structs."), _("\
9164 Show the convention for returning small structs."), _("\
9165 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9166 is \"default\"."),
9167 NULL,
9168 NULL, /* FIXME: i18n: */
9169 &setlist, &showlist);
9170
9171 /* Add "mpx" prefix for the set and show commands. */
9172
9173 add_setshow_prefix_cmd
9174 ("mpx", class_support,
9175 _("Set Intel Memory Protection Extensions specific variables."),
9176 _("Show Intel Memory Protection Extensions specific variables."),
9177 &mpx_set_cmdlist, &mpx_show_cmdlist, &setlist, &showlist);
9178
9179 /* Add "bound" command for the show mpx commands list. */
9180
9181 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9182 "Show the memory bounds for a given array/pointer storage\
9183 in the bound table.",
9184 &mpx_show_cmdlist);
9185
9186 /* Add "bound" command for the set mpx commands list. */
9187
9188 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9189 "Set the memory bounds for a given array/pointer storage\
9190 in the bound table.",
9191 &mpx_set_cmdlist);
9192
9193 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9194 i386_svr4_init_abi);
9195
9196 /* Initialize the i386-specific register groups. */
9197 i386_init_reggroups ();
9198
9199 /* Tell remote stub that we support XML target description. */
9200 register_remote_support_xml ("i386");
9201 }