Remove path name from test case
[binutils-gdb.git] / gdb / i387-tdep.c
1 /* Intel 387 floating point stuff.
2
3 Copyright (C) 1988-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "gdbcore.h"
23 #include "inferior.h"
24 #include "language.h"
25 #include "regcache.h"
26 #include "target-float.h"
27 #include "value.h"
28
29 #include "i386-tdep.h"
30 #include "i387-tdep.h"
31 #include "gdbsupport/x86-xstate.h"
32
33 /* Print the floating point number specified by RAW. */
34
35 static void
36 print_i387_value (struct gdbarch *gdbarch,
37 const gdb_byte *raw, struct ui_file *file)
38 {
39 /* We try to print 19 digits. The last digit may or may not contain
40 garbage, but we'd better print one too many. We need enough room
41 to print the value, 1 position for the sign, 1 for the decimal
42 point, 19 for the digits and 6 for the exponent adds up to 27. */
43 const struct type *type = i387_ext_type (gdbarch);
44 std::string str = target_float_to_string (raw, type, " %-+27.19g");
45 gdb_printf (file, "%s", str.c_str ());
46 }
47
48 /* Print the classification for the register contents RAW. */
49
50 static void
51 print_i387_ext (struct gdbarch *gdbarch,
52 const gdb_byte *raw, struct ui_file *file)
53 {
54 int sign;
55 int integer;
56 unsigned int exponent;
57 unsigned long fraction[2];
58
59 sign = raw[9] & 0x80;
60 integer = raw[7] & 0x80;
61 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
62 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
63 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
64 | (raw[5] << 8) | raw[4]);
65
66 if (exponent == 0x7fff && integer)
67 {
68 if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
69 /* Infinity. */
70 gdb_printf (file, " %cInf", (sign ? '-' : '+'));
71 else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
72 /* Real Indefinite (QNaN). */
73 gdb_puts (" Real Indefinite (QNaN)", file);
74 else if (fraction[1] & 0x40000000)
75 /* QNaN. */
76 gdb_puts (" QNaN", file);
77 else
78 /* SNaN. */
79 gdb_puts (" SNaN", file);
80 }
81 else if (exponent < 0x7fff && exponent > 0x0000 && integer)
82 /* Normal. */
83 print_i387_value (gdbarch, raw, file);
84 else if (exponent == 0x0000)
85 {
86 /* Denormal or zero. */
87 print_i387_value (gdbarch, raw, file);
88
89 if (integer)
90 /* Pseudo-denormal. */
91 gdb_puts (" Pseudo-denormal", file);
92 else if (fraction[0] || fraction[1])
93 /* Denormal. */
94 gdb_puts (" Denormal", file);
95 }
96 else
97 /* Unsupported. */
98 gdb_puts (" Unsupported", file);
99 }
100
101 /* Print the status word STATUS. If STATUS_P is false, then STATUS
102 was unavailable. */
103
104 static void
105 print_i387_status_word (int status_p,
106 unsigned int status, struct ui_file *file)
107 {
108 gdb_printf (file, "Status Word: ");
109 if (!status_p)
110 {
111 gdb_printf (file, "%s\n", _("<unavailable>"));
112 return;
113 }
114
115 gdb_printf (file, "%s", hex_string_custom (status, 4));
116 gdb_puts (" ", file);
117 gdb_printf (file, " %s", (status & 0x0001) ? "IE" : " ");
118 gdb_printf (file, " %s", (status & 0x0002) ? "DE" : " ");
119 gdb_printf (file, " %s", (status & 0x0004) ? "ZE" : " ");
120 gdb_printf (file, " %s", (status & 0x0008) ? "OE" : " ");
121 gdb_printf (file, " %s", (status & 0x0010) ? "UE" : " ");
122 gdb_printf (file, " %s", (status & 0x0020) ? "PE" : " ");
123 gdb_puts (" ", file);
124 gdb_printf (file, " %s", (status & 0x0080) ? "ES" : " ");
125 gdb_puts (" ", file);
126 gdb_printf (file, " %s", (status & 0x0040) ? "SF" : " ");
127 gdb_puts (" ", file);
128 gdb_printf (file, " %s", (status & 0x0100) ? "C0" : " ");
129 gdb_printf (file, " %s", (status & 0x0200) ? "C1" : " ");
130 gdb_printf (file, " %s", (status & 0x0400) ? "C2" : " ");
131 gdb_printf (file, " %s", (status & 0x4000) ? "C3" : " ");
132
133 gdb_puts ("\n", file);
134
135 gdb_printf (file,
136 " TOP: %d\n", ((status >> 11) & 7));
137 }
138
139 /* Print the control word CONTROL. If CONTROL_P is false, then
140 CONTROL was unavailable. */
141
142 static void
143 print_i387_control_word (int control_p,
144 unsigned int control, struct ui_file *file)
145 {
146 gdb_printf (file, "Control Word: ");
147 if (!control_p)
148 {
149 gdb_printf (file, "%s\n", _("<unavailable>"));
150 return;
151 }
152
153 gdb_printf (file, "%s", hex_string_custom (control, 4));
154 gdb_puts (" ", file);
155 gdb_printf (file, " %s", (control & 0x0001) ? "IM" : " ");
156 gdb_printf (file, " %s", (control & 0x0002) ? "DM" : " ");
157 gdb_printf (file, " %s", (control & 0x0004) ? "ZM" : " ");
158 gdb_printf (file, " %s", (control & 0x0008) ? "OM" : " ");
159 gdb_printf (file, " %s", (control & 0x0010) ? "UM" : " ");
160 gdb_printf (file, " %s", (control & 0x0020) ? "PM" : " ");
161
162 gdb_puts ("\n", file);
163
164 gdb_puts (" PC: ", file);
165 switch ((control >> 8) & 3)
166 {
167 case 0:
168 gdb_puts ("Single Precision (24-bits)\n", file);
169 break;
170 case 1:
171 gdb_puts ("Reserved\n", file);
172 break;
173 case 2:
174 gdb_puts ("Double Precision (53-bits)\n", file);
175 break;
176 case 3:
177 gdb_puts ("Extended Precision (64-bits)\n", file);
178 break;
179 }
180
181 gdb_puts (" RC: ", file);
182 switch ((control >> 10) & 3)
183 {
184 case 0:
185 gdb_puts ("Round to nearest\n", file);
186 break;
187 case 1:
188 gdb_puts ("Round down\n", file);
189 break;
190 case 2:
191 gdb_puts ("Round up\n", file);
192 break;
193 case 3:
194 gdb_puts ("Round toward zero\n", file);
195 break;
196 }
197 }
198
199 /* Print out the i387 floating point state. Note that we ignore FRAME
200 in the code below. That's OK since floating-point registers are
201 never saved on the stack. */
202
203 void
204 i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
205 frame_info_ptr frame, const char *args)
206 {
207 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
208 ULONGEST fctrl;
209 int fctrl_p;
210 ULONGEST fstat;
211 int fstat_p;
212 ULONGEST ftag;
213 int ftag_p;
214 ULONGEST fiseg;
215 int fiseg_p;
216 ULONGEST fioff;
217 int fioff_p;
218 ULONGEST foseg;
219 int foseg_p;
220 ULONGEST fooff;
221 int fooff_p;
222 ULONGEST fop;
223 int fop_p;
224 int fpreg;
225 int top;
226
227 gdb_assert (gdbarch == get_frame_arch (frame));
228
229 fctrl_p = read_frame_register_unsigned (frame,
230 I387_FCTRL_REGNUM (tdep), &fctrl);
231 fstat_p = read_frame_register_unsigned (frame,
232 I387_FSTAT_REGNUM (tdep), &fstat);
233 ftag_p = read_frame_register_unsigned (frame,
234 I387_FTAG_REGNUM (tdep), &ftag);
235 fiseg_p = read_frame_register_unsigned (frame,
236 I387_FISEG_REGNUM (tdep), &fiseg);
237 fioff_p = read_frame_register_unsigned (frame,
238 I387_FIOFF_REGNUM (tdep), &fioff);
239 foseg_p = read_frame_register_unsigned (frame,
240 I387_FOSEG_REGNUM (tdep), &foseg);
241 fooff_p = read_frame_register_unsigned (frame,
242 I387_FOOFF_REGNUM (tdep), &fooff);
243 fop_p = read_frame_register_unsigned (frame,
244 I387_FOP_REGNUM (tdep), &fop);
245
246 if (fstat_p)
247 {
248 top = ((fstat >> 11) & 7);
249
250 for (fpreg = 7; fpreg >= 0; fpreg--)
251 {
252 struct value *regval;
253 int regnum;
254 int i;
255 int tag = -1;
256
257 gdb_printf (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg);
258
259 if (ftag_p)
260 {
261 tag = (ftag >> (fpreg * 2)) & 3;
262
263 switch (tag)
264 {
265 case 0:
266 gdb_puts ("Valid ", file);
267 break;
268 case 1:
269 gdb_puts ("Zero ", file);
270 break;
271 case 2:
272 gdb_puts ("Special ", file);
273 break;
274 case 3:
275 gdb_puts ("Empty ", file);
276 break;
277 }
278 }
279 else
280 gdb_puts ("Unknown ", file);
281
282 regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep);
283 regval = get_frame_register_value (frame, regnum);
284
285 if (regval->entirely_available ())
286 {
287 const gdb_byte *raw = regval->contents ().data ();
288
289 gdb_puts ("0x", file);
290 for (i = 9; i >= 0; i--)
291 gdb_printf (file, "%02x", raw[i]);
292
293 if (tag != -1 && tag != 3)
294 print_i387_ext (gdbarch, raw, file);
295 }
296 else
297 gdb_printf (file, "%s", _("<unavailable>"));
298
299 gdb_puts ("\n", file);
300 }
301 }
302
303 gdb_puts ("\n", file);
304 print_i387_status_word (fstat_p, fstat, file);
305 print_i387_control_word (fctrl_p, fctrl, file);
306 gdb_printf (file, "Tag Word: %s\n",
307 ftag_p ? hex_string_custom (ftag, 4) : _("<unavailable>"));
308 gdb_printf (file, "Instruction Pointer: %s:",
309 fiseg_p ? hex_string_custom (fiseg, 2) : _("<unavailable>"));
310 gdb_printf (file, "%s\n",
311 fioff_p ? hex_string_custom (fioff, 8) : _("<unavailable>"));
312 gdb_printf (file, "Operand Pointer: %s:",
313 foseg_p ? hex_string_custom (foseg, 2) : _("<unavailable>"));
314 gdb_printf (file, "%s\n",
315 fooff_p ? hex_string_custom (fooff, 8) : _("<unavailable>"));
316 gdb_printf (file, "Opcode: %s\n",
317 fop_p
318 ? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4))
319 : _("<unavailable>"));
320 }
321 \f
322
323 /* Return nonzero if a value of type TYPE stored in register REGNUM
324 needs any special handling. */
325
326 int
327 i387_convert_register_p (struct gdbarch *gdbarch, int regnum,
328 struct type *type)
329 {
330 if (i386_fp_regnum_p (gdbarch, regnum))
331 {
332 /* Floating point registers must be converted unless we are
333 accessing them in their hardware type or TYPE is not float. */
334 if (type == i387_ext_type (gdbarch)
335 || type->code () != TYPE_CODE_FLT)
336 return 0;
337 else
338 return 1;
339 }
340
341 return 0;
342 }
343
344 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
345 return its contents in TO. */
346
347 int
348 i387_register_to_value (frame_info_ptr frame, int regnum,
349 struct type *type, gdb_byte *to,
350 int *optimizedp, int *unavailablep)
351 {
352 struct gdbarch *gdbarch = get_frame_arch (frame);
353 gdb_byte from[I386_MAX_REGISTER_SIZE];
354
355 gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
356
357 /* We only support floating-point values. */
358 if (type->code () != TYPE_CODE_FLT)
359 {
360 warning (_("Cannot convert floating-point register value "
361 "to non-floating-point type."));
362 *optimizedp = *unavailablep = 0;
363 return 0;
364 }
365
366 /* Convert to TYPE. */
367 if (!get_frame_register_bytes (frame, regnum, 0,
368 gdb::make_array_view (from,
369 register_size (gdbarch,
370 regnum)),
371 optimizedp, unavailablep))
372 return 0;
373
374 target_float_convert (from, i387_ext_type (gdbarch), to, type);
375 *optimizedp = *unavailablep = 0;
376 return 1;
377 }
378
379 /* Write the contents FROM of a value of type TYPE into register
380 REGNUM in frame FRAME. */
381
382 void
383 i387_value_to_register (frame_info_ptr frame, int regnum,
384 struct type *type, const gdb_byte *from)
385 {
386 struct gdbarch *gdbarch = get_frame_arch (frame);
387 gdb_byte to[I386_MAX_REGISTER_SIZE];
388
389 gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
390
391 /* We only support floating-point values. */
392 if (type->code () != TYPE_CODE_FLT)
393 {
394 warning (_("Cannot convert non-floating-point type "
395 "to floating-point register value."));
396 return;
397 }
398
399 /* Convert from TYPE. */
400 target_float_convert (from, type, to, i387_ext_type (gdbarch));
401 put_frame_register (frame, regnum, to);
402 }
403 \f
404
405 /* Handle FSAVE and FXSAVE formats. */
406
407 /* At fsave_offset[REGNUM] you'll find the offset to the location in
408 the data structure used by the "fsave" instruction where GDB
409 register REGNUM is stored. */
410
411 static int fsave_offset[] =
412 {
413 28 + 0 * 10, /* %st(0) ... */
414 28 + 1 * 10,
415 28 + 2 * 10,
416 28 + 3 * 10,
417 28 + 4 * 10,
418 28 + 5 * 10,
419 28 + 6 * 10,
420 28 + 7 * 10, /* ... %st(7). */
421 0, /* `fctrl' (16 bits). */
422 4, /* `fstat' (16 bits). */
423 8, /* `ftag' (16 bits). */
424 16, /* `fiseg' (16 bits). */
425 12, /* `fioff'. */
426 24, /* `foseg' (16 bits). */
427 20, /* `fooff'. */
428 18 /* `fop' (bottom 11 bits). */
429 };
430
431 #define FSAVE_ADDR(tdep, fsave, regnum) \
432 (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])
433 \f
434
435 /* Fill register REGNUM in REGCACHE with the appropriate value from
436 *FSAVE. This function masks off any of the reserved bits in
437 *FSAVE. */
438
439 void
440 i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
441 {
442 struct gdbarch *gdbarch = regcache->arch ();
443 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
444 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
445 const gdb_byte *regs = (const gdb_byte *) fsave;
446 int i;
447
448 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
449
450 for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
451 if (regnum == -1 || regnum == i)
452 {
453 if (fsave == NULL)
454 {
455 regcache->raw_supply (i, NULL);
456 continue;
457 }
458
459 /* Most of the FPU control registers occupy only 16 bits in the
460 fsave area. Give those a special treatment. */
461 if (i >= I387_FCTRL_REGNUM (tdep)
462 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
463 {
464 gdb_byte val[4];
465
466 memcpy (val, FSAVE_ADDR (tdep, regs, i), 2);
467 val[2] = val[3] = 0;
468 if (i == I387_FOP_REGNUM (tdep))
469 val[1] &= ((1 << 3) - 1);
470 regcache->raw_supply (i, val);
471 }
472 else
473 regcache->raw_supply (i, FSAVE_ADDR (tdep, regs, i));
474 }
475
476 /* Provide dummy values for the SSE registers. */
477 for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
478 if (regnum == -1 || regnum == i)
479 regcache->raw_supply (i, NULL);
480 if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep))
481 {
482 gdb_byte buf[4];
483
484 store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
485 regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf);
486 }
487 }
488
489 /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
490 with the value from REGCACHE. If REGNUM is -1, do this for all
491 registers. This function doesn't touch any of the reserved bits in
492 *FSAVE. */
493
494 void
495 i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
496 {
497 gdbarch *arch = regcache->arch ();
498 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
499 gdb_byte *regs = (gdb_byte *) fsave;
500 int i;
501
502 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
503
504 for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
505 if (regnum == -1 || regnum == i)
506 {
507 /* Most of the FPU control registers occupy only 16 bits in
508 the fsave area. Give those a special treatment. */
509 if (i >= I387_FCTRL_REGNUM (tdep)
510 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
511 {
512 gdb_byte buf[4];
513
514 regcache->raw_collect (i, buf);
515
516 if (i == I387_FOP_REGNUM (tdep))
517 {
518 /* The opcode occupies only 11 bits. Make sure we
519 don't touch the other bits. */
520 buf[1] &= ((1 << 3) - 1);
521 buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
522 }
523 memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2);
524 }
525 else
526 regcache->raw_collect (i, FSAVE_ADDR (tdep, regs, i));
527 }
528 }
529 \f
530
531 /* At fxsave_offset[REGNUM] you'll find the offset to the location in
532 the data structure used by the "fxsave" instruction where GDB
533 register REGNUM is stored. */
534
535 static int fxsave_offset[] =
536 {
537 32, /* %st(0) through ... */
538 48,
539 64,
540 80,
541 96,
542 112,
543 128,
544 144, /* ... %st(7) (80 bits each). */
545 0, /* `fctrl' (16 bits). */
546 2, /* `fstat' (16 bits). */
547 4, /* `ftag' (16 bits). */
548 12, /* `fiseg' (16 bits). */
549 8, /* `fioff'. */
550 20, /* `foseg' (16 bits). */
551 16, /* `fooff'. */
552 6, /* `fop' (bottom 11 bits). */
553 160 + 0 * 16, /* %xmm0 through ... */
554 160 + 1 * 16,
555 160 + 2 * 16,
556 160 + 3 * 16,
557 160 + 4 * 16,
558 160 + 5 * 16,
559 160 + 6 * 16,
560 160 + 7 * 16,
561 160 + 8 * 16,
562 160 + 9 * 16,
563 160 + 10 * 16,
564 160 + 11 * 16,
565 160 + 12 * 16,
566 160 + 13 * 16,
567 160 + 14 * 16,
568 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
569 };
570
571 #define FXSAVE_ADDR(tdep, fxsave, regnum) \
572 (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
573
574 /* We made an unfortunate choice in putting %mxcsr after the SSE
575 registers %xmm0-%xmm7 instead of before, since it makes supporting
576 the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
577 don't include the offset for %mxcsr here above. */
578
579 #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
580
581 static int i387_tag (const gdb_byte *raw);
582 \f
583
584 /* Fill register REGNUM in REGCACHE with the appropriate
585 floating-point or SSE register value from *FXSAVE. This function
586 masks off any of the reserved bits in *FXSAVE. */
587
588 void
589 i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
590 {
591 gdbarch *arch = regcache->arch ();
592 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
593 const gdb_byte *regs = (const gdb_byte *) fxsave;
594 int i;
595
596 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
597 gdb_assert (tdep->num_xmm_regs > 0);
598
599 for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
600 if (regnum == -1 || regnum == i)
601 {
602 if (regs == NULL)
603 {
604 regcache->raw_supply (i, NULL);
605 continue;
606 }
607
608 /* Most of the FPU control registers occupy only 16 bits in
609 the fxsave area. Give those a special treatment. */
610 if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
611 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
612 {
613 gdb_byte val[4];
614
615 memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
616 val[2] = val[3] = 0;
617 if (i == I387_FOP_REGNUM (tdep))
618 val[1] &= ((1 << 3) - 1);
619 else if (i== I387_FTAG_REGNUM (tdep))
620 {
621 /* The fxsave area contains a simplified version of
622 the tag word. We have to look at the actual 80-bit
623 FP data to recreate the traditional i387 tag word. */
624
625 unsigned long ftag = 0;
626 int fpreg;
627 int top;
628
629 top = ((FXSAVE_ADDR (tdep, regs,
630 I387_FSTAT_REGNUM (tdep)))[1] >> 3);
631 top &= 0x7;
632
633 for (fpreg = 7; fpreg >= 0; fpreg--)
634 {
635 int tag;
636
637 if (val[0] & (1 << fpreg))
638 {
639 int thisreg = (fpreg + 8 - top) % 8
640 + I387_ST0_REGNUM (tdep);
641 tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
642 }
643 else
644 tag = 3; /* Empty */
645
646 ftag |= tag << (2 * fpreg);
647 }
648 val[0] = ftag & 0xff;
649 val[1] = (ftag >> 8) & 0xff;
650 }
651 regcache->raw_supply (i, val);
652 }
653 else
654 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
655 }
656
657 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
658 {
659 if (regs == NULL)
660 regcache->raw_supply (I387_MXCSR_REGNUM (tdep), NULL);
661 else
662 regcache->raw_supply (I387_MXCSR_REGNUM (tdep),
663 FXSAVE_MXCSR_ADDR (regs));
664 }
665 }
666
667 /* Fill register REGNUM (if it is a floating-point or SSE register) in
668 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
669 all registers. This function doesn't touch any of the reserved
670 bits in *FXSAVE. */
671
672 void
673 i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
674 {
675 gdbarch *arch = regcache->arch ();
676 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
677 gdb_byte *regs = (gdb_byte *) fxsave;
678 int i;
679
680 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
681 gdb_assert (tdep->num_xmm_regs > 0);
682
683 for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
684 if (regnum == -1 || regnum == i)
685 {
686 /* Most of the FPU control registers occupy only 16 bits in
687 the fxsave area. Give those a special treatment. */
688 if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
689 && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
690 {
691 gdb_byte buf[4];
692
693 regcache->raw_collect (i, buf);
694
695 if (i == I387_FOP_REGNUM (tdep))
696 {
697 /* The opcode occupies only 11 bits. Make sure we
698 don't touch the other bits. */
699 buf[1] &= ((1 << 3) - 1);
700 buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
701 }
702 else if (i == I387_FTAG_REGNUM (tdep))
703 {
704 /* Converting back is much easier. */
705
706 unsigned short ftag;
707 int fpreg;
708
709 ftag = (buf[1] << 8) | buf[0];
710 buf[0] = 0;
711 buf[1] = 0;
712
713 for (fpreg = 7; fpreg >= 0; fpreg--)
714 {
715 int tag = (ftag >> (fpreg * 2)) & 3;
716
717 if (tag != 3)
718 buf[0] |= (1 << fpreg);
719 }
720 }
721 memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
722 }
723 else
724 regcache->raw_collect (i, FXSAVE_ADDR (tdep, regs, i));
725 }
726
727 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
728 regcache->raw_collect (I387_MXCSR_REGNUM (tdep),
729 FXSAVE_MXCSR_ADDR (regs));
730 }
731
732 /* `xstate_bv' is at byte offset 512. */
733 #define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512)
734
735 /* At xsave_avxh_offset[REGNUM] you'll find the relative offset within
736 the AVX region of the XSAVE extended state where the upper 128bits
737 of GDB register YMM0 + REGNUM is stored. */
738
739 static int xsave_avxh_offset[] =
740 {
741 0 * 16, /* Upper 128bit of %ymm0 through ... */
742 1 * 16,
743 2 * 16,
744 3 * 16,
745 4 * 16,
746 5 * 16,
747 6 * 16,
748 7 * 16,
749 8 * 16,
750 9 * 16,
751 10 * 16,
752 11 * 16,
753 12 * 16,
754 13 * 16,
755 14 * 16,
756 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */
757 };
758
759 #define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \
760 (xsave + (tdep)->xsave_layout.avx_offset \
761 + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)])
762
763 /* At xsave_ymm_avx512_offset[REGNUM] you'll find the relative offset
764 within the ZMM region of the XSAVE extended state where the second
765 128bits of GDB register YMM16 + REGNUM is stored. */
766
767 static int xsave_ymm_avx512_offset[] =
768 {
769 16 + 0 * 64, /* %ymm16 through... */
770 16 + 1 * 64,
771 16 + 2 * 64,
772 16 + 3 * 64,
773 16 + 4 * 64,
774 16 + 5 * 64,
775 16 + 6 * 64,
776 16 + 7 * 64,
777 16 + 8 * 64,
778 16 + 9 * 64,
779 16 + 10 * 64,
780 16 + 11 * 64,
781 16 + 12 * 64,
782 16 + 13 * 64,
783 16 + 14 * 64,
784 16 + 15 * 64 /* ... %ymm31 (128 bits each). */
785 };
786
787 #define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \
788 (xsave + (tdep)->xsave_layout.zmm_offset \
789 + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)])
790
791 /* At xsave_xmm_avx512_offset[REGNUM] you'll find the relative offset
792 within the ZMM region of the XSAVE extended state where the first
793 128bits of GDB register XMM16 + REGNUM is stored. */
794
795 static int xsave_xmm_avx512_offset[] =
796 {
797 0 * 64, /* %xmm16 through... */
798 1 * 64,
799 2 * 64,
800 3 * 64,
801 4 * 64,
802 5 * 64,
803 6 * 64,
804 7 * 64,
805 8 * 64,
806 9 * 64,
807 10 * 64,
808 11 * 64,
809 12 * 64,
810 13 * 64,
811 14 * 64,
812 15 * 64 /* ... %xmm31 (128 bits each). */
813 };
814
815 #define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \
816 (xsave + (tdep)->xsave_layout.zmm_offset \
817 + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)])
818
819 /* At xsave_bndregs_offset[REGNUM] you'll find the relative offset
820 within the BNDREGS region of the XSAVE extended state where the GDB
821 register BND0R + REGNUM is stored. */
822
823 static int xsave_bndregs_offset[] = {
824 0 * 16, /* bnd0r...bnd3r registers. */
825 1 * 16,
826 2 * 16,
827 3 * 16
828 };
829
830 #define XSAVE_BNDREGS_ADDR(tdep, xsave, regnum) \
831 (xsave + (tdep)->xsave_layout.bndregs_offset \
832 + xsave_bndregs_offset[regnum - I387_BND0R_REGNUM (tdep)])
833
834 static int xsave_bndcfg_offset[] = {
835 0 * 8, /* bndcfg ... bndstatus. */
836 1 * 8,
837 };
838
839 #define XSAVE_BNDCFG_ADDR(tdep, xsave, regnum) \
840 (xsave + (tdep)->xsave_layout.bndcfg_offset \
841 + xsave_bndcfg_offset[regnum - I387_BNDCFGU_REGNUM (tdep)])
842
843 /* At xsave_avx512_k_offset[REGNUM] you'll find the relative offset
844 within the K region of the XSAVE extended state where the AVX512
845 opmask register K0 + REGNUM is stored. */
846
847 static int xsave_avx512_k_offset[] =
848 {
849 0 * 8, /* %k0 through... */
850 1 * 8,
851 2 * 8,
852 3 * 8,
853 4 * 8,
854 5 * 8,
855 6 * 8,
856 7 * 8 /* %k7 (64 bits each). */
857 };
858
859 #define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \
860 (xsave + (tdep)->xsave_layout.k_offset \
861 + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)])
862
863
864 /* At xsave_avx512_zmm0_h_offset[REGNUM] you find the relative offset
865 within the ZMM_H region of the XSAVE extended state where the upper
866 256bits of the GDB register ZMM0 + REGNUM is stored. */
867
868 static int xsave_avx512_zmm0_h_offset[] =
869 {
870 0 * 32, /* Upper 256bit of %zmmh0 through... */
871 1 * 32,
872 2 * 32,
873 3 * 32,
874 4 * 32,
875 5 * 32,
876 6 * 32,
877 7 * 32,
878 8 * 32,
879 9 * 32,
880 10 * 32,
881 11 * 32,
882 12 * 32,
883 13 * 32,
884 14 * 32,
885 15 * 32 /* Upper 256bit of... %zmmh15 (256 bits each). */
886 };
887
888 #define XSAVE_AVX512_ZMM0_H_ADDR(tdep, xsave, regnum) \
889 (xsave + (tdep)->xsave_layout.zmm_h_offset \
890 + xsave_avx512_zmm0_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)])
891
892 /* At xsave_avx512_zmm16_h_offset[REGNUM] you find the relative offset
893 within the ZMM_H region of the XSAVE extended state where the upper
894 256bits of the GDB register ZMM16 + REGNUM is stored. */
895
896 static int xsave_avx512_zmm16_h_offset[] =
897 {
898 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */
899 32 + 1 * 64,
900 32 + 2 * 64,
901 32 + 3 * 64,
902 32 + 4 * 64,
903 32 + 5 * 64,
904 32 + 6 * 64,
905 32 + 7 * 64,
906 32 + 8 * 64,
907 32 + 9 * 64,
908 32 + 10 * 64,
909 32 + 11 * 64,
910 32 + 12 * 64,
911 32 + 13 * 64,
912 32 + 14 * 64,
913 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */
914 };
915
916 #define XSAVE_AVX512_ZMM16_H_ADDR(tdep, xsave, regnum) \
917 (xsave + (tdep)->xsave_layout.zmm_offset \
918 + xsave_avx512_zmm16_h_offset[regnum - I387_ZMM16H_REGNUM (tdep)])
919
920 /* At xsave_pkeys_offset[REGNUM] you'll find the relative offset
921 within the PKEYS region of the XSAVE extended state where the PKRU
922 register is stored. */
923
924 static int xsave_pkeys_offset[] =
925 {
926 0 * 8 /* %pkru (64 bits in XSTATE, 32-bit actually used by
927 instructions and applications). */
928 };
929
930 #define XSAVE_PKEYS_ADDR(tdep, xsave, regnum) \
931 (xsave + (tdep)->xsave_layout.pkru_offset \
932 + xsave_pkeys_offset[regnum - I387_PKRU_REGNUM (tdep)])
933
934
935 /* See i387-tdep.h. */
936
937 bool
938 i387_guess_xsave_layout (uint64_t xcr0, size_t xsave_size,
939 x86_xsave_layout &layout)
940 {
941 if (HAS_PKRU (xcr0) && xsave_size == 2696)
942 {
943 /* Intel CPUs supporting PKRU. */
944 layout.avx_offset = 576;
945 layout.bndregs_offset = 960;
946 layout.bndcfg_offset = 1024;
947 layout.k_offset = 1088;
948 layout.zmm_h_offset = 1152;
949 layout.zmm_offset = 1664;
950 layout.pkru_offset = 2688;
951 }
952 else if (HAS_PKRU (xcr0) && xsave_size == 2440)
953 {
954 /* AMD CPUs supporting PKRU. */
955 layout.avx_offset = 576;
956 layout.k_offset = 832;
957 layout.zmm_h_offset = 896;
958 layout.zmm_offset = 1408;
959 layout.pkru_offset = 2432;
960 }
961 else if (HAS_AVX512 (xcr0) && xsave_size == 2688)
962 {
963 /* Intel CPUs supporting AVX512. */
964 layout.avx_offset = 576;
965 layout.bndregs_offset = 960;
966 layout.bndcfg_offset = 1024;
967 layout.k_offset = 1088;
968 layout.zmm_h_offset = 1152;
969 layout.zmm_offset = 1664;
970 }
971 else if (HAS_MPX (xcr0) && xsave_size == 1088)
972 {
973 /* Intel CPUs supporting MPX. */
974 layout.avx_offset = 576;
975 layout.bndregs_offset = 960;
976 layout.bndcfg_offset = 1024;
977 }
978 else if (HAS_AVX (xcr0) && xsave_size == 832)
979 {
980 /* Intel and AMD CPUs supporting AVX. */
981 layout.avx_offset = 576;
982 }
983 else
984 return false;
985
986 layout.sizeof_xsave = xsave_size;
987 return true;
988 }
989
990 /* Extract from XSAVE a bitset of the features that are available on the
991 target, but which have not yet been enabled. */
992
993 ULONGEST
994 i387_xsave_get_clear_bv (struct gdbarch *gdbarch, const void *xsave)
995 {
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 const gdb_byte *regs = (const gdb_byte *) xsave;
998 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
999
1000 /* Get `xstat_bv'. The supported bits in `xstat_bv' are 8 bytes. */
1001 ULONGEST xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
1002 8, byte_order);
1003
1004 /* Clear part in vector registers if its bit in xstat_bv is zero. */
1005 ULONGEST clear_bv = (~(xstate_bv)) & tdep->xcr0;
1006
1007 return clear_bv;
1008 }
1009
1010 /* Similar to i387_supply_fxsave, but use XSAVE extended state. */
1011
1012 void
1013 i387_supply_xsave (struct regcache *regcache, int regnum,
1014 const void *xsave)
1015 {
1016 struct gdbarch *gdbarch = regcache->arch ();
1017 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1018 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
1019 const gdb_byte *regs = (const gdb_byte *) xsave;
1020 int i;
1021 /* In 64-bit mode the split between "low" and "high" ZMM registers is at
1022 ZMM16. Outside of 64-bit mode there are no "high" ZMM registers at all.
1023 Precalculate the number to be used for the split point, with the all
1024 registers in the "low" portion outside of 64-bit mode. */
1025 unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep)
1026 + std::min (tdep->num_zmm_regs, 16);
1027 ULONGEST clear_bv;
1028 static const gdb_byte zero[I386_MAX_REGISTER_SIZE] = { 0 };
1029 enum
1030 {
1031 none = 0x0,
1032 x87 = 0x1,
1033 sse = 0x2,
1034 avxh = 0x4,
1035 bndregs = 0x8,
1036 bndcfg = 0x10,
1037 avx512_k = 0x20,
1038 avx512_zmm0_h = 0x40,
1039 avx512_zmm16_h = 0x80,
1040 avx512_ymmh_avx512 = 0x100,
1041 avx512_xmm_avx512 = 0x200,
1042 pkeys = 0x400,
1043 all = x87 | sse | avxh | bndregs | bndcfg | avx512_k | avx512_zmm0_h
1044 | avx512_zmm16_h | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
1045 } regclass;
1046
1047 gdb_assert (regs != NULL);
1048 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
1049 gdb_assert (tdep->num_xmm_regs > 0);
1050
1051 if (regnum == -1)
1052 regclass = all;
1053 else if (regnum >= I387_PKRU_REGNUM (tdep)
1054 && regnum < I387_PKEYSEND_REGNUM (tdep))
1055 regclass = pkeys;
1056 else if (regnum >= I387_ZMM0H_REGNUM (tdep)
1057 && regnum < I387_ZMM16H_REGNUM (tdep))
1058 regclass = avx512_zmm0_h;
1059 else if (regnum >= I387_ZMM16H_REGNUM (tdep)
1060 && regnum < I387_ZMMENDH_REGNUM (tdep))
1061 regclass = avx512_zmm16_h;
1062 else if (regnum >= I387_K0_REGNUM (tdep)
1063 && regnum < I387_KEND_REGNUM (tdep))
1064 regclass = avx512_k;
1065 else if (regnum >= I387_YMM16H_REGNUM (tdep)
1066 && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
1067 regclass = avx512_ymmh_avx512;
1068 else if (regnum >= I387_XMM16_REGNUM (tdep)
1069 && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
1070 regclass = avx512_xmm_avx512;
1071 else if (regnum >= I387_YMM0H_REGNUM (tdep)
1072 && regnum < I387_YMMENDH_REGNUM (tdep))
1073 regclass = avxh;
1074 else if (regnum >= I387_BND0R_REGNUM (tdep)
1075 && regnum < I387_BNDCFGU_REGNUM (tdep))
1076 regclass = bndregs;
1077 else if (regnum >= I387_BNDCFGU_REGNUM (tdep)
1078 && regnum < I387_MPXEND_REGNUM (tdep))
1079 regclass = bndcfg;
1080 else if (regnum >= I387_XMM0_REGNUM (tdep)
1081 && regnum < I387_MXCSR_REGNUM (tdep))
1082 regclass = sse;
1083 else if (regnum >= I387_ST0_REGNUM (tdep)
1084 && regnum < I387_FCTRL_REGNUM (tdep))
1085 regclass = x87;
1086 else
1087 regclass = none;
1088
1089 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
1090
1091 /* With the delayed xsave mechanism, in between the program
1092 starting, and the program accessing the vector registers for the
1093 first time, the register's values are invalid. The kernel
1094 initializes register states to zero when they are set the first
1095 time in a program. This means that from the user-space programs'
1096 perspective, it's the same as if the registers have always been
1097 zero from the start of the program. Therefore, the debugger
1098 should provide the same illusion to the user. */
1099
1100 switch (regclass)
1101 {
1102 case none:
1103 break;
1104
1105 case pkeys:
1106 if ((clear_bv & X86_XSTATE_PKRU))
1107 regcache->raw_supply (regnum, zero);
1108 else
1109 regcache->raw_supply (regnum, XSAVE_PKEYS_ADDR (tdep, regs, regnum));
1110 return;
1111
1112 case avx512_zmm0_h:
1113 if ((clear_bv & X86_XSTATE_ZMM_H))
1114 regcache->raw_supply (regnum, zero);
1115 else
1116 regcache->raw_supply (regnum,
1117 XSAVE_AVX512_ZMM0_H_ADDR (tdep, regs, regnum));
1118 return;
1119
1120 case avx512_zmm16_h:
1121 if ((clear_bv & X86_XSTATE_ZMM))
1122 regcache->raw_supply (regnum, zero);
1123 else
1124 regcache->raw_supply (regnum,
1125 XSAVE_AVX512_ZMM16_H_ADDR (tdep, regs, regnum));
1126 return;
1127
1128 case avx512_k:
1129 if ((clear_bv & X86_XSTATE_K))
1130 regcache->raw_supply (regnum, zero);
1131 else
1132 regcache->raw_supply (regnum, XSAVE_AVX512_K_ADDR (tdep, regs, regnum));
1133 return;
1134
1135 case avx512_ymmh_avx512:
1136 if ((clear_bv & X86_XSTATE_ZMM))
1137 regcache->raw_supply (regnum, zero);
1138 else
1139 regcache->raw_supply (regnum,
1140 XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum));
1141 return;
1142
1143 case avx512_xmm_avx512:
1144 if ((clear_bv & X86_XSTATE_ZMM))
1145 regcache->raw_supply (regnum, zero);
1146 else
1147 regcache->raw_supply (regnum,
1148 XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum));
1149 return;
1150
1151 case avxh:
1152 if ((clear_bv & X86_XSTATE_AVX))
1153 regcache->raw_supply (regnum, zero);
1154 else
1155 regcache->raw_supply (regnum, XSAVE_AVXH_ADDR (tdep, regs, regnum));
1156 return;
1157
1158 case bndcfg:
1159 if ((clear_bv & X86_XSTATE_BNDCFG))
1160 regcache->raw_supply (regnum, zero);
1161 else
1162 regcache->raw_supply (regnum, XSAVE_BNDCFG_ADDR (tdep, regs, regnum));
1163 return;
1164
1165 case bndregs:
1166 if ((clear_bv & X86_XSTATE_BNDREGS))
1167 regcache->raw_supply (regnum, zero);
1168 else
1169 regcache->raw_supply (regnum, XSAVE_BNDREGS_ADDR (tdep, regs, regnum));
1170 return;
1171
1172 case sse:
1173 if ((clear_bv & X86_XSTATE_SSE))
1174 regcache->raw_supply (regnum, zero);
1175 else
1176 regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum));
1177 return;
1178
1179 case x87:
1180 if ((clear_bv & X86_XSTATE_X87))
1181 regcache->raw_supply (regnum, zero);
1182 else
1183 regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum));
1184 return;
1185
1186 case all:
1187 /* Handle PKEYS registers. */
1188 if ((tdep->xcr0 & X86_XSTATE_PKRU))
1189 {
1190 if ((clear_bv & X86_XSTATE_PKRU))
1191 {
1192 for (i = I387_PKRU_REGNUM (tdep);
1193 i < I387_PKEYSEND_REGNUM (tdep);
1194 i++)
1195 regcache->raw_supply (i, zero);
1196 }
1197 else
1198 {
1199 for (i = I387_PKRU_REGNUM (tdep);
1200 i < I387_PKEYSEND_REGNUM (tdep);
1201 i++)
1202 regcache->raw_supply (i, XSAVE_PKEYS_ADDR (tdep, regs, i));
1203 }
1204 }
1205
1206 /* Handle the upper halves of the low 8/16 ZMM registers. */
1207 if ((tdep->xcr0 & X86_XSTATE_ZMM_H))
1208 {
1209 if ((clear_bv & X86_XSTATE_ZMM_H))
1210 {
1211 for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
1212 regcache->raw_supply (i, zero);
1213 }
1214 else
1215 {
1216 for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
1217 regcache->raw_supply (i,
1218 XSAVE_AVX512_ZMM0_H_ADDR (tdep, regs, i));
1219 }
1220 }
1221
1222 /* Handle AVX512 OpMask registers. */
1223 if ((tdep->xcr0 & X86_XSTATE_K))
1224 {
1225 if ((clear_bv & X86_XSTATE_K))
1226 {
1227 for (i = I387_K0_REGNUM (tdep);
1228 i < I387_KEND_REGNUM (tdep);
1229 i++)
1230 regcache->raw_supply (i, zero);
1231 }
1232 else
1233 {
1234 for (i = I387_K0_REGNUM (tdep);
1235 i < I387_KEND_REGNUM (tdep);
1236 i++)
1237 regcache->raw_supply (i, XSAVE_AVX512_K_ADDR (tdep, regs, i));
1238 }
1239 }
1240
1241 /* Handle the upper 16 ZMM/YMM/XMM registers (if any). */
1242 if ((tdep->xcr0 & X86_XSTATE_ZMM))
1243 {
1244 if ((clear_bv & X86_XSTATE_ZMM))
1245 {
1246 for (i = I387_ZMM16H_REGNUM (tdep);
1247 i < I387_ZMMENDH_REGNUM (tdep); i++)
1248 regcache->raw_supply (i, zero);
1249 for (i = I387_YMM16H_REGNUM (tdep);
1250 i < I387_YMMH_AVX512_END_REGNUM (tdep);
1251 i++)
1252 regcache->raw_supply (i, zero);
1253 for (i = I387_XMM16_REGNUM (tdep);
1254 i < I387_XMM_AVX512_END_REGNUM (tdep);
1255 i++)
1256 regcache->raw_supply (i, zero);
1257 }
1258 else
1259 {
1260 for (i = I387_ZMM16H_REGNUM (tdep);
1261 i < I387_ZMMENDH_REGNUM (tdep); i++)
1262 regcache->raw_supply (i,
1263 XSAVE_AVX512_ZMM16_H_ADDR (tdep, regs, i));
1264 for (i = I387_YMM16H_REGNUM (tdep);
1265 i < I387_YMMH_AVX512_END_REGNUM (tdep);
1266 i++)
1267 regcache->raw_supply (i, XSAVE_YMM_AVX512_ADDR (tdep, regs, i));
1268 for (i = I387_XMM16_REGNUM (tdep);
1269 i < I387_XMM_AVX512_END_REGNUM (tdep);
1270 i++)
1271 regcache->raw_supply (i, XSAVE_XMM_AVX512_ADDR (tdep, regs, i));
1272 }
1273 }
1274 /* Handle the upper YMM registers. */
1275 if ((tdep->xcr0 & X86_XSTATE_AVX))
1276 {
1277 if ((clear_bv & X86_XSTATE_AVX))
1278 {
1279 for (i = I387_YMM0H_REGNUM (tdep);
1280 i < I387_YMMENDH_REGNUM (tdep);
1281 i++)
1282 regcache->raw_supply (i, zero);
1283 }
1284 else
1285 {
1286 for (i = I387_YMM0H_REGNUM (tdep);
1287 i < I387_YMMENDH_REGNUM (tdep);
1288 i++)
1289 regcache->raw_supply (i, XSAVE_AVXH_ADDR (tdep, regs, i));
1290 }
1291 }
1292
1293 /* Handle the MPX registers. */
1294 if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
1295 {
1296 if (clear_bv & X86_XSTATE_BNDREGS)
1297 {
1298 for (i = I387_BND0R_REGNUM (tdep);
1299 i < I387_BNDCFGU_REGNUM (tdep); i++)
1300 regcache->raw_supply (i, zero);
1301 }
1302 else
1303 {
1304 for (i = I387_BND0R_REGNUM (tdep);
1305 i < I387_BNDCFGU_REGNUM (tdep); i++)
1306 regcache->raw_supply (i, XSAVE_BNDREGS_ADDR (tdep, regs, i));
1307 }
1308 }
1309
1310 /* Handle the MPX registers. */
1311 if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
1312 {
1313 if (clear_bv & X86_XSTATE_BNDCFG)
1314 {
1315 for (i = I387_BNDCFGU_REGNUM (tdep);
1316 i < I387_MPXEND_REGNUM (tdep); i++)
1317 regcache->raw_supply (i, zero);
1318 }
1319 else
1320 {
1321 for (i = I387_BNDCFGU_REGNUM (tdep);
1322 i < I387_MPXEND_REGNUM (tdep); i++)
1323 regcache->raw_supply (i, XSAVE_BNDCFG_ADDR (tdep, regs, i));
1324 }
1325 }
1326
1327 /* Handle the XMM registers. */
1328 if ((tdep->xcr0 & X86_XSTATE_SSE))
1329 {
1330 if ((clear_bv & X86_XSTATE_SSE))
1331 {
1332 for (i = I387_XMM0_REGNUM (tdep);
1333 i < I387_MXCSR_REGNUM (tdep);
1334 i++)
1335 regcache->raw_supply (i, zero);
1336 }
1337 else
1338 {
1339 for (i = I387_XMM0_REGNUM (tdep);
1340 i < I387_MXCSR_REGNUM (tdep); i++)
1341 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
1342 }
1343 }
1344
1345 /* Handle the x87 registers. */
1346 if ((tdep->xcr0 & X86_XSTATE_X87))
1347 {
1348 if ((clear_bv & X86_XSTATE_X87))
1349 {
1350 for (i = I387_ST0_REGNUM (tdep);
1351 i < I387_FCTRL_REGNUM (tdep);
1352 i++)
1353 regcache->raw_supply (i, zero);
1354 }
1355 else
1356 {
1357 for (i = I387_ST0_REGNUM (tdep);
1358 i < I387_FCTRL_REGNUM (tdep);
1359 i++)
1360 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
1361 }
1362 }
1363 break;
1364 }
1365
1366 /* Only handle x87 control registers. */
1367 for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
1368 if (regnum == -1 || regnum == i)
1369 {
1370 if (clear_bv & X86_XSTATE_X87)
1371 {
1372 if (i == I387_FCTRL_REGNUM (tdep))
1373 {
1374 gdb_byte buf[4];
1375
1376 store_unsigned_integer (buf, 4, byte_order,
1377 I387_FCTRL_INIT_VAL);
1378 regcache->raw_supply (i, buf);
1379 }
1380 else if (i == I387_FTAG_REGNUM (tdep))
1381 {
1382 gdb_byte buf[4];
1383
1384 store_unsigned_integer (buf, 4, byte_order, 0xffff);
1385 regcache->raw_supply (i, buf);
1386 }
1387 else
1388 regcache->raw_supply (i, zero);
1389 }
1390 /* Most of the FPU control registers occupy only 16 bits in
1391 the xsave extended state. Give those a special treatment. */
1392 else if (i != I387_FIOFF_REGNUM (tdep)
1393 && i != I387_FOOFF_REGNUM (tdep))
1394 {
1395 gdb_byte val[4];
1396
1397 memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
1398 val[2] = val[3] = 0;
1399 if (i == I387_FOP_REGNUM (tdep))
1400 val[1] &= ((1 << 3) - 1);
1401 else if (i == I387_FTAG_REGNUM (tdep))
1402 {
1403 /* The fxsave area contains a simplified version of
1404 the tag word. We have to look at the actual 80-bit
1405 FP data to recreate the traditional i387 tag word. */
1406
1407 unsigned long ftag = 0;
1408 int fpreg;
1409 int top;
1410
1411 top = ((FXSAVE_ADDR (tdep, regs,
1412 I387_FSTAT_REGNUM (tdep)))[1] >> 3);
1413 top &= 0x7;
1414
1415 for (fpreg = 7; fpreg >= 0; fpreg--)
1416 {
1417 int tag;
1418
1419 if (val[0] & (1 << fpreg))
1420 {
1421 int thisreg = (fpreg + 8 - top) % 8
1422 + I387_ST0_REGNUM (tdep);
1423 tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
1424 }
1425 else
1426 tag = 3; /* Empty */
1427
1428 ftag |= tag << (2 * fpreg);
1429 }
1430 val[0] = ftag & 0xff;
1431 val[1] = (ftag >> 8) & 0xff;
1432 }
1433 regcache->raw_supply (i, val);
1434 }
1435 else
1436 regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
1437 }
1438
1439 if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
1440 {
1441 /* The MXCSR register is placed into the xsave buffer if either the
1442 AVX or SSE features are enabled. */
1443 if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
1444 == (X86_XSTATE_AVX | X86_XSTATE_SSE))
1445 {
1446 gdb_byte buf[4];
1447
1448 store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
1449 regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf);
1450 }
1451 else
1452 regcache->raw_supply (I387_MXCSR_REGNUM (tdep),
1453 FXSAVE_MXCSR_ADDR (regs));
1454 }
1455 }
1456
1457 /* Similar to i387_collect_fxsave, but use XSAVE extended state. */
1458
1459 void
1460 i387_collect_xsave (const struct regcache *regcache, int regnum,
1461 void *xsave, int gcore)
1462 {
1463 struct gdbarch *gdbarch = regcache->arch ();
1464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1465 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
1466 gdb_byte *p, *regs = (gdb_byte *) xsave;
1467 gdb_byte raw[I386_MAX_REGISTER_SIZE];
1468 ULONGEST initial_xstate_bv, clear_bv, xstate_bv = 0;
1469 unsigned int i;
1470 /* See the comment in i387_supply_xsave(). */
1471 unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep)
1472 + std::min (tdep->num_zmm_regs, 16);
1473 enum
1474 {
1475 x87_ctrl_or_mxcsr = 0x1,
1476 x87 = 0x2,
1477 sse = 0x4,
1478 avxh = 0x8,
1479 bndregs = 0x10,
1480 bndcfg = 0x20,
1481 avx512_k = 0x40,
1482 avx512_zmm0_h = 0x80,
1483 avx512_zmm16_h = 0x100,
1484 avx512_ymmh_avx512 = 0x200,
1485 avx512_xmm_avx512 = 0x400,
1486 pkeys = 0x800,
1487 all = x87 | sse | avxh | bndregs | bndcfg | avx512_k | avx512_zmm0_h
1488 | avx512_zmm16_h | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
1489 } regclass;
1490
1491 gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
1492 gdb_assert (tdep->num_xmm_regs > 0);
1493
1494 if (regnum == -1)
1495 regclass = all;
1496 else if (regnum >= I387_PKRU_REGNUM (tdep)
1497 && regnum < I387_PKEYSEND_REGNUM (tdep))
1498 regclass = pkeys;
1499 else if (regnum >= I387_ZMM0H_REGNUM (tdep)
1500 && regnum < I387_ZMM16H_REGNUM (tdep))
1501 regclass = avx512_zmm0_h;
1502 else if (regnum >= I387_ZMM16H_REGNUM (tdep)
1503 && regnum < I387_ZMMENDH_REGNUM (tdep))
1504 regclass = avx512_zmm16_h;
1505 else if (regnum >= I387_K0_REGNUM (tdep)
1506 && regnum < I387_KEND_REGNUM (tdep))
1507 regclass = avx512_k;
1508 else if (regnum >= I387_YMM16H_REGNUM (tdep)
1509 && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
1510 regclass = avx512_ymmh_avx512;
1511 else if (regnum >= I387_XMM16_REGNUM (tdep)
1512 && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
1513 regclass = avx512_xmm_avx512;
1514 else if (regnum >= I387_YMM0H_REGNUM (tdep)
1515 && regnum < I387_YMMENDH_REGNUM (tdep))
1516 regclass = avxh;
1517 else if (regnum >= I387_BND0R_REGNUM (tdep)
1518 && regnum < I387_BNDCFGU_REGNUM (tdep))
1519 regclass = bndregs;
1520 else if (regnum >= I387_BNDCFGU_REGNUM (tdep)
1521 && regnum < I387_MPXEND_REGNUM (tdep))
1522 regclass = bndcfg;
1523 else if (regnum >= I387_XMM0_REGNUM (tdep)
1524 && regnum < I387_MXCSR_REGNUM (tdep))
1525 regclass = sse;
1526 else if (regnum >= I387_ST0_REGNUM (tdep)
1527 && regnum < I387_FCTRL_REGNUM (tdep))
1528 regclass = x87;
1529 else if ((regnum >= I387_FCTRL_REGNUM (tdep)
1530 && regnum < I387_XMM0_REGNUM (tdep))
1531 || regnum == I387_MXCSR_REGNUM (tdep))
1532 regclass = x87_ctrl_or_mxcsr;
1533 else
1534 internal_error (_("invalid i387 regnum %d"), regnum);
1535
1536 if (gcore)
1537 {
1538 /* Clear XSAVE extended state. */
1539 memset (regs, 0, tdep->xsave_layout.sizeof_xsave);
1540
1541 /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */
1542 if (tdep->xsave_xcr0_offset != -1)
1543 memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8);
1544 memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8);
1545 }
1546
1547 /* The supported bits in `xstat_bv' are 8 bytes. */
1548 initial_xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
1549 8, byte_order);
1550 clear_bv = (~(initial_xstate_bv)) & tdep->xcr0;
1551
1552 /* The XSAVE buffer was filled lazily by the kernel. Only those
1553 features that are enabled were written into the buffer, disabled
1554 features left the buffer uninitialised. In order to identify if any
1555 registers have changed we will be comparing the register cache
1556 version to the version in the XSAVE buffer, it is important then that
1557 at this point we initialise to the default values any features in
1558 XSAVE that are not yet initialised.
1559
1560 This could be made more efficient, we know which features (from
1561 REGNUM) we will be potentially updating, and could limit ourselves to
1562 only clearing that feature. However, the extra complexity does not
1563 seem justified at this point. */
1564 if (clear_bv)
1565 {
1566 if ((clear_bv & X86_XSTATE_PKRU))
1567 for (i = I387_PKRU_REGNUM (tdep);
1568 i < I387_PKEYSEND_REGNUM (tdep); i++)
1569 memset (XSAVE_PKEYS_ADDR (tdep, regs, i), 0, 4);
1570
1571 if ((clear_bv & X86_XSTATE_BNDREGS))
1572 for (i = I387_BND0R_REGNUM (tdep);
1573 i < I387_BNDCFGU_REGNUM (tdep); i++)
1574 memset (XSAVE_BNDREGS_ADDR (tdep, regs, i), 0, 16);
1575
1576 if ((clear_bv & X86_XSTATE_BNDCFG))
1577 for (i = I387_BNDCFGU_REGNUM (tdep);
1578 i < I387_MPXEND_REGNUM (tdep); i++)
1579 memset (XSAVE_BNDCFG_ADDR (tdep, regs, i), 0, 8);
1580
1581 if ((clear_bv & X86_XSTATE_ZMM_H))
1582 for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
1583 memset (XSAVE_AVX512_ZMM0_H_ADDR (tdep, regs, i), 0, 32);
1584
1585 if ((clear_bv & X86_XSTATE_K))
1586 for (i = I387_K0_REGNUM (tdep);
1587 i < I387_KEND_REGNUM (tdep); i++)
1588 memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8);
1589
1590 if ((clear_bv & X86_XSTATE_ZMM))
1591 {
1592 for (i = I387_ZMM16H_REGNUM (tdep); i < I387_ZMMENDH_REGNUM (tdep);
1593 i++)
1594 memset (XSAVE_AVX512_ZMM16_H_ADDR (tdep, regs, i), 0, 32);
1595 for (i = I387_YMM16H_REGNUM (tdep);
1596 i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
1597 memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16);
1598 for (i = I387_XMM16_REGNUM (tdep);
1599 i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
1600 memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16);
1601 }
1602
1603 if ((clear_bv & X86_XSTATE_AVX))
1604 for (i = I387_YMM0H_REGNUM (tdep);
1605 i < I387_YMMENDH_REGNUM (tdep); i++)
1606 memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16);
1607
1608 if ((clear_bv & X86_XSTATE_SSE))
1609 for (i = I387_XMM0_REGNUM (tdep);
1610 i < I387_MXCSR_REGNUM (tdep); i++)
1611 memset (FXSAVE_ADDR (tdep, regs, i), 0, 16);
1612
1613 /* The mxcsr register is written into the xsave buffer if either AVX
1614 or SSE is enabled, so only clear it if both of those features
1615 require clearing. */
1616 if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
1617 == (X86_XSTATE_AVX | X86_XSTATE_SSE))
1618 store_unsigned_integer (FXSAVE_MXCSR_ADDR (regs), 2, byte_order,
1619 I387_MXCSR_INIT_VAL);
1620
1621 if ((clear_bv & X86_XSTATE_X87))
1622 {
1623 for (i = I387_ST0_REGNUM (tdep);
1624 i < I387_FCTRL_REGNUM (tdep); i++)
1625 memset (FXSAVE_ADDR (tdep, regs, i), 0, 10);
1626
1627 for (i = I387_FCTRL_REGNUM (tdep);
1628 i < I387_XMM0_REGNUM (tdep); i++)
1629 {
1630 if (i == I387_FCTRL_REGNUM (tdep))
1631 store_unsigned_integer (FXSAVE_ADDR (tdep, regs, i), 2,
1632 byte_order, I387_FCTRL_INIT_VAL);
1633 else
1634 memset (FXSAVE_ADDR (tdep, regs, i), 0,
1635 regcache_register_size (regcache, i));
1636 }
1637 }
1638 }
1639
1640 if (regclass == all)
1641 {
1642 /* Check if any PKEYS registers are changed. */
1643 if ((tdep->xcr0 & X86_XSTATE_PKRU))
1644 for (i = I387_PKRU_REGNUM (tdep);
1645 i < I387_PKEYSEND_REGNUM (tdep); i++)
1646 {
1647 regcache->raw_collect (i, raw);
1648 p = XSAVE_PKEYS_ADDR (tdep, regs, i);
1649 if (memcmp (raw, p, 4) != 0)
1650 {
1651 xstate_bv |= X86_XSTATE_PKRU;
1652 memcpy (p, raw, 4);
1653 }
1654 }
1655
1656 /* Check if any ZMMH registers are changed. */
1657 if ((tdep->xcr0 & X86_XSTATE_ZMM))
1658 for (i = I387_ZMM16H_REGNUM (tdep);
1659 i < I387_ZMMENDH_REGNUM (tdep); i++)
1660 {
1661 regcache->raw_collect (i, raw);
1662 p = XSAVE_AVX512_ZMM16_H_ADDR (tdep, regs, i);
1663 if (memcmp (raw, p, 32) != 0)
1664 {
1665 xstate_bv |= X86_XSTATE_ZMM;
1666 memcpy (p, raw, 32);
1667 }
1668 }
1669
1670 if ((tdep->xcr0 & X86_XSTATE_ZMM_H))
1671 for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
1672 {
1673 regcache->raw_collect (i, raw);
1674 p = XSAVE_AVX512_ZMM0_H_ADDR (tdep, regs, i);
1675 if (memcmp (raw, p, 32) != 0)
1676 {
1677 xstate_bv |= X86_XSTATE_ZMM_H;
1678 memcpy (p, raw, 32);
1679 }
1680 }
1681
1682 /* Check if any K registers are changed. */
1683 if ((tdep->xcr0 & X86_XSTATE_K))
1684 for (i = I387_K0_REGNUM (tdep);
1685 i < I387_KEND_REGNUM (tdep); i++)
1686 {
1687 regcache->raw_collect (i, raw);
1688 p = XSAVE_AVX512_K_ADDR (tdep, regs, i);
1689 if (memcmp (raw, p, 8) != 0)
1690 {
1691 xstate_bv |= X86_XSTATE_K;
1692 memcpy (p, raw, 8);
1693 }
1694 }
1695
1696 /* Check if any XMM or upper YMM registers are changed. */
1697 if ((tdep->xcr0 & X86_XSTATE_ZMM))
1698 {
1699 for (i = I387_YMM16H_REGNUM (tdep);
1700 i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
1701 {
1702 regcache->raw_collect (i, raw);
1703 p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i);
1704 if (memcmp (raw, p, 16) != 0)
1705 {
1706 xstate_bv |= X86_XSTATE_ZMM;
1707 memcpy (p, raw, 16);
1708 }
1709 }
1710 for (i = I387_XMM16_REGNUM (tdep);
1711 i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
1712 {
1713 regcache->raw_collect (i, raw);
1714 p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i);
1715 if (memcmp (raw, p, 16) != 0)
1716 {
1717 xstate_bv |= X86_XSTATE_ZMM;
1718 memcpy (p, raw, 16);
1719 }
1720 }
1721 }
1722
1723 /* Check if any upper MPX registers are changed. */
1724 if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
1725 for (i = I387_BND0R_REGNUM (tdep);
1726 i < I387_BNDCFGU_REGNUM (tdep); i++)
1727 {
1728 regcache->raw_collect (i, raw);
1729 p = XSAVE_BNDREGS_ADDR (tdep, regs, i);
1730 if (memcmp (raw, p, 16))
1731 {
1732 xstate_bv |= X86_XSTATE_BNDREGS;
1733 memcpy (p, raw, 16);
1734 }
1735 }
1736
1737 /* Check if any upper MPX registers are changed. */
1738 if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
1739 for (i = I387_BNDCFGU_REGNUM (tdep);
1740 i < I387_MPXEND_REGNUM (tdep); i++)
1741 {
1742 regcache->raw_collect (i, raw);
1743 p = XSAVE_BNDCFG_ADDR (tdep, regs, i);
1744 if (memcmp (raw, p, 8))
1745 {
1746 xstate_bv |= X86_XSTATE_BNDCFG;
1747 memcpy (p, raw, 8);
1748 }
1749 }
1750
1751 /* Check if any upper YMM registers are changed. */
1752 if ((tdep->xcr0 & X86_XSTATE_AVX))
1753 for (i = I387_YMM0H_REGNUM (tdep);
1754 i < I387_YMMENDH_REGNUM (tdep); i++)
1755 {
1756 regcache->raw_collect (i, raw);
1757 p = XSAVE_AVXH_ADDR (tdep, regs, i);
1758 if (memcmp (raw, p, 16))
1759 {
1760 xstate_bv |= X86_XSTATE_AVX;
1761 memcpy (p, raw, 16);
1762 }
1763 }
1764
1765 /* Check if any SSE registers are changed. */
1766 if ((tdep->xcr0 & X86_XSTATE_SSE))
1767 for (i = I387_XMM0_REGNUM (tdep);
1768 i < I387_MXCSR_REGNUM (tdep); i++)
1769 {
1770 regcache->raw_collect (i, raw);
1771 p = FXSAVE_ADDR (tdep, regs, i);
1772 if (memcmp (raw, p, 16))
1773 {
1774 xstate_bv |= X86_XSTATE_SSE;
1775 memcpy (p, raw, 16);
1776 }
1777 }
1778
1779 if ((tdep->xcr0 & X86_XSTATE_AVX) || (tdep->xcr0 & X86_XSTATE_SSE))
1780 {
1781 i = I387_MXCSR_REGNUM (tdep);
1782 regcache->raw_collect (i, raw);
1783 p = FXSAVE_MXCSR_ADDR (regs);
1784 if (memcmp (raw, p, 4))
1785 {
1786 /* Now, we need to mark one of either SSE of AVX as enabled.
1787 We could pick either. What we do is check to see if one
1788 of the features is already enabled, if it is then we leave
1789 it at that, otherwise we pick SSE. */
1790 if ((xstate_bv & (X86_XSTATE_SSE | X86_XSTATE_AVX)) == 0)
1791 xstate_bv |= X86_XSTATE_SSE;
1792 memcpy (p, raw, 4);
1793 }
1794 }
1795
1796 /* Check if any X87 registers are changed. Only the non-control
1797 registers are handled here, the control registers are all handled
1798 later on in this function. */
1799 if ((tdep->xcr0 & X86_XSTATE_X87))
1800 for (i = I387_ST0_REGNUM (tdep);
1801 i < I387_FCTRL_REGNUM (tdep); i++)
1802 {
1803 regcache->raw_collect (i, raw);
1804 p = FXSAVE_ADDR (tdep, regs, i);
1805 if (memcmp (raw, p, 10))
1806 {
1807 xstate_bv |= X86_XSTATE_X87;
1808 memcpy (p, raw, 10);
1809 }
1810 }
1811 }
1812 else
1813 {
1814 /* Check if REGNUM is changed. */
1815 regcache->raw_collect (regnum, raw);
1816
1817 switch (regclass)
1818 {
1819 default:
1820 internal_error (_("invalid i387 regclass"));
1821
1822 case pkeys:
1823 /* This is a PKEYS register. */
1824 p = XSAVE_PKEYS_ADDR (tdep, regs, regnum);
1825 if (memcmp (raw, p, 4) != 0)
1826 {
1827 xstate_bv |= X86_XSTATE_PKRU;
1828 memcpy (p, raw, 4);
1829 }
1830 break;
1831
1832 case avx512_zmm16_h:
1833 /* This is a ZMM16-31 register. */
1834 p = XSAVE_AVX512_ZMM16_H_ADDR (tdep, regs, regnum);
1835 if (memcmp (raw, p, 32) != 0)
1836 {
1837 xstate_bv |= X86_XSTATE_ZMM;
1838 memcpy (p, raw, 32);
1839 }
1840 break;
1841
1842 case avx512_zmm0_h:
1843 /* This is a ZMM0-15 register. */
1844 p = XSAVE_AVX512_ZMM0_H_ADDR (tdep, regs, regnum);
1845 if (memcmp (raw, p, 32) != 0)
1846 {
1847 xstate_bv |= X86_XSTATE_ZMM_H;
1848 memcpy (p, raw, 32);
1849 }
1850 break;
1851
1852 case avx512_k:
1853 /* This is a AVX512 mask register. */
1854 p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum);
1855 if (memcmp (raw, p, 8) != 0)
1856 {
1857 xstate_bv |= X86_XSTATE_K;
1858 memcpy (p, raw, 8);
1859 }
1860 break;
1861
1862 case avx512_ymmh_avx512:
1863 /* This is an upper YMM16-31 register. */
1864 p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum);
1865 if (memcmp (raw, p, 16) != 0)
1866 {
1867 xstate_bv |= X86_XSTATE_ZMM;
1868 memcpy (p, raw, 16);
1869 }
1870 break;
1871
1872 case avx512_xmm_avx512:
1873 /* This is an upper XMM16-31 register. */
1874 p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum);
1875 if (memcmp (raw, p, 16) != 0)
1876 {
1877 xstate_bv |= X86_XSTATE_ZMM;
1878 memcpy (p, raw, 16);
1879 }
1880 break;
1881
1882 case avxh:
1883 /* This is an upper YMM register. */
1884 p = XSAVE_AVXH_ADDR (tdep, regs, regnum);
1885 if (memcmp (raw, p, 16))
1886 {
1887 xstate_bv |= X86_XSTATE_AVX;
1888 memcpy (p, raw, 16);
1889 }
1890 break;
1891
1892 case bndregs:
1893 regcache->raw_collect (regnum, raw);
1894 p = XSAVE_BNDREGS_ADDR (tdep, regs, regnum);
1895 if (memcmp (raw, p, 16))
1896 {
1897 xstate_bv |= X86_XSTATE_BNDREGS;
1898 memcpy (p, raw, 16);
1899 }
1900 break;
1901
1902 case bndcfg:
1903 p = XSAVE_BNDCFG_ADDR (tdep, regs, regnum);
1904 xstate_bv |= X86_XSTATE_BNDCFG;
1905 memcpy (p, raw, 8);
1906 break;
1907
1908 case sse:
1909 /* This is an SSE register. */
1910 p = FXSAVE_ADDR (tdep, regs, regnum);
1911 if (memcmp (raw, p, 16))
1912 {
1913 xstate_bv |= X86_XSTATE_SSE;
1914 memcpy (p, raw, 16);
1915 }
1916 break;
1917
1918 case x87:
1919 /* This is an x87 register. */
1920 p = FXSAVE_ADDR (tdep, regs, regnum);
1921 if (memcmp (raw, p, 10))
1922 {
1923 xstate_bv |= X86_XSTATE_X87;
1924 memcpy (p, raw, 10);
1925 }
1926 break;
1927
1928 case x87_ctrl_or_mxcsr:
1929 /* We only handle MXCSR here. All other x87 control registers
1930 are handled separately below. */
1931 if (regnum == I387_MXCSR_REGNUM (tdep))
1932 {
1933 p = FXSAVE_MXCSR_ADDR (regs);
1934 if (memcmp (raw, p, 2))
1935 {
1936 /* We're only setting MXCSR, so check the initial state
1937 to see if either of AVX or SSE are already enabled.
1938 If they are then we'll attribute this changed MXCSR to
1939 that feature. If neither feature is enabled, then
1940 we'll attribute this change to the SSE feature. */
1941 xstate_bv |= (initial_xstate_bv
1942 & (X86_XSTATE_AVX | X86_XSTATE_SSE));
1943 if ((xstate_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) == 0)
1944 xstate_bv |= X86_XSTATE_SSE;
1945 memcpy (p, raw, 2);
1946 }
1947 }
1948 }
1949 }
1950
1951 /* Only handle x87 control registers. */
1952 for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
1953 if (regnum == -1 || regnum == i)
1954 {
1955 /* Most of the FPU control registers occupy only 16 bits in
1956 the xsave extended state. Give those a special treatment. */
1957 if (i != I387_FIOFF_REGNUM (tdep)
1958 && i != I387_FOOFF_REGNUM (tdep))
1959 {
1960 gdb_byte buf[4];
1961
1962 regcache->raw_collect (i, buf);
1963
1964 if (i == I387_FOP_REGNUM (tdep))
1965 {
1966 /* The opcode occupies only 11 bits. Make sure we
1967 don't touch the other bits. */
1968 buf[1] &= ((1 << 3) - 1);
1969 buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
1970 }
1971 else if (i == I387_FTAG_REGNUM (tdep))
1972 {
1973 /* Converting back is much easier. */
1974
1975 unsigned short ftag;
1976 int fpreg;
1977
1978 ftag = (buf[1] << 8) | buf[0];
1979 buf[0] = 0;
1980 buf[1] = 0;
1981
1982 for (fpreg = 7; fpreg >= 0; fpreg--)
1983 {
1984 int tag = (ftag >> (fpreg * 2)) & 3;
1985
1986 if (tag != 3)
1987 buf[0] |= (1 << fpreg);
1988 }
1989 }
1990 p = FXSAVE_ADDR (tdep, regs, i);
1991 if (memcmp (p, buf, 2))
1992 {
1993 xstate_bv |= X86_XSTATE_X87;
1994 memcpy (p, buf, 2);
1995 }
1996 }
1997 else
1998 {
1999 int regsize;
2000
2001 regcache->raw_collect (i, raw);
2002 regsize = regcache_register_size (regcache, i);
2003 p = FXSAVE_ADDR (tdep, regs, i);
2004 if (memcmp (raw, p, regsize))
2005 {
2006 xstate_bv |= X86_XSTATE_X87;
2007 memcpy (p, raw, regsize);
2008 }
2009 }
2010 }
2011
2012 /* Update the corresponding bits in `xstate_bv' if any
2013 registers are changed. */
2014 if (xstate_bv)
2015 {
2016 /* The supported bits in `xstat_bv' are 8 bytes. */
2017 initial_xstate_bv |= xstate_bv;
2018 store_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
2019 8, byte_order,
2020 initial_xstate_bv);
2021 }
2022 }
2023
2024 /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
2025 *RAW. */
2026
2027 static int
2028 i387_tag (const gdb_byte *raw)
2029 {
2030 int integer;
2031 unsigned int exponent;
2032 unsigned long fraction[2];
2033
2034 integer = raw[7] & 0x80;
2035 exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
2036 fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
2037 fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
2038 | (raw[5] << 8) | raw[4]);
2039
2040 if (exponent == 0x7fff)
2041 {
2042 /* Special. */
2043 return (2);
2044 }
2045 else if (exponent == 0x0000)
2046 {
2047 if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
2048 {
2049 /* Zero. */
2050 return (1);
2051 }
2052 else
2053 {
2054 /* Special. */
2055 return (2);
2056 }
2057 }
2058 else
2059 {
2060 if (integer)
2061 {
2062 /* Valid. */
2063 return (0);
2064 }
2065 else
2066 {
2067 /* Special. */
2068 return (2);
2069 }
2070 }
2071 }
2072
2073 /* Prepare the FPU stack in REGCACHE for a function return. */
2074
2075 void
2076 i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
2077 {
2078 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2079 ULONGEST fstat;
2080
2081 /* Set the top of the floating-point register stack to 7. The
2082 actual value doesn't really matter, but 7 is what a normal
2083 function return would end up with if the program started out with
2084 a freshly initialized FPU. */
2085 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2086 fstat |= (7 << 11);
2087 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2088
2089 /* Mark %st(1) through %st(7) as empty. Since we set the top of the
2090 floating-point register stack to 7, the appropriate value for the
2091 tag word is 0x3fff. */
2092 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2093
2094 }
2095
2096 /* See i387-tdep.h. */
2097
2098 void
2099 i387_reset_bnd_regs (struct gdbarch *gdbarch, struct regcache *regcache)
2100 {
2101 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2102
2103 if (I387_BND0R_REGNUM (tdep) > 0)
2104 {
2105 gdb_byte bnd_buf[16];
2106
2107 memset (bnd_buf, 0, 16);
2108 for (int i = 0; i < I387_NUM_BND_REGS; i++)
2109 regcache->raw_write (I387_BND0R_REGNUM (tdep) + i, bnd_buf);
2110 }
2111 }