gdb: call update_thread_list after completing an inferior call
[binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "f-lang.h"
37 #include "gdbthread.h"
38 #include "event-top.h"
39 #include "observable.h"
40 #include "top.h"
41 #include "ui.h"
42 #include "interps.h"
43 #include "thread-fsm.h"
44 #include <algorithm>
45 #include "gdbsupport/scope-exit.h"
46 #include <list>
47
48 /* True if we are debugging inferior calls. */
49
50 static bool debug_infcall = false;
51
52 /* Print an "infcall" debug statement. */
53
54 #define infcall_debug_printf(fmt, ...) \
55 debug_prefixed_printf_cond (debug_infcall, "infcall", fmt, ##__VA_ARGS__)
56
57 /* Print "infcall" enter/exit debug statements. */
58
59 #define INFCALL_SCOPED_DEBUG_ENTER_EXIT \
60 scoped_debug_enter_exit (debug_infcall, "infcall")
61
62 /* Print "infcall" start/end debug statements. */
63
64 #define INFCALL_SCOPED_DEBUG_START_END(fmt, ...) \
65 scoped_debug_start_end (debug_infrun, "infcall", fmt, ##__VA_ARGS__)
66
67 /* Implement 'show debug infcall'. */
68
69 static void
70 show_debug_infcall (struct ui_file *file, int from_tty,
71 struct cmd_list_element *c, const char *value)
72 {
73 gdb_printf (file, _("Inferior call debugging is %s.\n"), value);
74 }
75
76 /* If we can't find a function's name from its address,
77 we print this instead. */
78 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
79 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
80 + 2 * sizeof (CORE_ADDR))
81
82 /* NOTE: cagney/2003-04-16: What's the future of this code?
83
84 GDB needs an asynchronous expression evaluator, that means an
85 asynchronous inferior function call implementation, and that in
86 turn means restructuring the code so that it is event driven. */
87
88 static bool may_call_functions_p = true;
89 static void
90 show_may_call_functions_p (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c,
92 const char *value)
93 {
94 gdb_printf (file,
95 _("Permission to call functions in the program is %s.\n"),
96 value);
97 }
98
99 /* How you should pass arguments to a function depends on whether it
100 was defined in K&R style or prototype style. If you define a
101 function using the K&R syntax that takes a `float' argument, then
102 callers must pass that argument as a `double'. If you define the
103 function using the prototype syntax, then you must pass the
104 argument as a `float', with no promotion.
105
106 Unfortunately, on certain older platforms, the debug info doesn't
107 indicate reliably how each function was defined. A function type's
108 TYPE_PROTOTYPED flag may be clear, even if the function was defined
109 in prototype style. When calling a function whose TYPE_PROTOTYPED
110 flag is clear, GDB consults this flag to decide what to do.
111
112 For modern targets, it is proper to assume that, if the prototype
113 flag is clear, that can be trusted: `float' arguments should be
114 promoted to `double'. For some older targets, if the prototype
115 flag is clear, that doesn't tell us anything. The default is to
116 trust the debug information; the user can override this behavior
117 with "set coerce-float-to-double 0". */
118
119 static bool coerce_float_to_double_p = true;
120 static void
121 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123 {
124 gdb_printf (file,
125 _("Coercion of floats to doubles "
126 "when calling functions is %s.\n"),
127 value);
128 }
129
130 /* This boolean tells what gdb should do if a signal is received while
131 in a function called from gdb (call dummy). If set, gdb unwinds
132 the stack and restore the context to what as it was before the
133 call.
134
135 The default is to stop in the frame where the signal was received. */
136
137 static bool unwind_on_signal_p = false;
138 static void
139 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 gdb_printf (file,
143 _("Unwinding of stack if a signal is "
144 "received while in a call dummy is %s.\n"),
145 value);
146 }
147
148 /* This boolean tells what gdb should do if a std::terminate call is
149 made while in a function called from gdb (call dummy).
150 As the confines of a single dummy stack prohibit out-of-frame
151 handlers from handling a raised exception, and as out-of-frame
152 handlers are common in C++, this can lead to no handler being found
153 by the unwinder, and a std::terminate call. This is a false positive.
154 If set, gdb unwinds the stack and restores the context to what it
155 was before the call.
156
157 The default is to unwind the frame if a std::terminate call is
158 made. */
159
160 static bool unwind_on_terminating_exception_p = true;
161
162 static void
163 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c,
165 const char *value)
166
167 {
168 gdb_printf (file,
169 _("Unwind stack if a C++ exception is "
170 "unhandled while in a call dummy is %s.\n"),
171 value);
172 }
173
174 /* Perform the standard coercions that are specified
175 for arguments to be passed to C, Ada or Fortran functions.
176
177 If PARAM_TYPE is non-NULL, it is the expected parameter type.
178 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
179
180 static struct value *
181 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
182 struct type *param_type, int is_prototyped)
183 {
184 const struct builtin_type *builtin = builtin_type (gdbarch);
185 struct type *arg_type = check_typedef (arg->type ());
186 struct type *type
187 = param_type ? check_typedef (param_type) : arg_type;
188
189 /* Perform any Ada- and Fortran-specific coercion first. */
190 if (current_language->la_language == language_ada)
191 arg = ada_convert_actual (arg, type);
192 else if (current_language->la_language == language_fortran)
193 type = fortran_preserve_arg_pointer (arg, type);
194
195 /* Force the value to the target if we will need its address. At
196 this point, we could allocate arguments on the stack instead of
197 calling malloc if we knew that their addresses would not be
198 saved by the called function. */
199 arg = value_coerce_to_target (arg);
200
201 switch (type->code ())
202 {
203 case TYPE_CODE_REF:
204 case TYPE_CODE_RVALUE_REF:
205 {
206 struct value *new_value;
207
208 if (TYPE_IS_REFERENCE (arg_type))
209 return value_cast_pointers (type, arg, 0);
210
211 /* Cast the value to the reference's target type, and then
212 convert it back to a reference. This will issue an error
213 if the value was not previously in memory - in some cases
214 we should clearly be allowing this, but how? */
215 new_value = value_cast (type->target_type (), arg);
216 new_value = value_ref (new_value, type->code ());
217 return new_value;
218 }
219 case TYPE_CODE_INT:
220 case TYPE_CODE_CHAR:
221 case TYPE_CODE_BOOL:
222 case TYPE_CODE_ENUM:
223 /* If we don't have a prototype, coerce to integer type if necessary. */
224 if (!is_prototyped)
225 {
226 if (type->length () < builtin->builtin_int->length ())
227 type = builtin->builtin_int;
228 }
229 /* Currently all target ABIs require at least the width of an integer
230 type for an argument. We may have to conditionalize the following
231 type coercion for future targets. */
232 if (type->length () < builtin->builtin_int->length ())
233 type = builtin->builtin_int;
234 break;
235 case TYPE_CODE_FLT:
236 if (!is_prototyped && coerce_float_to_double_p)
237 {
238 if (type->length () < builtin->builtin_double->length ())
239 type = builtin->builtin_double;
240 else if (type->length () > builtin->builtin_double->length ())
241 type = builtin->builtin_long_double;
242 }
243 break;
244 case TYPE_CODE_FUNC:
245 type = lookup_pointer_type (type);
246 break;
247 case TYPE_CODE_ARRAY:
248 /* Arrays are coerced to pointers to their first element, unless
249 they are vectors, in which case we want to leave them alone,
250 because they are passed by value. */
251 if (current_language->c_style_arrays_p ())
252 if (!type->is_vector ())
253 type = lookup_pointer_type (type->target_type ());
254 break;
255 case TYPE_CODE_UNDEF:
256 case TYPE_CODE_PTR:
257 case TYPE_CODE_STRUCT:
258 case TYPE_CODE_UNION:
259 case TYPE_CODE_VOID:
260 case TYPE_CODE_SET:
261 case TYPE_CODE_RANGE:
262 case TYPE_CODE_STRING:
263 case TYPE_CODE_ERROR:
264 case TYPE_CODE_MEMBERPTR:
265 case TYPE_CODE_METHODPTR:
266 case TYPE_CODE_METHOD:
267 case TYPE_CODE_COMPLEX:
268 default:
269 break;
270 }
271
272 return value_cast (type, arg);
273 }
274
275 /* See infcall.h. */
276
277 CORE_ADDR
278 find_function_addr (struct value *function,
279 struct type **retval_type,
280 struct type **function_type)
281 {
282 struct type *ftype = check_typedef (function->type ());
283 struct gdbarch *gdbarch = ftype->arch ();
284 struct type *value_type = NULL;
285 /* Initialize it just to avoid a GCC false warning. */
286 CORE_ADDR funaddr = 0;
287
288 /* If it's a member function, just look at the function
289 part of it. */
290
291 /* Determine address to call. */
292 if (ftype->code () == TYPE_CODE_FUNC
293 || ftype->code () == TYPE_CODE_METHOD)
294 funaddr = function->address ();
295 else if (ftype->code () == TYPE_CODE_PTR)
296 {
297 funaddr = value_as_address (function);
298 ftype = check_typedef (ftype->target_type ());
299 if (ftype->code () == TYPE_CODE_FUNC
300 || ftype->code () == TYPE_CODE_METHOD)
301 funaddr = gdbarch_convert_from_func_ptr_addr
302 (gdbarch, funaddr, current_inferior ()->top_target());
303 }
304 if (ftype->code () == TYPE_CODE_FUNC
305 || ftype->code () == TYPE_CODE_METHOD)
306 {
307 if (ftype->is_gnu_ifunc ())
308 {
309 CORE_ADDR resolver_addr = funaddr;
310
311 /* Resolve the ifunc. Note this may call the resolver
312 function in the inferior. */
313 funaddr = gnu_ifunc_resolve_addr (gdbarch, resolver_addr);
314
315 /* Skip querying the function symbol if no RETVAL_TYPE or
316 FUNCTION_TYPE have been asked for. */
317 if (retval_type != NULL || function_type != NULL)
318 {
319 type *target_ftype = find_function_type (funaddr);
320 /* If we don't have debug info for the target function,
321 see if we can instead extract the target function's
322 type from the type that the resolver returns. */
323 if (target_ftype == NULL)
324 target_ftype = find_gnu_ifunc_target_type (resolver_addr);
325 if (target_ftype != NULL)
326 {
327 value_type = check_typedef (target_ftype)->target_type ();
328 ftype = target_ftype;
329 }
330 }
331 }
332 else
333 value_type = ftype->target_type ();
334 }
335 else if (ftype->code () == TYPE_CODE_INT)
336 {
337 /* Handle the case of functions lacking debugging info.
338 Their values are characters since their addresses are char. */
339 if (ftype->length () == 1)
340 funaddr = value_as_address (value_addr (function));
341 else
342 {
343 /* Handle function descriptors lacking debug info. */
344 int found_descriptor = 0;
345
346 funaddr = 0; /* pacify "gcc -Werror" */
347 if (function->lval () == lval_memory)
348 {
349 CORE_ADDR nfunaddr;
350
351 funaddr = value_as_address (value_addr (function));
352 nfunaddr = funaddr;
353 funaddr = gdbarch_convert_from_func_ptr_addr
354 (gdbarch, funaddr, current_inferior ()->top_target ());
355 if (funaddr != nfunaddr)
356 found_descriptor = 1;
357 }
358 if (!found_descriptor)
359 /* Handle integer used as address of a function. */
360 funaddr = (CORE_ADDR) value_as_long (function);
361 }
362 }
363 else
364 error (_("Invalid data type for function to be called."));
365
366 if (retval_type != NULL)
367 *retval_type = value_type;
368 if (function_type != NULL)
369 *function_type = ftype;
370 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
371 }
372
373 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
374 function returns to. */
375
376 static CORE_ADDR
377 push_dummy_code (struct gdbarch *gdbarch,
378 CORE_ADDR sp, CORE_ADDR funaddr,
379 gdb::array_view<value *> args,
380 struct type *value_type,
381 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
382 struct regcache *regcache)
383 {
384 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
385
386 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
387 args.data (), args.size (),
388 value_type, real_pc, bp_addr,
389 regcache);
390 }
391
392 /* See infcall.h. */
393
394 void
395 error_call_unknown_return_type (const char *func_name)
396 {
397 if (func_name != NULL)
398 error (_("'%s' has unknown return type; "
399 "cast the call to its declared return type"),
400 func_name);
401 else
402 error (_("function has unknown return type; "
403 "cast the call to its declared return type"));
404 }
405
406 /* Fetch the name of the function at FUNADDR.
407 This is used in printing an error message for call_function_by_hand.
408 BUF is used to print FUNADDR in hex if the function name cannot be
409 determined. It must be large enough to hold formatted result of
410 RAW_FUNCTION_ADDRESS_FORMAT. */
411
412 static const char *
413 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
414 {
415 {
416 struct symbol *symbol = find_pc_function (funaddr);
417
418 if (symbol)
419 return symbol->print_name ();
420 }
421
422 {
423 /* Try the minimal symbols. */
424 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
425
426 if (msymbol.minsym)
427 return msymbol.minsym->print_name ();
428 }
429
430 {
431 std::string tmp = string_printf (_(RAW_FUNCTION_ADDRESS_FORMAT),
432 hex_string (funaddr));
433
434 gdb_assert (tmp.length () + 1 <= buf_size);
435 return strcpy (buf, tmp.c_str ());
436 }
437 }
438
439 /* All the meta data necessary to extract the call's return value. */
440
441 struct call_return_meta_info
442 {
443 /* The caller frame's architecture. */
444 struct gdbarch *gdbarch;
445
446 /* The called function. */
447 struct value *function;
448
449 /* The return value's type. */
450 struct type *value_type;
451
452 /* Are we returning a value using a structure return or a normal
453 value return? */
454 int struct_return_p;
455
456 /* If using a structure return, this is the structure's address. */
457 CORE_ADDR struct_addr;
458 };
459
460 /* Extract the called function's return value. */
461
462 static struct value *
463 get_call_return_value (struct call_return_meta_info *ri)
464 {
465 struct value *retval = NULL;
466 thread_info *thr = inferior_thread ();
467 bool stack_temporaries = thread_stack_temporaries_enabled_p (thr);
468
469 if (ri->value_type->code () == TYPE_CODE_VOID)
470 retval = value::allocate (ri->value_type);
471 else if (ri->struct_return_p)
472 {
473 if (stack_temporaries)
474 {
475 retval = value_from_contents_and_address (ri->value_type, NULL,
476 ri->struct_addr);
477 push_thread_stack_temporary (thr, retval);
478 }
479 else
480 retval = value_at_non_lval (ri->value_type, ri->struct_addr);
481 }
482 else
483 {
484 gdbarch_return_value_as_value (ri->gdbarch, ri->function, ri->value_type,
485 get_current_regcache (),
486 &retval, NULL);
487 if (stack_temporaries && class_or_union_p (ri->value_type))
488 {
489 /* Values of class type returned in registers are copied onto
490 the stack and their lval_type set to lval_memory. This is
491 required because further evaluation of the expression
492 could potentially invoke methods on the return value
493 requiring GDB to evaluate the "this" pointer. To evaluate
494 the this pointer, GDB needs the memory address of the
495 value. */
496 retval->force_lval (ri->struct_addr);
497 push_thread_stack_temporary (thr, retval);
498 }
499 }
500
501 gdb_assert (retval != NULL);
502 return retval;
503 }
504
505 /* Data for the FSM that manages an infcall. It's main job is to
506 record the called function's return value. */
507
508 struct call_thread_fsm : public thread_fsm
509 {
510 /* All the info necessary to be able to extract the return
511 value. */
512 struct call_return_meta_info return_meta_info;
513
514 /* The called function's return value. This is extracted from the
515 target before the dummy frame is popped. */
516 struct value *return_value = nullptr;
517
518 /* The top level that started the infcall (and is synchronously
519 waiting for it to end). */
520 struct ui *waiting_ui;
521
522 call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
523 struct gdbarch *gdbarch, struct value *function,
524 struct type *value_type,
525 int struct_return_p, CORE_ADDR struct_addr);
526
527 bool should_stop (struct thread_info *thread) override;
528
529 bool should_notify_stop () override;
530 };
531
532 /* Allocate a new call_thread_fsm object. */
533
534 call_thread_fsm::call_thread_fsm (struct ui *waiting_ui,
535 struct interp *cmd_interp,
536 struct gdbarch *gdbarch,
537 struct value *function,
538 struct type *value_type,
539 int struct_return_p, CORE_ADDR struct_addr)
540 : thread_fsm (cmd_interp),
541 waiting_ui (waiting_ui)
542 {
543 return_meta_info.gdbarch = gdbarch;
544 return_meta_info.function = function;
545 return_meta_info.value_type = value_type;
546 return_meta_info.struct_return_p = struct_return_p;
547 return_meta_info.struct_addr = struct_addr;
548 }
549
550 /* Implementation of should_stop method for infcalls. */
551
552 bool
553 call_thread_fsm::should_stop (struct thread_info *thread)
554 {
555 INFCALL_SCOPED_DEBUG_ENTER_EXIT;
556
557 if (stop_stack_dummy == STOP_STACK_DUMMY)
558 {
559 /* Done. */
560 set_finished ();
561
562 /* Stash the return value before the dummy frame is popped and
563 registers are restored to what they were before the
564 call.. */
565 return_value = get_call_return_value (&return_meta_info);
566 }
567
568 /* We are always going to stop this thread, but we might not be planning
569 to call call normal_stop, which is only done if should_notify_stop
570 returns true.
571
572 As normal_stop is responsible for calling async_enable_stdin, which
573 would break us out of wait_sync_command_done, then, if we don't plan
574 to call normal_stop, we should call async_enable_stdin here instead.
575
576 Unlike normal_stop, we only call async_enable_stdin on WAITING_UI, but
577 that is sufficient for wait_sync_command_done. */
578 if (!this->should_notify_stop ())
579 {
580 scoped_restore save_ui = make_scoped_restore (&current_ui, waiting_ui);
581 gdb_assert (current_ui->prompt_state == PROMPT_BLOCKED);
582 async_enable_stdin ();
583 }
584
585 return true;
586 }
587
588 /* Implementation of should_notify_stop method for infcalls. */
589
590 bool
591 call_thread_fsm::should_notify_stop ()
592 {
593 INFCALL_SCOPED_DEBUG_ENTER_EXIT;
594
595 if (finished_p ())
596 {
597 /* Infcall succeeded. Be silent and proceed with evaluating the
598 expression. */
599 infcall_debug_printf ("inferior call has finished, don't notify");
600 return false;
601 }
602
603 infcall_debug_printf ("inferior call didn't complete fully");
604
605 if (stopped_by_random_signal && unwind_on_signal_p)
606 {
607 infcall_debug_printf ("unwind-on-signal is on, don't notify");
608 return false;
609 }
610
611 if (stop_stack_dummy == STOP_STD_TERMINATE
612 && unwind_on_terminating_exception_p)
613 {
614 infcall_debug_printf ("unwind-on-terminating-exception is on, don't notify");
615 return false;
616 }
617
618 /* Something wrong happened. E.g., an unexpected breakpoint
619 triggered, or a signal was intercepted. Notify the stop. */
620 return true;
621 }
622
623 /* Subroutine of call_function_by_hand to simplify it.
624 Start up the inferior and wait for it to stop.
625 Return the exception if there's an error, or an exception with
626 reason >= 0 if there's no error.
627
628 This is done inside a TRY_CATCH so the caller needn't worry about
629 thrown errors. The caller should rethrow if there's an error. */
630
631 static struct gdb_exception
632 run_inferior_call (std::unique_ptr<call_thread_fsm> sm,
633 struct thread_info *call_thread, CORE_ADDR real_pc)
634 {
635 INFCALL_SCOPED_DEBUG_ENTER_EXIT;
636
637 struct gdb_exception caught_error;
638 ptid_t call_thread_ptid = call_thread->ptid;
639 int was_running = call_thread->state == THREAD_RUNNING;
640
641 infcall_debug_printf ("call function at %s in thread %s, was_running = %d",
642 core_addr_to_string (real_pc),
643 call_thread_ptid.to_string ().c_str (),
644 was_running);
645
646 current_ui->unregister_file_handler ();
647
648 scoped_restore restore_in_infcall
649 = make_scoped_restore (&call_thread->control.in_infcall, 1);
650
651 clear_proceed_status (0);
652
653 /* Associate the FSM with the thread after clear_proceed_status
654 (otherwise it'd clear this FSM). */
655 call_thread->set_thread_fsm (std::move (sm));
656
657 disable_watchpoints_before_interactive_call_start ();
658
659 /* We want to print return value, please... */
660 call_thread->control.proceed_to_finish = 1;
661
662 try
663 {
664 /* Infcalls run synchronously, in the foreground. */
665 scoped_restore restore_prompt_state
666 = make_scoped_restore (&current_ui->prompt_state, PROMPT_BLOCKED);
667
668 /* So that we don't print the prompt prematurely in
669 fetch_inferior_event. */
670 scoped_restore restore_ui_async
671 = make_scoped_restore (&current_ui->async, 0);
672
673 proceed (real_pc, GDB_SIGNAL_0);
674
675 infrun_debug_show_threads ("non-exited threads after proceed for inferior-call",
676 all_non_exited_threads ());
677
678 /* Inferior function calls are always synchronous, even if the
679 target supports asynchronous execution. */
680 wait_sync_command_done ();
681
682 infcall_debug_printf ("inferior call completed successfully");
683 }
684 catch (gdb_exception &e)
685 {
686 infcall_debug_printf ("exception while making inferior call (%d): %s",
687 e.reason, e.what ());
688 caught_error = std::move (e);
689 }
690
691 infcall_debug_printf ("thread is now: %s",
692 inferior_ptid.to_string ().c_str ());
693
694 /* After the inferior call finished, async_enable_stdin has been
695 called, either from normal_stop or from
696 call_thread_fsm::should_stop, and the prompt state has been
697 restored by the scoped_restore in the try block above.
698
699 If the inferior call finished successfully, then we should
700 disable stdin as we don't know yet whether the inferior will be
701 stopping. Calling async_disable_stdin restores things to how
702 they were when this function was called.
703
704 If the inferior call didn't complete successfully, then
705 normal_stop has already been called, and we know for sure that we
706 are going to present this stop to the user. In this case, we
707 call async_enable_stdin. This changes the prompt state to
708 PROMPT_NEEDED.
709
710 If the previous prompt state was PROMPT_NEEDED, then as
711 async_enable_stdin has already been called, nothing additional
712 needs to be done here. */
713 if (current_ui->prompt_state == PROMPT_BLOCKED)
714 {
715 if (call_thread->thread_fsm ()->finished_p ())
716 async_disable_stdin ();
717 else
718 async_enable_stdin ();
719 }
720
721 /* If the infcall does NOT succeed, normal_stop will have already
722 finished the thread states. However, on success, normal_stop
723 defers here, so that we can set back the thread states to what
724 they were before the call. Note that we must also finish the
725 state of new threads that might have spawned while the call was
726 running. The main cases to handle are:
727
728 - "(gdb) print foo ()", or any other command that evaluates an
729 expression at the prompt. (The thread was marked stopped before.)
730
731 - "(gdb) break foo if return_false()" or similar cases where we
732 do an infcall while handling an event (while the thread is still
733 marked running). In this example, whether the condition
734 evaluates true and thus we'll present a user-visible stop is
735 decided elsewhere. */
736 if (!was_running
737 && call_thread_ptid == inferior_ptid
738 && stop_stack_dummy == STOP_STACK_DUMMY)
739 finish_thread_state (call_thread->inf->process_target (),
740 user_visible_resume_ptid (0));
741
742 enable_watchpoints_after_interactive_call_stop ();
743
744 /* Call breakpoint_auto_delete on the current contents of the bpstat
745 of inferior call thread.
746 If all error()s out of proceed ended up calling normal_stop
747 (and perhaps they should; it already does in the special case
748 of error out of resume()), then we wouldn't need this. */
749 if (caught_error.reason < 0)
750 {
751 if (call_thread->state != THREAD_EXITED)
752 breakpoint_auto_delete (call_thread->control.stop_bpstat);
753 }
754
755 return caught_error;
756 }
757
758 /* Reserve space on the stack for a value of the given type.
759 Return the address of the allocated space.
760 Make certain that the value is correctly aligned.
761 The SP argument is modified. */
762
763 static CORE_ADDR
764 reserve_stack_space (const type *values_type, CORE_ADDR &sp)
765 {
766 frame_info_ptr frame = get_current_frame ();
767 struct gdbarch *gdbarch = get_frame_arch (frame);
768 CORE_ADDR addr = 0;
769
770 if (gdbarch_inner_than (gdbarch, 1, 2))
771 {
772 /* Stack grows downward. Align STRUCT_ADDR and SP after
773 making space. */
774 sp -= values_type->length ();
775 if (gdbarch_frame_align_p (gdbarch))
776 sp = gdbarch_frame_align (gdbarch, sp);
777 addr = sp;
778 }
779 else
780 {
781 /* Stack grows upward. Align the frame, allocate space, and
782 then again, re-align the frame??? */
783 if (gdbarch_frame_align_p (gdbarch))
784 sp = gdbarch_frame_align (gdbarch, sp);
785 addr = sp;
786 sp += values_type->length ();
787 if (gdbarch_frame_align_p (gdbarch))
788 sp = gdbarch_frame_align (gdbarch, sp);
789 }
790
791 return addr;
792 }
793
794 /* The data structure which keeps a destructor function and
795 its implicit 'this' parameter. */
796
797 struct destructor_info
798 {
799 destructor_info (struct value *function, struct value *self)
800 : function (function), self (self) { }
801
802 struct value *function;
803 struct value *self;
804 };
805
806
807 /* Auxiliary function that takes a list of destructor functions
808 with their 'this' parameters, and invokes the functions. */
809
810 static void
811 call_destructors (const std::list<destructor_info> &dtors_to_invoke,
812 struct type *default_return_type)
813 {
814 for (auto vals : dtors_to_invoke)
815 {
816 call_function_by_hand (vals.function, default_return_type,
817 gdb::make_array_view (&(vals.self), 1));
818 }
819 }
820
821 /* See infcall.h. */
822
823 struct value *
824 call_function_by_hand (struct value *function,
825 type *default_return_type,
826 gdb::array_view<value *> args)
827 {
828 return call_function_by_hand_dummy (function, default_return_type,
829 args, NULL, NULL);
830 }
831
832 /* All this stuff with a dummy frame may seem unnecessarily complicated
833 (why not just save registers in GDB?). The purpose of pushing a dummy
834 frame which looks just like a real frame is so that if you call a
835 function and then hit a breakpoint (get a signal, etc), "backtrace"
836 will look right. Whether the backtrace needs to actually show the
837 stack at the time the inferior function was called is debatable, but
838 it certainly needs to not display garbage. So if you are contemplating
839 making dummy frames be different from normal frames, consider that. */
840
841 /* Perform a function call in the inferior.
842 ARGS is a vector of values of arguments.
843 FUNCTION is a value, the function to be called.
844 Returns a value representing what the function returned.
845 May fail to return, if a breakpoint or signal is hit
846 during the execution of the function.
847
848 ARGS is modified to contain coerced values. */
849
850 struct value *
851 call_function_by_hand_dummy (struct value *function,
852 type *default_return_type,
853 gdb::array_view<value *> args,
854 dummy_frame_dtor_ftype *dummy_dtor,
855 void *dummy_dtor_data)
856 {
857 INFCALL_SCOPED_DEBUG_ENTER_EXIT;
858
859 CORE_ADDR sp;
860 struct type *target_values_type;
861 function_call_return_method return_method = return_method_normal;
862 CORE_ADDR struct_addr = 0;
863 CORE_ADDR real_pc;
864 CORE_ADDR bp_addr;
865 struct frame_id dummy_id;
866 frame_info_ptr frame;
867 struct gdbarch *gdbarch;
868 ptid_t call_thread_ptid;
869 struct gdb_exception e;
870 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
871
872 if (!may_call_functions_p)
873 error (_("Cannot call functions in the program: "
874 "may-call-functions is off."));
875
876 if (!target_has_execution ())
877 noprocess ();
878
879 if (get_traceframe_number () >= 0)
880 error (_("May not call functions while looking at trace frames."));
881
882 if (execution_direction == EXEC_REVERSE)
883 error (_("Cannot call functions in reverse mode."));
884
885 /* We're going to run the target, and inspect the thread's state
886 afterwards. Hold a strong reference so that the pointer remains
887 valid even if the thread exits. */
888 thread_info_ref call_thread
889 = thread_info_ref::new_reference (inferior_thread ());
890
891 bool stack_temporaries = thread_stack_temporaries_enabled_p (call_thread.get ());
892
893 frame = get_current_frame ();
894 gdbarch = get_frame_arch (frame);
895
896 if (!gdbarch_push_dummy_call_p (gdbarch))
897 error (_("This target does not support function calls."));
898
899 /* Find the function type and do a sanity check. */
900 type *ftype;
901 type *values_type;
902 CORE_ADDR funaddr = find_function_addr (function, &values_type, &ftype);
903
904 if (is_nocall_function (ftype))
905 error (_("Cannot call the function '%s' which does not follow the "
906 "target calling convention."),
907 get_function_name (funaddr, name_buf, sizeof (name_buf)));
908
909 if (values_type == NULL || values_type->is_stub ())
910 values_type = default_return_type;
911 if (values_type == NULL)
912 {
913 const char *name = get_function_name (funaddr,
914 name_buf, sizeof (name_buf));
915 error (_("'%s' has unknown return type; "
916 "cast the call to its declared return type"),
917 name);
918 }
919
920 values_type = check_typedef (values_type);
921
922 if (args.size () < ftype->num_fields ())
923 error (_("Too few arguments in function call."));
924
925 infcall_debug_printf ("calling %s", get_function_name (funaddr, name_buf,
926 sizeof (name_buf)));
927
928 /* A holder for the inferior status.
929 This is only needed while we're preparing the inferior function call. */
930 infcall_control_state_up inf_status (save_infcall_control_state ());
931
932 /* Save the caller's registers and other state associated with the
933 inferior itself so that they can be restored once the
934 callee returns. To allow nested calls the registers are (further
935 down) pushed onto a dummy frame stack. This unique pointer
936 is released once the regcache has been pushed). */
937 infcall_suspend_state_up caller_state (save_infcall_suspend_state ());
938
939 /* Ensure that the initial SP is correctly aligned. */
940 {
941 CORE_ADDR old_sp = get_frame_sp (frame);
942
943 if (gdbarch_frame_align_p (gdbarch))
944 {
945 sp = gdbarch_frame_align (gdbarch, old_sp);
946 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
947 ABIs, a function can use memory beyond the inner most stack
948 address. AMD64 called that region the "red zone". Skip at
949 least the "red zone" size before allocating any space on
950 the stack. */
951 if (gdbarch_inner_than (gdbarch, 1, 2))
952 sp -= gdbarch_frame_red_zone_size (gdbarch);
953 else
954 sp += gdbarch_frame_red_zone_size (gdbarch);
955 /* Still aligned? */
956 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
957 /* NOTE: cagney/2002-09-18:
958
959 On a RISC architecture, a void parameterless generic dummy
960 frame (i.e., no parameters, no result) typically does not
961 need to push anything the stack and hence can leave SP and
962 FP. Similarly, a frameless (possibly leaf) function does
963 not push anything on the stack and, hence, that too can
964 leave FP and SP unchanged. As a consequence, a sequence of
965 void parameterless generic dummy frame calls to frameless
966 functions will create a sequence of effectively identical
967 frames (SP, FP and TOS and PC the same). This, not
968 surprisingly, results in what appears to be a stack in an
969 infinite loop --- when GDB tries to find a generic dummy
970 frame on the internal dummy frame stack, it will always
971 find the first one.
972
973 To avoid this problem, the code below always grows the
974 stack. That way, two dummy frames can never be identical.
975 It does burn a few bytes of stack but that is a small price
976 to pay :-). */
977 if (sp == old_sp)
978 {
979 if (gdbarch_inner_than (gdbarch, 1, 2))
980 /* Stack grows down. */
981 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
982 else
983 /* Stack grows up. */
984 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
985 }
986 /* SP may have underflown address zero here from OLD_SP. Memory access
987 functions will probably fail in such case but that is a target's
988 problem. */
989 }
990 else
991 /* FIXME: cagney/2002-09-18: Hey, you loose!
992
993 Who knows how badly aligned the SP is!
994
995 If the generic dummy frame ends up empty (because nothing is
996 pushed) GDB won't be able to correctly perform back traces.
997 If a target is having trouble with backtraces, first thing to
998 do is add FRAME_ALIGN() to the architecture vector. If that
999 fails, try dummy_id().
1000
1001 If the ABI specifies a "Red Zone" (see the doco) the code
1002 below will quietly trash it. */
1003 sp = old_sp;
1004
1005 /* Skip over the stack temporaries that might have been generated during
1006 the evaluation of an expression. */
1007 if (stack_temporaries)
1008 {
1009 struct value *lastval;
1010
1011 lastval = get_last_thread_stack_temporary (call_thread.get ());
1012 if (lastval != NULL)
1013 {
1014 CORE_ADDR lastval_addr = lastval->address ();
1015
1016 if (gdbarch_inner_than (gdbarch, 1, 2))
1017 {
1018 gdb_assert (sp >= lastval_addr);
1019 sp = lastval_addr;
1020 }
1021 else
1022 {
1023 gdb_assert (sp <= lastval_addr);
1024 sp = lastval_addr + lastval->type ()->length ();
1025 }
1026
1027 if (gdbarch_frame_align_p (gdbarch))
1028 sp = gdbarch_frame_align (gdbarch, sp);
1029 }
1030 }
1031 }
1032
1033 /* Are we returning a value using a structure return? */
1034
1035 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
1036 {
1037 return_method = return_method_hidden_param;
1038
1039 /* Tell the target specific argument pushing routine not to
1040 expect a value. */
1041 target_values_type = builtin_type (gdbarch)->builtin_void;
1042 }
1043 else
1044 {
1045 if (using_struct_return (gdbarch, function, values_type))
1046 return_method = return_method_struct;
1047 target_values_type = values_type;
1048 }
1049
1050 gdb::observers::inferior_call_pre.notify (inferior_ptid, funaddr);
1051
1052 /* Determine the location of the breakpoint (and possibly other
1053 stuff) that the called function will return to. The SPARC, for a
1054 function returning a structure or union, needs to make space for
1055 not just the breakpoint but also an extra word containing the
1056 size (?) of the structure being passed. */
1057
1058 switch (gdbarch_call_dummy_location (gdbarch))
1059 {
1060 case ON_STACK:
1061 {
1062 const gdb_byte *bp_bytes;
1063 CORE_ADDR bp_addr_as_address;
1064 int bp_size;
1065
1066 /* Be careful BP_ADDR is in inferior PC encoding while
1067 BP_ADDR_AS_ADDRESS is a plain memory address. */
1068
1069 sp = push_dummy_code (gdbarch, sp, funaddr, args,
1070 target_values_type, &real_pc, &bp_addr,
1071 get_current_regcache ());
1072
1073 /* Write a legitimate instruction at the point where the infcall
1074 breakpoint is going to be inserted. While this instruction
1075 is never going to be executed, a user investigating the
1076 memory from GDB would see this instruction instead of random
1077 uninitialized bytes. We chose the breakpoint instruction
1078 as it may look as the most logical one to the user and also
1079 valgrind 3.7.0 needs it for proper vgdb inferior calls.
1080
1081 If software breakpoints are unsupported for this target we
1082 leave the user visible memory content uninitialized. */
1083
1084 bp_addr_as_address = bp_addr;
1085 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
1086 &bp_size);
1087 if (bp_bytes != NULL)
1088 write_memory (bp_addr_as_address, bp_bytes, bp_size);
1089 }
1090 break;
1091 case AT_ENTRY_POINT:
1092 {
1093 CORE_ADDR dummy_addr;
1094
1095 real_pc = funaddr;
1096 dummy_addr = entry_point_address ();
1097
1098 /* A call dummy always consists of just a single breakpoint, so
1099 its address is the same as the address of the dummy.
1100
1101 The actual breakpoint is inserted separatly so there is no need to
1102 write that out. */
1103 bp_addr = dummy_addr;
1104 break;
1105 }
1106 default:
1107 internal_error (_("bad switch"));
1108 }
1109
1110 /* Coerce the arguments and handle pass-by-reference.
1111 We want to remember the destruction required for pass-by-ref values.
1112 For these, store the dtor function and the 'this' argument
1113 in DTORS_TO_INVOKE. */
1114 std::list<destructor_info> dtors_to_invoke;
1115
1116 for (int i = args.size () - 1; i >= 0; i--)
1117 {
1118 int prototyped;
1119 struct type *param_type;
1120
1121 /* FIXME drow/2002-05-31: Should just always mark methods as
1122 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1123 if (ftype->code () == TYPE_CODE_METHOD)
1124 prototyped = 1;
1125 else if (ftype->target_type () == NULL && ftype->num_fields () == 0
1126 && default_return_type != NULL)
1127 {
1128 /* Calling a no-debug function with the return type
1129 explicitly cast. Assume the function is prototyped,
1130 with a prototype matching the types of the arguments.
1131 E.g., with:
1132 float mult (float v1, float v2) { return v1 * v2; }
1133 This:
1134 (gdb) p (float) mult (2.0f, 3.0f)
1135 Is a simpler alternative to:
1136 (gdb) p ((float (*) (float, float)) mult) (2.0f, 3.0f)
1137 */
1138 prototyped = 1;
1139 }
1140 else if (i < ftype->num_fields ())
1141 prototyped = ftype->is_prototyped ();
1142 else
1143 prototyped = 0;
1144
1145 if (i < ftype->num_fields ())
1146 param_type = ftype->field (i).type ();
1147 else
1148 param_type = NULL;
1149
1150 value *original_arg = args[i];
1151 args[i] = value_arg_coerce (gdbarch, args[i],
1152 param_type, prototyped);
1153
1154 if (param_type == NULL)
1155 continue;
1156
1157 auto info = language_pass_by_reference (param_type);
1158 if (!info.copy_constructible)
1159 error (_("expression cannot be evaluated because the type '%s' "
1160 "is not copy constructible"), param_type->name ());
1161
1162 if (!info.destructible)
1163 error (_("expression cannot be evaluated because the type '%s' "
1164 "is not destructible"), param_type->name ());
1165
1166 if (info.trivially_copyable)
1167 continue;
1168
1169 /* Make a copy of the argument on the stack. If the argument is
1170 trivially copy ctor'able, copy bit by bit. Otherwise, call
1171 the copy ctor to initialize the clone. */
1172 CORE_ADDR addr = reserve_stack_space (param_type, sp);
1173 value *clone
1174 = value_from_contents_and_address (param_type, nullptr, addr);
1175 push_thread_stack_temporary (call_thread.get (), clone);
1176 value *clone_ptr
1177 = value_from_pointer (lookup_pointer_type (param_type), addr);
1178
1179 if (info.trivially_copy_constructible)
1180 {
1181 int length = param_type->length ();
1182 write_memory (addr, args[i]->contents ().data (), length);
1183 }
1184 else
1185 {
1186 value *copy_ctor;
1187 value *cctor_args[2] = { clone_ptr, original_arg };
1188 find_overload_match (gdb::make_array_view (cctor_args, 2),
1189 param_type->name (), METHOD,
1190 &clone_ptr, nullptr, &copy_ctor, nullptr,
1191 nullptr, 0, EVAL_NORMAL);
1192
1193 if (copy_ctor == nullptr)
1194 error (_("expression cannot be evaluated because a copy "
1195 "constructor for the type '%s' could not be found "
1196 "(maybe inlined?)"), param_type->name ());
1197
1198 call_function_by_hand (copy_ctor, default_return_type,
1199 gdb::make_array_view (cctor_args, 2));
1200 }
1201
1202 /* If the argument has a destructor, remember it so that we
1203 invoke it after the infcall is complete. */
1204 if (!info.trivially_destructible)
1205 {
1206 /* Looking up the function via overload resolution does not
1207 work because the compiler (in particular, gcc) adds an
1208 artificial int parameter in some cases. So we look up
1209 the function by using the "~" name. This should be OK
1210 because there can be only one dtor definition. */
1211 const char *dtor_name = nullptr;
1212 for (int fieldnum = 0;
1213 fieldnum < TYPE_NFN_FIELDS (param_type);
1214 fieldnum++)
1215 {
1216 fn_field *fn
1217 = TYPE_FN_FIELDLIST1 (param_type, fieldnum);
1218 const char *field_name
1219 = TYPE_FN_FIELDLIST_NAME (param_type, fieldnum);
1220
1221 if (field_name[0] == '~')
1222 dtor_name = TYPE_FN_FIELD_PHYSNAME (fn, 0);
1223 }
1224
1225 if (dtor_name == nullptr)
1226 error (_("expression cannot be evaluated because a destructor "
1227 "for the type '%s' could not be found "
1228 "(maybe inlined?)"), param_type->name ());
1229
1230 value *dtor
1231 = find_function_in_inferior (dtor_name, 0);
1232
1233 /* Insert the dtor to the front of the list to call them
1234 in reverse order later. */
1235 dtors_to_invoke.emplace_front (dtor, clone_ptr);
1236 }
1237
1238 args[i] = clone_ptr;
1239 }
1240
1241 /* Reserve space for the return structure to be written on the
1242 stack, if necessary.
1243
1244 While evaluating expressions, we reserve space on the stack for
1245 return values of class type even if the language ABI and the target
1246 ABI do not require that the return value be passed as a hidden first
1247 argument. This is because we want to store the return value as an
1248 on-stack temporary while the expression is being evaluated. This
1249 enables us to have chained function calls in expressions.
1250
1251 Keeping the return values as on-stack temporaries while the expression
1252 is being evaluated is OK because the thread is stopped until the
1253 expression is completely evaluated. */
1254
1255 if (return_method != return_method_normal
1256 || (stack_temporaries && class_or_union_p (values_type)))
1257 struct_addr = reserve_stack_space (values_type, sp);
1258
1259 std::vector<struct value *> new_args;
1260 if (return_method == return_method_hidden_param)
1261 {
1262 /* Add the new argument to the front of the argument list. */
1263 new_args.reserve (1 + args.size ());
1264 new_args.push_back
1265 (value_from_pointer (lookup_pointer_type (values_type), struct_addr));
1266 new_args.insert (new_args.end (), args.begin (), args.end ());
1267 args = new_args;
1268 }
1269
1270 /* Create the dummy stack frame. Pass in the call dummy address as,
1271 presumably, the ABI code knows where, in the call dummy, the
1272 return address should be pointed. */
1273 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1274 bp_addr, args.size (), args.data (),
1275 sp, return_method, struct_addr);
1276
1277 /* Set up a frame ID for the dummy frame so we can pass it to
1278 set_momentary_breakpoint. We need to give the breakpoint a frame
1279 ID so that the breakpoint code can correctly re-identify the
1280 dummy breakpoint. */
1281 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1282 saved as the dummy-frame TOS, and used by dummy_id to form
1283 the frame ID's stack address. */
1284 dummy_id = frame_id_build (sp, bp_addr);
1285
1286 /* Create a momentary breakpoint at the return address of the
1287 inferior. That way it breaks when it returns. */
1288
1289 {
1290 symtab_and_line sal;
1291 sal.pspace = current_program_space;
1292 sal.pc = bp_addr;
1293 sal.section = find_pc_overlay (sal.pc);
1294
1295 /* Sanity. The exact same SP value is returned by
1296 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1297 dummy_id to form the frame ID's stack address. */
1298 breakpoint *bpt
1299 = set_momentary_breakpoint (gdbarch, sal,
1300 dummy_id, bp_call_dummy).release ();
1301
1302 /* set_momentary_breakpoint invalidates FRAME. */
1303 frame = NULL;
1304
1305 bpt->disposition = disp_del;
1306 gdb_assert (bpt->related_breakpoint == bpt);
1307
1308 breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1309 if (longjmp_b)
1310 {
1311 /* Link BPT into the chain of LONGJMP_B. */
1312 bpt->related_breakpoint = longjmp_b;
1313 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1314 longjmp_b = longjmp_b->related_breakpoint;
1315 longjmp_b->related_breakpoint = bpt;
1316 }
1317 }
1318
1319 /* Create a breakpoint in std::terminate.
1320 If a C++ exception is raised in the dummy-frame, and the
1321 exception handler is (normally, and expected to be) out-of-frame,
1322 the default C++ handler will (wrongly) be called in an inferior
1323 function call. This is wrong, as an exception can be normally
1324 and legally handled out-of-frame. The confines of the dummy frame
1325 prevent the unwinder from finding the correct handler (or any
1326 handler, unless it is in-frame). The default handler calls
1327 std::terminate. This will kill the inferior. Assert that
1328 terminate should never be called in an inferior function
1329 call. Place a momentary breakpoint in the std::terminate function
1330 and if triggered in the call, rewind. */
1331 if (unwind_on_terminating_exception_p)
1332 set_std_terminate_breakpoint ();
1333
1334 /* Everything's ready, push all the info needed to restore the
1335 caller (and identify the dummy-frame) onto the dummy-frame
1336 stack. */
1337 dummy_frame_push (caller_state.release (), &dummy_id, call_thread.get ());
1338 if (dummy_dtor != NULL)
1339 register_dummy_frame_dtor (dummy_id, call_thread.get (),
1340 dummy_dtor, dummy_dtor_data);
1341
1342 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1343 SCOPE_EXIT { delete_std_terminate_breakpoint (); };
1344
1345 /* The stopped_by_random_signal variable is global. If we are here
1346 as part of a breakpoint condition check then the global will have
1347 already been setup as part of the original breakpoint stop. By
1348 making the inferior call the global will be changed when GDB
1349 handles the stop after the inferior call. Avoid confusion by
1350 restoring the current value after the inferior call. */
1351 scoped_restore restore_stopped_by_random_signal
1352 = make_scoped_restore (&stopped_by_random_signal, 0);
1353
1354 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1355 If you're looking to implement asynchronous dummy-frames, then
1356 just below is the place to chop this function in two.. */
1357
1358 {
1359 /* Save the current FSM. We'll override it. */
1360 std::unique_ptr<thread_fsm> saved_sm = call_thread->release_thread_fsm ();
1361 struct call_thread_fsm *sm;
1362
1363 /* Save this thread's ptid, we need it later but the thread
1364 may have exited. */
1365 call_thread_ptid = call_thread->ptid;
1366
1367 /* Run the inferior until it stops. */
1368
1369 /* Create the FSM used to manage the infcall. It tells infrun to
1370 not report the stop to the user, and captures the return value
1371 before the dummy frame is popped. run_inferior_call registers
1372 it with the thread ASAP. */
1373 sm = new call_thread_fsm (current_ui, command_interp (),
1374 gdbarch, function,
1375 values_type,
1376 return_method != return_method_normal,
1377 struct_addr);
1378 {
1379 std::unique_ptr<call_thread_fsm> sm_up (sm);
1380 e = run_inferior_call (std::move (sm_up), call_thread.get (), real_pc);
1381 }
1382
1383 if (e.reason < 0)
1384 infcall_debug_printf ("after inferior call, exception (%d): %s",
1385 e.reason, e.what ());
1386 infcall_debug_printf ("after inferior call, thread state is: %s",
1387 thread_state_string (call_thread->state));
1388
1389 gdb::observers::inferior_call_post.notify (call_thread_ptid, funaddr);
1390
1391
1392 /* As the inferior call failed, we are about to throw an error, which
1393 will be caught and printed somewhere else in GDB. We want new threads
1394 to be printed before the error message, otherwise it looks odd; the
1395 threads appear after GDB has reported a stop. */
1396 update_thread_list ();
1397
1398 if (call_thread->state != THREAD_EXITED)
1399 {
1400 /* The FSM should still be the same. */
1401 gdb_assert (call_thread->thread_fsm () == sm);
1402
1403 if (call_thread->thread_fsm ()->finished_p ())
1404 {
1405 struct value *retval;
1406
1407 infcall_debug_printf ("call completed");
1408
1409 /* The inferior call is successful. Pop the dummy frame,
1410 which runs its destructors and restores the inferior's
1411 suspend state, and restore the inferior control
1412 state. */
1413 dummy_frame_pop (dummy_id, call_thread.get ());
1414 restore_infcall_control_state (inf_status.release ());
1415
1416 /* Get the return value. */
1417 retval = sm->return_value;
1418
1419 /* Restore the original FSM and clean up / destroy the call FSM.
1420 Doing it in this order ensures that if the call to clean_up
1421 throws, the original FSM is properly restored. */
1422 {
1423 std::unique_ptr<thread_fsm> finalizing
1424 = call_thread->release_thread_fsm ();
1425 call_thread->set_thread_fsm (std::move (saved_sm));
1426
1427 finalizing->clean_up (call_thread.get ());
1428 }
1429
1430 maybe_remove_breakpoints ();
1431
1432 gdb_assert (retval != NULL);
1433
1434 /* Destruct the pass-by-ref argument clones. */
1435 call_destructors (dtors_to_invoke, default_return_type);
1436
1437 return retval;
1438 }
1439 else
1440 infcall_debug_printf ("call did not complete");
1441
1442 /* Didn't complete. Clean up / destroy the call FSM, and restore the
1443 previous state machine, and handle the error. */
1444 {
1445 std::unique_ptr<thread_fsm> finalizing
1446 = call_thread->release_thread_fsm ();
1447 call_thread->set_thread_fsm (std::move (saved_sm));
1448
1449 finalizing->clean_up (call_thread.get ());
1450 }
1451 }
1452 }
1453
1454 /* Rethrow an error if we got one trying to run the inferior. */
1455
1456 if (e.reason < 0)
1457 {
1458 const char *name = get_function_name (funaddr,
1459 name_buf, sizeof (name_buf));
1460
1461 discard_infcall_control_state (inf_status.release ());
1462
1463 /* We could discard the dummy frame here if the program exited,
1464 but it will get garbage collected the next time the program is
1465 run anyway. */
1466
1467 switch (e.reason)
1468 {
1469 case RETURN_ERROR:
1470 throw_error (e.error, _("%s\n\
1471 An error occurred while in a function called from GDB.\n\
1472 Evaluation of the expression containing the function\n\
1473 (%s) will be abandoned.\n\
1474 When the function is done executing, GDB will silently stop."),
1475 e.what (), name);
1476 case RETURN_QUIT:
1477 default:
1478 throw_exception (std::move (e));
1479 }
1480 }
1481
1482 /* If the program has exited, or we stopped at a different thread,
1483 exit and inform the user. */
1484
1485 if (! target_has_execution ())
1486 {
1487 const char *name = get_function_name (funaddr,
1488 name_buf, sizeof (name_buf));
1489
1490 /* If we try to restore the inferior status,
1491 we'll crash as the inferior is no longer running. */
1492 discard_infcall_control_state (inf_status.release ());
1493
1494 /* We could discard the dummy frame here given that the program exited,
1495 but it will get garbage collected the next time the program is
1496 run anyway. */
1497
1498 error (_("The program being debugged exited while in a function "
1499 "called from GDB.\n"
1500 "Evaluation of the expression containing the function\n"
1501 "(%s) will be abandoned."),
1502 name);
1503 }
1504
1505 if (call_thread_ptid != inferior_ptid)
1506 {
1507 const char *name = get_function_name (funaddr,
1508 name_buf, sizeof (name_buf));
1509
1510 /* We've switched threads. This can happen if another thread gets a
1511 signal or breakpoint while our thread was running.
1512 There's no point in restoring the inferior status,
1513 we're in a different thread. */
1514 discard_infcall_control_state (inf_status.release ());
1515 /* Keep the dummy frame record, if the user switches back to the
1516 thread with the hand-call, we'll need it. */
1517 if (stopped_by_random_signal)
1518 error (_("\
1519 The program received a signal in another thread while\n\
1520 making a function call from GDB.\n\
1521 Evaluation of the expression containing the function\n\
1522 (%s) will be abandoned.\n\
1523 When the function is done executing, GDB will silently stop."),
1524 name);
1525 else
1526 error (_("\
1527 The program stopped in another thread while making a function call from GDB.\n\
1528 Evaluation of the expression containing the function\n\
1529 (%s) will be abandoned.\n\
1530 When the function is done executing, GDB will silently stop."),
1531 name);
1532 }
1533
1534 {
1535 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1536 std::string name = get_function_name (funaddr, name_buf,
1537 sizeof (name_buf));
1538
1539 if (stopped_by_random_signal)
1540 {
1541 /* We stopped inside the FUNCTION because of a random
1542 signal. Further execution of the FUNCTION is not
1543 allowed. */
1544
1545 if (unwind_on_signal_p)
1546 {
1547 /* The user wants the context restored. */
1548
1549 /* Capture details of the signal so we can include them in
1550 the error message. Calling dummy_frame_pop will restore
1551 the previous stop signal details. */
1552 gdb_signal stop_signal = call_thread->stop_signal ();
1553
1554 /* We must get back to the frame we were before the
1555 dummy call. */
1556 dummy_frame_pop (dummy_id, call_thread.get ());
1557
1558 /* We also need to restore inferior status to that before the
1559 dummy call. */
1560 restore_infcall_control_state (inf_status.release ());
1561
1562 /* FIXME: Insert a bunch of wrap_here; name can be very
1563 long if it's a C++ name with arguments and stuff. */
1564 error (_("\
1565 The program being debugged received signal %s, %s\n\
1566 while in a function called from GDB. GDB has restored the context\n\
1567 to what it was before the call. To change this behavior use\n\
1568 \"set unwindonsignal off\". Evaluation of the expression containing\n\
1569 the function (%s) will be abandoned."),
1570 gdb_signal_to_name (stop_signal),
1571 gdb_signal_to_string (stop_signal),
1572 name.c_str ());
1573 }
1574 else
1575 {
1576 /* The user wants to stay in the frame where we stopped
1577 (default).
1578 Discard inferior status, we're not at the same point
1579 we started at. */
1580 discard_infcall_control_state (inf_status.release ());
1581
1582 /* FIXME: Insert a bunch of wrap_here; name can be very
1583 long if it's a C++ name with arguments and stuff. */
1584 error (_("\
1585 The program being debugged was signaled while in a function called from GDB.\n\
1586 GDB remains in the frame where the signal was received.\n\
1587 To change this behavior use \"set unwindonsignal on\".\n\
1588 Evaluation of the expression containing the function\n\
1589 (%s) will be abandoned.\n\
1590 When the function is done executing, GDB will silently stop."),
1591 name.c_str ());
1592 }
1593 }
1594
1595 if (stop_stack_dummy == STOP_STD_TERMINATE)
1596 {
1597 /* We must get back to the frame we were before the dummy
1598 call. */
1599 dummy_frame_pop (dummy_id, call_thread.get ());
1600
1601 /* We also need to restore inferior status to that before
1602 the dummy call. */
1603 restore_infcall_control_state (inf_status.release ());
1604
1605 error (_("\
1606 The program being debugged entered a std::terminate call, most likely\n\
1607 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1608 to prevent the program from being terminated, and has restored the\n\
1609 context to its original state before the call.\n\
1610 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1611 Evaluation of the expression containing the function (%s)\n\
1612 will be abandoned."),
1613 name.c_str ());
1614 }
1615 else if (stop_stack_dummy == STOP_NONE)
1616 {
1617
1618 /* We hit a breakpoint inside the FUNCTION.
1619 Keep the dummy frame, the user may want to examine its state.
1620 Discard inferior status, we're not at the same point
1621 we started at. */
1622 discard_infcall_control_state (inf_status.release ());
1623
1624 /* The following error message used to say "The expression
1625 which contained the function call has been discarded."
1626 It is a hard concept to explain in a few words. Ideally,
1627 GDB would be able to resume evaluation of the expression
1628 when the function finally is done executing. Perhaps
1629 someday this will be implemented (it would not be easy). */
1630 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1631 a C++ name with arguments and stuff. */
1632 error (_("\
1633 The program being debugged stopped while in a function called from GDB.\n\
1634 Evaluation of the expression containing the function\n\
1635 (%s) will be abandoned.\n\
1636 When the function is done executing, GDB will silently stop."),
1637 name.c_str ());
1638 }
1639
1640 }
1641
1642 /* The above code errors out, so ... */
1643 gdb_assert_not_reached ("... should not be here");
1644 }
1645
1646 void _initialize_infcall ();
1647 void
1648 _initialize_infcall ()
1649 {
1650 add_setshow_boolean_cmd ("may-call-functions", no_class,
1651 &may_call_functions_p, _("\
1652 Set permission to call functions in the program."), _("\
1653 Show permission to call functions in the program."), _("\
1654 When this permission is on, GDB may call functions in the program.\n\
1655 Otherwise, any sort of attempt to call a function in the program\n\
1656 will result in an error."),
1657 NULL,
1658 show_may_call_functions_p,
1659 &setlist, &showlist);
1660
1661 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1662 &coerce_float_to_double_p, _("\
1663 Set coercion of floats to doubles when calling functions."), _("\
1664 Show coercion of floats to doubles when calling functions."), _("\
1665 Variables of type float should generally be converted to doubles before\n\
1666 calling an unprototyped function, and left alone when calling a prototyped\n\
1667 function. However, some older debug info formats do not provide enough\n\
1668 information to determine that a function is prototyped. If this flag is\n\
1669 set, GDB will perform the conversion for a function it considers\n\
1670 unprototyped.\n\
1671 The default is to perform the conversion."),
1672 NULL,
1673 show_coerce_float_to_double_p,
1674 &setlist, &showlist);
1675
1676 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1677 &unwind_on_signal_p, _("\
1678 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1679 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1680 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1681 is received while in a function called from gdb (call dummy). If set, gdb\n\
1682 unwinds the stack and restore the context to what as it was before the call.\n\
1683 The default is to stop in the frame where the signal was received."),
1684 NULL,
1685 show_unwind_on_signal_p,
1686 &setlist, &showlist);
1687
1688 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1689 &unwind_on_terminating_exception_p, _("\
1690 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1691 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1692 _("\
1693 The unwind on terminating exception flag lets the user determine\n\
1694 what gdb should do if a std::terminate() call is made from the\n\
1695 default exception handler. If set, gdb unwinds the stack and restores\n\
1696 the context to what it was before the call. If unset, gdb allows the\n\
1697 std::terminate call to proceed.\n\
1698 The default is to unwind the frame."),
1699 NULL,
1700 show_unwind_on_terminating_exception_p,
1701 &setlist, &showlist);
1702
1703 add_setshow_boolean_cmd
1704 ("infcall", class_maintenance, &debug_infcall,
1705 _("Set inferior call debugging."),
1706 _("Show inferior call debugging."),
1707 _("When on, inferior function call specific debugging is enabled."),
1708 NULL, show_debug_infcall, &setdebuglist, &showdebuglist);
1709 }