Remove path name from test case
[binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observable.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdbsupport/gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44 #include <forward_list>
45
46 static std::string jit_reader_dir;
47
48 static const char jit_break_name[] = "__jit_debug_register_code";
49
50 static const char jit_descriptor_name[] = "__jit_debug_descriptor";
51
52 static void jit_inferior_created_hook (inferior *inf);
53 static void jit_inferior_exit_hook (struct inferior *inf);
54
55 /* True if we want to see trace of jit level stuff. */
56
57 static bool jit_debug = false;
58
59 /* Print a "jit" debug statement. */
60
61 #define jit_debug_printf(fmt, ...) \
62 debug_prefixed_printf_cond (jit_debug, "jit", fmt, ##__VA_ARGS__)
63
64 static void
65 show_jit_debug (struct ui_file *file, int from_tty,
66 struct cmd_list_element *c, const char *value)
67 {
68 gdb_printf (file, _("JIT debugging is %s.\n"), value);
69 }
70
71 /* Implementation of the "maintenance info jit" command. */
72
73 static void
74 maint_info_jit_cmd (const char *args, int from_tty)
75 {
76 inferior *inf = current_inferior ();
77 bool printed_header = false;
78
79 gdb::optional<ui_out_emit_table> table_emitter;
80
81 /* Print a line for each JIT-ed objfile. */
82 for (objfile *obj : inf->pspace->objfiles ())
83 {
84 if (obj->jited_data == nullptr)
85 continue;
86
87 if (!printed_header)
88 {
89 table_emitter.emplace (current_uiout, 3, -1, "jit-created-objfiles");
90
91 /* The +2 allows for the leading '0x', then one character for
92 every 4-bits. */
93 int addr_width = 2 + (gdbarch_ptr_bit (obj->arch ()) / 4);
94
95 /* The std::max here selects between the width of an address (as
96 a string) and the width of the column header string. */
97 current_uiout->table_header (std::max (addr_width, 22), ui_left,
98 "jit_code_entry-address",
99 "jit_code_entry address");
100 current_uiout->table_header (std::max (addr_width, 15), ui_left,
101 "symfile-address", "symfile address");
102 current_uiout->table_header (20, ui_left,
103 "symfile-size", "symfile size");
104 current_uiout->table_body ();
105
106 printed_header = true;
107 }
108
109 ui_out_emit_tuple tuple_emitter (current_uiout, "jit-objfile");
110
111 current_uiout->field_core_addr ("jit_code_entry-address", obj->arch (),
112 obj->jited_data->addr);
113 current_uiout->field_core_addr ("symfile-address", obj->arch (),
114 obj->jited_data->symfile_addr);
115 current_uiout->field_unsigned ("symfile-size",
116 obj->jited_data->symfile_size);
117 current_uiout->text ("\n");
118 }
119 }
120
121 struct jit_reader
122 {
123 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
124 : functions (f), handle (std::move (h))
125 {
126 }
127
128 ~jit_reader ()
129 {
130 functions->destroy (functions);
131 }
132
133 DISABLE_COPY_AND_ASSIGN (jit_reader);
134
135 struct gdb_reader_funcs *functions;
136 gdb_dlhandle_up handle;
137 };
138
139 /* One reader that has been loaded successfully, and can potentially be used to
140 parse debug info. */
141
142 static struct jit_reader *loaded_jit_reader = NULL;
143
144 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
145 static const char reader_init_fn_sym[] = "gdb_init_reader";
146
147 /* Try to load FILE_NAME as a JIT debug info reader. */
148
149 static struct jit_reader *
150 jit_reader_load (const char *file_name)
151 {
152 reader_init_fn_type *init_fn;
153 struct gdb_reader_funcs *funcs = NULL;
154
155 jit_debug_printf ("Opening shared object %s", file_name);
156
157 gdb_dlhandle_up so = gdb_dlopen (file_name);
158
159 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
160 if (!init_fn)
161 error (_("Could not locate initialization function: %s."),
162 reader_init_fn_sym);
163
164 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
165 error (_("Reader not GPL compatible."));
166
167 funcs = init_fn ();
168 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
169 error (_("Reader version does not match GDB version."));
170
171 return new jit_reader (funcs, std::move (so));
172 }
173
174 /* Provides the jit-reader-load command. */
175
176 static void
177 jit_reader_load_command (const char *args, int from_tty)
178 {
179 if (args == NULL)
180 error (_("No reader name provided."));
181 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
182
183 if (loaded_jit_reader != NULL)
184 error (_("JIT reader already loaded. Run jit-reader-unload first."));
185
186 if (!IS_ABSOLUTE_PATH (file.get ()))
187 file = xstrprintf ("%s%s%s", jit_reader_dir.c_str (),
188 SLASH_STRING, file.get ());
189
190 loaded_jit_reader = jit_reader_load (file.get ());
191 reinit_frame_cache ();
192 jit_inferior_created_hook (current_inferior ());
193 }
194
195 /* Provides the jit-reader-unload command. */
196
197 static void
198 jit_reader_unload_command (const char *args, int from_tty)
199 {
200 if (!loaded_jit_reader)
201 error (_("No JIT reader loaded."));
202
203 reinit_frame_cache ();
204 jit_inferior_exit_hook (current_inferior ());
205
206 delete loaded_jit_reader;
207 loaded_jit_reader = NULL;
208 }
209
210 /* Destructor for jiter_objfile_data. */
211
212 jiter_objfile_data::~jiter_objfile_data ()
213 {
214 if (this->jit_breakpoint != nullptr)
215 delete_breakpoint (this->jit_breakpoint);
216 }
217
218 /* Fetch the jiter_objfile_data associated with OBJF. If no data exists
219 yet, make a new structure and attach it. */
220
221 static jiter_objfile_data *
222 get_jiter_objfile_data (objfile *objf)
223 {
224 if (objf->jiter_data == nullptr)
225 objf->jiter_data.reset (new jiter_objfile_data ());
226
227 return objf->jiter_data.get ();
228 }
229
230 /* Remember OBJFILE has been created for struct jit_code_entry located
231 at inferior address ENTRY. */
232
233 static void
234 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry,
235 CORE_ADDR symfile_addr, ULONGEST symfile_size)
236 {
237 gdb_assert (objfile->jited_data == nullptr);
238
239 objfile->jited_data.reset (new jited_objfile_data (entry, symfile_addr,
240 symfile_size));
241 }
242
243 /* Helper function for reading the global JIT descriptor from remote
244 memory. Returns true if all went well, false otherwise. */
245
246 static bool
247 jit_read_descriptor (gdbarch *gdbarch,
248 jit_descriptor *descriptor,
249 objfile *jiter)
250 {
251 int err;
252 struct type *ptr_type;
253 int ptr_size;
254 int desc_size;
255 gdb_byte *desc_buf;
256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
257
258 gdb_assert (jiter != nullptr);
259 jiter_objfile_data *objf_data = jiter->jiter_data.get ();
260 gdb_assert (objf_data != nullptr);
261
262 CORE_ADDR addr = objf_data->descriptor->value_address (jiter);
263
264 jit_debug_printf ("descriptor_addr = %s", paddress (gdbarch, addr));
265
266 /* Figure out how big the descriptor is on the remote and how to read it. */
267 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
268 ptr_size = ptr_type->length ();
269 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
270 desc_buf = (gdb_byte *) alloca (desc_size);
271
272 /* Read the descriptor. */
273 err = target_read_memory (addr, desc_buf, desc_size);
274 if (err)
275 {
276 gdb_printf (gdb_stderr, _("Unable to read JIT descriptor from "
277 "remote memory\n"));
278 return false;
279 }
280
281 /* Fix the endianness to match the host. */
282 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
283 descriptor->action_flag =
284 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
285 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
286 descriptor->first_entry =
287 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
288
289 return true;
290 }
291
292 /* Helper function for reading a JITed code entry from remote memory. */
293
294 static void
295 jit_read_code_entry (struct gdbarch *gdbarch,
296 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
297 {
298 int err, off;
299 struct type *ptr_type;
300 int ptr_size;
301 int entry_size;
302 int align_bytes;
303 gdb_byte *entry_buf;
304 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
305
306 /* Figure out how big the entry is on the remote and how to read it. */
307 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
308 ptr_size = ptr_type->length ();
309
310 /* Figure out where the uint64_t value will be. */
311 align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
312 off = 3 * ptr_size;
313 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
314
315 entry_size = off + 8; /* Three pointers and one 64-bit int. */
316 entry_buf = (gdb_byte *) alloca (entry_size);
317
318 /* Read the entry. */
319 err = target_read_memory (code_addr, entry_buf, entry_size);
320 if (err)
321 error (_("Unable to read JIT code entry from remote memory!"));
322
323 /* Fix the endianness to match the host. */
324 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
325 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
326 code_entry->prev_entry =
327 extract_typed_address (&entry_buf[ptr_size], ptr_type);
328 code_entry->symfile_addr =
329 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
330 code_entry->symfile_size =
331 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
332 }
333
334 /* Proxy object for building a block. */
335
336 struct gdb_block
337 {
338 gdb_block (gdb_block *parent, CORE_ADDR begin, CORE_ADDR end,
339 const char *name)
340 : parent (parent),
341 begin (begin),
342 end (end),
343 name (name != nullptr ? xstrdup (name) : nullptr)
344 {}
345
346 /* The parent of this block. */
347 struct gdb_block *parent;
348
349 /* Points to the "real" block that is being built out of this
350 instance. This block will be added to a blockvector, which will
351 then be added to a symtab. */
352 struct block *real_block = nullptr;
353
354 /* The first and last code address corresponding to this block. */
355 CORE_ADDR begin, end;
356
357 /* The name of this block (if any). If this is non-NULL, the
358 FUNCTION symbol symbol is set to this value. */
359 gdb::unique_xmalloc_ptr<char> name;
360 };
361
362 /* Proxy object for building a symtab. */
363
364 struct gdb_symtab
365 {
366 explicit gdb_symtab (const char *file_name)
367 : file_name (file_name != nullptr ? file_name : "")
368 {}
369
370 /* The list of blocks in this symtab. These will eventually be
371 converted to real blocks.
372
373 This is specifically a linked list, instead of, for example, a vector,
374 because the pointers are returned to the user's debug info reader. So
375 it's important that the objects don't change location during their
376 lifetime (which would happen with a vector of objects getting resized). */
377 std::forward_list<gdb_block> blocks;
378
379 /* The number of blocks inserted. */
380 int nblocks = 0;
381
382 /* A mapping between line numbers to PC. */
383 gdb::unique_xmalloc_ptr<struct linetable> linetable;
384
385 /* The source file for this symtab. */
386 std::string file_name;
387 };
388
389 /* Proxy object for building an object. */
390
391 struct gdb_object
392 {
393 /* Symtabs of this object.
394
395 This is specifically a linked list, instead of, for example, a vector,
396 because the pointers are returned to the user's debug info reader. So
397 it's important that the objects don't change location during their
398 lifetime (which would happen with a vector of objects getting resized). */
399 std::forward_list<gdb_symtab> symtabs;
400 };
401
402 /* The type of the `private' data passed around by the callback
403 functions. */
404
405 struct jit_dbg_reader_data
406 {
407 /* Address of the jit_code_entry in the inferior's address space. */
408 CORE_ADDR entry_addr;
409
410 /* The code entry, copied in our address space. */
411 const jit_code_entry &entry;
412
413 struct gdbarch *gdbarch;
414 };
415
416 /* The reader calls into this function to read data off the targets
417 address space. */
418
419 static enum gdb_status
420 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
421 {
422 int result = target_read_memory ((CORE_ADDR) target_mem,
423 (gdb_byte *) gdb_buf, len);
424 if (result == 0)
425 return GDB_SUCCESS;
426 else
427 return GDB_FAIL;
428 }
429
430 /* The reader calls into this function to create a new gdb_object
431 which it can then pass around to the other callbacks. Right now,
432 all that is required is allocating the memory. */
433
434 static struct gdb_object *
435 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
436 {
437 /* CB is not required right now, but sometime in the future we might
438 need a handle to it, and we'd like to do that without breaking
439 the ABI. */
440 return new gdb_object;
441 }
442
443 /* Readers call into this function to open a new gdb_symtab, which,
444 again, is passed around to other callbacks. */
445
446 static struct gdb_symtab *
447 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
448 struct gdb_object *object,
449 const char *file_name)
450 {
451 /* CB stays unused. See comment in jit_object_open_impl. */
452
453 object->symtabs.emplace_front (file_name);
454 return &object->symtabs.front ();
455 }
456
457 /* Called by readers to open a new gdb_block. This function also
458 inserts the new gdb_block in the correct place in the corresponding
459 gdb_symtab. */
460
461 static struct gdb_block *
462 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
463 struct gdb_symtab *symtab, struct gdb_block *parent,
464 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
465 {
466 /* Place the block at the beginning of the list, it will be sorted when the
467 symtab is finalized. */
468 symtab->blocks.emplace_front (parent, begin, end, name);
469 symtab->nblocks++;
470
471 return &symtab->blocks.front ();
472 }
473
474 /* Readers call this to add a line mapping (from PC to line number) to
475 a gdb_symtab. */
476
477 static void
478 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
479 struct gdb_symtab *stab, int nlines,
480 struct gdb_line_mapping *map)
481 {
482 int i;
483 int alloc_len;
484
485 if (nlines < 1)
486 return;
487
488 alloc_len = sizeof (struct linetable)
489 + (nlines - 1) * sizeof (struct linetable_entry);
490 stab->linetable.reset (XNEWVAR (struct linetable, alloc_len));
491 stab->linetable->nitems = nlines;
492 for (i = 0; i < nlines; i++)
493 {
494 stab->linetable->item[i].set_unrelocated_pc
495 (unrelocated_addr (map[i].pc));
496 stab->linetable->item[i].line = map[i].line;
497 stab->linetable->item[i].is_stmt = true;
498 }
499 }
500
501 /* Called by readers to close a gdb_symtab. Does not need to do
502 anything as of now. */
503
504 static void
505 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
506 struct gdb_symtab *stab)
507 {
508 /* Right now nothing needs to be done here. We may need to do some
509 cleanup here in the future (again, without breaking the plugin
510 ABI). */
511 }
512
513 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
514
515 static void
516 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
517 {
518 struct compunit_symtab *cust;
519 size_t blockvector_size;
520 CORE_ADDR begin, end;
521 struct blockvector *bv;
522
523 int actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
524
525 /* Sort the blocks in the order they should appear in the blockvector. */
526 stab->blocks.sort([] (const gdb_block &a, const gdb_block &b)
527 {
528 if (a.begin != b.begin)
529 return a.begin < b.begin;
530
531 return a.end > b.end;
532 });
533
534 cust = allocate_compunit_symtab (objfile, stab->file_name.c_str ());
535 symtab *filetab = allocate_symtab (cust, stab->file_name.c_str ());
536 add_compunit_symtab_to_objfile (cust);
537
538 /* JIT compilers compile in memory. */
539 cust->set_dirname (nullptr);
540
541 /* Copy over the linetable entry if one was provided. */
542 if (stab->linetable)
543 {
544 size_t size = ((stab->linetable->nitems - 1)
545 * sizeof (struct linetable_entry)
546 + sizeof (struct linetable));
547 struct linetable *new_table
548 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack,
549 size);
550 memcpy (new_table, stab->linetable.get (), size);
551 filetab->set_linetable (new_table);
552 }
553
554 blockvector_size = (sizeof (struct blockvector)
555 + (actual_nblocks - 1) * sizeof (struct block *));
556 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
557 blockvector_size);
558 cust->set_blockvector (bv);
559
560 /* At the end of this function, (begin, end) will contain the PC range this
561 entire blockvector spans. */
562 bv->set_map (nullptr);
563 begin = stab->blocks.front ().begin;
564 end = stab->blocks.front ().end;
565 bv->set_num_blocks (actual_nblocks);
566
567 /* First run over all the gdb_block objects, creating a real block
568 object for each. Simultaneously, keep setting the real_block
569 fields. */
570 int block_idx = FIRST_LOCAL_BLOCK;
571 for (gdb_block &gdb_block_iter : stab->blocks)
572 {
573 struct block *new_block = new (&objfile->objfile_obstack) block;
574 struct symbol *block_name = new (&objfile->objfile_obstack) symbol;
575 struct type *block_type = builtin_type (objfile->arch ())->builtin_void;
576
577 new_block->set_multidict
578 (mdict_create_linear (&objfile->objfile_obstack, NULL));
579 /* The address range. */
580 new_block->set_start (gdb_block_iter.begin);
581 new_block->set_end (gdb_block_iter.end);
582
583 /* The name. */
584 block_name->set_domain (VAR_DOMAIN);
585 block_name->set_aclass_index (LOC_BLOCK);
586 block_name->set_symtab (filetab);
587 block_name->set_type (lookup_function_type (block_type));
588 block_name->set_value_block (new_block);
589
590 block_name->m_name = obstack_strdup (&objfile->objfile_obstack,
591 gdb_block_iter.name.get ());
592
593 new_block->set_function (block_name);
594
595 bv->set_block (block_idx, new_block);
596 if (begin > new_block->start ())
597 begin = new_block->start ();
598 if (end < new_block->end ())
599 end = new_block->end ();
600
601 gdb_block_iter.real_block = new_block;
602
603 block_idx++;
604 }
605
606 /* Now add the special blocks. */
607 struct block *block_iter = NULL;
608 for (enum block_enum i : { GLOBAL_BLOCK, STATIC_BLOCK })
609 {
610 struct block *new_block;
611
612 if (i == GLOBAL_BLOCK)
613 new_block = new (&objfile->objfile_obstack) global_block;
614 else
615 new_block = new (&objfile->objfile_obstack) block;
616 new_block->set_multidict
617 (mdict_create_linear (&objfile->objfile_obstack, NULL));
618 new_block->set_superblock (block_iter);
619 block_iter = new_block;
620
621 new_block->set_start (begin);
622 new_block->set_end (end);
623
624 bv->set_block (i, new_block);
625
626 if (i == GLOBAL_BLOCK)
627 new_block->set_compunit_symtab (cust);
628 }
629
630 /* Fill up the superblock fields for the real blocks, using the
631 real_block fields populated earlier. */
632 for (gdb_block &gdb_block_iter : stab->blocks)
633 {
634 if (gdb_block_iter.parent != NULL)
635 {
636 /* If the plugin specifically mentioned a parent block, we
637 use that. */
638 gdb_block_iter.real_block->set_superblock
639 (gdb_block_iter.parent->real_block);
640
641 }
642 else
643 {
644 /* And if not, we set a default parent block. */
645 gdb_block_iter.real_block->set_superblock (bv->static_block ());
646 }
647 }
648 }
649
650 /* Called when closing a gdb_objfile. Converts OBJ to a proper
651 objfile. */
652
653 static void
654 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
655 struct gdb_object *obj)
656 {
657 jit_dbg_reader_data *priv_data = (jit_dbg_reader_data *) cb->priv_data;
658 std::string objfile_name
659 = string_printf ("<< JIT compiled code at %s >>",
660 paddress (priv_data->gdbarch,
661 priv_data->entry.symfile_addr));
662
663 objfile *objfile = objfile::make (nullptr, objfile_name.c_str (),
664 OBJF_NOT_FILENAME);
665 objfile->per_bfd->gdbarch = priv_data->gdbarch;
666
667 for (gdb_symtab &symtab : obj->symtabs)
668 finalize_symtab (&symtab, objfile);
669
670 add_objfile_entry (objfile, priv_data->entry_addr,
671 priv_data->entry.symfile_addr,
672 priv_data->entry.symfile_size);
673
674 delete obj;
675 }
676
677 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
678 ENTRY_ADDR is the address of the struct jit_code_entry in the
679 inferior address space. */
680
681 static int
682 jit_reader_try_read_symtab (gdbarch *gdbarch, jit_code_entry *code_entry,
683 CORE_ADDR entry_addr)
684 {
685 int status;
686 jit_dbg_reader_data priv_data
687 {
688 entry_addr,
689 *code_entry,
690 gdbarch
691 };
692 struct gdb_reader_funcs *funcs;
693 struct gdb_symbol_callbacks callbacks =
694 {
695 jit_object_open_impl,
696 jit_symtab_open_impl,
697 jit_block_open_impl,
698 jit_symtab_close_impl,
699 jit_object_close_impl,
700
701 jit_symtab_line_mapping_add_impl,
702 jit_target_read_impl,
703
704 &priv_data
705 };
706
707 if (!loaded_jit_reader)
708 return 0;
709
710 gdb::byte_vector gdb_mem (code_entry->symfile_size);
711
712 status = 1;
713 try
714 {
715 if (target_read_memory (code_entry->symfile_addr, gdb_mem.data (),
716 code_entry->symfile_size))
717 status = 0;
718 }
719 catch (const gdb_exception_error &e)
720 {
721 status = 0;
722 }
723
724 if (status)
725 {
726 funcs = loaded_jit_reader->functions;
727 if (funcs->read (funcs, &callbacks, gdb_mem.data (),
728 code_entry->symfile_size)
729 != GDB_SUCCESS)
730 status = 0;
731 }
732
733 if (status == 0)
734 jit_debug_printf ("Could not read symtab using the loaded JIT reader.");
735
736 return status;
737 }
738
739 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
740 struct jit_code_entry in the inferior address space. */
741
742 static void
743 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
744 CORE_ADDR entry_addr,
745 struct gdbarch *gdbarch)
746 {
747 struct bfd_section *sec;
748 struct objfile *objfile;
749 const struct bfd_arch_info *b;
750
751 jit_debug_printf ("symfile_addr = %s, symfile_size = %s",
752 paddress (gdbarch, code_entry->symfile_addr),
753 pulongest (code_entry->symfile_size));
754
755 gdb_bfd_ref_ptr nbfd (gdb_bfd_open_from_target_memory
756 (code_entry->symfile_addr, code_entry->symfile_size, gnutarget));
757 if (nbfd == NULL)
758 {
759 gdb_puts (_("Error opening JITed symbol file, ignoring it.\n"),
760 gdb_stderr);
761 return;
762 }
763
764 /* Check the format. NOTE: This initializes important data that GDB uses!
765 We would segfault later without this line. */
766 if (!bfd_check_format (nbfd.get (), bfd_object))
767 {
768 gdb_printf (gdb_stderr, _("\
769 JITed symbol file is not an object file, ignoring it.\n"));
770 return;
771 }
772
773 /* Check bfd arch. */
774 b = gdbarch_bfd_arch_info (gdbarch);
775 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
776 warning (_("JITed object file architecture %s is not compatible "
777 "with target architecture %s."),
778 bfd_get_arch_info (nbfd.get ())->printable_name,
779 b->printable_name);
780
781 /* Read the section address information out of the symbol file. Since the
782 file is generated by the JIT at runtime, it should all of the absolute
783 addresses that we care about. */
784 section_addr_info sai;
785 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
786 if ((bfd_section_flags (sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
787 {
788 /* We assume that these virtual addresses are absolute, and do not
789 treat them as offsets. */
790 sai.emplace_back (bfd_section_vma (sec),
791 bfd_section_name (sec),
792 sec->index);
793 }
794
795 /* This call does not take ownership of SAI. */
796 objfile = symbol_file_add_from_bfd (nbfd,
797 bfd_get_filename (nbfd.get ()), 0,
798 &sai,
799 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
800
801 add_objfile_entry (objfile, entry_addr, code_entry->symfile_addr,
802 code_entry->symfile_size);
803 }
804
805 /* This function registers code associated with a JIT code entry. It uses the
806 pointer and size pair in the entry to read the symbol file from the remote
807 and then calls symbol_file_add_from_local_memory to add it as though it were
808 a symbol file added by the user. */
809
810 static void
811 jit_register_code (struct gdbarch *gdbarch,
812 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
813 {
814 int success;
815
816 jit_debug_printf ("symfile_addr = %s, symfile_size = %s",
817 paddress (gdbarch, code_entry->symfile_addr),
818 pulongest (code_entry->symfile_size));
819
820 success = jit_reader_try_read_symtab (gdbarch, code_entry, entry_addr);
821
822 if (!success)
823 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
824 }
825
826 /* Look up the objfile with this code entry address. */
827
828 static struct objfile *
829 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
830 {
831 for (objfile *objf : current_program_space->objfiles ())
832 {
833 if (objf->jited_data != nullptr && objf->jited_data->addr == entry_addr)
834 return objf;
835 }
836
837 return NULL;
838 }
839
840 /* This is called when a breakpoint is deleted. It updates the
841 inferior's cache, if needed. */
842
843 static void
844 jit_breakpoint_deleted (struct breakpoint *b)
845 {
846 if (b->type != bp_jit_event)
847 return;
848
849 for (bp_location &iter : b->locations ())
850 {
851 for (objfile *objf : iter.pspace->objfiles ())
852 {
853 jiter_objfile_data *jiter_data = objf->jiter_data.get ();
854
855 if (jiter_data != nullptr
856 && jiter_data->jit_breakpoint == iter.owner)
857 {
858 jiter_data->cached_code_address = 0;
859 jiter_data->jit_breakpoint = nullptr;
860 }
861 }
862 }
863 }
864
865 /* (Re-)Initialize the jit breakpoints for JIT-producing objfiles in
866 PSPACE. */
867
868 static void
869 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch, program_space *pspace)
870 {
871 for (objfile *the_objfile : pspace->objfiles ())
872 {
873 /* Skip separate debug objects. */
874 if (the_objfile->separate_debug_objfile_backlink != nullptr)
875 continue;
876
877 if (the_objfile->skip_jit_symbol_lookup)
878 continue;
879
880 /* Lookup the registration symbol. If it is missing, then we
881 assume we are not attached to a JIT. */
882 bound_minimal_symbol reg_symbol
883 = lookup_minimal_symbol (jit_break_name, nullptr, the_objfile);
884 if (reg_symbol.minsym == NULL
885 || reg_symbol.value_address () == 0)
886 {
887 /* No need to repeat the lookup the next time. */
888 the_objfile->skip_jit_symbol_lookup = true;
889 continue;
890 }
891
892 bound_minimal_symbol desc_symbol
893 = lookup_minimal_symbol (jit_descriptor_name, NULL, the_objfile);
894 if (desc_symbol.minsym == NULL
895 || desc_symbol.value_address () == 0)
896 {
897 /* No need to repeat the lookup the next time. */
898 the_objfile->skip_jit_symbol_lookup = true;
899 continue;
900 }
901
902 jiter_objfile_data *objf_data
903 = get_jiter_objfile_data (the_objfile);
904 objf_data->register_code = reg_symbol.minsym;
905 objf_data->descriptor = desc_symbol.minsym;
906
907 CORE_ADDR addr = objf_data->register_code->value_address (the_objfile);
908 jit_debug_printf ("breakpoint_addr = %s", paddress (gdbarch, addr));
909
910 /* Check if we need to re-create the breakpoint. */
911 if (objf_data->cached_code_address == addr)
912 continue;
913
914 /* Delete the old breakpoint. */
915 if (objf_data->jit_breakpoint != nullptr)
916 delete_breakpoint (objf_data->jit_breakpoint);
917
918 /* Put a breakpoint in the registration symbol. */
919 objf_data->cached_code_address = addr;
920 objf_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
921 }
922 }
923
924 /* The private data passed around in the frame unwind callback
925 functions. */
926
927 struct jit_unwind_private
928 {
929 /* Cached register values. See jit_frame_sniffer to see how this
930 works. */
931 std::unique_ptr<detached_regcache> regcache;
932
933 /* The frame being unwound. */
934 frame_info_ptr this_frame;
935 };
936
937 /* Sets the value of a particular register in this frame. */
938
939 static void
940 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
941 struct gdb_reg_value *value)
942 {
943 struct jit_unwind_private *priv;
944 int gdb_reg;
945
946 priv = (struct jit_unwind_private *) cb->priv_data;
947
948 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
949 dwarf_regnum);
950 if (gdb_reg == -1)
951 {
952 jit_debug_printf ("Could not recognize DWARF regnum %d", dwarf_regnum);
953 value->free (value);
954 return;
955 }
956
957 priv->regcache->raw_supply (gdb_reg, value->value);
958 value->free (value);
959 }
960
961 static void
962 reg_value_free_impl (struct gdb_reg_value *value)
963 {
964 xfree (value);
965 }
966
967 /* Get the value of register REGNUM in the previous frame. */
968
969 static struct gdb_reg_value *
970 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
971 {
972 struct jit_unwind_private *priv;
973 struct gdb_reg_value *value;
974 int gdb_reg, size;
975 struct gdbarch *frame_arch;
976
977 priv = (struct jit_unwind_private *) cb->priv_data;
978 frame_arch = get_frame_arch (priv->this_frame);
979
980 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
981 size = register_size (frame_arch, gdb_reg);
982 value = ((struct gdb_reg_value *)
983 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
984 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
985 value->value);
986 value->size = size;
987 value->free = reg_value_free_impl;
988 return value;
989 }
990
991 /* gdb_reg_value has a free function, which must be called on each
992 saved register value. */
993
994 static void
995 jit_dealloc_cache (frame_info *this_frame, void *cache)
996 {
997 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
998 delete priv_data;
999 }
1000
1001 /* The frame sniffer for the pseudo unwinder.
1002
1003 While this is nominally a frame sniffer, in the case where the JIT
1004 reader actually recognizes the frame, it does a lot more work -- it
1005 unwinds the frame and saves the corresponding register values in
1006 the cache. jit_frame_prev_register simply returns the saved
1007 register values. */
1008
1009 static int
1010 jit_frame_sniffer (const struct frame_unwind *self,
1011 frame_info_ptr this_frame, void **cache)
1012 {
1013 struct jit_unwind_private *priv_data;
1014 struct gdb_unwind_callbacks callbacks;
1015 struct gdb_reader_funcs *funcs;
1016
1017 callbacks.reg_get = jit_unwind_reg_get_impl;
1018 callbacks.reg_set = jit_unwind_reg_set_impl;
1019 callbacks.target_read = jit_target_read_impl;
1020
1021 if (loaded_jit_reader == NULL)
1022 return 0;
1023
1024 funcs = loaded_jit_reader->functions;
1025
1026 gdb_assert (!*cache);
1027
1028 priv_data = new struct jit_unwind_private;
1029 *cache = priv_data;
1030 /* Take a snapshot of current regcache. */
1031 priv_data->regcache.reset
1032 (new detached_regcache (get_frame_arch (this_frame), true));
1033 priv_data->this_frame = this_frame;
1034
1035 callbacks.priv_data = priv_data;
1036
1037 /* Try to coax the provided unwinder to unwind the stack */
1038 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1039 {
1040 jit_debug_printf ("Successfully unwound frame using JIT reader.");
1041 return 1;
1042 }
1043
1044 jit_debug_printf ("Could not unwind frame using JIT reader.");
1045
1046 jit_dealloc_cache (this_frame.get (), *cache);
1047 *cache = NULL;
1048
1049 return 0;
1050 }
1051
1052
1053 /* The frame_id function for the pseudo unwinder. Relays the call to
1054 the loaded plugin. */
1055
1056 static void
1057 jit_frame_this_id (frame_info_ptr this_frame, void **cache,
1058 struct frame_id *this_id)
1059 {
1060 struct jit_unwind_private priv;
1061 struct gdb_frame_id frame_id;
1062 struct gdb_reader_funcs *funcs;
1063 struct gdb_unwind_callbacks callbacks;
1064
1065 priv.regcache.reset ();
1066 priv.this_frame = this_frame;
1067
1068 /* We don't expect the frame_id function to set any registers, so we
1069 set reg_set to NULL. */
1070 callbacks.reg_get = jit_unwind_reg_get_impl;
1071 callbacks.reg_set = NULL;
1072 callbacks.target_read = jit_target_read_impl;
1073 callbacks.priv_data = &priv;
1074
1075 gdb_assert (loaded_jit_reader);
1076 funcs = loaded_jit_reader->functions;
1077
1078 frame_id = funcs->get_frame_id (funcs, &callbacks);
1079 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1080 }
1081
1082 /* Pseudo unwinder function. Reads the previously fetched value for
1083 the register from the cache. */
1084
1085 static struct value *
1086 jit_frame_prev_register (frame_info_ptr this_frame, void **cache, int reg)
1087 {
1088 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1089 struct gdbarch *gdbarch;
1090
1091 if (priv == NULL)
1092 return frame_unwind_got_optimized (this_frame, reg);
1093
1094 gdbarch = priv->regcache->arch ();
1095 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1096 enum register_status status = priv->regcache->cooked_read (reg, buf);
1097
1098 if (status == REG_VALID)
1099 return frame_unwind_got_bytes (this_frame, reg, buf);
1100 else
1101 return frame_unwind_got_optimized (this_frame, reg);
1102 }
1103
1104 /* Relay everything back to the unwinder registered by the JIT debug
1105 info reader.*/
1106
1107 static const struct frame_unwind jit_frame_unwind =
1108 {
1109 "jit",
1110 NORMAL_FRAME,
1111 default_frame_unwind_stop_reason,
1112 jit_frame_this_id,
1113 jit_frame_prev_register,
1114 NULL,
1115 jit_frame_sniffer,
1116 jit_dealloc_cache
1117 };
1118
1119
1120 /* This is the information that is stored at jit_gdbarch_data for each
1121 architecture. */
1122
1123 struct jit_gdbarch_data_type
1124 {
1125 /* Has the (pseudo) unwinder been pretended? */
1126 int unwinder_registered = 0;
1127 };
1128
1129 /* An unwinder is registered for every gdbarch. This key is used to
1130 remember if the unwinder has been registered for a particular
1131 gdbarch. */
1132
1133 static const registry<gdbarch>::key<jit_gdbarch_data_type> jit_gdbarch_data;
1134
1135 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1136
1137 static void
1138 jit_prepend_unwinder (struct gdbarch *gdbarch)
1139 {
1140 struct jit_gdbarch_data_type *data = jit_gdbarch_data.get (gdbarch);
1141 if (data == nullptr)
1142 data = jit_gdbarch_data.emplace (gdbarch);
1143
1144 if (!data->unwinder_registered)
1145 {
1146 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1147 data->unwinder_registered = 1;
1148 }
1149 }
1150
1151 /* Looks for the descriptor and registration symbols and breakpoints
1152 the registration function. If it finds both, it registers all the
1153 already JITed code. If it has already found the symbols, then it
1154 doesn't try again. */
1155
1156 static void
1157 jit_inferior_init (inferior *inf)
1158 {
1159 struct jit_descriptor descriptor;
1160 struct jit_code_entry cur_entry;
1161 CORE_ADDR cur_entry_addr;
1162 struct gdbarch *gdbarch = inf->arch ();
1163 program_space *pspace = inf->pspace;
1164
1165 jit_debug_printf ("called");
1166
1167 jit_prepend_unwinder (gdbarch);
1168
1169 jit_breakpoint_re_set_internal (gdbarch, pspace);
1170
1171 for (objfile *jiter : pspace->objfiles ())
1172 {
1173 if (jiter->jiter_data == nullptr)
1174 continue;
1175
1176 /* Read the descriptor so we can check the version number and load
1177 any already JITed functions. */
1178 if (!jit_read_descriptor (gdbarch, &descriptor, jiter))
1179 continue;
1180
1181 /* Check that the version number agrees with that we support. */
1182 if (descriptor.version != 1)
1183 {
1184 gdb_printf (gdb_stderr,
1185 _("Unsupported JIT protocol version %ld "
1186 "in descriptor (expected 1)\n"),
1187 (long) descriptor.version);
1188 continue;
1189 }
1190
1191 /* If we've attached to a running program, we need to check the
1192 descriptor to register any functions that were already
1193 generated. */
1194 for (cur_entry_addr = descriptor.first_entry;
1195 cur_entry_addr != 0;
1196 cur_entry_addr = cur_entry.next_entry)
1197 {
1198 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1199
1200 /* This hook may be called many times during setup, so make sure
1201 we don't add the same symbol file twice. */
1202 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1203 continue;
1204
1205 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1206 }
1207 }
1208 }
1209
1210 /* inferior_created observer. */
1211
1212 static void
1213 jit_inferior_created_hook (inferior *inf)
1214 {
1215 jit_inferior_init (inf);
1216 }
1217
1218 /* inferior_execd observer. */
1219
1220 static void
1221 jit_inferior_execd_hook (inferior *exec_inf, inferior *follow_inf)
1222 {
1223 jit_inferior_init (follow_inf);
1224 }
1225
1226 /* Exported routine to call to re-set the jit breakpoints,
1227 e.g. when a program is rerun. */
1228
1229 void
1230 jit_breakpoint_re_set (void)
1231 {
1232 jit_breakpoint_re_set_internal (current_inferior ()->arch (),
1233 current_program_space);
1234 }
1235
1236 /* This function cleans up any code entries left over when the
1237 inferior exits. We get left over code when the inferior exits
1238 without unregistering its code, for example when it crashes. */
1239
1240 static void
1241 jit_inferior_exit_hook (struct inferior *inf)
1242 {
1243 for (objfile *objf : current_program_space->objfiles_safe ())
1244 {
1245 if (objf->jited_data != nullptr && objf->jited_data->addr != 0)
1246 objf->unlink ();
1247 }
1248 }
1249
1250 void
1251 jit_event_handler (gdbarch *gdbarch, objfile *jiter)
1252 {
1253 struct jit_descriptor descriptor;
1254
1255 /* If we get a JIT breakpoint event for this objfile, it is necessarily a
1256 JITer. */
1257 gdb_assert (jiter->jiter_data != nullptr);
1258
1259 /* Read the descriptor from remote memory. */
1260 if (!jit_read_descriptor (gdbarch, &descriptor, jiter))
1261 return;
1262 CORE_ADDR entry_addr = descriptor.relevant_entry;
1263
1264 /* Do the corresponding action. */
1265 switch (descriptor.action_flag)
1266 {
1267 case JIT_NOACTION:
1268 break;
1269
1270 case JIT_REGISTER:
1271 {
1272 jit_code_entry code_entry;
1273 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1274 jit_register_code (gdbarch, entry_addr, &code_entry);
1275 break;
1276 }
1277
1278 case JIT_UNREGISTER:
1279 {
1280 objfile *jited = jit_find_objf_with_entry_addr (entry_addr);
1281 if (jited == nullptr)
1282 gdb_printf (gdb_stderr,
1283 _("Unable to find JITed code "
1284 "entry at address: %s\n"),
1285 paddress (gdbarch, entry_addr));
1286 else
1287 jited->unlink ();
1288
1289 break;
1290 }
1291
1292 default:
1293 error (_("Unknown action_flag value in JIT descriptor!"));
1294 break;
1295 }
1296 }
1297
1298 void _initialize_jit ();
1299 void
1300 _initialize_jit ()
1301 {
1302 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1303 JIT_READER_DIR_RELOCATABLE);
1304 add_setshow_boolean_cmd ("jit", class_maintenance, &jit_debug,
1305 _("Set JIT debugging."),
1306 _("Show JIT debugging."),
1307 _("When set, JIT debugging is enabled."),
1308 NULL,
1309 show_jit_debug,
1310 &setdebuglist, &showdebuglist);
1311
1312 add_cmd ("jit", class_maintenance, maint_info_jit_cmd,
1313 _("Print information about JIT-ed code objects."),
1314 &maintenanceinfolist);
1315
1316 gdb::observers::inferior_created.attach (jit_inferior_created_hook, "jit");
1317 gdb::observers::inferior_execd.attach (jit_inferior_execd_hook, "jit");
1318 gdb::observers::inferior_exit.attach (jit_inferior_exit_hook, "jit");
1319 gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted, "jit");
1320
1321 if (is_dl_available ())
1322 {
1323 struct cmd_list_element *c;
1324
1325 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1326 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1327 Usage: jit-reader-load FILE\n\
1328 Try to load file FILE as a debug info reader (and unwinder) for\n\
1329 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1330 relocated relative to the GDB executable if required."));
1331 set_cmd_completer (c, filename_completer);
1332
1333 c = add_com ("jit-reader-unload", no_class,
1334 jit_reader_unload_command, _("\
1335 Unload the currently loaded JIT debug info reader.\n\
1336 Usage: jit-reader-unload\n\n\
1337 Do \"help jit-reader-load\" for info on loading debug info readers."));
1338 set_cmd_completer (c, noop_completer);
1339 }
1340 }