Remove path name from test case
[binutils-gdb.git] / gdb / objfiles.h
1 /* Definitions for symbol file management in GDB.
2
3 Copyright (C) 1992-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (OBJFILES_H)
21 #define OBJFILES_H
22
23 #include "hashtab.h"
24 #include "gdbsupport/gdb_obstack.h"
25 #include "objfile-flags.h"
26 #include "symfile.h"
27 #include "progspace.h"
28 #include "registry.h"
29 #include "gdb_bfd.h"
30 #include <atomic>
31 #include <bitset>
32 #include <vector>
33 #include "gdbsupport/next-iterator.h"
34 #include "gdbsupport/safe-iterator.h"
35 #include "bcache.h"
36 #include "gdbarch.h"
37 #include "gdbsupport/refcounted-object.h"
38 #include "jit.h"
39 #include "quick-symbol.h"
40 #include <forward_list>
41
42 struct htab;
43 struct objfile_data;
44 struct partial_symbol;
45
46 /* This structure maintains information on a per-objfile basis about the
47 "entry point" of the objfile, and the scope within which the entry point
48 exists. It is possible that gdb will see more than one objfile that is
49 executable, each with its own entry point.
50
51 For example, for dynamically linked executables in SVR4, the dynamic linker
52 code is contained within the shared C library, which is actually executable
53 and is run by the kernel first when an exec is done of a user executable
54 that is dynamically linked. The dynamic linker within the shared C library
55 then maps in the various program segments in the user executable and jumps
56 to the user executable's recorded entry point, as if the call had been made
57 directly by the kernel.
58
59 The traditional gdb method of using this info was to use the
60 recorded entry point to set the entry-file's lowpc and highpc from
61 the debugging information, where these values are the starting
62 address (inclusive) and ending address (exclusive) of the
63 instruction space in the executable which correspond to the
64 "startup file", i.e. crt0.o in most cases. This file is assumed to
65 be a startup file and frames with pc's inside it are treated as
66 nonexistent. Setting these variables is necessary so that
67 backtraces do not fly off the bottom of the stack.
68
69 NOTE: cagney/2003-09-09: It turns out that this "traditional"
70 method doesn't work. Corinna writes: ``It turns out that the call
71 to test for "inside entry file" destroys a meaningful backtrace
72 under some conditions. E.g. the backtrace tests in the asm-source
73 testcase are broken for some targets. In this test the functions
74 are all implemented as part of one file and the testcase is not
75 necessarily linked with a start file (depending on the target).
76 What happens is, that the first frame is printed normally and
77 following frames are treated as being inside the entry file then.
78 This way, only the #0 frame is printed in the backtrace output.''
79 Ref "frame.c" "NOTE: vinschen/2003-04-01".
80
81 Gdb also supports an alternate method to avoid running off the bottom
82 of the stack.
83
84 There are two frames that are "special", the frame for the function
85 containing the process entry point, since it has no predecessor frame,
86 and the frame for the function containing the user code entry point
87 (the main() function), since all the predecessor frames are for the
88 process startup code. Since we have no guarantee that the linked
89 in startup modules have any debugging information that gdb can use,
90 we need to avoid following frame pointers back into frames that might
91 have been built in the startup code, as we might get hopelessly
92 confused. However, we almost always have debugging information
93 available for main().
94
95 These variables are used to save the range of PC values which are
96 valid within the main() function and within the function containing
97 the process entry point. If we always consider the frame for
98 main() as the outermost frame when debugging user code, and the
99 frame for the process entry point function as the outermost frame
100 when debugging startup code, then all we have to do is have
101 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
102 current PC is within the range specified by these variables. In
103 essence, we set "ceilings" in the frame chain beyond which we will
104 not proceed when following the frame chain back up the stack.
105
106 A nice side effect is that we can still debug startup code without
107 running off the end of the frame chain, assuming that we have usable
108 debugging information in the startup modules, and if we choose to not
109 use the block at main, or can't find it for some reason, everything
110 still works as before. And if we have no startup code debugging
111 information but we do have usable information for main(), backtraces
112 from user code don't go wandering off into the startup code. */
113
114 struct entry_info
115 {
116 /* The unrelocated value we should use for this objfile entry point. */
117 CORE_ADDR entry_point;
118
119 /* The index of the section in which the entry point appears. */
120 int the_bfd_section_index;
121
122 /* Set to 1 iff ENTRY_POINT contains a valid value. */
123 unsigned entry_point_p : 1;
124
125 /* Set to 1 iff this object was initialized. */
126 unsigned initialized : 1;
127 };
128
129 #define SECT_OFF_DATA(objfile) \
130 ((objfile->sect_index_data == -1) \
131 ? (internal_error (_("sect_index_data not initialized")), -1) \
132 : objfile->sect_index_data)
133
134 #define SECT_OFF_RODATA(objfile) \
135 ((objfile->sect_index_rodata == -1) \
136 ? (internal_error (_("sect_index_rodata not initialized")), -1) \
137 : objfile->sect_index_rodata)
138
139 #define SECT_OFF_TEXT(objfile) \
140 ((objfile->sect_index_text == -1) \
141 ? (internal_error (_("sect_index_text not initialized")), -1) \
142 : objfile->sect_index_text)
143
144 /* Sometimes the .bss section is missing from the objfile, so we don't
145 want to die here. Let the users of SECT_OFF_BSS deal with an
146 uninitialized section index. */
147 #define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
148
149 /* The "objstats" structure provides a place for gdb to record some
150 interesting information about its internal state at runtime, on a
151 per objfile basis, such as information about the number of symbols
152 read, size of string table (if any), etc. */
153
154 struct objstats
155 {
156 /* Number of full symbols read. */
157 int n_syms = 0;
158
159 /* Number of ".stabs" read (if applicable). */
160 int n_stabs = 0;
161
162 /* Number of types. */
163 int n_types = 0;
164
165 /* Size of stringtable, (if applicable). */
166 int sz_strtab = 0;
167 };
168
169 #define OBJSTAT(objfile, expr) (objfile -> stats.expr)
170 #define OBJSTATS struct objstats stats
171 extern void print_objfile_statistics (void);
172
173 /* Number of entries in the minimal symbol hash table. */
174 #define MINIMAL_SYMBOL_HASH_SIZE 2039
175
176 /* An iterator for minimal symbols. */
177
178 struct minimal_symbol_iterator
179 {
180 typedef minimal_symbol_iterator self_type;
181 typedef struct minimal_symbol *value_type;
182 typedef struct minimal_symbol *&reference;
183 typedef struct minimal_symbol **pointer;
184 typedef std::forward_iterator_tag iterator_category;
185 typedef int difference_type;
186
187 explicit minimal_symbol_iterator (struct minimal_symbol *msym)
188 : m_msym (msym)
189 {
190 }
191
192 value_type operator* () const
193 {
194 return m_msym;
195 }
196
197 bool operator== (const self_type &other) const
198 {
199 return m_msym == other.m_msym;
200 }
201
202 bool operator!= (const self_type &other) const
203 {
204 return m_msym != other.m_msym;
205 }
206
207 self_type &operator++ ()
208 {
209 ++m_msym;
210 return *this;
211 }
212
213 private:
214 struct minimal_symbol *m_msym;
215 };
216
217 /* Some objfile data is hung off the BFD. This enables sharing of the
218 data across all objfiles using the BFD. The data is stored in an
219 instance of this structure, and associated with the BFD using the
220 registry system. */
221
222 struct objfile_per_bfd_storage
223 {
224 objfile_per_bfd_storage (bfd *bfd)
225 : minsyms_read (false), m_bfd (bfd)
226 {}
227
228 ~objfile_per_bfd_storage ();
229
230 /* Intern STRING in this object's string cache and return the unique copy.
231 The copy has the same lifetime as this object.
232
233 STRING must be null-terminated. */
234
235 const char *intern (const char *str)
236 {
237 return (const char *) string_cache.insert (str, strlen (str) + 1);
238 }
239
240 /* Same as the above, but for an std::string. */
241
242 const char *intern (const std::string &str)
243 {
244 return (const char *) string_cache.insert (str.c_str (), str.size () + 1);
245 }
246
247 /* Get the BFD this object is associated to. */
248
249 bfd *get_bfd () const
250 {
251 return m_bfd;
252 }
253
254 /* The storage has an obstack of its own. */
255
256 auto_obstack storage_obstack;
257
258 /* String cache. */
259
260 gdb::bcache string_cache;
261
262 /* The gdbarch associated with the BFD. Note that this gdbarch is
263 determined solely from BFD information, without looking at target
264 information. The gdbarch determined from a running target may
265 differ from this e.g. with respect to register types and names. */
266
267 struct gdbarch *gdbarch = NULL;
268
269 /* Hash table for mapping symbol names to demangled names. Each
270 entry in the hash table is a demangled_name_entry struct, storing the
271 language and two consecutive strings, both null-terminated; the first one
272 is a mangled or linkage name, and the second is the demangled name or just
273 a zero byte if the name doesn't demangle. */
274
275 htab_up demangled_names_hash;
276
277 /* The per-objfile information about the entry point, the scope (file/func)
278 containing the entry point, and the scope of the user's main() func. */
279
280 entry_info ei {};
281
282 /* The name and language of any "main" found in this objfile. The
283 name can be NULL, which means that the information was not
284 recorded. */
285
286 const char *name_of_main = NULL;
287 enum language language_of_main = language_unknown;
288
289 /* Each file contains a pointer to an array of minimal symbols for all
290 global symbols that are defined within the file. The array is
291 terminated by a "null symbol", one that has a NULL pointer for the
292 name and a zero value for the address. This makes it easy to walk
293 through the array when passed a pointer to somewhere in the middle
294 of it. There is also a count of the number of symbols, which does
295 not include the terminating null symbol. */
296
297 gdb::unique_xmalloc_ptr<minimal_symbol> msymbols;
298 int minimal_symbol_count = 0;
299
300 /* The number of minimal symbols read, before any minimal symbol
301 de-duplication is applied. Note in particular that this has only
302 a passing relationship with the actual size of the table above;
303 use minimal_symbol_count if you need the true size. */
304
305 int n_minsyms = 0;
306
307 /* This is true if minimal symbols have already been read. Symbol
308 readers can use this to bypass minimal symbol reading. Also, the
309 minimal symbol table management code in minsyms.c uses this to
310 suppress new minimal symbols. You might think that MSYMBOLS or
311 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
312 for multiple readers to install minimal symbols into a given
313 per-BFD. */
314
315 bool minsyms_read : 1;
316
317 /* This is a hash table used to index the minimal symbols by (mangled)
318 name. */
319
320 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
321
322 /* This hash table is used to index the minimal symbols by their
323 demangled names. Uses a language-specific hash function via
324 search_name_hash. */
325
326 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
327
328 /* All the different languages of symbols found in the demangled
329 hash table. */
330 std::bitset<nr_languages> demangled_hash_languages;
331
332 private:
333 /* The BFD this object is associated to. */
334
335 bfd *m_bfd;
336 };
337
338 /* An iterator that first returns a parent objfile, and then each
339 separate debug objfile. */
340
341 class separate_debug_iterator
342 {
343 public:
344
345 explicit separate_debug_iterator (struct objfile *objfile)
346 : m_objfile (objfile),
347 m_parent (objfile)
348 {
349 }
350
351 bool operator!= (const separate_debug_iterator &other)
352 {
353 return m_objfile != other.m_objfile;
354 }
355
356 separate_debug_iterator &operator++ ();
357
358 struct objfile *operator* ()
359 {
360 return m_objfile;
361 }
362
363 private:
364
365 struct objfile *m_objfile;
366 struct objfile *m_parent;
367 };
368
369 /* A range adapter wrapping separate_debug_iterator. */
370
371 typedef iterator_range<separate_debug_iterator> separate_debug_range;
372
373 /* Sections in an objfile. The section offsets are stored in the
374 OBJFILE. */
375
376 struct obj_section
377 {
378 /* Relocation offset applied to the section. */
379 CORE_ADDR offset () const;
380
381 /* Set the relocation offset applied to the section. */
382 void set_offset (CORE_ADDR offset);
383
384 /* The memory address of the section (vma + offset). */
385 CORE_ADDR addr () const
386 {
387 return bfd_section_vma (this->the_bfd_section) + this->offset ();
388 }
389
390 /* The one-passed-the-end memory address of the section
391 (vma + size + offset). */
392 CORE_ADDR endaddr () const
393 {
394 return this->addr () + bfd_section_size (this->the_bfd_section);
395 }
396
397 /* BFD section pointer */
398 struct bfd_section *the_bfd_section;
399
400 /* Objfile this section is part of. */
401 struct objfile *objfile;
402
403 /* True if this "overlay section" is mapped into an "overlay region". */
404 int ovly_mapped;
405 };
406
407 /* Master structure for keeping track of each file from which
408 gdb reads symbols. There are several ways these get allocated: 1.
409 The main symbol file, symfile_objfile, set by the symbol-file command,
410 2. Additional symbol files added by the add-symbol-file command,
411 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
412 for modules that were loaded when GDB attached to a remote system
413 (see remote-vx.c).
414
415 GDB typically reads symbols twice -- first an initial scan which just
416 reads "partial symbols"; these are partial information for the
417 static/global symbols in a symbol file. When later looking up
418 symbols, lookup_symbol is used to check if we only have a partial
419 symbol and if so, read and expand the full compunit. */
420
421 struct objfile
422 {
423 private:
424
425 /* The only way to create an objfile is to call objfile::make. */
426 objfile (gdb_bfd_ref_ptr, const char *, objfile_flags);
427
428 public:
429
430 /* Normally you should not call delete. Instead, call 'unlink' to
431 remove it from the program space's list. In some cases, you may
432 need to hold a reference to an objfile that is independent of its
433 existence on the program space's list; for this case, the
434 destructor must be public so that unique_ptr can reference
435 it. */
436 ~objfile ();
437
438 /* Create an objfile. */
439 static objfile *make (gdb_bfd_ref_ptr bfd_, const char *name_,
440 objfile_flags flags_, objfile *parent = nullptr);
441
442 /* Remove an objfile from the current program space, and free
443 it. */
444 void unlink ();
445
446 DISABLE_COPY_AND_ASSIGN (objfile);
447
448 /* A range adapter that makes it possible to iterate over all
449 compunits in one objfile. */
450
451 compunit_symtab_range compunits ()
452 {
453 return compunit_symtab_range (compunit_symtabs);
454 }
455
456 /* A range adapter that makes it possible to iterate over all
457 minimal symbols of an objfile. */
458
459 typedef iterator_range<minimal_symbol_iterator> msymbols_range;
460
461 /* Return a range adapter for iterating over all minimal
462 symbols. */
463
464 msymbols_range msymbols ()
465 {
466 auto start = minimal_symbol_iterator (per_bfd->msymbols.get ());
467 auto end = minimal_symbol_iterator (per_bfd->msymbols.get ()
468 + per_bfd->minimal_symbol_count);
469 return msymbols_range (start, end);
470 }
471
472 /* Return a range adapter for iterating over all the separate debug
473 objfiles of this objfile. */
474
475 separate_debug_range separate_debug_objfiles ()
476 {
477 auto start = separate_debug_iterator (this);
478 auto end = separate_debug_iterator (nullptr);
479 return separate_debug_range (start, end);
480 }
481
482 CORE_ADDR text_section_offset () const
483 {
484 return section_offsets[SECT_OFF_TEXT (this)];
485 }
486
487 CORE_ADDR data_section_offset () const
488 {
489 return section_offsets[SECT_OFF_DATA (this)];
490 }
491
492 /* Intern STRING and return the unique copy. The copy has the same
493 lifetime as the per-BFD object. */
494 const char *intern (const char *str)
495 {
496 return per_bfd->intern (str);
497 }
498
499 /* Intern STRING and return the unique copy. The copy has the same
500 lifetime as the per-BFD object. */
501 const char *intern (const std::string &str)
502 {
503 return per_bfd->intern (str);
504 }
505
506 /* Retrieve the gdbarch associated with this objfile. */
507 struct gdbarch *arch () const
508 {
509 return per_bfd->gdbarch;
510 }
511
512 /* Return true if OBJFILE has partial symbols. */
513
514 bool has_partial_symbols ();
515
516 /* Look for a separate debug symbol file for this objfile, make use of
517 build-id, debug-link, and debuginfod as necessary. If a suitable
518 separate debug symbol file is found then it is loaded using a call to
519 symbol_file_add_separate (SYMFILE_FLAGS is passed through unmodified
520 to this call) and this function returns true. If no suitable separate
521 debug symbol file is found and loaded then this function returns
522 false. */
523
524 bool find_and_add_separate_symbol_file (symfile_add_flags symfile_flags);
525
526 /* Return true if this objfile has any unexpanded symbols. A return
527 value of false indicates either, that this objfile has all its
528 symbols fully expanded (i.e. fully read in), or that this objfile has
529 no symbols at all (i.e. no debug information). */
530 bool has_unexpanded_symtabs ();
531
532 /* See quick_symbol_functions. */
533 struct symtab *find_last_source_symtab ();
534
535 /* See quick_symbol_functions. */
536 void forget_cached_source_info ();
537
538 /* Expand and iterate over each "partial" symbol table in OBJFILE
539 where the source file is named NAME.
540
541 If NAME is not absolute, a match after a '/' in the symbol table's
542 file name will also work, REAL_PATH is NULL then. If NAME is
543 absolute then REAL_PATH is non-NULL absolute file name as resolved
544 via gdb_realpath from NAME.
545
546 If a match is found, the "partial" symbol table is expanded.
547 Then, this calls iterate_over_some_symtabs (or equivalent) over
548 all newly-created symbol tables, passing CALLBACK to it.
549 The result of this call is returned. */
550 bool map_symtabs_matching_filename
551 (const char *name, const char *real_path,
552 gdb::function_view<bool (symtab *)> callback);
553
554 /* Check to see if the symbol is defined in a "partial" symbol table
555 of this objfile. BLOCK_INDEX should be either GLOBAL_BLOCK or
556 STATIC_BLOCK, depending on whether we want to search global
557 symbols or static symbols. NAME is the name of the symbol to
558 look for. DOMAIN indicates what sort of symbol to search for.
559
560 Returns the newly-expanded compunit in which the symbol is
561 defined, or NULL if no such symbol table exists. If OBJFILE
562 contains !TYPE_OPAQUE symbol prefer its compunit. If it contains
563 only TYPE_OPAQUE symbol(s), return at least that compunit. */
564 struct compunit_symtab *lookup_symbol (block_enum kind, const char *name,
565 domain_enum domain);
566
567 /* See quick_symbol_functions. */
568 void print_stats (bool print_bcache);
569
570 /* See quick_symbol_functions. */
571 void dump ();
572
573 /* Find all the symbols in OBJFILE named FUNC_NAME, and ensure that
574 the corresponding symbol tables are loaded. */
575 void expand_symtabs_for_function (const char *func_name);
576
577 /* See quick_symbol_functions. */
578 void expand_all_symtabs ();
579
580 /* Read all symbol tables associated with OBJFILE which have
581 symtab_to_fullname equal to FULLNAME.
582 This is for the purposes of examining code only, e.g., expand_line_sal.
583 The routine may ignore debug info that is known to not be useful with
584 code, e.g., DW_TAG_type_unit for dwarf debug info. */
585 void expand_symtabs_with_fullname (const char *fullname);
586
587 /* See quick_symbol_functions. */
588 void expand_matching_symbols
589 (const lookup_name_info &name, domain_enum domain,
590 int global,
591 symbol_compare_ftype *ordered_compare);
592
593 /* See quick_symbol_functions. */
594 bool expand_symtabs_matching
595 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
596 const lookup_name_info *lookup_name,
597 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
598 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
599 block_search_flags search_flags,
600 domain_enum domain,
601 enum search_domain kind);
602
603 /* See quick_symbol_functions. */
604 struct compunit_symtab *find_pc_sect_compunit_symtab
605 (struct bound_minimal_symbol msymbol,
606 CORE_ADDR pc,
607 struct obj_section *section,
608 int warn_if_readin);
609
610 /* See quick_symbol_functions. */
611 void map_symbol_filenames (gdb::function_view<symbol_filename_ftype> fun,
612 bool need_fullname);
613
614 /* See quick_symbol_functions. */
615 struct compunit_symtab *find_compunit_symtab_by_address (CORE_ADDR address);
616
617 /* See quick_symbol_functions. */
618 enum language lookup_global_symbol_language (const char *name,
619 domain_enum domain,
620 bool *symbol_found_p);
621
622 /* See quick_symbol_functions. */
623 void require_partial_symbols (bool verbose);
624
625 /* Return the relocation offset applied to SECTION. */
626 CORE_ADDR section_offset (bfd_section *section) const
627 {
628 /* The section's owner can be nullptr if it is one of the _bfd_std_section
629 section. */
630 gdb_assert (section->owner == nullptr || section->owner == this->obfd);
631
632 int idx = gdb_bfd_section_index (this->obfd.get (), section);
633 return this->section_offsets[idx];
634 }
635
636 /* Set the relocation offset applied to SECTION. */
637 void set_section_offset (bfd_section *section, CORE_ADDR offset)
638 {
639 /* The section's owner can be nullptr if it is one of the _bfd_std_section
640 section. */
641 gdb_assert (section->owner == nullptr || section->owner == this->obfd);
642
643 int idx = gdb_bfd_section_index (this->obfd.get (), section);
644 this->section_offsets[idx] = offset;
645 }
646
647 class section_iterator
648 {
649 public:
650 section_iterator (const section_iterator &) = default;
651 section_iterator (section_iterator &&) = default;
652 section_iterator &operator= (const section_iterator &) = default;
653 section_iterator &operator= (section_iterator &&) = default;
654
655 typedef section_iterator self_type;
656 typedef obj_section *value_type;
657
658 value_type operator* ()
659 { return m_iter; }
660
661 section_iterator &operator++ ()
662 {
663 ++m_iter;
664 skip_null ();
665 return *this;
666 }
667
668 bool operator== (const section_iterator &other) const
669 { return m_iter == other.m_iter && m_end == other.m_end; }
670
671 bool operator!= (const section_iterator &other) const
672 { return !(*this == other); }
673
674 private:
675
676 friend class objfile;
677
678 section_iterator (obj_section *iter, obj_section *end)
679 : m_iter (iter),
680 m_end (end)
681 {
682 skip_null ();
683 }
684
685 void skip_null ()
686 {
687 while (m_iter < m_end && m_iter->the_bfd_section == nullptr)
688 ++m_iter;
689 }
690
691 value_type m_iter;
692 value_type m_end;
693 };
694
695 iterator_range<section_iterator> sections ()
696 {
697 return (iterator_range<section_iterator>
698 (section_iterator (sections_start, sections_end),
699 section_iterator (sections_end, sections_end)));
700 }
701
702 iterator_range<section_iterator> sections () const
703 {
704 return (iterator_range<section_iterator>
705 (section_iterator (sections_start, sections_end),
706 section_iterator (sections_end, sections_end)));
707 }
708
709 private:
710
711 /* Ensure that partial symbols have been read and return the "quick" (aka
712 partial) symbol functions for this symbol reader. */
713 const std::forward_list<quick_symbol_functions_up> &
714 qf_require_partial_symbols ()
715 {
716 this->require_partial_symbols (true);
717 return qf;
718 }
719
720 public:
721
722 /* The object file's original name as specified by the user,
723 made absolute, and tilde-expanded. However, it is not canonicalized
724 (i.e., it has not been passed through gdb_realpath).
725 This pointer is never NULL. This does not have to be freed; it is
726 guaranteed to have a lifetime at least as long as the objfile. */
727
728 const char *original_name = nullptr;
729
730 CORE_ADDR addr_low = 0;
731
732 /* Some flag bits for this objfile. */
733
734 objfile_flags flags;
735
736 /* The program space associated with this objfile. */
737
738 struct program_space *pspace;
739
740 /* List of compunits.
741 These are used to do symbol lookups and file/line-number lookups. */
742
743 struct compunit_symtab *compunit_symtabs = nullptr;
744
745 /* The object file's BFD. Can be null if the objfile contains only
746 minimal symbols (e.g. the run time common symbols for SunOS4) or
747 if the objfile is a dynamic objfile (e.g. created by JIT reader
748 API). */
749
750 gdb_bfd_ref_ptr obfd;
751
752 /* The per-BFD data. */
753
754 struct objfile_per_bfd_storage *per_bfd = nullptr;
755
756 /* In some cases, the per_bfd object is owned by this objfile and
757 not by the BFD itself. In this situation, this holds the owning
758 pointer. */
759
760 std::unique_ptr<objfile_per_bfd_storage> per_bfd_storage;
761
762 /* The modification timestamp of the object file, as of the last time
763 we read its symbols. */
764
765 long mtime = 0;
766
767 /* Obstack to hold objects that should be freed when we load a new symbol
768 table from this object file. */
769
770 auto_obstack objfile_obstack;
771
772 /* Structure which keeps track of functions that manipulate objfile's
773 of the same type as this objfile. I.e. the function to read partial
774 symbols for example. Note that this structure is in statically
775 allocated memory, and is shared by all objfiles that use the
776 object module reader of this type. */
777
778 const struct sym_fns *sf = nullptr;
779
780 /* The "quick" (aka partial) symbol functions for this symbol
781 reader. */
782 std::forward_list<quick_symbol_functions_up> qf;
783
784 /* Per objfile data-pointers required by other GDB modules. */
785
786 registry<objfile> registry_fields;
787
788 /* Set of relocation offsets to apply to each section.
789 The table is indexed by the_bfd_section->index, thus it is generally
790 as large as the number of sections in the binary.
791
792 These offsets indicate that all symbols (including partial and
793 minimal symbols) which have been read have been relocated by this
794 much. Symbols which are yet to be read need to be relocated by it. */
795
796 ::section_offsets section_offsets;
797
798 /* Indexes in the section_offsets array. These are initialized by the
799 *_symfile_offsets() family of functions (som_symfile_offsets,
800 xcoff_symfile_offsets, default_symfile_offsets). In theory they
801 should correspond to the section indexes used by bfd for the
802 current objfile. The exception to this for the time being is the
803 SOM version.
804
805 These are initialized to -1 so that we can later detect if they
806 are used w/o being properly assigned to. */
807
808 int sect_index_text = -1;
809 int sect_index_data = -1;
810 int sect_index_bss = -1;
811 int sect_index_rodata = -1;
812
813 /* These pointers are used to locate the section table, which among
814 other things, is used to map pc addresses into sections.
815 SECTIONS_START points to the first entry in the table, and
816 SECTIONS_END points to the first location past the last entry in
817 the table. The table is stored on the objfile_obstack. The
818 sections are indexed by the BFD section index; but the structure
819 data is only valid for certain sections (e.g. non-empty,
820 SEC_ALLOC). */
821
822 struct obj_section *sections_start = nullptr;
823 struct obj_section *sections_end = nullptr;
824
825 /* GDB allows to have debug symbols in separate object files. This is
826 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
827 Although this is a tree structure, GDB only support one level
828 (ie a separate debug for a separate debug is not supported). Note that
829 separate debug object are in the main chain and therefore will be
830 visited by objfiles & co iterators. Separate debug objfile always
831 has a non-nul separate_debug_objfile_backlink. */
832
833 /* Link to the first separate debug object, if any. */
834
835 struct objfile *separate_debug_objfile = nullptr;
836
837 /* If this is a separate debug object, this is used as a link to the
838 actual executable objfile. */
839
840 struct objfile *separate_debug_objfile_backlink = nullptr;
841
842 /* If this is a separate debug object, this is a link to the next one
843 for the same executable objfile. */
844
845 struct objfile *separate_debug_objfile_link = nullptr;
846
847 /* Place to stash various statistics about this objfile. */
848
849 OBJSTATS;
850
851 /* A linked list of symbols created when reading template types or
852 function templates. These symbols are not stored in any symbol
853 table, so we have to keep them here to relocate them
854 properly. */
855
856 struct symbol *template_symbols = nullptr;
857
858 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
859 block *) that have one.
860
861 In the context of nested functions (available in Pascal, Ada and GNU C,
862 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
863 for a function is a way to get the frame corresponding to the enclosing
864 function.
865
866 Very few blocks have a static link, so it's more memory efficient to
867 store these here rather than in struct block. Static links must be
868 allocated on the objfile's obstack. */
869 htab_up static_links;
870
871 /* JIT-related data for this objfile, if the objfile is a JITer;
872 that is, it produces JITed objfiles. */
873 std::unique_ptr<jiter_objfile_data> jiter_data = nullptr;
874
875 /* JIT-related data for this objfile, if the objfile is JITed;
876 that is, it was produced by a JITer. */
877 std::unique_ptr<jited_objfile_data> jited_data = nullptr;
878
879 /* A flag that is set to true if the JIT interface symbols are not
880 found in this objfile, so that we can skip the symbol lookup the
881 next time. If an objfile does not have the symbols, it will
882 never have them. */
883 bool skip_jit_symbol_lookup = false;
884
885 /* Flag which indicates, when true, that the object format
886 potentially supports copy relocations. ABIs for some
887 architectures that use ELF have a copy relocation in which the
888 initialization for a global variable defined in a shared object
889 will be copied to memory allocated to the main program during
890 dynamic linking. Therefore this flag will be set for ELF
891 objfiles. Other object formats that use the same copy relocation
892 mechanism as ELF should set this flag too. This flag is used in
893 conjunction with the minimal_symbol::maybe_copied method. */
894 bool object_format_has_copy_relocs = false;
895 };
896
897 /* A deleter for objfile. */
898
899 struct objfile_deleter
900 {
901 void operator() (objfile *ptr) const
902 {
903 ptr->unlink ();
904 }
905 };
906
907 /* A unique pointer that holds an objfile. */
908
909 typedef std::unique_ptr<objfile, objfile_deleter> objfile_up;
910
911 /* Relocation offset applied to the section. */
912 inline CORE_ADDR
913 obj_section::offset () const
914 {
915 return this->objfile->section_offset (this->the_bfd_section);
916 }
917
918 /* Set the relocation offset applied to the section. */
919 inline void
920 obj_section::set_offset (CORE_ADDR offset)
921 {
922 this->objfile->set_section_offset (this->the_bfd_section, offset);
923 }
924
925 /* Declarations for functions defined in objfiles.c */
926
927 extern int entry_point_address_query (CORE_ADDR *entry_p);
928
929 extern CORE_ADDR entry_point_address (void);
930
931 extern void build_objfile_section_table (struct objfile *);
932
933 extern void free_objfile_separate_debug (struct objfile *);
934
935 extern void objfile_relocate (struct objfile *, const section_offsets &);
936 extern void objfile_rebase (struct objfile *, CORE_ADDR);
937
938 extern int objfile_has_full_symbols (struct objfile *objfile);
939
940 extern int objfile_has_symbols (struct objfile *objfile);
941
942 extern int have_partial_symbols (void);
943
944 extern int have_full_symbols (void);
945
946 extern void objfile_set_sym_fns (struct objfile *objfile,
947 const struct sym_fns *sf);
948
949 extern void objfiles_changed (void);
950
951 /* Return true if ADDR maps into one of the sections of OBJFILE and false
952 otherwise. */
953
954 extern bool is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
955
956 /* Return true if ADDRESS maps into one of the sections of a
957 OBJF_SHARED objfile of PSPACE and false otherwise. */
958
959 extern bool shared_objfile_contains_address_p (struct program_space *pspace,
960 CORE_ADDR address);
961
962 /* This operation deletes all objfile entries that represent solibs that
963 weren't explicitly loaded by the user, via e.g., the add-symbol-file
964 command. */
965
966 extern void objfile_purge_solibs (void);
967
968 /* Functions for dealing with the minimal symbol table, really a misc
969 address<->symbol mapping for things we don't have debug symbols for. */
970
971 extern int have_minimal_symbols (void);
972
973 extern struct obj_section *find_pc_section (CORE_ADDR pc);
974
975 /* Return true if PC is in a section called NAME. */
976 extern bool pc_in_section (CORE_ADDR, const char *);
977
978 /* Return non-zero if PC is in a SVR4-style procedure linkage table
979 section. */
980
981 static inline int
982 in_plt_section (CORE_ADDR pc)
983 {
984 return (pc_in_section (pc, ".plt")
985 || pc_in_section (pc, ".plt.sec"));
986 }
987
988 /* In normal use, the section map will be rebuilt by find_pc_section
989 if objfiles have been added, removed or relocated since it was last
990 called. Calling inhibit_section_map_updates will inhibit this
991 behavior until the returned scoped_restore object is destroyed. If
992 you call inhibit_section_map_updates you must ensure that every
993 call to find_pc_section in the inhibited region relates to a
994 section that is already in the section map and has not since been
995 removed or relocated. */
996 extern scoped_restore_tmpl<int> inhibit_section_map_updates
997 (struct program_space *pspace);
998
999 extern void default_iterate_over_objfiles_in_search_order
1000 (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
1001 objfile *current_objfile);
1002
1003 /* Reset the per-BFD storage area on OBJ. */
1004
1005 void set_objfile_per_bfd (struct objfile *obj);
1006
1007 /* Return canonical name for OBJFILE.
1008 This is the real file name if the file has been opened.
1009 Otherwise it is the original name supplied by the user. */
1010
1011 const char *objfile_name (const struct objfile *objfile);
1012
1013 /* Return the (real) file name of OBJFILE if the file has been opened,
1014 otherwise return NULL. */
1015
1016 const char *objfile_filename (const struct objfile *objfile);
1017
1018 /* Return the name to print for OBJFILE in debugging messages. */
1019
1020 extern const char *objfile_debug_name (const struct objfile *objfile);
1021
1022 /* Return the name of the file format of OBJFILE if the file has been opened,
1023 otherwise return NULL. */
1024
1025 const char *objfile_flavour_name (struct objfile *objfile);
1026
1027 /* Set the objfile's notion of the "main" name and language. */
1028
1029 extern void set_objfile_main_name (struct objfile *objfile,
1030 const char *name, enum language lang);
1031
1032 /* Find an integer type SIZE_IN_BYTES bytes in size from OF and return it.
1033 UNSIGNED_P controls if the integer is unsigned or not. */
1034 extern struct type *objfile_int_type (struct objfile *of, int size_in_bytes,
1035 bool unsigned_p);
1036
1037 extern void objfile_register_static_link
1038 (struct objfile *objfile,
1039 const struct block *block,
1040 const struct dynamic_prop *static_link);
1041
1042 extern const struct dynamic_prop *objfile_lookup_static_link
1043 (struct objfile *objfile, const struct block *block);
1044
1045 #endif /* !defined (OBJFILES_H) */