Remove path name from test case
[binutils-gdb.git] / gdb / ppc-sysv-tdep.c
1 /* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
3
4 Copyright (C) 2000-2023 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "language.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "regcache.h"
26 #include "value.h"
27 #include "ppc-tdep.h"
28 #include "target.h"
29 #include "objfiles.h"
30 #include "infcall.h"
31 #include "dwarf2.h"
32 #include "dwarf2/loc.h"
33 #include "target-float.h"
34 #include <algorithm>
35
36
37 /* Check whether FTPYE is a (pointer to) function type that should use
38 the OpenCL vector ABI. */
39
40 static int
41 ppc_sysv_use_opencl_abi (struct type *ftype)
42 {
43 ftype = check_typedef (ftype);
44
45 if (ftype->code () == TYPE_CODE_PTR)
46 ftype = check_typedef (ftype->target_type ());
47
48 return (ftype->code () == TYPE_CODE_FUNC
49 && TYPE_CALLING_CONVENTION (ftype) == DW_CC_GDB_IBM_OpenCL);
50 }
51
52 /* Pass the arguments in either registers, or in the stack. Using the
53 ppc sysv ABI, the first eight words of the argument list (that might
54 be less than eight parameters if some parameters occupy more than one
55 word) are passed in r3..r10 registers. float and double parameters are
56 passed in fpr's, in addition to that. Rest of the parameters if any
57 are passed in user stack.
58
59 If the function is returning a structure, then the return address is passed
60 in r3, then the first 7 words of the parameters can be passed in registers,
61 starting from r4. */
62
63 CORE_ADDR
64 ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
65 struct regcache *regcache, CORE_ADDR bp_addr,
66 int nargs, struct value **args, CORE_ADDR sp,
67 function_call_return_method return_method,
68 CORE_ADDR struct_addr)
69 {
70 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
71 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
72 int opencl_abi = ppc_sysv_use_opencl_abi (function->type ());
73 ULONGEST saved_sp;
74 int argspace = 0; /* 0 is an initial wrong guess. */
75 int write_pass;
76
77 gdb_assert (tdep->wordsize == 4);
78
79 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
80 &saved_sp);
81
82 /* Go through the argument list twice.
83
84 Pass 1: Figure out how much new stack space is required for
85 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
86 ABI doesn't reserve any extra space for parameters which are put
87 in registers, but does always push structures and then pass their
88 address.
89
90 Pass 2: Replay the same computation but this time also write the
91 values out to the target. */
92
93 for (write_pass = 0; write_pass < 2; write_pass++)
94 {
95 int argno;
96 /* Next available floating point register for float and double
97 arguments. */
98 int freg = 1;
99 /* Next available general register for non-float, non-vector
100 arguments. */
101 int greg = 3;
102 /* Next available vector register for vector arguments. */
103 int vreg = 2;
104 /* Arguments start above the "LR save word" and "Back chain". */
105 int argoffset = 2 * tdep->wordsize;
106 /* Structures start after the arguments. */
107 int structoffset = argoffset + argspace;
108
109 /* If the function is returning a `struct', then the first word
110 (which will be passed in r3) is used for struct return
111 address. In that case we should advance one word and start
112 from r4 register to copy parameters. */
113 if (return_method == return_method_struct)
114 {
115 if (write_pass)
116 regcache_cooked_write_signed (regcache,
117 tdep->ppc_gp0_regnum + greg,
118 struct_addr);
119 greg++;
120 }
121
122 for (argno = 0; argno < nargs; argno++)
123 {
124 struct value *arg = args[argno];
125 struct type *type = check_typedef (arg->type ());
126 int len = type->length ();
127 const bfd_byte *val = arg->contents ().data ();
128
129 if (type->code () == TYPE_CODE_FLT && len <= 8
130 && !tdep->soft_float)
131 {
132 /* Floating point value converted to "double" then
133 passed in an FP register, when the registers run out,
134 8 byte aligned stack is used. */
135 if (freg <= 8)
136 {
137 if (write_pass)
138 {
139 /* Always store the floating point value using
140 the register's floating-point format. */
141 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
142 struct type *regtype
143 = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
144 target_float_convert (val, type, regval, regtype);
145 regcache->cooked_write (tdep->ppc_fp0_regnum + freg,
146 regval);
147 }
148 freg++;
149 }
150 else
151 {
152 /* The SysV ABI tells us to convert floats to
153 doubles before writing them to an 8 byte aligned
154 stack location. Unfortunately GCC does not do
155 that, and stores floats into 4 byte aligned
156 locations without converting them to doubles.
157 Since there is no know compiler that actually
158 follows the ABI here, we implement the GCC
159 convention. */
160
161 /* Align to 4 bytes or 8 bytes depending on the type of
162 the argument (float or double). */
163 argoffset = align_up (argoffset, len);
164 if (write_pass)
165 write_memory (sp + argoffset, val, len);
166 argoffset += len;
167 }
168 }
169 else if (type->code () == TYPE_CODE_FLT
170 && len == 16
171 && !tdep->soft_float
172 && (gdbarch_long_double_format (gdbarch)
173 == floatformats_ibm_long_double))
174 {
175 /* IBM long double passed in two FP registers if
176 available, otherwise 8-byte aligned stack. */
177 if (freg <= 7)
178 {
179 if (write_pass)
180 {
181 regcache->cooked_write (tdep->ppc_fp0_regnum + freg, val);
182 regcache->cooked_write (tdep->ppc_fp0_regnum + freg + 1,
183 val + 8);
184 }
185 freg += 2;
186 }
187 else
188 {
189 argoffset = align_up (argoffset, 8);
190 if (write_pass)
191 write_memory (sp + argoffset, val, len);
192 argoffset += 16;
193 }
194 }
195 else if (len == 8
196 && (type->code () == TYPE_CODE_INT /* long long */
197 || type->code () == TYPE_CODE_FLT /* double */
198 || (type->code () == TYPE_CODE_DECFLOAT
199 && tdep->soft_float)))
200 {
201 /* "long long" or soft-float "double" or "_Decimal64"
202 passed in an odd/even register pair with the low
203 addressed word in the odd register and the high
204 addressed word in the even register, or when the
205 registers run out an 8 byte aligned stack
206 location. */
207 if (greg > 9)
208 {
209 /* Just in case GREG was 10. */
210 greg = 11;
211 argoffset = align_up (argoffset, 8);
212 if (write_pass)
213 write_memory (sp + argoffset, val, len);
214 argoffset += 8;
215 }
216 else
217 {
218 /* Must start on an odd register - r3/r4 etc. */
219 if ((greg & 1) == 0)
220 greg++;
221 if (write_pass)
222 {
223 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 0,
224 val + 0);
225 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 1,
226 val + 4);
227 }
228 greg += 2;
229 }
230 }
231 else if (len == 16
232 && ((type->code () == TYPE_CODE_FLT
233 && (gdbarch_long_double_format (gdbarch)
234 == floatformats_ibm_long_double))
235 || (type->code () == TYPE_CODE_DECFLOAT
236 && tdep->soft_float)))
237 {
238 /* Soft-float IBM long double or _Decimal128 passed in
239 four consecutive registers, or on the stack. The
240 registers are not necessarily odd/even pairs. */
241 if (greg > 7)
242 {
243 greg = 11;
244 argoffset = align_up (argoffset, 8);
245 if (write_pass)
246 write_memory (sp + argoffset, val, len);
247 argoffset += 16;
248 }
249 else
250 {
251 if (write_pass)
252 {
253 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 0,
254 val + 0);
255 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 1,
256 val + 4);
257 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 2,
258 val + 8);
259 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 3,
260 val + 12);
261 }
262 greg += 4;
263 }
264 }
265 else if (type->code () == TYPE_CODE_DECFLOAT && len <= 8
266 && !tdep->soft_float)
267 {
268 /* 32-bit and 64-bit decimal floats go in f1 .. f8. They can
269 end up in memory. */
270
271 if (freg <= 8)
272 {
273 if (write_pass)
274 {
275 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
276 const gdb_byte *p;
277
278 /* 32-bit decimal floats are right aligned in the
279 doubleword. */
280 if (type->length () == 4)
281 {
282 memcpy (regval + 4, val, 4);
283 p = regval;
284 }
285 else
286 p = val;
287
288 regcache->cooked_write (tdep->ppc_fp0_regnum + freg, p);
289 }
290
291 freg++;
292 }
293 else
294 {
295 argoffset = align_up (argoffset, len);
296
297 if (write_pass)
298 /* Write value in the stack's parameter save area. */
299 write_memory (sp + argoffset, val, len);
300
301 argoffset += len;
302 }
303 }
304 else if (type->code () == TYPE_CODE_DECFLOAT && len == 16
305 && !tdep->soft_float)
306 {
307 /* 128-bit decimal floats go in f2 .. f7, always in even/odd
308 pairs. They can end up in memory, using two doublewords. */
309
310 if (freg <= 6)
311 {
312 /* Make sure freg is even. */
313 freg += freg & 1;
314
315 if (write_pass)
316 {
317 regcache->cooked_write (tdep->ppc_fp0_regnum + freg, val);
318 regcache->cooked_write (tdep->ppc_fp0_regnum + freg + 1,
319 val + 8);
320 }
321 }
322 else
323 {
324 argoffset = align_up (argoffset, 8);
325
326 if (write_pass)
327 write_memory (sp + argoffset, val, 16);
328
329 argoffset += 16;
330 }
331
332 /* If a 128-bit decimal float goes to the stack because only f7
333 and f8 are free (thus there's no even/odd register pair
334 available), these registers should be marked as occupied.
335 Hence we increase freg even when writing to memory. */
336 freg += 2;
337 }
338 else if (len < 16
339 && type->code () == TYPE_CODE_ARRAY
340 && type->is_vector ()
341 && opencl_abi)
342 {
343 /* OpenCL vectors shorter than 16 bytes are passed as if
344 a series of independent scalars. */
345 struct type *eltype = check_typedef (type->target_type ());
346 int i, nelt = type->length () / eltype->length ();
347
348 for (i = 0; i < nelt; i++)
349 {
350 const gdb_byte *elval = val + i * eltype->length ();
351
352 if (eltype->code () == TYPE_CODE_FLT && !tdep->soft_float)
353 {
354 if (freg <= 8)
355 {
356 if (write_pass)
357 {
358 int regnum = tdep->ppc_fp0_regnum + freg;
359 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
360 struct type *regtype
361 = register_type (gdbarch, regnum);
362 target_float_convert (elval, eltype,
363 regval, regtype);
364 regcache->cooked_write (regnum, regval);
365 }
366 freg++;
367 }
368 else
369 {
370 argoffset = align_up (argoffset, len);
371 if (write_pass)
372 write_memory (sp + argoffset, val, len);
373 argoffset += len;
374 }
375 }
376 else if (eltype->length () == 8)
377 {
378 if (greg > 9)
379 {
380 /* Just in case GREG was 10. */
381 greg = 11;
382 argoffset = align_up (argoffset, 8);
383 if (write_pass)
384 write_memory (sp + argoffset, elval,
385 eltype->length ());
386 argoffset += 8;
387 }
388 else
389 {
390 /* Must start on an odd register - r3/r4 etc. */
391 if ((greg & 1) == 0)
392 greg++;
393 if (write_pass)
394 {
395 int regnum = tdep->ppc_gp0_regnum + greg;
396 regcache->cooked_write (regnum + 0, elval + 0);
397 regcache->cooked_write (regnum + 1, elval + 4);
398 }
399 greg += 2;
400 }
401 }
402 else
403 {
404 gdb_byte word[PPC_MAX_REGISTER_SIZE];
405 store_unsigned_integer (word, tdep->wordsize, byte_order,
406 unpack_long (eltype, elval));
407
408 if (greg <= 10)
409 {
410 if (write_pass)
411 regcache->cooked_write (tdep->ppc_gp0_regnum + greg,
412 word);
413 greg++;
414 }
415 else
416 {
417 argoffset = align_up (argoffset, tdep->wordsize);
418 if (write_pass)
419 write_memory (sp + argoffset, word, tdep->wordsize);
420 argoffset += tdep->wordsize;
421 }
422 }
423 }
424 }
425 else if (len >= 16
426 && type->code () == TYPE_CODE_ARRAY
427 && type->is_vector ()
428 && opencl_abi)
429 {
430 /* OpenCL vectors 16 bytes or longer are passed as if
431 a series of AltiVec vectors. */
432 int i;
433
434 for (i = 0; i < len / 16; i++)
435 {
436 const gdb_byte *elval = val + i * 16;
437
438 if (vreg <= 13)
439 {
440 if (write_pass)
441 regcache->cooked_write (tdep->ppc_vr0_regnum + vreg,
442 elval);
443 vreg++;
444 }
445 else
446 {
447 argoffset = align_up (argoffset, 16);
448 if (write_pass)
449 write_memory (sp + argoffset, elval, 16);
450 argoffset += 16;
451 }
452 }
453 }
454 else if (len == 16
455 && ((type->code () == TYPE_CODE_ARRAY
456 && type->is_vector ()
457 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
458 || (type->code () == TYPE_CODE_FLT
459 && (gdbarch_long_double_format (gdbarch)
460 == floatformats_ieee_quad))))
461 {
462 /* Vector parameter passed in an Altivec register, or
463 when that runs out, 16 byte aligned stack location.
464 IEEE FLOAT 128-bit also passes parameters in vector
465 registers. */
466 if (vreg <= 13)
467 {
468 if (write_pass)
469 regcache->cooked_write (tdep->ppc_vr0_regnum + vreg, val);
470 vreg++;
471 }
472 else
473 {
474 argoffset = align_up (argoffset, 16);
475 if (write_pass)
476 write_memory (sp + argoffset, val, 16);
477 argoffset += 16;
478 }
479 }
480 else if (len == 8
481 && type->code () == TYPE_CODE_ARRAY
482 && type->is_vector ()
483 && tdep->vector_abi == POWERPC_VEC_SPE)
484 {
485 /* Vector parameter passed in an e500 register, or when
486 that runs out, 8 byte aligned stack location. Note
487 that since e500 vector and general purpose registers
488 both map onto the same underlying register set, a
489 "greg" and not a "vreg" is consumed here. A cooked
490 write stores the value in the correct locations
491 within the raw register cache. */
492 if (greg <= 10)
493 {
494 if (write_pass)
495 regcache->cooked_write (tdep->ppc_ev0_regnum + greg, val);
496 greg++;
497 }
498 else
499 {
500 argoffset = align_up (argoffset, 8);
501 if (write_pass)
502 write_memory (sp + argoffset, val, 8);
503 argoffset += 8;
504 }
505 }
506 else
507 {
508 /* Reduce the parameter down to something that fits in a
509 "word". */
510 gdb_byte word[PPC_MAX_REGISTER_SIZE];
511 memset (word, 0, PPC_MAX_REGISTER_SIZE);
512 if (len > tdep->wordsize
513 || type->code () == TYPE_CODE_STRUCT
514 || type->code () == TYPE_CODE_UNION)
515 {
516 /* Structs and large values are put in an
517 aligned stack slot ... */
518 if (type->code () == TYPE_CODE_ARRAY
519 && type->is_vector ()
520 && len >= 16)
521 structoffset = align_up (structoffset, 16);
522 else
523 structoffset = align_up (structoffset, 8);
524
525 if (write_pass)
526 write_memory (sp + structoffset, val, len);
527 /* ... and then a "word" pointing to that address is
528 passed as the parameter. */
529 store_unsigned_integer (word, tdep->wordsize, byte_order,
530 sp + structoffset);
531 structoffset += len;
532 }
533 else if (type->code () == TYPE_CODE_INT)
534 /* Sign or zero extend the "int" into a "word". */
535 store_unsigned_integer (word, tdep->wordsize, byte_order,
536 unpack_long (type, val));
537 else
538 /* Always goes in the low address. */
539 memcpy (word, val, len);
540 /* Store that "word" in a register, or on the stack.
541 The words have "4" byte alignment. */
542 if (greg <= 10)
543 {
544 if (write_pass)
545 regcache->cooked_write (tdep->ppc_gp0_regnum + greg, word);
546 greg++;
547 }
548 else
549 {
550 argoffset = align_up (argoffset, tdep->wordsize);
551 if (write_pass)
552 write_memory (sp + argoffset, word, tdep->wordsize);
553 argoffset += tdep->wordsize;
554 }
555 }
556 }
557
558 /* Compute the actual stack space requirements. */
559 if (!write_pass)
560 {
561 /* Remember the amount of space needed by the arguments. */
562 argspace = argoffset;
563 /* Allocate space for both the arguments and the structures. */
564 sp -= (argoffset + structoffset);
565 /* Ensure that the stack is still 16 byte aligned. */
566 sp = align_down (sp, 16);
567 }
568
569 /* The psABI says that "A caller of a function that takes a
570 variable argument list shall set condition register bit 6 to
571 1 if it passes one or more arguments in the floating-point
572 registers. It is strongly recommended that the caller set the
573 bit to 0 otherwise..." Doing this for normal functions too
574 shouldn't hurt. */
575 if (write_pass)
576 {
577 ULONGEST cr;
578
579 regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
580 if (freg > 1)
581 cr |= 0x02000000;
582 else
583 cr &= ~0x02000000;
584 regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
585 }
586 }
587
588 /* Update %sp. */
589 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
590
591 /* Write the backchain (it occupies WORDSIZED bytes). */
592 write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);
593
594 /* Point the inferior function call's return address at the dummy's
595 breakpoint. */
596 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
597
598 return sp;
599 }
600
601 /* Handle the return-value conventions for Decimal Floating Point values. */
602 static enum return_value_convention
603 get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
604 struct regcache *regcache, gdb_byte *readbuf,
605 const gdb_byte *writebuf)
606 {
607 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
608
609 gdb_assert (valtype->code () == TYPE_CODE_DECFLOAT);
610
611 /* 32-bit and 64-bit decimal floats in f1. */
612 if (valtype->length () <= 8)
613 {
614 if (writebuf != NULL)
615 {
616 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
617 const gdb_byte *p;
618
619 /* 32-bit decimal float is right aligned in the doubleword. */
620 if (valtype->length () == 4)
621 {
622 memcpy (regval + 4, writebuf, 4);
623 p = regval;
624 }
625 else
626 p = writebuf;
627
628 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, p);
629 }
630 if (readbuf != NULL)
631 {
632 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, readbuf);
633
634 /* Left align 32-bit decimal float. */
635 if (valtype->length () == 4)
636 memcpy (readbuf, readbuf + 4, 4);
637 }
638 }
639 /* 128-bit decimal floats in f2,f3. */
640 else if (valtype->length () == 16)
641 {
642 if (writebuf != NULL || readbuf != NULL)
643 {
644 int i;
645
646 for (i = 0; i < 2; i++)
647 {
648 if (writebuf != NULL)
649 regcache->cooked_write (tdep->ppc_fp0_regnum + 2 + i,
650 writebuf + i * 8);
651 if (readbuf != NULL)
652 regcache->cooked_read (tdep->ppc_fp0_regnum + 2 + i,
653 readbuf + i * 8);
654 }
655 }
656 }
657 else
658 /* Can't happen. */
659 internal_error (_("Unknown decimal float size."));
660
661 return RETURN_VALUE_REGISTER_CONVENTION;
662 }
663
664 /* Handle the return-value conventions specified by the SysV 32-bit
665 PowerPC ABI (including all the supplements):
666
667 no floating-point: floating-point values returned using 32-bit
668 general-purpose registers.
669
670 Altivec: 128-bit vectors returned using vector registers.
671
672 e500: 64-bit vectors returned using the full full 64 bit EV
673 register, floating-point values returned using 32-bit
674 general-purpose registers.
675
676 GCC (broken): Small struct values right (instead of left) aligned
677 when returned in general-purpose registers. */
678
679 static enum return_value_convention
680 do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *func_type,
681 struct type *type, struct regcache *regcache,
682 gdb_byte *readbuf, const gdb_byte *writebuf,
683 int broken_gcc)
684 {
685 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
686 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
687 int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
688
689 gdb_assert (tdep->wordsize == 4);
690
691 if (type->code () == TYPE_CODE_FLT
692 && type->length () <= 8
693 && !tdep->soft_float)
694 {
695 if (readbuf)
696 {
697 /* Floats and doubles stored in "f1". Convert the value to
698 the required type. */
699 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
700 struct type *regtype = register_type (gdbarch,
701 tdep->ppc_fp0_regnum + 1);
702 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval);
703 target_float_convert (regval, regtype, readbuf, type);
704 }
705 if (writebuf)
706 {
707 /* Floats and doubles stored in "f1". Convert the value to
708 the register's "double" type. */
709 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
710 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
711 target_float_convert (writebuf, type, regval, regtype);
712 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval);
713 }
714 return RETURN_VALUE_REGISTER_CONVENTION;
715 }
716 if (type->code () == TYPE_CODE_FLT
717 && type->length () == 16
718 && !tdep->soft_float
719 && (gdbarch_long_double_format (gdbarch)
720 == floatformats_ibm_long_double))
721 {
722 /* IBM long double stored in f1 and f2. */
723 if (readbuf)
724 {
725 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, readbuf);
726 regcache->cooked_read (tdep->ppc_fp0_regnum + 2, readbuf + 8);
727 }
728 if (writebuf)
729 {
730 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, writebuf);
731 regcache->cooked_write (tdep->ppc_fp0_regnum + 2, writebuf + 8);
732 }
733 return RETURN_VALUE_REGISTER_CONVENTION;
734 }
735 if (type->length () == 16
736 && ((type->code () == TYPE_CODE_FLT
737 && (gdbarch_long_double_format (gdbarch)
738 == floatformats_ibm_long_double))
739 || (type->code () == TYPE_CODE_DECFLOAT && tdep->soft_float)))
740 {
741 /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
742 r5, r6. */
743 if (readbuf)
744 {
745 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf);
746 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
747 regcache->cooked_read (tdep->ppc_gp0_regnum + 5, readbuf + 8);
748 regcache->cooked_read (tdep->ppc_gp0_regnum + 6, readbuf + 12);
749 }
750 if (writebuf)
751 {
752 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf);
753 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
754 regcache->cooked_write (tdep->ppc_gp0_regnum + 5, writebuf + 8);
755 regcache->cooked_write (tdep->ppc_gp0_regnum + 6, writebuf + 12);
756 }
757 return RETURN_VALUE_REGISTER_CONVENTION;
758 }
759 if ((type->code () == TYPE_CODE_INT && type->length () == 8)
760 || (type->code () == TYPE_CODE_FLT && type->length () == 8)
761 || (type->code () == TYPE_CODE_DECFLOAT && type->length () == 8
762 && tdep->soft_float))
763 {
764 if (readbuf)
765 {
766 /* A long long, double or _Decimal64 stored in the 32 bit
767 r3/r4. */
768 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf + 0);
769 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
770 }
771 if (writebuf)
772 {
773 /* A long long, double or _Decimal64 stored in the 32 bit
774 r3/r4. */
775 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf + 0);
776 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
777 }
778 return RETURN_VALUE_REGISTER_CONVENTION;
779 }
780 if (type->code () == TYPE_CODE_DECFLOAT && !tdep->soft_float)
781 return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
782 writebuf);
783 else if ((type->code () == TYPE_CODE_INT
784 || type->code () == TYPE_CODE_CHAR
785 || type->code () == TYPE_CODE_BOOL
786 || type->code () == TYPE_CODE_PTR
787 || TYPE_IS_REFERENCE (type)
788 || type->code () == TYPE_CODE_ENUM)
789 && type->length () <= tdep->wordsize)
790 {
791 if (readbuf)
792 {
793 /* Some sort of integer stored in r3. Since TYPE isn't
794 bigger than the register, sign extension isn't a problem
795 - just do everything unsigned. */
796 ULONGEST regval;
797 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
798 &regval);
799 store_unsigned_integer (readbuf, type->length (), byte_order,
800 regval);
801 }
802 if (writebuf)
803 {
804 /* Some sort of integer stored in r3. Use unpack_long since
805 that should handle any required sign extension. */
806 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
807 unpack_long (type, writebuf));
808 }
809 return RETURN_VALUE_REGISTER_CONVENTION;
810 }
811 /* OpenCL vectors < 16 bytes are returned as distinct
812 scalars in f1..f2 or r3..r10. */
813 if (type->code () == TYPE_CODE_ARRAY
814 && type->is_vector ()
815 && type->length () < 16
816 && opencl_abi)
817 {
818 struct type *eltype = check_typedef (type->target_type ());
819 int i, nelt = type->length () / eltype->length ();
820
821 for (i = 0; i < nelt; i++)
822 {
823 int offset = i * eltype->length ();
824
825 if (eltype->code () == TYPE_CODE_FLT)
826 {
827 int regnum = tdep->ppc_fp0_regnum + 1 + i;
828 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
829 struct type *regtype = register_type (gdbarch, regnum);
830
831 if (writebuf != NULL)
832 {
833 target_float_convert (writebuf + offset, eltype,
834 regval, regtype);
835 regcache->cooked_write (regnum, regval);
836 }
837 if (readbuf != NULL)
838 {
839 regcache->cooked_read (regnum, regval);
840 target_float_convert (regval, regtype,
841 readbuf + offset, eltype);
842 }
843 }
844 else
845 {
846 int regnum = tdep->ppc_gp0_regnum + 3 + i;
847 ULONGEST regval;
848
849 if (writebuf != NULL)
850 {
851 regval = unpack_long (eltype, writebuf + offset);
852 regcache_cooked_write_unsigned (regcache, regnum, regval);
853 }
854 if (readbuf != NULL)
855 {
856 regcache_cooked_read_unsigned (regcache, regnum, &regval);
857 store_unsigned_integer (readbuf + offset,
858 eltype->length (), byte_order,
859 regval);
860 }
861 }
862 }
863
864 return RETURN_VALUE_REGISTER_CONVENTION;
865 }
866 /* OpenCL vectors >= 16 bytes are returned in v2..v9. */
867 if (type->code () == TYPE_CODE_ARRAY
868 && type->is_vector ()
869 && type->length () >= 16
870 && opencl_abi)
871 {
872 int n_regs = type->length () / 16;
873 int i;
874
875 for (i = 0; i < n_regs; i++)
876 {
877 int offset = i * 16;
878 int regnum = tdep->ppc_vr0_regnum + 2 + i;
879
880 if (writebuf != NULL)
881 regcache->cooked_write (regnum, writebuf + offset);
882 if (readbuf != NULL)
883 regcache->cooked_read (regnum, readbuf + offset);
884 }
885
886 return RETURN_VALUE_REGISTER_CONVENTION;
887 }
888 if (type->length () == 16
889 && type->code () == TYPE_CODE_ARRAY
890 && type->is_vector ()
891 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
892 {
893 if (readbuf)
894 {
895 /* Altivec places the return value in "v2". */
896 regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf);
897 }
898 if (writebuf)
899 {
900 /* Altivec places the return value in "v2". */
901 regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf);
902 }
903 return RETURN_VALUE_REGISTER_CONVENTION;
904 }
905 if (type->length () == 16
906 && type->code () == TYPE_CODE_ARRAY
907 && type->is_vector ()
908 && tdep->vector_abi == POWERPC_VEC_GENERIC)
909 {
910 /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
911 GCC without AltiVec returns them in memory, but it warns about
912 ABI risks in that case; we don't try to support it. */
913 if (readbuf)
914 {
915 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf + 0);
916 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
917 regcache->cooked_read (tdep->ppc_gp0_regnum + 5, readbuf + 8);
918 regcache->cooked_read (tdep->ppc_gp0_regnum + 6, readbuf + 12);
919 }
920 if (writebuf)
921 {
922 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf + 0);
923 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
924 regcache->cooked_write (tdep->ppc_gp0_regnum + 5, writebuf + 8);
925 regcache->cooked_write (tdep->ppc_gp0_regnum + 6, writebuf + 12);
926 }
927 return RETURN_VALUE_REGISTER_CONVENTION;
928 }
929 if (type->length () == 8
930 && type->code () == TYPE_CODE_ARRAY
931 && type->is_vector ()
932 && tdep->vector_abi == POWERPC_VEC_SPE)
933 {
934 /* The e500 ABI places return values for the 64-bit DSP types
935 (__ev64_opaque__) in r3. However, in GDB-speak, ev3
936 corresponds to the entire r3 value for e500, whereas GDB's r3
937 only corresponds to the least significant 32-bits. So place
938 the 64-bit DSP type's value in ev3. */
939 if (readbuf)
940 regcache->cooked_read (tdep->ppc_ev0_regnum + 3, readbuf);
941 if (writebuf)
942 regcache->cooked_write (tdep->ppc_ev0_regnum + 3, writebuf);
943 return RETURN_VALUE_REGISTER_CONVENTION;
944 }
945 if (broken_gcc && type->length () <= 8)
946 {
947 /* GCC screwed up for structures or unions whose size is less
948 than or equal to 8 bytes.. Instead of left-aligning, it
949 right-aligns the data into the buffer formed by r3, r4. */
950 gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
951 int len = type->length ();
952 int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
953
954 if (readbuf)
955 {
956 regcache->cooked_read (tdep->ppc_gp0_regnum + 3,
957 regvals + 0 * tdep->wordsize);
958 if (len > tdep->wordsize)
959 regcache->cooked_read (tdep->ppc_gp0_regnum + 4,
960 regvals + 1 * tdep->wordsize);
961 memcpy (readbuf, regvals + offset, len);
962 }
963 if (writebuf)
964 {
965 memset (regvals, 0, sizeof regvals);
966 memcpy (regvals + offset, writebuf, len);
967 regcache->cooked_write (tdep->ppc_gp0_regnum + 3,
968 regvals + 0 * tdep->wordsize);
969 if (len > tdep->wordsize)
970 regcache->cooked_write (tdep->ppc_gp0_regnum + 4,
971 regvals + 1 * tdep->wordsize);
972 }
973
974 return RETURN_VALUE_REGISTER_CONVENTION;
975 }
976 if (type->length () <= 8)
977 {
978 if (readbuf)
979 {
980 /* This matches SVr4 PPC, it does not match GCC. */
981 /* The value is right-padded to 8 bytes and then loaded, as
982 two "words", into r3/r4. */
983 gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
984 regcache->cooked_read (tdep->ppc_gp0_regnum + 3,
985 regvals + 0 * tdep->wordsize);
986 if (type->length () > tdep->wordsize)
987 regcache->cooked_read (tdep->ppc_gp0_regnum + 4,
988 regvals + 1 * tdep->wordsize);
989 memcpy (readbuf, regvals, type->length ());
990 }
991 if (writebuf)
992 {
993 /* This matches SVr4 PPC, it does not match GCC. */
994 /* The value is padded out to 8 bytes and then loaded, as
995 two "words" into r3/r4. */
996 gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
997 memset (regvals, 0, sizeof regvals);
998 memcpy (regvals, writebuf, type->length ());
999 regcache->cooked_write (tdep->ppc_gp0_regnum + 3,
1000 regvals + 0 * tdep->wordsize);
1001 if (type->length () > tdep->wordsize)
1002 regcache->cooked_write (tdep->ppc_gp0_regnum + 4,
1003 regvals + 1 * tdep->wordsize);
1004 }
1005 return RETURN_VALUE_REGISTER_CONVENTION;
1006 }
1007 return RETURN_VALUE_STRUCT_CONVENTION;
1008 }
1009
1010 enum return_value_convention
1011 ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
1012 struct type *valtype, struct regcache *regcache,
1013 gdb_byte *readbuf, const gdb_byte *writebuf)
1014 {
1015 return do_ppc_sysv_return_value (gdbarch,
1016 function ? function->type () : NULL,
1017 valtype, regcache, readbuf, writebuf, 0);
1018 }
1019
1020 enum return_value_convention
1021 ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
1022 struct value *function,
1023 struct type *valtype,
1024 struct regcache *regcache,
1025 gdb_byte *readbuf, const gdb_byte *writebuf)
1026 {
1027 return do_ppc_sysv_return_value (gdbarch,
1028 function ? function->type () : NULL,
1029 valtype, regcache, readbuf, writebuf, 1);
1030 }
1031
1032 /* The helper function for 64-bit SYSV push_dummy_call. Converts the
1033 function's code address back into the function's descriptor
1034 address.
1035
1036 Find a value for the TOC register. Every symbol should have both
1037 ".FN" and "FN" in the minimal symbol table. "FN" points at the
1038 FN's descriptor, while ".FN" points at the entry point (which
1039 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
1040 FN's descriptor address (while at the same time being careful to
1041 find "FN" in the same object file as ".FN"). */
1042
1043 static int
1044 convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
1045 {
1046 struct obj_section *dot_fn_section;
1047 struct bound_minimal_symbol dot_fn;
1048 struct bound_minimal_symbol fn;
1049
1050 /* Find the minimal symbol that corresponds to CODE_ADDR (should
1051 have a name of the form ".FN"). */
1052 dot_fn = lookup_minimal_symbol_by_pc (code_addr);
1053 if (dot_fn.minsym == NULL || dot_fn.minsym->linkage_name ()[0] != '.')
1054 return 0;
1055 /* Get the section that contains CODE_ADDR. Need this for the
1056 "objfile" that it contains. */
1057 dot_fn_section = find_pc_section (code_addr);
1058 if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
1059 return 0;
1060 /* Now find the corresponding "FN" (dropping ".") minimal symbol's
1061 address. Only look for the minimal symbol in ".FN"'s object file
1062 - avoids problems when two object files (i.e., shared libraries)
1063 contain a minimal symbol with the same name. */
1064 fn = lookup_minimal_symbol (dot_fn.minsym->linkage_name () + 1, NULL,
1065 dot_fn_section->objfile);
1066 if (fn.minsym == NULL)
1067 return 0;
1068 /* Found a descriptor. */
1069 (*desc_addr) = fn.value_address ();
1070 return 1;
1071 }
1072
1073 /* Walk down the type tree of TYPE counting consecutive base elements.
1074 If *FIELD_TYPE is NULL, then set it to the first valid floating point
1075 or vector type. If a non-floating point or vector type is found, or
1076 if a floating point or vector type that doesn't match a non-NULL
1077 *FIELD_TYPE is found, then return -1, otherwise return the count in the
1078 sub-tree. */
1079
1080 static LONGEST
1081 ppc64_aggregate_candidate (struct type *type,
1082 struct type **field_type)
1083 {
1084 type = check_typedef (type);
1085
1086 switch (type->code ())
1087 {
1088 case TYPE_CODE_FLT:
1089 case TYPE_CODE_DECFLOAT:
1090 if (!*field_type)
1091 *field_type = type;
1092 if ((*field_type)->code () == type->code ()
1093 && (*field_type)->length () == type->length ())
1094 return 1;
1095 break;
1096
1097 case TYPE_CODE_COMPLEX:
1098 type = type->target_type ();
1099 if (type->code () == TYPE_CODE_FLT
1100 || type->code () == TYPE_CODE_DECFLOAT)
1101 {
1102 if (!*field_type)
1103 *field_type = type;
1104 if ((*field_type)->code () == type->code ()
1105 && (*field_type)->length () == type->length ())
1106 return 2;
1107 }
1108 break;
1109
1110 case TYPE_CODE_ARRAY:
1111 if (type->is_vector ())
1112 {
1113 if (!*field_type)
1114 *field_type = type;
1115 if ((*field_type)->code () == type->code ()
1116 && (*field_type)->length () == type->length ())
1117 return 1;
1118 }
1119 else
1120 {
1121 LONGEST count, low_bound, high_bound;
1122
1123 count = ppc64_aggregate_candidate
1124 (type->target_type (), field_type);
1125 if (count == -1)
1126 return -1;
1127
1128 if (!get_array_bounds (type, &low_bound, &high_bound))
1129 return -1;
1130
1131 LONGEST nr_array_elements = (low_bound > high_bound
1132 ? 0
1133 : (high_bound - low_bound + 1));
1134 count *= nr_array_elements;
1135
1136 /* There must be no padding. */
1137 if (count == 0)
1138 return type->length () == 0 ? 0 : -1;
1139 else if (type->length () != count * (*field_type)->length ())
1140 return -1;
1141
1142 return count;
1143 }
1144 break;
1145
1146 case TYPE_CODE_STRUCT:
1147 case TYPE_CODE_UNION:
1148 {
1149 LONGEST count = 0;
1150 int i;
1151
1152 for (i = 0; i < type->num_fields (); i++)
1153 {
1154 LONGEST sub_count;
1155
1156 if (type->field (i).is_static ())
1157 continue;
1158
1159 sub_count = ppc64_aggregate_candidate
1160 (type->field (i).type (), field_type);
1161 if (sub_count == -1)
1162 return -1;
1163
1164 if (type->code () == TYPE_CODE_STRUCT)
1165 count += sub_count;
1166 else
1167 count = std::max (count, sub_count);
1168 }
1169
1170 /* There must be no padding. */
1171 if (count == 0)
1172 return type->length () == 0 ? 0 : -1;
1173 else if (type->length () != count * (*field_type)->length ())
1174 return -1;
1175
1176 return count;
1177 }
1178 break;
1179
1180 default:
1181 break;
1182 }
1183
1184 return -1;
1185 }
1186
1187 /* If an argument of type TYPE is a homogeneous float or vector aggregate
1188 that shall be passed in FP/vector registers according to the ELFv2 ABI,
1189 return the homogeneous element type in *ELT_TYPE and the number of
1190 elements in *N_ELTS, and return non-zero. Otherwise, return zero. */
1191
1192 static int
1193 ppc64_elfv2_abi_homogeneous_aggregate (struct type *type,
1194 struct type **elt_type, int *n_elts,
1195 struct gdbarch *gdbarch)
1196 {
1197 /* Complex types at the top level are treated separately. However,
1198 complex types can be elements of homogeneous aggregates. */
1199 if (type->code () == TYPE_CODE_STRUCT
1200 || type->code () == TYPE_CODE_UNION
1201 || (type->code () == TYPE_CODE_ARRAY && !type->is_vector ()))
1202 {
1203 struct type *field_type = NULL;
1204 LONGEST field_count = ppc64_aggregate_candidate (type, &field_type);
1205
1206 if (field_count > 0)
1207 {
1208 int n_regs;
1209
1210 if (field_type->code () == TYPE_CODE_FLT
1211 && (gdbarch_long_double_format (gdbarch)
1212 == floatformats_ieee_quad))
1213 /* IEEE Float 128-bit uses one vector register. */
1214 n_regs = 1;
1215
1216 else if (field_type->code () == TYPE_CODE_FLT
1217 || field_type->code () == TYPE_CODE_DECFLOAT)
1218 n_regs = (field_type->length () + 7) >> 3;
1219
1220 else
1221 n_regs = 1;
1222
1223 /* The ELFv2 ABI allows homogeneous aggregates to occupy
1224 up to 8 registers. */
1225 if (field_count * n_regs <= 8)
1226 {
1227 if (elt_type)
1228 *elt_type = field_type;
1229 if (n_elts)
1230 *n_elts = (int) field_count;
1231 /* Note that field_count is LONGEST since it may hold the size
1232 of an array, while *n_elts is int since its value is bounded
1233 by the number of registers used for argument passing. The
1234 cast cannot overflow due to the bounds checking above. */
1235 return 1;
1236 }
1237 }
1238 }
1239
1240 return 0;
1241 }
1242
1243 /* Structure holding the next argument position. */
1244 struct ppc64_sysv_argpos
1245 {
1246 /* Register cache holding argument registers. If this is NULL,
1247 we only simulate argument processing without actually updating
1248 any registers or memory. */
1249 struct regcache *regcache;
1250 /* Next available general-purpose argument register. */
1251 int greg;
1252 /* Next available floating-point argument register. */
1253 int freg;
1254 /* Next available vector argument register. */
1255 int vreg;
1256 /* The address, at which the next general purpose parameter
1257 (integer, struct, float, vector, ...) should be saved. */
1258 CORE_ADDR gparam;
1259 /* The address, at which the next by-reference parameter
1260 (non-Altivec vector, variably-sized type) should be saved. */
1261 CORE_ADDR refparam;
1262 };
1263
1264 /* VAL is a value of length LEN. Store it into the argument area on the
1265 stack and load it into the corresponding general-purpose registers
1266 required by the ABI, and update ARGPOS.
1267
1268 If ALIGN is nonzero, it specifies the minimum alignment required
1269 for the on-stack copy of the argument. */
1270
1271 static void
1272 ppc64_sysv_abi_push_val (struct gdbarch *gdbarch,
1273 const bfd_byte *val, int len, int align,
1274 struct ppc64_sysv_argpos *argpos)
1275 {
1276 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1277 int offset = 0;
1278
1279 /* Enforce alignment of stack location, if requested. */
1280 if (align > tdep->wordsize)
1281 {
1282 CORE_ADDR aligned_gparam = align_up (argpos->gparam, align);
1283
1284 argpos->greg += (aligned_gparam - argpos->gparam) / tdep->wordsize;
1285 argpos->gparam = aligned_gparam;
1286 }
1287
1288 /* The ABI (version 1.9) specifies that values smaller than one
1289 doubleword are right-aligned and those larger are left-aligned.
1290 GCC versions before 3.4 implemented this incorrectly; see
1291 <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>. */
1292 if (len < tdep->wordsize
1293 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1294 offset = tdep->wordsize - len;
1295
1296 if (argpos->regcache)
1297 write_memory (argpos->gparam + offset, val, len);
1298 argpos->gparam = align_up (argpos->gparam + len, tdep->wordsize);
1299
1300 while (len >= tdep->wordsize)
1301 {
1302 if (argpos->regcache && argpos->greg <= 10)
1303 argpos->regcache->cooked_write (tdep->ppc_gp0_regnum + argpos->greg,
1304 val);
1305 argpos->greg++;
1306 len -= tdep->wordsize;
1307 val += tdep->wordsize;
1308 }
1309
1310 if (len > 0)
1311 {
1312 if (argpos->regcache && argpos->greg <= 10)
1313 argpos->regcache->cooked_write_part
1314 (tdep->ppc_gp0_regnum + argpos->greg, offset, len, val);
1315 argpos->greg++;
1316 }
1317 }
1318
1319 /* The same as ppc64_sysv_abi_push_val, but using a single-word integer
1320 value VAL as argument. */
1321
1322 static void
1323 ppc64_sysv_abi_push_integer (struct gdbarch *gdbarch, ULONGEST val,
1324 struct ppc64_sysv_argpos *argpos)
1325 {
1326 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1328 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
1329
1330 if (argpos->regcache)
1331 store_unsigned_integer (buf, tdep->wordsize, byte_order, val);
1332 ppc64_sysv_abi_push_val (gdbarch, buf, tdep->wordsize, 0, argpos);
1333 }
1334
1335 /* VAL is a value of TYPE, a (binary or decimal) floating-point type.
1336 Load it into a floating-point register if required by the ABI,
1337 and update ARGPOS. */
1338
1339 static void
1340 ppc64_sysv_abi_push_freg (struct gdbarch *gdbarch,
1341 struct type *type, const bfd_byte *val,
1342 struct ppc64_sysv_argpos *argpos)
1343 {
1344 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1345 if (tdep->soft_float)
1346 return;
1347
1348 if (type->length () <= 8
1349 && type->code () == TYPE_CODE_FLT)
1350 {
1351 /* Floats and doubles go in f1 .. f13. 32-bit floats are converted
1352 to double first. */
1353 if (argpos->regcache && argpos->freg <= 13)
1354 {
1355 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1356 struct type *regtype = register_type (gdbarch, regnum);
1357 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
1358
1359 target_float_convert (val, type, regval, regtype);
1360 argpos->regcache->cooked_write (regnum, regval);
1361 }
1362
1363 argpos->freg++;
1364 }
1365 else if (type->length () <= 8
1366 && type->code () == TYPE_CODE_DECFLOAT)
1367 {
1368 /* Floats and doubles go in f1 .. f13. 32-bit decimal floats are
1369 placed in the least significant word. */
1370 if (argpos->regcache && argpos->freg <= 13)
1371 {
1372 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1373 int offset = 0;
1374
1375 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1376 offset = 8 - type->length ();
1377
1378 argpos->regcache->cooked_write_part (regnum, offset,
1379 type->length (), val);
1380 }
1381
1382 argpos->freg++;
1383 }
1384 else if (type->length () == 16
1385 && type->code () == TYPE_CODE_FLT
1386 && (gdbarch_long_double_format (gdbarch)
1387 == floatformats_ibm_long_double))
1388 {
1389 /* IBM long double stored in two consecutive FPRs. */
1390 if (argpos->regcache && argpos->freg <= 13)
1391 {
1392 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1393
1394 argpos->regcache->cooked_write (regnum, val);
1395 if (argpos->freg <= 12)
1396 argpos->regcache->cooked_write (regnum + 1, val + 8);
1397 }
1398
1399 argpos->freg += 2;
1400 }
1401 else if (type->length () == 16
1402 && type->code () == TYPE_CODE_DECFLOAT)
1403 {
1404 /* 128-bit decimal floating-point values are stored in and even/odd
1405 pair of FPRs, with the even FPR holding the most significant half. */
1406 argpos->freg += argpos->freg & 1;
1407
1408 if (argpos->regcache && argpos->freg <= 12)
1409 {
1410 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1411 int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
1412 int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
1413
1414 argpos->regcache->cooked_write (regnum, val + hipart);
1415 argpos->regcache->cooked_write (regnum + 1, val + lopart);
1416 }
1417
1418 argpos->freg += 2;
1419 }
1420 }
1421
1422 /* VAL is a value of AltiVec vector type. Load it into a vector register
1423 if required by the ABI, and update ARGPOS. */
1424
1425 static void
1426 ppc64_sysv_abi_push_vreg (struct gdbarch *gdbarch, const bfd_byte *val,
1427 struct ppc64_sysv_argpos *argpos)
1428 {
1429 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1430
1431 if (argpos->regcache && argpos->vreg <= 13)
1432 argpos->regcache->cooked_write (tdep->ppc_vr0_regnum + argpos->vreg, val);
1433
1434 argpos->vreg++;
1435 }
1436
1437 /* VAL is a value of TYPE. Load it into memory and/or registers
1438 as required by the ABI, and update ARGPOS. */
1439
1440 static void
1441 ppc64_sysv_abi_push_param (struct gdbarch *gdbarch,
1442 struct type *type, const bfd_byte *val,
1443 struct ppc64_sysv_argpos *argpos)
1444 {
1445 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1446
1447 if (type->code () == TYPE_CODE_FLT
1448 && type->length () == 16
1449 && (gdbarch_long_double_format (gdbarch)
1450 == floatformats_ieee_quad))
1451 {
1452 /* IEEE FLOAT128, args in vector registers. */
1453 ppc64_sysv_abi_push_val (gdbarch, val, type->length (), 16, argpos);
1454 ppc64_sysv_abi_push_vreg (gdbarch, val, argpos);
1455 }
1456 else if (type->code () == TYPE_CODE_FLT
1457 || type->code () == TYPE_CODE_DECFLOAT)
1458 {
1459 /* Floating-point scalars are passed in floating-point registers. */
1460 ppc64_sysv_abi_push_val (gdbarch, val, type->length (), 0, argpos);
1461 ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
1462 }
1463 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ()
1464 && tdep->vector_abi == POWERPC_VEC_ALTIVEC
1465 && type->length () == 16)
1466 {
1467 /* AltiVec vectors are passed aligned, and in vector registers. */
1468 ppc64_sysv_abi_push_val (gdbarch, val, type->length (), 16, argpos);
1469 ppc64_sysv_abi_push_vreg (gdbarch, val, argpos);
1470 }
1471 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ()
1472 && type->length () >= 16)
1473 {
1474 /* Non-Altivec vectors are passed by reference. */
1475
1476 /* Copy value onto the stack ... */
1477 CORE_ADDR addr = align_up (argpos->refparam, 16);
1478 if (argpos->regcache)
1479 write_memory (addr, val, type->length ());
1480 argpos->refparam = align_up (addr + type->length (), tdep->wordsize);
1481
1482 /* ... and pass a pointer to the copy as parameter. */
1483 ppc64_sysv_abi_push_integer (gdbarch, addr, argpos);
1484 }
1485 else if ((type->code () == TYPE_CODE_INT
1486 || type->code () == TYPE_CODE_ENUM
1487 || type->code () == TYPE_CODE_BOOL
1488 || type->code () == TYPE_CODE_CHAR
1489 || type->code () == TYPE_CODE_PTR
1490 || TYPE_IS_REFERENCE (type))
1491 && type->length () <= tdep->wordsize)
1492 {
1493 ULONGEST word = 0;
1494
1495 if (argpos->regcache)
1496 {
1497 /* Sign extend the value, then store it unsigned. */
1498 word = unpack_long (type, val);
1499
1500 /* Convert any function code addresses into descriptors. */
1501 if (tdep->elf_abi == POWERPC_ELF_V1
1502 && (type->code () == TYPE_CODE_PTR
1503 || type->code () == TYPE_CODE_REF))
1504 {
1505 struct type *target_type
1506 = check_typedef (type->target_type ());
1507
1508 if (target_type->code () == TYPE_CODE_FUNC
1509 || target_type->code () == TYPE_CODE_METHOD)
1510 {
1511 CORE_ADDR desc = word;
1512
1513 convert_code_addr_to_desc_addr (word, &desc);
1514 word = desc;
1515 }
1516 }
1517 }
1518
1519 ppc64_sysv_abi_push_integer (gdbarch, word, argpos);
1520 }
1521 else
1522 {
1523 /* Align == 0 is correct for ppc64_sysv_abi_push_freg,
1524 Align == 16 is correct for ppc64_sysv_abi_push_vreg.
1525 Default to 0. */
1526 int align = 0;
1527
1528 /* The ABI (version 1.9) specifies that structs containing a
1529 single floating-point value, at any level of nesting of
1530 single-member structs, are passed in floating-point registers. */
1531 if (type->code () == TYPE_CODE_STRUCT
1532 && type->num_fields () == 1 && tdep->elf_abi == POWERPC_ELF_V1)
1533 {
1534 while (type->code () == TYPE_CODE_STRUCT
1535 && type->num_fields () == 1)
1536 type = check_typedef (type->field (0).type ());
1537
1538 if (type->code () == TYPE_CODE_FLT) {
1539 /* Handle the case of 128-bit floats for both IEEE and IBM long double
1540 formats. */
1541 if (type->length () == 16
1542 && (gdbarch_long_double_format (gdbarch)
1543 == floatformats_ieee_quad))
1544 {
1545 ppc64_sysv_abi_push_vreg (gdbarch, val, argpos);
1546 align = 16;
1547 }
1548 else
1549 ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
1550 }
1551 }
1552
1553 /* In the ELFv2 ABI, homogeneous floating-point or vector
1554 aggregates are passed in a series of registers. */
1555 if (tdep->elf_abi == POWERPC_ELF_V2)
1556 {
1557 struct type *eltype;
1558 int i, nelt;
1559
1560 if (ppc64_elfv2_abi_homogeneous_aggregate (type, &eltype, &nelt,
1561 gdbarch))
1562 for (i = 0; i < nelt; i++)
1563 {
1564 const gdb_byte *elval = val + i * eltype->length ();
1565
1566 if (eltype->code () == TYPE_CODE_FLT
1567 && eltype->length () == 16
1568 && (gdbarch_long_double_format (gdbarch)
1569 == floatformats_ieee_quad))
1570 /* IEEE FLOAT128, args in vector registers. */
1571 {
1572 ppc64_sysv_abi_push_vreg (gdbarch, elval, argpos);
1573 align = 16;
1574 }
1575 else if (eltype->code () == TYPE_CODE_FLT
1576 || eltype->code () == TYPE_CODE_DECFLOAT)
1577 /* IBM long double and all other floats and decfloats, args
1578 are in a pair of floating point registers. */
1579 ppc64_sysv_abi_push_freg (gdbarch, eltype, elval, argpos);
1580 else if (eltype->code () == TYPE_CODE_ARRAY
1581 && eltype->is_vector ()
1582 && tdep->vector_abi == POWERPC_VEC_ALTIVEC
1583 && eltype->length () == 16)
1584 {
1585 ppc64_sysv_abi_push_vreg (gdbarch, elval, argpos);
1586 align = 16;
1587 }
1588 }
1589 }
1590
1591 ppc64_sysv_abi_push_val (gdbarch, val, type->length (), align, argpos);
1592 }
1593 }
1594
1595 /* Pass the arguments in either registers, or in the stack. Using the
1596 ppc 64 bit SysV ABI.
1597
1598 This implements a dumbed down version of the ABI. It always writes
1599 values to memory, GPR and FPR, even when not necessary. Doing this
1600 greatly simplifies the logic. */
1601
1602 CORE_ADDR
1603 ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch,
1604 struct value *function,
1605 struct regcache *regcache, CORE_ADDR bp_addr,
1606 int nargs, struct value **args, CORE_ADDR sp,
1607 function_call_return_method return_method,
1608 CORE_ADDR struct_addr)
1609 {
1610 CORE_ADDR func_addr = find_function_addr (function, NULL);
1611 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1612 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1613 int opencl_abi = ppc_sysv_use_opencl_abi (function->type ());
1614 ULONGEST back_chain;
1615 /* See for-loop comment below. */
1616 int write_pass;
1617 /* Size of the by-reference parameter copy region, the final value is
1618 computed in the for-loop below. */
1619 LONGEST refparam_size = 0;
1620 /* Size of the general parameter region, the final value is computed
1621 in the for-loop below. */
1622 LONGEST gparam_size = 0;
1623 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
1624 calls to align_up(), align_down(), etc. because this makes it
1625 easier to reuse this code (in a copy/paste sense) in the future,
1626 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
1627 at some point makes it easier to verify that this function is
1628 correct without having to do a non-local analysis to figure out
1629 the possible values of tdep->wordsize. */
1630 gdb_assert (tdep->wordsize == 8);
1631
1632 /* This function exists to support a calling convention that
1633 requires floating-point registers. It shouldn't be used on
1634 processors that lack them. */
1635 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1636
1637 /* By this stage in the proceedings, SP has been decremented by "red
1638 zone size" + "struct return size". Fetch the stack-pointer from
1639 before this and use that as the BACK_CHAIN. */
1640 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
1641 &back_chain);
1642
1643 /* Go through the argument list twice.
1644
1645 Pass 1: Compute the function call's stack space and register
1646 requirements.
1647
1648 Pass 2: Replay the same computation but this time also write the
1649 values out to the target. */
1650
1651 for (write_pass = 0; write_pass < 2; write_pass++)
1652 {
1653 int argno;
1654
1655 struct ppc64_sysv_argpos argpos;
1656 argpos.greg = 3;
1657 argpos.freg = 1;
1658 argpos.vreg = 2;
1659
1660 if (!write_pass)
1661 {
1662 /* During the first pass, GPARAM and REFPARAM are more like
1663 offsets (start address zero) than addresses. That way
1664 they accumulate the total stack space each region
1665 requires. */
1666 argpos.regcache = NULL;
1667 argpos.gparam = 0;
1668 argpos.refparam = 0;
1669 }
1670 else
1671 {
1672 /* Decrement the stack pointer making space for the Altivec
1673 and general on-stack parameters. Set refparam and gparam
1674 to their corresponding regions. */
1675 argpos.regcache = regcache;
1676 argpos.refparam = align_down (sp - refparam_size, 16);
1677 argpos.gparam = align_down (argpos.refparam - gparam_size, 16);
1678 /* Add in space for the TOC, link editor double word (v1 only),
1679 compiler double word (v1 only), LR save area, CR save area,
1680 and backchain. */
1681 if (tdep->elf_abi == POWERPC_ELF_V1)
1682 sp = align_down (argpos.gparam - 48, 16);
1683 else
1684 sp = align_down (argpos.gparam - 32, 16);
1685 }
1686
1687 /* If the function is returning a `struct', then there is an
1688 extra hidden parameter (which will be passed in r3)
1689 containing the address of that struct.. In that case we
1690 should advance one word and start from r4 register to copy
1691 parameters. This also consumes one on-stack parameter slot. */
1692 if (return_method == return_method_struct)
1693 ppc64_sysv_abi_push_integer (gdbarch, struct_addr, &argpos);
1694
1695 for (argno = 0; argno < nargs; argno++)
1696 {
1697 struct value *arg = args[argno];
1698 struct type *type = check_typedef (arg->type ());
1699 const bfd_byte *val = arg->contents ().data ();
1700
1701 if (type->code () == TYPE_CODE_COMPLEX)
1702 {
1703 /* Complex types are passed as if two independent scalars. */
1704 struct type *eltype = check_typedef (type->target_type ());
1705
1706 ppc64_sysv_abi_push_param (gdbarch, eltype, val, &argpos);
1707 ppc64_sysv_abi_push_param (gdbarch, eltype,
1708 val + eltype->length (), &argpos);
1709 }
1710 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ()
1711 && opencl_abi)
1712 {
1713 /* OpenCL vectors shorter than 16 bytes are passed as if
1714 a series of independent scalars; OpenCL vectors 16 bytes
1715 or longer are passed as if a series of AltiVec vectors. */
1716 struct type *eltype;
1717 int i, nelt;
1718
1719 if (type->length () < 16)
1720 eltype = check_typedef (type->target_type ());
1721 else
1722 eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);
1723
1724 nelt = type->length () / eltype->length ();
1725 for (i = 0; i < nelt; i++)
1726 {
1727 const gdb_byte *elval = val + i * eltype->length ();
1728
1729 ppc64_sysv_abi_push_param (gdbarch, eltype, elval, &argpos);
1730 }
1731 }
1732 else
1733 {
1734 /* All other types are passed as single arguments. */
1735 ppc64_sysv_abi_push_param (gdbarch, type, val, &argpos);
1736 }
1737 }
1738
1739 if (!write_pass)
1740 {
1741 /* Save the true region sizes ready for the second pass. */
1742 refparam_size = argpos.refparam;
1743 /* Make certain that the general parameter save area is at
1744 least the minimum 8 registers (or doublewords) in size. */
1745 if (argpos.greg < 8)
1746 gparam_size = 8 * tdep->wordsize;
1747 else
1748 gparam_size = argpos.gparam;
1749 }
1750 }
1751
1752 /* Update %sp. */
1753 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
1754
1755 /* Write the backchain (it occupies WORDSIZED bytes). */
1756 write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);
1757
1758 /* Point the inferior function call's return address at the dummy's
1759 breakpoint. */
1760 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1761
1762 /* In the ELFv1 ABI, use the func_addr to find the descriptor, and use
1763 that to find the TOC. If we're calling via a function pointer,
1764 the pointer itself identifies the descriptor. */
1765 if (tdep->elf_abi == POWERPC_ELF_V1)
1766 {
1767 struct type *ftype = check_typedef (function->type ());
1768 CORE_ADDR desc_addr = value_as_address (function);
1769
1770 if (ftype->code () == TYPE_CODE_PTR
1771 || convert_code_addr_to_desc_addr (func_addr, &desc_addr))
1772 {
1773 /* The TOC is the second double word in the descriptor. */
1774 CORE_ADDR toc =
1775 read_memory_unsigned_integer (desc_addr + tdep->wordsize,
1776 tdep->wordsize, byte_order);
1777
1778 regcache_cooked_write_unsigned (regcache,
1779 tdep->ppc_gp0_regnum + 2, toc);
1780 }
1781 }
1782
1783 /* In the ELFv2 ABI, we need to pass the target address in r12 since
1784 we may be calling a global entry point. */
1785 if (tdep->elf_abi == POWERPC_ELF_V2)
1786 regcache_cooked_write_unsigned (regcache,
1787 tdep->ppc_gp0_regnum + 12, func_addr);
1788
1789 return sp;
1790 }
1791
1792 /* Subroutine of ppc64_sysv_abi_return_value that handles "base" types:
1793 integer, floating-point, and AltiVec vector types.
1794
1795 This routine also handles components of aggregate return types;
1796 INDEX describes which part of the aggregate is to be handled.
1797
1798 Returns true if VALTYPE is some such base type that could be handled,
1799 false otherwise. */
1800 static int
1801 ppc64_sysv_abi_return_value_base (struct gdbarch *gdbarch, struct type *valtype,
1802 struct regcache *regcache, gdb_byte *readbuf,
1803 const gdb_byte *writebuf, int index)
1804 {
1805 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1806
1807 /* Integers live in GPRs starting at r3. */
1808 if ((valtype->code () == TYPE_CODE_INT
1809 || valtype->code () == TYPE_CODE_ENUM
1810 || valtype->code () == TYPE_CODE_CHAR
1811 || valtype->code () == TYPE_CODE_BOOL
1812 || valtype->code () == TYPE_CODE_RANGE
1813 || is_fixed_point_type (valtype))
1814 && valtype->length () <= 8)
1815 {
1816 int regnum = tdep->ppc_gp0_regnum + 3 + index;
1817
1818 if (writebuf != NULL)
1819 {
1820 LONGEST return_val;
1821
1822 if (is_fixed_point_type (valtype))
1823 {
1824 /* Fixed point type values need to be returned unscaled. */
1825 gdb_mpz unscaled;
1826
1827 unscaled.read (gdb::make_array_view (writebuf,
1828 valtype->length ()),
1829 type_byte_order (valtype),
1830 valtype->is_unsigned ());
1831 return_val = unscaled.as_integer<LONGEST> ();
1832 }
1833 else
1834 return_val = unpack_long (valtype, writebuf);
1835
1836 /* Be careful to sign extend the value. */
1837 regcache_cooked_write_unsigned (regcache, regnum, return_val);
1838 }
1839 if (readbuf != NULL)
1840 {
1841 /* Extract the integer from GPR. Since this is truncating the
1842 value, there isn't a sign extension problem. */
1843 ULONGEST regval;
1844
1845 regcache_cooked_read_unsigned (regcache, regnum, &regval);
1846 store_unsigned_integer (readbuf, valtype->length (),
1847 gdbarch_byte_order (gdbarch), regval);
1848 }
1849 return 1;
1850 }
1851
1852 /* Floats and doubles go in f1 .. f13. 32-bit floats are converted
1853 to double first. */
1854 if (valtype->length () <= 8
1855 && valtype->code () == TYPE_CODE_FLT)
1856 {
1857 int regnum = tdep->ppc_fp0_regnum + 1 + index;
1858 struct type *regtype = register_type (gdbarch, regnum);
1859 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
1860
1861 if (writebuf != NULL)
1862 {
1863 target_float_convert (writebuf, valtype, regval, regtype);
1864 regcache->cooked_write (regnum, regval);
1865 }
1866 if (readbuf != NULL)
1867 {
1868 regcache->cooked_read (regnum, regval);
1869 target_float_convert (regval, regtype, readbuf, valtype);
1870 }
1871 return 1;
1872 }
1873
1874 /* Floats and doubles go in f1 .. f13. 32-bit decimal floats are
1875 placed in the least significant word. */
1876 if (valtype->length () <= 8
1877 && valtype->code () == TYPE_CODE_DECFLOAT)
1878 {
1879 int regnum = tdep->ppc_fp0_regnum + 1 + index;
1880 int offset = 0;
1881
1882 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1883 offset = 8 - valtype->length ();
1884
1885 if (writebuf != NULL)
1886 regcache->cooked_write_part (regnum, offset, valtype->length (),
1887 writebuf);
1888 if (readbuf != NULL)
1889 regcache->cooked_read_part (regnum, offset, valtype->length (),
1890 readbuf);
1891 return 1;
1892 }
1893
1894 /* IBM long double stored in two consecutive FPRs. */
1895 if (valtype->length () == 16
1896 && valtype->code () == TYPE_CODE_FLT
1897 && (gdbarch_long_double_format (gdbarch)
1898 == floatformats_ibm_long_double))
1899 {
1900 int regnum = tdep->ppc_fp0_regnum + 1 + 2 * index;
1901
1902 if (writebuf != NULL)
1903 {
1904 regcache->cooked_write (regnum, writebuf);
1905 regcache->cooked_write (regnum + 1, writebuf + 8);
1906 }
1907 if (readbuf != NULL)
1908 {
1909 regcache->cooked_read (regnum, readbuf);
1910 regcache->cooked_read (regnum + 1, readbuf + 8);
1911 }
1912 return 1;
1913 }
1914
1915 /* 128-bit decimal floating-point values are stored in an even/odd
1916 pair of FPRs, with the even FPR holding the most significant half. */
1917 if (valtype->length () == 16
1918 && valtype->code () == TYPE_CODE_DECFLOAT)
1919 {
1920 int regnum = tdep->ppc_fp0_regnum + 2 + 2 * index;
1921 int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
1922 int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
1923
1924 if (writebuf != NULL)
1925 {
1926 regcache->cooked_write (regnum, writebuf + hipart);
1927 regcache->cooked_write (regnum + 1, writebuf + lopart);
1928 }
1929 if (readbuf != NULL)
1930 {
1931 regcache->cooked_read (regnum, readbuf + hipart);
1932 regcache->cooked_read (regnum + 1, readbuf + lopart);
1933 }
1934 return 1;
1935 }
1936
1937 /* AltiVec vectors are returned in VRs starting at v2.
1938 IEEE FLOAT 128-bit are stored in vector register. */
1939
1940 if (valtype->length () == 16
1941 && ((valtype->code () == TYPE_CODE_ARRAY
1942 && valtype->is_vector ()
1943 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
1944 || (valtype->code () == TYPE_CODE_FLT
1945 && (gdbarch_long_double_format (gdbarch)
1946 == floatformats_ieee_quad))))
1947 {
1948 int regnum = tdep->ppc_vr0_regnum + 2 + index;
1949
1950 if (writebuf != NULL)
1951 regcache->cooked_write (regnum, writebuf);
1952 if (readbuf != NULL)
1953 regcache->cooked_read (regnum, readbuf);
1954 return 1;
1955 }
1956
1957 /* Short vectors are returned in GPRs starting at r3. */
1958 if (valtype->length () <= 8
1959 && valtype->code () == TYPE_CODE_ARRAY && valtype->is_vector ())
1960 {
1961 int regnum = tdep->ppc_gp0_regnum + 3 + index;
1962 int offset = 0;
1963
1964 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1965 offset = 8 - valtype->length ();
1966
1967 if (writebuf != NULL)
1968 regcache->cooked_write_part (regnum, offset, valtype->length (),
1969 writebuf);
1970 if (readbuf != NULL)
1971 regcache->cooked_read_part (regnum, offset, valtype->length (),
1972 readbuf);
1973 return 1;
1974 }
1975
1976 return 0;
1977 }
1978
1979 /* The 64 bit ABI return value convention.
1980
1981 Return non-zero if the return-value is stored in a register, return
1982 0 if the return-value is instead stored on the stack (a.k.a.,
1983 struct return convention).
1984
1985 For a return-value stored in a register: when WRITEBUF is non-NULL,
1986 copy the buffer to the corresponding register return-value location
1987 location; when READBUF is non-NULL, fill the buffer from the
1988 corresponding register return-value location. */
1989 enum return_value_convention
1990 ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
1991 struct type *valtype, struct regcache *regcache,
1992 gdb_byte *readbuf, const gdb_byte *writebuf)
1993 {
1994 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1995 struct type *func_type = function ? function->type () : NULL;
1996 int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
1997 struct type *eltype;
1998 int nelt, ok;
1999
2000 /* This function exists to support a calling convention that
2001 requires floating-point registers. It shouldn't be used on
2002 processors that lack them. */
2003 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2004
2005 /* Complex types are returned as if two independent scalars. */
2006 if (valtype->code () == TYPE_CODE_COMPLEX)
2007 {
2008 eltype = check_typedef (valtype->target_type ());
2009
2010 for (int i = 0; i < 2; i++)
2011 {
2012 ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
2013 readbuf, writebuf, i);
2014 gdb_assert (ok);
2015
2016 if (readbuf)
2017 readbuf += eltype->length ();
2018 if (writebuf)
2019 writebuf += eltype->length ();
2020 }
2021 return RETURN_VALUE_REGISTER_CONVENTION;
2022 }
2023
2024 /* OpenCL vectors shorter than 16 bytes are returned as if
2025 a series of independent scalars; OpenCL vectors 16 bytes
2026 or longer are returned as if a series of AltiVec vectors. */
2027 if (valtype->code () == TYPE_CODE_ARRAY && valtype->is_vector ()
2028 && opencl_abi)
2029 {
2030 if (valtype->length () < 16)
2031 eltype = check_typedef (valtype->target_type ());
2032 else
2033 eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);
2034
2035 nelt = valtype->length () / eltype->length ();
2036 for (int i = 0; i < nelt; i++)
2037 {
2038 ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
2039 readbuf, writebuf, i);
2040 gdb_assert (ok);
2041
2042 if (readbuf)
2043 readbuf += eltype->length ();
2044 if (writebuf)
2045 writebuf += eltype->length ();
2046 }
2047 return RETURN_VALUE_REGISTER_CONVENTION;
2048 }
2049
2050 /* All pointers live in r3. */
2051 if (valtype->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (valtype))
2052 {
2053 int regnum = tdep->ppc_gp0_regnum + 3;
2054
2055 if (writebuf != NULL)
2056 regcache->cooked_write (regnum, writebuf);
2057 if (readbuf != NULL)
2058 regcache->cooked_read (regnum, readbuf);
2059 return RETURN_VALUE_REGISTER_CONVENTION;
2060 }
2061
2062 /* Small character arrays are returned, right justified, in r3. */
2063 if (valtype->code () == TYPE_CODE_ARRAY
2064 && !valtype->is_vector ()
2065 && valtype->length () <= 8
2066 && valtype->target_type ()->code () == TYPE_CODE_INT
2067 && valtype->target_type ()->length () == 1)
2068 {
2069 int regnum = tdep->ppc_gp0_regnum + 3;
2070 int offset = (register_size (gdbarch, regnum) - valtype->length ());
2071
2072 if (writebuf != NULL)
2073 regcache->cooked_write_part (regnum, offset, valtype->length (),
2074 writebuf);
2075 if (readbuf != NULL)
2076 regcache->cooked_read_part (regnum, offset, valtype->length (),
2077 readbuf);
2078 return RETURN_VALUE_REGISTER_CONVENTION;
2079 }
2080
2081 /* In the ELFv2 ABI, homogeneous floating-point or vector
2082 aggregates are returned in registers. */
2083 if (tdep->elf_abi == POWERPC_ELF_V2
2084 && ppc64_elfv2_abi_homogeneous_aggregate (valtype, &eltype, &nelt,
2085 gdbarch)
2086 && (eltype->code () == TYPE_CODE_FLT
2087 || eltype->code () == TYPE_CODE_DECFLOAT
2088 || (eltype->code () == TYPE_CODE_ARRAY
2089 && eltype->is_vector ()
2090 && tdep->vector_abi == POWERPC_VEC_ALTIVEC
2091 && eltype->length () == 16)))
2092 {
2093 for (int i = 0; i < nelt; i++)
2094 {
2095 ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
2096 readbuf, writebuf, i);
2097 gdb_assert (ok);
2098
2099 if (readbuf)
2100 readbuf += eltype->length ();
2101 if (writebuf)
2102 writebuf += eltype->length ();
2103 }
2104
2105 return RETURN_VALUE_REGISTER_CONVENTION;
2106 }
2107
2108 if (!language_pass_by_reference (valtype).trivially_copyable
2109 && valtype->code () == TYPE_CODE_STRUCT)
2110 return RETURN_VALUE_STRUCT_CONVENTION;
2111
2112 /* In the ELFv2 ABI, aggregate types of up to 16 bytes are
2113 returned in registers r3:r4. */
2114 if (tdep->elf_abi == POWERPC_ELF_V2
2115 && valtype->length () <= 16
2116 && (valtype->code () == TYPE_CODE_STRUCT
2117 || valtype->code () == TYPE_CODE_UNION
2118 || (valtype->code () == TYPE_CODE_ARRAY
2119 && !valtype->is_vector ())))
2120 {
2121 int n_regs = ((valtype->length () + tdep->wordsize - 1)
2122 / tdep->wordsize);
2123
2124 for (int i = 0; i < n_regs; i++)
2125 {
2126 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
2127 int regnum = tdep->ppc_gp0_regnum + 3 + i;
2128 int offset = i * tdep->wordsize;
2129 int len = valtype->length () - offset;
2130
2131 if (len > tdep->wordsize)
2132 len = tdep->wordsize;
2133
2134 if (writebuf != NULL)
2135 {
2136 memset (regval, 0, sizeof regval);
2137 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
2138 && offset == 0)
2139 memcpy (regval + tdep->wordsize - len, writebuf, len);
2140 else
2141 memcpy (regval, writebuf + offset, len);
2142 regcache->cooked_write (regnum, regval);
2143 }
2144 if (readbuf != NULL)
2145 {
2146 regcache->cooked_read (regnum, regval);
2147 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
2148 && offset == 0)
2149 memcpy (readbuf, regval + tdep->wordsize - len, len);
2150 else
2151 memcpy (readbuf + offset, regval, len);
2152 }
2153 }
2154 return RETURN_VALUE_REGISTER_CONVENTION;
2155 }
2156
2157 /* Handle plain base types. */
2158 if (ppc64_sysv_abi_return_value_base (gdbarch, valtype, regcache,
2159 readbuf, writebuf, 0))
2160 return RETURN_VALUE_REGISTER_CONVENTION;
2161
2162 return RETURN_VALUE_STRUCT_CONVENTION;
2163 }
2164
2165 CORE_ADDR
2166 ppc_sysv_get_return_buf_addr (struct type *val_type, frame_info_ptr cur_frame)
2167 {
2168 /* The PowerPC ABI specifies aggregates that are not returned by value
2169 are returned in a storage buffer provided by the caller. The
2170 address of the storage buffer is provided as a hidden first input
2171 argument in register r3. The PowerPC ABI does not guarantee that
2172 register r3 will not be changed while executing the function. Hence, it
2173 cannot be assumed that r3 will still contain the address of the storage
2174 buffer when execution reaches the end of the function.
2175
2176 This function attempts to determine the value of r3 on entry to the
2177 function using the DW_OP_entry_value DWARF entries. This requires
2178 compiling the user program with -fvar-tracking to resolve the
2179 DW_TAG_call_sites in the binary file. */
2180
2181 union call_site_parameter_u kind_u;
2182 enum call_site_parameter_kind kind;
2183 CORE_ADDR return_val = 0;
2184
2185 kind_u.dwarf_reg = 3; /* First passed arg/return value is in r3. */
2186 kind = CALL_SITE_PARAMETER_DWARF_REG;
2187
2188 /* val_type is the type of the return value. Need the pointer type
2189 to the return value. */
2190 val_type = lookup_pointer_type (val_type);
2191
2192 try
2193 {
2194 return_val = value_as_address (value_of_dwarf_reg_entry (val_type,
2195 cur_frame,
2196 kind, kind_u));
2197 }
2198 catch (const gdb_exception_error &e)
2199 {
2200 warning ("Cannot determine the function return value.\n"
2201 "Try compiling with -fvar-tracking.");
2202 }
2203 return return_val;
2204 }