Remove path name from test case
[binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2.h"
24 #include "dwarf2/frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "target-descriptions.h"
37 #include "value.h"
38
39 #include "sparc-tdep.h"
40 #include "sparc-ravenscar-thread.h"
41 #include <algorithm>
42
43 struct regset;
44
45 /* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
48 lists changes with respect to the original 32-bit psABI as defined
49 in the "System V ABI, SPARC Processor Supplement".
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59 /* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64 /* The stack pointer is offset from the stack frame by a BIAS of 2047
65 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
66 hosts, so undefine it first. */
67 #undef BIAS
68 #define BIAS 2047
69
70 /* Macros to extract fields from SPARC instructions. */
71 #define X_OP(i) (((i) >> 30) & 0x3)
72 #define X_RD(i) (((i) >> 25) & 0x1f)
73 #define X_A(i) (((i) >> 29) & 1)
74 #define X_COND(i) (((i) >> 25) & 0xf)
75 #define X_OP2(i) (((i) >> 22) & 0x7)
76 #define X_IMM22(i) ((i) & 0x3fffff)
77 #define X_OP3(i) (((i) >> 19) & 0x3f)
78 #define X_RS1(i) (((i) >> 14) & 0x1f)
79 #define X_RS2(i) ((i) & 0x1f)
80 #define X_I(i) (((i) >> 13) & 1)
81 /* Sign extension macros. */
82 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
83 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
84 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
85 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
86 /* Macros to identify some instructions. */
87 /* RETURN (RETT in V8) */
88 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
89
90 /* Fetch the instruction at PC. Instructions are always big-endian
91 even if the processor operates in little-endian mode. */
92
93 unsigned long
94 sparc_fetch_instruction (CORE_ADDR pc)
95 {
96 gdb_byte buf[4];
97 unsigned long insn;
98 int i;
99
100 /* If we can't read the instruction at PC, return zero. */
101 if (target_read_memory (pc, buf, sizeof (buf)))
102 return 0;
103
104 insn = 0;
105 for (i = 0; i < sizeof (buf); i++)
106 insn = (insn << 8) | buf[i];
107 return insn;
108 }
109 \f
110
111 /* Return non-zero if the instruction corresponding to PC is an "unimp"
112 instruction. */
113
114 static int
115 sparc_is_unimp_insn (CORE_ADDR pc)
116 {
117 const unsigned long insn = sparc_fetch_instruction (pc);
118
119 return ((insn & 0xc1c00000) == 0);
120 }
121
122 /* Return non-zero if the instruction corresponding to PC is an
123 "annulled" branch, i.e. the annul bit is set. */
124
125 int
126 sparc_is_annulled_branch_insn (CORE_ADDR pc)
127 {
128 /* The branch instructions featuring an annul bit can be identified
129 by the following bit patterns:
130
131 OP=0
132 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
133 OP2=2: Branch on Integer Condition Codes (Bcc).
134 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
135 OP2=6: Branch on FP Condition Codes (FBcc).
136 OP2=3 && Bit28=0:
137 Branch on Integer Register with Prediction (BPr).
138
139 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
140 coprocessor branch instructions (Op2=7). */
141
142 const unsigned long insn = sparc_fetch_instruction (pc);
143 const unsigned op2 = X_OP2 (insn);
144
145 if ((X_OP (insn) == 0)
146 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
147 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
148 return X_A (insn);
149 else
150 return 0;
151 }
152
153 /* OpenBSD/sparc includes StackGhost, which according to the author's
154 website http://stackghost.cerias.purdue.edu "... transparently and
155 automatically protects applications' stack frames; more
156 specifically, it guards the return pointers. The protection
157 mechanisms require no application source or binary modification and
158 imposes only a negligible performance penalty."
159
160 The same website provides the following description of how
161 StackGhost works:
162
163 "StackGhost interfaces with the kernel trap handler that would
164 normally write out registers to the stack and the handler that
165 would read them back in. By XORing a cookie into the
166 return-address saved in the user stack when it is actually written
167 to the stack, and then XOR it out when the return-address is pulled
168 from the stack, StackGhost can cause attacker corrupted return
169 pointers to behave in a manner the attacker cannot predict.
170 StackGhost can also use several unused bits in the return pointer
171 to detect a smashed return pointer and abort the process."
172
173 For GDB this means that whenever we're reading %i7 from a stack
174 frame's window save area, we'll have to XOR the cookie.
175
176 More information on StackGuard can be found on in:
177
178 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
179 Stack Protection." 2001. Published in USENIX Security Symposium
180 '01. */
181
182 /* Fetch StackGhost Per-Process XOR cookie. */
183
184 ULONGEST
185 sparc_fetch_wcookie (struct gdbarch *gdbarch)
186 {
187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
188 struct target_ops *ops = current_inferior ()->top_target ();
189 gdb_byte buf[8];
190 int len;
191
192 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
193 if (len == -1)
194 return 0;
195
196 /* We should have either an 32-bit or an 64-bit cookie. */
197 gdb_assert (len == 4 || len == 8);
198
199 return extract_unsigned_integer (buf, len, byte_order);
200 }
201 \f
202
203 /* The functions on this page are intended to be used to classify
204 function arguments. */
205
206 /* Check whether TYPE is "Integral or Pointer". */
207
208 static int
209 sparc_integral_or_pointer_p (const struct type *type)
210 {
211 int len = type->length ();
212
213 switch (type->code ())
214 {
215 case TYPE_CODE_INT:
216 case TYPE_CODE_BOOL:
217 case TYPE_CODE_CHAR:
218 case TYPE_CODE_ENUM:
219 case TYPE_CODE_RANGE:
220 /* We have byte, half-word, word and extended-word/doubleword
221 integral types. The doubleword is an extension to the
222 original 32-bit ABI by the SCD 2.4.x. */
223 return (len == 1 || len == 2 || len == 4 || len == 8);
224 case TYPE_CODE_PTR:
225 case TYPE_CODE_REF:
226 case TYPE_CODE_RVALUE_REF:
227 /* Allow either 32-bit or 64-bit pointers. */
228 return (len == 4 || len == 8);
229 default:
230 break;
231 }
232
233 return 0;
234 }
235
236 /* Check whether TYPE is "Floating". */
237
238 static int
239 sparc_floating_p (const struct type *type)
240 {
241 switch (type->code ())
242 {
243 case TYPE_CODE_FLT:
244 {
245 int len = type->length ();
246 return (len == 4 || len == 8 || len == 16);
247 }
248 default:
249 break;
250 }
251
252 return 0;
253 }
254
255 /* Check whether TYPE is "Complex Floating". */
256
257 static int
258 sparc_complex_floating_p (const struct type *type)
259 {
260 switch (type->code ())
261 {
262 case TYPE_CODE_COMPLEX:
263 {
264 int len = type->length ();
265 return (len == 8 || len == 16 || len == 32);
266 }
267 default:
268 break;
269 }
270
271 return 0;
272 }
273
274 /* Check whether TYPE is "Structure or Union".
275
276 In terms of Ada subprogram calls, arrays are treated the same as
277 struct and union types. So this function also returns non-zero
278 for array types. */
279
280 static int
281 sparc_structure_or_union_p (const struct type *type)
282 {
283 switch (type->code ())
284 {
285 case TYPE_CODE_STRUCT:
286 case TYPE_CODE_UNION:
287 case TYPE_CODE_ARRAY:
288 return 1;
289 default:
290 break;
291 }
292
293 return 0;
294 }
295
296 /* Return true if TYPE is returned by memory, false if returned by
297 register. */
298
299 static bool
300 sparc_structure_return_p (const struct type *type)
301 {
302 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
303 {
304 /* Float vectors are always returned by memory. */
305 if (sparc_floating_p (check_typedef (type->target_type ())))
306 return true;
307 /* Integer vectors are returned by memory if the vector size
308 is greater than 8 bytes long. */
309 return (type->length () > 8);
310 }
311
312 if (sparc_floating_p (type))
313 {
314 /* Floating point types are passed by register for size 4 and
315 8 bytes, and by memory for size 16 bytes. */
316 return (type->length () == 16);
317 }
318
319 /* Other than that, only aggregates of all sizes get returned by
320 memory. */
321 return sparc_structure_or_union_p (type);
322 }
323
324 /* Return true if arguments of the given TYPE are passed by
325 memory; false if returned by register. */
326
327 static bool
328 sparc_arg_by_memory_p (const struct type *type)
329 {
330 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
331 {
332 /* Float vectors are always passed by memory. */
333 if (sparc_floating_p (check_typedef (type->target_type ())))
334 return true;
335 /* Integer vectors are passed by memory if the vector size
336 is greater than 8 bytes long. */
337 return (type->length () > 8);
338 }
339
340 /* Floats are passed by register for size 4 and 8 bytes, and by memory
341 for size 16 bytes. */
342 if (sparc_floating_p (type))
343 return (type->length () == 16);
344
345 /* Complex floats and aggregates of all sizes are passed by memory. */
346 if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
347 return true;
348
349 /* Everything else gets passed by register. */
350 return false;
351 }
352
353 /* Register information. */
354 #define SPARC32_FPU_REGISTERS \
355 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
356 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
357 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
358 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
359 #define SPARC32_CP0_REGISTERS \
360 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
361
362 static const char * const sparc_core_register_names[] = {
363 SPARC_CORE_REGISTERS
364 };
365 static const char * const sparc32_fpu_register_names[] = {
366 SPARC32_FPU_REGISTERS
367 };
368 static const char * const sparc32_cp0_register_names[] = {
369 SPARC32_CP0_REGISTERS
370 };
371
372 static const char * const sparc32_register_names[] =
373 {
374 SPARC_CORE_REGISTERS,
375 SPARC32_FPU_REGISTERS,
376 SPARC32_CP0_REGISTERS
377 };
378
379 /* Total number of registers. */
380 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
381
382 /* We provide the aliases %d0..%d30 for the floating registers as
383 "psuedo" registers. */
384
385 static const char * const sparc32_pseudo_register_names[] =
386 {
387 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
388 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
389 };
390
391 /* Total number of pseudo registers. */
392 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
393
394 /* Return the name of pseudo register REGNUM. */
395
396 static const char *
397 sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
398 {
399 regnum -= gdbarch_num_regs (gdbarch);
400
401 gdb_assert (regnum < SPARC32_NUM_PSEUDO_REGS);
402 return sparc32_pseudo_register_names[regnum];
403 }
404
405 /* Return the name of register REGNUM. */
406
407 static const char *
408 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
409 {
410 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
411 return tdesc_register_name (gdbarch, regnum);
412
413 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
414 return sparc32_register_names[regnum];
415
416 return sparc32_pseudo_register_name (gdbarch, regnum);
417 }
418 \f
419 /* Construct types for ISA-specific registers. */
420
421 static struct type *
422 sparc_psr_type (struct gdbarch *gdbarch)
423 {
424 sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);
425
426 if (!tdep->sparc_psr_type)
427 {
428 struct type *type;
429
430 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
431 append_flags_type_flag (type, 5, "ET");
432 append_flags_type_flag (type, 6, "PS");
433 append_flags_type_flag (type, 7, "S");
434 append_flags_type_flag (type, 12, "EF");
435 append_flags_type_flag (type, 13, "EC");
436
437 tdep->sparc_psr_type = type;
438 }
439
440 return tdep->sparc_psr_type;
441 }
442
443 static struct type *
444 sparc_fsr_type (struct gdbarch *gdbarch)
445 {
446 sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);
447
448 if (!tdep->sparc_fsr_type)
449 {
450 struct type *type;
451
452 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
453 append_flags_type_flag (type, 0, "NXA");
454 append_flags_type_flag (type, 1, "DZA");
455 append_flags_type_flag (type, 2, "UFA");
456 append_flags_type_flag (type, 3, "OFA");
457 append_flags_type_flag (type, 4, "NVA");
458 append_flags_type_flag (type, 5, "NXC");
459 append_flags_type_flag (type, 6, "DZC");
460 append_flags_type_flag (type, 7, "UFC");
461 append_flags_type_flag (type, 8, "OFC");
462 append_flags_type_flag (type, 9, "NVC");
463 append_flags_type_flag (type, 22, "NS");
464 append_flags_type_flag (type, 23, "NXM");
465 append_flags_type_flag (type, 24, "DZM");
466 append_flags_type_flag (type, 25, "UFM");
467 append_flags_type_flag (type, 26, "OFM");
468 append_flags_type_flag (type, 27, "NVM");
469
470 tdep->sparc_fsr_type = type;
471 }
472
473 return tdep->sparc_fsr_type;
474 }
475
476 /* Return the GDB type object for the "standard" data type of data in
477 pseudo register REGNUM. */
478
479 static struct type *
480 sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
481 {
482 regnum -= gdbarch_num_regs (gdbarch);
483
484 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
485 return builtin_type (gdbarch)->builtin_double;
486
487 internal_error (_("sparc32_pseudo_register_type: bad register number %d"),
488 regnum);
489 }
490
491 /* Return the GDB type object for the "standard" data type of data in
492 register REGNUM. */
493
494 static struct type *
495 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
496 {
497 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
498 return tdesc_register_type (gdbarch, regnum);
499
500 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
501 return builtin_type (gdbarch)->builtin_float;
502
503 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
504 return builtin_type (gdbarch)->builtin_data_ptr;
505
506 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
507 return builtin_type (gdbarch)->builtin_func_ptr;
508
509 if (regnum == SPARC32_PSR_REGNUM)
510 return sparc_psr_type (gdbarch);
511
512 if (regnum == SPARC32_FSR_REGNUM)
513 return sparc_fsr_type (gdbarch);
514
515 if (regnum >= gdbarch_num_regs (gdbarch))
516 return sparc32_pseudo_register_type (gdbarch, regnum);
517
518 return builtin_type (gdbarch)->builtin_int32;
519 }
520
521 static enum register_status
522 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
523 readable_regcache *regcache,
524 int regnum, gdb_byte *buf)
525 {
526 enum register_status status;
527
528 regnum -= gdbarch_num_regs (gdbarch);
529 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
530
531 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
532 status = regcache->raw_read (regnum, buf);
533 if (status == REG_VALID)
534 status = regcache->raw_read (regnum + 1, buf + 4);
535 return status;
536 }
537
538 static void
539 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
540 struct regcache *regcache,
541 int regnum, const gdb_byte *buf)
542 {
543 regnum -= gdbarch_num_regs (gdbarch);
544 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
545
546 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
547 regcache->raw_write (regnum, buf);
548 regcache->raw_write (regnum + 1, buf + 4);
549 }
550 \f
551 /* Implement the stack_frame_destroyed_p gdbarch method. */
552
553 int
554 sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
555 {
556 /* This function must return true if we are one instruction after an
557 instruction that destroyed the stack frame of the current
558 function. The SPARC instructions used to restore the callers
559 stack frame are RESTORE and RETURN/RETT.
560
561 Of these RETURN/RETT is a branch instruction and thus we return
562 true if we are in its delay slot.
563
564 RESTORE is almost always found in the delay slot of a branch
565 instruction that transfers control to the caller, such as JMPL.
566 Thus the next instruction is in the caller frame and we don't
567 need to do anything about it. */
568
569 unsigned int insn = sparc_fetch_instruction (pc - 4);
570
571 return X_RETTURN (insn);
572 }
573 \f
574
575 static CORE_ADDR
576 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
577 {
578 /* The ABI requires double-word alignment. */
579 return address & ~0x7;
580 }
581
582 static CORE_ADDR
583 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
584 CORE_ADDR funcaddr,
585 struct value **args, int nargs,
586 struct type *value_type,
587 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
588 struct regcache *regcache)
589 {
590 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
591
592 *bp_addr = sp - 4;
593 *real_pc = funcaddr;
594
595 if (using_struct_return (gdbarch, NULL, value_type))
596 {
597 gdb_byte buf[4];
598
599 /* This is an UNIMP instruction. */
600 store_unsigned_integer (buf, 4, byte_order,
601 value_type->length () & 0x1fff);
602 write_memory (sp - 8, buf, 4);
603 return sp - 8;
604 }
605
606 return sp - 4;
607 }
608
609 static CORE_ADDR
610 sparc32_store_arguments (struct regcache *regcache, int nargs,
611 struct value **args, CORE_ADDR sp,
612 function_call_return_method return_method,
613 CORE_ADDR struct_addr)
614 {
615 struct gdbarch *gdbarch = regcache->arch ();
616 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
617 /* Number of words in the "parameter array". */
618 int num_elements = 0;
619 int element = 0;
620 int i;
621
622 for (i = 0; i < nargs; i++)
623 {
624 struct type *type = args[i]->type ();
625 int len = type->length ();
626
627 if (sparc_arg_by_memory_p (type))
628 {
629 /* Structure, Union and Quad-Precision Arguments. */
630 sp -= len;
631
632 /* Use doubleword alignment for these values. That's always
633 correct, and wasting a few bytes shouldn't be a problem. */
634 sp &= ~0x7;
635
636 write_memory (sp, args[i]->contents ().data (), len);
637 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
638 num_elements++;
639 }
640 else if (sparc_floating_p (type))
641 {
642 /* Floating arguments. */
643 gdb_assert (len == 4 || len == 8);
644 num_elements += (len / 4);
645 }
646 else
647 {
648 /* Arguments passed via the General Purpose Registers. */
649 num_elements += ((len + 3) / 4);
650 }
651 }
652
653 /* Always allocate at least six words. */
654 sp -= std::max (6, num_elements) * 4;
655
656 /* The psABI says that "Software convention requires space for the
657 struct/union return value pointer, even if the word is unused." */
658 sp -= 4;
659
660 /* The psABI says that "Although software convention and the
661 operating system require every stack frame to be doubleword
662 aligned." */
663 sp &= ~0x7;
664
665 for (i = 0; i < nargs; i++)
666 {
667 const bfd_byte *valbuf = args[i]->contents ().data ();
668 struct type *type = args[i]->type ();
669 int len = type->length ();
670 gdb_byte buf[4];
671
672 if (len < 4)
673 {
674 memset (buf, 0, 4 - len);
675 memcpy (buf + 4 - len, valbuf, len);
676 valbuf = buf;
677 len = 4;
678 }
679
680 gdb_assert (len == 4 || len == 8);
681
682 if (element < 6)
683 {
684 int regnum = SPARC_O0_REGNUM + element;
685
686 regcache->cooked_write (regnum, valbuf);
687 if (len > 4 && element < 5)
688 regcache->cooked_write (regnum + 1, valbuf + 4);
689 }
690
691 /* Always store the argument in memory. */
692 write_memory (sp + 4 + element * 4, valbuf, len);
693 element += len / 4;
694 }
695
696 gdb_assert (element == num_elements);
697
698 if (return_method == return_method_struct)
699 {
700 gdb_byte buf[4];
701
702 store_unsigned_integer (buf, 4, byte_order, struct_addr);
703 write_memory (sp, buf, 4);
704 }
705
706 return sp;
707 }
708
709 static CORE_ADDR
710 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
711 struct regcache *regcache, CORE_ADDR bp_addr,
712 int nargs, struct value **args, CORE_ADDR sp,
713 function_call_return_method return_method,
714 CORE_ADDR struct_addr)
715 {
716 CORE_ADDR call_pc = (return_method == return_method_struct
717 ? (bp_addr - 12) : (bp_addr - 8));
718
719 /* Set return address. */
720 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
721
722 /* Set up function arguments. */
723 sp = sparc32_store_arguments (regcache, nargs, args, sp, return_method,
724 struct_addr);
725
726 /* Allocate the 16-word window save area. */
727 sp -= 16 * 4;
728
729 /* Stack should be doubleword aligned at this point. */
730 gdb_assert (sp % 8 == 0);
731
732 /* Finally, update the stack pointer. */
733 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
734
735 return sp;
736 }
737 \f
738
739 /* Use the program counter to determine the contents and size of a
740 breakpoint instruction. Return a pointer to a string of bytes that
741 encode a breakpoint instruction, store the length of the string in
742 *LEN and optionally adjust *PC to point to the correct memory
743 location for inserting the breakpoint. */
744 constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
745
746 typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
747 \f
748
749 /* Allocate and initialize a frame cache. */
750
751 static struct sparc_frame_cache *
752 sparc_alloc_frame_cache (void)
753 {
754 struct sparc_frame_cache *cache;
755
756 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
757
758 /* Base address. */
759 cache->base = 0;
760 cache->pc = 0;
761
762 /* Frameless until proven otherwise. */
763 cache->frameless_p = 1;
764 cache->frame_offset = 0;
765 cache->saved_regs_mask = 0;
766 cache->copied_regs_mask = 0;
767 cache->struct_return_p = 0;
768
769 return cache;
770 }
771
772 /* GCC generates several well-known sequences of instructions at the begining
773 of each function prologue when compiling with -fstack-check. If one of
774 such sequences starts at START_PC, then return the address of the
775 instruction immediately past this sequence. Otherwise, return START_PC. */
776
777 static CORE_ADDR
778 sparc_skip_stack_check (const CORE_ADDR start_pc)
779 {
780 CORE_ADDR pc = start_pc;
781 unsigned long insn;
782 int probing_loop = 0;
783
784 /* With GCC, all stack checking sequences begin with the same two
785 instructions, plus an optional one in the case of a probing loop:
786
787 sethi <some immediate>, %g1
788 sub %sp, %g1, %g1
789
790 or:
791
792 sethi <some immediate>, %g1
793 sethi <some immediate>, %g4
794 sub %sp, %g1, %g1
795
796 or:
797
798 sethi <some immediate>, %g1
799 sub %sp, %g1, %g1
800 sethi <some immediate>, %g4
801
802 If the optional instruction is found (setting g4), assume that a
803 probing loop will follow. */
804
805 /* sethi <some immediate>, %g1 */
806 insn = sparc_fetch_instruction (pc);
807 pc = pc + 4;
808 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
809 return start_pc;
810
811 /* optional: sethi <some immediate>, %g4 */
812 insn = sparc_fetch_instruction (pc);
813 pc = pc + 4;
814 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
815 {
816 probing_loop = 1;
817 insn = sparc_fetch_instruction (pc);
818 pc = pc + 4;
819 }
820
821 /* sub %sp, %g1, %g1 */
822 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
823 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
824 return start_pc;
825
826 insn = sparc_fetch_instruction (pc);
827 pc = pc + 4;
828
829 /* optional: sethi <some immediate>, %g4 */
830 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
831 {
832 probing_loop = 1;
833 insn = sparc_fetch_instruction (pc);
834 pc = pc + 4;
835 }
836
837 /* First possible sequence:
838 [first two instructions above]
839 clr [%g1 - some immediate] */
840
841 /* clr [%g1 - some immediate] */
842 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
843 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
844 {
845 /* Valid stack-check sequence, return the new PC. */
846 return pc;
847 }
848
849 /* Second possible sequence: A small number of probes.
850 [first two instructions above]
851 clr [%g1]
852 add %g1, -<some immediate>, %g1
853 clr [%g1]
854 [repeat the two instructions above any (small) number of times]
855 clr [%g1 - some immediate] */
856
857 /* clr [%g1] */
858 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
859 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
860 {
861 while (1)
862 {
863 /* add %g1, -<some immediate>, %g1 */
864 insn = sparc_fetch_instruction (pc);
865 pc = pc + 4;
866 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
867 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
868 break;
869
870 /* clr [%g1] */
871 insn = sparc_fetch_instruction (pc);
872 pc = pc + 4;
873 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
874 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
875 return start_pc;
876 }
877
878 /* clr [%g1 - some immediate] */
879 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
880 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
881 return start_pc;
882
883 /* We found a valid stack-check sequence, return the new PC. */
884 return pc;
885 }
886
887 /* Third sequence: A probing loop.
888 [first three instructions above]
889 sub %g1, %g4, %g4
890 cmp %g1, %g4
891 be <disp>
892 add %g1, -<some immediate>, %g1
893 ba <disp>
894 clr [%g1]
895
896 And an optional last probe for the remainder:
897
898 clr [%g4 - some immediate] */
899
900 if (probing_loop)
901 {
902 /* sub %g1, %g4, %g4 */
903 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
904 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
905 return start_pc;
906
907 /* cmp %g1, %g4 */
908 insn = sparc_fetch_instruction (pc);
909 pc = pc + 4;
910 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
911 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
912 return start_pc;
913
914 /* be <disp> */
915 insn = sparc_fetch_instruction (pc);
916 pc = pc + 4;
917 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
918 return start_pc;
919
920 /* add %g1, -<some immediate>, %g1 */
921 insn = sparc_fetch_instruction (pc);
922 pc = pc + 4;
923 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
924 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
925 return start_pc;
926
927 /* ba <disp> */
928 insn = sparc_fetch_instruction (pc);
929 pc = pc + 4;
930 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
931 return start_pc;
932
933 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
934 insn = sparc_fetch_instruction (pc);
935 pc = pc + 4;
936 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
937 && X_RD (insn) == 0 && X_RS1 (insn) == 1
938 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
939 return start_pc;
940
941 /* We found a valid stack-check sequence, return the new PC. */
942
943 /* optional: clr [%g4 - some immediate] */
944 insn = sparc_fetch_instruction (pc);
945 pc = pc + 4;
946 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
947 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
948 return pc - 4;
949 else
950 return pc;
951 }
952
953 /* No stack check code in our prologue, return the start_pc. */
954 return start_pc;
955 }
956
957 /* Record the effect of a SAVE instruction on CACHE. */
958
959 void
960 sparc_record_save_insn (struct sparc_frame_cache *cache)
961 {
962 /* The frame is set up. */
963 cache->frameless_p = 0;
964
965 /* The frame pointer contains the CFA. */
966 cache->frame_offset = 0;
967
968 /* The `local' and `in' registers are all saved. */
969 cache->saved_regs_mask = 0xffff;
970
971 /* The `out' registers are all renamed. */
972 cache->copied_regs_mask = 0xff;
973 }
974
975 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
976 Bail out early if CURRENT_PC is reached. Return the address where
977 the analysis stopped.
978
979 We handle both the traditional register window model and the single
980 register window (aka flat) model. */
981
982 CORE_ADDR
983 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
984 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
985 {
986 sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);
987 unsigned long insn;
988 int offset = 0;
989 int dest = -1;
990
991 pc = sparc_skip_stack_check (pc);
992
993 if (current_pc <= pc)
994 return current_pc;
995
996 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
997 SPARC the linker usually defines a symbol (typically
998 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
999 This symbol makes us end up here with PC pointing at the start of
1000 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
1001 would do our normal prologue analysis, we would probably conclude
1002 that we've got a frame when in reality we don't, since the
1003 dynamic linker patches up the first PLT with some code that
1004 starts with a SAVE instruction. Patch up PC such that it points
1005 at the start of our PLT entry. */
1006 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
1007 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
1008
1009 insn = sparc_fetch_instruction (pc);
1010
1011 /* Recognize store insns and record their sources. */
1012 while (X_OP (insn) == 3
1013 && (X_OP3 (insn) == 0x4 /* stw */
1014 || X_OP3 (insn) == 0x7 /* std */
1015 || X_OP3 (insn) == 0xe) /* stx */
1016 && X_RS1 (insn) == SPARC_SP_REGNUM)
1017 {
1018 int regnum = X_RD (insn);
1019
1020 /* Recognize stores into the corresponding stack slots. */
1021 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1022 && ((X_I (insn)
1023 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
1024 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
1025 : (regnum - SPARC_L0_REGNUM) * 4))
1026 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
1027 {
1028 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
1029 if (X_OP3 (insn) == 0x7)
1030 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
1031 }
1032
1033 offset += 4;
1034
1035 insn = sparc_fetch_instruction (pc + offset);
1036 }
1037
1038 /* Recognize a SETHI insn and record its destination. */
1039 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
1040 {
1041 dest = X_RD (insn);
1042 offset += 4;
1043
1044 insn = sparc_fetch_instruction (pc + offset);
1045 }
1046
1047 /* Allow for an arithmetic operation on DEST or %g1. */
1048 if (X_OP (insn) == 2 && X_I (insn)
1049 && (X_RD (insn) == 1 || X_RD (insn) == dest))
1050 {
1051 offset += 4;
1052
1053 insn = sparc_fetch_instruction (pc + offset);
1054 }
1055
1056 /* Check for the SAVE instruction that sets up the frame. */
1057 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
1058 {
1059 sparc_record_save_insn (cache);
1060 offset += 4;
1061 return pc + offset;
1062 }
1063
1064 /* Check for an arithmetic operation on %sp. */
1065 if (X_OP (insn) == 2
1066 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1067 && X_RS1 (insn) == SPARC_SP_REGNUM
1068 && X_RD (insn) == SPARC_SP_REGNUM)
1069 {
1070 if (X_I (insn))
1071 {
1072 cache->frame_offset = X_SIMM13 (insn);
1073 if (X_OP3 (insn) == 0)
1074 cache->frame_offset = -cache->frame_offset;
1075 }
1076 offset += 4;
1077
1078 insn = sparc_fetch_instruction (pc + offset);
1079
1080 /* Check for an arithmetic operation that sets up the frame. */
1081 if (X_OP (insn) == 2
1082 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1083 && X_RS1 (insn) == SPARC_SP_REGNUM
1084 && X_RD (insn) == SPARC_FP_REGNUM)
1085 {
1086 cache->frameless_p = 0;
1087 cache->frame_offset = 0;
1088 /* We could check that the amount subtracted to %sp above is the
1089 same as the one added here, but this seems superfluous. */
1090 cache->copied_regs_mask |= 0x40;
1091 offset += 4;
1092
1093 insn = sparc_fetch_instruction (pc + offset);
1094 }
1095
1096 /* Check for a move (or) operation that copies the return register. */
1097 if (X_OP (insn) == 2
1098 && X_OP3 (insn) == 0x2
1099 && !X_I (insn)
1100 && X_RS1 (insn) == SPARC_G0_REGNUM
1101 && X_RS2 (insn) == SPARC_O7_REGNUM
1102 && X_RD (insn) == SPARC_I7_REGNUM)
1103 {
1104 cache->copied_regs_mask |= 0x80;
1105 offset += 4;
1106 }
1107
1108 return pc + offset;
1109 }
1110
1111 return pc;
1112 }
1113
1114 /* Return PC of first real instruction of the function starting at
1115 START_PC. */
1116
1117 static CORE_ADDR
1118 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1119 {
1120 CORE_ADDR func_addr;
1121 struct sparc_frame_cache cache;
1122
1123 /* This is the preferred method, find the end of the prologue by
1124 using the debugging information. */
1125
1126 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1127 {
1128 CORE_ADDR post_prologue_pc
1129 = skip_prologue_using_sal (gdbarch, func_addr);
1130
1131 if (post_prologue_pc != 0)
1132 return std::max (start_pc, post_prologue_pc);
1133 }
1134
1135 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1136
1137 /* The psABI says that "Although the first 6 words of arguments
1138 reside in registers, the standard stack frame reserves space for
1139 them.". It also suggests that a function may use that space to
1140 "write incoming arguments 0 to 5" into that space, and that's
1141 indeed what GCC seems to be doing. In that case GCC will
1142 generate debug information that points to the stack slots instead
1143 of the registers, so we should consider the instructions that
1144 write out these incoming arguments onto the stack. */
1145
1146 while (1)
1147 {
1148 unsigned long insn = sparc_fetch_instruction (start_pc);
1149
1150 /* Recognize instructions that store incoming arguments into the
1151 corresponding stack slots. */
1152 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1153 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1154 {
1155 int regnum = X_RD (insn);
1156
1157 /* Case of arguments still in %o[0..5]. */
1158 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1159 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1160 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1161 {
1162 start_pc += 4;
1163 continue;
1164 }
1165
1166 /* Case of arguments copied into %i[0..5]. */
1167 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1168 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1169 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1170 {
1171 start_pc += 4;
1172 continue;
1173 }
1174 }
1175
1176 break;
1177 }
1178
1179 return start_pc;
1180 }
1181
1182 /* Normal frames. */
1183
1184 struct sparc_frame_cache *
1185 sparc_frame_cache (frame_info_ptr this_frame, void **this_cache)
1186 {
1187 struct sparc_frame_cache *cache;
1188
1189 if (*this_cache)
1190 return (struct sparc_frame_cache *) *this_cache;
1191
1192 cache = sparc_alloc_frame_cache ();
1193 *this_cache = cache;
1194
1195 cache->pc = get_frame_func (this_frame);
1196 if (cache->pc != 0)
1197 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1198 get_frame_pc (this_frame), cache);
1199
1200 if (cache->frameless_p)
1201 {
1202 /* This function is frameless, so %fp (%i6) holds the frame
1203 pointer for our calling frame. Use %sp (%o6) as this frame's
1204 base address. */
1205 cache->base =
1206 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1207 }
1208 else
1209 {
1210 /* For normal frames, %fp (%i6) holds the frame pointer, the
1211 base address for the current stack frame. */
1212 cache->base =
1213 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1214 }
1215
1216 cache->base += cache->frame_offset;
1217
1218 if (cache->base & 1)
1219 cache->base += BIAS;
1220
1221 return cache;
1222 }
1223
1224 static int
1225 sparc32_struct_return_from_sym (struct symbol *sym)
1226 {
1227 struct type *type = check_typedef (sym->type ());
1228 enum type_code code = type->code ();
1229
1230 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1231 {
1232 type = check_typedef (type->target_type ());
1233 if (sparc_structure_or_union_p (type)
1234 || (sparc_floating_p (type) && type->length () == 16))
1235 return 1;
1236 }
1237
1238 return 0;
1239 }
1240
1241 struct sparc_frame_cache *
1242 sparc32_frame_cache (frame_info_ptr this_frame, void **this_cache)
1243 {
1244 struct sparc_frame_cache *cache;
1245 struct symbol *sym;
1246
1247 if (*this_cache)
1248 return (struct sparc_frame_cache *) *this_cache;
1249
1250 cache = sparc_frame_cache (this_frame, this_cache);
1251
1252 sym = find_pc_function (cache->pc);
1253 if (sym)
1254 {
1255 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1256 }
1257 else
1258 {
1259 /* There is no debugging information for this function to
1260 help us determine whether this function returns a struct
1261 or not. So we rely on another heuristic which is to check
1262 the instruction at the return address and see if this is
1263 an "unimp" instruction. If it is, then it is a struct-return
1264 function. */
1265 CORE_ADDR pc;
1266 int regnum =
1267 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1268
1269 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1270 if (sparc_is_unimp_insn (pc))
1271 cache->struct_return_p = 1;
1272 }
1273
1274 return cache;
1275 }
1276
1277 static void
1278 sparc32_frame_this_id (frame_info_ptr this_frame, void **this_cache,
1279 struct frame_id *this_id)
1280 {
1281 struct sparc_frame_cache *cache =
1282 sparc32_frame_cache (this_frame, this_cache);
1283
1284 /* This marks the outermost frame. */
1285 if (cache->base == 0)
1286 return;
1287
1288 (*this_id) = frame_id_build (cache->base, cache->pc);
1289 }
1290
1291 static struct value *
1292 sparc32_frame_prev_register (frame_info_ptr this_frame,
1293 void **this_cache, int regnum)
1294 {
1295 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1296 struct sparc_frame_cache *cache =
1297 sparc32_frame_cache (this_frame, this_cache);
1298
1299 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1300 {
1301 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1302
1303 /* If this functions has a Structure, Union or Quad-Precision
1304 return value, we have to skip the UNIMP instruction that encodes
1305 the size of the structure. */
1306 if (cache->struct_return_p)
1307 pc += 4;
1308
1309 regnum =
1310 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1311 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1312 return frame_unwind_got_constant (this_frame, regnum, pc);
1313 }
1314
1315 /* Handle StackGhost. */
1316 {
1317 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1318
1319 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1320 {
1321 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1322 ULONGEST i7;
1323
1324 /* Read the value in from memory. */
1325 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1326 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1327 }
1328 }
1329
1330 /* The previous frame's `local' and `in' registers may have been saved
1331 in the register save area. */
1332 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1333 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1334 {
1335 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1336
1337 return frame_unwind_got_memory (this_frame, regnum, addr);
1338 }
1339
1340 /* The previous frame's `out' registers may be accessible as the current
1341 frame's `in' registers. */
1342 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1343 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1344 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1345
1346 return frame_unwind_got_register (this_frame, regnum, regnum);
1347 }
1348
1349 static const struct frame_unwind sparc32_frame_unwind =
1350 {
1351 "sparc32 prologue",
1352 NORMAL_FRAME,
1353 default_frame_unwind_stop_reason,
1354 sparc32_frame_this_id,
1355 sparc32_frame_prev_register,
1356 NULL,
1357 default_frame_sniffer
1358 };
1359 \f
1360
1361 static CORE_ADDR
1362 sparc32_frame_base_address (frame_info_ptr this_frame, void **this_cache)
1363 {
1364 struct sparc_frame_cache *cache =
1365 sparc32_frame_cache (this_frame, this_cache);
1366
1367 return cache->base;
1368 }
1369
1370 static const struct frame_base sparc32_frame_base =
1371 {
1372 &sparc32_frame_unwind,
1373 sparc32_frame_base_address,
1374 sparc32_frame_base_address,
1375 sparc32_frame_base_address
1376 };
1377
1378 static struct frame_id
1379 sparc_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
1380 {
1381 CORE_ADDR sp;
1382
1383 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1384 if (sp & 1)
1385 sp += BIAS;
1386 return frame_id_build (sp, get_frame_pc (this_frame));
1387 }
1388 \f
1389
1390 /* Extract a function return value of TYPE from REGCACHE, and copy
1391 that into VALBUF. */
1392
1393 static void
1394 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1395 gdb_byte *valbuf)
1396 {
1397 int len = type->length ();
1398 gdb_byte buf[32];
1399
1400 gdb_assert (!sparc_structure_return_p (type));
1401
1402 if (sparc_floating_p (type) || sparc_complex_floating_p (type)
1403 || type->code () == TYPE_CODE_ARRAY)
1404 {
1405 /* Floating return values. */
1406 regcache->cooked_read (SPARC_F0_REGNUM, buf);
1407 if (len > 4)
1408 regcache->cooked_read (SPARC_F1_REGNUM, buf + 4);
1409 if (len > 8)
1410 {
1411 regcache->cooked_read (SPARC_F2_REGNUM, buf + 8);
1412 regcache->cooked_read (SPARC_F3_REGNUM, buf + 12);
1413 }
1414 if (len > 16)
1415 {
1416 regcache->cooked_read (SPARC_F4_REGNUM, buf + 16);
1417 regcache->cooked_read (SPARC_F5_REGNUM, buf + 20);
1418 regcache->cooked_read (SPARC_F6_REGNUM, buf + 24);
1419 regcache->cooked_read (SPARC_F7_REGNUM, buf + 28);
1420 }
1421 memcpy (valbuf, buf, len);
1422 }
1423 else
1424 {
1425 /* Integral and pointer return values. */
1426 gdb_assert (sparc_integral_or_pointer_p (type));
1427
1428 regcache->cooked_read (SPARC_O0_REGNUM, buf);
1429 if (len > 4)
1430 {
1431 regcache->cooked_read (SPARC_O1_REGNUM, buf + 4);
1432 gdb_assert (len == 8);
1433 memcpy (valbuf, buf, 8);
1434 }
1435 else
1436 {
1437 /* Just stripping off any unused bytes should preserve the
1438 signed-ness just fine. */
1439 memcpy (valbuf, buf + 4 - len, len);
1440 }
1441 }
1442 }
1443
1444 /* Store the function return value of type TYPE from VALBUF into
1445 REGCACHE. */
1446
1447 static void
1448 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1449 const gdb_byte *valbuf)
1450 {
1451 int len = type->length ();
1452 gdb_byte buf[32];
1453
1454 gdb_assert (!sparc_structure_return_p (type));
1455
1456 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1457 {
1458 /* Floating return values. */
1459 memcpy (buf, valbuf, len);
1460 regcache->cooked_write (SPARC_F0_REGNUM, buf);
1461 if (len > 4)
1462 regcache->cooked_write (SPARC_F1_REGNUM, buf + 4);
1463 if (len > 8)
1464 {
1465 regcache->cooked_write (SPARC_F2_REGNUM, buf + 8);
1466 regcache->cooked_write (SPARC_F3_REGNUM, buf + 12);
1467 }
1468 if (len > 16)
1469 {
1470 regcache->cooked_write (SPARC_F4_REGNUM, buf + 16);
1471 regcache->cooked_write (SPARC_F5_REGNUM, buf + 20);
1472 regcache->cooked_write (SPARC_F6_REGNUM, buf + 24);
1473 regcache->cooked_write (SPARC_F7_REGNUM, buf + 28);
1474 }
1475 }
1476 else
1477 {
1478 /* Integral and pointer return values. */
1479 gdb_assert (sparc_integral_or_pointer_p (type));
1480
1481 if (len > 4)
1482 {
1483 gdb_assert (len == 8);
1484 memcpy (buf, valbuf, 8);
1485 regcache->cooked_write (SPARC_O1_REGNUM, buf + 4);
1486 }
1487 else
1488 {
1489 /* ??? Do we need to do any sign-extension here? */
1490 memcpy (buf + 4 - len, valbuf, len);
1491 }
1492 regcache->cooked_write (SPARC_O0_REGNUM, buf);
1493 }
1494 }
1495
1496 static enum return_value_convention
1497 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1498 struct type *type, struct regcache *regcache,
1499 struct value **read_value, const gdb_byte *writebuf)
1500 {
1501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1502
1503 /* The psABI says that "...every stack frame reserves the word at
1504 %fp+64. If a function returns a structure, union, or
1505 quad-precision value, this word should hold the address of the
1506 object into which the return value should be copied." This
1507 guarantees that we can always find the return value, not just
1508 before the function returns. */
1509
1510 if (sparc_structure_return_p (type))
1511 {
1512 ULONGEST sp;
1513 CORE_ADDR addr;
1514
1515 if (read_value != nullptr)
1516 {
1517 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1518 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1519 *read_value = value_at_non_lval (type, addr);
1520 }
1521 if (writebuf)
1522 {
1523 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1524 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1525 write_memory (addr, writebuf, type->length ());
1526 }
1527
1528 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1529 }
1530
1531 if (read_value != nullptr)
1532 {
1533 *read_value = value::allocate (type);
1534 gdb_byte *readbuf = (*read_value)->contents_raw ().data ();
1535 sparc32_extract_return_value (type, regcache, readbuf);
1536 }
1537 if (writebuf)
1538 sparc32_store_return_value (type, regcache, writebuf);
1539
1540 return RETURN_VALUE_REGISTER_CONVENTION;
1541 }
1542
1543 static int
1544 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1545 {
1546 return (sparc_structure_or_union_p (type)
1547 || (sparc_floating_p (type) && type->length () == 16)
1548 || sparc_complex_floating_p (type));
1549 }
1550
1551 static int
1552 sparc32_dwarf2_struct_return_p (frame_info_ptr this_frame)
1553 {
1554 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1555 struct symbol *sym = find_pc_function (pc);
1556
1557 if (sym)
1558 return sparc32_struct_return_from_sym (sym);
1559 return 0;
1560 }
1561
1562 static void
1563 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1564 struct dwarf2_frame_state_reg *reg,
1565 frame_info_ptr this_frame)
1566 {
1567 int off;
1568
1569 switch (regnum)
1570 {
1571 case SPARC_G0_REGNUM:
1572 /* Since %g0 is always zero, there is no point in saving it, and
1573 people will be inclined omit it from the CFI. Make sure we
1574 don't warn about that. */
1575 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1576 break;
1577 case SPARC_SP_REGNUM:
1578 reg->how = DWARF2_FRAME_REG_CFA;
1579 break;
1580 case SPARC32_PC_REGNUM:
1581 case SPARC32_NPC_REGNUM:
1582 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1583 off = 8;
1584 if (sparc32_dwarf2_struct_return_p (this_frame))
1585 off += 4;
1586 if (regnum == SPARC32_NPC_REGNUM)
1587 off += 4;
1588 reg->loc.offset = off;
1589 break;
1590 }
1591 }
1592
1593 /* Implement the execute_dwarf_cfa_vendor_op method. */
1594
1595 static bool
1596 sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1597 struct dwarf2_frame_state *fs)
1598 {
1599 /* Only DW_CFA_GNU_window_save is expected on SPARC. */
1600 if (op != DW_CFA_GNU_window_save)
1601 return false;
1602
1603 uint64_t reg;
1604 int size = register_size (gdbarch, 0);
1605
1606 fs->regs.alloc_regs (32);
1607 for (reg = 8; reg < 16; reg++)
1608 {
1609 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
1610 fs->regs.reg[reg].loc.reg = reg + 16;
1611 }
1612 for (reg = 16; reg < 32; reg++)
1613 {
1614 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
1615 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
1616 }
1617
1618 return true;
1619 }
1620
1621 \f
1622 /* The SPARC Architecture doesn't have hardware single-step support,
1623 and most operating systems don't implement it either, so we provide
1624 software single-step mechanism. */
1625
1626 static CORE_ADDR
1627 sparc_analyze_control_transfer (struct regcache *regcache,
1628 CORE_ADDR pc, CORE_ADDR *npc)
1629 {
1630 unsigned long insn = sparc_fetch_instruction (pc);
1631 int conditional_p = X_COND (insn) & 0x7;
1632 int branch_p = 0, fused_p = 0;
1633 long offset = 0; /* Must be signed for sign-extend. */
1634
1635 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1636 {
1637 if ((insn & 0x10000000) == 0)
1638 {
1639 /* Branch on Integer Register with Prediction (BPr). */
1640 branch_p = 1;
1641 conditional_p = 1;
1642 }
1643 else
1644 {
1645 /* Compare and Branch */
1646 branch_p = 1;
1647 fused_p = 1;
1648 offset = 4 * X_DISP10 (insn);
1649 }
1650 }
1651 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1652 {
1653 /* Branch on Floating-Point Condition Codes (FBfcc). */
1654 branch_p = 1;
1655 offset = 4 * X_DISP22 (insn);
1656 }
1657 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1658 {
1659 /* Branch on Floating-Point Condition Codes with Prediction
1660 (FBPfcc). */
1661 branch_p = 1;
1662 offset = 4 * X_DISP19 (insn);
1663 }
1664 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1665 {
1666 /* Branch on Integer Condition Codes (Bicc). */
1667 branch_p = 1;
1668 offset = 4 * X_DISP22 (insn);
1669 }
1670 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1671 {
1672 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1673 branch_p = 1;
1674 offset = 4 * X_DISP19 (insn);
1675 }
1676 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1677 {
1678 frame_info_ptr frame = get_current_frame ();
1679
1680 /* Trap instruction (TRAP). */
1681 gdbarch *arch = regcache->arch ();
1682 sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (arch);
1683 return tdep->step_trap (frame, insn);
1684 }
1685
1686 /* FIXME: Handle DONE and RETRY instructions. */
1687
1688 if (branch_p)
1689 {
1690 if (fused_p)
1691 {
1692 /* Fused compare-and-branch instructions are non-delayed,
1693 and do not have an annulling capability. So we need to
1694 always set a breakpoint on both the NPC and the branch
1695 target address. */
1696 gdb_assert (offset != 0);
1697 return pc + offset;
1698 }
1699 else if (conditional_p)
1700 {
1701 /* For conditional branches, return nPC + 4 iff the annul
1702 bit is 1. */
1703 return (X_A (insn) ? *npc + 4 : 0);
1704 }
1705 else
1706 {
1707 /* For unconditional branches, return the target if its
1708 specified condition is "always" and return nPC + 4 if the
1709 condition is "never". If the annul bit is 1, set *NPC to
1710 zero. */
1711 if (X_COND (insn) == 0x0)
1712 pc = *npc, offset = 4;
1713 if (X_A (insn))
1714 *npc = 0;
1715
1716 return pc + offset;
1717 }
1718 }
1719
1720 return 0;
1721 }
1722
1723 static CORE_ADDR
1724 sparc_step_trap (frame_info_ptr frame, unsigned long insn)
1725 {
1726 return 0;
1727 }
1728
1729 static std::vector<CORE_ADDR>
1730 sparc_software_single_step (struct regcache *regcache)
1731 {
1732 struct gdbarch *arch = regcache->arch ();
1733 sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (arch);
1734 CORE_ADDR npc, nnpc;
1735
1736 CORE_ADDR pc, orig_npc;
1737 std::vector<CORE_ADDR> next_pcs;
1738
1739 pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
1740 orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);
1741
1742 /* Analyze the instruction at PC. */
1743 nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
1744 if (npc != 0)
1745 next_pcs.push_back (npc);
1746
1747 if (nnpc != 0)
1748 next_pcs.push_back (nnpc);
1749
1750 /* Assert that we have set at least one breakpoint, and that
1751 they're not set at the same spot - unless we're going
1752 from here straight to NULL, i.e. a call or jump to 0. */
1753 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1754 gdb_assert (nnpc != npc || orig_npc == 0);
1755
1756 return next_pcs;
1757 }
1758
1759 static void
1760 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1761 {
1762 gdbarch *arch = regcache->arch ();
1763 sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (arch);
1764
1765 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1766 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1767 }
1768 \f
1769
1770 /* Iterate over core file register note sections. */
1771
1772 static void
1773 sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1774 iterate_over_regset_sections_cb *cb,
1775 void *cb_data,
1776 const struct regcache *regcache)
1777 {
1778 sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);
1779
1780 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, tdep->gregset, NULL,
1781 cb_data);
1782 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
1783 NULL, cb_data);
1784 }
1785 \f
1786
1787 static int
1788 validate_tdesc_registers (const struct target_desc *tdesc,
1789 struct tdesc_arch_data *tdesc_data,
1790 const char *feature_name,
1791 const char * const register_names[],
1792 unsigned int registers_num,
1793 unsigned int reg_start)
1794 {
1795 int valid_p = 1;
1796 const struct tdesc_feature *feature;
1797
1798 feature = tdesc_find_feature (tdesc, feature_name);
1799 if (feature == NULL)
1800 return 0;
1801
1802 for (unsigned int i = 0; i < registers_num; i++)
1803 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1804 reg_start + i,
1805 register_names[i]);
1806
1807 return valid_p;
1808 }
1809
1810 static struct gdbarch *
1811 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1812 {
1813 const struct target_desc *tdesc = info.target_desc;
1814 int valid_p = 1;
1815
1816 /* If there is already a candidate, use it. */
1817 arches = gdbarch_list_lookup_by_info (arches, &info);
1818 if (arches != NULL)
1819 return arches->gdbarch;
1820
1821 /* Allocate space for the new architecture. */
1822 gdbarch *gdbarch
1823 = gdbarch_alloc (&info, gdbarch_tdep_up (new sparc_gdbarch_tdep));
1824 sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);
1825
1826 tdep->pc_regnum = SPARC32_PC_REGNUM;
1827 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1828 tdep->step_trap = sparc_step_trap;
1829 tdep->fpu_register_names = sparc32_fpu_register_names;
1830 tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
1831 tdep->cp0_register_names = sparc32_cp0_register_names;
1832 tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);
1833
1834 set_gdbarch_long_double_bit (gdbarch, 128);
1835 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_quad);
1836
1837 set_gdbarch_wchar_bit (gdbarch, 16);
1838 set_gdbarch_wchar_signed (gdbarch, 1);
1839
1840 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1841 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1842 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1843 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1844 set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
1845 set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
1846 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1847 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1848
1849 /* Register numbers of various important registers. */
1850 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1851 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1852 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1853
1854 /* Call dummy code. */
1855 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1856 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1857 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1858 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1859
1860 set_gdbarch_return_value_as_value (gdbarch, sparc32_return_value);
1861 set_gdbarch_stabs_argument_has_addr
1862 (gdbarch, sparc32_stabs_argument_has_addr);
1863
1864 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1865
1866 /* Stack grows downward. */
1867 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1868
1869 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1870 sparc_breakpoint::kind_from_pc);
1871 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1872 sparc_breakpoint::bp_from_kind);
1873
1874 set_gdbarch_frame_args_skip (gdbarch, 8);
1875
1876 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1877 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1878
1879 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1880
1881 frame_base_set_default (gdbarch, &sparc32_frame_base);
1882
1883 /* Hook in the DWARF CFI frame unwinder. */
1884 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1885 /* Register DWARF vendor CFI handler. */
1886 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
1887 sparc_execute_dwarf_cfa_vendor_op);
1888 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1889 StackGhost issues have been resolved. */
1890
1891 /* Hook in ABI-specific overrides, if they have been registered. */
1892 gdbarch_init_osabi (info, gdbarch);
1893
1894 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1895
1896 if (tdesc_has_registers (tdesc))
1897 {
1898 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
1899
1900 /* Validate that the descriptor provides the mandatory registers
1901 and allocate their numbers. */
1902 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
1903 "org.gnu.gdb.sparc.cpu",
1904 sparc_core_register_names,
1905 ARRAY_SIZE (sparc_core_register_names),
1906 SPARC_G0_REGNUM);
1907 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
1908 "org.gnu.gdb.sparc.fpu",
1909 tdep->fpu_register_names,
1910 tdep->fpu_registers_num,
1911 SPARC_F0_REGNUM);
1912 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
1913 "org.gnu.gdb.sparc.cp0",
1914 tdep->cp0_register_names,
1915 tdep->cp0_registers_num,
1916 SPARC_F0_REGNUM
1917 + tdep->fpu_registers_num);
1918 if (!valid_p)
1919 return NULL;
1920
1921 /* Target description may have changed. */
1922 info.tdesc_data = tdesc_data.get ();
1923 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
1924 }
1925
1926 /* If we have register sets, enable the generic core file support. */
1927 if (tdep->gregset)
1928 set_gdbarch_iterate_over_regset_sections
1929 (gdbarch, sparc_iterate_over_regset_sections);
1930
1931 register_sparc_ravenscar_ops (gdbarch);
1932
1933 return gdbarch;
1934 }
1935 \f
1936 /* Helper functions for dealing with register windows. */
1937
1938 void
1939 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1940 {
1941 struct gdbarch *gdbarch = regcache->arch ();
1942 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1943 int offset = 0;
1944 gdb_byte buf[8];
1945 int i;
1946
1947 /* This function calls functions that depend on the global current thread. */
1948 gdb_assert (regcache->ptid () == inferior_ptid);
1949
1950 if (sp & 1)
1951 {
1952 /* Registers are 64-bit. */
1953 sp += BIAS;
1954
1955 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1956 {
1957 if (regnum == i || regnum == -1)
1958 {
1959 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1960
1961 /* Handle StackGhost. */
1962 if (i == SPARC_I7_REGNUM)
1963 {
1964 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1965 ULONGEST i7;
1966
1967 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1968 store_unsigned_integer (buf + offset, 8, byte_order,
1969 i7 ^ wcookie);
1970 }
1971
1972 regcache->raw_supply (i, buf);
1973 }
1974 }
1975 }
1976 else
1977 {
1978 /* Registers are 32-bit. Toss any sign-extension of the stack
1979 pointer. */
1980 sp &= 0xffffffffUL;
1981
1982 /* Clear out the top half of the temporary buffer, and put the
1983 register value in the bottom half if we're in 64-bit mode. */
1984 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
1985 {
1986 memset (buf, 0, 4);
1987 offset = 4;
1988 }
1989
1990 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1991 {
1992 if (regnum == i || regnum == -1)
1993 {
1994 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1995 buf + offset, 4);
1996
1997 /* Handle StackGhost. */
1998 if (i == SPARC_I7_REGNUM)
1999 {
2000 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2001 ULONGEST i7;
2002
2003 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2004 store_unsigned_integer (buf + offset, 4, byte_order,
2005 i7 ^ wcookie);
2006 }
2007
2008 regcache->raw_supply (i, buf);
2009 }
2010 }
2011 }
2012 }
2013
2014 void
2015 sparc_collect_rwindow (const struct regcache *regcache,
2016 CORE_ADDR sp, int regnum)
2017 {
2018 struct gdbarch *gdbarch = regcache->arch ();
2019 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2020 int offset = 0;
2021 gdb_byte buf[8];
2022 int i;
2023
2024 /* This function calls functions that depend on the global current thread. */
2025 gdb_assert (regcache->ptid () == inferior_ptid);
2026
2027 if (sp & 1)
2028 {
2029 /* Registers are 64-bit. */
2030 sp += BIAS;
2031
2032 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2033 {
2034 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2035 {
2036 regcache->raw_collect (i, buf);
2037
2038 /* Handle StackGhost. */
2039 if (i == SPARC_I7_REGNUM)
2040 {
2041 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2042 ULONGEST i7;
2043
2044 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
2045 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
2046 }
2047
2048 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
2049 }
2050 }
2051 }
2052 else
2053 {
2054 /* Registers are 32-bit. Toss any sign-extension of the stack
2055 pointer. */
2056 sp &= 0xffffffffUL;
2057
2058 /* Only use the bottom half if we're in 64-bit mode. */
2059 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
2060 offset = 4;
2061
2062 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2063 {
2064 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2065 {
2066 regcache->raw_collect (i, buf);
2067
2068 /* Handle StackGhost. */
2069 if (i == SPARC_I7_REGNUM)
2070 {
2071 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2072 ULONGEST i7;
2073
2074 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2075 store_unsigned_integer (buf + offset, 4, byte_order,
2076 i7 ^ wcookie);
2077 }
2078
2079 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2080 buf + offset, 4);
2081 }
2082 }
2083 }
2084 }
2085
2086 /* Helper functions for dealing with register sets. */
2087
2088 void
2089 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
2090 struct regcache *regcache,
2091 int regnum, const void *gregs)
2092 {
2093 const gdb_byte *regs = (const gdb_byte *) gregs;
2094 gdb_byte zero[4] = { 0 };
2095 int i;
2096
2097 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2098 regcache->raw_supply (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
2099
2100 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2101 regcache->raw_supply (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
2102
2103 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2104 regcache->raw_supply (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
2105
2106 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2107 regcache->raw_supply (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
2108
2109 if (regnum == SPARC_G0_REGNUM || regnum == -1)
2110 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
2111
2112 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2113 {
2114 int offset = gregmap->r_g1_offset;
2115
2116 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2117 {
2118 if (regnum == i || regnum == -1)
2119 regcache->raw_supply (i, regs + offset);
2120 offset += 4;
2121 }
2122 }
2123
2124 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2125 {
2126 /* Not all of the register set variants include Locals and
2127 Inputs. For those that don't, we read them off the stack. */
2128 if (gregmap->r_l0_offset == -1)
2129 {
2130 ULONGEST sp;
2131
2132 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
2133 sparc_supply_rwindow (regcache, sp, regnum);
2134 }
2135 else
2136 {
2137 int offset = gregmap->r_l0_offset;
2138
2139 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2140 {
2141 if (regnum == i || regnum == -1)
2142 regcache->raw_supply (i, regs + offset);
2143 offset += 4;
2144 }
2145 }
2146 }
2147 }
2148
2149 void
2150 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
2151 const struct regcache *regcache,
2152 int regnum, void *gregs)
2153 {
2154 gdb_byte *regs = (gdb_byte *) gregs;
2155 int i;
2156
2157 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2158 regcache->raw_collect (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
2159
2160 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2161 regcache->raw_collect (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
2162
2163 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2164 regcache->raw_collect (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
2165
2166 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2167 regcache->raw_collect (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
2168
2169 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2170 {
2171 int offset = gregmap->r_g1_offset;
2172
2173 /* %g0 is always zero. */
2174 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2175 {
2176 if (regnum == i || regnum == -1)
2177 regcache->raw_collect (i, regs + offset);
2178 offset += 4;
2179 }
2180 }
2181
2182 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2183 {
2184 /* Not all of the register set variants include Locals and
2185 Inputs. For those that don't, we read them off the stack. */
2186 if (gregmap->r_l0_offset != -1)
2187 {
2188 int offset = gregmap->r_l0_offset;
2189
2190 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2191 {
2192 if (regnum == i || regnum == -1)
2193 regcache->raw_collect (i, regs + offset);
2194 offset += 4;
2195 }
2196 }
2197 }
2198 }
2199
2200 void
2201 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2202 struct regcache *regcache,
2203 int regnum, const void *fpregs)
2204 {
2205 const gdb_byte *regs = (const gdb_byte *) fpregs;
2206 int i;
2207
2208 for (i = 0; i < 32; i++)
2209 {
2210 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2211 regcache->raw_supply (SPARC_F0_REGNUM + i,
2212 regs + fpregmap->r_f0_offset + (i * 4));
2213 }
2214
2215 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2216 regcache->raw_supply (SPARC32_FSR_REGNUM, regs + fpregmap->r_fsr_offset);
2217 }
2218
2219 void
2220 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2221 const struct regcache *regcache,
2222 int regnum, void *fpregs)
2223 {
2224 gdb_byte *regs = (gdb_byte *) fpregs;
2225 int i;
2226
2227 for (i = 0; i < 32; i++)
2228 {
2229 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2230 regcache->raw_collect (SPARC_F0_REGNUM + i,
2231 regs + fpregmap->r_f0_offset + (i * 4));
2232 }
2233
2234 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2235 regcache->raw_collect (SPARC32_FSR_REGNUM,
2236 regs + fpregmap->r_fsr_offset);
2237 }
2238 \f
2239
2240 /* SunOS 4. */
2241
2242 /* From <machine/reg.h>. */
2243 const struct sparc_gregmap sparc32_sunos4_gregmap =
2244 {
2245 0 * 4, /* %psr */
2246 1 * 4, /* %pc */
2247 2 * 4, /* %npc */
2248 3 * 4, /* %y */
2249 -1, /* %wim */
2250 -1, /* %tbr */
2251 4 * 4, /* %g1 */
2252 -1 /* %l0 */
2253 };
2254
2255 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2256 {
2257 0 * 4, /* %f0 */
2258 33 * 4, /* %fsr */
2259 };
2260
2261 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2262 {
2263 0 * 4, /* %f0 */
2264 32 * 4, /* %fsr */
2265 };
2266
2267 void _initialize_sparc_tdep ();
2268 void
2269 _initialize_sparc_tdep ()
2270 {
2271 gdbarch_register (bfd_arch_sparc, sparc32_gdbarch_init);
2272 }