gdb/
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* Functions this file defines. */
86
87 static void load_command (char *, int);
88
89 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
90
91 static void add_symbol_file_command (char *, int);
92
93 bfd *symfile_bfd_open (char *);
94
95 int get_section_index (struct objfile *, char *);
96
97 static const struct sym_fns *find_sym_fns (bfd *);
98
99 static void decrement_reading_symtab (void *);
100
101 static void overlay_invalidate_all (void);
102
103 static void overlay_auto_command (char *, int);
104
105 static void overlay_manual_command (char *, int);
106
107 static void overlay_off_command (char *, int);
108
109 static void overlay_load_command (char *, int);
110
111 static void overlay_command (char *, int);
112
113 static void simple_free_overlay_table (void);
114
115 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
116 enum bfd_endian);
117
118 static int simple_read_overlay_table (void);
119
120 static int simple_overlay_update_1 (struct obj_section *);
121
122 static void add_filename_language (char *ext, enum language lang);
123
124 static void info_ext_lang_command (char *args, int from_tty);
125
126 static void init_filename_language_table (void);
127
128 static void symfile_find_segment_sections (struct objfile *objfile);
129
130 void _initialize_symfile (void);
131
132 /* List of all available sym_fns. On gdb startup, each object file reader
133 calls add_symtab_fns() to register information on each format it is
134 prepared to read. */
135
136 typedef const struct sym_fns *sym_fns_ptr;
137 DEF_VEC_P (sym_fns_ptr);
138
139 static VEC (sym_fns_ptr) *symtab_fns = NULL;
140
141 /* If non-zero, shared library symbols will be added automatically
142 when the inferior is created, new libraries are loaded, or when
143 attaching to the inferior. This is almost always what users will
144 want to have happen; but for very large programs, the startup time
145 will be excessive, and so if this is a problem, the user can clear
146 this flag and then add the shared library symbols as needed. Note
147 that there is a potential for confusion, since if the shared
148 library symbols are not loaded, commands like "info fun" will *not*
149 report all the functions that are actually present. */
150
151 int auto_solib_add = 1;
152 \f
153
154 /* True if we are reading a symbol table. */
155
156 int currently_reading_symtab = 0;
157
158 static void
159 decrement_reading_symtab (void *dummy)
160 {
161 currently_reading_symtab--;
162 }
163
164 /* Increment currently_reading_symtab and return a cleanup that can be
165 used to decrement it. */
166 struct cleanup *
167 increment_reading_symtab (void)
168 {
169 ++currently_reading_symtab;
170 return make_cleanup (decrement_reading_symtab, NULL);
171 }
172
173 /* Remember the lowest-addressed loadable section we've seen.
174 This function is called via bfd_map_over_sections.
175
176 In case of equal vmas, the section with the largest size becomes the
177 lowest-addressed loadable section.
178
179 If the vmas and sizes are equal, the last section is considered the
180 lowest-addressed loadable section. */
181
182 void
183 find_lowest_section (bfd *abfd, asection *sect, void *obj)
184 {
185 asection **lowest = (asection **) obj;
186
187 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
188 return;
189 if (!*lowest)
190 *lowest = sect; /* First loadable section */
191 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
192 *lowest = sect; /* A lower loadable section */
193 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
194 && (bfd_section_size (abfd, (*lowest))
195 <= bfd_section_size (abfd, sect)))
196 *lowest = sect;
197 }
198
199 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
200
201 struct section_addr_info *
202 alloc_section_addr_info (size_t num_sections)
203 {
204 struct section_addr_info *sap;
205 size_t size;
206
207 size = (sizeof (struct section_addr_info)
208 + sizeof (struct other_sections) * (num_sections - 1));
209 sap = (struct section_addr_info *) xmalloc (size);
210 memset (sap, 0, size);
211 sap->num_sections = num_sections;
212
213 return sap;
214 }
215
216 /* Build (allocate and populate) a section_addr_info struct from
217 an existing section table. */
218
219 extern struct section_addr_info *
220 build_section_addr_info_from_section_table (const struct target_section *start,
221 const struct target_section *end)
222 {
223 struct section_addr_info *sap;
224 const struct target_section *stp;
225 int oidx;
226
227 sap = alloc_section_addr_info (end - start);
228
229 for (stp = start, oidx = 0; stp != end; stp++)
230 {
231 if (bfd_get_section_flags (stp->bfd,
232 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
233 && oidx < end - start)
234 {
235 sap->other[oidx].addr = stp->addr;
236 sap->other[oidx].name
237 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
238 sap->other[oidx].sectindex = stp->the_bfd_section->index;
239 oidx++;
240 }
241 }
242
243 return sap;
244 }
245
246 /* Create a section_addr_info from section offsets in ABFD. */
247
248 static struct section_addr_info *
249 build_section_addr_info_from_bfd (bfd *abfd)
250 {
251 struct section_addr_info *sap;
252 int i;
253 struct bfd_section *sec;
254
255 sap = alloc_section_addr_info (bfd_count_sections (abfd));
256 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
257 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
258 {
259 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
260 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
261 sap->other[i].sectindex = sec->index;
262 i++;
263 }
264 return sap;
265 }
266
267 /* Create a section_addr_info from section offsets in OBJFILE. */
268
269 struct section_addr_info *
270 build_section_addr_info_from_objfile (const struct objfile *objfile)
271 {
272 struct section_addr_info *sap;
273 int i;
274
275 /* Before reread_symbols gets rewritten it is not safe to call:
276 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
277 */
278 sap = build_section_addr_info_from_bfd (objfile->obfd);
279 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
280 {
281 int sectindex = sap->other[i].sectindex;
282
283 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
284 }
285 return sap;
286 }
287
288 /* Free all memory allocated by build_section_addr_info_from_section_table. */
289
290 extern void
291 free_section_addr_info (struct section_addr_info *sap)
292 {
293 int idx;
294
295 for (idx = 0; idx < sap->num_sections; idx++)
296 if (sap->other[idx].name)
297 xfree (sap->other[idx].name);
298 xfree (sap);
299 }
300
301
302 /* Initialize OBJFILE's sect_index_* members. */
303 static void
304 init_objfile_sect_indices (struct objfile *objfile)
305 {
306 asection *sect;
307 int i;
308
309 sect = bfd_get_section_by_name (objfile->obfd, ".text");
310 if (sect)
311 objfile->sect_index_text = sect->index;
312
313 sect = bfd_get_section_by_name (objfile->obfd, ".data");
314 if (sect)
315 objfile->sect_index_data = sect->index;
316
317 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
318 if (sect)
319 objfile->sect_index_bss = sect->index;
320
321 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
322 if (sect)
323 objfile->sect_index_rodata = sect->index;
324
325 /* This is where things get really weird... We MUST have valid
326 indices for the various sect_index_* members or gdb will abort.
327 So if for example, there is no ".text" section, we have to
328 accomodate that. First, check for a file with the standard
329 one or two segments. */
330
331 symfile_find_segment_sections (objfile);
332
333 /* Except when explicitly adding symbol files at some address,
334 section_offsets contains nothing but zeros, so it doesn't matter
335 which slot in section_offsets the individual sect_index_* members
336 index into. So if they are all zero, it is safe to just point
337 all the currently uninitialized indices to the first slot. But
338 beware: if this is the main executable, it may be relocated
339 later, e.g. by the remote qOffsets packet, and then this will
340 be wrong! That's why we try segments first. */
341
342 for (i = 0; i < objfile->num_sections; i++)
343 {
344 if (ANOFFSET (objfile->section_offsets, i) != 0)
345 {
346 break;
347 }
348 }
349 if (i == objfile->num_sections)
350 {
351 if (objfile->sect_index_text == -1)
352 objfile->sect_index_text = 0;
353 if (objfile->sect_index_data == -1)
354 objfile->sect_index_data = 0;
355 if (objfile->sect_index_bss == -1)
356 objfile->sect_index_bss = 0;
357 if (objfile->sect_index_rodata == -1)
358 objfile->sect_index_rodata = 0;
359 }
360 }
361
362 /* The arguments to place_section. */
363
364 struct place_section_arg
365 {
366 struct section_offsets *offsets;
367 CORE_ADDR lowest;
368 };
369
370 /* Find a unique offset to use for loadable section SECT if
371 the user did not provide an offset. */
372
373 static void
374 place_section (bfd *abfd, asection *sect, void *obj)
375 {
376 struct place_section_arg *arg = obj;
377 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
378 int done;
379 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
380
381 /* We are only interested in allocated sections. */
382 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
383 return;
384
385 /* If the user specified an offset, honor it. */
386 if (offsets[sect->index] != 0)
387 return;
388
389 /* Otherwise, let's try to find a place for the section. */
390 start_addr = (arg->lowest + align - 1) & -align;
391
392 do {
393 asection *cur_sec;
394
395 done = 1;
396
397 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
398 {
399 int indx = cur_sec->index;
400
401 /* We don't need to compare against ourself. */
402 if (cur_sec == sect)
403 continue;
404
405 /* We can only conflict with allocated sections. */
406 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
407 continue;
408
409 /* If the section offset is 0, either the section has not been placed
410 yet, or it was the lowest section placed (in which case LOWEST
411 will be past its end). */
412 if (offsets[indx] == 0)
413 continue;
414
415 /* If this section would overlap us, then we must move up. */
416 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
417 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
418 {
419 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
420 start_addr = (start_addr + align - 1) & -align;
421 done = 0;
422 break;
423 }
424
425 /* Otherwise, we appear to be OK. So far. */
426 }
427 }
428 while (!done);
429
430 offsets[sect->index] = start_addr;
431 arg->lowest = start_addr + bfd_get_section_size (sect);
432 }
433
434 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
435 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
436 entries. */
437
438 void
439 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
440 int num_sections,
441 struct section_addr_info *addrs)
442 {
443 int i;
444
445 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
446
447 /* Now calculate offsets for section that were specified by the caller. */
448 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
449 {
450 struct other_sections *osp;
451
452 osp = &addrs->other[i];
453 if (osp->sectindex == -1)
454 continue;
455
456 /* Record all sections in offsets. */
457 /* The section_offsets in the objfile are here filled in using
458 the BFD index. */
459 section_offsets->offsets[osp->sectindex] = osp->addr;
460 }
461 }
462
463 /* Transform section name S for a name comparison. prelink can split section
464 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
465 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
466 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
467 (`.sbss') section has invalid (increased) virtual address. */
468
469 static const char *
470 addr_section_name (const char *s)
471 {
472 if (strcmp (s, ".dynbss") == 0)
473 return ".bss";
474 if (strcmp (s, ".sdynbss") == 0)
475 return ".sbss";
476
477 return s;
478 }
479
480 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
481 their (name, sectindex) pair. sectindex makes the sort by name stable. */
482
483 static int
484 addrs_section_compar (const void *ap, const void *bp)
485 {
486 const struct other_sections *a = *((struct other_sections **) ap);
487 const struct other_sections *b = *((struct other_sections **) bp);
488 int retval;
489
490 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
491 if (retval)
492 return retval;
493
494 return a->sectindex - b->sectindex;
495 }
496
497 /* Provide sorted array of pointers to sections of ADDRS. The array is
498 terminated by NULL. Caller is responsible to call xfree for it. */
499
500 static struct other_sections **
501 addrs_section_sort (struct section_addr_info *addrs)
502 {
503 struct other_sections **array;
504 int i;
505
506 /* `+ 1' for the NULL terminator. */
507 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
509 array[i] = &addrs->other[i];
510 array[i] = NULL;
511
512 qsort (array, i, sizeof (*array), addrs_section_compar);
513
514 return array;
515 }
516
517 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
518 also SECTINDEXes specific to ABFD there. This function can be used to
519 rebase ADDRS to start referencing different BFD than before. */
520
521 void
522 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
523 {
524 asection *lower_sect;
525 CORE_ADDR lower_offset;
526 int i;
527 struct cleanup *my_cleanup;
528 struct section_addr_info *abfd_addrs;
529 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
530 struct other_sections **addrs_to_abfd_addrs;
531
532 /* Find lowest loadable section to be used as starting point for
533 continguous sections. */
534 lower_sect = NULL;
535 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
536 if (lower_sect == NULL)
537 {
538 warning (_("no loadable sections found in added symbol-file %s"),
539 bfd_get_filename (abfd));
540 lower_offset = 0;
541 }
542 else
543 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
544
545 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
546 in ABFD. Section names are not unique - there can be multiple sections of
547 the same name. Also the sections of the same name do not have to be
548 adjacent to each other. Some sections may be present only in one of the
549 files. Even sections present in both files do not have to be in the same
550 order.
551
552 Use stable sort by name for the sections in both files. Then linearly
553 scan both lists matching as most of the entries as possible. */
554
555 addrs_sorted = addrs_section_sort (addrs);
556 my_cleanup = make_cleanup (xfree, addrs_sorted);
557
558 abfd_addrs = build_section_addr_info_from_bfd (abfd);
559 make_cleanup_free_section_addr_info (abfd_addrs);
560 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
561 make_cleanup (xfree, abfd_addrs_sorted);
562
563 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
564 ABFD_ADDRS_SORTED. */
565
566 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
567 * addrs->num_sections);
568 make_cleanup (xfree, addrs_to_abfd_addrs);
569
570 while (*addrs_sorted)
571 {
572 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
573
574 while (*abfd_addrs_sorted
575 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
576 sect_name) < 0)
577 abfd_addrs_sorted++;
578
579 if (*abfd_addrs_sorted
580 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
581 sect_name) == 0)
582 {
583 int index_in_addrs;
584
585 /* Make the found item directly addressable from ADDRS. */
586 index_in_addrs = *addrs_sorted - addrs->other;
587 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
588 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
589
590 /* Never use the same ABFD entry twice. */
591 abfd_addrs_sorted++;
592 }
593
594 addrs_sorted++;
595 }
596
597 /* Calculate offsets for the loadable sections.
598 FIXME! Sections must be in order of increasing loadable section
599 so that contiguous sections can use the lower-offset!!!
600
601 Adjust offsets if the segments are not contiguous.
602 If the section is contiguous, its offset should be set to
603 the offset of the highest loadable section lower than it
604 (the loadable section directly below it in memory).
605 this_offset = lower_offset = lower_addr - lower_orig_addr */
606
607 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
608 {
609 struct other_sections *sect = addrs_to_abfd_addrs[i];
610
611 if (sect)
612 {
613 /* This is the index used by BFD. */
614 addrs->other[i].sectindex = sect->sectindex;
615
616 if (addrs->other[i].addr != 0)
617 {
618 addrs->other[i].addr -= sect->addr;
619 lower_offset = addrs->other[i].addr;
620 }
621 else
622 addrs->other[i].addr = lower_offset;
623 }
624 else
625 {
626 /* addr_section_name transformation is not used for SECT_NAME. */
627 const char *sect_name = addrs->other[i].name;
628
629 /* This section does not exist in ABFD, which is normally
630 unexpected and we want to issue a warning.
631
632 However, the ELF prelinker does create a few sections which are
633 marked in the main executable as loadable (they are loaded in
634 memory from the DYNAMIC segment) and yet are not present in
635 separate debug info files. This is fine, and should not cause
636 a warning. Shared libraries contain just the section
637 ".gnu.liblist" but it is not marked as loadable there. There is
638 no other way to identify them than by their name as the sections
639 created by prelink have no special flags.
640
641 For the sections `.bss' and `.sbss' see addr_section_name. */
642
643 if (!(strcmp (sect_name, ".gnu.liblist") == 0
644 || strcmp (sect_name, ".gnu.conflict") == 0
645 || (strcmp (sect_name, ".bss") == 0
646 && i > 0
647 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
648 && addrs_to_abfd_addrs[i - 1] != NULL)
649 || (strcmp (sect_name, ".sbss") == 0
650 && i > 0
651 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
652 && addrs_to_abfd_addrs[i - 1] != NULL)))
653 warning (_("section %s not found in %s"), sect_name,
654 bfd_get_filename (abfd));
655
656 addrs->other[i].addr = 0;
657 addrs->other[i].sectindex = -1;
658 }
659 }
660
661 do_cleanups (my_cleanup);
662 }
663
664 /* Parse the user's idea of an offset for dynamic linking, into our idea
665 of how to represent it for fast symbol reading. This is the default
666 version of the sym_fns.sym_offsets function for symbol readers that
667 don't need to do anything special. It allocates a section_offsets table
668 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
669
670 void
671 default_symfile_offsets (struct objfile *objfile,
672 struct section_addr_info *addrs)
673 {
674 objfile->num_sections = bfd_count_sections (objfile->obfd);
675 objfile->section_offsets = (struct section_offsets *)
676 obstack_alloc (&objfile->objfile_obstack,
677 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
678 relative_addr_info_to_section_offsets (objfile->section_offsets,
679 objfile->num_sections, addrs);
680
681 /* For relocatable files, all loadable sections will start at zero.
682 The zero is meaningless, so try to pick arbitrary addresses such
683 that no loadable sections overlap. This algorithm is quadratic,
684 but the number of sections in a single object file is generally
685 small. */
686 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
687 {
688 struct place_section_arg arg;
689 bfd *abfd = objfile->obfd;
690 asection *cur_sec;
691
692 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
693 /* We do not expect this to happen; just skip this step if the
694 relocatable file has a section with an assigned VMA. */
695 if (bfd_section_vma (abfd, cur_sec) != 0)
696 break;
697
698 if (cur_sec == NULL)
699 {
700 CORE_ADDR *offsets = objfile->section_offsets->offsets;
701
702 /* Pick non-overlapping offsets for sections the user did not
703 place explicitly. */
704 arg.offsets = objfile->section_offsets;
705 arg.lowest = 0;
706 bfd_map_over_sections (objfile->obfd, place_section, &arg);
707
708 /* Correctly filling in the section offsets is not quite
709 enough. Relocatable files have two properties that
710 (most) shared objects do not:
711
712 - Their debug information will contain relocations. Some
713 shared libraries do also, but many do not, so this can not
714 be assumed.
715
716 - If there are multiple code sections they will be loaded
717 at different relative addresses in memory than they are
718 in the objfile, since all sections in the file will start
719 at address zero.
720
721 Because GDB has very limited ability to map from an
722 address in debug info to the correct code section,
723 it relies on adding SECT_OFF_TEXT to things which might be
724 code. If we clear all the section offsets, and set the
725 section VMAs instead, then symfile_relocate_debug_section
726 will return meaningful debug information pointing at the
727 correct sections.
728
729 GDB has too many different data structures for section
730 addresses - a bfd, objfile, and so_list all have section
731 tables, as does exec_ops. Some of these could probably
732 be eliminated. */
733
734 for (cur_sec = abfd->sections; cur_sec != NULL;
735 cur_sec = cur_sec->next)
736 {
737 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
738 continue;
739
740 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
741 exec_set_section_address (bfd_get_filename (abfd),
742 cur_sec->index,
743 offsets[cur_sec->index]);
744 offsets[cur_sec->index] = 0;
745 }
746 }
747 }
748
749 /* Remember the bfd indexes for the .text, .data, .bss and
750 .rodata sections. */
751 init_objfile_sect_indices (objfile);
752 }
753
754
755 /* Divide the file into segments, which are individual relocatable units.
756 This is the default version of the sym_fns.sym_segments function for
757 symbol readers that do not have an explicit representation of segments.
758 It assumes that object files do not have segments, and fully linked
759 files have a single segment. */
760
761 struct symfile_segment_data *
762 default_symfile_segments (bfd *abfd)
763 {
764 int num_sections, i;
765 asection *sect;
766 struct symfile_segment_data *data;
767 CORE_ADDR low, high;
768
769 /* Relocatable files contain enough information to position each
770 loadable section independently; they should not be relocated
771 in segments. */
772 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
773 return NULL;
774
775 /* Make sure there is at least one loadable section in the file. */
776 for (sect = abfd->sections; sect != NULL; sect = sect->next)
777 {
778 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
779 continue;
780
781 break;
782 }
783 if (sect == NULL)
784 return NULL;
785
786 low = bfd_get_section_vma (abfd, sect);
787 high = low + bfd_get_section_size (sect);
788
789 data = XZALLOC (struct symfile_segment_data);
790 data->num_segments = 1;
791 data->segment_bases = XCALLOC (1, CORE_ADDR);
792 data->segment_sizes = XCALLOC (1, CORE_ADDR);
793
794 num_sections = bfd_count_sections (abfd);
795 data->segment_info = XCALLOC (num_sections, int);
796
797 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
798 {
799 CORE_ADDR vma;
800
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 vma = bfd_get_section_vma (abfd, sect);
805 if (vma < low)
806 low = vma;
807 if (vma + bfd_get_section_size (sect) > high)
808 high = vma + bfd_get_section_size (sect);
809
810 data->segment_info[i] = 1;
811 }
812
813 data->segment_bases[0] = low;
814 data->segment_sizes[0] = high - low;
815
816 return data;
817 }
818
819 /* This is a convenience function to call sym_read for OBJFILE and
820 possibly force the partial symbols to be read. */
821
822 static void
823 read_symbols (struct objfile *objfile, int add_flags)
824 {
825 (*objfile->sf->sym_read) (objfile, add_flags);
826
827 /* find_separate_debug_file_in_section should be called only if there is
828 single binary with no existing separate debug info file. */
829 if (!objfile_has_partial_symbols (objfile)
830 && objfile->separate_debug_objfile == NULL
831 && objfile->separate_debug_objfile_backlink == NULL)
832 {
833 bfd *abfd = find_separate_debug_file_in_section (objfile);
834 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
835
836 if (abfd != NULL)
837 symbol_file_add_separate (abfd, add_flags, objfile);
838
839 do_cleanups (cleanup);
840 }
841 if ((add_flags & SYMFILE_NO_READ) == 0)
842 require_partial_symbols (objfile, 0);
843 }
844
845 /* Initialize entry point information for this objfile. */
846
847 static void
848 init_entry_point_info (struct objfile *objfile)
849 {
850 /* Save startup file's range of PC addresses to help blockframe.c
851 decide where the bottom of the stack is. */
852
853 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
854 {
855 /* Executable file -- record its entry point so we'll recognize
856 the startup file because it contains the entry point. */
857 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
858 objfile->ei.entry_point_p = 1;
859 }
860 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
861 && bfd_get_start_address (objfile->obfd) != 0)
862 {
863 /* Some shared libraries may have entry points set and be
864 runnable. There's no clear way to indicate this, so just check
865 for values other than zero. */
866 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
867 objfile->ei.entry_point_p = 1;
868 }
869 else
870 {
871 /* Examination of non-executable.o files. Short-circuit this stuff. */
872 objfile->ei.entry_point_p = 0;
873 }
874
875 if (objfile->ei.entry_point_p)
876 {
877 CORE_ADDR entry_point = objfile->ei.entry_point;
878
879 /* Make certain that the address points at real code, and not a
880 function descriptor. */
881 entry_point
882 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
883 entry_point,
884 &current_target);
885
886 /* Remove any ISA markers, so that this matches entries in the
887 symbol table. */
888 objfile->ei.entry_point
889 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
890 }
891 }
892
893 /* Process a symbol file, as either the main file or as a dynamically
894 loaded file.
895
896 This function does not set the OBJFILE's entry-point info.
897
898 OBJFILE is where the symbols are to be read from.
899
900 ADDRS is the list of section load addresses. If the user has given
901 an 'add-symbol-file' command, then this is the list of offsets and
902 addresses he or she provided as arguments to the command; or, if
903 we're handling a shared library, these are the actual addresses the
904 sections are loaded at, according to the inferior's dynamic linker
905 (as gleaned by GDB's shared library code). We convert each address
906 into an offset from the section VMA's as it appears in the object
907 file, and then call the file's sym_offsets function to convert this
908 into a format-specific offset table --- a `struct section_offsets'.
909 If ADDRS is non-zero, OFFSETS must be zero.
910
911 OFFSETS is a table of section offsets already in the right
912 format-specific representation. NUM_OFFSETS is the number of
913 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
914 assume this is the proper table the call to sym_offsets described
915 above would produce. Instead of calling sym_offsets, we just dump
916 it right into objfile->section_offsets. (When we're re-reading
917 symbols from an objfile, we don't have the original load address
918 list any more; all we have is the section offset table.) If
919 OFFSETS is non-zero, ADDRS must be zero.
920
921 ADD_FLAGS encodes verbosity level, whether this is main symbol or
922 an extra symbol file such as dynamically loaded code, and wether
923 breakpoint reset should be deferred. */
924
925 static void
926 syms_from_objfile_1 (struct objfile *objfile,
927 struct section_addr_info *addrs,
928 struct section_offsets *offsets,
929 int num_offsets,
930 int add_flags)
931 {
932 struct section_addr_info *local_addr = NULL;
933 struct cleanup *old_chain;
934 const int mainline = add_flags & SYMFILE_MAINLINE;
935
936 gdb_assert (! (addrs && offsets));
937
938 objfile->sf = find_sym_fns (objfile->obfd);
939
940 if (objfile->sf == NULL)
941 {
942 /* No symbols to load, but we still need to make sure
943 that the section_offsets table is allocated. */
944 int num_sections = bfd_count_sections (objfile->obfd);
945 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
946
947 objfile->num_sections = num_sections;
948 objfile->section_offsets
949 = obstack_alloc (&objfile->objfile_obstack, size);
950 memset (objfile->section_offsets, 0, size);
951 return;
952 }
953
954 /* Make sure that partially constructed symbol tables will be cleaned up
955 if an error occurs during symbol reading. */
956 old_chain = make_cleanup_free_objfile (objfile);
957
958 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
959 list. We now establish the convention that an addr of zero means
960 no load address was specified. */
961 if (! addrs && ! offsets)
962 {
963 local_addr
964 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
965 make_cleanup (xfree, local_addr);
966 addrs = local_addr;
967 }
968
969 /* Now either addrs or offsets is non-zero. */
970
971 if (mainline)
972 {
973 /* We will modify the main symbol table, make sure that all its users
974 will be cleaned up if an error occurs during symbol reading. */
975 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
976
977 /* Since no error yet, throw away the old symbol table. */
978
979 if (symfile_objfile != NULL)
980 {
981 free_objfile (symfile_objfile);
982 gdb_assert (symfile_objfile == NULL);
983 }
984
985 /* Currently we keep symbols from the add-symbol-file command.
986 If the user wants to get rid of them, they should do "symbol-file"
987 without arguments first. Not sure this is the best behavior
988 (PR 2207). */
989
990 (*objfile->sf->sym_new_init) (objfile);
991 }
992
993 /* Convert addr into an offset rather than an absolute address.
994 We find the lowest address of a loaded segment in the objfile,
995 and assume that <addr> is where that got loaded.
996
997 We no longer warn if the lowest section is not a text segment (as
998 happens for the PA64 port. */
999 if (addrs && addrs->other[0].name)
1000 addr_info_make_relative (addrs, objfile->obfd);
1001
1002 /* Initialize symbol reading routines for this objfile, allow complaints to
1003 appear for this new file, and record how verbose to be, then do the
1004 initial symbol reading for this file. */
1005
1006 (*objfile->sf->sym_init) (objfile);
1007 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1008
1009 if (addrs)
1010 (*objfile->sf->sym_offsets) (objfile, addrs);
1011 else
1012 {
1013 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1014
1015 /* Just copy in the offset table directly as given to us. */
1016 objfile->num_sections = num_offsets;
1017 objfile->section_offsets
1018 = ((struct section_offsets *)
1019 obstack_alloc (&objfile->objfile_obstack, size));
1020 memcpy (objfile->section_offsets, offsets, size);
1021
1022 init_objfile_sect_indices (objfile);
1023 }
1024
1025 read_symbols (objfile, add_flags);
1026
1027 /* Discard cleanups as symbol reading was successful. */
1028
1029 discard_cleanups (old_chain);
1030 xfree (local_addr);
1031 }
1032
1033 /* Same as syms_from_objfile_1, but also initializes the objfile
1034 entry-point info. */
1035
1036 void
1037 syms_from_objfile (struct objfile *objfile,
1038 struct section_addr_info *addrs,
1039 struct section_offsets *offsets,
1040 int num_offsets,
1041 int add_flags)
1042 {
1043 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1044 init_entry_point_info (objfile);
1045 }
1046
1047 /* Perform required actions after either reading in the initial
1048 symbols for a new objfile, or mapping in the symbols from a reusable
1049 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1050
1051 void
1052 new_symfile_objfile (struct objfile *objfile, int add_flags)
1053 {
1054 /* If this is the main symbol file we have to clean up all users of the
1055 old main symbol file. Otherwise it is sufficient to fixup all the
1056 breakpoints that may have been redefined by this symbol file. */
1057 if (add_flags & SYMFILE_MAINLINE)
1058 {
1059 /* OK, make it the "real" symbol file. */
1060 symfile_objfile = objfile;
1061
1062 clear_symtab_users (add_flags);
1063 }
1064 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1065 {
1066 breakpoint_re_set ();
1067 }
1068
1069 /* We're done reading the symbol file; finish off complaints. */
1070 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1071 }
1072
1073 /* Process a symbol file, as either the main file or as a dynamically
1074 loaded file.
1075
1076 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1077 A new reference is acquired by this function.
1078
1079 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1080 extra, such as dynamically loaded code, and what to do with breakpoins.
1081
1082 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1083 syms_from_objfile, above.
1084 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1085
1086 PARENT is the original objfile if ABFD is a separate debug info file.
1087 Otherwise PARENT is NULL.
1088
1089 Upon success, returns a pointer to the objfile that was added.
1090 Upon failure, jumps back to command level (never returns). */
1091
1092 static struct objfile *
1093 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1094 int add_flags,
1095 struct section_addr_info *addrs,
1096 struct section_offsets *offsets,
1097 int num_offsets,
1098 int flags, struct objfile *parent)
1099 {
1100 struct objfile *objfile;
1101 const char *name = bfd_get_filename (abfd);
1102 const int from_tty = add_flags & SYMFILE_VERBOSE;
1103 const int mainline = add_flags & SYMFILE_MAINLINE;
1104 const int should_print = ((from_tty || info_verbose)
1105 && (readnow_symbol_files
1106 || (add_flags & SYMFILE_NO_READ) == 0));
1107
1108 if (readnow_symbol_files)
1109 {
1110 flags |= OBJF_READNOW;
1111 add_flags &= ~SYMFILE_NO_READ;
1112 }
1113
1114 /* Give user a chance to burp if we'd be
1115 interactively wiping out any existing symbols. */
1116
1117 if ((have_full_symbols () || have_partial_symbols ())
1118 && mainline
1119 && from_tty
1120 && !query (_("Load new symbol table from \"%s\"? "), name))
1121 error (_("Not confirmed."));
1122
1123 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1124
1125 if (parent)
1126 add_separate_debug_objfile (objfile, parent);
1127
1128 /* We either created a new mapped symbol table, mapped an existing
1129 symbol table file which has not had initial symbol reading
1130 performed, or need to read an unmapped symbol table. */
1131 if (should_print)
1132 {
1133 if (deprecated_pre_add_symbol_hook)
1134 deprecated_pre_add_symbol_hook (name);
1135 else
1136 {
1137 printf_unfiltered (_("Reading symbols from %s..."), name);
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141 }
1142 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1143 add_flags);
1144
1145 /* We now have at least a partial symbol table. Check to see if the
1146 user requested that all symbols be read on initial access via either
1147 the gdb startup command line or on a per symbol file basis. Expand
1148 all partial symbol tables for this objfile if so. */
1149
1150 if ((flags & OBJF_READNOW))
1151 {
1152 if (should_print)
1153 {
1154 printf_unfiltered (_("expanding to full symbols..."));
1155 wrap_here ("");
1156 gdb_flush (gdb_stdout);
1157 }
1158
1159 if (objfile->sf)
1160 objfile->sf->qf->expand_all_symtabs (objfile);
1161 }
1162
1163 if (should_print && !objfile_has_symbols (objfile))
1164 {
1165 wrap_here ("");
1166 printf_unfiltered (_("(no debugging symbols found)..."));
1167 wrap_here ("");
1168 }
1169
1170 if (should_print)
1171 {
1172 if (deprecated_post_add_symbol_hook)
1173 deprecated_post_add_symbol_hook ();
1174 else
1175 printf_unfiltered (_("done.\n"));
1176 }
1177
1178 /* We print some messages regardless of whether 'from_tty ||
1179 info_verbose' is true, so make sure they go out at the right
1180 time. */
1181 gdb_flush (gdb_stdout);
1182
1183 if (objfile->sf == NULL)
1184 {
1185 observer_notify_new_objfile (objfile);
1186 return objfile; /* No symbols. */
1187 }
1188
1189 new_symfile_objfile (objfile, add_flags);
1190
1191 observer_notify_new_objfile (objfile);
1192
1193 bfd_cache_close_all ();
1194 return (objfile);
1195 }
1196
1197 /* Add BFD as a separate debug file for OBJFILE. */
1198
1199 void
1200 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1201 {
1202 struct objfile *new_objfile;
1203 struct section_addr_info *sap;
1204 struct cleanup *my_cleanup;
1205
1206 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1207 because sections of BFD may not match sections of OBJFILE and because
1208 vma may have been modified by tools such as prelink. */
1209 sap = build_section_addr_info_from_objfile (objfile);
1210 my_cleanup = make_cleanup_free_section_addr_info (sap);
1211
1212 new_objfile = symbol_file_add_with_addrs_or_offsets
1213 (bfd, symfile_flags,
1214 sap, NULL, 0,
1215 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1216 | OBJF_USERLOADED),
1217 objfile);
1218
1219 do_cleanups (my_cleanup);
1220 }
1221
1222 /* Process the symbol file ABFD, as either the main file or as a
1223 dynamically loaded file.
1224
1225 See symbol_file_add_with_addrs_or_offsets's comments for
1226 details. */
1227 struct objfile *
1228 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1229 struct section_addr_info *addrs,
1230 int flags, struct objfile *parent)
1231 {
1232 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1233 flags, parent);
1234 }
1235
1236
1237 /* Process a symbol file, as either the main file or as a dynamically
1238 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1239 for details. */
1240 struct objfile *
1241 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1242 int flags)
1243 {
1244 bfd *bfd = symfile_bfd_open (name);
1245 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1246 struct objfile *objf;
1247
1248 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1249 do_cleanups (cleanup);
1250 return objf;
1251 }
1252
1253
1254 /* Call symbol_file_add() with default values and update whatever is
1255 affected by the loading of a new main().
1256 Used when the file is supplied in the gdb command line
1257 and by some targets with special loading requirements.
1258 The auxiliary function, symbol_file_add_main_1(), has the flags
1259 argument for the switches that can only be specified in the symbol_file
1260 command itself. */
1261
1262 void
1263 symbol_file_add_main (char *args, int from_tty)
1264 {
1265 symbol_file_add_main_1 (args, from_tty, 0);
1266 }
1267
1268 static void
1269 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1270 {
1271 const int add_flags = (current_inferior ()->symfile_flags
1272 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1273
1274 symbol_file_add (args, add_flags, NULL, flags);
1275
1276 /* Getting new symbols may change our opinion about
1277 what is frameless. */
1278 reinit_frame_cache ();
1279
1280 if ((flags & SYMFILE_NO_READ) == 0)
1281 set_initial_language ();
1282 }
1283
1284 void
1285 symbol_file_clear (int from_tty)
1286 {
1287 if ((have_full_symbols () || have_partial_symbols ())
1288 && from_tty
1289 && (symfile_objfile
1290 ? !query (_("Discard symbol table from `%s'? "),
1291 symfile_objfile->name)
1292 : !query (_("Discard symbol table? "))))
1293 error (_("Not confirmed."));
1294
1295 /* solib descriptors may have handles to objfiles. Wipe them before their
1296 objfiles get stale by free_all_objfiles. */
1297 no_shared_libraries (NULL, from_tty);
1298
1299 free_all_objfiles ();
1300
1301 gdb_assert (symfile_objfile == NULL);
1302 if (from_tty)
1303 printf_unfiltered (_("No symbol file now.\n"));
1304 }
1305
1306 static char *
1307 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1308 {
1309 asection *sect;
1310 bfd_size_type debuglink_size;
1311 unsigned long crc32;
1312 char *contents;
1313 int crc_offset;
1314
1315 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1316
1317 if (sect == NULL)
1318 return NULL;
1319
1320 debuglink_size = bfd_section_size (objfile->obfd, sect);
1321
1322 contents = xmalloc (debuglink_size);
1323 bfd_get_section_contents (objfile->obfd, sect, contents,
1324 (file_ptr)0, (bfd_size_type)debuglink_size);
1325
1326 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1327 crc_offset = strlen (contents) + 1;
1328 crc_offset = (crc_offset + 3) & ~3;
1329
1330 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1331
1332 *crc32_out = crc32;
1333 return contents;
1334 }
1335
1336 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1337 return 1. Otherwise print a warning and return 0. ABFD seek position is
1338 not preserved. */
1339
1340 static int
1341 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1342 {
1343 unsigned long file_crc = 0;
1344
1345 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1346 {
1347 warning (_("Problem reading \"%s\" for CRC: %s"),
1348 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1349 return 0;
1350 }
1351
1352 for (;;)
1353 {
1354 gdb_byte buffer[8 * 1024];
1355 bfd_size_type count;
1356
1357 count = bfd_bread (buffer, sizeof (buffer), abfd);
1358 if (count == (bfd_size_type) -1)
1359 {
1360 warning (_("Problem reading \"%s\" for CRC: %s"),
1361 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1362 return 0;
1363 }
1364 if (count == 0)
1365 break;
1366 file_crc = bfd_calc_gnu_debuglink_crc32 (file_crc, buffer, count);
1367 }
1368
1369 *file_crc_return = file_crc;
1370 return 1;
1371 }
1372
1373 static int
1374 separate_debug_file_exists (const char *name, unsigned long crc,
1375 struct objfile *parent_objfile)
1376 {
1377 unsigned long file_crc;
1378 int file_crc_p;
1379 bfd *abfd;
1380 struct stat parent_stat, abfd_stat;
1381 int verified_as_different;
1382
1383 /* Find a separate debug info file as if symbols would be present in
1384 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1385 section can contain just the basename of PARENT_OBJFILE without any
1386 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1387 the separate debug infos with the same basename can exist. */
1388
1389 if (filename_cmp (name, parent_objfile->name) == 0)
1390 return 0;
1391
1392 abfd = gdb_bfd_open_maybe_remote (name);
1393
1394 if (!abfd)
1395 return 0;
1396
1397 /* Verify symlinks were not the cause of filename_cmp name difference above.
1398
1399 Some operating systems, e.g. Windows, do not provide a meaningful
1400 st_ino; they always set it to zero. (Windows does provide a
1401 meaningful st_dev.) Do not indicate a duplicate library in that
1402 case. While there is no guarantee that a system that provides
1403 meaningful inode numbers will never set st_ino to zero, this is
1404 merely an optimization, so we do not need to worry about false
1405 negatives. */
1406
1407 if (bfd_stat (abfd, &abfd_stat) == 0
1408 && abfd_stat.st_ino != 0
1409 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1410 {
1411 if (abfd_stat.st_dev == parent_stat.st_dev
1412 && abfd_stat.st_ino == parent_stat.st_ino)
1413 {
1414 gdb_bfd_unref (abfd);
1415 return 0;
1416 }
1417 verified_as_different = 1;
1418 }
1419 else
1420 verified_as_different = 0;
1421
1422 file_crc_p = get_file_crc (abfd, &file_crc);
1423
1424 gdb_bfd_unref (abfd);
1425
1426 if (!file_crc_p)
1427 return 0;
1428
1429 if (crc != file_crc)
1430 {
1431 /* If one (or both) the files are accessed for example the via "remote:"
1432 gdbserver way it does not support the bfd_stat operation. Verify
1433 whether those two files are not the same manually. */
1434
1435 if (!verified_as_different && !parent_objfile->crc32_p)
1436 {
1437 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1438 &parent_objfile->crc32);
1439 if (!parent_objfile->crc32_p)
1440 return 0;
1441 }
1442
1443 if (verified_as_different || parent_objfile->crc32 != file_crc)
1444 warning (_("the debug information found in \"%s\""
1445 " does not match \"%s\" (CRC mismatch).\n"),
1446 name, parent_objfile->name);
1447
1448 return 0;
1449 }
1450
1451 return 1;
1452 }
1453
1454 char *debug_file_directory = NULL;
1455 static void
1456 show_debug_file_directory (struct ui_file *file, int from_tty,
1457 struct cmd_list_element *c, const char *value)
1458 {
1459 fprintf_filtered (file,
1460 _("The directory where separate debug "
1461 "symbols are searched for is \"%s\".\n"),
1462 value);
1463 }
1464
1465 #if ! defined (DEBUG_SUBDIRECTORY)
1466 #define DEBUG_SUBDIRECTORY ".debug"
1467 #endif
1468
1469 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1470 where the original file resides (may not be the same as
1471 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1472 looking for. Returns the name of the debuginfo, of NULL. */
1473
1474 static char *
1475 find_separate_debug_file (const char *dir,
1476 const char *canon_dir,
1477 const char *debuglink,
1478 unsigned long crc32, struct objfile *objfile)
1479 {
1480 char *debugdir;
1481 char *debugfile;
1482 int i;
1483 VEC (char_ptr) *debugdir_vec;
1484 struct cleanup *back_to;
1485 int ix;
1486
1487 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1488 i = strlen (dir);
1489 if (canon_dir != NULL && strlen (canon_dir) > i)
1490 i = strlen (canon_dir);
1491
1492 debugfile = xmalloc (strlen (debug_file_directory) + 1
1493 + i
1494 + strlen (DEBUG_SUBDIRECTORY)
1495 + strlen ("/")
1496 + strlen (debuglink)
1497 + 1);
1498
1499 /* First try in the same directory as the original file. */
1500 strcpy (debugfile, dir);
1501 strcat (debugfile, debuglink);
1502
1503 if (separate_debug_file_exists (debugfile, crc32, objfile))
1504 return debugfile;
1505
1506 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1507 strcpy (debugfile, dir);
1508 strcat (debugfile, DEBUG_SUBDIRECTORY);
1509 strcat (debugfile, "/");
1510 strcat (debugfile, debuglink);
1511
1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
1513 return debugfile;
1514
1515 /* Then try in the global debugfile directories.
1516
1517 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1518 cause "/..." lookups. */
1519
1520 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1521 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1522
1523 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1524 {
1525 strcpy (debugfile, debugdir);
1526 strcat (debugfile, "/");
1527 strcat (debugfile, dir);
1528 strcat (debugfile, debuglink);
1529
1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
1531 return debugfile;
1532
1533 /* If the file is in the sysroot, try using its base path in the
1534 global debugfile directory. */
1535 if (canon_dir != NULL
1536 && filename_ncmp (canon_dir, gdb_sysroot,
1537 strlen (gdb_sysroot)) == 0
1538 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1539 {
1540 strcpy (debugfile, debugdir);
1541 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1542 strcat (debugfile, "/");
1543 strcat (debugfile, debuglink);
1544
1545 if (separate_debug_file_exists (debugfile, crc32, objfile))
1546 return debugfile;
1547 }
1548 }
1549
1550 do_cleanups (back_to);
1551 xfree (debugfile);
1552 return NULL;
1553 }
1554
1555 /* Modify PATH to contain only "directory/" part of PATH.
1556 If there were no directory separators in PATH, PATH will be empty
1557 string on return. */
1558
1559 static void
1560 terminate_after_last_dir_separator (char *path)
1561 {
1562 int i;
1563
1564 /* Strip off the final filename part, leaving the directory name,
1565 followed by a slash. The directory can be relative or absolute. */
1566 for (i = strlen(path) - 1; i >= 0; i--)
1567 if (IS_DIR_SEPARATOR (path[i]))
1568 break;
1569
1570 /* If I is -1 then no directory is present there and DIR will be "". */
1571 path[i + 1] = '\0';
1572 }
1573
1574 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1575 Returns pathname, or NULL. */
1576
1577 char *
1578 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1579 {
1580 char *debuglink;
1581 char *dir, *canon_dir;
1582 char *debugfile;
1583 unsigned long crc32;
1584 struct cleanup *cleanups;
1585
1586 debuglink = get_debug_link_info (objfile, &crc32);
1587
1588 if (debuglink == NULL)
1589 {
1590 /* There's no separate debug info, hence there's no way we could
1591 load it => no warning. */
1592 return NULL;
1593 }
1594
1595 cleanups = make_cleanup (xfree, debuglink);
1596 dir = xstrdup (objfile->name);
1597 make_cleanup (xfree, dir);
1598 terminate_after_last_dir_separator (dir);
1599 canon_dir = lrealpath (dir);
1600
1601 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1602 crc32, objfile);
1603 xfree (canon_dir);
1604
1605 if (debugfile == NULL)
1606 {
1607 #ifdef HAVE_LSTAT
1608 /* For PR gdb/9538, try again with realpath (if different from the
1609 original). */
1610
1611 struct stat st_buf;
1612
1613 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1614 {
1615 char *symlink_dir;
1616
1617 symlink_dir = lrealpath (objfile->name);
1618 if (symlink_dir != NULL)
1619 {
1620 make_cleanup (xfree, symlink_dir);
1621 terminate_after_last_dir_separator (symlink_dir);
1622 if (strcmp (dir, symlink_dir) != 0)
1623 {
1624 /* Different directory, so try using it. */
1625 debugfile = find_separate_debug_file (symlink_dir,
1626 symlink_dir,
1627 debuglink,
1628 crc32,
1629 objfile);
1630 }
1631 }
1632 }
1633 #endif /* HAVE_LSTAT */
1634 }
1635
1636 do_cleanups (cleanups);
1637 return debugfile;
1638 }
1639
1640
1641 /* This is the symbol-file command. Read the file, analyze its
1642 symbols, and add a struct symtab to a symtab list. The syntax of
1643 the command is rather bizarre:
1644
1645 1. The function buildargv implements various quoting conventions
1646 which are undocumented and have little or nothing in common with
1647 the way things are quoted (or not quoted) elsewhere in GDB.
1648
1649 2. Options are used, which are not generally used in GDB (perhaps
1650 "set mapped on", "set readnow on" would be better)
1651
1652 3. The order of options matters, which is contrary to GNU
1653 conventions (because it is confusing and inconvenient). */
1654
1655 void
1656 symbol_file_command (char *args, int from_tty)
1657 {
1658 dont_repeat ();
1659
1660 if (args == NULL)
1661 {
1662 symbol_file_clear (from_tty);
1663 }
1664 else
1665 {
1666 char **argv = gdb_buildargv (args);
1667 int flags = OBJF_USERLOADED;
1668 struct cleanup *cleanups;
1669 char *name = NULL;
1670
1671 cleanups = make_cleanup_freeargv (argv);
1672 while (*argv != NULL)
1673 {
1674 if (strcmp (*argv, "-readnow") == 0)
1675 flags |= OBJF_READNOW;
1676 else if (**argv == '-')
1677 error (_("unknown option `%s'"), *argv);
1678 else
1679 {
1680 symbol_file_add_main_1 (*argv, from_tty, flags);
1681 name = *argv;
1682 }
1683
1684 argv++;
1685 }
1686
1687 if (name == NULL)
1688 error (_("no symbol file name was specified"));
1689
1690 do_cleanups (cleanups);
1691 }
1692 }
1693
1694 /* Set the initial language.
1695
1696 FIXME: A better solution would be to record the language in the
1697 psymtab when reading partial symbols, and then use it (if known) to
1698 set the language. This would be a win for formats that encode the
1699 language in an easily discoverable place, such as DWARF. For
1700 stabs, we can jump through hoops looking for specially named
1701 symbols or try to intuit the language from the specific type of
1702 stabs we find, but we can't do that until later when we read in
1703 full symbols. */
1704
1705 void
1706 set_initial_language (void)
1707 {
1708 enum language lang = language_unknown;
1709
1710 if (language_of_main != language_unknown)
1711 lang = language_of_main;
1712 else
1713 {
1714 const char *filename;
1715
1716 filename = find_main_filename ();
1717 if (filename != NULL)
1718 lang = deduce_language_from_filename (filename);
1719 }
1720
1721 if (lang == language_unknown)
1722 {
1723 /* Make C the default language */
1724 lang = language_c;
1725 }
1726
1727 set_language (lang);
1728 expected_language = current_language; /* Don't warn the user. */
1729 }
1730
1731 /* If NAME is a remote name open the file using remote protocol, otherwise
1732 open it normally. Returns a new reference to the BFD. On error,
1733 returns NULL with the BFD error set. */
1734
1735 bfd *
1736 gdb_bfd_open_maybe_remote (const char *name)
1737 {
1738 bfd *result;
1739
1740 if (remote_filename_p (name))
1741 result = remote_bfd_open (name, gnutarget);
1742 else
1743 result = gdb_bfd_open (name, gnutarget, -1);
1744
1745 return result;
1746 }
1747
1748
1749 /* Open the file specified by NAME and hand it off to BFD for
1750 preliminary analysis. Return a newly initialized bfd *, which
1751 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1752 absolute). In case of trouble, error() is called. */
1753
1754 bfd *
1755 symfile_bfd_open (char *name)
1756 {
1757 bfd *sym_bfd;
1758 int desc;
1759 char *absolute_name;
1760
1761 if (remote_filename_p (name))
1762 {
1763 sym_bfd = remote_bfd_open (name, gnutarget);
1764 if (!sym_bfd)
1765 error (_("`%s': can't open to read symbols: %s."), name,
1766 bfd_errmsg (bfd_get_error ()));
1767
1768 if (!bfd_check_format (sym_bfd, bfd_object))
1769 {
1770 make_cleanup_bfd_unref (sym_bfd);
1771 error (_("`%s': can't read symbols: %s."), name,
1772 bfd_errmsg (bfd_get_error ()));
1773 }
1774
1775 return sym_bfd;
1776 }
1777
1778 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1779
1780 /* Look down path for it, allocate 2nd new malloc'd copy. */
1781 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1782 O_RDONLY | O_BINARY, &absolute_name);
1783 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1784 if (desc < 0)
1785 {
1786 char *exename = alloca (strlen (name) + 5);
1787
1788 strcat (strcpy (exename, name), ".exe");
1789 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1790 O_RDONLY | O_BINARY, &absolute_name);
1791 }
1792 #endif
1793 if (desc < 0)
1794 {
1795 make_cleanup (xfree, name);
1796 perror_with_name (name);
1797 }
1798
1799 xfree (name);
1800 name = absolute_name;
1801 make_cleanup (xfree, name);
1802
1803 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1804 if (!sym_bfd)
1805 {
1806 make_cleanup (xfree, name);
1807 error (_("`%s': can't open to read symbols: %s."), name,
1808 bfd_errmsg (bfd_get_error ()));
1809 }
1810 bfd_set_cacheable (sym_bfd, 1);
1811
1812 if (!bfd_check_format (sym_bfd, bfd_object))
1813 {
1814 make_cleanup_bfd_unref (sym_bfd);
1815 error (_("`%s': can't read symbols: %s."), name,
1816 bfd_errmsg (bfd_get_error ()));
1817 }
1818
1819 return sym_bfd;
1820 }
1821
1822 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1823 the section was not found. */
1824
1825 int
1826 get_section_index (struct objfile *objfile, char *section_name)
1827 {
1828 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1829
1830 if (sect)
1831 return sect->index;
1832 else
1833 return -1;
1834 }
1835
1836 /* Link SF into the global symtab_fns list. Called on startup by the
1837 _initialize routine in each object file format reader, to register
1838 information about each format the reader is prepared to handle. */
1839
1840 void
1841 add_symtab_fns (const struct sym_fns *sf)
1842 {
1843 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1844 }
1845
1846 /* Initialize OBJFILE to read symbols from its associated BFD. It
1847 either returns or calls error(). The result is an initialized
1848 struct sym_fns in the objfile structure, that contains cached
1849 information about the symbol file. */
1850
1851 static const struct sym_fns *
1852 find_sym_fns (bfd *abfd)
1853 {
1854 const struct sym_fns *sf;
1855 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1856 int i;
1857
1858 if (our_flavour == bfd_target_srec_flavour
1859 || our_flavour == bfd_target_ihex_flavour
1860 || our_flavour == bfd_target_tekhex_flavour)
1861 return NULL; /* No symbols. */
1862
1863 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1864 if (our_flavour == sf->sym_flavour)
1865 return sf;
1866
1867 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1868 bfd_get_target (abfd));
1869 }
1870 \f
1871
1872 /* This function runs the load command of our current target. */
1873
1874 static void
1875 load_command (char *arg, int from_tty)
1876 {
1877 dont_repeat ();
1878
1879 /* The user might be reloading because the binary has changed. Take
1880 this opportunity to check. */
1881 reopen_exec_file ();
1882 reread_symbols ();
1883
1884 if (arg == NULL)
1885 {
1886 char *parg;
1887 int count = 0;
1888
1889 parg = arg = get_exec_file (1);
1890
1891 /* Count how many \ " ' tab space there are in the name. */
1892 while ((parg = strpbrk (parg, "\\\"'\t ")))
1893 {
1894 parg++;
1895 count++;
1896 }
1897
1898 if (count)
1899 {
1900 /* We need to quote this string so buildargv can pull it apart. */
1901 char *temp = xmalloc (strlen (arg) + count + 1 );
1902 char *ptemp = temp;
1903 char *prev;
1904
1905 make_cleanup (xfree, temp);
1906
1907 prev = parg = arg;
1908 while ((parg = strpbrk (parg, "\\\"'\t ")))
1909 {
1910 strncpy (ptemp, prev, parg - prev);
1911 ptemp += parg - prev;
1912 prev = parg++;
1913 *ptemp++ = '\\';
1914 }
1915 strcpy (ptemp, prev);
1916
1917 arg = temp;
1918 }
1919 }
1920
1921 target_load (arg, from_tty);
1922
1923 /* After re-loading the executable, we don't really know which
1924 overlays are mapped any more. */
1925 overlay_cache_invalid = 1;
1926 }
1927
1928 /* This version of "load" should be usable for any target. Currently
1929 it is just used for remote targets, not inftarg.c or core files,
1930 on the theory that only in that case is it useful.
1931
1932 Avoiding xmodem and the like seems like a win (a) because we don't have
1933 to worry about finding it, and (b) On VMS, fork() is very slow and so
1934 we don't want to run a subprocess. On the other hand, I'm not sure how
1935 performance compares. */
1936
1937 static int validate_download = 0;
1938
1939 /* Callback service function for generic_load (bfd_map_over_sections). */
1940
1941 static void
1942 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1943 {
1944 bfd_size_type *sum = data;
1945
1946 *sum += bfd_get_section_size (asec);
1947 }
1948
1949 /* Opaque data for load_section_callback. */
1950 struct load_section_data {
1951 unsigned long load_offset;
1952 struct load_progress_data *progress_data;
1953 VEC(memory_write_request_s) *requests;
1954 };
1955
1956 /* Opaque data for load_progress. */
1957 struct load_progress_data {
1958 /* Cumulative data. */
1959 unsigned long write_count;
1960 unsigned long data_count;
1961 bfd_size_type total_size;
1962 };
1963
1964 /* Opaque data for load_progress for a single section. */
1965 struct load_progress_section_data {
1966 struct load_progress_data *cumulative;
1967
1968 /* Per-section data. */
1969 const char *section_name;
1970 ULONGEST section_sent;
1971 ULONGEST section_size;
1972 CORE_ADDR lma;
1973 gdb_byte *buffer;
1974 };
1975
1976 /* Target write callback routine for progress reporting. */
1977
1978 static void
1979 load_progress (ULONGEST bytes, void *untyped_arg)
1980 {
1981 struct load_progress_section_data *args = untyped_arg;
1982 struct load_progress_data *totals;
1983
1984 if (args == NULL)
1985 /* Writing padding data. No easy way to get at the cumulative
1986 stats, so just ignore this. */
1987 return;
1988
1989 totals = args->cumulative;
1990
1991 if (bytes == 0 && args->section_sent == 0)
1992 {
1993 /* The write is just starting. Let the user know we've started
1994 this section. */
1995 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1996 args->section_name, hex_string (args->section_size),
1997 paddress (target_gdbarch (), args->lma));
1998 return;
1999 }
2000
2001 if (validate_download)
2002 {
2003 /* Broken memories and broken monitors manifest themselves here
2004 when bring new computers to life. This doubles already slow
2005 downloads. */
2006 /* NOTE: cagney/1999-10-18: A more efficient implementation
2007 might add a verify_memory() method to the target vector and
2008 then use that. remote.c could implement that method using
2009 the ``qCRC'' packet. */
2010 gdb_byte *check = xmalloc (bytes);
2011 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2012
2013 if (target_read_memory (args->lma, check, bytes) != 0)
2014 error (_("Download verify read failed at %s"),
2015 paddress (target_gdbarch (), args->lma));
2016 if (memcmp (args->buffer, check, bytes) != 0)
2017 error (_("Download verify compare failed at %s"),
2018 paddress (target_gdbarch (), args->lma));
2019 do_cleanups (verify_cleanups);
2020 }
2021 totals->data_count += bytes;
2022 args->lma += bytes;
2023 args->buffer += bytes;
2024 totals->write_count += 1;
2025 args->section_sent += bytes;
2026 if (check_quit_flag ()
2027 || (deprecated_ui_load_progress_hook != NULL
2028 && deprecated_ui_load_progress_hook (args->section_name,
2029 args->section_sent)))
2030 error (_("Canceled the download"));
2031
2032 if (deprecated_show_load_progress != NULL)
2033 deprecated_show_load_progress (args->section_name,
2034 args->section_sent,
2035 args->section_size,
2036 totals->data_count,
2037 totals->total_size);
2038 }
2039
2040 /* Callback service function for generic_load (bfd_map_over_sections). */
2041
2042 static void
2043 load_section_callback (bfd *abfd, asection *asec, void *data)
2044 {
2045 struct memory_write_request *new_request;
2046 struct load_section_data *args = data;
2047 struct load_progress_section_data *section_data;
2048 bfd_size_type size = bfd_get_section_size (asec);
2049 gdb_byte *buffer;
2050 const char *sect_name = bfd_get_section_name (abfd, asec);
2051
2052 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2053 return;
2054
2055 if (size == 0)
2056 return;
2057
2058 new_request = VEC_safe_push (memory_write_request_s,
2059 args->requests, NULL);
2060 memset (new_request, 0, sizeof (struct memory_write_request));
2061 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2062 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2063 new_request->end = new_request->begin + size; /* FIXME Should size
2064 be in instead? */
2065 new_request->data = xmalloc (size);
2066 new_request->baton = section_data;
2067
2068 buffer = new_request->data;
2069
2070 section_data->cumulative = args->progress_data;
2071 section_data->section_name = sect_name;
2072 section_data->section_size = size;
2073 section_data->lma = new_request->begin;
2074 section_data->buffer = buffer;
2075
2076 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2077 }
2078
2079 /* Clean up an entire memory request vector, including load
2080 data and progress records. */
2081
2082 static void
2083 clear_memory_write_data (void *arg)
2084 {
2085 VEC(memory_write_request_s) **vec_p = arg;
2086 VEC(memory_write_request_s) *vec = *vec_p;
2087 int i;
2088 struct memory_write_request *mr;
2089
2090 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2091 {
2092 xfree (mr->data);
2093 xfree (mr->baton);
2094 }
2095 VEC_free (memory_write_request_s, vec);
2096 }
2097
2098 void
2099 generic_load (char *args, int from_tty)
2100 {
2101 bfd *loadfile_bfd;
2102 struct timeval start_time, end_time;
2103 char *filename;
2104 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2105 struct load_section_data cbdata;
2106 struct load_progress_data total_progress;
2107 struct ui_out *uiout = current_uiout;
2108
2109 CORE_ADDR entry;
2110 char **argv;
2111
2112 memset (&cbdata, 0, sizeof (cbdata));
2113 memset (&total_progress, 0, sizeof (total_progress));
2114 cbdata.progress_data = &total_progress;
2115
2116 make_cleanup (clear_memory_write_data, &cbdata.requests);
2117
2118 if (args == NULL)
2119 error_no_arg (_("file to load"));
2120
2121 argv = gdb_buildargv (args);
2122 make_cleanup_freeargv (argv);
2123
2124 filename = tilde_expand (argv[0]);
2125 make_cleanup (xfree, filename);
2126
2127 if (argv[1] != NULL)
2128 {
2129 char *endptr;
2130
2131 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2132
2133 /* If the last word was not a valid number then
2134 treat it as a file name with spaces in. */
2135 if (argv[1] == endptr)
2136 error (_("Invalid download offset:%s."), argv[1]);
2137
2138 if (argv[2] != NULL)
2139 error (_("Too many parameters."));
2140 }
2141
2142 /* Open the file for loading. */
2143 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2144 if (loadfile_bfd == NULL)
2145 {
2146 perror_with_name (filename);
2147 return;
2148 }
2149
2150 make_cleanup_bfd_unref (loadfile_bfd);
2151
2152 if (!bfd_check_format (loadfile_bfd, bfd_object))
2153 {
2154 error (_("\"%s\" is not an object file: %s"), filename,
2155 bfd_errmsg (bfd_get_error ()));
2156 }
2157
2158 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2159 (void *) &total_progress.total_size);
2160
2161 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2162
2163 gettimeofday (&start_time, NULL);
2164
2165 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2166 load_progress) != 0)
2167 error (_("Load failed"));
2168
2169 gettimeofday (&end_time, NULL);
2170
2171 entry = bfd_get_start_address (loadfile_bfd);
2172 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2173 ui_out_text (uiout, "Start address ");
2174 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2175 ui_out_text (uiout, ", load size ");
2176 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2177 ui_out_text (uiout, "\n");
2178 /* We were doing this in remote-mips.c, I suspect it is right
2179 for other targets too. */
2180 regcache_write_pc (get_current_regcache (), entry);
2181
2182 /* Reset breakpoints, now that we have changed the load image. For
2183 instance, breakpoints may have been set (or reset, by
2184 post_create_inferior) while connected to the target but before we
2185 loaded the program. In that case, the prologue analyzer could
2186 have read instructions from the target to find the right
2187 breakpoint locations. Loading has changed the contents of that
2188 memory. */
2189
2190 breakpoint_re_set ();
2191
2192 /* FIXME: are we supposed to call symbol_file_add or not? According
2193 to a comment from remote-mips.c (where a call to symbol_file_add
2194 was commented out), making the call confuses GDB if more than one
2195 file is loaded in. Some targets do (e.g., remote-vx.c) but
2196 others don't (or didn't - perhaps they have all been deleted). */
2197
2198 print_transfer_performance (gdb_stdout, total_progress.data_count,
2199 total_progress.write_count,
2200 &start_time, &end_time);
2201
2202 do_cleanups (old_cleanups);
2203 }
2204
2205 /* Report how fast the transfer went. */
2206
2207 void
2208 print_transfer_performance (struct ui_file *stream,
2209 unsigned long data_count,
2210 unsigned long write_count,
2211 const struct timeval *start_time,
2212 const struct timeval *end_time)
2213 {
2214 ULONGEST time_count;
2215 struct ui_out *uiout = current_uiout;
2216
2217 /* Compute the elapsed time in milliseconds, as a tradeoff between
2218 accuracy and overflow. */
2219 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2220 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2221
2222 ui_out_text (uiout, "Transfer rate: ");
2223 if (time_count > 0)
2224 {
2225 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2226
2227 if (ui_out_is_mi_like_p (uiout))
2228 {
2229 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2230 ui_out_text (uiout, " bits/sec");
2231 }
2232 else if (rate < 1024)
2233 {
2234 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2235 ui_out_text (uiout, " bytes/sec");
2236 }
2237 else
2238 {
2239 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2240 ui_out_text (uiout, " KB/sec");
2241 }
2242 }
2243 else
2244 {
2245 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2246 ui_out_text (uiout, " bits in <1 sec");
2247 }
2248 if (write_count > 0)
2249 {
2250 ui_out_text (uiout, ", ");
2251 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2252 ui_out_text (uiout, " bytes/write");
2253 }
2254 ui_out_text (uiout, ".\n");
2255 }
2256
2257 /* This function allows the addition of incrementally linked object files.
2258 It does not modify any state in the target, only in the debugger. */
2259 /* Note: ezannoni 2000-04-13 This function/command used to have a
2260 special case syntax for the rombug target (Rombug is the boot
2261 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2262 rombug case, the user doesn't need to supply a text address,
2263 instead a call to target_link() (in target.c) would supply the
2264 value to use. We are now discontinuing this type of ad hoc syntax. */
2265
2266 static void
2267 add_symbol_file_command (char *args, int from_tty)
2268 {
2269 struct gdbarch *gdbarch = get_current_arch ();
2270 char *filename = NULL;
2271 int flags = OBJF_USERLOADED;
2272 char *arg;
2273 int section_index = 0;
2274 int argcnt = 0;
2275 int sec_num = 0;
2276 int i;
2277 int expecting_sec_name = 0;
2278 int expecting_sec_addr = 0;
2279 char **argv;
2280
2281 struct sect_opt
2282 {
2283 char *name;
2284 char *value;
2285 };
2286
2287 struct section_addr_info *section_addrs;
2288 struct sect_opt *sect_opts = NULL;
2289 size_t num_sect_opts = 0;
2290 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2291
2292 num_sect_opts = 16;
2293 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2294 * sizeof (struct sect_opt));
2295
2296 dont_repeat ();
2297
2298 if (args == NULL)
2299 error (_("add-symbol-file takes a file name and an address"));
2300
2301 argv = gdb_buildargv (args);
2302 make_cleanup_freeargv (argv);
2303
2304 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2305 {
2306 /* Process the argument. */
2307 if (argcnt == 0)
2308 {
2309 /* The first argument is the file name. */
2310 filename = tilde_expand (arg);
2311 make_cleanup (xfree, filename);
2312 }
2313 else
2314 if (argcnt == 1)
2315 {
2316 /* The second argument is always the text address at which
2317 to load the program. */
2318 sect_opts[section_index].name = ".text";
2319 sect_opts[section_index].value = arg;
2320 if (++section_index >= num_sect_opts)
2321 {
2322 num_sect_opts *= 2;
2323 sect_opts = ((struct sect_opt *)
2324 xrealloc (sect_opts,
2325 num_sect_opts
2326 * sizeof (struct sect_opt)));
2327 }
2328 }
2329 else
2330 {
2331 /* It's an option (starting with '-') or it's an argument
2332 to an option. */
2333
2334 if (*arg == '-')
2335 {
2336 if (strcmp (arg, "-readnow") == 0)
2337 flags |= OBJF_READNOW;
2338 else if (strcmp (arg, "-s") == 0)
2339 {
2340 expecting_sec_name = 1;
2341 expecting_sec_addr = 1;
2342 }
2343 }
2344 else
2345 {
2346 if (expecting_sec_name)
2347 {
2348 sect_opts[section_index].name = arg;
2349 expecting_sec_name = 0;
2350 }
2351 else
2352 if (expecting_sec_addr)
2353 {
2354 sect_opts[section_index].value = arg;
2355 expecting_sec_addr = 0;
2356 if (++section_index >= num_sect_opts)
2357 {
2358 num_sect_opts *= 2;
2359 sect_opts = ((struct sect_opt *)
2360 xrealloc (sect_opts,
2361 num_sect_opts
2362 * sizeof (struct sect_opt)));
2363 }
2364 }
2365 else
2366 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2367 " [-readnow] [-s <secname> <addr>]*"));
2368 }
2369 }
2370 }
2371
2372 /* This command takes at least two arguments. The first one is a
2373 filename, and the second is the address where this file has been
2374 loaded. Abort now if this address hasn't been provided by the
2375 user. */
2376 if (section_index < 1)
2377 error (_("The address where %s has been loaded is missing"), filename);
2378
2379 /* Print the prompt for the query below. And save the arguments into
2380 a sect_addr_info structure to be passed around to other
2381 functions. We have to split this up into separate print
2382 statements because hex_string returns a local static
2383 string. */
2384
2385 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2386 section_addrs = alloc_section_addr_info (section_index);
2387 make_cleanup (xfree, section_addrs);
2388 for (i = 0; i < section_index; i++)
2389 {
2390 CORE_ADDR addr;
2391 char *val = sect_opts[i].value;
2392 char *sec = sect_opts[i].name;
2393
2394 addr = parse_and_eval_address (val);
2395
2396 /* Here we store the section offsets in the order they were
2397 entered on the command line. */
2398 section_addrs->other[sec_num].name = sec;
2399 section_addrs->other[sec_num].addr = addr;
2400 printf_unfiltered ("\t%s_addr = %s\n", sec,
2401 paddress (gdbarch, addr));
2402 sec_num++;
2403
2404 /* The object's sections are initialized when a
2405 call is made to build_objfile_section_table (objfile).
2406 This happens in reread_symbols.
2407 At this point, we don't know what file type this is,
2408 so we can't determine what section names are valid. */
2409 }
2410
2411 if (from_tty && (!query ("%s", "")))
2412 error (_("Not confirmed."));
2413
2414 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2415 section_addrs, flags);
2416
2417 /* Getting new symbols may change our opinion about what is
2418 frameless. */
2419 reinit_frame_cache ();
2420 do_cleanups (my_cleanups);
2421 }
2422 \f
2423
2424 typedef struct objfile *objfilep;
2425
2426 DEF_VEC_P (objfilep);
2427
2428 /* Re-read symbols if a symbol-file has changed. */
2429 void
2430 reread_symbols (void)
2431 {
2432 struct objfile *objfile;
2433 long new_modtime;
2434 struct stat new_statbuf;
2435 int res;
2436 VEC (objfilep) *new_objfiles = NULL;
2437 struct cleanup *all_cleanups;
2438
2439 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2440
2441 /* With the addition of shared libraries, this should be modified,
2442 the load time should be saved in the partial symbol tables, since
2443 different tables may come from different source files. FIXME.
2444 This routine should then walk down each partial symbol table
2445 and see if the symbol table that it originates from has been changed. */
2446
2447 for (objfile = object_files; objfile; objfile = objfile->next)
2448 {
2449 /* solib-sunos.c creates one objfile with obfd. */
2450 if (objfile->obfd == NULL)
2451 continue;
2452
2453 /* Separate debug objfiles are handled in the main objfile. */
2454 if (objfile->separate_debug_objfile_backlink)
2455 continue;
2456
2457 /* If this object is from an archive (what you usually create with
2458 `ar', often called a `static library' on most systems, though
2459 a `shared library' on AIX is also an archive), then you should
2460 stat on the archive name, not member name. */
2461 if (objfile->obfd->my_archive)
2462 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2463 else
2464 res = stat (objfile->name, &new_statbuf);
2465 if (res != 0)
2466 {
2467 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2468 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2469 objfile->name);
2470 continue;
2471 }
2472 new_modtime = new_statbuf.st_mtime;
2473 if (new_modtime != objfile->mtime)
2474 {
2475 struct cleanup *old_cleanups;
2476 struct section_offsets *offsets;
2477 int num_offsets;
2478 char *obfd_filename;
2479
2480 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2481 objfile->name);
2482
2483 /* There are various functions like symbol_file_add,
2484 symfile_bfd_open, syms_from_objfile, etc., which might
2485 appear to do what we want. But they have various other
2486 effects which we *don't* want. So we just do stuff
2487 ourselves. We don't worry about mapped files (for one thing,
2488 any mapped file will be out of date). */
2489
2490 /* If we get an error, blow away this objfile (not sure if
2491 that is the correct response for things like shared
2492 libraries). */
2493 old_cleanups = make_cleanup_free_objfile (objfile);
2494 /* We need to do this whenever any symbols go away. */
2495 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2496
2497 if (exec_bfd != NULL
2498 && filename_cmp (bfd_get_filename (objfile->obfd),
2499 bfd_get_filename (exec_bfd)) == 0)
2500 {
2501 /* Reload EXEC_BFD without asking anything. */
2502
2503 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2504 }
2505
2506 /* Keep the calls order approx. the same as in free_objfile. */
2507
2508 /* Free the separate debug objfiles. It will be
2509 automatically recreated by sym_read. */
2510 free_objfile_separate_debug (objfile);
2511
2512 /* Remove any references to this objfile in the global
2513 value lists. */
2514 preserve_values (objfile);
2515
2516 /* Nuke all the state that we will re-read. Much of the following
2517 code which sets things to NULL really is necessary to tell
2518 other parts of GDB that there is nothing currently there.
2519
2520 Try to keep the freeing order compatible with free_objfile. */
2521
2522 if (objfile->sf != NULL)
2523 {
2524 (*objfile->sf->sym_finish) (objfile);
2525 }
2526
2527 clear_objfile_data (objfile);
2528
2529 /* Clean up any state BFD has sitting around. */
2530 {
2531 struct bfd *obfd = objfile->obfd;
2532
2533 obfd_filename = bfd_get_filename (objfile->obfd);
2534 /* Open the new BFD before freeing the old one, so that
2535 the filename remains live. */
2536 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2537 if (objfile->obfd == NULL)
2538 {
2539 /* We have to make a cleanup and error here, rather
2540 than erroring later, because once we unref OBFD,
2541 OBFD_FILENAME will be freed. */
2542 make_cleanup_bfd_unref (obfd);
2543 error (_("Can't open %s to read symbols."), obfd_filename);
2544 }
2545 gdb_bfd_unref (obfd);
2546 }
2547
2548 objfile->name = bfd_get_filename (objfile->obfd);
2549 /* bfd_openr sets cacheable to true, which is what we want. */
2550 if (!bfd_check_format (objfile->obfd, bfd_object))
2551 error (_("Can't read symbols from %s: %s."), objfile->name,
2552 bfd_errmsg (bfd_get_error ()));
2553
2554 /* Save the offsets, we will nuke them with the rest of the
2555 objfile_obstack. */
2556 num_offsets = objfile->num_sections;
2557 offsets = ((struct section_offsets *)
2558 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2559 memcpy (offsets, objfile->section_offsets,
2560 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2561
2562 /* FIXME: Do we have to free a whole linked list, or is this
2563 enough? */
2564 if (objfile->global_psymbols.list)
2565 xfree (objfile->global_psymbols.list);
2566 memset (&objfile->global_psymbols, 0,
2567 sizeof (objfile->global_psymbols));
2568 if (objfile->static_psymbols.list)
2569 xfree (objfile->static_psymbols.list);
2570 memset (&objfile->static_psymbols, 0,
2571 sizeof (objfile->static_psymbols));
2572
2573 /* Free the obstacks for non-reusable objfiles. */
2574 psymbol_bcache_free (objfile->psymbol_cache);
2575 objfile->psymbol_cache = psymbol_bcache_init ();
2576 if (objfile->demangled_names_hash != NULL)
2577 {
2578 htab_delete (objfile->demangled_names_hash);
2579 objfile->demangled_names_hash = NULL;
2580 }
2581 obstack_free (&objfile->objfile_obstack, 0);
2582 objfile->sections = NULL;
2583 objfile->symtabs = NULL;
2584 objfile->psymtabs = NULL;
2585 objfile->psymtabs_addrmap = NULL;
2586 objfile->free_psymtabs = NULL;
2587 objfile->template_symbols = NULL;
2588 objfile->msymbols = NULL;
2589 objfile->minimal_symbol_count = 0;
2590 memset (&objfile->msymbol_hash, 0,
2591 sizeof (objfile->msymbol_hash));
2592 memset (&objfile->msymbol_demangled_hash, 0,
2593 sizeof (objfile->msymbol_demangled_hash));
2594
2595 set_objfile_per_bfd (objfile);
2596
2597 /* obstack_init also initializes the obstack so it is
2598 empty. We could use obstack_specify_allocation but
2599 gdb_obstack.h specifies the alloc/dealloc functions. */
2600 obstack_init (&objfile->objfile_obstack);
2601 build_objfile_section_table (objfile);
2602 terminate_minimal_symbol_table (objfile);
2603
2604 /* We use the same section offsets as from last time. I'm not
2605 sure whether that is always correct for shared libraries. */
2606 objfile->section_offsets = (struct section_offsets *)
2607 obstack_alloc (&objfile->objfile_obstack,
2608 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2609 memcpy (objfile->section_offsets, offsets,
2610 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2611 objfile->num_sections = num_offsets;
2612
2613 /* What the hell is sym_new_init for, anyway? The concept of
2614 distinguishing between the main file and additional files
2615 in this way seems rather dubious. */
2616 if (objfile == symfile_objfile)
2617 {
2618 (*objfile->sf->sym_new_init) (objfile);
2619 }
2620
2621 (*objfile->sf->sym_init) (objfile);
2622 clear_complaints (&symfile_complaints, 1, 1);
2623
2624 objfile->flags &= ~OBJF_PSYMTABS_READ;
2625 read_symbols (objfile, 0);
2626
2627 if (!objfile_has_symbols (objfile))
2628 {
2629 wrap_here ("");
2630 printf_unfiltered (_("(no debugging symbols found)\n"));
2631 wrap_here ("");
2632 }
2633
2634 /* We're done reading the symbol file; finish off complaints. */
2635 clear_complaints (&symfile_complaints, 0, 1);
2636
2637 /* Getting new symbols may change our opinion about what is
2638 frameless. */
2639
2640 reinit_frame_cache ();
2641
2642 /* Discard cleanups as symbol reading was successful. */
2643 discard_cleanups (old_cleanups);
2644
2645 /* If the mtime has changed between the time we set new_modtime
2646 and now, we *want* this to be out of date, so don't call stat
2647 again now. */
2648 objfile->mtime = new_modtime;
2649 init_entry_point_info (objfile);
2650
2651 VEC_safe_push (objfilep, new_objfiles, objfile);
2652 }
2653 }
2654
2655 if (new_objfiles)
2656 {
2657 int ix;
2658
2659 /* Notify objfiles that we've modified objfile sections. */
2660 objfiles_changed ();
2661
2662 clear_symtab_users (0);
2663
2664 /* clear_objfile_data for each objfile was called before freeing it and
2665 observer_notify_new_objfile (NULL) has been called by
2666 clear_symtab_users above. Notify the new files now. */
2667 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2668 observer_notify_new_objfile (objfile);
2669
2670 /* At least one objfile has changed, so we can consider that
2671 the executable we're debugging has changed too. */
2672 observer_notify_executable_changed ();
2673 }
2674
2675 do_cleanups (all_cleanups);
2676 }
2677 \f
2678
2679
2680 typedef struct
2681 {
2682 char *ext;
2683 enum language lang;
2684 }
2685 filename_language;
2686
2687 static filename_language *filename_language_table;
2688 static int fl_table_size, fl_table_next;
2689
2690 static void
2691 add_filename_language (char *ext, enum language lang)
2692 {
2693 if (fl_table_next >= fl_table_size)
2694 {
2695 fl_table_size += 10;
2696 filename_language_table =
2697 xrealloc (filename_language_table,
2698 fl_table_size * sizeof (*filename_language_table));
2699 }
2700
2701 filename_language_table[fl_table_next].ext = xstrdup (ext);
2702 filename_language_table[fl_table_next].lang = lang;
2703 fl_table_next++;
2704 }
2705
2706 static char *ext_args;
2707 static void
2708 show_ext_args (struct ui_file *file, int from_tty,
2709 struct cmd_list_element *c, const char *value)
2710 {
2711 fprintf_filtered (file,
2712 _("Mapping between filename extension "
2713 "and source language is \"%s\".\n"),
2714 value);
2715 }
2716
2717 static void
2718 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2719 {
2720 int i;
2721 char *cp = ext_args;
2722 enum language lang;
2723
2724 /* First arg is filename extension, starting with '.' */
2725 if (*cp != '.')
2726 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2727
2728 /* Find end of first arg. */
2729 while (*cp && !isspace (*cp))
2730 cp++;
2731
2732 if (*cp == '\0')
2733 error (_("'%s': two arguments required -- "
2734 "filename extension and language"),
2735 ext_args);
2736
2737 /* Null-terminate first arg. */
2738 *cp++ = '\0';
2739
2740 /* Find beginning of second arg, which should be a source language. */
2741 while (*cp && isspace (*cp))
2742 cp++;
2743
2744 if (*cp == '\0')
2745 error (_("'%s': two arguments required -- "
2746 "filename extension and language"),
2747 ext_args);
2748
2749 /* Lookup the language from among those we know. */
2750 lang = language_enum (cp);
2751
2752 /* Now lookup the filename extension: do we already know it? */
2753 for (i = 0; i < fl_table_next; i++)
2754 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2755 break;
2756
2757 if (i >= fl_table_next)
2758 {
2759 /* New file extension. */
2760 add_filename_language (ext_args, lang);
2761 }
2762 else
2763 {
2764 /* Redefining a previously known filename extension. */
2765
2766 /* if (from_tty) */
2767 /* query ("Really make files of type %s '%s'?", */
2768 /* ext_args, language_str (lang)); */
2769
2770 xfree (filename_language_table[i].ext);
2771 filename_language_table[i].ext = xstrdup (ext_args);
2772 filename_language_table[i].lang = lang;
2773 }
2774 }
2775
2776 static void
2777 info_ext_lang_command (char *args, int from_tty)
2778 {
2779 int i;
2780
2781 printf_filtered (_("Filename extensions and the languages they represent:"));
2782 printf_filtered ("\n\n");
2783 for (i = 0; i < fl_table_next; i++)
2784 printf_filtered ("\t%s\t- %s\n",
2785 filename_language_table[i].ext,
2786 language_str (filename_language_table[i].lang));
2787 }
2788
2789 static void
2790 init_filename_language_table (void)
2791 {
2792 if (fl_table_size == 0) /* Protect against repetition. */
2793 {
2794 fl_table_size = 20;
2795 fl_table_next = 0;
2796 filename_language_table =
2797 xmalloc (fl_table_size * sizeof (*filename_language_table));
2798 add_filename_language (".c", language_c);
2799 add_filename_language (".d", language_d);
2800 add_filename_language (".C", language_cplus);
2801 add_filename_language (".cc", language_cplus);
2802 add_filename_language (".cp", language_cplus);
2803 add_filename_language (".cpp", language_cplus);
2804 add_filename_language (".cxx", language_cplus);
2805 add_filename_language (".c++", language_cplus);
2806 add_filename_language (".java", language_java);
2807 add_filename_language (".class", language_java);
2808 add_filename_language (".m", language_objc);
2809 add_filename_language (".f", language_fortran);
2810 add_filename_language (".F", language_fortran);
2811 add_filename_language (".for", language_fortran);
2812 add_filename_language (".FOR", language_fortran);
2813 add_filename_language (".ftn", language_fortran);
2814 add_filename_language (".FTN", language_fortran);
2815 add_filename_language (".fpp", language_fortran);
2816 add_filename_language (".FPP", language_fortran);
2817 add_filename_language (".f90", language_fortran);
2818 add_filename_language (".F90", language_fortran);
2819 add_filename_language (".f95", language_fortran);
2820 add_filename_language (".F95", language_fortran);
2821 add_filename_language (".f03", language_fortran);
2822 add_filename_language (".F03", language_fortran);
2823 add_filename_language (".f08", language_fortran);
2824 add_filename_language (".F08", language_fortran);
2825 add_filename_language (".s", language_asm);
2826 add_filename_language (".sx", language_asm);
2827 add_filename_language (".S", language_asm);
2828 add_filename_language (".pas", language_pascal);
2829 add_filename_language (".p", language_pascal);
2830 add_filename_language (".pp", language_pascal);
2831 add_filename_language (".adb", language_ada);
2832 add_filename_language (".ads", language_ada);
2833 add_filename_language (".a", language_ada);
2834 add_filename_language (".ada", language_ada);
2835 add_filename_language (".dg", language_ada);
2836 }
2837 }
2838
2839 enum language
2840 deduce_language_from_filename (const char *filename)
2841 {
2842 int i;
2843 char *cp;
2844
2845 if (filename != NULL)
2846 if ((cp = strrchr (filename, '.')) != NULL)
2847 for (i = 0; i < fl_table_next; i++)
2848 if (strcmp (cp, filename_language_table[i].ext) == 0)
2849 return filename_language_table[i].lang;
2850
2851 return language_unknown;
2852 }
2853 \f
2854 /* allocate_symtab:
2855
2856 Allocate and partly initialize a new symbol table. Return a pointer
2857 to it. error() if no space.
2858
2859 Caller must set these fields:
2860 LINETABLE(symtab)
2861 symtab->blockvector
2862 symtab->dirname
2863 symtab->free_code
2864 symtab->free_ptr
2865 */
2866
2867 struct symtab *
2868 allocate_symtab (const char *filename, struct objfile *objfile)
2869 {
2870 struct symtab *symtab;
2871
2872 symtab = (struct symtab *)
2873 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2874 memset (symtab, 0, sizeof (*symtab));
2875 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2876 objfile->per_bfd->filename_cache);
2877 symtab->fullname = NULL;
2878 symtab->language = deduce_language_from_filename (filename);
2879 symtab->debugformat = "unknown";
2880
2881 /* Hook it to the objfile it comes from. */
2882
2883 symtab->objfile = objfile;
2884 symtab->next = objfile->symtabs;
2885 objfile->symtabs = symtab;
2886
2887 if (symtab_create_debug)
2888 {
2889 /* Be a bit clever with debugging messages, and don't print objfile
2890 every time, only when it changes. */
2891 static char *last_objfile_name = NULL;
2892
2893 if (last_objfile_name == NULL
2894 || strcmp (last_objfile_name, objfile->name) != 0)
2895 {
2896 xfree (last_objfile_name);
2897 last_objfile_name = xstrdup (objfile->name);
2898 fprintf_unfiltered (gdb_stdlog,
2899 "Creating one or more symtabs for objfile %s ...\n",
2900 last_objfile_name);
2901 }
2902 fprintf_unfiltered (gdb_stdlog,
2903 "Created symtab %s for module %s.\n",
2904 host_address_to_string (symtab), filename);
2905 }
2906
2907 return (symtab);
2908 }
2909 \f
2910
2911 /* Reset all data structures in gdb which may contain references to symbol
2912 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2913
2914 void
2915 clear_symtab_users (int add_flags)
2916 {
2917 /* Someday, we should do better than this, by only blowing away
2918 the things that really need to be blown. */
2919
2920 /* Clear the "current" symtab first, because it is no longer valid.
2921 breakpoint_re_set may try to access the current symtab. */
2922 clear_current_source_symtab_and_line ();
2923
2924 clear_displays ();
2925 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2926 breakpoint_re_set ();
2927 clear_last_displayed_sal ();
2928 clear_pc_function_cache ();
2929 observer_notify_new_objfile (NULL);
2930
2931 /* Clear globals which might have pointed into a removed objfile.
2932 FIXME: It's not clear which of these are supposed to persist
2933 between expressions and which ought to be reset each time. */
2934 expression_context_block = NULL;
2935 innermost_block = NULL;
2936
2937 /* Varobj may refer to old symbols, perform a cleanup. */
2938 varobj_invalidate ();
2939
2940 }
2941
2942 static void
2943 clear_symtab_users_cleanup (void *ignore)
2944 {
2945 clear_symtab_users (0);
2946 }
2947 \f
2948 /* OVERLAYS:
2949 The following code implements an abstraction for debugging overlay sections.
2950
2951 The target model is as follows:
2952 1) The gnu linker will permit multiple sections to be mapped into the
2953 same VMA, each with its own unique LMA (or load address).
2954 2) It is assumed that some runtime mechanism exists for mapping the
2955 sections, one by one, from the load address into the VMA address.
2956 3) This code provides a mechanism for gdb to keep track of which
2957 sections should be considered to be mapped from the VMA to the LMA.
2958 This information is used for symbol lookup, and memory read/write.
2959 For instance, if a section has been mapped then its contents
2960 should be read from the VMA, otherwise from the LMA.
2961
2962 Two levels of debugger support for overlays are available. One is
2963 "manual", in which the debugger relies on the user to tell it which
2964 overlays are currently mapped. This level of support is
2965 implemented entirely in the core debugger, and the information about
2966 whether a section is mapped is kept in the objfile->obj_section table.
2967
2968 The second level of support is "automatic", and is only available if
2969 the target-specific code provides functionality to read the target's
2970 overlay mapping table, and translate its contents for the debugger
2971 (by updating the mapped state information in the obj_section tables).
2972
2973 The interface is as follows:
2974 User commands:
2975 overlay map <name> -- tell gdb to consider this section mapped
2976 overlay unmap <name> -- tell gdb to consider this section unmapped
2977 overlay list -- list the sections that GDB thinks are mapped
2978 overlay read-target -- get the target's state of what's mapped
2979 overlay off/manual/auto -- set overlay debugging state
2980 Functional interface:
2981 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2982 section, return that section.
2983 find_pc_overlay(pc): find any overlay section that contains
2984 the pc, either in its VMA or its LMA
2985 section_is_mapped(sect): true if overlay is marked as mapped
2986 section_is_overlay(sect): true if section's VMA != LMA
2987 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2988 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2989 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2990 overlay_mapped_address(...): map an address from section's LMA to VMA
2991 overlay_unmapped_address(...): map an address from section's VMA to LMA
2992 symbol_overlayed_address(...): Return a "current" address for symbol:
2993 either in VMA or LMA depending on whether
2994 the symbol's section is currently mapped. */
2995
2996 /* Overlay debugging state: */
2997
2998 enum overlay_debugging_state overlay_debugging = ovly_off;
2999 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3000
3001 /* Function: section_is_overlay (SECTION)
3002 Returns true if SECTION has VMA not equal to LMA, ie.
3003 SECTION is loaded at an address different from where it will "run". */
3004
3005 int
3006 section_is_overlay (struct obj_section *section)
3007 {
3008 if (overlay_debugging && section)
3009 {
3010 bfd *abfd = section->objfile->obfd;
3011 asection *bfd_section = section->the_bfd_section;
3012
3013 if (bfd_section_lma (abfd, bfd_section) != 0
3014 && bfd_section_lma (abfd, bfd_section)
3015 != bfd_section_vma (abfd, bfd_section))
3016 return 1;
3017 }
3018
3019 return 0;
3020 }
3021
3022 /* Function: overlay_invalidate_all (void)
3023 Invalidate the mapped state of all overlay sections (mark it as stale). */
3024
3025 static void
3026 overlay_invalidate_all (void)
3027 {
3028 struct objfile *objfile;
3029 struct obj_section *sect;
3030
3031 ALL_OBJSECTIONS (objfile, sect)
3032 if (section_is_overlay (sect))
3033 sect->ovly_mapped = -1;
3034 }
3035
3036 /* Function: section_is_mapped (SECTION)
3037 Returns true if section is an overlay, and is currently mapped.
3038
3039 Access to the ovly_mapped flag is restricted to this function, so
3040 that we can do automatic update. If the global flag
3041 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3042 overlay_invalidate_all. If the mapped state of the particular
3043 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3044
3045 int
3046 section_is_mapped (struct obj_section *osect)
3047 {
3048 struct gdbarch *gdbarch;
3049
3050 if (osect == 0 || !section_is_overlay (osect))
3051 return 0;
3052
3053 switch (overlay_debugging)
3054 {
3055 default:
3056 case ovly_off:
3057 return 0; /* overlay debugging off */
3058 case ovly_auto: /* overlay debugging automatic */
3059 /* Unles there is a gdbarch_overlay_update function,
3060 there's really nothing useful to do here (can't really go auto). */
3061 gdbarch = get_objfile_arch (osect->objfile);
3062 if (gdbarch_overlay_update_p (gdbarch))
3063 {
3064 if (overlay_cache_invalid)
3065 {
3066 overlay_invalidate_all ();
3067 overlay_cache_invalid = 0;
3068 }
3069 if (osect->ovly_mapped == -1)
3070 gdbarch_overlay_update (gdbarch, osect);
3071 }
3072 /* fall thru to manual case */
3073 case ovly_on: /* overlay debugging manual */
3074 return osect->ovly_mapped == 1;
3075 }
3076 }
3077
3078 /* Function: pc_in_unmapped_range
3079 If PC falls into the lma range of SECTION, return true, else false. */
3080
3081 CORE_ADDR
3082 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3083 {
3084 if (section_is_overlay (section))
3085 {
3086 bfd *abfd = section->objfile->obfd;
3087 asection *bfd_section = section->the_bfd_section;
3088
3089 /* We assume the LMA is relocated by the same offset as the VMA. */
3090 bfd_vma size = bfd_get_section_size (bfd_section);
3091 CORE_ADDR offset = obj_section_offset (section);
3092
3093 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3094 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3095 return 1;
3096 }
3097
3098 return 0;
3099 }
3100
3101 /* Function: pc_in_mapped_range
3102 If PC falls into the vma range of SECTION, return true, else false. */
3103
3104 CORE_ADDR
3105 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3106 {
3107 if (section_is_overlay (section))
3108 {
3109 if (obj_section_addr (section) <= pc
3110 && pc < obj_section_endaddr (section))
3111 return 1;
3112 }
3113
3114 return 0;
3115 }
3116
3117
3118 /* Return true if the mapped ranges of sections A and B overlap, false
3119 otherwise. */
3120 static int
3121 sections_overlap (struct obj_section *a, struct obj_section *b)
3122 {
3123 CORE_ADDR a_start = obj_section_addr (a);
3124 CORE_ADDR a_end = obj_section_endaddr (a);
3125 CORE_ADDR b_start = obj_section_addr (b);
3126 CORE_ADDR b_end = obj_section_endaddr (b);
3127
3128 return (a_start < b_end && b_start < a_end);
3129 }
3130
3131 /* Function: overlay_unmapped_address (PC, SECTION)
3132 Returns the address corresponding to PC in the unmapped (load) range.
3133 May be the same as PC. */
3134
3135 CORE_ADDR
3136 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3137 {
3138 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3139 {
3140 bfd *abfd = section->objfile->obfd;
3141 asection *bfd_section = section->the_bfd_section;
3142
3143 return pc + bfd_section_lma (abfd, bfd_section)
3144 - bfd_section_vma (abfd, bfd_section);
3145 }
3146
3147 return pc;
3148 }
3149
3150 /* Function: overlay_mapped_address (PC, SECTION)
3151 Returns the address corresponding to PC in the mapped (runtime) range.
3152 May be the same as PC. */
3153
3154 CORE_ADDR
3155 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3156 {
3157 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3158 {
3159 bfd *abfd = section->objfile->obfd;
3160 asection *bfd_section = section->the_bfd_section;
3161
3162 return pc + bfd_section_vma (abfd, bfd_section)
3163 - bfd_section_lma (abfd, bfd_section);
3164 }
3165
3166 return pc;
3167 }
3168
3169
3170 /* Function: symbol_overlayed_address
3171 Return one of two addresses (relative to the VMA or to the LMA),
3172 depending on whether the section is mapped or not. */
3173
3174 CORE_ADDR
3175 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3176 {
3177 if (overlay_debugging)
3178 {
3179 /* If the symbol has no section, just return its regular address. */
3180 if (section == 0)
3181 return address;
3182 /* If the symbol's section is not an overlay, just return its
3183 address. */
3184 if (!section_is_overlay (section))
3185 return address;
3186 /* If the symbol's section is mapped, just return its address. */
3187 if (section_is_mapped (section))
3188 return address;
3189 /*
3190 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3191 * then return its LOADED address rather than its vma address!!
3192 */
3193 return overlay_unmapped_address (address, section);
3194 }
3195 return address;
3196 }
3197
3198 /* Function: find_pc_overlay (PC)
3199 Return the best-match overlay section for PC:
3200 If PC matches a mapped overlay section's VMA, return that section.
3201 Else if PC matches an unmapped section's VMA, return that section.
3202 Else if PC matches an unmapped section's LMA, return that section. */
3203
3204 struct obj_section *
3205 find_pc_overlay (CORE_ADDR pc)
3206 {
3207 struct objfile *objfile;
3208 struct obj_section *osect, *best_match = NULL;
3209
3210 if (overlay_debugging)
3211 ALL_OBJSECTIONS (objfile, osect)
3212 if (section_is_overlay (osect))
3213 {
3214 if (pc_in_mapped_range (pc, osect))
3215 {
3216 if (section_is_mapped (osect))
3217 return osect;
3218 else
3219 best_match = osect;
3220 }
3221 else if (pc_in_unmapped_range (pc, osect))
3222 best_match = osect;
3223 }
3224 return best_match;
3225 }
3226
3227 /* Function: find_pc_mapped_section (PC)
3228 If PC falls into the VMA address range of an overlay section that is
3229 currently marked as MAPPED, return that section. Else return NULL. */
3230
3231 struct obj_section *
3232 find_pc_mapped_section (CORE_ADDR pc)
3233 {
3234 struct objfile *objfile;
3235 struct obj_section *osect;
3236
3237 if (overlay_debugging)
3238 ALL_OBJSECTIONS (objfile, osect)
3239 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3240 return osect;
3241
3242 return NULL;
3243 }
3244
3245 /* Function: list_overlays_command
3246 Print a list of mapped sections and their PC ranges. */
3247
3248 static void
3249 list_overlays_command (char *args, int from_tty)
3250 {
3251 int nmapped = 0;
3252 struct objfile *objfile;
3253 struct obj_section *osect;
3254
3255 if (overlay_debugging)
3256 ALL_OBJSECTIONS (objfile, osect)
3257 if (section_is_mapped (osect))
3258 {
3259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3260 const char *name;
3261 bfd_vma lma, vma;
3262 int size;
3263
3264 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3265 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3266 size = bfd_get_section_size (osect->the_bfd_section);
3267 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3268
3269 printf_filtered ("Section %s, loaded at ", name);
3270 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3271 puts_filtered (" - ");
3272 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3273 printf_filtered (", mapped at ");
3274 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3275 puts_filtered (" - ");
3276 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3277 puts_filtered ("\n");
3278
3279 nmapped++;
3280 }
3281 if (nmapped == 0)
3282 printf_filtered (_("No sections are mapped.\n"));
3283 }
3284
3285 /* Function: map_overlay_command
3286 Mark the named section as mapped (ie. residing at its VMA address). */
3287
3288 static void
3289 map_overlay_command (char *args, int from_tty)
3290 {
3291 struct objfile *objfile, *objfile2;
3292 struct obj_section *sec, *sec2;
3293
3294 if (!overlay_debugging)
3295 error (_("Overlay debugging not enabled. Use "
3296 "either the 'overlay auto' or\n"
3297 "the 'overlay manual' command."));
3298
3299 if (args == 0 || *args == 0)
3300 error (_("Argument required: name of an overlay section"));
3301
3302 /* First, find a section matching the user supplied argument. */
3303 ALL_OBJSECTIONS (objfile, sec)
3304 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3305 {
3306 /* Now, check to see if the section is an overlay. */
3307 if (!section_is_overlay (sec))
3308 continue; /* not an overlay section */
3309
3310 /* Mark the overlay as "mapped". */
3311 sec->ovly_mapped = 1;
3312
3313 /* Next, make a pass and unmap any sections that are
3314 overlapped by this new section: */
3315 ALL_OBJSECTIONS (objfile2, sec2)
3316 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3317 {
3318 if (info_verbose)
3319 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3320 bfd_section_name (objfile->obfd,
3321 sec2->the_bfd_section));
3322 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3323 }
3324 return;
3325 }
3326 error (_("No overlay section called %s"), args);
3327 }
3328
3329 /* Function: unmap_overlay_command
3330 Mark the overlay section as unmapped
3331 (ie. resident in its LMA address range, rather than the VMA range). */
3332
3333 static void
3334 unmap_overlay_command (char *args, int from_tty)
3335 {
3336 struct objfile *objfile;
3337 struct obj_section *sec;
3338
3339 if (!overlay_debugging)
3340 error (_("Overlay debugging not enabled. "
3341 "Use either the 'overlay auto' or\n"
3342 "the 'overlay manual' command."));
3343
3344 if (args == 0 || *args == 0)
3345 error (_("Argument required: name of an overlay section"));
3346
3347 /* First, find a section matching the user supplied argument. */
3348 ALL_OBJSECTIONS (objfile, sec)
3349 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3350 {
3351 if (!sec->ovly_mapped)
3352 error (_("Section %s is not mapped"), args);
3353 sec->ovly_mapped = 0;
3354 return;
3355 }
3356 error (_("No overlay section called %s"), args);
3357 }
3358
3359 /* Function: overlay_auto_command
3360 A utility command to turn on overlay debugging.
3361 Possibly this should be done via a set/show command. */
3362
3363 static void
3364 overlay_auto_command (char *args, int from_tty)
3365 {
3366 overlay_debugging = ovly_auto;
3367 enable_overlay_breakpoints ();
3368 if (info_verbose)
3369 printf_unfiltered (_("Automatic overlay debugging enabled."));
3370 }
3371
3372 /* Function: overlay_manual_command
3373 A utility command to turn on overlay debugging.
3374 Possibly this should be done via a set/show command. */
3375
3376 static void
3377 overlay_manual_command (char *args, int from_tty)
3378 {
3379 overlay_debugging = ovly_on;
3380 disable_overlay_breakpoints ();
3381 if (info_verbose)
3382 printf_unfiltered (_("Overlay debugging enabled."));
3383 }
3384
3385 /* Function: overlay_off_command
3386 A utility command to turn on overlay debugging.
3387 Possibly this should be done via a set/show command. */
3388
3389 static void
3390 overlay_off_command (char *args, int from_tty)
3391 {
3392 overlay_debugging = ovly_off;
3393 disable_overlay_breakpoints ();
3394 if (info_verbose)
3395 printf_unfiltered (_("Overlay debugging disabled."));
3396 }
3397
3398 static void
3399 overlay_load_command (char *args, int from_tty)
3400 {
3401 struct gdbarch *gdbarch = get_current_arch ();
3402
3403 if (gdbarch_overlay_update_p (gdbarch))
3404 gdbarch_overlay_update (gdbarch, NULL);
3405 else
3406 error (_("This target does not know how to read its overlay state."));
3407 }
3408
3409 /* Function: overlay_command
3410 A place-holder for a mis-typed command. */
3411
3412 /* Command list chain containing all defined "overlay" subcommands. */
3413 static struct cmd_list_element *overlaylist;
3414
3415 static void
3416 overlay_command (char *args, int from_tty)
3417 {
3418 printf_unfiltered
3419 ("\"overlay\" must be followed by the name of an overlay command.\n");
3420 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3421 }
3422
3423
3424 /* Target Overlays for the "Simplest" overlay manager:
3425
3426 This is GDB's default target overlay layer. It works with the
3427 minimal overlay manager supplied as an example by Cygnus. The
3428 entry point is via a function pointer "gdbarch_overlay_update",
3429 so targets that use a different runtime overlay manager can
3430 substitute their own overlay_update function and take over the
3431 function pointer.
3432
3433 The overlay_update function pokes around in the target's data structures
3434 to see what overlays are mapped, and updates GDB's overlay mapping with
3435 this information.
3436
3437 In this simple implementation, the target data structures are as follows:
3438 unsigned _novlys; /# number of overlay sections #/
3439 unsigned _ovly_table[_novlys][4] = {
3440 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3441 {..., ..., ..., ...},
3442 }
3443 unsigned _novly_regions; /# number of overlay regions #/
3444 unsigned _ovly_region_table[_novly_regions][3] = {
3445 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3446 {..., ..., ...},
3447 }
3448 These functions will attempt to update GDB's mappedness state in the
3449 symbol section table, based on the target's mappedness state.
3450
3451 To do this, we keep a cached copy of the target's _ovly_table, and
3452 attempt to detect when the cached copy is invalidated. The main
3453 entry point is "simple_overlay_update(SECT), which looks up SECT in
3454 the cached table and re-reads only the entry for that section from
3455 the target (whenever possible). */
3456
3457 /* Cached, dynamically allocated copies of the target data structures: */
3458 static unsigned (*cache_ovly_table)[4] = 0;
3459 static unsigned cache_novlys = 0;
3460 static CORE_ADDR cache_ovly_table_base = 0;
3461 enum ovly_index
3462 {
3463 VMA, SIZE, LMA, MAPPED
3464 };
3465
3466 /* Throw away the cached copy of _ovly_table. */
3467 static void
3468 simple_free_overlay_table (void)
3469 {
3470 if (cache_ovly_table)
3471 xfree (cache_ovly_table);
3472 cache_novlys = 0;
3473 cache_ovly_table = NULL;
3474 cache_ovly_table_base = 0;
3475 }
3476
3477 /* Read an array of ints of size SIZE from the target into a local buffer.
3478 Convert to host order. int LEN is number of ints. */
3479 static void
3480 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3481 int len, int size, enum bfd_endian byte_order)
3482 {
3483 /* FIXME (alloca): Not safe if array is very large. */
3484 gdb_byte *buf = alloca (len * size);
3485 int i;
3486
3487 read_memory (memaddr, buf, len * size);
3488 for (i = 0; i < len; i++)
3489 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3490 }
3491
3492 /* Find and grab a copy of the target _ovly_table
3493 (and _novlys, which is needed for the table's size). */
3494 static int
3495 simple_read_overlay_table (void)
3496 {
3497 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3498 struct gdbarch *gdbarch;
3499 int word_size;
3500 enum bfd_endian byte_order;
3501
3502 simple_free_overlay_table ();
3503 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3504 if (! novlys_msym)
3505 {
3506 error (_("Error reading inferior's overlay table: "
3507 "couldn't find `_novlys' variable\n"
3508 "in inferior. Use `overlay manual' mode."));
3509 return 0;
3510 }
3511
3512 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3513 if (! ovly_table_msym)
3514 {
3515 error (_("Error reading inferior's overlay table: couldn't find "
3516 "`_ovly_table' array\n"
3517 "in inferior. Use `overlay manual' mode."));
3518 return 0;
3519 }
3520
3521 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3522 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3523 byte_order = gdbarch_byte_order (gdbarch);
3524
3525 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3526 4, byte_order);
3527 cache_ovly_table
3528 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3529 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3530 read_target_long_array (cache_ovly_table_base,
3531 (unsigned int *) cache_ovly_table,
3532 cache_novlys * 4, word_size, byte_order);
3533
3534 return 1; /* SUCCESS */
3535 }
3536
3537 /* Function: simple_overlay_update_1
3538 A helper function for simple_overlay_update. Assuming a cached copy
3539 of _ovly_table exists, look through it to find an entry whose vma,
3540 lma and size match those of OSECT. Re-read the entry and make sure
3541 it still matches OSECT (else the table may no longer be valid).
3542 Set OSECT's mapped state to match the entry. Return: 1 for
3543 success, 0 for failure. */
3544
3545 static int
3546 simple_overlay_update_1 (struct obj_section *osect)
3547 {
3548 int i, size;
3549 bfd *obfd = osect->objfile->obfd;
3550 asection *bsect = osect->the_bfd_section;
3551 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3552 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3554
3555 size = bfd_get_section_size (osect->the_bfd_section);
3556 for (i = 0; i < cache_novlys; i++)
3557 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3558 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3559 /* && cache_ovly_table[i][SIZE] == size */ )
3560 {
3561 read_target_long_array (cache_ovly_table_base + i * word_size,
3562 (unsigned int *) cache_ovly_table[i],
3563 4, word_size, byte_order);
3564 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3565 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3566 /* && cache_ovly_table[i][SIZE] == size */ )
3567 {
3568 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3569 return 1;
3570 }
3571 else /* Warning! Warning! Target's ovly table has changed! */
3572 return 0;
3573 }
3574 return 0;
3575 }
3576
3577 /* Function: simple_overlay_update
3578 If OSECT is NULL, then update all sections' mapped state
3579 (after re-reading the entire target _ovly_table).
3580 If OSECT is non-NULL, then try to find a matching entry in the
3581 cached ovly_table and update only OSECT's mapped state.
3582 If a cached entry can't be found or the cache isn't valid, then
3583 re-read the entire cache, and go ahead and update all sections. */
3584
3585 void
3586 simple_overlay_update (struct obj_section *osect)
3587 {
3588 struct objfile *objfile;
3589
3590 /* Were we given an osect to look up? NULL means do all of them. */
3591 if (osect)
3592 /* Have we got a cached copy of the target's overlay table? */
3593 if (cache_ovly_table != NULL)
3594 {
3595 /* Does its cached location match what's currently in the
3596 symtab? */
3597 struct minimal_symbol *minsym
3598 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3599
3600 if (minsym == NULL)
3601 error (_("Error reading inferior's overlay table: couldn't "
3602 "find `_ovly_table' array\n"
3603 "in inferior. Use `overlay manual' mode."));
3604
3605 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3606 /* Then go ahead and try to look up this single section in
3607 the cache. */
3608 if (simple_overlay_update_1 (osect))
3609 /* Found it! We're done. */
3610 return;
3611 }
3612
3613 /* Cached table no good: need to read the entire table anew.
3614 Or else we want all the sections, in which case it's actually
3615 more efficient to read the whole table in one block anyway. */
3616
3617 if (! simple_read_overlay_table ())
3618 return;
3619
3620 /* Now may as well update all sections, even if only one was requested. */
3621 ALL_OBJSECTIONS (objfile, osect)
3622 if (section_is_overlay (osect))
3623 {
3624 int i, size;
3625 bfd *obfd = osect->objfile->obfd;
3626 asection *bsect = osect->the_bfd_section;
3627
3628 size = bfd_get_section_size (bsect);
3629 for (i = 0; i < cache_novlys; i++)
3630 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3631 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3632 /* && cache_ovly_table[i][SIZE] == size */ )
3633 { /* obj_section matches i'th entry in ovly_table. */
3634 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3635 break; /* finished with inner for loop: break out. */
3636 }
3637 }
3638 }
3639
3640 /* Set the output sections and output offsets for section SECTP in
3641 ABFD. The relocation code in BFD will read these offsets, so we
3642 need to be sure they're initialized. We map each section to itself,
3643 with no offset; this means that SECTP->vma will be honored. */
3644
3645 static void
3646 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3647 {
3648 sectp->output_section = sectp;
3649 sectp->output_offset = 0;
3650 }
3651
3652 /* Default implementation for sym_relocate. */
3653
3654
3655 bfd_byte *
3656 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3657 bfd_byte *buf)
3658 {
3659 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3660 DWO file. */
3661 bfd *abfd = sectp->owner;
3662
3663 /* We're only interested in sections with relocation
3664 information. */
3665 if ((sectp->flags & SEC_RELOC) == 0)
3666 return NULL;
3667
3668 /* We will handle section offsets properly elsewhere, so relocate as if
3669 all sections begin at 0. */
3670 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3671
3672 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3673 }
3674
3675 /* Relocate the contents of a debug section SECTP in ABFD. The
3676 contents are stored in BUF if it is non-NULL, or returned in a
3677 malloc'd buffer otherwise.
3678
3679 For some platforms and debug info formats, shared libraries contain
3680 relocations against the debug sections (particularly for DWARF-2;
3681 one affected platform is PowerPC GNU/Linux, although it depends on
3682 the version of the linker in use). Also, ELF object files naturally
3683 have unresolved relocations for their debug sections. We need to apply
3684 the relocations in order to get the locations of symbols correct.
3685 Another example that may require relocation processing, is the
3686 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3687 debug section. */
3688
3689 bfd_byte *
3690 symfile_relocate_debug_section (struct objfile *objfile,
3691 asection *sectp, bfd_byte *buf)
3692 {
3693 gdb_assert (objfile->sf->sym_relocate);
3694
3695 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3696 }
3697
3698 struct symfile_segment_data *
3699 get_symfile_segment_data (bfd *abfd)
3700 {
3701 const struct sym_fns *sf = find_sym_fns (abfd);
3702
3703 if (sf == NULL)
3704 return NULL;
3705
3706 return sf->sym_segments (abfd);
3707 }
3708
3709 void
3710 free_symfile_segment_data (struct symfile_segment_data *data)
3711 {
3712 xfree (data->segment_bases);
3713 xfree (data->segment_sizes);
3714 xfree (data->segment_info);
3715 xfree (data);
3716 }
3717
3718
3719 /* Given:
3720 - DATA, containing segment addresses from the object file ABFD, and
3721 the mapping from ABFD's sections onto the segments that own them,
3722 and
3723 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3724 segment addresses reported by the target,
3725 store the appropriate offsets for each section in OFFSETS.
3726
3727 If there are fewer entries in SEGMENT_BASES than there are segments
3728 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3729
3730 If there are more entries, then ignore the extra. The target may
3731 not be able to distinguish between an empty data segment and a
3732 missing data segment; a missing text segment is less plausible. */
3733 int
3734 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3735 struct section_offsets *offsets,
3736 int num_segment_bases,
3737 const CORE_ADDR *segment_bases)
3738 {
3739 int i;
3740 asection *sect;
3741
3742 /* It doesn't make sense to call this function unless you have some
3743 segment base addresses. */
3744 gdb_assert (num_segment_bases > 0);
3745
3746 /* If we do not have segment mappings for the object file, we
3747 can not relocate it by segments. */
3748 gdb_assert (data != NULL);
3749 gdb_assert (data->num_segments > 0);
3750
3751 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3752 {
3753 int which = data->segment_info[i];
3754
3755 gdb_assert (0 <= which && which <= data->num_segments);
3756
3757 /* Don't bother computing offsets for sections that aren't
3758 loaded as part of any segment. */
3759 if (! which)
3760 continue;
3761
3762 /* Use the last SEGMENT_BASES entry as the address of any extra
3763 segments mentioned in DATA->segment_info. */
3764 if (which > num_segment_bases)
3765 which = num_segment_bases;
3766
3767 offsets->offsets[i] = (segment_bases[which - 1]
3768 - data->segment_bases[which - 1]);
3769 }
3770
3771 return 1;
3772 }
3773
3774 static void
3775 symfile_find_segment_sections (struct objfile *objfile)
3776 {
3777 bfd *abfd = objfile->obfd;
3778 int i;
3779 asection *sect;
3780 struct symfile_segment_data *data;
3781
3782 data = get_symfile_segment_data (objfile->obfd);
3783 if (data == NULL)
3784 return;
3785
3786 if (data->num_segments != 1 && data->num_segments != 2)
3787 {
3788 free_symfile_segment_data (data);
3789 return;
3790 }
3791
3792 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3793 {
3794 int which = data->segment_info[i];
3795
3796 if (which == 1)
3797 {
3798 if (objfile->sect_index_text == -1)
3799 objfile->sect_index_text = sect->index;
3800
3801 if (objfile->sect_index_rodata == -1)
3802 objfile->sect_index_rodata = sect->index;
3803 }
3804 else if (which == 2)
3805 {
3806 if (objfile->sect_index_data == -1)
3807 objfile->sect_index_data = sect->index;
3808
3809 if (objfile->sect_index_bss == -1)
3810 objfile->sect_index_bss = sect->index;
3811 }
3812 }
3813
3814 free_symfile_segment_data (data);
3815 }
3816
3817 void
3818 _initialize_symfile (void)
3819 {
3820 struct cmd_list_element *c;
3821
3822 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3823 Load symbol table from executable file FILE.\n\
3824 The `file' command can also load symbol tables, as well as setting the file\n\
3825 to execute."), &cmdlist);
3826 set_cmd_completer (c, filename_completer);
3827
3828 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3829 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3830 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3831 ...]\nADDR is the starting address of the file's text.\n\
3832 The optional arguments are section-name section-address pairs and\n\
3833 should be specified if the data and bss segments are not contiguous\n\
3834 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3835 &cmdlist);
3836 set_cmd_completer (c, filename_completer);
3837
3838 c = add_cmd ("load", class_files, load_command, _("\
3839 Dynamically load FILE into the running program, and record its symbols\n\
3840 for access from GDB.\n\
3841 A load OFFSET may also be given."), &cmdlist);
3842 set_cmd_completer (c, filename_completer);
3843
3844 add_prefix_cmd ("overlay", class_support, overlay_command,
3845 _("Commands for debugging overlays."), &overlaylist,
3846 "overlay ", 0, &cmdlist);
3847
3848 add_com_alias ("ovly", "overlay", class_alias, 1);
3849 add_com_alias ("ov", "overlay", class_alias, 1);
3850
3851 add_cmd ("map-overlay", class_support, map_overlay_command,
3852 _("Assert that an overlay section is mapped."), &overlaylist);
3853
3854 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3855 _("Assert that an overlay section is unmapped."), &overlaylist);
3856
3857 add_cmd ("list-overlays", class_support, list_overlays_command,
3858 _("List mappings of overlay sections."), &overlaylist);
3859
3860 add_cmd ("manual", class_support, overlay_manual_command,
3861 _("Enable overlay debugging."), &overlaylist);
3862 add_cmd ("off", class_support, overlay_off_command,
3863 _("Disable overlay debugging."), &overlaylist);
3864 add_cmd ("auto", class_support, overlay_auto_command,
3865 _("Enable automatic overlay debugging."), &overlaylist);
3866 add_cmd ("load-target", class_support, overlay_load_command,
3867 _("Read the overlay mapping state from the target."), &overlaylist);
3868
3869 /* Filename extension to source language lookup table: */
3870 init_filename_language_table ();
3871 add_setshow_string_noescape_cmd ("extension-language", class_files,
3872 &ext_args, _("\
3873 Set mapping between filename extension and source language."), _("\
3874 Show mapping between filename extension and source language."), _("\
3875 Usage: set extension-language .foo bar"),
3876 set_ext_lang_command,
3877 show_ext_args,
3878 &setlist, &showlist);
3879
3880 add_info ("extensions", info_ext_lang_command,
3881 _("All filename extensions associated with a source language."));
3882
3883 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3884 &debug_file_directory, _("\
3885 Set the directories where separate debug symbols are searched for."), _("\
3886 Show the directories where separate debug symbols are searched for."), _("\
3887 Separate debug symbols are first searched for in the same\n\
3888 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3889 and lastly at the path of the directory of the binary with\n\
3890 each global debug-file-directory component prepended."),
3891 NULL,
3892 show_debug_file_directory,
3893 &setlist, &showlist);
3894 }