40b6a907ad97bc072996f4215bb053cd943c62f6
[binutils-gdb.git] / gdbserver / linux-low.cc
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2023 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "gdbsupport/agent.h"
23 #include "tdesc.h"
24 #include "gdbsupport/event-loop.h"
25 #include "gdbsupport/event-pipe.h"
26 #include "gdbsupport/rsp-low.h"
27 #include "gdbsupport/signals-state-save-restore.h"
28 #include "nat/linux-nat.h"
29 #include "nat/linux-waitpid.h"
30 #include "gdbsupport/gdb_wait.h"
31 #include "nat/gdb_ptrace.h"
32 #include "nat/linux-ptrace.h"
33 #include "nat/linux-procfs.h"
34 #include "nat/linux-personality.h"
35 #include <signal.h>
36 #include <sys/ioctl.h>
37 #include <fcntl.h>
38 #include <unistd.h>
39 #include <sys/syscall.h>
40 #include <sched.h>
41 #include <ctype.h>
42 #include <pwd.h>
43 #include <sys/types.h>
44 #include <dirent.h>
45 #include <sys/stat.h>
46 #include <sys/vfs.h>
47 #include <sys/uio.h>
48 #include "gdbsupport/filestuff.h"
49 #include "tracepoint.h"
50 #include <inttypes.h>
51 #include "gdbsupport/common-inferior.h"
52 #include "nat/fork-inferior.h"
53 #include "gdbsupport/environ.h"
54 #include "gdbsupport/gdb-sigmask.h"
55 #include "gdbsupport/scoped_restore.h"
56 #ifndef ELFMAG0
57 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
58 then ELFMAG0 will have been defined. If it didn't get included by
59 gdb_proc_service.h then including it will likely introduce a duplicate
60 definition of elf_fpregset_t. */
61 #include <elf.h>
62 #endif
63 #include "nat/linux-namespaces.h"
64
65 #ifndef O_LARGEFILE
66 #define O_LARGEFILE 0
67 #endif
68
69 #ifndef AT_HWCAP2
70 #define AT_HWCAP2 26
71 #endif
72
73 /* Some targets did not define these ptrace constants from the start,
74 so gdbserver defines them locally here. In the future, these may
75 be removed after they are added to asm/ptrace.h. */
76 #if !(defined(PT_TEXT_ADDR) \
77 || defined(PT_DATA_ADDR) \
78 || defined(PT_TEXT_END_ADDR))
79 #if defined(__mcoldfire__)
80 /* These are still undefined in 3.10 kernels. */
81 #define PT_TEXT_ADDR 49*4
82 #define PT_DATA_ADDR 50*4
83 #define PT_TEXT_END_ADDR 51*4
84 /* These are still undefined in 3.10 kernels. */
85 #elif defined(__TMS320C6X__)
86 #define PT_TEXT_ADDR (0x10000*4)
87 #define PT_DATA_ADDR (0x10004*4)
88 #define PT_TEXT_END_ADDR (0x10008*4)
89 #endif
90 #endif
91
92 #if (defined(__UCLIBC__) \
93 && defined(HAS_NOMMU) \
94 && defined(PT_TEXT_ADDR) \
95 && defined(PT_DATA_ADDR) \
96 && defined(PT_TEXT_END_ADDR))
97 #define SUPPORTS_READ_OFFSETS
98 #endif
99
100 #ifdef HAVE_LINUX_BTRACE
101 # include "nat/linux-btrace.h"
102 # include "gdbsupport/btrace-common.h"
103 #endif
104
105 #ifndef HAVE_ELF32_AUXV_T
106 /* Copied from glibc's elf.h. */
107 typedef struct
108 {
109 uint32_t a_type; /* Entry type */
110 union
111 {
112 uint32_t a_val; /* Integer value */
113 /* We use to have pointer elements added here. We cannot do that,
114 though, since it does not work when using 32-bit definitions
115 on 64-bit platforms and vice versa. */
116 } a_un;
117 } Elf32_auxv_t;
118 #endif
119
120 #ifndef HAVE_ELF64_AUXV_T
121 /* Copied from glibc's elf.h. */
122 typedef struct
123 {
124 uint64_t a_type; /* Entry type */
125 union
126 {
127 uint64_t a_val; /* Integer value */
128 /* We use to have pointer elements added here. We cannot do that,
129 though, since it does not work when using 32-bit definitions
130 on 64-bit platforms and vice versa. */
131 } a_un;
132 } Elf64_auxv_t;
133 #endif
134
135 /* Does the current host support PTRACE_GETREGSET? */
136 int have_ptrace_getregset = -1;
137
138 /* Return TRUE if THREAD is the leader thread of the process. */
139
140 static bool
141 is_leader (thread_info *thread)
142 {
143 ptid_t ptid = ptid_of (thread);
144 return ptid.pid () == ptid.lwp ();
145 }
146
147 /* LWP accessors. */
148
149 /* See nat/linux-nat.h. */
150
151 ptid_t
152 ptid_of_lwp (struct lwp_info *lwp)
153 {
154 return ptid_of (get_lwp_thread (lwp));
155 }
156
157 /* See nat/linux-nat.h. */
158
159 void
160 lwp_set_arch_private_info (struct lwp_info *lwp,
161 struct arch_lwp_info *info)
162 {
163 lwp->arch_private = info;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 struct arch_lwp_info *
169 lwp_arch_private_info (struct lwp_info *lwp)
170 {
171 return lwp->arch_private;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 int
177 lwp_is_stopped (struct lwp_info *lwp)
178 {
179 return lwp->stopped;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 enum target_stop_reason
185 lwp_stop_reason (struct lwp_info *lwp)
186 {
187 return lwp->stop_reason;
188 }
189
190 /* See nat/linux-nat.h. */
191
192 int
193 lwp_is_stepping (struct lwp_info *lwp)
194 {
195 return lwp->stepping;
196 }
197
198 /* A list of all unknown processes which receive stop signals. Some
199 other process will presumably claim each of these as forked
200 children momentarily. */
201
202 struct simple_pid_list
203 {
204 /* The process ID. */
205 int pid;
206
207 /* The status as reported by waitpid. */
208 int status;
209
210 /* Next in chain. */
211 struct simple_pid_list *next;
212 };
213 static struct simple_pid_list *stopped_pids;
214
215 /* Trivial list manipulation functions to keep track of a list of new
216 stopped processes. */
217
218 static void
219 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
220 {
221 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
222
223 new_pid->pid = pid;
224 new_pid->status = status;
225 new_pid->next = *listp;
226 *listp = new_pid;
227 }
228
229 static int
230 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
231 {
232 struct simple_pid_list **p;
233
234 for (p = listp; *p != NULL; p = &(*p)->next)
235 if ((*p)->pid == pid)
236 {
237 struct simple_pid_list *next = (*p)->next;
238
239 *statusp = (*p)->status;
240 xfree (*p);
241 *p = next;
242 return 1;
243 }
244 return 0;
245 }
246
247 enum stopping_threads_kind
248 {
249 /* Not stopping threads presently. */
250 NOT_STOPPING_THREADS,
251
252 /* Stopping threads. */
253 STOPPING_THREADS,
254
255 /* Stopping and suspending threads. */
256 STOPPING_AND_SUSPENDING_THREADS
257 };
258
259 /* This is set while stop_all_lwps is in effect. */
260 static stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
261
262 /* FIXME make into a target method? */
263 int using_threads = 1;
264
265 /* True if we're presently stabilizing threads (moving them out of
266 jump pads). */
267 static int stabilizing_threads;
268
269 static void unsuspend_all_lwps (struct lwp_info *except);
270 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
271 static int lwp_is_marked_dead (struct lwp_info *lwp);
272 static int kill_lwp (unsigned long lwpid, int signo);
273 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
274 static int linux_low_ptrace_options (int attached);
275 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
276
277 /* When the event-loop is doing a step-over, this points at the thread
278 being stepped. */
279 static ptid_t step_over_bkpt;
280
281 bool
282 linux_process_target::low_supports_breakpoints ()
283 {
284 return false;
285 }
286
287 CORE_ADDR
288 linux_process_target::low_get_pc (regcache *regcache)
289 {
290 return 0;
291 }
292
293 void
294 linux_process_target::low_set_pc (regcache *regcache, CORE_ADDR newpc)
295 {
296 gdb_assert_not_reached ("linux target op low_set_pc is not implemented");
297 }
298
299 std::vector<CORE_ADDR>
300 linux_process_target::low_get_next_pcs (regcache *regcache)
301 {
302 gdb_assert_not_reached ("linux target op low_get_next_pcs is not "
303 "implemented");
304 }
305
306 int
307 linux_process_target::low_decr_pc_after_break ()
308 {
309 return 0;
310 }
311
312 /* True if LWP is stopped in its stepping range. */
313
314 static int
315 lwp_in_step_range (struct lwp_info *lwp)
316 {
317 CORE_ADDR pc = lwp->stop_pc;
318
319 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
320 }
321
322 /* The event pipe registered as a waitable file in the event loop. */
323 static event_pipe linux_event_pipe;
324
325 /* True if we're currently in async mode. */
326 #define target_is_async_p() (linux_event_pipe.is_open ())
327
328 static void send_sigstop (struct lwp_info *lwp);
329
330 /* Return non-zero if HEADER is a 64-bit ELF file. */
331
332 static int
333 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
334 {
335 if (header->e_ident[EI_MAG0] == ELFMAG0
336 && header->e_ident[EI_MAG1] == ELFMAG1
337 && header->e_ident[EI_MAG2] == ELFMAG2
338 && header->e_ident[EI_MAG3] == ELFMAG3)
339 {
340 *machine = header->e_machine;
341 return header->e_ident[EI_CLASS] == ELFCLASS64;
342
343 }
344 *machine = EM_NONE;
345 return -1;
346 }
347
348 /* Return non-zero if FILE is a 64-bit ELF file,
349 zero if the file is not a 64-bit ELF file,
350 and -1 if the file is not accessible or doesn't exist. */
351
352 static int
353 elf_64_file_p (const char *file, unsigned int *machine)
354 {
355 Elf64_Ehdr header;
356 int fd;
357
358 fd = open (file, O_RDONLY);
359 if (fd < 0)
360 return -1;
361
362 if (read (fd, &header, sizeof (header)) != sizeof (header))
363 {
364 close (fd);
365 return 0;
366 }
367 close (fd);
368
369 return elf_64_header_p (&header, machine);
370 }
371
372 /* Accepts an integer PID; Returns true if the executable PID is
373 running is a 64-bit ELF file.. */
374
375 int
376 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
377 {
378 char file[PATH_MAX];
379
380 sprintf (file, "/proc/%d/exe", pid);
381 return elf_64_file_p (file, machine);
382 }
383
384 void
385 linux_process_target::delete_lwp (lwp_info *lwp)
386 {
387 struct thread_info *thr = get_lwp_thread (lwp);
388
389 threads_debug_printf ("deleting %ld", lwpid_of (thr));
390
391 remove_thread (thr);
392
393 low_delete_thread (lwp->arch_private);
394
395 delete lwp;
396 }
397
398 void
399 linux_process_target::low_delete_thread (arch_lwp_info *info)
400 {
401 /* Default implementation should be overridden if architecture-specific
402 info is being used. */
403 gdb_assert (info == nullptr);
404 }
405
406 /* Open the /proc/PID/mem file for PROC. */
407
408 static void
409 open_proc_mem_file (process_info *proc)
410 {
411 gdb_assert (proc->priv->mem_fd == -1);
412
413 char filename[64];
414 xsnprintf (filename, sizeof filename, "/proc/%d/mem", proc->pid);
415
416 proc->priv->mem_fd
417 = gdb_open_cloexec (filename, O_RDWR | O_LARGEFILE, 0).release ();
418 }
419
420 process_info *
421 linux_process_target::add_linux_process_no_mem_file (int pid, int attached)
422 {
423 struct process_info *proc;
424
425 proc = add_process (pid, attached);
426 proc->priv = XCNEW (struct process_info_private);
427
428 proc->priv->arch_private = low_new_process ();
429 proc->priv->mem_fd = -1;
430
431 return proc;
432 }
433
434
435 process_info *
436 linux_process_target::add_linux_process (int pid, int attached)
437 {
438 process_info *proc = add_linux_process_no_mem_file (pid, attached);
439 open_proc_mem_file (proc);
440 return proc;
441 }
442
443 void
444 linux_process_target::remove_linux_process (process_info *proc)
445 {
446 if (proc->priv->mem_fd >= 0)
447 close (proc->priv->mem_fd);
448
449 this->low_delete_process (proc->priv->arch_private);
450
451 xfree (proc->priv);
452 proc->priv = nullptr;
453
454 remove_process (proc);
455 }
456
457 arch_process_info *
458 linux_process_target::low_new_process ()
459 {
460 return nullptr;
461 }
462
463 void
464 linux_process_target::low_delete_process (arch_process_info *info)
465 {
466 /* Default implementation must be overridden if architecture-specific
467 info exists. */
468 gdb_assert (info == nullptr);
469 }
470
471 void
472 linux_process_target::low_new_fork (process_info *parent, process_info *child)
473 {
474 /* Nop. */
475 }
476
477 void
478 linux_process_target::arch_setup_thread (thread_info *thread)
479 {
480 scoped_restore_current_thread restore_thread;
481 switch_to_thread (thread);
482
483 low_arch_setup ();
484 }
485
486 int
487 linux_process_target::handle_extended_wait (lwp_info **orig_event_lwp,
488 int wstat)
489 {
490 client_state &cs = get_client_state ();
491 struct lwp_info *event_lwp = *orig_event_lwp;
492 int event = linux_ptrace_get_extended_event (wstat);
493 struct thread_info *event_thr = get_lwp_thread (event_lwp);
494 struct lwp_info *new_lwp;
495
496 gdb_assert (event_lwp->waitstatus.kind () == TARGET_WAITKIND_IGNORE);
497
498 /* All extended events we currently use are mid-syscall. Only
499 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
500 you have to be using PTRACE_SEIZE to get that. */
501 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
502
503 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
504 || (event == PTRACE_EVENT_CLONE))
505 {
506 ptid_t ptid;
507 unsigned long new_pid;
508 int ret, status;
509
510 /* Get the pid of the new lwp. */
511 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
512 &new_pid);
513
514 /* If we haven't already seen the new PID stop, wait for it now. */
515 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
516 {
517 /* The new child has a pending SIGSTOP. We can't affect it until it
518 hits the SIGSTOP, but we're already attached. */
519
520 ret = my_waitpid (new_pid, &status, __WALL);
521
522 if (ret == -1)
523 perror_with_name ("waiting for new child");
524 else if (ret != new_pid)
525 warning ("wait returned unexpected PID %d", ret);
526 else if (!WIFSTOPPED (status))
527 warning ("wait returned unexpected status 0x%x", status);
528 }
529
530 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
531 {
532 struct process_info *parent_proc;
533 struct process_info *child_proc;
534 struct lwp_info *child_lwp;
535 struct thread_info *child_thr;
536
537 ptid = ptid_t (new_pid, new_pid);
538
539 threads_debug_printf ("Got fork event from LWP %ld, "
540 "new child is %d",
541 ptid_of (event_thr).lwp (),
542 ptid.pid ());
543
544 /* Add the new process to the tables and clone the breakpoint
545 lists of the parent. We need to do this even if the new process
546 will be detached, since we will need the process object and the
547 breakpoints to remove any breakpoints from memory when we
548 detach, and the client side will access registers. */
549 child_proc = add_linux_process (new_pid, 0);
550 gdb_assert (child_proc != NULL);
551 child_lwp = add_lwp (ptid);
552 gdb_assert (child_lwp != NULL);
553 child_lwp->stopped = 1;
554 child_lwp->must_set_ptrace_flags = 1;
555 child_lwp->status_pending_p = 0;
556 child_thr = get_lwp_thread (child_lwp);
557 child_thr->last_resume_kind = resume_stop;
558 child_thr->last_status.set_stopped (GDB_SIGNAL_0);
559
560 /* If we're suspending all threads, leave this one suspended
561 too. If the fork/clone parent is stepping over a breakpoint,
562 all other threads have been suspended already. Leave the
563 child suspended too. */
564 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
565 || event_lwp->bp_reinsert != 0)
566 {
567 threads_debug_printf ("leaving child suspended");
568 child_lwp->suspended = 1;
569 }
570
571 parent_proc = get_thread_process (event_thr);
572 child_proc->attached = parent_proc->attached;
573
574 if (event_lwp->bp_reinsert != 0
575 && supports_software_single_step ()
576 && event == PTRACE_EVENT_VFORK)
577 {
578 /* If we leave single-step breakpoints there, child will
579 hit it, so uninsert single-step breakpoints from parent
580 (and child). Once vfork child is done, reinsert
581 them back to parent. */
582 uninsert_single_step_breakpoints (event_thr);
583 }
584
585 clone_all_breakpoints (child_thr, event_thr);
586
587 target_desc_up tdesc = allocate_target_description ();
588 copy_target_description (tdesc.get (), parent_proc->tdesc);
589 child_proc->tdesc = tdesc.release ();
590
591 /* Clone arch-specific process data. */
592 low_new_fork (parent_proc, child_proc);
593
594 /* Save fork info in the parent thread. */
595 if (event == PTRACE_EVENT_FORK)
596 event_lwp->waitstatus.set_forked (ptid);
597 else if (event == PTRACE_EVENT_VFORK)
598 event_lwp->waitstatus.set_vforked (ptid);
599
600 /* The status_pending field contains bits denoting the
601 extended event, so when the pending event is handled,
602 the handler will look at lwp->waitstatus. */
603 event_lwp->status_pending_p = 1;
604 event_lwp->status_pending = wstat;
605
606 /* Link the threads until the parent event is passed on to
607 higher layers. */
608 event_lwp->fork_relative = child_lwp;
609 child_lwp->fork_relative = event_lwp;
610
611 /* If the parent thread is doing step-over with single-step
612 breakpoints, the list of single-step breakpoints are cloned
613 from the parent's. Remove them from the child process.
614 In case of vfork, we'll reinsert them back once vforked
615 child is done. */
616 if (event_lwp->bp_reinsert != 0
617 && supports_software_single_step ())
618 {
619 /* The child process is forked and stopped, so it is safe
620 to access its memory without stopping all other threads
621 from other processes. */
622 delete_single_step_breakpoints (child_thr);
623
624 gdb_assert (has_single_step_breakpoints (event_thr));
625 gdb_assert (!has_single_step_breakpoints (child_thr));
626 }
627
628 /* Report the event. */
629 return 0;
630 }
631
632 threads_debug_printf
633 ("Got clone event from LWP %ld, new child is LWP %ld",
634 lwpid_of (event_thr), new_pid);
635
636 ptid = ptid_t (pid_of (event_thr), new_pid);
637 new_lwp = add_lwp (ptid);
638
639 /* Either we're going to immediately resume the new thread
640 or leave it stopped. resume_one_lwp is a nop if it
641 thinks the thread is currently running, so set this first
642 before calling resume_one_lwp. */
643 new_lwp->stopped = 1;
644
645 /* If we're suspending all threads, leave this one suspended
646 too. If the fork/clone parent is stepping over a breakpoint,
647 all other threads have been suspended already. Leave the
648 child suspended too. */
649 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
650 || event_lwp->bp_reinsert != 0)
651 new_lwp->suspended = 1;
652
653 /* Normally we will get the pending SIGSTOP. But in some cases
654 we might get another signal delivered to the group first.
655 If we do get another signal, be sure not to lose it. */
656 if (WSTOPSIG (status) != SIGSTOP)
657 {
658 new_lwp->stop_expected = 1;
659 new_lwp->status_pending_p = 1;
660 new_lwp->status_pending = status;
661 }
662 else if (cs.report_thread_events)
663 {
664 new_lwp->waitstatus.set_thread_created ();
665 new_lwp->status_pending_p = 1;
666 new_lwp->status_pending = status;
667 }
668
669 #ifdef USE_THREAD_DB
670 thread_db_notice_clone (event_thr, ptid);
671 #endif
672
673 /* Don't report the event. */
674 return 1;
675 }
676 else if (event == PTRACE_EVENT_VFORK_DONE)
677 {
678 event_lwp->waitstatus.set_vfork_done ();
679
680 if (event_lwp->bp_reinsert != 0 && supports_software_single_step ())
681 {
682 reinsert_single_step_breakpoints (event_thr);
683
684 gdb_assert (has_single_step_breakpoints (event_thr));
685 }
686
687 /* Report the event. */
688 return 0;
689 }
690 else if (event == PTRACE_EVENT_EXEC && cs.report_exec_events)
691 {
692 struct process_info *proc;
693 std::vector<int> syscalls_to_catch;
694 ptid_t event_ptid;
695 pid_t event_pid;
696
697 threads_debug_printf ("Got exec event from LWP %ld",
698 lwpid_of (event_thr));
699
700 /* Get the event ptid. */
701 event_ptid = ptid_of (event_thr);
702 event_pid = event_ptid.pid ();
703
704 /* Save the syscall list from the execing process. */
705 proc = get_thread_process (event_thr);
706 syscalls_to_catch = std::move (proc->syscalls_to_catch);
707
708 /* Delete the execing process and all its threads. */
709 mourn (proc);
710 switch_to_thread (nullptr);
711
712 /* Create a new process/lwp/thread. */
713 proc = add_linux_process (event_pid, 0);
714 event_lwp = add_lwp (event_ptid);
715 event_thr = get_lwp_thread (event_lwp);
716 gdb_assert (current_thread == event_thr);
717 arch_setup_thread (event_thr);
718
719 /* Set the event status. */
720 event_lwp->waitstatus.set_execd
721 (make_unique_xstrdup
722 (linux_proc_pid_to_exec_file (lwpid_of (event_thr))));
723
724 /* Mark the exec status as pending. */
725 event_lwp->stopped = 1;
726 event_lwp->status_pending_p = 1;
727 event_lwp->status_pending = wstat;
728 event_thr->last_resume_kind = resume_continue;
729 event_thr->last_status.set_ignore ();
730
731 /* Update syscall state in the new lwp, effectively mid-syscall too. */
732 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
733
734 /* Restore the list to catch. Don't rely on the client, which is free
735 to avoid sending a new list when the architecture doesn't change.
736 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
737 proc->syscalls_to_catch = std::move (syscalls_to_catch);
738
739 /* Report the event. */
740 *orig_event_lwp = event_lwp;
741 return 0;
742 }
743
744 internal_error (_("unknown ptrace event %d"), event);
745 }
746
747 CORE_ADDR
748 linux_process_target::get_pc (lwp_info *lwp)
749 {
750 process_info *proc = get_thread_process (get_lwp_thread (lwp));
751 gdb_assert (!proc->starting_up);
752
753 if (!low_supports_breakpoints ())
754 return 0;
755
756 scoped_restore_current_thread restore_thread;
757 switch_to_thread (get_lwp_thread (lwp));
758
759 struct regcache *regcache = get_thread_regcache (current_thread, 1);
760 CORE_ADDR pc = low_get_pc (regcache);
761
762 threads_debug_printf ("pc is 0x%lx", (long) pc);
763
764 return pc;
765 }
766
767 void
768 linux_process_target::get_syscall_trapinfo (lwp_info *lwp, int *sysno)
769 {
770 struct regcache *regcache;
771
772 scoped_restore_current_thread restore_thread;
773 switch_to_thread (get_lwp_thread (lwp));
774
775 regcache = get_thread_regcache (current_thread, 1);
776 low_get_syscall_trapinfo (regcache, sysno);
777
778 threads_debug_printf ("get_syscall_trapinfo sysno %d", *sysno);
779 }
780
781 void
782 linux_process_target::low_get_syscall_trapinfo (regcache *regcache, int *sysno)
783 {
784 /* By default, report an unknown system call number. */
785 *sysno = UNKNOWN_SYSCALL;
786 }
787
788 bool
789 linux_process_target::save_stop_reason (lwp_info *lwp)
790 {
791 CORE_ADDR pc;
792 CORE_ADDR sw_breakpoint_pc;
793 #if USE_SIGTRAP_SIGINFO
794 siginfo_t siginfo;
795 #endif
796
797 if (!low_supports_breakpoints ())
798 return false;
799
800 process_info *proc = get_thread_process (get_lwp_thread (lwp));
801 if (proc->starting_up)
802 {
803 /* Claim we have the stop PC so that the caller doesn't try to
804 fetch it itself. */
805 return true;
806 }
807
808 pc = get_pc (lwp);
809 sw_breakpoint_pc = pc - low_decr_pc_after_break ();
810
811 /* breakpoint_at reads from the current thread. */
812 scoped_restore_current_thread restore_thread;
813 switch_to_thread (get_lwp_thread (lwp));
814
815 #if USE_SIGTRAP_SIGINFO
816 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
817 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
818 {
819 if (siginfo.si_signo == SIGTRAP)
820 {
821 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
822 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
823 {
824 /* The si_code is ambiguous on this arch -- check debug
825 registers. */
826 if (!check_stopped_by_watchpoint (lwp))
827 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
828 }
829 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
830 {
831 /* If we determine the LWP stopped for a SW breakpoint,
832 trust it. Particularly don't check watchpoint
833 registers, because at least on s390, we'd find
834 stopped-by-watchpoint as long as there's a watchpoint
835 set. */
836 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
837 }
838 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
839 {
840 /* This can indicate either a hardware breakpoint or
841 hardware watchpoint. Check debug registers. */
842 if (!check_stopped_by_watchpoint (lwp))
843 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
844 }
845 else if (siginfo.si_code == TRAP_TRACE)
846 {
847 /* We may have single stepped an instruction that
848 triggered a watchpoint. In that case, on some
849 architectures (such as x86), instead of TRAP_HWBKPT,
850 si_code indicates TRAP_TRACE, and we need to check
851 the debug registers separately. */
852 if (!check_stopped_by_watchpoint (lwp))
853 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
854 }
855 }
856 }
857 #else
858 /* We may have just stepped a breakpoint instruction. E.g., in
859 non-stop mode, GDB first tells the thread A to step a range, and
860 then the user inserts a breakpoint inside the range. In that
861 case we need to report the breakpoint PC. */
862 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
863 && low_breakpoint_at (sw_breakpoint_pc))
864 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
865
866 if (hardware_breakpoint_inserted_here (pc))
867 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
868
869 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
870 check_stopped_by_watchpoint (lwp);
871 #endif
872
873 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
874 {
875 threads_debug_printf
876 ("%s stopped by software breakpoint",
877 target_pid_to_str (ptid_of (get_lwp_thread (lwp))).c_str ());
878
879 /* Back up the PC if necessary. */
880 if (pc != sw_breakpoint_pc)
881 {
882 struct regcache *regcache
883 = get_thread_regcache (current_thread, 1);
884 low_set_pc (regcache, sw_breakpoint_pc);
885 }
886
887 /* Update this so we record the correct stop PC below. */
888 pc = sw_breakpoint_pc;
889 }
890 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
891 threads_debug_printf
892 ("%s stopped by hardware breakpoint",
893 target_pid_to_str (ptid_of (get_lwp_thread (lwp))).c_str ());
894 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
895 threads_debug_printf
896 ("%s stopped by hardware watchpoint",
897 target_pid_to_str (ptid_of (get_lwp_thread (lwp))).c_str ());
898 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
899 threads_debug_printf
900 ("%s stopped by trace",
901 target_pid_to_str (ptid_of (get_lwp_thread (lwp))).c_str ());
902
903 lwp->stop_pc = pc;
904 return true;
905 }
906
907 lwp_info *
908 linux_process_target::add_lwp (ptid_t ptid)
909 {
910 lwp_info *lwp = new lwp_info;
911
912 lwp->thread = add_thread (ptid, lwp);
913
914 low_new_thread (lwp);
915
916 return lwp;
917 }
918
919 void
920 linux_process_target::low_new_thread (lwp_info *info)
921 {
922 /* Nop. */
923 }
924
925 /* Callback to be used when calling fork_inferior, responsible for
926 actually initiating the tracing of the inferior. */
927
928 static void
929 linux_ptrace_fun ()
930 {
931 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
932 (PTRACE_TYPE_ARG4) 0) < 0)
933 trace_start_error_with_name ("ptrace");
934
935 if (setpgid (0, 0) < 0)
936 trace_start_error_with_name ("setpgid");
937
938 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
939 stdout to stderr so that inferior i/o doesn't corrupt the connection.
940 Also, redirect stdin to /dev/null. */
941 if (remote_connection_is_stdio ())
942 {
943 if (close (0) < 0)
944 trace_start_error_with_name ("close");
945 if (open ("/dev/null", O_RDONLY) < 0)
946 trace_start_error_with_name ("open");
947 if (dup2 (2, 1) < 0)
948 trace_start_error_with_name ("dup2");
949 if (write (2, "stdin/stdout redirected\n",
950 sizeof ("stdin/stdout redirected\n") - 1) < 0)
951 {
952 /* Errors ignored. */;
953 }
954 }
955 }
956
957 /* Start an inferior process and returns its pid.
958 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
959 are its arguments. */
960
961 int
962 linux_process_target::create_inferior (const char *program,
963 const std::vector<char *> &program_args)
964 {
965 client_state &cs = get_client_state ();
966 struct lwp_info *new_lwp;
967 int pid;
968 ptid_t ptid;
969
970 {
971 maybe_disable_address_space_randomization restore_personality
972 (cs.disable_randomization);
973 std::string str_program_args = construct_inferior_arguments (program_args);
974
975 pid = fork_inferior (program,
976 str_program_args.c_str (),
977 get_environ ()->envp (), linux_ptrace_fun,
978 NULL, NULL, NULL, NULL);
979 }
980
981 /* When spawning a new process, we can't open the mem file yet. We
982 still have to nurse the process through the shell, and that execs
983 a couple times. The address space a /proc/PID/mem file is
984 accessing is destroyed on exec. */
985 process_info *proc = add_linux_process_no_mem_file (pid, 0);
986
987 ptid = ptid_t (pid, pid);
988 new_lwp = add_lwp (ptid);
989 new_lwp->must_set_ptrace_flags = 1;
990
991 post_fork_inferior (pid, program);
992
993 /* PROC is now past the shell running the program we want, so we can
994 open the /proc/PID/mem file. */
995 open_proc_mem_file (proc);
996
997 return pid;
998 }
999
1000 /* Implement the post_create_inferior target_ops method. */
1001
1002 void
1003 linux_process_target::post_create_inferior ()
1004 {
1005 struct lwp_info *lwp = get_thread_lwp (current_thread);
1006
1007 low_arch_setup ();
1008
1009 if (lwp->must_set_ptrace_flags)
1010 {
1011 struct process_info *proc = current_process ();
1012 int options = linux_low_ptrace_options (proc->attached);
1013
1014 linux_enable_event_reporting (lwpid_of (current_thread), options);
1015 lwp->must_set_ptrace_flags = 0;
1016 }
1017 }
1018
1019 int
1020 linux_process_target::attach_lwp (ptid_t ptid)
1021 {
1022 struct lwp_info *new_lwp;
1023 int lwpid = ptid.lwp ();
1024
1025 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1026 != 0)
1027 return errno;
1028
1029 new_lwp = add_lwp (ptid);
1030
1031 /* We need to wait for SIGSTOP before being able to make the next
1032 ptrace call on this LWP. */
1033 new_lwp->must_set_ptrace_flags = 1;
1034
1035 if (linux_proc_pid_is_stopped (lwpid))
1036 {
1037 threads_debug_printf ("Attached to a stopped process");
1038
1039 /* The process is definitely stopped. It is in a job control
1040 stop, unless the kernel predates the TASK_STOPPED /
1041 TASK_TRACED distinction, in which case it might be in a
1042 ptrace stop. Make sure it is in a ptrace stop; from there we
1043 can kill it, signal it, et cetera.
1044
1045 First make sure there is a pending SIGSTOP. Since we are
1046 already attached, the process can not transition from stopped
1047 to running without a PTRACE_CONT; so we know this signal will
1048 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1049 probably already in the queue (unless this kernel is old
1050 enough to use TASK_STOPPED for ptrace stops); but since
1051 SIGSTOP is not an RT signal, it can only be queued once. */
1052 kill_lwp (lwpid, SIGSTOP);
1053
1054 /* Finally, resume the stopped process. This will deliver the
1055 SIGSTOP (or a higher priority signal, just like normal
1056 PTRACE_ATTACH), which we'll catch later on. */
1057 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1058 }
1059
1060 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1061 brings it to a halt.
1062
1063 There are several cases to consider here:
1064
1065 1) gdbserver has already attached to the process and is being notified
1066 of a new thread that is being created.
1067 In this case we should ignore that SIGSTOP and resume the
1068 process. This is handled below by setting stop_expected = 1,
1069 and the fact that add_thread sets last_resume_kind ==
1070 resume_continue.
1071
1072 2) This is the first thread (the process thread), and we're attaching
1073 to it via attach_inferior.
1074 In this case we want the process thread to stop.
1075 This is handled by having linux_attach set last_resume_kind ==
1076 resume_stop after we return.
1077
1078 If the pid we are attaching to is also the tgid, we attach to and
1079 stop all the existing threads. Otherwise, we attach to pid and
1080 ignore any other threads in the same group as this pid.
1081
1082 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1083 existing threads.
1084 In this case we want the thread to stop.
1085 FIXME: This case is currently not properly handled.
1086 We should wait for the SIGSTOP but don't. Things work apparently
1087 because enough time passes between when we ptrace (ATTACH) and when
1088 gdb makes the next ptrace call on the thread.
1089
1090 On the other hand, if we are currently trying to stop all threads, we
1091 should treat the new thread as if we had sent it a SIGSTOP. This works
1092 because we are guaranteed that the add_lwp call above added us to the
1093 end of the list, and so the new thread has not yet reached
1094 wait_for_sigstop (but will). */
1095 new_lwp->stop_expected = 1;
1096
1097 return 0;
1098 }
1099
1100 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1101 already attached. Returns true if a new LWP is found, false
1102 otherwise. */
1103
1104 static int
1105 attach_proc_task_lwp_callback (ptid_t ptid)
1106 {
1107 /* Is this a new thread? */
1108 if (find_thread_ptid (ptid) == NULL)
1109 {
1110 int lwpid = ptid.lwp ();
1111 int err;
1112
1113 threads_debug_printf ("Found new lwp %d", lwpid);
1114
1115 err = the_linux_target->attach_lwp (ptid);
1116
1117 /* Be quiet if we simply raced with the thread exiting. EPERM
1118 is returned if the thread's task still exists, and is marked
1119 as exited or zombie, as well as other conditions, so in that
1120 case, confirm the status in /proc/PID/status. */
1121 if (err == ESRCH
1122 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1123 threads_debug_printf
1124 ("Cannot attach to lwp %d: thread is gone (%d: %s)",
1125 lwpid, err, safe_strerror (err));
1126 else if (err != 0)
1127 {
1128 std::string reason
1129 = linux_ptrace_attach_fail_reason_string (ptid, err);
1130
1131 warning (_("Cannot attach to lwp %d: %s"), lwpid, reason.c_str ());
1132 }
1133
1134 return 1;
1135 }
1136 return 0;
1137 }
1138
1139 static void async_file_mark (void);
1140
1141 /* Attach to PID. If PID is the tgid, attach to it and all
1142 of its threads. */
1143
1144 int
1145 linux_process_target::attach (unsigned long pid)
1146 {
1147 struct process_info *proc;
1148 struct thread_info *initial_thread;
1149 ptid_t ptid = ptid_t (pid, pid);
1150 int err;
1151
1152 /* Delay opening the /proc/PID/mem file until we've successfully
1153 attached. */
1154 proc = add_linux_process_no_mem_file (pid, 1);
1155
1156 /* Attach to PID. We will check for other threads
1157 soon. */
1158 err = attach_lwp (ptid);
1159 if (err != 0)
1160 {
1161 this->remove_linux_process (proc);
1162
1163 std::string reason = linux_ptrace_attach_fail_reason_string (ptid, err);
1164 error ("Cannot attach to process %ld: %s", pid, reason.c_str ());
1165 }
1166
1167 open_proc_mem_file (proc);
1168
1169 /* Don't ignore the initial SIGSTOP if we just attached to this
1170 process. It will be collected by wait shortly. */
1171 initial_thread = find_thread_ptid (ptid_t (pid, pid));
1172 gdb_assert (initial_thread != nullptr);
1173 initial_thread->last_resume_kind = resume_stop;
1174
1175 /* We must attach to every LWP. If /proc is mounted, use that to
1176 find them now. On the one hand, the inferior may be using raw
1177 clone instead of using pthreads. On the other hand, even if it
1178 is using pthreads, GDB may not be connected yet (thread_db needs
1179 to do symbol lookups, through qSymbol). Also, thread_db walks
1180 structures in the inferior's address space to find the list of
1181 threads/LWPs, and those structures may well be corrupted. Note
1182 that once thread_db is loaded, we'll still use it to list threads
1183 and associate pthread info with each LWP. */
1184 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1185
1186 /* GDB will shortly read the xml target description for this
1187 process, to figure out the process' architecture. But the target
1188 description is only filled in when the first process/thread in
1189 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1190 that now, otherwise, if GDB is fast enough, it could read the
1191 target description _before_ that initial stop. */
1192 if (non_stop)
1193 {
1194 struct lwp_info *lwp;
1195 int wstat, lwpid;
1196 ptid_t pid_ptid = ptid_t (pid);
1197
1198 lwpid = wait_for_event_filtered (pid_ptid, pid_ptid, &wstat, __WALL);
1199 gdb_assert (lwpid > 0);
1200
1201 lwp = find_lwp_pid (ptid_t (lwpid));
1202 gdb_assert (lwp != nullptr);
1203
1204 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1205 {
1206 lwp->status_pending_p = 1;
1207 lwp->status_pending = wstat;
1208 }
1209
1210 initial_thread->last_resume_kind = resume_continue;
1211
1212 async_file_mark ();
1213
1214 gdb_assert (proc->tdesc != NULL);
1215 }
1216
1217 return 0;
1218 }
1219
1220 static int
1221 last_thread_of_process_p (int pid)
1222 {
1223 bool seen_one = false;
1224
1225 thread_info *thread = find_thread (pid, [&] (thread_info *thr_arg)
1226 {
1227 if (!seen_one)
1228 {
1229 /* This is the first thread of this process we see. */
1230 seen_one = true;
1231 return false;
1232 }
1233 else
1234 {
1235 /* This is the second thread of this process we see. */
1236 return true;
1237 }
1238 });
1239
1240 return thread == NULL;
1241 }
1242
1243 /* Kill LWP. */
1244
1245 static void
1246 linux_kill_one_lwp (struct lwp_info *lwp)
1247 {
1248 struct thread_info *thr = get_lwp_thread (lwp);
1249 int pid = lwpid_of (thr);
1250
1251 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1252 there is no signal context, and ptrace(PTRACE_KILL) (or
1253 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1254 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1255 alternative is to kill with SIGKILL. We only need one SIGKILL
1256 per process, not one for each thread. But since we still support
1257 support debugging programs using raw clone without CLONE_THREAD,
1258 we send one for each thread. For years, we used PTRACE_KILL
1259 only, so we're being a bit paranoid about some old kernels where
1260 PTRACE_KILL might work better (dubious if there are any such, but
1261 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1262 second, and so we're fine everywhere. */
1263
1264 errno = 0;
1265 kill_lwp (pid, SIGKILL);
1266 if (debug_threads)
1267 {
1268 int save_errno = errno;
1269
1270 threads_debug_printf ("kill_lwp (SIGKILL) %s, 0, 0 (%s)",
1271 target_pid_to_str (ptid_of (thr)).c_str (),
1272 save_errno ? safe_strerror (save_errno) : "OK");
1273 }
1274
1275 errno = 0;
1276 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1277 if (debug_threads)
1278 {
1279 int save_errno = errno;
1280
1281 threads_debug_printf ("PTRACE_KILL %s, 0, 0 (%s)",
1282 target_pid_to_str (ptid_of (thr)).c_str (),
1283 save_errno ? safe_strerror (save_errno) : "OK");
1284 }
1285 }
1286
1287 /* Kill LWP and wait for it to die. */
1288
1289 static void
1290 kill_wait_lwp (struct lwp_info *lwp)
1291 {
1292 struct thread_info *thr = get_lwp_thread (lwp);
1293 int pid = ptid_of (thr).pid ();
1294 int lwpid = ptid_of (thr).lwp ();
1295 int wstat;
1296 int res;
1297
1298 threads_debug_printf ("killing lwp %d, for pid: %d", lwpid, pid);
1299
1300 do
1301 {
1302 linux_kill_one_lwp (lwp);
1303
1304 /* Make sure it died. Notes:
1305
1306 - The loop is most likely unnecessary.
1307
1308 - We don't use wait_for_event as that could delete lwps
1309 while we're iterating over them. We're not interested in
1310 any pending status at this point, only in making sure all
1311 wait status on the kernel side are collected until the
1312 process is reaped.
1313
1314 - We don't use __WALL here as the __WALL emulation relies on
1315 SIGCHLD, and killing a stopped process doesn't generate
1316 one, nor an exit status.
1317 */
1318 res = my_waitpid (lwpid, &wstat, 0);
1319 if (res == -1 && errno == ECHILD)
1320 res = my_waitpid (lwpid, &wstat, __WCLONE);
1321 } while (res > 0 && WIFSTOPPED (wstat));
1322
1323 /* Even if it was stopped, the child may have already disappeared.
1324 E.g., if it was killed by SIGKILL. */
1325 if (res < 0 && errno != ECHILD)
1326 perror_with_name ("kill_wait_lwp");
1327 }
1328
1329 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1330 except the leader. */
1331
1332 static void
1333 kill_one_lwp_callback (thread_info *thread, int pid)
1334 {
1335 struct lwp_info *lwp = get_thread_lwp (thread);
1336
1337 /* We avoid killing the first thread here, because of a Linux kernel (at
1338 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1339 the children get a chance to be reaped, it will remain a zombie
1340 forever. */
1341
1342 if (lwpid_of (thread) == pid)
1343 {
1344 threads_debug_printf ("is last of process %s",
1345 target_pid_to_str (thread->id).c_str ());
1346 return;
1347 }
1348
1349 kill_wait_lwp (lwp);
1350 }
1351
1352 int
1353 linux_process_target::kill (process_info *process)
1354 {
1355 int pid = process->pid;
1356
1357 /* If we're killing a running inferior, make sure it is stopped
1358 first, as PTRACE_KILL will not work otherwise. */
1359 stop_all_lwps (0, NULL);
1360
1361 for_each_thread (pid, [&] (thread_info *thread)
1362 {
1363 kill_one_lwp_callback (thread, pid);
1364 });
1365
1366 /* See the comment in linux_kill_one_lwp. We did not kill the first
1367 thread in the list, so do so now. */
1368 lwp_info *lwp = find_lwp_pid (ptid_t (pid));
1369
1370 if (lwp == NULL)
1371 threads_debug_printf ("cannot find lwp for pid: %d", pid);
1372 else
1373 kill_wait_lwp (lwp);
1374
1375 mourn (process);
1376
1377 /* Since we presently can only stop all lwps of all processes, we
1378 need to unstop lwps of other processes. */
1379 unstop_all_lwps (0, NULL);
1380 return 0;
1381 }
1382
1383 /* Get pending signal of THREAD, for detaching purposes. This is the
1384 signal the thread last stopped for, which we need to deliver to the
1385 thread when detaching, otherwise, it'd be suppressed/lost. */
1386
1387 static int
1388 get_detach_signal (struct thread_info *thread)
1389 {
1390 client_state &cs = get_client_state ();
1391 enum gdb_signal signo = GDB_SIGNAL_0;
1392 int status;
1393 struct lwp_info *lp = get_thread_lwp (thread);
1394
1395 if (lp->status_pending_p)
1396 status = lp->status_pending;
1397 else
1398 {
1399 /* If the thread had been suspended by gdbserver, and it stopped
1400 cleanly, then it'll have stopped with SIGSTOP. But we don't
1401 want to deliver that SIGSTOP. */
1402 if (thread->last_status.kind () != TARGET_WAITKIND_STOPPED
1403 || thread->last_status.sig () == GDB_SIGNAL_0)
1404 return 0;
1405
1406 /* Otherwise, we may need to deliver the signal we
1407 intercepted. */
1408 status = lp->last_status;
1409 }
1410
1411 if (!WIFSTOPPED (status))
1412 {
1413 threads_debug_printf ("lwp %s hasn't stopped: no pending signal",
1414 target_pid_to_str (ptid_of (thread)).c_str ());
1415 return 0;
1416 }
1417
1418 /* Extended wait statuses aren't real SIGTRAPs. */
1419 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1420 {
1421 threads_debug_printf ("lwp %s had stopped with extended "
1422 "status: no pending signal",
1423 target_pid_to_str (ptid_of (thread)).c_str ());
1424 return 0;
1425 }
1426
1427 signo = gdb_signal_from_host (WSTOPSIG (status));
1428
1429 if (cs.program_signals_p && !cs.program_signals[signo])
1430 {
1431 threads_debug_printf ("lwp %s had signal %s, but it is in nopass state",
1432 target_pid_to_str (ptid_of (thread)).c_str (),
1433 gdb_signal_to_string (signo));
1434 return 0;
1435 }
1436 else if (!cs.program_signals_p
1437 /* If we have no way to know which signals GDB does not
1438 want to have passed to the program, assume
1439 SIGTRAP/SIGINT, which is GDB's default. */
1440 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1441 {
1442 threads_debug_printf ("lwp %s had signal %s, "
1443 "but we don't know if we should pass it. "
1444 "Default to not.",
1445 target_pid_to_str (ptid_of (thread)).c_str (),
1446 gdb_signal_to_string (signo));
1447 return 0;
1448 }
1449 else
1450 {
1451 threads_debug_printf ("lwp %s has pending signal %s: delivering it",
1452 target_pid_to_str (ptid_of (thread)).c_str (),
1453 gdb_signal_to_string (signo));
1454
1455 return WSTOPSIG (status);
1456 }
1457 }
1458
1459 void
1460 linux_process_target::detach_one_lwp (lwp_info *lwp)
1461 {
1462 struct thread_info *thread = get_lwp_thread (lwp);
1463 int sig;
1464 int lwpid;
1465
1466 /* If there is a pending SIGSTOP, get rid of it. */
1467 if (lwp->stop_expected)
1468 {
1469 threads_debug_printf ("Sending SIGCONT to %s",
1470 target_pid_to_str (ptid_of (thread)).c_str ());
1471
1472 kill_lwp (lwpid_of (thread), SIGCONT);
1473 lwp->stop_expected = 0;
1474 }
1475
1476 /* Pass on any pending signal for this thread. */
1477 sig = get_detach_signal (thread);
1478
1479 /* Preparing to resume may try to write registers, and fail if the
1480 lwp is zombie. If that happens, ignore the error. We'll handle
1481 it below, when detach fails with ESRCH. */
1482 try
1483 {
1484 /* Flush any pending changes to the process's registers. */
1485 regcache_invalidate_thread (thread);
1486
1487 /* Finally, let it resume. */
1488 low_prepare_to_resume (lwp);
1489 }
1490 catch (const gdb_exception_error &ex)
1491 {
1492 if (!check_ptrace_stopped_lwp_gone (lwp))
1493 throw;
1494 }
1495
1496 lwpid = lwpid_of (thread);
1497 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1498 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1499 {
1500 int save_errno = errno;
1501
1502 /* We know the thread exists, so ESRCH must mean the lwp is
1503 zombie. This can happen if one of the already-detached
1504 threads exits the whole thread group. In that case we're
1505 still attached, and must reap the lwp. */
1506 if (save_errno == ESRCH)
1507 {
1508 int ret, status;
1509
1510 ret = my_waitpid (lwpid, &status, __WALL);
1511 if (ret == -1)
1512 {
1513 warning (_("Couldn't reap LWP %d while detaching: %s"),
1514 lwpid, safe_strerror (errno));
1515 }
1516 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1517 {
1518 warning (_("Reaping LWP %d while detaching "
1519 "returned unexpected status 0x%x"),
1520 lwpid, status);
1521 }
1522 }
1523 else
1524 {
1525 error (_("Can't detach %s: %s"),
1526 target_pid_to_str (ptid_of (thread)).c_str (),
1527 safe_strerror (save_errno));
1528 }
1529 }
1530 else
1531 threads_debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)",
1532 target_pid_to_str (ptid_of (thread)).c_str (),
1533 strsignal (sig));
1534
1535 delete_lwp (lwp);
1536 }
1537
1538 int
1539 linux_process_target::detach (process_info *process)
1540 {
1541 struct lwp_info *main_lwp;
1542
1543 /* As there's a step over already in progress, let it finish first,
1544 otherwise nesting a stabilize_threads operation on top gets real
1545 messy. */
1546 complete_ongoing_step_over ();
1547
1548 /* Stop all threads before detaching. First, ptrace requires that
1549 the thread is stopped to successfully detach. Second, thread_db
1550 may need to uninstall thread event breakpoints from memory, which
1551 only works with a stopped process anyway. */
1552 stop_all_lwps (0, NULL);
1553
1554 #ifdef USE_THREAD_DB
1555 thread_db_detach (process);
1556 #endif
1557
1558 /* Stabilize threads (move out of jump pads). */
1559 target_stabilize_threads ();
1560
1561 /* Detach from the clone lwps first. If the thread group exits just
1562 while we're detaching, we must reap the clone lwps before we're
1563 able to reap the leader. */
1564 for_each_thread (process->pid, [this] (thread_info *thread)
1565 {
1566 /* We don't actually detach from the thread group leader just yet.
1567 If the thread group exits, we must reap the zombie clone lwps
1568 before we're able to reap the leader. */
1569 if (thread->id.pid () == thread->id.lwp ())
1570 return;
1571
1572 lwp_info *lwp = get_thread_lwp (thread);
1573 detach_one_lwp (lwp);
1574 });
1575
1576 main_lwp = find_lwp_pid (ptid_t (process->pid));
1577 gdb_assert (main_lwp != nullptr);
1578 detach_one_lwp (main_lwp);
1579
1580 mourn (process);
1581
1582 /* Since we presently can only stop all lwps of all processes, we
1583 need to unstop lwps of other processes. */
1584 unstop_all_lwps (0, NULL);
1585 return 0;
1586 }
1587
1588 /* Remove all LWPs that belong to process PROC from the lwp list. */
1589
1590 void
1591 linux_process_target::mourn (process_info *process)
1592 {
1593 #ifdef USE_THREAD_DB
1594 thread_db_mourn (process);
1595 #endif
1596
1597 for_each_thread (process->pid, [this] (thread_info *thread)
1598 {
1599 delete_lwp (get_thread_lwp (thread));
1600 });
1601
1602 this->remove_linux_process (process);
1603 }
1604
1605 void
1606 linux_process_target::join (int pid)
1607 {
1608 int status, ret;
1609
1610 do {
1611 ret = my_waitpid (pid, &status, 0);
1612 if (WIFEXITED (status) || WIFSIGNALED (status))
1613 break;
1614 } while (ret != -1 || errno != ECHILD);
1615 }
1616
1617 /* Return true if the given thread is still alive. */
1618
1619 bool
1620 linux_process_target::thread_alive (ptid_t ptid)
1621 {
1622 struct lwp_info *lwp = find_lwp_pid (ptid);
1623
1624 /* We assume we always know if a thread exits. If a whole process
1625 exited but we still haven't been able to report it to GDB, we'll
1626 hold on to the last lwp of the dead process. */
1627 if (lwp != NULL)
1628 return !lwp_is_marked_dead (lwp);
1629 else
1630 return 0;
1631 }
1632
1633 bool
1634 linux_process_target::thread_still_has_status_pending (thread_info *thread)
1635 {
1636 struct lwp_info *lp = get_thread_lwp (thread);
1637
1638 if (!lp->status_pending_p)
1639 return 0;
1640
1641 if (thread->last_resume_kind != resume_stop
1642 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1643 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1644 {
1645 CORE_ADDR pc;
1646 int discard = 0;
1647
1648 gdb_assert (lp->last_status != 0);
1649
1650 pc = get_pc (lp);
1651
1652 scoped_restore_current_thread restore_thread;
1653 switch_to_thread (thread);
1654
1655 if (pc != lp->stop_pc)
1656 {
1657 threads_debug_printf ("PC of %ld changed",
1658 lwpid_of (thread));
1659 discard = 1;
1660 }
1661
1662 #if !USE_SIGTRAP_SIGINFO
1663 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1664 && !low_breakpoint_at (pc))
1665 {
1666 threads_debug_printf ("previous SW breakpoint of %ld gone",
1667 lwpid_of (thread));
1668 discard = 1;
1669 }
1670 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1671 && !hardware_breakpoint_inserted_here (pc))
1672 {
1673 threads_debug_printf ("previous HW breakpoint of %ld gone",
1674 lwpid_of (thread));
1675 discard = 1;
1676 }
1677 #endif
1678
1679 if (discard)
1680 {
1681 threads_debug_printf ("discarding pending breakpoint status");
1682 lp->status_pending_p = 0;
1683 return 0;
1684 }
1685 }
1686
1687 return 1;
1688 }
1689
1690 /* Returns true if LWP is resumed from the client's perspective. */
1691
1692 static int
1693 lwp_resumed (struct lwp_info *lwp)
1694 {
1695 struct thread_info *thread = get_lwp_thread (lwp);
1696
1697 if (thread->last_resume_kind != resume_stop)
1698 return 1;
1699
1700 /* Did gdb send us a `vCont;t', but we haven't reported the
1701 corresponding stop to gdb yet? If so, the thread is still
1702 resumed/running from gdb's perspective. */
1703 if (thread->last_resume_kind == resume_stop
1704 && thread->last_status.kind () == TARGET_WAITKIND_IGNORE)
1705 return 1;
1706
1707 return 0;
1708 }
1709
1710 bool
1711 linux_process_target::status_pending_p_callback (thread_info *thread,
1712 ptid_t ptid)
1713 {
1714 struct lwp_info *lp = get_thread_lwp (thread);
1715
1716 /* Check if we're only interested in events from a specific process
1717 or a specific LWP. */
1718 if (!thread->id.matches (ptid))
1719 return 0;
1720
1721 if (!lwp_resumed (lp))
1722 return 0;
1723
1724 if (lp->status_pending_p
1725 && !thread_still_has_status_pending (thread))
1726 {
1727 resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1728 return 0;
1729 }
1730
1731 return lp->status_pending_p;
1732 }
1733
1734 struct lwp_info *
1735 find_lwp_pid (ptid_t ptid)
1736 {
1737 long lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1738 thread_info *thread = find_thread ([lwp] (thread_info *thr_arg)
1739 {
1740 return thr_arg->id.lwp () == lwp;
1741 });
1742
1743 if (thread == NULL)
1744 return NULL;
1745
1746 return get_thread_lwp (thread);
1747 }
1748
1749 /* Return the number of known LWPs in the tgid given by PID. */
1750
1751 static int
1752 num_lwps (int pid)
1753 {
1754 int count = 0;
1755
1756 for_each_thread (pid, [&] (thread_info *thread)
1757 {
1758 count++;
1759 });
1760
1761 return count;
1762 }
1763
1764 /* See nat/linux-nat.h. */
1765
1766 struct lwp_info *
1767 iterate_over_lwps (ptid_t filter,
1768 gdb::function_view<iterate_over_lwps_ftype> callback)
1769 {
1770 thread_info *thread = find_thread (filter, [&] (thread_info *thr_arg)
1771 {
1772 lwp_info *lwp = get_thread_lwp (thr_arg);
1773
1774 return callback (lwp);
1775 });
1776
1777 if (thread == NULL)
1778 return NULL;
1779
1780 return get_thread_lwp (thread);
1781 }
1782
1783 void
1784 linux_process_target::check_zombie_leaders ()
1785 {
1786 for_each_process ([this] (process_info *proc)
1787 {
1788 pid_t leader_pid = pid_of (proc);
1789 lwp_info *leader_lp = find_lwp_pid (ptid_t (leader_pid));
1790
1791 threads_debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1792 "num_lwps=%d, zombie=%d",
1793 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1794 linux_proc_pid_is_zombie (leader_pid));
1795
1796 if (leader_lp != NULL && !leader_lp->stopped
1797 /* Check if there are other threads in the group, as we may
1798 have raced with the inferior simply exiting. Note this
1799 isn't a watertight check. If the inferior is
1800 multi-threaded and is exiting, it may be we see the
1801 leader as zombie before we reap all the non-leader
1802 threads. See comments below. */
1803 && !last_thread_of_process_p (leader_pid)
1804 && linux_proc_pid_is_zombie (leader_pid))
1805 {
1806 /* A zombie leader in a multi-threaded program can mean one
1807 of three things:
1808
1809 #1 - Only the leader exited, not the whole program, e.g.,
1810 with pthread_exit. Since we can't reap the leader's exit
1811 status until all other threads are gone and reaped too,
1812 we want to delete the zombie leader right away, as it
1813 can't be debugged, we can't read its registers, etc.
1814 This is the main reason we check for zombie leaders
1815 disappearing.
1816
1817 #2 - The whole thread-group/process exited (a group exit,
1818 via e.g. exit(3), and there is (or will be shortly) an
1819 exit reported for each thread in the process, and then
1820 finally an exit for the leader once the non-leaders are
1821 reaped.
1822
1823 #3 - There are 3 or more threads in the group, and a
1824 thread other than the leader exec'd. See comments on
1825 exec events at the top of the file.
1826
1827 Ideally we would never delete the leader for case #2.
1828 Instead, we want to collect the exit status of each
1829 non-leader thread, and then finally collect the exit
1830 status of the leader as normal and use its exit code as
1831 whole-process exit code. Unfortunately, there's no
1832 race-free way to distinguish cases #1 and #2. We can't
1833 assume the exit events for the non-leaders threads are
1834 already pending in the kernel, nor can we assume the
1835 non-leader threads are in zombie state already. Between
1836 the leader becoming zombie and the non-leaders exiting
1837 and becoming zombie themselves, there's a small time
1838 window, so such a check would be racy. Temporarily
1839 pausing all threads and checking to see if all threads
1840 exit or not before re-resuming them would work in the
1841 case that all threads are running right now, but it
1842 wouldn't work if some thread is currently already
1843 ptrace-stopped, e.g., due to scheduler-locking.
1844
1845 So what we do is we delete the leader anyhow, and then
1846 later on when we see its exit status, we re-add it back.
1847 We also make sure that we only report a whole-process
1848 exit when we see the leader exiting, as opposed to when
1849 the last LWP in the LWP list exits, which can be a
1850 non-leader if we deleted the leader here. */
1851 threads_debug_printf ("Thread group leader %d zombie "
1852 "(it exited, or another thread execd), "
1853 "deleting it.",
1854 leader_pid);
1855 delete_lwp (leader_lp);
1856 }
1857 });
1858 }
1859
1860 /* Callback for `find_thread'. Returns the first LWP that is not
1861 stopped. */
1862
1863 static bool
1864 not_stopped_callback (thread_info *thread, ptid_t filter)
1865 {
1866 if (!thread->id.matches (filter))
1867 return false;
1868
1869 lwp_info *lwp = get_thread_lwp (thread);
1870
1871 return !lwp->stopped;
1872 }
1873
1874 /* Increment LWP's suspend count. */
1875
1876 static void
1877 lwp_suspended_inc (struct lwp_info *lwp)
1878 {
1879 lwp->suspended++;
1880
1881 if (lwp->suspended > 4)
1882 threads_debug_printf
1883 ("LWP %ld has a suspiciously high suspend count, suspended=%d",
1884 lwpid_of (get_lwp_thread (lwp)), lwp->suspended);
1885 }
1886
1887 /* Decrement LWP's suspend count. */
1888
1889 static void
1890 lwp_suspended_decr (struct lwp_info *lwp)
1891 {
1892 lwp->suspended--;
1893
1894 if (lwp->suspended < 0)
1895 {
1896 struct thread_info *thread = get_lwp_thread (lwp);
1897
1898 internal_error ("unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1899 lwp->suspended);
1900 }
1901 }
1902
1903 /* This function should only be called if the LWP got a SIGTRAP.
1904
1905 Handle any tracepoint steps or hits. Return true if a tracepoint
1906 event was handled, 0 otherwise. */
1907
1908 static int
1909 handle_tracepoints (struct lwp_info *lwp)
1910 {
1911 struct thread_info *tinfo = get_lwp_thread (lwp);
1912 int tpoint_related_event = 0;
1913
1914 gdb_assert (lwp->suspended == 0);
1915
1916 /* If this tracepoint hit causes a tracing stop, we'll immediately
1917 uninsert tracepoints. To do this, we temporarily pause all
1918 threads, unpatch away, and then unpause threads. We need to make
1919 sure the unpausing doesn't resume LWP too. */
1920 lwp_suspended_inc (lwp);
1921
1922 /* And we need to be sure that any all-threads-stopping doesn't try
1923 to move threads out of the jump pads, as it could deadlock the
1924 inferior (LWP could be in the jump pad, maybe even holding the
1925 lock.) */
1926
1927 /* Do any necessary step collect actions. */
1928 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1929
1930 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1931
1932 /* See if we just hit a tracepoint and do its main collect
1933 actions. */
1934 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1935
1936 lwp_suspended_decr (lwp);
1937
1938 gdb_assert (lwp->suspended == 0);
1939 gdb_assert (!stabilizing_threads
1940 || (lwp->collecting_fast_tracepoint
1941 != fast_tpoint_collect_result::not_collecting));
1942
1943 if (tpoint_related_event)
1944 {
1945 threads_debug_printf ("got a tracepoint event");
1946 return 1;
1947 }
1948
1949 return 0;
1950 }
1951
1952 fast_tpoint_collect_result
1953 linux_process_target::linux_fast_tracepoint_collecting
1954 (lwp_info *lwp, fast_tpoint_collect_status *status)
1955 {
1956 CORE_ADDR thread_area;
1957 struct thread_info *thread = get_lwp_thread (lwp);
1958
1959 /* Get the thread area address. This is used to recognize which
1960 thread is which when tracing with the in-process agent library.
1961 We don't read anything from the address, and treat it as opaque;
1962 it's the address itself that we assume is unique per-thread. */
1963 if (low_get_thread_area (lwpid_of (thread), &thread_area) == -1)
1964 return fast_tpoint_collect_result::not_collecting;
1965
1966 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1967 }
1968
1969 int
1970 linux_process_target::low_get_thread_area (int lwpid, CORE_ADDR *addrp)
1971 {
1972 return -1;
1973 }
1974
1975 bool
1976 linux_process_target::maybe_move_out_of_jump_pad (lwp_info *lwp, int *wstat)
1977 {
1978 scoped_restore_current_thread restore_thread;
1979 switch_to_thread (get_lwp_thread (lwp));
1980
1981 if ((wstat == NULL
1982 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1983 && supports_fast_tracepoints ()
1984 && agent_loaded_p ())
1985 {
1986 struct fast_tpoint_collect_status status;
1987
1988 threads_debug_printf
1989 ("Checking whether LWP %ld needs to move out of the jump pad.",
1990 lwpid_of (current_thread));
1991
1992 fast_tpoint_collect_result r
1993 = linux_fast_tracepoint_collecting (lwp, &status);
1994
1995 if (wstat == NULL
1996 || (WSTOPSIG (*wstat) != SIGILL
1997 && WSTOPSIG (*wstat) != SIGFPE
1998 && WSTOPSIG (*wstat) != SIGSEGV
1999 && WSTOPSIG (*wstat) != SIGBUS))
2000 {
2001 lwp->collecting_fast_tracepoint = r;
2002
2003 if (r != fast_tpoint_collect_result::not_collecting)
2004 {
2005 if (r == fast_tpoint_collect_result::before_insn
2006 && lwp->exit_jump_pad_bkpt == NULL)
2007 {
2008 /* Haven't executed the original instruction yet.
2009 Set breakpoint there, and wait till it's hit,
2010 then single-step until exiting the jump pad. */
2011 lwp->exit_jump_pad_bkpt
2012 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2013 }
2014
2015 threads_debug_printf
2016 ("Checking whether LWP %ld needs to move out of the jump pad..."
2017 " it does", lwpid_of (current_thread));
2018
2019 return true;
2020 }
2021 }
2022 else
2023 {
2024 /* If we get a synchronous signal while collecting, *and*
2025 while executing the (relocated) original instruction,
2026 reset the PC to point at the tpoint address, before
2027 reporting to GDB. Otherwise, it's an IPA lib bug: just
2028 report the signal to GDB, and pray for the best. */
2029
2030 lwp->collecting_fast_tracepoint
2031 = fast_tpoint_collect_result::not_collecting;
2032
2033 if (r != fast_tpoint_collect_result::not_collecting
2034 && (status.adjusted_insn_addr <= lwp->stop_pc
2035 && lwp->stop_pc < status.adjusted_insn_addr_end))
2036 {
2037 siginfo_t info;
2038 struct regcache *regcache;
2039
2040 /* The si_addr on a few signals references the address
2041 of the faulting instruction. Adjust that as
2042 well. */
2043 if ((WSTOPSIG (*wstat) == SIGILL
2044 || WSTOPSIG (*wstat) == SIGFPE
2045 || WSTOPSIG (*wstat) == SIGBUS
2046 || WSTOPSIG (*wstat) == SIGSEGV)
2047 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2048 (PTRACE_TYPE_ARG3) 0, &info) == 0
2049 /* Final check just to make sure we don't clobber
2050 the siginfo of non-kernel-sent signals. */
2051 && (uintptr_t) info.si_addr == lwp->stop_pc)
2052 {
2053 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2054 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2055 (PTRACE_TYPE_ARG3) 0, &info);
2056 }
2057
2058 regcache = get_thread_regcache (current_thread, 1);
2059 low_set_pc (regcache, status.tpoint_addr);
2060 lwp->stop_pc = status.tpoint_addr;
2061
2062 /* Cancel any fast tracepoint lock this thread was
2063 holding. */
2064 force_unlock_trace_buffer ();
2065 }
2066
2067 if (lwp->exit_jump_pad_bkpt != NULL)
2068 {
2069 threads_debug_printf
2070 ("Cancelling fast exit-jump-pad: removing bkpt."
2071 "stopping all threads momentarily.");
2072
2073 stop_all_lwps (1, lwp);
2074
2075 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2076 lwp->exit_jump_pad_bkpt = NULL;
2077
2078 unstop_all_lwps (1, lwp);
2079
2080 gdb_assert (lwp->suspended >= 0);
2081 }
2082 }
2083 }
2084
2085 threads_debug_printf
2086 ("Checking whether LWP %ld needs to move out of the jump pad... no",
2087 lwpid_of (current_thread));
2088
2089 return false;
2090 }
2091
2092 /* Enqueue one signal in the "signals to report later when out of the
2093 jump pad" list. */
2094
2095 static void
2096 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2097 {
2098 struct thread_info *thread = get_lwp_thread (lwp);
2099
2100 threads_debug_printf ("Deferring signal %d for LWP %ld.",
2101 WSTOPSIG (*wstat), lwpid_of (thread));
2102
2103 if (debug_threads)
2104 {
2105 for (const auto &sig : lwp->pending_signals_to_report)
2106 threads_debug_printf (" Already queued %d", sig.signal);
2107
2108 threads_debug_printf (" (no more currently queued signals)");
2109 }
2110
2111 /* Don't enqueue non-RT signals if they are already in the deferred
2112 queue. (SIGSTOP being the easiest signal to see ending up here
2113 twice) */
2114 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2115 {
2116 for (const auto &sig : lwp->pending_signals_to_report)
2117 {
2118 if (sig.signal == WSTOPSIG (*wstat))
2119 {
2120 threads_debug_printf
2121 ("Not requeuing already queued non-RT signal %d for LWP %ld",
2122 sig.signal, lwpid_of (thread));
2123 return;
2124 }
2125 }
2126 }
2127
2128 lwp->pending_signals_to_report.emplace_back (WSTOPSIG (*wstat));
2129
2130 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2131 &lwp->pending_signals_to_report.back ().info);
2132 }
2133
2134 /* Dequeue one signal from the "signals to report later when out of
2135 the jump pad" list. */
2136
2137 static int
2138 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2139 {
2140 struct thread_info *thread = get_lwp_thread (lwp);
2141
2142 if (!lwp->pending_signals_to_report.empty ())
2143 {
2144 const pending_signal &p_sig = lwp->pending_signals_to_report.front ();
2145
2146 *wstat = W_STOPCODE (p_sig.signal);
2147 if (p_sig.info.si_signo != 0)
2148 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2149 &p_sig.info);
2150
2151 lwp->pending_signals_to_report.pop_front ();
2152
2153 threads_debug_printf ("Reporting deferred signal %d for LWP %ld.",
2154 WSTOPSIG (*wstat), lwpid_of (thread));
2155
2156 if (debug_threads)
2157 {
2158 for (const auto &sig : lwp->pending_signals_to_report)
2159 threads_debug_printf (" Still queued %d", sig.signal);
2160
2161 threads_debug_printf (" (no more queued signals)");
2162 }
2163
2164 return 1;
2165 }
2166
2167 return 0;
2168 }
2169
2170 bool
2171 linux_process_target::check_stopped_by_watchpoint (lwp_info *child)
2172 {
2173 scoped_restore_current_thread restore_thread;
2174 switch_to_thread (get_lwp_thread (child));
2175
2176 if (low_stopped_by_watchpoint ())
2177 {
2178 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2179 child->stopped_data_address = low_stopped_data_address ();
2180 }
2181
2182 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2183 }
2184
2185 bool
2186 linux_process_target::low_stopped_by_watchpoint ()
2187 {
2188 return false;
2189 }
2190
2191 CORE_ADDR
2192 linux_process_target::low_stopped_data_address ()
2193 {
2194 return 0;
2195 }
2196
2197 /* Return the ptrace options that we want to try to enable. */
2198
2199 static int
2200 linux_low_ptrace_options (int attached)
2201 {
2202 client_state &cs = get_client_state ();
2203 int options = 0;
2204
2205 if (!attached)
2206 options |= PTRACE_O_EXITKILL;
2207
2208 if (cs.report_fork_events)
2209 options |= PTRACE_O_TRACEFORK;
2210
2211 if (cs.report_vfork_events)
2212 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2213
2214 if (cs.report_exec_events)
2215 options |= PTRACE_O_TRACEEXEC;
2216
2217 options |= PTRACE_O_TRACESYSGOOD;
2218
2219 return options;
2220 }
2221
2222 void
2223 linux_process_target::filter_event (int lwpid, int wstat)
2224 {
2225 client_state &cs = get_client_state ();
2226 struct lwp_info *child;
2227 struct thread_info *thread;
2228 int have_stop_pc = 0;
2229
2230 child = find_lwp_pid (ptid_t (lwpid));
2231
2232 /* Check for events reported by anything not in our LWP list. */
2233 if (child == nullptr)
2234 {
2235 if (WIFSTOPPED (wstat))
2236 {
2237 if (WSTOPSIG (wstat) == SIGTRAP
2238 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2239 {
2240 /* A non-leader thread exec'ed after we've seen the
2241 leader zombie, and removed it from our lists (in
2242 check_zombie_leaders). The non-leader thread changes
2243 its tid to the tgid. */
2244 threads_debug_printf
2245 ("Re-adding thread group leader LWP %d after exec.",
2246 lwpid);
2247
2248 child = add_lwp (ptid_t (lwpid, lwpid));
2249 child->stopped = 1;
2250 switch_to_thread (child->thread);
2251 }
2252 else
2253 {
2254 /* A process we are controlling has forked and the new
2255 child's stop was reported to us by the kernel. Save
2256 its PID and go back to waiting for the fork event to
2257 be reported - the stopped process might be returned
2258 from waitpid before or after the fork event is. */
2259 threads_debug_printf
2260 ("Saving LWP %d status %s in stopped_pids list",
2261 lwpid, status_to_str (wstat).c_str ());
2262 add_to_pid_list (&stopped_pids, lwpid, wstat);
2263 }
2264 }
2265 else
2266 {
2267 /* Don't report an event for the exit of an LWP not in our
2268 list, i.e. not part of any inferior we're debugging.
2269 This can happen if we detach from a program we originally
2270 forked and then it exits. However, note that we may have
2271 earlier deleted a leader of an inferior we're debugging,
2272 in check_zombie_leaders. Re-add it back here if so. */
2273 find_process ([&] (process_info *proc)
2274 {
2275 if (proc->pid == lwpid)
2276 {
2277 threads_debug_printf
2278 ("Re-adding thread group leader LWP %d after exit.",
2279 lwpid);
2280
2281 child = add_lwp (ptid_t (lwpid, lwpid));
2282 return true;
2283 }
2284 return false;
2285 });
2286 }
2287
2288 if (child == nullptr)
2289 return;
2290 }
2291
2292 thread = get_lwp_thread (child);
2293
2294 child->stopped = 1;
2295
2296 child->last_status = wstat;
2297
2298 /* Check if the thread has exited. */
2299 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2300 {
2301 threads_debug_printf ("%d exited", lwpid);
2302
2303 if (finish_step_over (child))
2304 {
2305 /* Unsuspend all other LWPs, and set them back running again. */
2306 unsuspend_all_lwps (child);
2307 }
2308
2309 /* If this is not the leader LWP, then the exit signal was not
2310 the end of the debugged application and should be ignored,
2311 unless GDB wants to hear about thread exits. */
2312 if (cs.report_thread_events || is_leader (thread))
2313 {
2314 /* Since events are serialized to GDB core, and we can't
2315 report this one right now. Leave the status pending for
2316 the next time we're able to report it. */
2317 mark_lwp_dead (child, wstat);
2318 return;
2319 }
2320 else
2321 {
2322 delete_lwp (child);
2323 return;
2324 }
2325 }
2326
2327 gdb_assert (WIFSTOPPED (wstat));
2328
2329 if (WIFSTOPPED (wstat))
2330 {
2331 struct process_info *proc;
2332
2333 /* Architecture-specific setup after inferior is running. */
2334 proc = find_process_pid (pid_of (thread));
2335 if (proc->tdesc == NULL)
2336 {
2337 if (proc->attached)
2338 {
2339 /* This needs to happen after we have attached to the
2340 inferior and it is stopped for the first time, but
2341 before we access any inferior registers. */
2342 arch_setup_thread (thread);
2343 }
2344 else
2345 {
2346 /* The process is started, but GDBserver will do
2347 architecture-specific setup after the program stops at
2348 the first instruction. */
2349 child->status_pending_p = 1;
2350 child->status_pending = wstat;
2351 return;
2352 }
2353 }
2354 }
2355
2356 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2357 {
2358 struct process_info *proc = find_process_pid (pid_of (thread));
2359 int options = linux_low_ptrace_options (proc->attached);
2360
2361 linux_enable_event_reporting (lwpid, options);
2362 child->must_set_ptrace_flags = 0;
2363 }
2364
2365 /* Always update syscall_state, even if it will be filtered later. */
2366 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2367 {
2368 child->syscall_state
2369 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2370 ? TARGET_WAITKIND_SYSCALL_RETURN
2371 : TARGET_WAITKIND_SYSCALL_ENTRY);
2372 }
2373 else
2374 {
2375 /* Almost all other ptrace-stops are known to be outside of system
2376 calls, with further exceptions in handle_extended_wait. */
2377 child->syscall_state = TARGET_WAITKIND_IGNORE;
2378 }
2379
2380 /* Be careful to not overwrite stop_pc until save_stop_reason is
2381 called. */
2382 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2383 && linux_is_extended_waitstatus (wstat))
2384 {
2385 child->stop_pc = get_pc (child);
2386 if (handle_extended_wait (&child, wstat))
2387 {
2388 /* The event has been handled, so just return without
2389 reporting it. */
2390 return;
2391 }
2392 }
2393
2394 if (linux_wstatus_maybe_breakpoint (wstat))
2395 {
2396 if (save_stop_reason (child))
2397 have_stop_pc = 1;
2398 }
2399
2400 if (!have_stop_pc)
2401 child->stop_pc = get_pc (child);
2402
2403 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2404 && child->stop_expected)
2405 {
2406 threads_debug_printf ("Expected stop.");
2407
2408 child->stop_expected = 0;
2409
2410 if (thread->last_resume_kind == resume_stop)
2411 {
2412 /* We want to report the stop to the core. Treat the
2413 SIGSTOP as a normal event. */
2414 threads_debug_printf ("resume_stop SIGSTOP caught for %s.",
2415 target_pid_to_str (ptid_of (thread)).c_str ());
2416 }
2417 else if (stopping_threads != NOT_STOPPING_THREADS)
2418 {
2419 /* Stopping threads. We don't want this SIGSTOP to end up
2420 pending. */
2421 threads_debug_printf ("SIGSTOP caught for %s while stopping threads.",
2422 target_pid_to_str (ptid_of (thread)).c_str ());
2423 return;
2424 }
2425 else
2426 {
2427 /* This is a delayed SIGSTOP. Filter out the event. */
2428 threads_debug_printf ("%s %s, 0, 0 (discard delayed SIGSTOP)",
2429 child->stepping ? "step" : "continue",
2430 target_pid_to_str (ptid_of (thread)).c_str ());
2431
2432 resume_one_lwp (child, child->stepping, 0, NULL);
2433 return;
2434 }
2435 }
2436
2437 child->status_pending_p = 1;
2438 child->status_pending = wstat;
2439 return;
2440 }
2441
2442 bool
2443 linux_process_target::maybe_hw_step (thread_info *thread)
2444 {
2445 if (supports_hardware_single_step ())
2446 return true;
2447 else
2448 {
2449 /* GDBserver must insert single-step breakpoint for software
2450 single step. */
2451 gdb_assert (has_single_step_breakpoints (thread));
2452 return false;
2453 }
2454 }
2455
2456 void
2457 linux_process_target::resume_stopped_resumed_lwps (thread_info *thread)
2458 {
2459 struct lwp_info *lp = get_thread_lwp (thread);
2460
2461 if (lp->stopped
2462 && !lp->suspended
2463 && !lp->status_pending_p
2464 && thread->last_status.kind () == TARGET_WAITKIND_IGNORE)
2465 {
2466 int step = 0;
2467
2468 if (thread->last_resume_kind == resume_step)
2469 {
2470 if (supports_software_single_step ())
2471 install_software_single_step_breakpoints (lp);
2472
2473 step = maybe_hw_step (thread);
2474 }
2475
2476 threads_debug_printf ("resuming stopped-resumed LWP %s at %s: step=%d",
2477 target_pid_to_str (ptid_of (thread)).c_str (),
2478 paddress (lp->stop_pc), step);
2479
2480 resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2481 }
2482 }
2483
2484 int
2485 linux_process_target::wait_for_event_filtered (ptid_t wait_ptid,
2486 ptid_t filter_ptid,
2487 int *wstatp, int options)
2488 {
2489 struct thread_info *event_thread;
2490 struct lwp_info *event_child, *requested_child;
2491 sigset_t block_mask, prev_mask;
2492
2493 retry:
2494 /* N.B. event_thread points to the thread_info struct that contains
2495 event_child. Keep them in sync. */
2496 event_thread = NULL;
2497 event_child = NULL;
2498 requested_child = NULL;
2499
2500 /* Check for a lwp with a pending status. */
2501
2502 if (filter_ptid == minus_one_ptid || filter_ptid.is_pid ())
2503 {
2504 event_thread = find_thread_in_random ([&] (thread_info *thread)
2505 {
2506 return status_pending_p_callback (thread, filter_ptid);
2507 });
2508
2509 if (event_thread != NULL)
2510 {
2511 event_child = get_thread_lwp (event_thread);
2512 threads_debug_printf ("Got a pending child %ld", lwpid_of (event_thread));
2513 }
2514 }
2515 else if (filter_ptid != null_ptid)
2516 {
2517 requested_child = find_lwp_pid (filter_ptid);
2518 gdb_assert (requested_child != nullptr);
2519
2520 if (stopping_threads == NOT_STOPPING_THREADS
2521 && requested_child->status_pending_p
2522 && (requested_child->collecting_fast_tracepoint
2523 != fast_tpoint_collect_result::not_collecting))
2524 {
2525 enqueue_one_deferred_signal (requested_child,
2526 &requested_child->status_pending);
2527 requested_child->status_pending_p = 0;
2528 requested_child->status_pending = 0;
2529 resume_one_lwp (requested_child, 0, 0, NULL);
2530 }
2531
2532 if (requested_child->suspended
2533 && requested_child->status_pending_p)
2534 {
2535 internal_error ("requesting an event out of a"
2536 " suspended child?");
2537 }
2538
2539 if (requested_child->status_pending_p)
2540 {
2541 event_child = requested_child;
2542 event_thread = get_lwp_thread (event_child);
2543 }
2544 }
2545
2546 if (event_child != NULL)
2547 {
2548 threads_debug_printf ("Got an event from pending child %ld (%04x)",
2549 lwpid_of (event_thread),
2550 event_child->status_pending);
2551
2552 *wstatp = event_child->status_pending;
2553 event_child->status_pending_p = 0;
2554 event_child->status_pending = 0;
2555 switch_to_thread (event_thread);
2556 return lwpid_of (event_thread);
2557 }
2558
2559 /* But if we don't find a pending event, we'll have to wait.
2560
2561 We only enter this loop if no process has a pending wait status.
2562 Thus any action taken in response to a wait status inside this
2563 loop is responding as soon as we detect the status, not after any
2564 pending events. */
2565
2566 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2567 all signals while here. */
2568 sigfillset (&block_mask);
2569 gdb_sigmask (SIG_BLOCK, &block_mask, &prev_mask);
2570
2571 /* Always pull all events out of the kernel. We'll randomly select
2572 an event LWP out of all that have events, to prevent
2573 starvation. */
2574 while (event_child == NULL)
2575 {
2576 pid_t ret = 0;
2577
2578 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2579 quirks:
2580
2581 - If the thread group leader exits while other threads in the
2582 thread group still exist, waitpid(TGID, ...) hangs. That
2583 waitpid won't return an exit status until the other threads
2584 in the group are reaped.
2585
2586 - When a non-leader thread execs, that thread just vanishes
2587 without reporting an exit (so we'd hang if we waited for it
2588 explicitly in that case). The exec event is reported to
2589 the TGID pid. */
2590 errno = 0;
2591 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2592
2593 threads_debug_printf ("waitpid(-1, ...) returned %d, %s",
2594 ret, errno ? safe_strerror (errno) : "ERRNO-OK");
2595
2596 if (ret > 0)
2597 {
2598 threads_debug_printf ("waitpid %ld received %s",
2599 (long) ret, status_to_str (*wstatp).c_str ());
2600
2601 /* Filter all events. IOW, leave all events pending. We'll
2602 randomly select an event LWP out of all that have events
2603 below. */
2604 filter_event (ret, *wstatp);
2605 /* Retry until nothing comes out of waitpid. A single
2606 SIGCHLD can indicate more than one child stopped. */
2607 continue;
2608 }
2609
2610 /* Now that we've pulled all events out of the kernel, resume
2611 LWPs that don't have an interesting event to report. */
2612 if (stopping_threads == NOT_STOPPING_THREADS)
2613 for_each_thread ([this] (thread_info *thread)
2614 {
2615 resume_stopped_resumed_lwps (thread);
2616 });
2617
2618 /* ... and find an LWP with a status to report to the core, if
2619 any. */
2620 event_thread = find_thread_in_random ([&] (thread_info *thread)
2621 {
2622 return status_pending_p_callback (thread, filter_ptid);
2623 });
2624
2625 if (event_thread != NULL)
2626 {
2627 event_child = get_thread_lwp (event_thread);
2628 *wstatp = event_child->status_pending;
2629 event_child->status_pending_p = 0;
2630 event_child->status_pending = 0;
2631 break;
2632 }
2633
2634 /* Check for zombie thread group leaders. Those can't be reaped
2635 until all other threads in the thread group are. */
2636 check_zombie_leaders ();
2637
2638 auto not_stopped = [&] (thread_info *thread)
2639 {
2640 return not_stopped_callback (thread, wait_ptid);
2641 };
2642
2643 /* If there are no resumed children left in the set of LWPs we
2644 want to wait for, bail. We can't just block in
2645 waitpid/sigsuspend, because lwps might have been left stopped
2646 in trace-stop state, and we'd be stuck forever waiting for
2647 their status to change (which would only happen if we resumed
2648 them). Even if WNOHANG is set, this return code is preferred
2649 over 0 (below), as it is more detailed. */
2650 if (find_thread (not_stopped) == NULL)
2651 {
2652 threads_debug_printf ("exit (no unwaited-for LWP)");
2653
2654 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2655 return -1;
2656 }
2657
2658 /* No interesting event to report to the caller. */
2659 if ((options & WNOHANG))
2660 {
2661 threads_debug_printf ("WNOHANG set, no event found");
2662
2663 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2664 return 0;
2665 }
2666
2667 /* Block until we get an event reported with SIGCHLD. */
2668 threads_debug_printf ("sigsuspend'ing");
2669
2670 sigsuspend (&prev_mask);
2671 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2672 goto retry;
2673 }
2674
2675 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2676
2677 switch_to_thread (event_thread);
2678
2679 return lwpid_of (event_thread);
2680 }
2681
2682 int
2683 linux_process_target::wait_for_event (ptid_t ptid, int *wstatp, int options)
2684 {
2685 return wait_for_event_filtered (ptid, ptid, wstatp, options);
2686 }
2687
2688 /* Select one LWP out of those that have events pending. */
2689
2690 static void
2691 select_event_lwp (struct lwp_info **orig_lp)
2692 {
2693 struct thread_info *event_thread = NULL;
2694
2695 /* In all-stop, give preference to the LWP that is being
2696 single-stepped. There will be at most one, and it's the LWP that
2697 the core is most interested in. If we didn't do this, then we'd
2698 have to handle pending step SIGTRAPs somehow in case the core
2699 later continues the previously-stepped thread, otherwise we'd
2700 report the pending SIGTRAP, and the core, not having stepped the
2701 thread, wouldn't understand what the trap was for, and therefore
2702 would report it to the user as a random signal. */
2703 if (!non_stop)
2704 {
2705 event_thread = find_thread ([] (thread_info *thread)
2706 {
2707 lwp_info *lp = get_thread_lwp (thread);
2708
2709 return (thread->last_status.kind () == TARGET_WAITKIND_IGNORE
2710 && thread->last_resume_kind == resume_step
2711 && lp->status_pending_p);
2712 });
2713
2714 if (event_thread != NULL)
2715 threads_debug_printf
2716 ("Select single-step %s",
2717 target_pid_to_str (ptid_of (event_thread)).c_str ());
2718 }
2719 if (event_thread == NULL)
2720 {
2721 /* No single-stepping LWP. Select one at random, out of those
2722 which have had events. */
2723
2724 event_thread = find_thread_in_random ([&] (thread_info *thread)
2725 {
2726 lwp_info *lp = get_thread_lwp (thread);
2727
2728 /* Only resumed LWPs that have an event pending. */
2729 return (thread->last_status.kind () == TARGET_WAITKIND_IGNORE
2730 && lp->status_pending_p);
2731 });
2732 }
2733
2734 if (event_thread != NULL)
2735 {
2736 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2737
2738 /* Switch the event LWP. */
2739 *orig_lp = event_lp;
2740 }
2741 }
2742
2743 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2744 NULL. */
2745
2746 static void
2747 unsuspend_all_lwps (struct lwp_info *except)
2748 {
2749 for_each_thread ([&] (thread_info *thread)
2750 {
2751 lwp_info *lwp = get_thread_lwp (thread);
2752
2753 if (lwp != except)
2754 lwp_suspended_decr (lwp);
2755 });
2756 }
2757
2758 static bool lwp_running (thread_info *thread);
2759
2760 /* Stabilize threads (move out of jump pads).
2761
2762 If a thread is midway collecting a fast tracepoint, we need to
2763 finish the collection and move it out of the jump pad before
2764 reporting the signal.
2765
2766 This avoids recursion while collecting (when a signal arrives
2767 midway, and the signal handler itself collects), which would trash
2768 the trace buffer. In case the user set a breakpoint in a signal
2769 handler, this avoids the backtrace showing the jump pad, etc..
2770 Most importantly, there are certain things we can't do safely if
2771 threads are stopped in a jump pad (or in its callee's). For
2772 example:
2773
2774 - starting a new trace run. A thread still collecting the
2775 previous run, could trash the trace buffer when resumed. The trace
2776 buffer control structures would have been reset but the thread had
2777 no way to tell. The thread could even midway memcpy'ing to the
2778 buffer, which would mean that when resumed, it would clobber the
2779 trace buffer that had been set for a new run.
2780
2781 - we can't rewrite/reuse the jump pads for new tracepoints
2782 safely. Say you do tstart while a thread is stopped midway while
2783 collecting. When the thread is later resumed, it finishes the
2784 collection, and returns to the jump pad, to execute the original
2785 instruction that was under the tracepoint jump at the time the
2786 older run had been started. If the jump pad had been rewritten
2787 since for something else in the new run, the thread would now
2788 execute the wrong / random instructions. */
2789
2790 void
2791 linux_process_target::stabilize_threads ()
2792 {
2793 thread_info *thread_stuck = find_thread ([this] (thread_info *thread)
2794 {
2795 return stuck_in_jump_pad (thread);
2796 });
2797
2798 if (thread_stuck != NULL)
2799 {
2800 threads_debug_printf ("can't stabilize, LWP %ld is stuck in jump pad",
2801 lwpid_of (thread_stuck));
2802 return;
2803 }
2804
2805 scoped_restore_current_thread restore_thread;
2806
2807 stabilizing_threads = 1;
2808
2809 /* Kick 'em all. */
2810 for_each_thread ([this] (thread_info *thread)
2811 {
2812 move_out_of_jump_pad (thread);
2813 });
2814
2815 /* Loop until all are stopped out of the jump pads. */
2816 while (find_thread (lwp_running) != NULL)
2817 {
2818 struct target_waitstatus ourstatus;
2819 struct lwp_info *lwp;
2820 int wstat;
2821
2822 /* Note that we go through the full wait even loop. While
2823 moving threads out of jump pad, we need to be able to step
2824 over internal breakpoints and such. */
2825 wait_1 (minus_one_ptid, &ourstatus, 0);
2826
2827 if (ourstatus.kind () == TARGET_WAITKIND_STOPPED)
2828 {
2829 lwp = get_thread_lwp (current_thread);
2830
2831 /* Lock it. */
2832 lwp_suspended_inc (lwp);
2833
2834 if (ourstatus.sig () != GDB_SIGNAL_0
2835 || current_thread->last_resume_kind == resume_stop)
2836 {
2837 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.sig ()));
2838 enqueue_one_deferred_signal (lwp, &wstat);
2839 }
2840 }
2841 }
2842
2843 unsuspend_all_lwps (NULL);
2844
2845 stabilizing_threads = 0;
2846
2847 if (debug_threads)
2848 {
2849 thread_stuck = find_thread ([this] (thread_info *thread)
2850 {
2851 return stuck_in_jump_pad (thread);
2852 });
2853
2854 if (thread_stuck != NULL)
2855 threads_debug_printf
2856 ("couldn't stabilize, LWP %ld got stuck in jump pad",
2857 lwpid_of (thread_stuck));
2858 }
2859 }
2860
2861 /* Convenience function that is called when the kernel reports an
2862 event that is not passed out to GDB. */
2863
2864 static ptid_t
2865 ignore_event (struct target_waitstatus *ourstatus)
2866 {
2867 /* If we got an event, there may still be others, as a single
2868 SIGCHLD can indicate more than one child stopped. This forces
2869 another target_wait call. */
2870 async_file_mark ();
2871
2872 ourstatus->set_ignore ();
2873 return null_ptid;
2874 }
2875
2876 ptid_t
2877 linux_process_target::filter_exit_event (lwp_info *event_child,
2878 target_waitstatus *ourstatus)
2879 {
2880 client_state &cs = get_client_state ();
2881 struct thread_info *thread = get_lwp_thread (event_child);
2882 ptid_t ptid = ptid_of (thread);
2883
2884 if (!is_leader (thread))
2885 {
2886 if (cs.report_thread_events)
2887 ourstatus->set_thread_exited (0);
2888 else
2889 ourstatus->set_ignore ();
2890
2891 delete_lwp (event_child);
2892 }
2893 return ptid;
2894 }
2895
2896 /* Returns 1 if GDB is interested in any event_child syscalls. */
2897
2898 static int
2899 gdb_catching_syscalls_p (struct lwp_info *event_child)
2900 {
2901 struct thread_info *thread = get_lwp_thread (event_child);
2902 struct process_info *proc = get_thread_process (thread);
2903
2904 return !proc->syscalls_to_catch.empty ();
2905 }
2906
2907 bool
2908 linux_process_target::gdb_catch_this_syscall (lwp_info *event_child)
2909 {
2910 int sysno;
2911 struct thread_info *thread = get_lwp_thread (event_child);
2912 struct process_info *proc = get_thread_process (thread);
2913
2914 if (proc->syscalls_to_catch.empty ())
2915 return false;
2916
2917 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
2918 return true;
2919
2920 get_syscall_trapinfo (event_child, &sysno);
2921
2922 for (int iter : proc->syscalls_to_catch)
2923 if (iter == sysno)
2924 return true;
2925
2926 return false;
2927 }
2928
2929 ptid_t
2930 linux_process_target::wait_1 (ptid_t ptid, target_waitstatus *ourstatus,
2931 target_wait_flags target_options)
2932 {
2933 THREADS_SCOPED_DEBUG_ENTER_EXIT;
2934
2935 client_state &cs = get_client_state ();
2936 int w;
2937 struct lwp_info *event_child;
2938 int options;
2939 int pid;
2940 int step_over_finished;
2941 int bp_explains_trap;
2942 int maybe_internal_trap;
2943 int report_to_gdb;
2944 int trace_event;
2945 int in_step_range;
2946 int any_resumed;
2947
2948 threads_debug_printf ("[%s]", target_pid_to_str (ptid).c_str ());
2949
2950 /* Translate generic target options into linux options. */
2951 options = __WALL;
2952 if (target_options & TARGET_WNOHANG)
2953 options |= WNOHANG;
2954
2955 bp_explains_trap = 0;
2956 trace_event = 0;
2957 in_step_range = 0;
2958 ourstatus->set_ignore ();
2959
2960 auto status_pending_p_any = [&] (thread_info *thread)
2961 {
2962 return status_pending_p_callback (thread, minus_one_ptid);
2963 };
2964
2965 auto not_stopped = [&] (thread_info *thread)
2966 {
2967 return not_stopped_callback (thread, minus_one_ptid);
2968 };
2969
2970 /* Find a resumed LWP, if any. */
2971 if (find_thread (status_pending_p_any) != NULL)
2972 any_resumed = 1;
2973 else if (find_thread (not_stopped) != NULL)
2974 any_resumed = 1;
2975 else
2976 any_resumed = 0;
2977
2978 if (step_over_bkpt == null_ptid)
2979 pid = wait_for_event (ptid, &w, options);
2980 else
2981 {
2982 threads_debug_printf ("step_over_bkpt set [%s], doing a blocking wait",
2983 target_pid_to_str (step_over_bkpt).c_str ());
2984 pid = wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2985 }
2986
2987 if (pid == 0 || (pid == -1 && !any_resumed))
2988 {
2989 gdb_assert (target_options & TARGET_WNOHANG);
2990
2991 threads_debug_printf ("ret = null_ptid, TARGET_WAITKIND_IGNORE");
2992
2993 ourstatus->set_ignore ();
2994 return null_ptid;
2995 }
2996 else if (pid == -1)
2997 {
2998 threads_debug_printf ("ret = null_ptid, TARGET_WAITKIND_NO_RESUMED");
2999
3000 ourstatus->set_no_resumed ();
3001 return null_ptid;
3002 }
3003
3004 event_child = get_thread_lwp (current_thread);
3005
3006 /* wait_for_event only returns an exit status for the last
3007 child of a process. Report it. */
3008 if (WIFEXITED (w) || WIFSIGNALED (w))
3009 {
3010 if (WIFEXITED (w))
3011 {
3012 ourstatus->set_exited (WEXITSTATUS (w));
3013
3014 threads_debug_printf
3015 ("ret = %s, exited with retcode %d",
3016 target_pid_to_str (ptid_of (current_thread)).c_str (),
3017 WEXITSTATUS (w));
3018 }
3019 else
3020 {
3021 ourstatus->set_signalled (gdb_signal_from_host (WTERMSIG (w)));
3022
3023 threads_debug_printf
3024 ("ret = %s, terminated with signal %d",
3025 target_pid_to_str (ptid_of (current_thread)).c_str (),
3026 WTERMSIG (w));
3027 }
3028
3029 if (ourstatus->kind () == TARGET_WAITKIND_EXITED)
3030 return filter_exit_event (event_child, ourstatus);
3031
3032 return ptid_of (current_thread);
3033 }
3034
3035 /* If step-over executes a breakpoint instruction, in the case of a
3036 hardware single step it means a gdb/gdbserver breakpoint had been
3037 planted on top of a permanent breakpoint, in the case of a software
3038 single step it may just mean that gdbserver hit the reinsert breakpoint.
3039 The PC has been adjusted by save_stop_reason to point at
3040 the breakpoint address.
3041 So in the case of the hardware single step advance the PC manually
3042 past the breakpoint and in the case of software single step advance only
3043 if it's not the single_step_breakpoint we are hitting.
3044 This avoids that a program would keep trapping a permanent breakpoint
3045 forever. */
3046 if (step_over_bkpt != null_ptid
3047 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3048 && (event_child->stepping
3049 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3050 {
3051 int increment_pc = 0;
3052 int breakpoint_kind = 0;
3053 CORE_ADDR stop_pc = event_child->stop_pc;
3054
3055 breakpoint_kind = breakpoint_kind_from_current_state (&stop_pc);
3056 sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3057
3058 threads_debug_printf
3059 ("step-over for %s executed software breakpoint",
3060 target_pid_to_str (ptid_of (current_thread)).c_str ());
3061
3062 if (increment_pc != 0)
3063 {
3064 struct regcache *regcache
3065 = get_thread_regcache (current_thread, 1);
3066
3067 event_child->stop_pc += increment_pc;
3068 low_set_pc (regcache, event_child->stop_pc);
3069
3070 if (!low_breakpoint_at (event_child->stop_pc))
3071 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3072 }
3073 }
3074
3075 /* If this event was not handled before, and is not a SIGTRAP, we
3076 report it. SIGILL and SIGSEGV are also treated as traps in case
3077 a breakpoint is inserted at the current PC. If this target does
3078 not support internal breakpoints at all, we also report the
3079 SIGTRAP without further processing; it's of no concern to us. */
3080 maybe_internal_trap
3081 = (low_supports_breakpoints ()
3082 && (WSTOPSIG (w) == SIGTRAP
3083 || ((WSTOPSIG (w) == SIGILL
3084 || WSTOPSIG (w) == SIGSEGV)
3085 && low_breakpoint_at (event_child->stop_pc))));
3086
3087 if (maybe_internal_trap)
3088 {
3089 /* Handle anything that requires bookkeeping before deciding to
3090 report the event or continue waiting. */
3091
3092 /* First check if we can explain the SIGTRAP with an internal
3093 breakpoint, or if we should possibly report the event to GDB.
3094 Do this before anything that may remove or insert a
3095 breakpoint. */
3096 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3097
3098 /* We have a SIGTRAP, possibly a step-over dance has just
3099 finished. If so, tweak the state machine accordingly,
3100 reinsert breakpoints and delete any single-step
3101 breakpoints. */
3102 step_over_finished = finish_step_over (event_child);
3103
3104 /* Now invoke the callbacks of any internal breakpoints there. */
3105 check_breakpoints (event_child->stop_pc);
3106
3107 /* Handle tracepoint data collecting. This may overflow the
3108 trace buffer, and cause a tracing stop, removing
3109 breakpoints. */
3110 trace_event = handle_tracepoints (event_child);
3111
3112 if (bp_explains_trap)
3113 threads_debug_printf ("Hit a gdbserver breakpoint.");
3114 }
3115 else
3116 {
3117 /* We have some other signal, possibly a step-over dance was in
3118 progress, and it should be cancelled too. */
3119 step_over_finished = finish_step_over (event_child);
3120 }
3121
3122 /* We have all the data we need. Either report the event to GDB, or
3123 resume threads and keep waiting for more. */
3124
3125 /* If we're collecting a fast tracepoint, finish the collection and
3126 move out of the jump pad before delivering a signal. See
3127 linux_stabilize_threads. */
3128
3129 if (WIFSTOPPED (w)
3130 && WSTOPSIG (w) != SIGTRAP
3131 && supports_fast_tracepoints ()
3132 && agent_loaded_p ())
3133 {
3134 threads_debug_printf ("Got signal %d for LWP %ld. Check if we need "
3135 "to defer or adjust it.",
3136 WSTOPSIG (w), lwpid_of (current_thread));
3137
3138 /* Allow debugging the jump pad itself. */
3139 if (current_thread->last_resume_kind != resume_step
3140 && maybe_move_out_of_jump_pad (event_child, &w))
3141 {
3142 enqueue_one_deferred_signal (event_child, &w);
3143
3144 threads_debug_printf ("Signal %d for LWP %ld deferred (in jump pad)",
3145 WSTOPSIG (w), lwpid_of (current_thread));
3146
3147 resume_one_lwp (event_child, 0, 0, NULL);
3148
3149 return ignore_event (ourstatus);
3150 }
3151 }
3152
3153 if (event_child->collecting_fast_tracepoint
3154 != fast_tpoint_collect_result::not_collecting)
3155 {
3156 threads_debug_printf
3157 ("LWP %ld was trying to move out of the jump pad (%d). "
3158 "Check if we're already there.",
3159 lwpid_of (current_thread),
3160 (int) event_child->collecting_fast_tracepoint);
3161
3162 trace_event = 1;
3163
3164 event_child->collecting_fast_tracepoint
3165 = linux_fast_tracepoint_collecting (event_child, NULL);
3166
3167 if (event_child->collecting_fast_tracepoint
3168 != fast_tpoint_collect_result::before_insn)
3169 {
3170 /* No longer need this breakpoint. */
3171 if (event_child->exit_jump_pad_bkpt != NULL)
3172 {
3173 threads_debug_printf
3174 ("No longer need exit-jump-pad bkpt; removing it."
3175 "stopping all threads momentarily.");
3176
3177 /* Other running threads could hit this breakpoint.
3178 We don't handle moribund locations like GDB does,
3179 instead we always pause all threads when removing
3180 breakpoints, so that any step-over or
3181 decr_pc_after_break adjustment is always taken
3182 care of while the breakpoint is still
3183 inserted. */
3184 stop_all_lwps (1, event_child);
3185
3186 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3187 event_child->exit_jump_pad_bkpt = NULL;
3188
3189 unstop_all_lwps (1, event_child);
3190
3191 gdb_assert (event_child->suspended >= 0);
3192 }
3193 }
3194
3195 if (event_child->collecting_fast_tracepoint
3196 == fast_tpoint_collect_result::not_collecting)
3197 {
3198 threads_debug_printf
3199 ("fast tracepoint finished collecting successfully.");
3200
3201 /* We may have a deferred signal to report. */
3202 if (dequeue_one_deferred_signal (event_child, &w))
3203 threads_debug_printf ("dequeued one signal.");
3204 else
3205 {
3206 threads_debug_printf ("no deferred signals.");
3207
3208 if (stabilizing_threads)
3209 {
3210 ourstatus->set_stopped (GDB_SIGNAL_0);
3211
3212 threads_debug_printf
3213 ("ret = %s, stopped while stabilizing threads",
3214 target_pid_to_str (ptid_of (current_thread)).c_str ());
3215
3216 return ptid_of (current_thread);
3217 }
3218 }
3219 }
3220 }
3221
3222 /* Check whether GDB would be interested in this event. */
3223
3224 /* Check if GDB is interested in this syscall. */
3225 if (WIFSTOPPED (w)
3226 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3227 && !gdb_catch_this_syscall (event_child))
3228 {
3229 threads_debug_printf ("Ignored syscall for LWP %ld.",
3230 lwpid_of (current_thread));
3231
3232 resume_one_lwp (event_child, event_child->stepping, 0, NULL);
3233
3234 return ignore_event (ourstatus);
3235 }
3236
3237 /* If GDB is not interested in this signal, don't stop other
3238 threads, and don't report it to GDB. Just resume the inferior
3239 right away. We do this for threading-related signals as well as
3240 any that GDB specifically requested we ignore. But never ignore
3241 SIGSTOP if we sent it ourselves, and do not ignore signals when
3242 stepping - they may require special handling to skip the signal
3243 handler. Also never ignore signals that could be caused by a
3244 breakpoint. */
3245 if (WIFSTOPPED (w)
3246 && current_thread->last_resume_kind != resume_step
3247 && (
3248 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3249 (current_process ()->priv->thread_db != NULL
3250 && (WSTOPSIG (w) == __SIGRTMIN
3251 || WSTOPSIG (w) == __SIGRTMIN + 1))
3252 ||
3253 #endif
3254 (cs.pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3255 && !(WSTOPSIG (w) == SIGSTOP
3256 && current_thread->last_resume_kind == resume_stop)
3257 && !linux_wstatus_maybe_breakpoint (w))))
3258 {
3259 siginfo_t info, *info_p;
3260
3261 threads_debug_printf ("Ignored signal %d for LWP %ld.",
3262 WSTOPSIG (w), lwpid_of (current_thread));
3263
3264 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3265 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3266 info_p = &info;
3267 else
3268 info_p = NULL;
3269
3270 if (step_over_finished)
3271 {
3272 /* We cancelled this thread's step-over above. We still
3273 need to unsuspend all other LWPs, and set them back
3274 running again while the signal handler runs. */
3275 unsuspend_all_lwps (event_child);
3276
3277 /* Enqueue the pending signal info so that proceed_all_lwps
3278 doesn't lose it. */
3279 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3280
3281 proceed_all_lwps ();
3282 }
3283 else
3284 {
3285 resume_one_lwp (event_child, event_child->stepping,
3286 WSTOPSIG (w), info_p);
3287 }
3288
3289 return ignore_event (ourstatus);
3290 }
3291
3292 /* Note that all addresses are always "out of the step range" when
3293 there's no range to begin with. */
3294 in_step_range = lwp_in_step_range (event_child);
3295
3296 /* If GDB wanted this thread to single step, and the thread is out
3297 of the step range, we always want to report the SIGTRAP, and let
3298 GDB handle it. Watchpoints should always be reported. So should
3299 signals we can't explain. A SIGTRAP we can't explain could be a
3300 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3301 do, we're be able to handle GDB breakpoints on top of internal
3302 breakpoints, by handling the internal breakpoint and still
3303 reporting the event to GDB. If we don't, we're out of luck, GDB
3304 won't see the breakpoint hit. If we see a single-step event but
3305 the thread should be continuing, don't pass the trap to gdb.
3306 That indicates that we had previously finished a single-step but
3307 left the single-step pending -- see
3308 complete_ongoing_step_over. */
3309 report_to_gdb = (!maybe_internal_trap
3310 || (current_thread->last_resume_kind == resume_step
3311 && !in_step_range)
3312 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3313 || (!in_step_range
3314 && !bp_explains_trap
3315 && !trace_event
3316 && !step_over_finished
3317 && !(current_thread->last_resume_kind == resume_continue
3318 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3319 || (gdb_breakpoint_here (event_child->stop_pc)
3320 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3321 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3322 || event_child->waitstatus.kind () != TARGET_WAITKIND_IGNORE);
3323
3324 run_breakpoint_commands (event_child->stop_pc);
3325
3326 /* We found no reason GDB would want us to stop. We either hit one
3327 of our own breakpoints, or finished an internal step GDB
3328 shouldn't know about. */
3329 if (!report_to_gdb)
3330 {
3331 if (bp_explains_trap)
3332 threads_debug_printf ("Hit a gdbserver breakpoint.");
3333
3334 if (step_over_finished)
3335 threads_debug_printf ("Step-over finished.");
3336
3337 if (trace_event)
3338 threads_debug_printf ("Tracepoint event.");
3339
3340 if (lwp_in_step_range (event_child))
3341 threads_debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).",
3342 paddress (event_child->stop_pc),
3343 paddress (event_child->step_range_start),
3344 paddress (event_child->step_range_end));
3345
3346 /* We're not reporting this breakpoint to GDB, so apply the
3347 decr_pc_after_break adjustment to the inferior's regcache
3348 ourselves. */
3349
3350 if (low_supports_breakpoints ())
3351 {
3352 struct regcache *regcache
3353 = get_thread_regcache (current_thread, 1);
3354 low_set_pc (regcache, event_child->stop_pc);
3355 }
3356
3357 if (step_over_finished)
3358 {
3359 /* If we have finished stepping over a breakpoint, we've
3360 stopped and suspended all LWPs momentarily except the
3361 stepping one. This is where we resume them all again.
3362 We're going to keep waiting, so use proceed, which
3363 handles stepping over the next breakpoint. */
3364 unsuspend_all_lwps (event_child);
3365 }
3366 else
3367 {
3368 /* Remove the single-step breakpoints if any. Note that
3369 there isn't single-step breakpoint if we finished stepping
3370 over. */
3371 if (supports_software_single_step ()
3372 && has_single_step_breakpoints (current_thread))
3373 {
3374 stop_all_lwps (0, event_child);
3375 delete_single_step_breakpoints (current_thread);
3376 unstop_all_lwps (0, event_child);
3377 }
3378 }
3379
3380 threads_debug_printf ("proceeding all threads.");
3381
3382 proceed_all_lwps ();
3383
3384 return ignore_event (ourstatus);
3385 }
3386
3387 if (debug_threads)
3388 {
3389 if (event_child->waitstatus.kind () != TARGET_WAITKIND_IGNORE)
3390 threads_debug_printf ("LWP %ld: extended event with waitstatus %s",
3391 lwpid_of (get_lwp_thread (event_child)),
3392 event_child->waitstatus.to_string ().c_str ());
3393
3394 if (current_thread->last_resume_kind == resume_step)
3395 {
3396 if (event_child->step_range_start == event_child->step_range_end)
3397 threads_debug_printf
3398 ("GDB wanted to single-step, reporting event.");
3399 else if (!lwp_in_step_range (event_child))
3400 threads_debug_printf ("Out of step range, reporting event.");
3401 }
3402
3403 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3404 threads_debug_printf ("Stopped by watchpoint.");
3405 else if (gdb_breakpoint_here (event_child->stop_pc))
3406 threads_debug_printf ("Stopped by GDB breakpoint.");
3407 }
3408
3409 threads_debug_printf ("Hit a non-gdbserver trap event.");
3410
3411 /* Alright, we're going to report a stop. */
3412
3413 /* Remove single-step breakpoints. */
3414 if (supports_software_single_step ())
3415 {
3416 /* Remove single-step breakpoints or not. It it is true, stop all
3417 lwps, so that other threads won't hit the breakpoint in the
3418 staled memory. */
3419 int remove_single_step_breakpoints_p = 0;
3420
3421 if (non_stop)
3422 {
3423 remove_single_step_breakpoints_p
3424 = has_single_step_breakpoints (current_thread);
3425 }
3426 else
3427 {
3428 /* In all-stop, a stop reply cancels all previous resume
3429 requests. Delete all single-step breakpoints. */
3430
3431 find_thread ([&] (thread_info *thread) {
3432 if (has_single_step_breakpoints (thread))
3433 {
3434 remove_single_step_breakpoints_p = 1;
3435 return true;
3436 }
3437
3438 return false;
3439 });
3440 }
3441
3442 if (remove_single_step_breakpoints_p)
3443 {
3444 /* If we remove single-step breakpoints from memory, stop all lwps,
3445 so that other threads won't hit the breakpoint in the staled
3446 memory. */
3447 stop_all_lwps (0, event_child);
3448
3449 if (non_stop)
3450 {
3451 gdb_assert (has_single_step_breakpoints (current_thread));
3452 delete_single_step_breakpoints (current_thread);
3453 }
3454 else
3455 {
3456 for_each_thread ([] (thread_info *thread){
3457 if (has_single_step_breakpoints (thread))
3458 delete_single_step_breakpoints (thread);
3459 });
3460 }
3461
3462 unstop_all_lwps (0, event_child);
3463 }
3464 }
3465
3466 if (!stabilizing_threads)
3467 {
3468 /* In all-stop, stop all threads. */
3469 if (!non_stop)
3470 stop_all_lwps (0, NULL);
3471
3472 if (step_over_finished)
3473 {
3474 if (!non_stop)
3475 {
3476 /* If we were doing a step-over, all other threads but
3477 the stepping one had been paused in start_step_over,
3478 with their suspend counts incremented. We don't want
3479 to do a full unstop/unpause, because we're in
3480 all-stop mode (so we want threads stopped), but we
3481 still need to unsuspend the other threads, to
3482 decrement their `suspended' count back. */
3483 unsuspend_all_lwps (event_child);
3484 }
3485 else
3486 {
3487 /* If we just finished a step-over, then all threads had
3488 been momentarily paused. In all-stop, that's fine,
3489 we want threads stopped by now anyway. In non-stop,
3490 we need to re-resume threads that GDB wanted to be
3491 running. */
3492 unstop_all_lwps (1, event_child);
3493 }
3494 }
3495
3496 /* If we're not waiting for a specific LWP, choose an event LWP
3497 from among those that have had events. Giving equal priority
3498 to all LWPs that have had events helps prevent
3499 starvation. */
3500 if (ptid == minus_one_ptid)
3501 {
3502 event_child->status_pending_p = 1;
3503 event_child->status_pending = w;
3504
3505 select_event_lwp (&event_child);
3506
3507 /* current_thread and event_child must stay in sync. */
3508 switch_to_thread (get_lwp_thread (event_child));
3509
3510 event_child->status_pending_p = 0;
3511 w = event_child->status_pending;
3512 }
3513
3514
3515 /* Stabilize threads (move out of jump pads). */
3516 if (!non_stop)
3517 target_stabilize_threads ();
3518 }
3519 else
3520 {
3521 /* If we just finished a step-over, then all threads had been
3522 momentarily paused. In all-stop, that's fine, we want
3523 threads stopped by now anyway. In non-stop, we need to
3524 re-resume threads that GDB wanted to be running. */
3525 if (step_over_finished)
3526 unstop_all_lwps (1, event_child);
3527 }
3528
3529 /* At this point, we haven't set OURSTATUS. This is where we do it. */
3530 gdb_assert (ourstatus->kind () == TARGET_WAITKIND_IGNORE);
3531
3532 if (event_child->waitstatus.kind () != TARGET_WAITKIND_IGNORE)
3533 {
3534 /* If the reported event is an exit, fork, vfork or exec, let
3535 GDB know. */
3536
3537 /* Break the unreported fork relationship chain. */
3538 if (event_child->waitstatus.kind () == TARGET_WAITKIND_FORKED
3539 || event_child->waitstatus.kind () == TARGET_WAITKIND_VFORKED)
3540 {
3541 event_child->fork_relative->fork_relative = NULL;
3542 event_child->fork_relative = NULL;
3543 }
3544
3545 *ourstatus = event_child->waitstatus;
3546 /* Clear the event lwp's waitstatus since we handled it already. */
3547 event_child->waitstatus.set_ignore ();
3548 }
3549 else
3550 {
3551 /* The LWP stopped due to a plain signal or a syscall signal. Either way,
3552 event_child->waitstatus wasn't filled in with the details, so look at
3553 the wait status W. */
3554 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3555 {
3556 int syscall_number;
3557
3558 get_syscall_trapinfo (event_child, &syscall_number);
3559 if (event_child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY)
3560 ourstatus->set_syscall_entry (syscall_number);
3561 else if (event_child->syscall_state == TARGET_WAITKIND_SYSCALL_RETURN)
3562 ourstatus->set_syscall_return (syscall_number);
3563 else
3564 gdb_assert_not_reached ("unexpected syscall state");
3565 }
3566 else if (current_thread->last_resume_kind == resume_stop
3567 && WSTOPSIG (w) == SIGSTOP)
3568 {
3569 /* A thread that has been requested to stop by GDB with vCont;t,
3570 and it stopped cleanly, so report as SIG0. The use of
3571 SIGSTOP is an implementation detail. */
3572 ourstatus->set_stopped (GDB_SIGNAL_0);
3573 }
3574 else
3575 ourstatus->set_stopped (gdb_signal_from_host (WSTOPSIG (w)));
3576 }
3577
3578 /* Now that we've selected our final event LWP, un-adjust its PC if
3579 it was a software breakpoint, and the client doesn't know we can
3580 adjust the breakpoint ourselves. */
3581 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3582 && !cs.swbreak_feature)
3583 {
3584 int decr_pc = low_decr_pc_after_break ();
3585
3586 if (decr_pc != 0)
3587 {
3588 struct regcache *regcache
3589 = get_thread_regcache (current_thread, 1);
3590 low_set_pc (regcache, event_child->stop_pc + decr_pc);
3591 }
3592 }
3593
3594 gdb_assert (step_over_bkpt == null_ptid);
3595
3596 threads_debug_printf ("ret = %s, %s",
3597 target_pid_to_str (ptid_of (current_thread)).c_str (),
3598 ourstatus->to_string ().c_str ());
3599
3600 if (ourstatus->kind () == TARGET_WAITKIND_EXITED)
3601 return filter_exit_event (event_child, ourstatus);
3602
3603 return ptid_of (current_thread);
3604 }
3605
3606 /* Get rid of any pending event in the pipe. */
3607 static void
3608 async_file_flush (void)
3609 {
3610 linux_event_pipe.flush ();
3611 }
3612
3613 /* Put something in the pipe, so the event loop wakes up. */
3614 static void
3615 async_file_mark (void)
3616 {
3617 linux_event_pipe.mark ();
3618 }
3619
3620 ptid_t
3621 linux_process_target::wait (ptid_t ptid,
3622 target_waitstatus *ourstatus,
3623 target_wait_flags target_options)
3624 {
3625 ptid_t event_ptid;
3626
3627 /* Flush the async file first. */
3628 if (target_is_async_p ())
3629 async_file_flush ();
3630
3631 do
3632 {
3633 event_ptid = wait_1 (ptid, ourstatus, target_options);
3634 }
3635 while ((target_options & TARGET_WNOHANG) == 0
3636 && event_ptid == null_ptid
3637 && ourstatus->kind () == TARGET_WAITKIND_IGNORE);
3638
3639 /* If at least one stop was reported, there may be more. A single
3640 SIGCHLD can signal more than one child stop. */
3641 if (target_is_async_p ()
3642 && (target_options & TARGET_WNOHANG) != 0
3643 && event_ptid != null_ptid)
3644 async_file_mark ();
3645
3646 return event_ptid;
3647 }
3648
3649 /* Send a signal to an LWP. */
3650
3651 static int
3652 kill_lwp (unsigned long lwpid, int signo)
3653 {
3654 int ret;
3655
3656 errno = 0;
3657 ret = syscall (__NR_tkill, lwpid, signo);
3658 if (errno == ENOSYS)
3659 {
3660 /* If tkill fails, then we are not using nptl threads, a
3661 configuration we no longer support. */
3662 perror_with_name (("tkill"));
3663 }
3664 return ret;
3665 }
3666
3667 void
3668 linux_stop_lwp (struct lwp_info *lwp)
3669 {
3670 send_sigstop (lwp);
3671 }
3672
3673 static void
3674 send_sigstop (struct lwp_info *lwp)
3675 {
3676 int pid;
3677
3678 pid = lwpid_of (get_lwp_thread (lwp));
3679
3680 /* If we already have a pending stop signal for this process, don't
3681 send another. */
3682 if (lwp->stop_expected)
3683 {
3684 threads_debug_printf ("Have pending sigstop for lwp %d", pid);
3685
3686 return;
3687 }
3688
3689 threads_debug_printf ("Sending sigstop to lwp %d", pid);
3690
3691 lwp->stop_expected = 1;
3692 kill_lwp (pid, SIGSTOP);
3693 }
3694
3695 static void
3696 send_sigstop (thread_info *thread, lwp_info *except)
3697 {
3698 struct lwp_info *lwp = get_thread_lwp (thread);
3699
3700 /* Ignore EXCEPT. */
3701 if (lwp == except)
3702 return;
3703
3704 if (lwp->stopped)
3705 return;
3706
3707 send_sigstop (lwp);
3708 }
3709
3710 /* Increment the suspend count of an LWP, and stop it, if not stopped
3711 yet. */
3712 static void
3713 suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3714 {
3715 struct lwp_info *lwp = get_thread_lwp (thread);
3716
3717 /* Ignore EXCEPT. */
3718 if (lwp == except)
3719 return;
3720
3721 lwp_suspended_inc (lwp);
3722
3723 send_sigstop (thread, except);
3724 }
3725
3726 static void
3727 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3728 {
3729 /* Store the exit status for later. */
3730 lwp->status_pending_p = 1;
3731 lwp->status_pending = wstat;
3732
3733 /* Store in waitstatus as well, as there's nothing else to process
3734 for this event. */
3735 if (WIFEXITED (wstat))
3736 lwp->waitstatus.set_exited (WEXITSTATUS (wstat));
3737 else if (WIFSIGNALED (wstat))
3738 lwp->waitstatus.set_signalled (gdb_signal_from_host (WTERMSIG (wstat)));
3739
3740 /* Prevent trying to stop it. */
3741 lwp->stopped = 1;
3742
3743 /* No further stops are expected from a dead lwp. */
3744 lwp->stop_expected = 0;
3745 }
3746
3747 /* Return true if LWP has exited already, and has a pending exit event
3748 to report to GDB. */
3749
3750 static int
3751 lwp_is_marked_dead (struct lwp_info *lwp)
3752 {
3753 return (lwp->status_pending_p
3754 && (WIFEXITED (lwp->status_pending)
3755 || WIFSIGNALED (lwp->status_pending)));
3756 }
3757
3758 void
3759 linux_process_target::wait_for_sigstop ()
3760 {
3761 struct thread_info *saved_thread;
3762 ptid_t saved_tid;
3763 int wstat;
3764 int ret;
3765
3766 saved_thread = current_thread;
3767 if (saved_thread != NULL)
3768 saved_tid = saved_thread->id;
3769 else
3770 saved_tid = null_ptid; /* avoid bogus unused warning */
3771
3772 scoped_restore_current_thread restore_thread;
3773
3774 threads_debug_printf ("pulling events");
3775
3776 /* Passing NULL_PTID as filter indicates we want all events to be
3777 left pending. Eventually this returns when there are no
3778 unwaited-for children left. */
3779 ret = wait_for_event_filtered (minus_one_ptid, null_ptid, &wstat, __WALL);
3780 gdb_assert (ret == -1);
3781
3782 if (saved_thread == NULL || mythread_alive (saved_tid))
3783 return;
3784 else
3785 {
3786 threads_debug_printf ("Previously current thread died.");
3787
3788 /* We can't change the current inferior behind GDB's back,
3789 otherwise, a subsequent command may apply to the wrong
3790 process. */
3791 restore_thread.dont_restore ();
3792 switch_to_thread (nullptr);
3793 }
3794 }
3795
3796 bool
3797 linux_process_target::stuck_in_jump_pad (thread_info *thread)
3798 {
3799 struct lwp_info *lwp = get_thread_lwp (thread);
3800
3801 if (lwp->suspended != 0)
3802 {
3803 internal_error ("LWP %ld is suspended, suspended=%d\n",
3804 lwpid_of (thread), lwp->suspended);
3805 }
3806 gdb_assert (lwp->stopped);
3807
3808 /* Allow debugging the jump pad, gdb_collect, etc.. */
3809 return (supports_fast_tracepoints ()
3810 && agent_loaded_p ()
3811 && (gdb_breakpoint_here (lwp->stop_pc)
3812 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3813 || thread->last_resume_kind == resume_step)
3814 && (linux_fast_tracepoint_collecting (lwp, NULL)
3815 != fast_tpoint_collect_result::not_collecting));
3816 }
3817
3818 void
3819 linux_process_target::move_out_of_jump_pad (thread_info *thread)
3820 {
3821 struct lwp_info *lwp = get_thread_lwp (thread);
3822 int *wstat;
3823
3824 if (lwp->suspended != 0)
3825 {
3826 internal_error ("LWP %ld is suspended, suspended=%d\n",
3827 lwpid_of (thread), lwp->suspended);
3828 }
3829 gdb_assert (lwp->stopped);
3830
3831 /* For gdb_breakpoint_here. */
3832 scoped_restore_current_thread restore_thread;
3833 switch_to_thread (thread);
3834
3835 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3836
3837 /* Allow debugging the jump pad, gdb_collect, etc. */
3838 if (!gdb_breakpoint_here (lwp->stop_pc)
3839 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3840 && thread->last_resume_kind != resume_step
3841 && maybe_move_out_of_jump_pad (lwp, wstat))
3842 {
3843 threads_debug_printf ("LWP %ld needs stabilizing (in jump pad)",
3844 lwpid_of (thread));
3845
3846 if (wstat)
3847 {
3848 lwp->status_pending_p = 0;
3849 enqueue_one_deferred_signal (lwp, wstat);
3850
3851 threads_debug_printf ("Signal %d for LWP %ld deferred (in jump pad",
3852 WSTOPSIG (*wstat), lwpid_of (thread));
3853 }
3854
3855 resume_one_lwp (lwp, 0, 0, NULL);
3856 }
3857 else
3858 lwp_suspended_inc (lwp);
3859 }
3860
3861 static bool
3862 lwp_running (thread_info *thread)
3863 {
3864 struct lwp_info *lwp = get_thread_lwp (thread);
3865
3866 if (lwp_is_marked_dead (lwp))
3867 return false;
3868
3869 return !lwp->stopped;
3870 }
3871
3872 void
3873 linux_process_target::stop_all_lwps (int suspend, lwp_info *except)
3874 {
3875 /* Should not be called recursively. */
3876 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3877
3878 THREADS_SCOPED_DEBUG_ENTER_EXIT;
3879
3880 threads_debug_printf
3881 ("%s, except=%s", suspend ? "stop-and-suspend" : "stop",
3882 (except != NULL
3883 ? target_pid_to_str (ptid_of (get_lwp_thread (except))).c_str ()
3884 : "none"));
3885
3886 stopping_threads = (suspend
3887 ? STOPPING_AND_SUSPENDING_THREADS
3888 : STOPPING_THREADS);
3889
3890 if (suspend)
3891 for_each_thread ([&] (thread_info *thread)
3892 {
3893 suspend_and_send_sigstop (thread, except);
3894 });
3895 else
3896 for_each_thread ([&] (thread_info *thread)
3897 {
3898 send_sigstop (thread, except);
3899 });
3900
3901 wait_for_sigstop ();
3902 stopping_threads = NOT_STOPPING_THREADS;
3903
3904 threads_debug_printf ("setting stopping_threads back to !stopping");
3905 }
3906
3907 /* Enqueue one signal in the chain of signals which need to be
3908 delivered to this process on next resume. */
3909
3910 static void
3911 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
3912 {
3913 lwp->pending_signals.emplace_back (signal);
3914 if (info == nullptr)
3915 memset (&lwp->pending_signals.back ().info, 0, sizeof (siginfo_t));
3916 else
3917 lwp->pending_signals.back ().info = *info;
3918 }
3919
3920 void
3921 linux_process_target::install_software_single_step_breakpoints (lwp_info *lwp)
3922 {
3923 struct thread_info *thread = get_lwp_thread (lwp);
3924 struct regcache *regcache = get_thread_regcache (thread, 1);
3925
3926 scoped_restore_current_thread restore_thread;
3927
3928 switch_to_thread (thread);
3929 std::vector<CORE_ADDR> next_pcs = low_get_next_pcs (regcache);
3930
3931 for (CORE_ADDR pc : next_pcs)
3932 set_single_step_breakpoint (pc, current_ptid);
3933 }
3934
3935 int
3936 linux_process_target::single_step (lwp_info* lwp)
3937 {
3938 int step = 0;
3939
3940 if (supports_hardware_single_step ())
3941 {
3942 step = 1;
3943 }
3944 else if (supports_software_single_step ())
3945 {
3946 install_software_single_step_breakpoints (lwp);
3947 step = 0;
3948 }
3949 else
3950 threads_debug_printf ("stepping is not implemented on this target");
3951
3952 return step;
3953 }
3954
3955 /* The signal can be delivered to the inferior if we are not trying to
3956 finish a fast tracepoint collect. Since signal can be delivered in
3957 the step-over, the program may go to signal handler and trap again
3958 after return from the signal handler. We can live with the spurious
3959 double traps. */
3960
3961 static int
3962 lwp_signal_can_be_delivered (struct lwp_info *lwp)
3963 {
3964 return (lwp->collecting_fast_tracepoint
3965 == fast_tpoint_collect_result::not_collecting);
3966 }
3967
3968 void
3969 linux_process_target::resume_one_lwp_throw (lwp_info *lwp, int step,
3970 int signal, siginfo_t *info)
3971 {
3972 struct thread_info *thread = get_lwp_thread (lwp);
3973 int ptrace_request;
3974 struct process_info *proc = get_thread_process (thread);
3975
3976 /* Note that target description may not be initialised
3977 (proc->tdesc == NULL) at this point because the program hasn't
3978 stopped at the first instruction yet. It means GDBserver skips
3979 the extra traps from the wrapper program (see option --wrapper).
3980 Code in this function that requires register access should be
3981 guarded by proc->tdesc == NULL or something else. */
3982
3983 if (lwp->stopped == 0)
3984 return;
3985
3986 gdb_assert (lwp->waitstatus.kind () == TARGET_WAITKIND_IGNORE);
3987
3988 fast_tpoint_collect_result fast_tp_collecting
3989 = lwp->collecting_fast_tracepoint;
3990
3991 gdb_assert (!stabilizing_threads
3992 || (fast_tp_collecting
3993 != fast_tpoint_collect_result::not_collecting));
3994
3995 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3996 user used the "jump" command, or "set $pc = foo"). */
3997 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
3998 {
3999 /* Collecting 'while-stepping' actions doesn't make sense
4000 anymore. */
4001 release_while_stepping_state_list (thread);
4002 }
4003
4004 /* If we have pending signals or status, and a new signal, enqueue the
4005 signal. Also enqueue the signal if it can't be delivered to the
4006 inferior right now. */
4007 if (signal != 0
4008 && (lwp->status_pending_p
4009 || !lwp->pending_signals.empty ()
4010 || !lwp_signal_can_be_delivered (lwp)))
4011 {
4012 enqueue_pending_signal (lwp, signal, info);
4013
4014 /* Postpone any pending signal. It was enqueued above. */
4015 signal = 0;
4016 }
4017
4018 if (lwp->status_pending_p)
4019 {
4020 threads_debug_printf
4021 ("Not resuming lwp %ld (%s, stop %s); has pending status",
4022 lwpid_of (thread), step ? "step" : "continue",
4023 lwp->stop_expected ? "expected" : "not expected");
4024 return;
4025 }
4026
4027 scoped_restore_current_thread restore_thread;
4028 switch_to_thread (thread);
4029
4030 /* This bit needs some thinking about. If we get a signal that
4031 we must report while a single-step reinsert is still pending,
4032 we often end up resuming the thread. It might be better to
4033 (ew) allow a stack of pending events; then we could be sure that
4034 the reinsert happened right away and not lose any signals.
4035
4036 Making this stack would also shrink the window in which breakpoints are
4037 uninserted (see comment in linux_wait_for_lwp) but not enough for
4038 complete correctness, so it won't solve that problem. It may be
4039 worthwhile just to solve this one, however. */
4040 if (lwp->bp_reinsert != 0)
4041 {
4042 threads_debug_printf (" pending reinsert at 0x%s",
4043 paddress (lwp->bp_reinsert));
4044
4045 if (supports_hardware_single_step ())
4046 {
4047 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4048 {
4049 if (step == 0)
4050 warning ("BAD - reinserting but not stepping.");
4051 if (lwp->suspended)
4052 warning ("BAD - reinserting and suspended(%d).",
4053 lwp->suspended);
4054 }
4055 }
4056
4057 step = maybe_hw_step (thread);
4058 }
4059
4060 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4061 threads_debug_printf
4062 ("lwp %ld wants to get out of fast tracepoint jump pad "
4063 "(exit-jump-pad-bkpt)", lwpid_of (thread));
4064
4065 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4066 {
4067 threads_debug_printf
4068 ("lwp %ld wants to get out of fast tracepoint jump pad single-stepping",
4069 lwpid_of (thread));
4070
4071 if (supports_hardware_single_step ())
4072 step = 1;
4073 else
4074 {
4075 internal_error ("moving out of jump pad single-stepping"
4076 " not implemented on this target");
4077 }
4078 }
4079
4080 /* If we have while-stepping actions in this thread set it stepping.
4081 If we have a signal to deliver, it may or may not be set to
4082 SIG_IGN, we don't know. Assume so, and allow collecting
4083 while-stepping into a signal handler. A possible smart thing to
4084 do would be to set an internal breakpoint at the signal return
4085 address, continue, and carry on catching this while-stepping
4086 action only when that breakpoint is hit. A future
4087 enhancement. */
4088 if (thread->while_stepping != NULL)
4089 {
4090 threads_debug_printf
4091 ("lwp %ld has a while-stepping action -> forcing step.",
4092 lwpid_of (thread));
4093
4094 step = single_step (lwp);
4095 }
4096
4097 if (proc->tdesc != NULL && low_supports_breakpoints ())
4098 {
4099 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4100
4101 lwp->stop_pc = low_get_pc (regcache);
4102
4103 threads_debug_printf (" %s from pc 0x%lx", step ? "step" : "continue",
4104 (long) lwp->stop_pc);
4105 }
4106
4107 /* If we have pending signals, consume one if it can be delivered to
4108 the inferior. */
4109 if (!lwp->pending_signals.empty () && lwp_signal_can_be_delivered (lwp))
4110 {
4111 const pending_signal &p_sig = lwp->pending_signals.front ();
4112
4113 signal = p_sig.signal;
4114 if (p_sig.info.si_signo != 0)
4115 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4116 &p_sig.info);
4117
4118 lwp->pending_signals.pop_front ();
4119 }
4120
4121 threads_debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)",
4122 lwpid_of (thread), step ? "step" : "continue", signal,
4123 lwp->stop_expected ? "expected" : "not expected");
4124
4125 low_prepare_to_resume (lwp);
4126
4127 regcache_invalidate_thread (thread);
4128 errno = 0;
4129 lwp->stepping = step;
4130 if (step)
4131 ptrace_request = PTRACE_SINGLESTEP;
4132 else if (gdb_catching_syscalls_p (lwp))
4133 ptrace_request = PTRACE_SYSCALL;
4134 else
4135 ptrace_request = PTRACE_CONT;
4136 ptrace (ptrace_request,
4137 lwpid_of (thread),
4138 (PTRACE_TYPE_ARG3) 0,
4139 /* Coerce to a uintptr_t first to avoid potential gcc warning
4140 of coercing an 8 byte integer to a 4 byte pointer. */
4141 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4142
4143 if (errno)
4144 {
4145 int saved_errno = errno;
4146
4147 threads_debug_printf ("ptrace errno = %d (%s)",
4148 saved_errno, strerror (saved_errno));
4149
4150 errno = saved_errno;
4151 perror_with_name ("resuming thread");
4152 }
4153
4154 /* Successfully resumed. Clear state that no longer makes sense,
4155 and mark the LWP as running. Must not do this before resuming
4156 otherwise if that fails other code will be confused. E.g., we'd
4157 later try to stop the LWP and hang forever waiting for a stop
4158 status. Note that we must not throw after this is cleared,
4159 otherwise handle_zombie_lwp_error would get confused. */
4160 lwp->stopped = 0;
4161 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4162 }
4163
4164 void
4165 linux_process_target::low_prepare_to_resume (lwp_info *lwp)
4166 {
4167 /* Nop. */
4168 }
4169
4170 /* Called when we try to resume a stopped LWP and that errors out. If
4171 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4172 or about to become), discard the error, clear any pending status
4173 the LWP may have, and return true (we'll collect the exit status
4174 soon enough). Otherwise, return false. */
4175
4176 static int
4177 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4178 {
4179 struct thread_info *thread = get_lwp_thread (lp);
4180
4181 /* If we get an error after resuming the LWP successfully, we'd
4182 confuse !T state for the LWP being gone. */
4183 gdb_assert (lp->stopped);
4184
4185 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4186 because even if ptrace failed with ESRCH, the tracee may be "not
4187 yet fully dead", but already refusing ptrace requests. In that
4188 case the tracee has 'R (Running)' state for a little bit
4189 (observed in Linux 3.18). See also the note on ESRCH in the
4190 ptrace(2) man page. Instead, check whether the LWP has any state
4191 other than ptrace-stopped. */
4192
4193 /* Don't assume anything if /proc/PID/status can't be read. */
4194 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4195 {
4196 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4197 lp->status_pending_p = 0;
4198 return 1;
4199 }
4200 return 0;
4201 }
4202
4203 void
4204 linux_process_target::resume_one_lwp (lwp_info *lwp, int step, int signal,
4205 siginfo_t *info)
4206 {
4207 try
4208 {
4209 resume_one_lwp_throw (lwp, step, signal, info);
4210 }
4211 catch (const gdb_exception_error &ex)
4212 {
4213 if (check_ptrace_stopped_lwp_gone (lwp))
4214 {
4215 /* This could because we tried to resume an LWP after its leader
4216 exited. Mark it as resumed, so we can collect an exit event
4217 from it. */
4218 lwp->stopped = 0;
4219 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4220 }
4221 else
4222 throw;
4223 }
4224 }
4225
4226 /* This function is called once per thread via for_each_thread.
4227 We look up which resume request applies to THREAD and mark it with a
4228 pointer to the appropriate resume request.
4229
4230 This algorithm is O(threads * resume elements), but resume elements
4231 is small (and will remain small at least until GDB supports thread
4232 suspension). */
4233
4234 static void
4235 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4236 {
4237 struct lwp_info *lwp = get_thread_lwp (thread);
4238
4239 for (int ndx = 0; ndx < n; ndx++)
4240 {
4241 ptid_t ptid = resume[ndx].thread;
4242 if (ptid == minus_one_ptid
4243 || ptid == thread->id
4244 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4245 of PID'. */
4246 || (ptid.pid () == pid_of (thread)
4247 && (ptid.is_pid ()
4248 || ptid.lwp () == -1)))
4249 {
4250 if (resume[ndx].kind == resume_stop
4251 && thread->last_resume_kind == resume_stop)
4252 {
4253 threads_debug_printf
4254 ("already %s LWP %ld at GDB's request",
4255 (thread->last_status.kind () == TARGET_WAITKIND_STOPPED
4256 ? "stopped" : "stopping"),
4257 lwpid_of (thread));
4258
4259 continue;
4260 }
4261
4262 /* Ignore (wildcard) resume requests for already-resumed
4263 threads. */
4264 if (resume[ndx].kind != resume_stop
4265 && thread->last_resume_kind != resume_stop)
4266 {
4267 threads_debug_printf
4268 ("already %s LWP %ld at GDB's request",
4269 (thread->last_resume_kind == resume_step
4270 ? "stepping" : "continuing"),
4271 lwpid_of (thread));
4272 continue;
4273 }
4274
4275 /* Don't let wildcard resumes resume fork children that GDB
4276 does not yet know are new fork children. */
4277 if (lwp->fork_relative != NULL)
4278 {
4279 struct lwp_info *rel = lwp->fork_relative;
4280
4281 if (rel->status_pending_p
4282 && (rel->waitstatus.kind () == TARGET_WAITKIND_FORKED
4283 || rel->waitstatus.kind () == TARGET_WAITKIND_VFORKED))
4284 {
4285 threads_debug_printf
4286 ("not resuming LWP %ld: has queued stop reply",
4287 lwpid_of (thread));
4288 continue;
4289 }
4290 }
4291
4292 /* If the thread has a pending event that has already been
4293 reported to GDBserver core, but GDB has not pulled the
4294 event out of the vStopped queue yet, likewise, ignore the
4295 (wildcard) resume request. */
4296 if (in_queued_stop_replies (thread->id))
4297 {
4298 threads_debug_printf
4299 ("not resuming LWP %ld: has queued stop reply",
4300 lwpid_of (thread));
4301 continue;
4302 }
4303
4304 lwp->resume = &resume[ndx];
4305 thread->last_resume_kind = lwp->resume->kind;
4306
4307 lwp->step_range_start = lwp->resume->step_range_start;
4308 lwp->step_range_end = lwp->resume->step_range_end;
4309
4310 /* If we had a deferred signal to report, dequeue one now.
4311 This can happen if LWP gets more than one signal while
4312 trying to get out of a jump pad. */
4313 if (lwp->stopped
4314 && !lwp->status_pending_p
4315 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4316 {
4317 lwp->status_pending_p = 1;
4318
4319 threads_debug_printf
4320 ("Dequeueing deferred signal %d for LWP %ld, "
4321 "leaving status pending.",
4322 WSTOPSIG (lwp->status_pending),
4323 lwpid_of (thread));
4324 }
4325
4326 return;
4327 }
4328 }
4329
4330 /* No resume action for this thread. */
4331 lwp->resume = NULL;
4332 }
4333
4334 bool
4335 linux_process_target::resume_status_pending (thread_info *thread)
4336 {
4337 struct lwp_info *lwp = get_thread_lwp (thread);
4338
4339 /* LWPs which will not be resumed are not interesting, because
4340 we might not wait for them next time through linux_wait. */
4341 if (lwp->resume == NULL)
4342 return false;
4343
4344 return thread_still_has_status_pending (thread);
4345 }
4346
4347 bool
4348 linux_process_target::thread_needs_step_over (thread_info *thread)
4349 {
4350 struct lwp_info *lwp = get_thread_lwp (thread);
4351 CORE_ADDR pc;
4352 struct process_info *proc = get_thread_process (thread);
4353
4354 /* GDBserver is skipping the extra traps from the wrapper program,
4355 don't have to do step over. */
4356 if (proc->tdesc == NULL)
4357 return false;
4358
4359 /* LWPs which will not be resumed are not interesting, because we
4360 might not wait for them next time through linux_wait. */
4361
4362 if (!lwp->stopped)
4363 {
4364 threads_debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped",
4365 lwpid_of (thread));
4366 return false;
4367 }
4368
4369 if (thread->last_resume_kind == resume_stop)
4370 {
4371 threads_debug_printf
4372 ("Need step over [LWP %ld]? Ignoring, should remain stopped",
4373 lwpid_of (thread));
4374 return false;
4375 }
4376
4377 gdb_assert (lwp->suspended >= 0);
4378
4379 if (lwp->suspended)
4380 {
4381 threads_debug_printf ("Need step over [LWP %ld]? Ignoring, suspended",
4382 lwpid_of (thread));
4383 return false;
4384 }
4385
4386 if (lwp->status_pending_p)
4387 {
4388 threads_debug_printf
4389 ("Need step over [LWP %ld]? Ignoring, has pending status.",
4390 lwpid_of (thread));
4391 return false;
4392 }
4393
4394 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4395 or we have. */
4396 pc = get_pc (lwp);
4397
4398 /* If the PC has changed since we stopped, then don't do anything,
4399 and let the breakpoint/tracepoint be hit. This happens if, for
4400 instance, GDB handled the decr_pc_after_break subtraction itself,
4401 GDB is OOL stepping this thread, or the user has issued a "jump"
4402 command, or poked thread's registers herself. */
4403 if (pc != lwp->stop_pc)
4404 {
4405 threads_debug_printf
4406 ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4407 "Old stop_pc was 0x%s, PC is now 0x%s", lwpid_of (thread),
4408 paddress (lwp->stop_pc), paddress (pc));
4409 return false;
4410 }
4411
4412 /* On software single step target, resume the inferior with signal
4413 rather than stepping over. */
4414 if (supports_software_single_step ()
4415 && !lwp->pending_signals.empty ()
4416 && lwp_signal_can_be_delivered (lwp))
4417 {
4418 threads_debug_printf
4419 ("Need step over [LWP %ld]? Ignoring, has pending signals.",
4420 lwpid_of (thread));
4421
4422 return false;
4423 }
4424
4425 scoped_restore_current_thread restore_thread;
4426 switch_to_thread (thread);
4427
4428 /* We can only step over breakpoints we know about. */
4429 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4430 {
4431 /* Don't step over a breakpoint that GDB expects to hit
4432 though. If the condition is being evaluated on the target's side
4433 and it evaluate to false, step over this breakpoint as well. */
4434 if (gdb_breakpoint_here (pc)
4435 && gdb_condition_true_at_breakpoint (pc)
4436 && gdb_no_commands_at_breakpoint (pc))
4437 {
4438 threads_debug_printf ("Need step over [LWP %ld]? yes, but found"
4439 " GDB breakpoint at 0x%s; skipping step over",
4440 lwpid_of (thread), paddress (pc));
4441
4442 return false;
4443 }
4444 else
4445 {
4446 threads_debug_printf ("Need step over [LWP %ld]? yes, "
4447 "found breakpoint at 0x%s",
4448 lwpid_of (thread), paddress (pc));
4449
4450 /* We've found an lwp that needs stepping over --- return 1 so
4451 that find_thread stops looking. */
4452 return true;
4453 }
4454 }
4455
4456 threads_debug_printf
4457 ("Need step over [LWP %ld]? No, no breakpoint found at 0x%s",
4458 lwpid_of (thread), paddress (pc));
4459
4460 return false;
4461 }
4462
4463 void
4464 linux_process_target::start_step_over (lwp_info *lwp)
4465 {
4466 struct thread_info *thread = get_lwp_thread (lwp);
4467 CORE_ADDR pc;
4468
4469 threads_debug_printf ("Starting step-over on LWP %ld. Stopping all threads",
4470 lwpid_of (thread));
4471
4472 stop_all_lwps (1, lwp);
4473
4474 if (lwp->suspended != 0)
4475 {
4476 internal_error ("LWP %ld suspended=%d\n", lwpid_of (thread),
4477 lwp->suspended);
4478 }
4479
4480 threads_debug_printf ("Done stopping all threads for step-over.");
4481
4482 /* Note, we should always reach here with an already adjusted PC,
4483 either by GDB (if we're resuming due to GDB's request), or by our
4484 caller, if we just finished handling an internal breakpoint GDB
4485 shouldn't care about. */
4486 pc = get_pc (lwp);
4487
4488 bool step = false;
4489 {
4490 scoped_restore_current_thread restore_thread;
4491 switch_to_thread (thread);
4492
4493 lwp->bp_reinsert = pc;
4494 uninsert_breakpoints_at (pc);
4495 uninsert_fast_tracepoint_jumps_at (pc);
4496
4497 step = single_step (lwp);
4498 }
4499
4500 resume_one_lwp (lwp, step, 0, NULL);
4501
4502 /* Require next event from this LWP. */
4503 step_over_bkpt = thread->id;
4504 }
4505
4506 bool
4507 linux_process_target::finish_step_over (lwp_info *lwp)
4508 {
4509 if (lwp->bp_reinsert != 0)
4510 {
4511 scoped_restore_current_thread restore_thread;
4512
4513 threads_debug_printf ("Finished step over.");
4514
4515 switch_to_thread (get_lwp_thread (lwp));
4516
4517 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4518 may be no breakpoint to reinsert there by now. */
4519 reinsert_breakpoints_at (lwp->bp_reinsert);
4520 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4521
4522 lwp->bp_reinsert = 0;
4523
4524 /* Delete any single-step breakpoints. No longer needed. We
4525 don't have to worry about other threads hitting this trap,
4526 and later not being able to explain it, because we were
4527 stepping over a breakpoint, and we hold all threads but
4528 LWP stopped while doing that. */
4529 if (!supports_hardware_single_step ())
4530 {
4531 gdb_assert (has_single_step_breakpoints (current_thread));
4532 delete_single_step_breakpoints (current_thread);
4533 }
4534
4535 step_over_bkpt = null_ptid;
4536 return true;
4537 }
4538 else
4539 return false;
4540 }
4541
4542 void
4543 linux_process_target::complete_ongoing_step_over ()
4544 {
4545 if (step_over_bkpt != null_ptid)
4546 {
4547 struct lwp_info *lwp;
4548 int wstat;
4549 int ret;
4550
4551 threads_debug_printf ("detach: step over in progress, finish it first");
4552
4553 /* Passing NULL_PTID as filter indicates we want all events to
4554 be left pending. Eventually this returns when there are no
4555 unwaited-for children left. */
4556 ret = wait_for_event_filtered (minus_one_ptid, null_ptid, &wstat,
4557 __WALL);
4558 gdb_assert (ret == -1);
4559
4560 lwp = find_lwp_pid (step_over_bkpt);
4561 if (lwp != NULL)
4562 {
4563 finish_step_over (lwp);
4564
4565 /* If we got our step SIGTRAP, don't leave it pending,
4566 otherwise we would report it to GDB as a spurious
4567 SIGTRAP. */
4568 gdb_assert (lwp->status_pending_p);
4569 if (WIFSTOPPED (lwp->status_pending)
4570 && WSTOPSIG (lwp->status_pending) == SIGTRAP)
4571 {
4572 thread_info *thread = get_lwp_thread (lwp);
4573 if (thread->last_resume_kind != resume_step)
4574 {
4575 threads_debug_printf ("detach: discard step-over SIGTRAP");
4576
4577 lwp->status_pending_p = 0;
4578 lwp->status_pending = 0;
4579 resume_one_lwp (lwp, lwp->stepping, 0, NULL);
4580 }
4581 else
4582 threads_debug_printf
4583 ("detach: resume_step, not discarding step-over SIGTRAP");
4584 }
4585 }
4586 step_over_bkpt = null_ptid;
4587 unsuspend_all_lwps (lwp);
4588 }
4589 }
4590
4591 void
4592 linux_process_target::resume_one_thread (thread_info *thread,
4593 bool leave_all_stopped)
4594 {
4595 struct lwp_info *lwp = get_thread_lwp (thread);
4596 int leave_pending;
4597
4598 if (lwp->resume == NULL)
4599 return;
4600
4601 if (lwp->resume->kind == resume_stop)
4602 {
4603 threads_debug_printf ("resume_stop request for LWP %ld",
4604 lwpid_of (thread));
4605
4606 if (!lwp->stopped)
4607 {
4608 threads_debug_printf ("stopping LWP %ld", lwpid_of (thread));
4609
4610 /* Stop the thread, and wait for the event asynchronously,
4611 through the event loop. */
4612 send_sigstop (lwp);
4613 }
4614 else
4615 {
4616 threads_debug_printf ("already stopped LWP %ld", lwpid_of (thread));
4617
4618 /* The LWP may have been stopped in an internal event that
4619 was not meant to be notified back to GDB (e.g., gdbserver
4620 breakpoint), so we should be reporting a stop event in
4621 this case too. */
4622
4623 /* If the thread already has a pending SIGSTOP, this is a
4624 no-op. Otherwise, something later will presumably resume
4625 the thread and this will cause it to cancel any pending
4626 operation, due to last_resume_kind == resume_stop. If
4627 the thread already has a pending status to report, we
4628 will still report it the next time we wait - see
4629 status_pending_p_callback. */
4630
4631 /* If we already have a pending signal to report, then
4632 there's no need to queue a SIGSTOP, as this means we're
4633 midway through moving the LWP out of the jumppad, and we
4634 will report the pending signal as soon as that is
4635 finished. */
4636 if (lwp->pending_signals_to_report.empty ())
4637 send_sigstop (lwp);
4638 }
4639
4640 /* For stop requests, we're done. */
4641 lwp->resume = NULL;
4642 thread->last_status.set_ignore ();
4643 return;
4644 }
4645
4646 /* If this thread which is about to be resumed has a pending status,
4647 then don't resume it - we can just report the pending status.
4648 Likewise if it is suspended, because e.g., another thread is
4649 stepping past a breakpoint. Make sure to queue any signals that
4650 would otherwise be sent. In all-stop mode, we do this decision
4651 based on if *any* thread has a pending status. If there's a
4652 thread that needs the step-over-breakpoint dance, then don't
4653 resume any other thread but that particular one. */
4654 leave_pending = (lwp->suspended
4655 || lwp->status_pending_p
4656 || leave_all_stopped);
4657
4658 /* If we have a new signal, enqueue the signal. */
4659 if (lwp->resume->sig != 0)
4660 {
4661 siginfo_t info, *info_p;
4662
4663 /* If this is the same signal we were previously stopped by,
4664 make sure to queue its siginfo. */
4665 if (WIFSTOPPED (lwp->last_status)
4666 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
4667 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
4668 (PTRACE_TYPE_ARG3) 0, &info) == 0)
4669 info_p = &info;
4670 else
4671 info_p = NULL;
4672
4673 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
4674 }
4675
4676 if (!leave_pending)
4677 {
4678 threads_debug_printf ("resuming LWP %ld", lwpid_of (thread));
4679
4680 proceed_one_lwp (thread, NULL);
4681 }
4682 else
4683 threads_debug_printf ("leaving LWP %ld stopped", lwpid_of (thread));
4684
4685 thread->last_status.set_ignore ();
4686 lwp->resume = NULL;
4687 }
4688
4689 void
4690 linux_process_target::resume (thread_resume *resume_info, size_t n)
4691 {
4692 struct thread_info *need_step_over = NULL;
4693
4694 THREADS_SCOPED_DEBUG_ENTER_EXIT;
4695
4696 for_each_thread ([&] (thread_info *thread)
4697 {
4698 linux_set_resume_request (thread, resume_info, n);
4699 });
4700
4701 /* If there is a thread which would otherwise be resumed, which has
4702 a pending status, then don't resume any threads - we can just
4703 report the pending status. Make sure to queue any signals that
4704 would otherwise be sent. In non-stop mode, we'll apply this
4705 logic to each thread individually. We consume all pending events
4706 before considering to start a step-over (in all-stop). */
4707 bool any_pending = false;
4708 if (!non_stop)
4709 any_pending = find_thread ([this] (thread_info *thread)
4710 {
4711 return resume_status_pending (thread);
4712 }) != nullptr;
4713
4714 /* If there is a thread which would otherwise be resumed, which is
4715 stopped at a breakpoint that needs stepping over, then don't
4716 resume any threads - have it step over the breakpoint with all
4717 other threads stopped, then resume all threads again. Make sure
4718 to queue any signals that would otherwise be delivered or
4719 queued. */
4720 if (!any_pending && low_supports_breakpoints ())
4721 need_step_over = find_thread ([this] (thread_info *thread)
4722 {
4723 return thread_needs_step_over (thread);
4724 });
4725
4726 bool leave_all_stopped = (need_step_over != NULL || any_pending);
4727
4728 if (need_step_over != NULL)
4729 threads_debug_printf ("Not resuming all, need step over");
4730 else if (any_pending)
4731 threads_debug_printf ("Not resuming, all-stop and found "
4732 "an LWP with pending status");
4733 else
4734 threads_debug_printf ("Resuming, no pending status or step over needed");
4735
4736 /* Even if we're leaving threads stopped, queue all signals we'd
4737 otherwise deliver. */
4738 for_each_thread ([&] (thread_info *thread)
4739 {
4740 resume_one_thread (thread, leave_all_stopped);
4741 });
4742
4743 if (need_step_over)
4744 start_step_over (get_thread_lwp (need_step_over));
4745
4746 /* We may have events that were pending that can/should be sent to
4747 the client now. Trigger a linux_wait call. */
4748 if (target_is_async_p ())
4749 async_file_mark ();
4750 }
4751
4752 void
4753 linux_process_target::proceed_one_lwp (thread_info *thread, lwp_info *except)
4754 {
4755 struct lwp_info *lwp = get_thread_lwp (thread);
4756 int step;
4757
4758 if (lwp == except)
4759 return;
4760
4761 threads_debug_printf ("lwp %ld", lwpid_of (thread));
4762
4763 if (!lwp->stopped)
4764 {
4765 threads_debug_printf (" LWP %ld already running", lwpid_of (thread));
4766 return;
4767 }
4768
4769 if (thread->last_resume_kind == resume_stop
4770 && thread->last_status.kind () != TARGET_WAITKIND_IGNORE)
4771 {
4772 threads_debug_printf (" client wants LWP to remain %ld stopped",
4773 lwpid_of (thread));
4774 return;
4775 }
4776
4777 if (lwp->status_pending_p)
4778 {
4779 threads_debug_printf (" LWP %ld has pending status, leaving stopped",
4780 lwpid_of (thread));
4781 return;
4782 }
4783
4784 gdb_assert (lwp->suspended >= 0);
4785
4786 if (lwp->suspended)
4787 {
4788 threads_debug_printf (" LWP %ld is suspended", lwpid_of (thread));
4789 return;
4790 }
4791
4792 if (thread->last_resume_kind == resume_stop
4793 && lwp->pending_signals_to_report.empty ()
4794 && (lwp->collecting_fast_tracepoint
4795 == fast_tpoint_collect_result::not_collecting))
4796 {
4797 /* We haven't reported this LWP as stopped yet (otherwise, the
4798 last_status.kind check above would catch it, and we wouldn't
4799 reach here. This LWP may have been momentarily paused by a
4800 stop_all_lwps call while handling for example, another LWP's
4801 step-over. In that case, the pending expected SIGSTOP signal
4802 that was queued at vCont;t handling time will have already
4803 been consumed by wait_for_sigstop, and so we need to requeue
4804 another one here. Note that if the LWP already has a SIGSTOP
4805 pending, this is a no-op. */
4806
4807 threads_debug_printf
4808 ("Client wants LWP %ld to stop. Making sure it has a SIGSTOP pending",
4809 lwpid_of (thread));
4810
4811 send_sigstop (lwp);
4812 }
4813
4814 if (thread->last_resume_kind == resume_step)
4815 {
4816 threads_debug_printf (" stepping LWP %ld, client wants it stepping",
4817 lwpid_of (thread));
4818
4819 /* If resume_step is requested by GDB, install single-step
4820 breakpoints when the thread is about to be actually resumed if
4821 the single-step breakpoints weren't removed. */
4822 if (supports_software_single_step ()
4823 && !has_single_step_breakpoints (thread))
4824 install_software_single_step_breakpoints (lwp);
4825
4826 step = maybe_hw_step (thread);
4827 }
4828 else if (lwp->bp_reinsert != 0)
4829 {
4830 threads_debug_printf (" stepping LWP %ld, reinsert set",
4831 lwpid_of (thread));
4832
4833 step = maybe_hw_step (thread);
4834 }
4835 else
4836 step = 0;
4837
4838 resume_one_lwp (lwp, step, 0, NULL);
4839 }
4840
4841 void
4842 linux_process_target::unsuspend_and_proceed_one_lwp (thread_info *thread,
4843 lwp_info *except)
4844 {
4845 struct lwp_info *lwp = get_thread_lwp (thread);
4846
4847 if (lwp == except)
4848 return;
4849
4850 lwp_suspended_decr (lwp);
4851
4852 proceed_one_lwp (thread, except);
4853 }
4854
4855 void
4856 linux_process_target::proceed_all_lwps ()
4857 {
4858 struct thread_info *need_step_over;
4859
4860 /* If there is a thread which would otherwise be resumed, which is
4861 stopped at a breakpoint that needs stepping over, then don't
4862 resume any threads - have it step over the breakpoint with all
4863 other threads stopped, then resume all threads again. */
4864
4865 if (low_supports_breakpoints ())
4866 {
4867 need_step_over = find_thread ([this] (thread_info *thread)
4868 {
4869 return thread_needs_step_over (thread);
4870 });
4871
4872 if (need_step_over != NULL)
4873 {
4874 threads_debug_printf ("found thread %ld needing a step-over",
4875 lwpid_of (need_step_over));
4876
4877 start_step_over (get_thread_lwp (need_step_over));
4878 return;
4879 }
4880 }
4881
4882 threads_debug_printf ("Proceeding, no step-over needed");
4883
4884 for_each_thread ([this] (thread_info *thread)
4885 {
4886 proceed_one_lwp (thread, NULL);
4887 });
4888 }
4889
4890 void
4891 linux_process_target::unstop_all_lwps (int unsuspend, lwp_info *except)
4892 {
4893 THREADS_SCOPED_DEBUG_ENTER_EXIT;
4894
4895 if (except)
4896 threads_debug_printf ("except=(LWP %ld)",
4897 lwpid_of (get_lwp_thread (except)));
4898 else
4899 threads_debug_printf ("except=nullptr");
4900
4901 if (unsuspend)
4902 for_each_thread ([&] (thread_info *thread)
4903 {
4904 unsuspend_and_proceed_one_lwp (thread, except);
4905 });
4906 else
4907 for_each_thread ([&] (thread_info *thread)
4908 {
4909 proceed_one_lwp (thread, except);
4910 });
4911 }
4912
4913
4914 #ifdef HAVE_LINUX_REGSETS
4915
4916 #define use_linux_regsets 1
4917
4918 /* Returns true if REGSET has been disabled. */
4919
4920 static int
4921 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4922 {
4923 return (info->disabled_regsets != NULL
4924 && info->disabled_regsets[regset - info->regsets]);
4925 }
4926
4927 /* Disable REGSET. */
4928
4929 static void
4930 disable_regset (struct regsets_info *info, struct regset_info *regset)
4931 {
4932 int dr_offset;
4933
4934 dr_offset = regset - info->regsets;
4935 if (info->disabled_regsets == NULL)
4936 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
4937 info->disabled_regsets[dr_offset] = 1;
4938 }
4939
4940 static int
4941 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4942 struct regcache *regcache)
4943 {
4944 struct regset_info *regset;
4945 int saw_general_regs = 0;
4946 int pid;
4947 struct iovec iov;
4948
4949 pid = lwpid_of (current_thread);
4950 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4951 {
4952 void *buf, *data;
4953 int nt_type, res;
4954
4955 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4956 continue;
4957
4958 buf = xmalloc (regset->size);
4959
4960 nt_type = regset->nt_type;
4961 if (nt_type)
4962 {
4963 iov.iov_base = buf;
4964 iov.iov_len = regset->size;
4965 data = (void *) &iov;
4966 }
4967 else
4968 data = buf;
4969
4970 #ifndef __sparc__
4971 res = ptrace (regset->get_request, pid,
4972 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4973 #else
4974 res = ptrace (regset->get_request, pid, data, nt_type);
4975 #endif
4976 if (res < 0)
4977 {
4978 if (errno == EIO
4979 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
4980 {
4981 /* If we get EIO on a regset, or an EINVAL and the regset is
4982 optional, do not try it again for this process mode. */
4983 disable_regset (regsets_info, regset);
4984 }
4985 else if (errno == ENODATA)
4986 {
4987 /* ENODATA may be returned if the regset is currently
4988 not "active". This can happen in normal operation,
4989 so suppress the warning in this case. */
4990 }
4991 else if (errno == ESRCH)
4992 {
4993 /* At this point, ESRCH should mean the process is
4994 already gone, in which case we simply ignore attempts
4995 to read its registers. */
4996 }
4997 else
4998 {
4999 char s[256];
5000 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5001 pid);
5002 perror (s);
5003 }
5004 }
5005 else
5006 {
5007 if (regset->type == GENERAL_REGS)
5008 saw_general_regs = 1;
5009 regset->store_function (regcache, buf);
5010 }
5011 free (buf);
5012 }
5013 if (saw_general_regs)
5014 return 0;
5015 else
5016 return 1;
5017 }
5018
5019 static int
5020 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5021 struct regcache *regcache)
5022 {
5023 struct regset_info *regset;
5024 int saw_general_regs = 0;
5025 int pid;
5026 struct iovec iov;
5027
5028 pid = lwpid_of (current_thread);
5029 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5030 {
5031 void *buf, *data;
5032 int nt_type, res;
5033
5034 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5035 || regset->fill_function == NULL)
5036 continue;
5037
5038 buf = xmalloc (regset->size);
5039
5040 /* First fill the buffer with the current register set contents,
5041 in case there are any items in the kernel's regset that are
5042 not in gdbserver's regcache. */
5043
5044 nt_type = regset->nt_type;
5045 if (nt_type)
5046 {
5047 iov.iov_base = buf;
5048 iov.iov_len = regset->size;
5049 data = (void *) &iov;
5050 }
5051 else
5052 data = buf;
5053
5054 #ifndef __sparc__
5055 res = ptrace (regset->get_request, pid,
5056 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5057 #else
5058 res = ptrace (regset->get_request, pid, data, nt_type);
5059 #endif
5060
5061 if (res == 0)
5062 {
5063 /* Then overlay our cached registers on that. */
5064 regset->fill_function (regcache, buf);
5065
5066 /* Only now do we write the register set. */
5067 #ifndef __sparc__
5068 res = ptrace (regset->set_request, pid,
5069 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5070 #else
5071 res = ptrace (regset->set_request, pid, data, nt_type);
5072 #endif
5073 }
5074
5075 if (res < 0)
5076 {
5077 if (errno == EIO
5078 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5079 {
5080 /* If we get EIO on a regset, or an EINVAL and the regset is
5081 optional, do not try it again for this process mode. */
5082 disable_regset (regsets_info, regset);
5083 }
5084 else if (errno == ESRCH)
5085 {
5086 /* At this point, ESRCH should mean the process is
5087 already gone, in which case we simply ignore attempts
5088 to change its registers. See also the related
5089 comment in resume_one_lwp. */
5090 free (buf);
5091 return 0;
5092 }
5093 else
5094 {
5095 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5096 }
5097 }
5098 else if (regset->type == GENERAL_REGS)
5099 saw_general_regs = 1;
5100 free (buf);
5101 }
5102 if (saw_general_regs)
5103 return 0;
5104 else
5105 return 1;
5106 }
5107
5108 #else /* !HAVE_LINUX_REGSETS */
5109
5110 #define use_linux_regsets 0
5111 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5112 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5113
5114 #endif
5115
5116 /* Return 1 if register REGNO is supported by one of the regset ptrace
5117 calls or 0 if it has to be transferred individually. */
5118
5119 static int
5120 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5121 {
5122 unsigned char mask = 1 << (regno % 8);
5123 size_t index = regno / 8;
5124
5125 return (use_linux_regsets
5126 && (regs_info->regset_bitmap == NULL
5127 || (regs_info->regset_bitmap[index] & mask) != 0));
5128 }
5129
5130 #ifdef HAVE_LINUX_USRREGS
5131
5132 static int
5133 register_addr (const struct usrregs_info *usrregs, int regnum)
5134 {
5135 int addr;
5136
5137 if (regnum < 0 || regnum >= usrregs->num_regs)
5138 error ("Invalid register number %d.", regnum);
5139
5140 addr = usrregs->regmap[regnum];
5141
5142 return addr;
5143 }
5144
5145
5146 void
5147 linux_process_target::fetch_register (const usrregs_info *usrregs,
5148 regcache *regcache, int regno)
5149 {
5150 CORE_ADDR regaddr;
5151 int i, size;
5152 char *buf;
5153 int pid;
5154
5155 if (regno >= usrregs->num_regs)
5156 return;
5157 if (low_cannot_fetch_register (regno))
5158 return;
5159
5160 regaddr = register_addr (usrregs, regno);
5161 if (regaddr == -1)
5162 return;
5163
5164 size = ((register_size (regcache->tdesc, regno)
5165 + sizeof (PTRACE_XFER_TYPE) - 1)
5166 & -sizeof (PTRACE_XFER_TYPE));
5167 buf = (char *) alloca (size);
5168
5169 pid = lwpid_of (current_thread);
5170 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5171 {
5172 errno = 0;
5173 *(PTRACE_XFER_TYPE *) (buf + i) =
5174 ptrace (PTRACE_PEEKUSER, pid,
5175 /* Coerce to a uintptr_t first to avoid potential gcc warning
5176 of coercing an 8 byte integer to a 4 byte pointer. */
5177 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5178 regaddr += sizeof (PTRACE_XFER_TYPE);
5179 if (errno != 0)
5180 {
5181 /* Mark register REGNO unavailable. */
5182 supply_register (regcache, regno, NULL);
5183 return;
5184 }
5185 }
5186
5187 low_supply_ptrace_register (regcache, regno, buf);
5188 }
5189
5190 void
5191 linux_process_target::store_register (const usrregs_info *usrregs,
5192 regcache *regcache, int regno)
5193 {
5194 CORE_ADDR regaddr;
5195 int i, size;
5196 char *buf;
5197 int pid;
5198
5199 if (regno >= usrregs->num_regs)
5200 return;
5201 if (low_cannot_store_register (regno))
5202 return;
5203
5204 regaddr = register_addr (usrregs, regno);
5205 if (regaddr == -1)
5206 return;
5207
5208 size = ((register_size (regcache->tdesc, regno)
5209 + sizeof (PTRACE_XFER_TYPE) - 1)
5210 & -sizeof (PTRACE_XFER_TYPE));
5211 buf = (char *) alloca (size);
5212 memset (buf, 0, size);
5213
5214 low_collect_ptrace_register (regcache, regno, buf);
5215
5216 pid = lwpid_of (current_thread);
5217 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5218 {
5219 errno = 0;
5220 ptrace (PTRACE_POKEUSER, pid,
5221 /* Coerce to a uintptr_t first to avoid potential gcc warning
5222 about coercing an 8 byte integer to a 4 byte pointer. */
5223 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5224 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5225 if (errno != 0)
5226 {
5227 /* At this point, ESRCH should mean the process is
5228 already gone, in which case we simply ignore attempts
5229 to change its registers. See also the related
5230 comment in resume_one_lwp. */
5231 if (errno == ESRCH)
5232 return;
5233
5234
5235 if (!low_cannot_store_register (regno))
5236 error ("writing register %d: %s", regno, safe_strerror (errno));
5237 }
5238 regaddr += sizeof (PTRACE_XFER_TYPE);
5239 }
5240 }
5241 #endif /* HAVE_LINUX_USRREGS */
5242
5243 void
5244 linux_process_target::low_collect_ptrace_register (regcache *regcache,
5245 int regno, char *buf)
5246 {
5247 collect_register (regcache, regno, buf);
5248 }
5249
5250 void
5251 linux_process_target::low_supply_ptrace_register (regcache *regcache,
5252 int regno, const char *buf)
5253 {
5254 supply_register (regcache, regno, buf);
5255 }
5256
5257 void
5258 linux_process_target::usr_fetch_inferior_registers (const regs_info *regs_info,
5259 regcache *regcache,
5260 int regno, int all)
5261 {
5262 #ifdef HAVE_LINUX_USRREGS
5263 struct usrregs_info *usr = regs_info->usrregs;
5264
5265 if (regno == -1)
5266 {
5267 for (regno = 0; regno < usr->num_regs; regno++)
5268 if (all || !linux_register_in_regsets (regs_info, regno))
5269 fetch_register (usr, regcache, regno);
5270 }
5271 else
5272 fetch_register (usr, regcache, regno);
5273 #endif
5274 }
5275
5276 void
5277 linux_process_target::usr_store_inferior_registers (const regs_info *regs_info,
5278 regcache *regcache,
5279 int regno, int all)
5280 {
5281 #ifdef HAVE_LINUX_USRREGS
5282 struct usrregs_info *usr = regs_info->usrregs;
5283
5284 if (regno == -1)
5285 {
5286 for (regno = 0; regno < usr->num_regs; regno++)
5287 if (all || !linux_register_in_regsets (regs_info, regno))
5288 store_register (usr, regcache, regno);
5289 }
5290 else
5291 store_register (usr, regcache, regno);
5292 #endif
5293 }
5294
5295 void
5296 linux_process_target::fetch_registers (regcache *regcache, int regno)
5297 {
5298 int use_regsets;
5299 int all = 0;
5300 const regs_info *regs_info = get_regs_info ();
5301
5302 if (regno == -1)
5303 {
5304 if (regs_info->usrregs != NULL)
5305 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5306 low_fetch_register (regcache, regno);
5307
5308 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5309 if (regs_info->usrregs != NULL)
5310 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5311 }
5312 else
5313 {
5314 if (low_fetch_register (regcache, regno))
5315 return;
5316
5317 use_regsets = linux_register_in_regsets (regs_info, regno);
5318 if (use_regsets)
5319 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5320 regcache);
5321 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5322 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5323 }
5324 }
5325
5326 void
5327 linux_process_target::store_registers (regcache *regcache, int regno)
5328 {
5329 int use_regsets;
5330 int all = 0;
5331 const regs_info *regs_info = get_regs_info ();
5332
5333 if (regno == -1)
5334 {
5335 all = regsets_store_inferior_registers (regs_info->regsets_info,
5336 regcache);
5337 if (regs_info->usrregs != NULL)
5338 usr_store_inferior_registers (regs_info, regcache, regno, all);
5339 }
5340 else
5341 {
5342 use_regsets = linux_register_in_regsets (regs_info, regno);
5343 if (use_regsets)
5344 all = regsets_store_inferior_registers (regs_info->regsets_info,
5345 regcache);
5346 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5347 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5348 }
5349 }
5350
5351 bool
5352 linux_process_target::low_fetch_register (regcache *regcache, int regno)
5353 {
5354 return false;
5355 }
5356
5357 /* A wrapper for the read_memory target op. */
5358
5359 static int
5360 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5361 {
5362 return the_target->read_memory (memaddr, myaddr, len);
5363 }
5364
5365
5366 /* Helper for read_memory/write_memory using /proc/PID/mem. Because
5367 we can use a single read/write call, this can be much more
5368 efficient than banging away at PTRACE_PEEKTEXT. Also, unlike
5369 PTRACE_PEEKTEXT/PTRACE_POKETEXT, this works with running threads.
5370 One an only one of READBUF and WRITEBUF is non-null. If READBUF is
5371 not null, then we're reading, otherwise we're writing. */
5372
5373 static int
5374 proc_xfer_memory (CORE_ADDR memaddr, unsigned char *readbuf,
5375 const gdb_byte *writebuf, int len)
5376 {
5377 gdb_assert ((readbuf == nullptr) != (writebuf == nullptr));
5378
5379 process_info *proc = current_process ();
5380
5381 int fd = proc->priv->mem_fd;
5382 if (fd == -1)
5383 return EIO;
5384
5385 while (len > 0)
5386 {
5387 int bytes;
5388
5389 /* Use pread64/pwrite64 if available, since they save a syscall
5390 and can handle 64-bit offsets even on 32-bit platforms (for
5391 instance, SPARC debugging a SPARC64 application). But only
5392 use them if the offset isn't so high that when cast to off_t
5393 it'd be negative, as seen on SPARC64. pread64/pwrite64
5394 outright reject such offsets. lseek does not. */
5395 #ifdef HAVE_PREAD64
5396 if ((off_t) memaddr >= 0)
5397 bytes = (readbuf != nullptr
5398 ? pread64 (fd, readbuf, len, memaddr)
5399 : pwrite64 (fd, writebuf, len, memaddr));
5400 else
5401 #endif
5402 {
5403 bytes = -1;
5404 if (lseek (fd, memaddr, SEEK_SET) != -1)
5405 bytes = (readbuf != nullptr
5406 ? read (fd, readbuf, len)
5407 : write (fd, writebuf, len));
5408 }
5409
5410 if (bytes < 0)
5411 return errno;
5412 else if (bytes == 0)
5413 {
5414 /* EOF means the address space is gone, the whole process
5415 exited or execed. */
5416 return EIO;
5417 }
5418
5419 memaddr += bytes;
5420 if (readbuf != nullptr)
5421 readbuf += bytes;
5422 else
5423 writebuf += bytes;
5424 len -= bytes;
5425 }
5426
5427 return 0;
5428 }
5429
5430 int
5431 linux_process_target::read_memory (CORE_ADDR memaddr,
5432 unsigned char *myaddr, int len)
5433 {
5434 return proc_xfer_memory (memaddr, myaddr, nullptr, len);
5435 }
5436
5437 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5438 memory at MEMADDR. On failure (cannot write to the inferior)
5439 returns the value of errno. Always succeeds if LEN is zero. */
5440
5441 int
5442 linux_process_target::write_memory (CORE_ADDR memaddr,
5443 const unsigned char *myaddr, int len)
5444 {
5445 if (debug_threads)
5446 {
5447 /* Dump up to four bytes. */
5448 char str[4 * 2 + 1];
5449 char *p = str;
5450 int dump = len < 4 ? len : 4;
5451
5452 for (int i = 0; i < dump; i++)
5453 {
5454 sprintf (p, "%02x", myaddr[i]);
5455 p += 2;
5456 }
5457 *p = '\0';
5458
5459 threads_debug_printf ("Writing %s to 0x%08lx in process %d",
5460 str, (long) memaddr, current_process ()->pid);
5461 }
5462
5463 return proc_xfer_memory (memaddr, nullptr, myaddr, len);
5464 }
5465
5466 void
5467 linux_process_target::look_up_symbols ()
5468 {
5469 #ifdef USE_THREAD_DB
5470 struct process_info *proc = current_process ();
5471
5472 if (proc->priv->thread_db != NULL)
5473 return;
5474
5475 thread_db_init ();
5476 #endif
5477 }
5478
5479 void
5480 linux_process_target::request_interrupt ()
5481 {
5482 /* Send a SIGINT to the process group. This acts just like the user
5483 typed a ^C on the controlling terminal. */
5484 int res = ::kill (-signal_pid, SIGINT);
5485 if (res == -1)
5486 warning (_("Sending SIGINT to process group of pid %ld failed: %s"),
5487 signal_pid, safe_strerror (errno));
5488 }
5489
5490 bool
5491 linux_process_target::supports_read_auxv ()
5492 {
5493 return true;
5494 }
5495
5496 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5497 to debugger memory starting at MYADDR. */
5498
5499 int
5500 linux_process_target::read_auxv (int pid, CORE_ADDR offset,
5501 unsigned char *myaddr, unsigned int len)
5502 {
5503 char filename[PATH_MAX];
5504 int fd, n;
5505
5506 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5507
5508 fd = open (filename, O_RDONLY);
5509 if (fd < 0)
5510 return -1;
5511
5512 if (offset != (CORE_ADDR) 0
5513 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5514 n = -1;
5515 else
5516 n = read (fd, myaddr, len);
5517
5518 close (fd);
5519
5520 return n;
5521 }
5522
5523 int
5524 linux_process_target::insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5525 int size, raw_breakpoint *bp)
5526 {
5527 if (type == raw_bkpt_type_sw)
5528 return insert_memory_breakpoint (bp);
5529 else
5530 return low_insert_point (type, addr, size, bp);
5531 }
5532
5533 int
5534 linux_process_target::low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
5535 int size, raw_breakpoint *bp)
5536 {
5537 /* Unsupported (see target.h). */
5538 return 1;
5539 }
5540
5541 int
5542 linux_process_target::remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5543 int size, raw_breakpoint *bp)
5544 {
5545 if (type == raw_bkpt_type_sw)
5546 return remove_memory_breakpoint (bp);
5547 else
5548 return low_remove_point (type, addr, size, bp);
5549 }
5550
5551 int
5552 linux_process_target::low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
5553 int size, raw_breakpoint *bp)
5554 {
5555 /* Unsupported (see target.h). */
5556 return 1;
5557 }
5558
5559 /* Implement the stopped_by_sw_breakpoint target_ops
5560 method. */
5561
5562 bool
5563 linux_process_target::stopped_by_sw_breakpoint ()
5564 {
5565 struct lwp_info *lwp = get_thread_lwp (current_thread);
5566
5567 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5568 }
5569
5570 /* Implement the supports_stopped_by_sw_breakpoint target_ops
5571 method. */
5572
5573 bool
5574 linux_process_target::supports_stopped_by_sw_breakpoint ()
5575 {
5576 return USE_SIGTRAP_SIGINFO;
5577 }
5578
5579 /* Implement the stopped_by_hw_breakpoint target_ops
5580 method. */
5581
5582 bool
5583 linux_process_target::stopped_by_hw_breakpoint ()
5584 {
5585 struct lwp_info *lwp = get_thread_lwp (current_thread);
5586
5587 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5588 }
5589
5590 /* Implement the supports_stopped_by_hw_breakpoint target_ops
5591 method. */
5592
5593 bool
5594 linux_process_target::supports_stopped_by_hw_breakpoint ()
5595 {
5596 return USE_SIGTRAP_SIGINFO;
5597 }
5598
5599 /* Implement the supports_hardware_single_step target_ops method. */
5600
5601 bool
5602 linux_process_target::supports_hardware_single_step ()
5603 {
5604 return true;
5605 }
5606
5607 bool
5608 linux_process_target::stopped_by_watchpoint ()
5609 {
5610 struct lwp_info *lwp = get_thread_lwp (current_thread);
5611
5612 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5613 }
5614
5615 CORE_ADDR
5616 linux_process_target::stopped_data_address ()
5617 {
5618 struct lwp_info *lwp = get_thread_lwp (current_thread);
5619
5620 return lwp->stopped_data_address;
5621 }
5622
5623 /* This is only used for targets that define PT_TEXT_ADDR,
5624 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5625 the target has different ways of acquiring this information, like
5626 loadmaps. */
5627
5628 bool
5629 linux_process_target::supports_read_offsets ()
5630 {
5631 #ifdef SUPPORTS_READ_OFFSETS
5632 return true;
5633 #else
5634 return false;
5635 #endif
5636 }
5637
5638 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5639 to tell gdb about. */
5640
5641 int
5642 linux_process_target::read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5643 {
5644 #ifdef SUPPORTS_READ_OFFSETS
5645 unsigned long text, text_end, data;
5646 int pid = lwpid_of (current_thread);
5647
5648 errno = 0;
5649
5650 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5651 (PTRACE_TYPE_ARG4) 0);
5652 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5653 (PTRACE_TYPE_ARG4) 0);
5654 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5655 (PTRACE_TYPE_ARG4) 0);
5656
5657 if (errno == 0)
5658 {
5659 /* Both text and data offsets produced at compile-time (and so
5660 used by gdb) are relative to the beginning of the program,
5661 with the data segment immediately following the text segment.
5662 However, the actual runtime layout in memory may put the data
5663 somewhere else, so when we send gdb a data base-address, we
5664 use the real data base address and subtract the compile-time
5665 data base-address from it (which is just the length of the
5666 text segment). BSS immediately follows data in both
5667 cases. */
5668 *text_p = text;
5669 *data_p = data - (text_end - text);
5670
5671 return 1;
5672 }
5673 return 0;
5674 #else
5675 gdb_assert_not_reached ("target op read_offsets not supported");
5676 #endif
5677 }
5678
5679 bool
5680 linux_process_target::supports_get_tls_address ()
5681 {
5682 #ifdef USE_THREAD_DB
5683 return true;
5684 #else
5685 return false;
5686 #endif
5687 }
5688
5689 int
5690 linux_process_target::get_tls_address (thread_info *thread,
5691 CORE_ADDR offset,
5692 CORE_ADDR load_module,
5693 CORE_ADDR *address)
5694 {
5695 #ifdef USE_THREAD_DB
5696 return thread_db_get_tls_address (thread, offset, load_module, address);
5697 #else
5698 return -1;
5699 #endif
5700 }
5701
5702 bool
5703 linux_process_target::supports_qxfer_osdata ()
5704 {
5705 return true;
5706 }
5707
5708 int
5709 linux_process_target::qxfer_osdata (const char *annex,
5710 unsigned char *readbuf,
5711 unsigned const char *writebuf,
5712 CORE_ADDR offset, int len)
5713 {
5714 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5715 }
5716
5717 void
5718 linux_process_target::siginfo_fixup (siginfo_t *siginfo,
5719 gdb_byte *inf_siginfo, int direction)
5720 {
5721 bool done = low_siginfo_fixup (siginfo, inf_siginfo, direction);
5722
5723 /* If there was no callback, or the callback didn't do anything,
5724 then just do a straight memcpy. */
5725 if (!done)
5726 {
5727 if (direction == 1)
5728 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5729 else
5730 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5731 }
5732 }
5733
5734 bool
5735 linux_process_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
5736 int direction)
5737 {
5738 return false;
5739 }
5740
5741 bool
5742 linux_process_target::supports_qxfer_siginfo ()
5743 {
5744 return true;
5745 }
5746
5747 int
5748 linux_process_target::qxfer_siginfo (const char *annex,
5749 unsigned char *readbuf,
5750 unsigned const char *writebuf,
5751 CORE_ADDR offset, int len)
5752 {
5753 int pid;
5754 siginfo_t siginfo;
5755 gdb_byte inf_siginfo[sizeof (siginfo_t)];
5756
5757 if (current_thread == NULL)
5758 return -1;
5759
5760 pid = lwpid_of (current_thread);
5761
5762 threads_debug_printf ("%s siginfo for lwp %d.",
5763 readbuf != NULL ? "Reading" : "Writing",
5764 pid);
5765
5766 if (offset >= sizeof (siginfo))
5767 return -1;
5768
5769 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5770 return -1;
5771
5772 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5773 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5774 inferior with a 64-bit GDBSERVER should look the same as debugging it
5775 with a 32-bit GDBSERVER, we need to convert it. */
5776 siginfo_fixup (&siginfo, inf_siginfo, 0);
5777
5778 if (offset + len > sizeof (siginfo))
5779 len = sizeof (siginfo) - offset;
5780
5781 if (readbuf != NULL)
5782 memcpy (readbuf, inf_siginfo + offset, len);
5783 else
5784 {
5785 memcpy (inf_siginfo + offset, writebuf, len);
5786
5787 /* Convert back to ptrace layout before flushing it out. */
5788 siginfo_fixup (&siginfo, inf_siginfo, 1);
5789
5790 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5791 return -1;
5792 }
5793
5794 return len;
5795 }
5796
5797 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5798 so we notice when children change state; as the handler for the
5799 sigsuspend in my_waitpid. */
5800
5801 static void
5802 sigchld_handler (int signo)
5803 {
5804 int old_errno = errno;
5805
5806 if (debug_threads)
5807 {
5808 do
5809 {
5810 /* Use the async signal safe debug function. */
5811 if (debug_write ("sigchld_handler\n",
5812 sizeof ("sigchld_handler\n") - 1) < 0)
5813 break; /* just ignore */
5814 } while (0);
5815 }
5816
5817 if (target_is_async_p ())
5818 async_file_mark (); /* trigger a linux_wait */
5819
5820 errno = old_errno;
5821 }
5822
5823 bool
5824 linux_process_target::supports_non_stop ()
5825 {
5826 return true;
5827 }
5828
5829 bool
5830 linux_process_target::async (bool enable)
5831 {
5832 bool previous = target_is_async_p ();
5833
5834 threads_debug_printf ("async (%d), previous=%d",
5835 enable, previous);
5836
5837 if (previous != enable)
5838 {
5839 sigset_t mask;
5840 sigemptyset (&mask);
5841 sigaddset (&mask, SIGCHLD);
5842
5843 gdb_sigmask (SIG_BLOCK, &mask, NULL);
5844
5845 if (enable)
5846 {
5847 if (!linux_event_pipe.open_pipe ())
5848 {
5849 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
5850
5851 warning ("creating event pipe failed.");
5852 return previous;
5853 }
5854
5855 /* Register the event loop handler. */
5856 add_file_handler (linux_event_pipe.event_fd (),
5857 handle_target_event, NULL,
5858 "linux-low");
5859
5860 /* Always trigger a linux_wait. */
5861 async_file_mark ();
5862 }
5863 else
5864 {
5865 delete_file_handler (linux_event_pipe.event_fd ());
5866
5867 linux_event_pipe.close_pipe ();
5868 }
5869
5870 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
5871 }
5872
5873 return previous;
5874 }
5875
5876 int
5877 linux_process_target::start_non_stop (bool nonstop)
5878 {
5879 /* Register or unregister from event-loop accordingly. */
5880 target_async (nonstop);
5881
5882 if (target_is_async_p () != (nonstop != false))
5883 return -1;
5884
5885 return 0;
5886 }
5887
5888 bool
5889 linux_process_target::supports_multi_process ()
5890 {
5891 return true;
5892 }
5893
5894 /* Check if fork events are supported. */
5895
5896 bool
5897 linux_process_target::supports_fork_events ()
5898 {
5899 return true;
5900 }
5901
5902 /* Check if vfork events are supported. */
5903
5904 bool
5905 linux_process_target::supports_vfork_events ()
5906 {
5907 return true;
5908 }
5909
5910 /* Check if exec events are supported. */
5911
5912 bool
5913 linux_process_target::supports_exec_events ()
5914 {
5915 return true;
5916 }
5917
5918 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
5919 ptrace flags for all inferiors. This is in case the new GDB connection
5920 doesn't support the same set of events that the previous one did. */
5921
5922 void
5923 linux_process_target::handle_new_gdb_connection ()
5924 {
5925 /* Request that all the lwps reset their ptrace options. */
5926 for_each_thread ([] (thread_info *thread)
5927 {
5928 struct lwp_info *lwp = get_thread_lwp (thread);
5929
5930 if (!lwp->stopped)
5931 {
5932 /* Stop the lwp so we can modify its ptrace options. */
5933 lwp->must_set_ptrace_flags = 1;
5934 linux_stop_lwp (lwp);
5935 }
5936 else
5937 {
5938 /* Already stopped; go ahead and set the ptrace options. */
5939 struct process_info *proc = find_process_pid (pid_of (thread));
5940 int options = linux_low_ptrace_options (proc->attached);
5941
5942 linux_enable_event_reporting (lwpid_of (thread), options);
5943 lwp->must_set_ptrace_flags = 0;
5944 }
5945 });
5946 }
5947
5948 int
5949 linux_process_target::handle_monitor_command (char *mon)
5950 {
5951 #ifdef USE_THREAD_DB
5952 return thread_db_handle_monitor_command (mon);
5953 #else
5954 return 0;
5955 #endif
5956 }
5957
5958 int
5959 linux_process_target::core_of_thread (ptid_t ptid)
5960 {
5961 return linux_common_core_of_thread (ptid);
5962 }
5963
5964 bool
5965 linux_process_target::supports_disable_randomization ()
5966 {
5967 return true;
5968 }
5969
5970 bool
5971 linux_process_target::supports_agent ()
5972 {
5973 return true;
5974 }
5975
5976 bool
5977 linux_process_target::supports_range_stepping ()
5978 {
5979 if (supports_software_single_step ())
5980 return true;
5981
5982 return low_supports_range_stepping ();
5983 }
5984
5985 bool
5986 linux_process_target::low_supports_range_stepping ()
5987 {
5988 return false;
5989 }
5990
5991 bool
5992 linux_process_target::supports_pid_to_exec_file ()
5993 {
5994 return true;
5995 }
5996
5997 const char *
5998 linux_process_target::pid_to_exec_file (int pid)
5999 {
6000 return linux_proc_pid_to_exec_file (pid);
6001 }
6002
6003 bool
6004 linux_process_target::supports_multifs ()
6005 {
6006 return true;
6007 }
6008
6009 int
6010 linux_process_target::multifs_open (int pid, const char *filename,
6011 int flags, mode_t mode)
6012 {
6013 return linux_mntns_open_cloexec (pid, filename, flags, mode);
6014 }
6015
6016 int
6017 linux_process_target::multifs_unlink (int pid, const char *filename)
6018 {
6019 return linux_mntns_unlink (pid, filename);
6020 }
6021
6022 ssize_t
6023 linux_process_target::multifs_readlink (int pid, const char *filename,
6024 char *buf, size_t bufsiz)
6025 {
6026 return linux_mntns_readlink (pid, filename, buf, bufsiz);
6027 }
6028
6029 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6030 struct target_loadseg
6031 {
6032 /* Core address to which the segment is mapped. */
6033 Elf32_Addr addr;
6034 /* VMA recorded in the program header. */
6035 Elf32_Addr p_vaddr;
6036 /* Size of this segment in memory. */
6037 Elf32_Word p_memsz;
6038 };
6039
6040 # if defined PT_GETDSBT
6041 struct target_loadmap
6042 {
6043 /* Protocol version number, must be zero. */
6044 Elf32_Word version;
6045 /* Pointer to the DSBT table, its size, and the DSBT index. */
6046 unsigned *dsbt_table;
6047 unsigned dsbt_size, dsbt_index;
6048 /* Number of segments in this map. */
6049 Elf32_Word nsegs;
6050 /* The actual memory map. */
6051 struct target_loadseg segs[/*nsegs*/];
6052 };
6053 # define LINUX_LOADMAP PT_GETDSBT
6054 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6055 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6056 # else
6057 struct target_loadmap
6058 {
6059 /* Protocol version number, must be zero. */
6060 Elf32_Half version;
6061 /* Number of segments in this map. */
6062 Elf32_Half nsegs;
6063 /* The actual memory map. */
6064 struct target_loadseg segs[/*nsegs*/];
6065 };
6066 # define LINUX_LOADMAP PTRACE_GETFDPIC
6067 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6068 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6069 # endif
6070
6071 bool
6072 linux_process_target::supports_read_loadmap ()
6073 {
6074 return true;
6075 }
6076
6077 int
6078 linux_process_target::read_loadmap (const char *annex, CORE_ADDR offset,
6079 unsigned char *myaddr, unsigned int len)
6080 {
6081 int pid = lwpid_of (current_thread);
6082 int addr = -1;
6083 struct target_loadmap *data = NULL;
6084 unsigned int actual_length, copy_length;
6085
6086 if (strcmp (annex, "exec") == 0)
6087 addr = (int) LINUX_LOADMAP_EXEC;
6088 else if (strcmp (annex, "interp") == 0)
6089 addr = (int) LINUX_LOADMAP_INTERP;
6090 else
6091 return -1;
6092
6093 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6094 return -1;
6095
6096 if (data == NULL)
6097 return -1;
6098
6099 actual_length = sizeof (struct target_loadmap)
6100 + sizeof (struct target_loadseg) * data->nsegs;
6101
6102 if (offset < 0 || offset > actual_length)
6103 return -1;
6104
6105 copy_length = actual_length - offset < len ? actual_length - offset : len;
6106 memcpy (myaddr, (char *) data + offset, copy_length);
6107 return copy_length;
6108 }
6109 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6110
6111 bool
6112 linux_process_target::supports_catch_syscall ()
6113 {
6114 return low_supports_catch_syscall ();
6115 }
6116
6117 bool
6118 linux_process_target::low_supports_catch_syscall ()
6119 {
6120 return false;
6121 }
6122
6123 CORE_ADDR
6124 linux_process_target::read_pc (regcache *regcache)
6125 {
6126 if (!low_supports_breakpoints ())
6127 return 0;
6128
6129 return low_get_pc (regcache);
6130 }
6131
6132 void
6133 linux_process_target::write_pc (regcache *regcache, CORE_ADDR pc)
6134 {
6135 gdb_assert (low_supports_breakpoints ());
6136
6137 low_set_pc (regcache, pc);
6138 }
6139
6140 bool
6141 linux_process_target::supports_thread_stopped ()
6142 {
6143 return true;
6144 }
6145
6146 bool
6147 linux_process_target::thread_stopped (thread_info *thread)
6148 {
6149 return get_thread_lwp (thread)->stopped;
6150 }
6151
6152 /* This exposes stop-all-threads functionality to other modules. */
6153
6154 void
6155 linux_process_target::pause_all (bool freeze)
6156 {
6157 stop_all_lwps (freeze, NULL);
6158 }
6159
6160 /* This exposes unstop-all-threads functionality to other gdbserver
6161 modules. */
6162
6163 void
6164 linux_process_target::unpause_all (bool unfreeze)
6165 {
6166 unstop_all_lwps (unfreeze, NULL);
6167 }
6168
6169 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6170
6171 static int
6172 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6173 CORE_ADDR *phdr_memaddr, int *num_phdr)
6174 {
6175 char filename[PATH_MAX];
6176 int fd;
6177 const int auxv_size = is_elf64
6178 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6179 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6180
6181 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6182
6183 fd = open (filename, O_RDONLY);
6184 if (fd < 0)
6185 return 1;
6186
6187 *phdr_memaddr = 0;
6188 *num_phdr = 0;
6189 while (read (fd, buf, auxv_size) == auxv_size
6190 && (*phdr_memaddr == 0 || *num_phdr == 0))
6191 {
6192 if (is_elf64)
6193 {
6194 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6195
6196 switch (aux->a_type)
6197 {
6198 case AT_PHDR:
6199 *phdr_memaddr = aux->a_un.a_val;
6200 break;
6201 case AT_PHNUM:
6202 *num_phdr = aux->a_un.a_val;
6203 break;
6204 }
6205 }
6206 else
6207 {
6208 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6209
6210 switch (aux->a_type)
6211 {
6212 case AT_PHDR:
6213 *phdr_memaddr = aux->a_un.a_val;
6214 break;
6215 case AT_PHNUM:
6216 *num_phdr = aux->a_un.a_val;
6217 break;
6218 }
6219 }
6220 }
6221
6222 close (fd);
6223
6224 if (*phdr_memaddr == 0 || *num_phdr == 0)
6225 {
6226 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6227 "phdr_memaddr = %ld, phdr_num = %d",
6228 (long) *phdr_memaddr, *num_phdr);
6229 return 2;
6230 }
6231
6232 return 0;
6233 }
6234
6235 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6236
6237 static CORE_ADDR
6238 get_dynamic (const int pid, const int is_elf64)
6239 {
6240 CORE_ADDR phdr_memaddr, relocation;
6241 int num_phdr, i;
6242 unsigned char *phdr_buf;
6243 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6244
6245 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6246 return 0;
6247
6248 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6249 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6250
6251 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6252 return 0;
6253
6254 /* Compute relocation: it is expected to be 0 for "regular" executables,
6255 non-zero for PIE ones. */
6256 relocation = -1;
6257 for (i = 0; relocation == -1 && i < num_phdr; i++)
6258 if (is_elf64)
6259 {
6260 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6261
6262 if (p->p_type == PT_PHDR)
6263 relocation = phdr_memaddr - p->p_vaddr;
6264 }
6265 else
6266 {
6267 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6268
6269 if (p->p_type == PT_PHDR)
6270 relocation = phdr_memaddr - p->p_vaddr;
6271 }
6272
6273 if (relocation == -1)
6274 {
6275 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6276 any real world executables, including PIE executables, have always
6277 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6278 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6279 or present DT_DEBUG anyway (fpc binaries are statically linked).
6280
6281 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6282
6283 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6284
6285 return 0;
6286 }
6287
6288 for (i = 0; i < num_phdr; i++)
6289 {
6290 if (is_elf64)
6291 {
6292 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6293
6294 if (p->p_type == PT_DYNAMIC)
6295 return p->p_vaddr + relocation;
6296 }
6297 else
6298 {
6299 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6300
6301 if (p->p_type == PT_DYNAMIC)
6302 return p->p_vaddr + relocation;
6303 }
6304 }
6305
6306 return 0;
6307 }
6308
6309 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6310 can be 0 if the inferior does not yet have the library list initialized.
6311 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6312 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6313
6314 static CORE_ADDR
6315 get_r_debug (const int pid, const int is_elf64)
6316 {
6317 CORE_ADDR dynamic_memaddr;
6318 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6319 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6320 CORE_ADDR map = -1;
6321
6322 dynamic_memaddr = get_dynamic (pid, is_elf64);
6323 if (dynamic_memaddr == 0)
6324 return map;
6325
6326 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6327 {
6328 if (is_elf64)
6329 {
6330 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6331 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6332 union
6333 {
6334 Elf64_Xword map;
6335 unsigned char buf[sizeof (Elf64_Xword)];
6336 }
6337 rld_map;
6338 #endif
6339 #ifdef DT_MIPS_RLD_MAP
6340 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6341 {
6342 if (linux_read_memory (dyn->d_un.d_val,
6343 rld_map.buf, sizeof (rld_map.buf)) == 0)
6344 return rld_map.map;
6345 else
6346 break;
6347 }
6348 #endif /* DT_MIPS_RLD_MAP */
6349 #ifdef DT_MIPS_RLD_MAP_REL
6350 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6351 {
6352 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6353 rld_map.buf, sizeof (rld_map.buf)) == 0)
6354 return rld_map.map;
6355 else
6356 break;
6357 }
6358 #endif /* DT_MIPS_RLD_MAP_REL */
6359
6360 if (dyn->d_tag == DT_DEBUG && map == -1)
6361 map = dyn->d_un.d_val;
6362
6363 if (dyn->d_tag == DT_NULL)
6364 break;
6365 }
6366 else
6367 {
6368 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6369 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6370 union
6371 {
6372 Elf32_Word map;
6373 unsigned char buf[sizeof (Elf32_Word)];
6374 }
6375 rld_map;
6376 #endif
6377 #ifdef DT_MIPS_RLD_MAP
6378 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6379 {
6380 if (linux_read_memory (dyn->d_un.d_val,
6381 rld_map.buf, sizeof (rld_map.buf)) == 0)
6382 return rld_map.map;
6383 else
6384 break;
6385 }
6386 #endif /* DT_MIPS_RLD_MAP */
6387 #ifdef DT_MIPS_RLD_MAP_REL
6388 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6389 {
6390 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6391 rld_map.buf, sizeof (rld_map.buf)) == 0)
6392 return rld_map.map;
6393 else
6394 break;
6395 }
6396 #endif /* DT_MIPS_RLD_MAP_REL */
6397
6398 if (dyn->d_tag == DT_DEBUG && map == -1)
6399 map = dyn->d_un.d_val;
6400
6401 if (dyn->d_tag == DT_NULL)
6402 break;
6403 }
6404
6405 dynamic_memaddr += dyn_size;
6406 }
6407
6408 return map;
6409 }
6410
6411 /* Read one pointer from MEMADDR in the inferior. */
6412
6413 static int
6414 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6415 {
6416 int ret;
6417
6418 /* Go through a union so this works on either big or little endian
6419 hosts, when the inferior's pointer size is smaller than the size
6420 of CORE_ADDR. It is assumed the inferior's endianness is the
6421 same of the superior's. */
6422 union
6423 {
6424 CORE_ADDR core_addr;
6425 unsigned int ui;
6426 unsigned char uc;
6427 } addr;
6428
6429 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6430 if (ret == 0)
6431 {
6432 if (ptr_size == sizeof (CORE_ADDR))
6433 *ptr = addr.core_addr;
6434 else if (ptr_size == sizeof (unsigned int))
6435 *ptr = addr.ui;
6436 else
6437 gdb_assert_not_reached ("unhandled pointer size");
6438 }
6439 return ret;
6440 }
6441
6442 bool
6443 linux_process_target::supports_qxfer_libraries_svr4 ()
6444 {
6445 return true;
6446 }
6447
6448 struct link_map_offsets
6449 {
6450 /* Offset and size of r_debug.r_version. */
6451 int r_version_offset;
6452
6453 /* Offset and size of r_debug.r_map. */
6454 int r_map_offset;
6455
6456 /* Offset of r_debug_extended.r_next. */
6457 int r_next_offset;
6458
6459 /* Offset to l_addr field in struct link_map. */
6460 int l_addr_offset;
6461
6462 /* Offset to l_name field in struct link_map. */
6463 int l_name_offset;
6464
6465 /* Offset to l_ld field in struct link_map. */
6466 int l_ld_offset;
6467
6468 /* Offset to l_next field in struct link_map. */
6469 int l_next_offset;
6470
6471 /* Offset to l_prev field in struct link_map. */
6472 int l_prev_offset;
6473 };
6474
6475 static const link_map_offsets lmo_32bit_offsets =
6476 {
6477 0, /* r_version offset. */
6478 4, /* r_debug.r_map offset. */
6479 20, /* r_debug_extended.r_next. */
6480 0, /* l_addr offset in link_map. */
6481 4, /* l_name offset in link_map. */
6482 8, /* l_ld offset in link_map. */
6483 12, /* l_next offset in link_map. */
6484 16 /* l_prev offset in link_map. */
6485 };
6486
6487 static const link_map_offsets lmo_64bit_offsets =
6488 {
6489 0, /* r_version offset. */
6490 8, /* r_debug.r_map offset. */
6491 40, /* r_debug_extended.r_next. */
6492 0, /* l_addr offset in link_map. */
6493 8, /* l_name offset in link_map. */
6494 16, /* l_ld offset in link_map. */
6495 24, /* l_next offset in link_map. */
6496 32 /* l_prev offset in link_map. */
6497 };
6498
6499 /* Get the loaded shared libraries from one namespace. */
6500
6501 static void
6502 read_link_map (std::string &document, CORE_ADDR lmid, CORE_ADDR lm_addr,
6503 CORE_ADDR lm_prev, int ptr_size, const link_map_offsets *lmo)
6504 {
6505 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6506
6507 while (lm_addr
6508 && read_one_ptr (lm_addr + lmo->l_name_offset,
6509 &l_name, ptr_size) == 0
6510 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6511 &l_addr, ptr_size) == 0
6512 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6513 &l_ld, ptr_size) == 0
6514 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6515 &l_prev, ptr_size) == 0
6516 && read_one_ptr (lm_addr + lmo->l_next_offset,
6517 &l_next, ptr_size) == 0)
6518 {
6519 unsigned char libname[PATH_MAX];
6520
6521 if (lm_prev != l_prev)
6522 {
6523 warning ("Corrupted shared library list: 0x%s != 0x%s",
6524 paddress (lm_prev), paddress (l_prev));
6525 break;
6526 }
6527
6528 /* Not checking for error because reading may stop before we've got
6529 PATH_MAX worth of characters. */
6530 libname[0] = '\0';
6531 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6532 libname[sizeof (libname) - 1] = '\0';
6533 if (libname[0] != '\0')
6534 {
6535 string_appendf (document, "<library name=\"");
6536 xml_escape_text_append (document, (char *) libname);
6537 string_appendf (document, "\" lm=\"0x%s\" l_addr=\"0x%s\" "
6538 "l_ld=\"0x%s\" lmid=\"0x%s\"/>",
6539 paddress (lm_addr), paddress (l_addr),
6540 paddress (l_ld), paddress (lmid));
6541 }
6542
6543 lm_prev = lm_addr;
6544 lm_addr = l_next;
6545 }
6546 }
6547
6548 /* Construct qXfer:libraries-svr4:read reply. */
6549
6550 int
6551 linux_process_target::qxfer_libraries_svr4 (const char *annex,
6552 unsigned char *readbuf,
6553 unsigned const char *writebuf,
6554 CORE_ADDR offset, int len)
6555 {
6556 struct process_info_private *const priv = current_process ()->priv;
6557 char filename[PATH_MAX];
6558 int pid, is_elf64;
6559 unsigned int machine;
6560 CORE_ADDR lmid = 0, lm_addr = 0, lm_prev = 0;
6561
6562 if (writebuf != NULL)
6563 return -2;
6564 if (readbuf == NULL)
6565 return -1;
6566
6567 pid = lwpid_of (current_thread);
6568 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6569 is_elf64 = elf_64_file_p (filename, &machine);
6570 const link_map_offsets *lmo;
6571 int ptr_size;
6572 if (is_elf64)
6573 {
6574 lmo = &lmo_64bit_offsets;
6575 ptr_size = 8;
6576 }
6577 else
6578 {
6579 lmo = &lmo_32bit_offsets;
6580 ptr_size = 4;
6581 }
6582
6583 while (annex[0] != '\0')
6584 {
6585 const char *sep;
6586 CORE_ADDR *addrp;
6587 int name_len;
6588
6589 sep = strchr (annex, '=');
6590 if (sep == NULL)
6591 break;
6592
6593 name_len = sep - annex;
6594 if (name_len == 4 && startswith (annex, "lmid"))
6595 addrp = &lmid;
6596 else if (name_len == 5 && startswith (annex, "start"))
6597 addrp = &lm_addr;
6598 else if (name_len == 4 && startswith (annex, "prev"))
6599 addrp = &lm_prev;
6600 else
6601 {
6602 annex = strchr (sep, ';');
6603 if (annex == NULL)
6604 break;
6605 annex++;
6606 continue;
6607 }
6608
6609 annex = decode_address_to_semicolon (addrp, sep + 1);
6610 }
6611
6612 std::string document = "<library-list-svr4 version=\"1.0\"";
6613
6614 /* When the starting LM_ADDR is passed in the annex, only traverse that
6615 namespace, which is assumed to be identified by LMID.
6616
6617 Otherwise, start with R_DEBUG and traverse all namespaces we find. */
6618 if (lm_addr != 0)
6619 {
6620 document += ">";
6621 read_link_map (document, lmid, lm_addr, lm_prev, ptr_size, lmo);
6622 }
6623 else
6624 {
6625 if (lm_prev != 0)
6626 warning ("ignoring prev=0x%s without start", paddress (lm_prev));
6627
6628 /* We could interpret LMID as 'provide only the libraries for this
6629 namespace' but GDB is currently only providing lmid, start, and
6630 prev, or nothing. */
6631 if (lmid != 0)
6632 warning ("ignoring lmid=0x%s without start", paddress (lmid));
6633
6634 CORE_ADDR r_debug = priv->r_debug;
6635 if (r_debug == 0)
6636 r_debug = priv->r_debug = get_r_debug (pid, is_elf64);
6637
6638 /* We failed to find DT_DEBUG. Such situation will not change
6639 for this inferior - do not retry it. Report it to GDB as
6640 E01, see for the reasons at the GDB solib-svr4.c side. */
6641 if (r_debug == (CORE_ADDR) -1)
6642 return -1;
6643
6644 /* Terminate the header if we end up with an empty list. */
6645 if (r_debug == 0)
6646 document += ">";
6647
6648 while (r_debug != 0)
6649 {
6650 int r_version = 0;
6651 if (linux_read_memory (r_debug + lmo->r_version_offset,
6652 (unsigned char *) &r_version,
6653 sizeof (r_version)) != 0)
6654 {
6655 warning ("unable to read r_version from 0x%s",
6656 paddress (r_debug + lmo->r_version_offset));
6657 break;
6658 }
6659
6660 if (r_version < 1)
6661 {
6662 warning ("unexpected r_debug version %d", r_version);
6663 break;
6664 }
6665
6666 if (read_one_ptr (r_debug + lmo->r_map_offset, &lm_addr,
6667 ptr_size) != 0)
6668 {
6669 warning ("unable to read r_map from 0x%s",
6670 paddress (r_debug + lmo->r_map_offset));
6671 break;
6672 }
6673
6674 /* We read the entire namespace. */
6675 lm_prev = 0;
6676
6677 /* The first entry corresponds to the main executable unless the
6678 dynamic loader was loaded late by a static executable. But
6679 in such case the main executable does not have PT_DYNAMIC
6680 present and we would not have gotten here. */
6681 if (r_debug == priv->r_debug)
6682 {
6683 if (lm_addr != 0)
6684 string_appendf (document, " main-lm=\"0x%s\">",
6685 paddress (lm_addr));
6686 else
6687 document += ">";
6688
6689 lm_prev = lm_addr;
6690 if (read_one_ptr (lm_addr + lmo->l_next_offset,
6691 &lm_addr, ptr_size) != 0)
6692 {
6693 warning ("unable to read l_next from 0x%s",
6694 paddress (lm_addr + lmo->l_next_offset));
6695 break;
6696 }
6697 }
6698
6699 read_link_map (document, r_debug, lm_addr, lm_prev, ptr_size, lmo);
6700
6701 if (r_version < 2)
6702 break;
6703
6704 if (read_one_ptr (r_debug + lmo->r_next_offset, &r_debug,
6705 ptr_size) != 0)
6706 {
6707 warning ("unable to read r_next from 0x%s",
6708 paddress (r_debug + lmo->r_next_offset));
6709 break;
6710 }
6711 }
6712 }
6713
6714 document += "</library-list-svr4>";
6715
6716 int document_len = document.length ();
6717 if (offset < document_len)
6718 document_len -= offset;
6719 else
6720 document_len = 0;
6721 if (len > document_len)
6722 len = document_len;
6723
6724 memcpy (readbuf, document.data () + offset, len);
6725
6726 return len;
6727 }
6728
6729 #ifdef HAVE_LINUX_BTRACE
6730
6731 bool
6732 linux_process_target::supports_btrace ()
6733 {
6734 return true;
6735 }
6736
6737 btrace_target_info *
6738 linux_process_target::enable_btrace (thread_info *tp,
6739 const btrace_config *conf)
6740 {
6741 return linux_enable_btrace (tp->id, conf);
6742 }
6743
6744 /* See to_disable_btrace target method. */
6745
6746 int
6747 linux_process_target::disable_btrace (btrace_target_info *tinfo)
6748 {
6749 enum btrace_error err;
6750
6751 err = linux_disable_btrace (tinfo);
6752 return (err == BTRACE_ERR_NONE ? 0 : -1);
6753 }
6754
6755 /* Encode an Intel Processor Trace configuration. */
6756
6757 static void
6758 linux_low_encode_pt_config (std::string *buffer,
6759 const struct btrace_data_pt_config *config)
6760 {
6761 *buffer += "<pt-config>\n";
6762
6763 switch (config->cpu.vendor)
6764 {
6765 case CV_INTEL:
6766 string_xml_appendf (*buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
6767 "model=\"%u\" stepping=\"%u\"/>\n",
6768 config->cpu.family, config->cpu.model,
6769 config->cpu.stepping);
6770 break;
6771
6772 default:
6773 break;
6774 }
6775
6776 *buffer += "</pt-config>\n";
6777 }
6778
6779 /* Encode a raw buffer. */
6780
6781 static void
6782 linux_low_encode_raw (std::string *buffer, const gdb_byte *data,
6783 unsigned int size)
6784 {
6785 if (size == 0)
6786 return;
6787
6788 /* We use hex encoding - see gdbsupport/rsp-low.h. */
6789 *buffer += "<raw>\n";
6790
6791 while (size-- > 0)
6792 {
6793 char elem[2];
6794
6795 elem[0] = tohex ((*data >> 4) & 0xf);
6796 elem[1] = tohex (*data++ & 0xf);
6797
6798 buffer->append (elem, 2);
6799 }
6800
6801 *buffer += "</raw>\n";
6802 }
6803
6804 /* See to_read_btrace target method. */
6805
6806 int
6807 linux_process_target::read_btrace (btrace_target_info *tinfo,
6808 std::string *buffer,
6809 enum btrace_read_type type)
6810 {
6811 struct btrace_data btrace;
6812 enum btrace_error err;
6813
6814 err = linux_read_btrace (&btrace, tinfo, type);
6815 if (err != BTRACE_ERR_NONE)
6816 {
6817 if (err == BTRACE_ERR_OVERFLOW)
6818 *buffer += "E.Overflow.";
6819 else
6820 *buffer += "E.Generic Error.";
6821
6822 return -1;
6823 }
6824
6825 switch (btrace.format)
6826 {
6827 case BTRACE_FORMAT_NONE:
6828 *buffer += "E.No Trace.";
6829 return -1;
6830
6831 case BTRACE_FORMAT_BTS:
6832 *buffer += "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n";
6833 *buffer += "<btrace version=\"1.0\">\n";
6834
6835 for (const btrace_block &block : *btrace.variant.bts.blocks)
6836 string_xml_appendf (*buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6837 paddress (block.begin), paddress (block.end));
6838
6839 *buffer += "</btrace>\n";
6840 break;
6841
6842 case BTRACE_FORMAT_PT:
6843 *buffer += "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n";
6844 *buffer += "<btrace version=\"1.0\">\n";
6845 *buffer += "<pt>\n";
6846
6847 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
6848
6849 linux_low_encode_raw (buffer, btrace.variant.pt.data,
6850 btrace.variant.pt.size);
6851
6852 *buffer += "</pt>\n";
6853 *buffer += "</btrace>\n";
6854 break;
6855
6856 default:
6857 *buffer += "E.Unsupported Trace Format.";
6858 return -1;
6859 }
6860
6861 return 0;
6862 }
6863
6864 /* See to_btrace_conf target method. */
6865
6866 int
6867 linux_process_target::read_btrace_conf (const btrace_target_info *tinfo,
6868 std::string *buffer)
6869 {
6870 const struct btrace_config *conf;
6871
6872 *buffer += "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n";
6873 *buffer += "<btrace-conf version=\"1.0\">\n";
6874
6875 conf = linux_btrace_conf (tinfo);
6876 if (conf != NULL)
6877 {
6878 switch (conf->format)
6879 {
6880 case BTRACE_FORMAT_NONE:
6881 break;
6882
6883 case BTRACE_FORMAT_BTS:
6884 string_xml_appendf (*buffer, "<bts");
6885 string_xml_appendf (*buffer, " size=\"0x%x\"", conf->bts.size);
6886 string_xml_appendf (*buffer, " />\n");
6887 break;
6888
6889 case BTRACE_FORMAT_PT:
6890 string_xml_appendf (*buffer, "<pt");
6891 string_xml_appendf (*buffer, " size=\"0x%x\"", conf->pt.size);
6892 string_xml_appendf (*buffer, "/>\n");
6893 break;
6894 }
6895 }
6896
6897 *buffer += "</btrace-conf>\n";
6898 return 0;
6899 }
6900 #endif /* HAVE_LINUX_BTRACE */
6901
6902 /* See nat/linux-nat.h. */
6903
6904 ptid_t
6905 current_lwp_ptid (void)
6906 {
6907 return ptid_of (current_thread);
6908 }
6909
6910 const char *
6911 linux_process_target::thread_name (ptid_t thread)
6912 {
6913 return linux_proc_tid_get_name (thread);
6914 }
6915
6916 #if USE_THREAD_DB
6917 bool
6918 linux_process_target::thread_handle (ptid_t ptid, gdb_byte **handle,
6919 int *handle_len)
6920 {
6921 return thread_db_thread_handle (ptid, handle, handle_len);
6922 }
6923 #endif
6924
6925 thread_info *
6926 linux_process_target::thread_pending_parent (thread_info *thread)
6927 {
6928 lwp_info *parent = get_thread_lwp (thread)->pending_parent ();
6929
6930 if (parent == nullptr)
6931 return nullptr;
6932
6933 return get_lwp_thread (parent);
6934 }
6935
6936 thread_info *
6937 linux_process_target::thread_pending_child (thread_info *thread)
6938 {
6939 lwp_info *child = get_thread_lwp (thread)->pending_child ();
6940
6941 if (child == nullptr)
6942 return nullptr;
6943
6944 return get_lwp_thread (child);
6945 }
6946
6947 /* Default implementation of linux_target_ops method "set_pc" for
6948 32-bit pc register which is literally named "pc". */
6949
6950 void
6951 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
6952 {
6953 uint32_t newpc = pc;
6954
6955 supply_register_by_name (regcache, "pc", &newpc);
6956 }
6957
6958 /* Default implementation of linux_target_ops method "get_pc" for
6959 32-bit pc register which is literally named "pc". */
6960
6961 CORE_ADDR
6962 linux_get_pc_32bit (struct regcache *regcache)
6963 {
6964 uint32_t pc;
6965
6966 collect_register_by_name (regcache, "pc", &pc);
6967 threads_debug_printf ("stop pc is 0x%" PRIx32, pc);
6968 return pc;
6969 }
6970
6971 /* Default implementation of linux_target_ops method "set_pc" for
6972 64-bit pc register which is literally named "pc". */
6973
6974 void
6975 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
6976 {
6977 uint64_t newpc = pc;
6978
6979 supply_register_by_name (regcache, "pc", &newpc);
6980 }
6981
6982 /* Default implementation of linux_target_ops method "get_pc" for
6983 64-bit pc register which is literally named "pc". */
6984
6985 CORE_ADDR
6986 linux_get_pc_64bit (struct regcache *regcache)
6987 {
6988 uint64_t pc;
6989
6990 collect_register_by_name (regcache, "pc", &pc);
6991 threads_debug_printf ("stop pc is 0x%" PRIx64, pc);
6992 return pc;
6993 }
6994
6995 /* See linux-low.h. */
6996
6997 int
6998 linux_get_auxv (int pid, int wordsize, CORE_ADDR match, CORE_ADDR *valp)
6999 {
7000 gdb_byte *data = (gdb_byte *) alloca (2 * wordsize);
7001 int offset = 0;
7002
7003 gdb_assert (wordsize == 4 || wordsize == 8);
7004
7005 while (the_target->read_auxv (pid, offset, data, 2 * wordsize)
7006 == 2 * wordsize)
7007 {
7008 if (wordsize == 4)
7009 {
7010 uint32_t *data_p = (uint32_t *) data;
7011 if (data_p[0] == match)
7012 {
7013 *valp = data_p[1];
7014 return 1;
7015 }
7016 }
7017 else
7018 {
7019 uint64_t *data_p = (uint64_t *) data;
7020 if (data_p[0] == match)
7021 {
7022 *valp = data_p[1];
7023 return 1;
7024 }
7025 }
7026
7027 offset += 2 * wordsize;
7028 }
7029
7030 return 0;
7031 }
7032
7033 /* See linux-low.h. */
7034
7035 CORE_ADDR
7036 linux_get_hwcap (int pid, int wordsize)
7037 {
7038 CORE_ADDR hwcap = 0;
7039 linux_get_auxv (pid, wordsize, AT_HWCAP, &hwcap);
7040 return hwcap;
7041 }
7042
7043 /* See linux-low.h. */
7044
7045 CORE_ADDR
7046 linux_get_hwcap2 (int pid, int wordsize)
7047 {
7048 CORE_ADDR hwcap2 = 0;
7049 linux_get_auxv (pid, wordsize, AT_HWCAP2, &hwcap2);
7050 return hwcap2;
7051 }
7052
7053 #ifdef HAVE_LINUX_REGSETS
7054 void
7055 initialize_regsets_info (struct regsets_info *info)
7056 {
7057 for (info->num_regsets = 0;
7058 info->regsets[info->num_regsets].size >= 0;
7059 info->num_regsets++)
7060 ;
7061 }
7062 #endif
7063
7064 void
7065 initialize_low (void)
7066 {
7067 struct sigaction sigchld_action;
7068
7069 memset (&sigchld_action, 0, sizeof (sigchld_action));
7070 set_target_ops (the_linux_target);
7071
7072 linux_ptrace_init_warnings ();
7073 linux_proc_init_warnings ();
7074
7075 sigchld_action.sa_handler = sigchld_handler;
7076 sigemptyset (&sigchld_action.sa_mask);
7077 sigchld_action.sa_flags = SA_RESTART;
7078 sigaction (SIGCHLD, &sigchld_action, NULL);
7079
7080 initialize_low_arch ();
7081
7082 linux_check_ptrace_features ();
7083 }