Remove path name from test case
[binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2023 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41 #ifdef HAVE_JANSSON
42 #include <jansson.h>
43 #endif
44
45 #include "parameters.h"
46 #include "options.h"
47 #include "mapfile.h"
48 #include "script.h"
49 #include "script-sections.h"
50 #include "output.h"
51 #include "symtab.h"
52 #include "dynobj.h"
53 #include "ehframe.h"
54 #include "gdb-index.h"
55 #include "compressed_output.h"
56 #include "reduced_debug_output.h"
57 #include "object.h"
58 #include "reloc.h"
59 #include "descriptors.h"
60 #include "plugin.h"
61 #include "incremental.h"
62 #include "layout.h"
63
64 namespace gold
65 {
66
67 // Class Free_list.
68
69 // The total number of free lists used.
70 unsigned int Free_list::num_lists = 0;
71 // The total number of free list nodes used.
72 unsigned int Free_list::num_nodes = 0;
73 // The total number of calls to Free_list::remove.
74 unsigned int Free_list::num_removes = 0;
75 // The total number of nodes visited during calls to Free_list::remove.
76 unsigned int Free_list::num_remove_visits = 0;
77 // The total number of calls to Free_list::allocate.
78 unsigned int Free_list::num_allocates = 0;
79 // The total number of nodes visited during calls to Free_list::allocate.
80 unsigned int Free_list::num_allocate_visits = 0;
81
82 // Initialize the free list. Creates a single free list node that
83 // describes the entire region of length LEN. If EXTEND is true,
84 // allocate() is allowed to extend the region beyond its initial
85 // length.
86
87 void
88 Free_list::init(off_t len, bool extend)
89 {
90 this->list_.push_front(Free_list_node(0, len));
91 this->last_remove_ = this->list_.begin();
92 this->extend_ = extend;
93 this->length_ = len;
94 ++Free_list::num_lists;
95 ++Free_list::num_nodes;
96 }
97
98 // Remove a chunk from the free list. Because we start with a single
99 // node that covers the entire section, and remove chunks from it one
100 // at a time, we do not need to coalesce chunks or handle cases that
101 // span more than one free node. We expect to remove chunks from the
102 // free list in order, and we expect to have only a few chunks of free
103 // space left (corresponding to files that have changed since the last
104 // incremental link), so a simple linear list should provide sufficient
105 // performance.
106
107 void
108 Free_list::remove(off_t start, off_t end)
109 {
110 if (start == end)
111 return;
112 gold_assert(start < end);
113
114 ++Free_list::num_removes;
115
116 Iterator p = this->last_remove_;
117 if (p->start_ > start)
118 p = this->list_.begin();
119
120 for (; p != this->list_.end(); ++p)
121 {
122 ++Free_list::num_remove_visits;
123 // Find a node that wholly contains the indicated region.
124 if (p->start_ <= start && p->end_ >= end)
125 {
126 // Case 1: the indicated region spans the whole node.
127 // Add some fuzz to avoid creating tiny free chunks.
128 if (p->start_ + 3 >= start && p->end_ <= end + 3)
129 p = this->list_.erase(p);
130 // Case 2: remove a chunk from the start of the node.
131 else if (p->start_ + 3 >= start)
132 p->start_ = end;
133 // Case 3: remove a chunk from the end of the node.
134 else if (p->end_ <= end + 3)
135 p->end_ = start;
136 // Case 4: remove a chunk from the middle, and split
137 // the node into two.
138 else
139 {
140 Free_list_node newnode(p->start_, start);
141 p->start_ = end;
142 this->list_.insert(p, newnode);
143 ++Free_list::num_nodes;
144 }
145 this->last_remove_ = p;
146 return;
147 }
148 }
149
150 // Did not find a node containing the given chunk. This could happen
151 // because a small chunk was already removed due to the fuzz.
152 gold_debug(DEBUG_INCREMENTAL,
153 "Free_list::remove(%d,%d) not found",
154 static_cast<int>(start), static_cast<int>(end));
155 }
156
157 // Allocate a chunk of size LEN from the free list. Returns -1ULL
158 // if a sufficiently large chunk of free space is not found.
159 // We use a simple first-fit algorithm.
160
161 off_t
162 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
163 {
164 gold_debug(DEBUG_INCREMENTAL,
165 "Free_list::allocate(%08lx, %d, %08lx)",
166 static_cast<long>(len), static_cast<int>(align),
167 static_cast<long>(minoff));
168 if (len == 0)
169 return align_address(minoff, align);
170
171 ++Free_list::num_allocates;
172
173 // We usually want to drop free chunks smaller than 4 bytes.
174 // If we need to guarantee a minimum hole size, though, we need
175 // to keep track of all free chunks.
176 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
177
178 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
179 {
180 ++Free_list::num_allocate_visits;
181 off_t start = p->start_ > minoff ? p->start_ : minoff;
182 start = align_address(start, align);
183 off_t end = start + len;
184 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
185 {
186 this->length_ = end;
187 p->end_ = end;
188 }
189 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
190 {
191 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
192 this->list_.erase(p);
193 else if (p->start_ + fuzz >= start)
194 p->start_ = end;
195 else if (p->end_ <= end + fuzz)
196 p->end_ = start;
197 else
198 {
199 Free_list_node newnode(p->start_, start);
200 p->start_ = end;
201 this->list_.insert(p, newnode);
202 ++Free_list::num_nodes;
203 }
204 return start;
205 }
206 }
207 if (this->extend_)
208 {
209 off_t start = align_address(this->length_, align);
210 this->length_ = start + len;
211 return start;
212 }
213 return -1;
214 }
215
216 // Dump the free list (for debugging).
217 void
218 Free_list::dump()
219 {
220 gold_info("Free list:\n start end length\n");
221 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
222 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
223 static_cast<long>(p->end_),
224 static_cast<long>(p->end_ - p->start_));
225 }
226
227 // Print the statistics for the free lists.
228 void
229 Free_list::print_stats()
230 {
231 fprintf(stderr, _("%s: total free lists: %u\n"),
232 program_name, Free_list::num_lists);
233 fprintf(stderr, _("%s: total free list nodes: %u\n"),
234 program_name, Free_list::num_nodes);
235 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
236 program_name, Free_list::num_removes);
237 fprintf(stderr, _("%s: nodes visited: %u\n"),
238 program_name, Free_list::num_remove_visits);
239 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
240 program_name, Free_list::num_allocates);
241 fprintf(stderr, _("%s: nodes visited: %u\n"),
242 program_name, Free_list::num_allocate_visits);
243 }
244
245 // A Hash_task computes the MD5 checksum of an array of char.
246
247 class Hash_task : public Task
248 {
249 public:
250 Hash_task(Output_file* of,
251 size_t offset,
252 size_t size,
253 unsigned char* dst,
254 Task_token* final_blocker)
255 : of_(of), offset_(offset), size_(size), dst_(dst),
256 final_blocker_(final_blocker)
257 { }
258
259 void
260 run(Workqueue*)
261 {
262 const unsigned char* iv =
263 this->of_->get_input_view(this->offset_, this->size_);
264 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
265 this->of_->free_input_view(this->offset_, this->size_, iv);
266 }
267
268 Task_token*
269 is_runnable()
270 { return NULL; }
271
272 // Unblock FINAL_BLOCKER_ when done.
273 void
274 locks(Task_locker* tl)
275 { tl->add(this, this->final_blocker_); }
276
277 std::string
278 get_name() const
279 { return "Hash_task"; }
280
281 private:
282 Output_file* of_;
283 const size_t offset_;
284 const size_t size_;
285 unsigned char* const dst_;
286 Task_token* const final_blocker_;
287 };
288
289 // Layout::Relaxation_debug_check methods.
290
291 // Check that sections and special data are in reset states.
292 // We do not save states for Output_sections and special Output_data.
293 // So we check that they have not assigned any addresses or offsets.
294 // clean_up_after_relaxation simply resets their addresses and offsets.
295 void
296 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
297 const Layout::Section_list& sections,
298 const Layout::Data_list& special_outputs,
299 const Layout::Data_list& relax_outputs)
300 {
301 for(Layout::Section_list::const_iterator p = sections.begin();
302 p != sections.end();
303 ++p)
304 gold_assert((*p)->address_and_file_offset_have_reset_values());
305
306 for(Layout::Data_list::const_iterator p = special_outputs.begin();
307 p != special_outputs.end();
308 ++p)
309 gold_assert((*p)->address_and_file_offset_have_reset_values());
310
311 gold_assert(relax_outputs.empty());
312 }
313
314 // Save information of SECTIONS for checking later.
315
316 void
317 Layout::Relaxation_debug_check::read_sections(
318 const Layout::Section_list& sections)
319 {
320 for(Layout::Section_list::const_iterator p = sections.begin();
321 p != sections.end();
322 ++p)
323 {
324 Output_section* os = *p;
325 Section_info info;
326 info.output_section = os;
327 info.address = os->is_address_valid() ? os->address() : 0;
328 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
329 info.offset = os->is_offset_valid()? os->offset() : -1 ;
330 this->section_infos_.push_back(info);
331 }
332 }
333
334 // Verify SECTIONS using previously recorded information.
335
336 void
337 Layout::Relaxation_debug_check::verify_sections(
338 const Layout::Section_list& sections)
339 {
340 size_t i = 0;
341 for(Layout::Section_list::const_iterator p = sections.begin();
342 p != sections.end();
343 ++p, ++i)
344 {
345 Output_section* os = *p;
346 uint64_t address = os->is_address_valid() ? os->address() : 0;
347 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
348 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
349
350 if (i >= this->section_infos_.size())
351 {
352 gold_fatal("Section_info of %s missing.\n", os->name());
353 }
354 const Section_info& info = this->section_infos_[i];
355 if (os != info.output_section)
356 gold_fatal("Section order changed. Expecting %s but see %s\n",
357 info.output_section->name(), os->name());
358 if (address != info.address
359 || data_size != info.data_size
360 || offset != info.offset)
361 gold_fatal("Section %s changed.\n", os->name());
362 }
363 }
364
365 // Layout_task_runner methods.
366
367 // Lay out the sections. This is called after all the input objects
368 // have been read.
369
370 void
371 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
372 {
373 // See if any of the input definitions violate the One Definition Rule.
374 // TODO: if this is too slow, do this as a task, rather than inline.
375 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
376
377 Layout* layout = this->layout_;
378 off_t file_size = layout->finalize(this->input_objects_,
379 this->symtab_,
380 this->target_,
381 task);
382
383 // Now we know the final size of the output file and we know where
384 // each piece of information goes.
385
386 if (this->mapfile_ != NULL)
387 {
388 this->mapfile_->print_discarded_sections(this->input_objects_);
389 layout->print_to_mapfile(this->mapfile_);
390 }
391
392 Output_file* of;
393 if (layout->incremental_base() == NULL)
394 {
395 of = new Output_file(parameters->options().output_file_name());
396 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
397 of->set_is_temporary();
398 of->open(file_size);
399 }
400 else
401 {
402 of = layout->incremental_base()->output_file();
403
404 // Apply the incremental relocations for symbols whose values
405 // have changed. We do this before we resize the file and start
406 // writing anything else to it, so that we can read the old
407 // incremental information from the file before (possibly)
408 // overwriting it.
409 if (parameters->incremental_update())
410 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
411 this->layout_,
412 of);
413
414 of->resize(file_size);
415 }
416
417 // Queue up the final set of tasks.
418 gold::queue_final_tasks(this->options_, this->input_objects_,
419 this->symtab_, layout, workqueue, of);
420 }
421
422 // Layout methods.
423
424 Layout::Layout(int number_of_input_files, Script_options* script_options)
425 : number_of_input_files_(number_of_input_files),
426 script_options_(script_options),
427 namepool_(),
428 sympool_(),
429 dynpool_(),
430 signatures_(),
431 section_name_map_(),
432 segment_list_(),
433 section_list_(),
434 unattached_section_list_(),
435 special_output_list_(),
436 relax_output_list_(),
437 section_headers_(NULL),
438 tls_segment_(NULL),
439 relro_segment_(NULL),
440 interp_segment_(NULL),
441 increase_relro_(0),
442 symtab_section_(NULL),
443 symtab_xindex_(NULL),
444 dynsym_section_(NULL),
445 dynsym_xindex_(NULL),
446 dynamic_section_(NULL),
447 dynamic_symbol_(NULL),
448 dynamic_data_(NULL),
449 eh_frame_section_(NULL),
450 eh_frame_data_(NULL),
451 added_eh_frame_data_(false),
452 eh_frame_hdr_section_(NULL),
453 gdb_index_data_(NULL),
454 build_id_note_(NULL),
455 debug_abbrev_(NULL),
456 debug_info_(NULL),
457 group_signatures_(),
458 output_file_size_(-1),
459 have_added_input_section_(false),
460 sections_are_attached_(false),
461 input_requires_executable_stack_(false),
462 input_with_gnu_stack_note_(false),
463 input_without_gnu_stack_note_(false),
464 has_static_tls_(false),
465 any_postprocessing_sections_(false),
466 resized_signatures_(false),
467 have_stabstr_section_(false),
468 section_ordering_specified_(false),
469 unique_segment_for_sections_specified_(false),
470 incremental_inputs_(NULL),
471 record_output_section_data_from_script_(false),
472 lto_slim_object_(false),
473 script_output_section_data_list_(),
474 segment_states_(NULL),
475 relaxation_debug_check_(NULL),
476 section_order_map_(),
477 section_segment_map_(),
478 input_section_position_(),
479 input_section_glob_(),
480 incremental_base_(NULL),
481 free_list_(),
482 gnu_properties_()
483 {
484 // Make space for more than enough segments for a typical file.
485 // This is just for efficiency--it's OK if we wind up needing more.
486 this->segment_list_.reserve(12);
487
488 // We expect two unattached Output_data objects: the file header and
489 // the segment headers.
490 this->special_output_list_.reserve(2);
491
492 // Initialize structure needed for an incremental build.
493 if (parameters->incremental())
494 this->incremental_inputs_ = new Incremental_inputs;
495
496 // The section name pool is worth optimizing in all cases, because
497 // it is small, but there are often overlaps due to .rel sections.
498 this->namepool_.set_optimize();
499 }
500
501 // For incremental links, record the base file to be modified.
502
503 void
504 Layout::set_incremental_base(Incremental_binary* base)
505 {
506 this->incremental_base_ = base;
507 this->free_list_.init(base->output_file()->filesize(), true);
508 }
509
510 // Hash a key we use to look up an output section mapping.
511
512 size_t
513 Layout::Hash_key::operator()(const Layout::Key& k) const
514 {
515 return k.first + k.second.first + k.second.second;
516 }
517
518 // These are the debug sections that are actually used by gdb.
519 // Currently, we've checked versions of gdb up to and including 7.4.
520 // We only check the part of the name that follows ".debug_" or
521 // ".zdebug_".
522
523 static const char* gdb_sections[] =
524 {
525 "abbrev",
526 "addr", // Fission extension
527 // "aranges", // not used by gdb as of 7.4
528 "frame",
529 "gdb_scripts",
530 "info",
531 "types",
532 "line",
533 "loc",
534 "macinfo",
535 "macro",
536 // "pubnames", // not used by gdb as of 7.4
537 // "pubtypes", // not used by gdb as of 7.4
538 // "gnu_pubnames", // Fission extension
539 // "gnu_pubtypes", // Fission extension
540 "ranges",
541 "str",
542 "str_offsets",
543 };
544
545 // This is the minimum set of sections needed for line numbers.
546
547 static const char* lines_only_debug_sections[] =
548 {
549 "abbrev",
550 // "addr", // Fission extension
551 // "aranges", // not used by gdb as of 7.4
552 // "frame",
553 // "gdb_scripts",
554 "info",
555 // "types",
556 "line",
557 // "loc",
558 // "macinfo",
559 // "macro",
560 // "pubnames", // not used by gdb as of 7.4
561 // "pubtypes", // not used by gdb as of 7.4
562 // "gnu_pubnames", // Fission extension
563 // "gnu_pubtypes", // Fission extension
564 // "ranges",
565 "str",
566 "str_offsets", // Fission extension
567 };
568
569 // These sections are the DWARF fast-lookup tables, and are not needed
570 // when building a .gdb_index section.
571
572 static const char* gdb_fast_lookup_sections[] =
573 {
574 "aranges",
575 "pubnames",
576 "gnu_pubnames",
577 "pubtypes",
578 "gnu_pubtypes",
579 };
580
581 // Returns whether the given debug section is in the list of
582 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
583 // portion of the name following ".debug_" or ".zdebug_".
584
585 static inline bool
586 is_gdb_debug_section(const char* suffix)
587 {
588 // We can do this faster: binary search or a hashtable. But why bother?
589 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
590 if (strcmp(suffix, gdb_sections[i]) == 0)
591 return true;
592 return false;
593 }
594
595 // Returns whether the given section is needed for lines-only debugging.
596
597 static inline bool
598 is_lines_only_debug_section(const char* suffix)
599 {
600 // We can do this faster: binary search or a hashtable. But why bother?
601 for (size_t i = 0;
602 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
603 ++i)
604 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
605 return true;
606 return false;
607 }
608
609 // Returns whether the given section is a fast-lookup section that
610 // will not be needed when building a .gdb_index section.
611
612 static inline bool
613 is_gdb_fast_lookup_section(const char* suffix)
614 {
615 // We can do this faster: binary search or a hashtable. But why bother?
616 for (size_t i = 0;
617 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
618 ++i)
619 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
620 return true;
621 return false;
622 }
623
624 // Sometimes we compress sections. This is typically done for
625 // sections that are not part of normal program execution (such as
626 // .debug_* sections), and where the readers of these sections know
627 // how to deal with compressed sections. This routine doesn't say for
628 // certain whether we'll compress -- it depends on commandline options
629 // as well -- just whether this section is a candidate for compression.
630 // (The Output_compressed_section class decides whether to compress
631 // a given section, and picks the name of the compressed section.)
632
633 static bool
634 is_compressible_debug_section(const char* secname)
635 {
636 return (is_prefix_of(".debug", secname));
637 }
638
639 // We may see compressed debug sections in input files. Return TRUE
640 // if this is the name of a compressed debug section.
641
642 bool
643 is_compressed_debug_section(const char* secname)
644 {
645 return (is_prefix_of(".zdebug", secname));
646 }
647
648 std::string
649 corresponding_uncompressed_section_name(std::string secname)
650 {
651 gold_assert(secname[0] == '.' && secname[1] == 'z');
652 std::string ret(".");
653 ret.append(secname, 2, std::string::npos);
654 return ret;
655 }
656
657 // Whether to include this section in the link.
658
659 template<int size, bool big_endian>
660 bool
661 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
662 const elfcpp::Shdr<size, big_endian>& shdr)
663 {
664 if (!parameters->options().relocatable()
665 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
666 return false;
667
668 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
669
670 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
671 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
672 return parameters->target().should_include_section(sh_type);
673
674 switch (sh_type)
675 {
676 case elfcpp::SHT_NULL:
677 case elfcpp::SHT_SYMTAB:
678 case elfcpp::SHT_DYNSYM:
679 case elfcpp::SHT_HASH:
680 case elfcpp::SHT_DYNAMIC:
681 case elfcpp::SHT_SYMTAB_SHNDX:
682 return false;
683
684 case elfcpp::SHT_STRTAB:
685 // Discard the sections which have special meanings in the ELF
686 // ABI. Keep others (e.g., .stabstr). We could also do this by
687 // checking the sh_link fields of the appropriate sections.
688 return (strcmp(name, ".dynstr") != 0
689 && strcmp(name, ".strtab") != 0
690 && strcmp(name, ".shstrtab") != 0);
691
692 case elfcpp::SHT_RELA:
693 case elfcpp::SHT_REL:
694 case elfcpp::SHT_GROUP:
695 // If we are emitting relocations these should be handled
696 // elsewhere.
697 gold_assert(!parameters->options().relocatable());
698 return false;
699
700 case elfcpp::SHT_PROGBITS:
701 if (parameters->options().strip_debug()
702 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
703 {
704 if (is_debug_info_section(name))
705 return false;
706 }
707 if (parameters->options().strip_debug_non_line()
708 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
709 {
710 // Debugging sections can only be recognized by name.
711 if (is_prefix_of(".debug_", name)
712 && !is_lines_only_debug_section(name + 7))
713 return false;
714 if (is_prefix_of(".zdebug_", name)
715 && !is_lines_only_debug_section(name + 8))
716 return false;
717 }
718 if (parameters->options().strip_debug_gdb()
719 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
720 {
721 // Debugging sections can only be recognized by name.
722 if (is_prefix_of(".debug_", name)
723 && !is_gdb_debug_section(name + 7))
724 return false;
725 if (is_prefix_of(".zdebug_", name)
726 && !is_gdb_debug_section(name + 8))
727 return false;
728 }
729 if (parameters->options().gdb_index()
730 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
731 {
732 // When building .gdb_index, we can strip .debug_pubnames,
733 // .debug_pubtypes, and .debug_aranges sections.
734 if (is_prefix_of(".debug_", name)
735 && is_gdb_fast_lookup_section(name + 7))
736 return false;
737 if (is_prefix_of(".zdebug_", name)
738 && is_gdb_fast_lookup_section(name + 8))
739 return false;
740 }
741 if (parameters->options().strip_lto_sections()
742 && !parameters->options().relocatable()
743 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
744 {
745 // Ignore LTO sections containing intermediate code.
746 if (is_prefix_of(".gnu.lto_", name))
747 return false;
748 }
749 // The GNU linker strips .gnu_debuglink sections, so we do too.
750 // This is a feature used to keep debugging information in
751 // separate files.
752 if (strcmp(name, ".gnu_debuglink") == 0)
753 return false;
754 return true;
755
756 default:
757 return true;
758 }
759 }
760
761 // Return an output section named NAME, or NULL if there is none.
762
763 Output_section*
764 Layout::find_output_section(const char* name) const
765 {
766 for (Section_list::const_iterator p = this->section_list_.begin();
767 p != this->section_list_.end();
768 ++p)
769 if (strcmp((*p)->name(), name) == 0)
770 return *p;
771 return NULL;
772 }
773
774 // Return an output segment of type TYPE, with segment flags SET set
775 // and segment flags CLEAR clear. Return NULL if there is none.
776
777 Output_segment*
778 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
779 elfcpp::Elf_Word clear) const
780 {
781 for (Segment_list::const_iterator p = this->segment_list_.begin();
782 p != this->segment_list_.end();
783 ++p)
784 if (static_cast<elfcpp::PT>((*p)->type()) == type
785 && ((*p)->flags() & set) == set
786 && ((*p)->flags() & clear) == 0)
787 return *p;
788 return NULL;
789 }
790
791 // When we put a .ctors or .dtors section with more than one word into
792 // a .init_array or .fini_array section, we need to reverse the words
793 // in the .ctors/.dtors section. This is because .init_array executes
794 // constructors front to back, where .ctors executes them back to
795 // front, and vice-versa for .fini_array/.dtors. Although we do want
796 // to remap .ctors/.dtors into .init_array/.fini_array because it can
797 // be more efficient, we don't want to change the order in which
798 // constructors/destructors are run. This set just keeps track of
799 // these sections which need to be reversed. It is only changed by
800 // Layout::layout. It should be a private member of Layout, but that
801 // would require layout.h to #include object.h to get the definition
802 // of Section_id.
803 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
804
805 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
806 // .init_array/.fini_array section.
807
808 bool
809 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
810 {
811 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
812 != ctors_sections_in_init_array.end());
813 }
814
815 // Return the output section to use for section NAME with type TYPE
816 // and section flags FLAGS. NAME must be canonicalized in the string
817 // pool, and NAME_KEY is the key. ORDER is where this should appear
818 // in the output sections. IS_RELRO is true for a relro section.
819
820 Output_section*
821 Layout::get_output_section(const char* name, Stringpool::Key name_key,
822 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
823 Output_section_order order, bool is_relro)
824 {
825 elfcpp::Elf_Word lookup_type = type;
826
827 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
828 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
829 // .init_array, .fini_array, and .preinit_array sections by name
830 // whatever their type in the input file. We do this because the
831 // types are not always right in the input files.
832 if (lookup_type == elfcpp::SHT_INIT_ARRAY
833 || lookup_type == elfcpp::SHT_FINI_ARRAY
834 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
835 lookup_type = elfcpp::SHT_PROGBITS;
836
837 elfcpp::Elf_Xword lookup_flags = flags;
838
839 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
840 // read-write with read-only sections. Some other ELF linkers do
841 // not do this. FIXME: Perhaps there should be an option
842 // controlling this.
843 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
844
845 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
846 const std::pair<Key, Output_section*> v(key, NULL);
847 std::pair<Section_name_map::iterator, bool> ins(
848 this->section_name_map_.insert(v));
849
850 if (!ins.second)
851 return ins.first->second;
852 else
853 {
854 // This is the first time we've seen this name/type/flags
855 // combination. For compatibility with the GNU linker, we
856 // combine sections with contents and zero flags with sections
857 // with non-zero flags. This is a workaround for cases where
858 // assembler code forgets to set section flags. FIXME: Perhaps
859 // there should be an option to control this.
860 Output_section* os = NULL;
861
862 if (lookup_type == elfcpp::SHT_PROGBITS)
863 {
864 if (flags == 0)
865 {
866 Output_section* same_name = this->find_output_section(name);
867 if (same_name != NULL
868 && (same_name->type() == elfcpp::SHT_PROGBITS
869 || same_name->type() == elfcpp::SHT_INIT_ARRAY
870 || same_name->type() == elfcpp::SHT_FINI_ARRAY
871 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
872 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
873 os = same_name;
874 }
875 else if ((flags & elfcpp::SHF_TLS) == 0)
876 {
877 elfcpp::Elf_Xword zero_flags = 0;
878 const Key zero_key(name_key, std::make_pair(lookup_type,
879 zero_flags));
880 Section_name_map::iterator p =
881 this->section_name_map_.find(zero_key);
882 if (p != this->section_name_map_.end())
883 os = p->second;
884 }
885 }
886
887 if (os == NULL)
888 os = this->make_output_section(name, type, flags, order, is_relro);
889
890 ins.first->second = os;
891 return os;
892 }
893 }
894
895 // Returns TRUE iff NAME (an input section from RELOBJ) will
896 // be mapped to an output section that should be KEPT.
897
898 bool
899 Layout::keep_input_section(const Relobj* relobj, const char* name)
900 {
901 if (! this->script_options_->saw_sections_clause())
902 return false;
903
904 Script_sections* ss = this->script_options_->script_sections();
905 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
906 Output_section** output_section_slot;
907 Script_sections::Section_type script_section_type;
908 bool keep;
909
910 name = ss->output_section_name(file_name, name, &output_section_slot,
911 &script_section_type, &keep, true);
912 return name != NULL && keep;
913 }
914
915 // Clear the input section flags that should not be copied to the
916 // output section.
917
918 elfcpp::Elf_Xword
919 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
920 {
921 // Some flags in the input section should not be automatically
922 // copied to the output section.
923 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
924 | elfcpp::SHF_GROUP
925 | elfcpp::SHF_COMPRESSED
926 | elfcpp::SHF_MERGE
927 | elfcpp::SHF_STRINGS);
928
929 // We only clear the SHF_LINK_ORDER flag in for
930 // a non-relocatable link.
931 if (!parameters->options().relocatable())
932 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
933
934 return input_section_flags;
935 }
936
937 // Pick the output section to use for section NAME, in input file
938 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
939 // linker created section. IS_INPUT_SECTION is true if we are
940 // choosing an output section for an input section found in a input
941 // file. ORDER is where this section should appear in the output
942 // sections. IS_RELRO is true for a relro section. This will return
943 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
944 // is true if the section name should be matched against input specs
945 // in a linker script.
946
947 Output_section*
948 Layout::choose_output_section(const Relobj* relobj, const char* name,
949 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
950 bool is_input_section, Output_section_order order,
951 bool is_relro, bool is_reloc,
952 bool match_input_spec)
953 {
954 // We should not see any input sections after we have attached
955 // sections to segments.
956 gold_assert(!is_input_section || !this->sections_are_attached_);
957
958 flags = this->get_output_section_flags(flags);
959
960 if (this->script_options_->saw_sections_clause() && !is_reloc)
961 {
962 // We are using a SECTIONS clause, so the output section is
963 // chosen based only on the name.
964
965 Script_sections* ss = this->script_options_->script_sections();
966 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
967 Output_section** output_section_slot;
968 Script_sections::Section_type script_section_type;
969 const char* orig_name = name;
970 bool keep;
971 name = ss->output_section_name(file_name, name, &output_section_slot,
972 &script_section_type, &keep,
973 match_input_spec);
974
975 if (name == NULL)
976 {
977 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
978 "because it is not allowed by the "
979 "SECTIONS clause of the linker script"),
980 orig_name);
981 // The SECTIONS clause says to discard this input section.
982 return NULL;
983 }
984
985 // We can only handle script section types ST_NONE and ST_NOLOAD.
986 switch (script_section_type)
987 {
988 case Script_sections::ST_NONE:
989 break;
990 case Script_sections::ST_NOLOAD:
991 flags &= elfcpp::SHF_ALLOC;
992 break;
993 default:
994 gold_unreachable();
995 }
996
997 // If this is an orphan section--one not mentioned in the linker
998 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
999 // default processing below.
1000
1001 if (output_section_slot != NULL)
1002 {
1003 if (*output_section_slot != NULL)
1004 {
1005 (*output_section_slot)->update_flags_for_input_section(flags);
1006 return *output_section_slot;
1007 }
1008
1009 // We don't put sections found in the linker script into
1010 // SECTION_NAME_MAP_. That keeps us from getting confused
1011 // if an orphan section is mapped to a section with the same
1012 // name as one in the linker script.
1013
1014 name = this->namepool_.add(name, false, NULL);
1015
1016 Output_section* os = this->make_output_section(name, type, flags,
1017 order, is_relro);
1018
1019 os->set_found_in_sections_clause();
1020
1021 // Special handling for NOLOAD sections.
1022 if (script_section_type == Script_sections::ST_NOLOAD)
1023 {
1024 os->set_is_noload();
1025
1026 // The constructor of Output_section sets addresses of non-ALLOC
1027 // sections to 0 by default. We don't want that for NOLOAD
1028 // sections even if they have no SHF_ALLOC flag.
1029 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1030 && os->is_address_valid())
1031 {
1032 gold_assert(os->address() == 0
1033 && !os->is_offset_valid()
1034 && !os->is_data_size_valid());
1035 os->reset_address_and_file_offset();
1036 }
1037 }
1038
1039 *output_section_slot = os;
1040 return os;
1041 }
1042 }
1043
1044 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1045
1046 size_t len = strlen(name);
1047 std::string uncompressed_name;
1048
1049 // Compressed debug sections should be mapped to the corresponding
1050 // uncompressed section.
1051 if (is_compressed_debug_section(name))
1052 {
1053 uncompressed_name =
1054 corresponding_uncompressed_section_name(std::string(name, len));
1055 name = uncompressed_name.c_str();
1056 len = uncompressed_name.length();
1057 }
1058
1059 // Turn NAME from the name of the input section into the name of the
1060 // output section.
1061 if (is_input_section
1062 && !this->script_options_->saw_sections_clause()
1063 && !parameters->options().relocatable())
1064 {
1065 const char *orig_name = name;
1066 name = parameters->target().output_section_name(relobj, name, &len);
1067 if (name == NULL)
1068 name = Layout::output_section_name(relobj, orig_name, &len);
1069 }
1070
1071 Stringpool::Key name_key;
1072 name = this->namepool_.add_with_length(name, len, true, &name_key);
1073
1074 // Find or make the output section. The output section is selected
1075 // based on the section name, type, and flags.
1076 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1077 }
1078
1079 // For incremental links, record the initial fixed layout of a section
1080 // from the base file, and return a pointer to the Output_section.
1081
1082 template<int size, bool big_endian>
1083 Output_section*
1084 Layout::init_fixed_output_section(const char* name,
1085 elfcpp::Shdr<size, big_endian>& shdr)
1086 {
1087 unsigned int sh_type = shdr.get_sh_type();
1088
1089 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1090 // PRE_INIT_ARRAY, and NOTE sections.
1091 // All others will be created from scratch and reallocated.
1092 if (!can_incremental_update(sh_type))
1093 return NULL;
1094
1095 // If we're generating a .gdb_index section, we need to regenerate
1096 // it from scratch.
1097 if (parameters->options().gdb_index()
1098 && sh_type == elfcpp::SHT_PROGBITS
1099 && strcmp(name, ".gdb_index") == 0)
1100 return NULL;
1101
1102 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1103 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1104 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1105 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags =
1106 this->get_output_section_flags(shdr.get_sh_flags());
1107 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1108 shdr.get_sh_addralign();
1109
1110 // Make the output section.
1111 Stringpool::Key name_key;
1112 name = this->namepool_.add(name, true, &name_key);
1113 Output_section* os = this->get_output_section(name, name_key, sh_type,
1114 sh_flags, ORDER_INVALID, false);
1115 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1116 if (sh_type != elfcpp::SHT_NOBITS)
1117 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1118 return os;
1119 }
1120
1121 // Return the index by which an input section should be ordered. This
1122 // is used to sort some .text sections, for compatibility with GNU ld.
1123
1124 int
1125 Layout::special_ordering_of_input_section(const char* name)
1126 {
1127 // The GNU linker has some special handling for some sections that
1128 // wind up in the .text section. Sections that start with these
1129 // prefixes must appear first, and must appear in the order listed
1130 // here.
1131 static const char* const text_section_sort[] =
1132 {
1133 ".text.unlikely",
1134 ".text.exit",
1135 ".text.startup",
1136 ".text.hot",
1137 ".text.sorted"
1138 };
1139
1140 for (size_t i = 0;
1141 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1142 i++)
1143 if (is_prefix_of(text_section_sort[i], name))
1144 return i;
1145
1146 return -1;
1147 }
1148
1149 // Return the output section to use for input section SHNDX, with name
1150 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1151 // index of a relocation section which applies to this section, or 0
1152 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1153 // relocation section if there is one. Set *OFF to the offset of this
1154 // input section without the output section. Return NULL if the
1155 // section should be discarded. Set *OFF to -1 if the section
1156 // contents should not be written directly to the output file, but
1157 // will instead receive special handling.
1158
1159 template<int size, bool big_endian>
1160 Output_section*
1161 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1162 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1163 unsigned int sh_type, unsigned int reloc_shndx,
1164 unsigned int, off_t* off)
1165 {
1166 *off = 0;
1167
1168 if (!this->include_section(object, name, shdr))
1169 return NULL;
1170
1171 // In a relocatable link a grouped section must not be combined with
1172 // any other sections.
1173 Output_section* os;
1174 if (parameters->options().relocatable()
1175 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1176 {
1177 // Some flags in the input section should not be automatically
1178 // copied to the output section.
1179 elfcpp::Elf_Xword sh_flags = (shdr.get_sh_flags()
1180 & ~ elfcpp::SHF_COMPRESSED);
1181 name = this->namepool_.add(name, true, NULL);
1182 os = this->make_output_section(name, sh_type, sh_flags, ORDER_INVALID,
1183 false);
1184 }
1185 else
1186 {
1187 // Get the section flags and mask out any flags that do not
1188 // take part in section matching.
1189 elfcpp::Elf_Xword sh_flags
1190 = (this->get_output_section_flags(shdr.get_sh_flags())
1191 & ~object->osabi().ignored_sh_flags());
1192
1193 // All ".text.unlikely.*" sections can be moved to a unique
1194 // segment with --text-unlikely-segment option.
1195 bool text_unlikely_segment
1196 = (parameters->options().text_unlikely_segment()
1197 && is_prefix_of(".text.unlikely",
1198 object->section_name(shndx).c_str()));
1199 if (text_unlikely_segment)
1200 {
1201 Stringpool::Key name_key;
1202 const char* os_name = this->namepool_.add(".text.unlikely", true,
1203 &name_key);
1204 os = this->get_output_section(os_name, name_key, sh_type, sh_flags,
1205 ORDER_INVALID, false);
1206 // Map this output section to a unique segment. This is done to
1207 // separate "text" that is not likely to be executed from "text"
1208 // that is likely executed.
1209 os->set_is_unique_segment();
1210 }
1211 else
1212 {
1213 // Plugins can choose to place one or more subsets of sections in
1214 // unique segments and this is done by mapping these section subsets
1215 // to unique output sections. Check if this section needs to be
1216 // remapped to a unique output section.
1217 Section_segment_map::iterator it
1218 = this->section_segment_map_.find(Const_section_id(object, shndx));
1219 if (it == this->section_segment_map_.end())
1220 {
1221 os = this->choose_output_section(object, name, sh_type,
1222 sh_flags, true, ORDER_INVALID,
1223 false, false, true);
1224 }
1225 else
1226 {
1227 // We know the name of the output section, directly call
1228 // get_output_section here by-passing choose_output_section.
1229 const char* os_name = it->second->name;
1230 Stringpool::Key name_key;
1231 os_name = this->namepool_.add(os_name, true, &name_key);
1232 os = this->get_output_section(os_name, name_key, sh_type,
1233 sh_flags, ORDER_INVALID, false);
1234 if (!os->is_unique_segment())
1235 {
1236 os->set_is_unique_segment();
1237 os->set_extra_segment_flags(it->second->flags);
1238 os->set_segment_alignment(it->second->align);
1239 }
1240 }
1241 }
1242 if (os == NULL)
1243 return NULL;
1244 }
1245
1246 // By default the GNU linker sorts input sections whose names match
1247 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1248 // sections are sorted by name. This is used to implement
1249 // constructor priority ordering. We are compatible. When we put
1250 // .ctor sections in .init_array and .dtor sections in .fini_array,
1251 // we must also sort plain .ctor and .dtor sections.
1252 if (!this->script_options_->saw_sections_clause()
1253 && !parameters->options().relocatable()
1254 && (is_prefix_of(".ctors.", name)
1255 || is_prefix_of(".dtors.", name)
1256 || is_prefix_of(".init_array.", name)
1257 || is_prefix_of(".fini_array.", name)
1258 || (parameters->options().ctors_in_init_array()
1259 && (strcmp(name, ".ctors") == 0
1260 || strcmp(name, ".dtors") == 0))))
1261 os->set_must_sort_attached_input_sections();
1262
1263 // By default the GNU linker sorts some special text sections ahead
1264 // of others. We are compatible.
1265 if (parameters->options().text_reorder()
1266 && !this->script_options_->saw_sections_clause()
1267 && !this->is_section_ordering_specified()
1268 && !parameters->options().relocatable()
1269 && Layout::special_ordering_of_input_section(name) >= 0)
1270 os->set_must_sort_attached_input_sections();
1271
1272 // If this is a .ctors or .ctors.* section being mapped to a
1273 // .init_array section, or a .dtors or .dtors.* section being mapped
1274 // to a .fini_array section, we will need to reverse the words if
1275 // there is more than one. Record this section for later. See
1276 // ctors_sections_in_init_array above.
1277 if (!this->script_options_->saw_sections_clause()
1278 && !parameters->options().relocatable()
1279 && shdr.get_sh_size() > size / 8
1280 && (((strcmp(name, ".ctors") == 0
1281 || is_prefix_of(".ctors.", name))
1282 && strcmp(os->name(), ".init_array") == 0)
1283 || ((strcmp(name, ".dtors") == 0
1284 || is_prefix_of(".dtors.", name))
1285 && strcmp(os->name(), ".fini_array") == 0)))
1286 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1287
1288 // FIXME: Handle SHF_LINK_ORDER somewhere.
1289
1290 elfcpp::Elf_Xword orig_flags = os->flags();
1291
1292 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1293 this->script_options_->saw_sections_clause());
1294
1295 // If the flags changed, we may have to change the order.
1296 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1297 {
1298 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1299 elfcpp::Elf_Xword new_flags =
1300 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1301 if (orig_flags != new_flags)
1302 os->set_order(this->default_section_order(os, false));
1303 }
1304
1305 this->have_added_input_section_ = true;
1306
1307 return os;
1308 }
1309
1310 // Maps section SECN to SEGMENT s.
1311 void
1312 Layout::insert_section_segment_map(Const_section_id secn,
1313 Unique_segment_info *s)
1314 {
1315 gold_assert(this->unique_segment_for_sections_specified_);
1316 this->section_segment_map_[secn] = s;
1317 }
1318
1319 // Handle a relocation section when doing a relocatable link.
1320
1321 template<int size, bool big_endian>
1322 Output_section*
1323 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1324 unsigned int,
1325 const elfcpp::Shdr<size, big_endian>& shdr,
1326 Output_section* data_section,
1327 Relocatable_relocs* rr)
1328 {
1329 gold_assert(parameters->options().relocatable()
1330 || parameters->options().emit_relocs());
1331
1332 int sh_type = shdr.get_sh_type();
1333
1334 std::string name;
1335 if (sh_type == elfcpp::SHT_REL)
1336 name = ".rel";
1337 else if (sh_type == elfcpp::SHT_RELA)
1338 name = ".rela";
1339 else
1340 gold_unreachable();
1341 name += data_section->name();
1342
1343 // If the output data section already has a reloc section, use that;
1344 // otherwise, make a new one.
1345 Output_section* os = data_section->reloc_section();
1346 if (os == NULL)
1347 {
1348 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1349 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1350 ORDER_INVALID, false);
1351 os->set_should_link_to_symtab();
1352 os->set_info_section(data_section);
1353 data_section->set_reloc_section(os);
1354 }
1355
1356 Output_section_data* posd;
1357 if (sh_type == elfcpp::SHT_REL)
1358 {
1359 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1360 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1361 size,
1362 big_endian>(rr);
1363 }
1364 else if (sh_type == elfcpp::SHT_RELA)
1365 {
1366 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1367 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1368 size,
1369 big_endian>(rr);
1370 }
1371 else
1372 gold_unreachable();
1373
1374 os->add_output_section_data(posd);
1375 rr->set_output_data(posd);
1376
1377 return os;
1378 }
1379
1380 // Handle a group section when doing a relocatable link.
1381
1382 template<int size, bool big_endian>
1383 void
1384 Layout::layout_group(Symbol_table* symtab,
1385 Sized_relobj_file<size, big_endian>* object,
1386 unsigned int,
1387 const char* group_section_name,
1388 const char* signature,
1389 const elfcpp::Shdr<size, big_endian>& shdr,
1390 elfcpp::Elf_Word flags,
1391 std::vector<unsigned int>* shndxes)
1392 {
1393 gold_assert(parameters->options().relocatable());
1394 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1395 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1396 Output_section* os = this->make_output_section(group_section_name,
1397 elfcpp::SHT_GROUP,
1398 shdr.get_sh_flags(),
1399 ORDER_INVALID, false);
1400
1401 // We need to find a symbol with the signature in the symbol table.
1402 // If we don't find one now, we need to look again later.
1403 Symbol* sym = symtab->lookup(signature, NULL);
1404 if (sym != NULL)
1405 os->set_info_symndx(sym);
1406 else
1407 {
1408 // Reserve some space to minimize reallocations.
1409 if (this->group_signatures_.empty())
1410 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1411
1412 // We will wind up using a symbol whose name is the signature.
1413 // So just put the signature in the symbol name pool to save it.
1414 signature = symtab->canonicalize_name(signature);
1415 this->group_signatures_.push_back(Group_signature(os, signature));
1416 }
1417
1418 os->set_should_link_to_symtab();
1419 os->set_entsize(4);
1420
1421 section_size_type entry_count =
1422 convert_to_section_size_type(shdr.get_sh_size() / 4);
1423 Output_section_data* posd =
1424 new Output_data_group<size, big_endian>(object, entry_count, flags,
1425 shndxes);
1426 os->add_output_section_data(posd);
1427 }
1428
1429 // Special GNU handling of sections name .eh_frame. They will
1430 // normally hold exception frame data as defined by the C++ ABI
1431 // (http://codesourcery.com/cxx-abi/).
1432
1433 template<int size, bool big_endian>
1434 Output_section*
1435 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1436 const unsigned char* symbols,
1437 off_t symbols_size,
1438 const unsigned char* symbol_names,
1439 off_t symbol_names_size,
1440 unsigned int shndx,
1441 const elfcpp::Shdr<size, big_endian>& shdr,
1442 unsigned int reloc_shndx, unsigned int reloc_type,
1443 off_t* off)
1444 {
1445 const unsigned int unwind_section_type =
1446 parameters->target().unwind_section_type();
1447
1448 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1449 || shdr.get_sh_type() == unwind_section_type);
1450 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1451
1452 Output_section* os = this->make_eh_frame_section(object);
1453 if (os == NULL)
1454 return NULL;
1455
1456 gold_assert(this->eh_frame_section_ == os);
1457
1458 elfcpp::Elf_Xword orig_flags = os->flags();
1459
1460 Eh_frame::Eh_frame_section_disposition disp =
1461 Eh_frame::EH_UNRECOGNIZED_SECTION;
1462 if (!parameters->incremental())
1463 {
1464 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1465 symbols,
1466 symbols_size,
1467 symbol_names,
1468 symbol_names_size,
1469 shndx,
1470 reloc_shndx,
1471 reloc_type);
1472 }
1473
1474 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1475 {
1476 os->update_flags_for_input_section(shdr.get_sh_flags());
1477
1478 // A writable .eh_frame section is a RELRO section.
1479 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1480 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1481 {
1482 os->set_is_relro();
1483 os->set_order(ORDER_RELRO);
1484 }
1485
1486 *off = -1;
1487 return os;
1488 }
1489
1490 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1491 {
1492 // We found the end marker section, so now we can add the set of
1493 // optimized sections to the output section. We need to postpone
1494 // adding this until we've found a section we can optimize so that
1495 // the .eh_frame section in crtbeginT.o winds up at the start of
1496 // the output section.
1497 os->add_output_section_data(this->eh_frame_data_);
1498 this->added_eh_frame_data_ = true;
1499 }
1500
1501 // We couldn't handle this .eh_frame section for some reason.
1502 // Add it as a normal section.
1503 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1504 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1505 reloc_shndx, saw_sections_clause);
1506 this->have_added_input_section_ = true;
1507
1508 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1509 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1510 os->set_order(this->default_section_order(os, false));
1511
1512 return os;
1513 }
1514
1515 void
1516 Layout::finalize_eh_frame_section()
1517 {
1518 // If we never found an end marker section, we need to add the
1519 // optimized eh sections to the output section now.
1520 if (!parameters->incremental()
1521 && this->eh_frame_section_ != NULL
1522 && !this->added_eh_frame_data_)
1523 {
1524 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1525 this->added_eh_frame_data_ = true;
1526 }
1527 }
1528
1529 // Create and return the magic .eh_frame section. Create
1530 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1531 // input .eh_frame section; it may be NULL.
1532
1533 Output_section*
1534 Layout::make_eh_frame_section(const Relobj* object)
1535 {
1536 const unsigned int unwind_section_type =
1537 parameters->target().unwind_section_type();
1538
1539 Output_section* os = this->choose_output_section(object, ".eh_frame",
1540 unwind_section_type,
1541 elfcpp::SHF_ALLOC, false,
1542 ORDER_EHFRAME, false, false,
1543 false);
1544 if (os == NULL)
1545 return NULL;
1546
1547 if (this->eh_frame_section_ == NULL)
1548 {
1549 this->eh_frame_section_ = os;
1550 this->eh_frame_data_ = new Eh_frame();
1551
1552 // For incremental linking, we do not optimize .eh_frame sections
1553 // or create a .eh_frame_hdr section.
1554 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1555 {
1556 Output_section* hdr_os =
1557 this->choose_output_section(NULL, ".eh_frame_hdr",
1558 unwind_section_type,
1559 elfcpp::SHF_ALLOC, false,
1560 ORDER_EHFRAME, false, false,
1561 false);
1562
1563 if (hdr_os != NULL)
1564 {
1565 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1566 this->eh_frame_data_);
1567 hdr_os->add_output_section_data(hdr_posd);
1568
1569 hdr_os->set_after_input_sections();
1570
1571 if (!this->script_options_->saw_phdrs_clause())
1572 {
1573 Output_segment* hdr_oseg;
1574 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1575 elfcpp::PF_R);
1576 hdr_oseg->add_output_section_to_nonload(hdr_os,
1577 elfcpp::PF_R);
1578 }
1579
1580 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1581 }
1582 }
1583 }
1584
1585 return os;
1586 }
1587
1588 // Add an exception frame for a PLT. This is called from target code.
1589
1590 void
1591 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1592 size_t cie_length, const unsigned char* fde_data,
1593 size_t fde_length)
1594 {
1595 if (parameters->incremental())
1596 {
1597 // FIXME: Maybe this could work some day....
1598 return;
1599 }
1600 Output_section* os = this->make_eh_frame_section(NULL);
1601 if (os == NULL)
1602 return;
1603 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1604 fde_data, fde_length);
1605 if (!this->added_eh_frame_data_)
1606 {
1607 os->add_output_section_data(this->eh_frame_data_);
1608 this->added_eh_frame_data_ = true;
1609 }
1610 }
1611
1612 // Remove all post-map .eh_frame information for a PLT.
1613
1614 void
1615 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1616 size_t cie_length)
1617 {
1618 if (parameters->incremental())
1619 {
1620 // FIXME: Maybe this could work some day....
1621 return;
1622 }
1623 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
1624 }
1625
1626 // Scan a .debug_info or .debug_types section, and add summary
1627 // information to the .gdb_index section.
1628
1629 template<int size, bool big_endian>
1630 void
1631 Layout::add_to_gdb_index(bool is_type_unit,
1632 Sized_relobj<size, big_endian>* object,
1633 const unsigned char* symbols,
1634 off_t symbols_size,
1635 unsigned int shndx,
1636 unsigned int reloc_shndx,
1637 unsigned int reloc_type)
1638 {
1639 if (this->gdb_index_data_ == NULL)
1640 {
1641 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1642 elfcpp::SHT_PROGBITS, 0,
1643 false, ORDER_INVALID,
1644 false, false, false);
1645 if (os == NULL)
1646 return;
1647
1648 this->gdb_index_data_ = new Gdb_index(os);
1649 os->add_output_section_data(this->gdb_index_data_);
1650 os->set_after_input_sections();
1651 }
1652
1653 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1654 symbols_size, shndx, reloc_shndx,
1655 reloc_type);
1656 }
1657
1658 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1659 // the output section.
1660
1661 Output_section*
1662 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1663 elfcpp::Elf_Xword flags,
1664 Output_section_data* posd,
1665 Output_section_order order, bool is_relro)
1666 {
1667 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1668 false, order, is_relro,
1669 false, false);
1670 if (os != NULL)
1671 os->add_output_section_data(posd);
1672 return os;
1673 }
1674
1675 // Map section flags to segment flags.
1676
1677 elfcpp::Elf_Word
1678 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1679 {
1680 elfcpp::Elf_Word ret = elfcpp::PF_R;
1681 if ((flags & elfcpp::SHF_WRITE) != 0)
1682 ret |= elfcpp::PF_W;
1683 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1684 ret |= elfcpp::PF_X;
1685 return ret;
1686 }
1687
1688 // Make a new Output_section, and attach it to segments as
1689 // appropriate. ORDER is the order in which this section should
1690 // appear in the output segment. IS_RELRO is true if this is a relro
1691 // (read-only after relocations) section.
1692
1693 Output_section*
1694 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1695 elfcpp::Elf_Xword flags,
1696 Output_section_order order, bool is_relro)
1697 {
1698 Output_section* os;
1699 if ((flags & elfcpp::SHF_ALLOC) == 0
1700 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1701 && is_compressible_debug_section(name))
1702 os = new Output_compressed_section(&parameters->options(), name, type,
1703 flags);
1704 else if ((flags & elfcpp::SHF_ALLOC) == 0
1705 && parameters->options().strip_debug_non_line()
1706 && strcmp(".debug_abbrev", name) == 0)
1707 {
1708 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1709 name, type, flags);
1710 if (this->debug_info_)
1711 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1712 }
1713 else if ((flags & elfcpp::SHF_ALLOC) == 0
1714 && parameters->options().strip_debug_non_line()
1715 && strcmp(".debug_info", name) == 0)
1716 {
1717 os = this->debug_info_ = new Output_reduced_debug_info_section(
1718 name, type, flags);
1719 if (this->debug_abbrev_)
1720 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1721 }
1722 else
1723 {
1724 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1725 // not have correct section types. Force them here.
1726 if (type == elfcpp::SHT_PROGBITS)
1727 {
1728 if (is_prefix_of(".init_array", name))
1729 type = elfcpp::SHT_INIT_ARRAY;
1730 else if (is_prefix_of(".preinit_array", name))
1731 type = elfcpp::SHT_PREINIT_ARRAY;
1732 else if (is_prefix_of(".fini_array", name))
1733 type = elfcpp::SHT_FINI_ARRAY;
1734 }
1735
1736 // FIXME: const_cast is ugly.
1737 Target* target = const_cast<Target*>(&parameters->target());
1738 os = target->make_output_section(name, type, flags);
1739 }
1740
1741 // With -z relro, we have to recognize the special sections by name.
1742 // There is no other way.
1743 bool is_relro_local = false;
1744 if (!this->script_options_->saw_sections_clause()
1745 && parameters->options().relro()
1746 && (flags & elfcpp::SHF_ALLOC) != 0
1747 && (flags & elfcpp::SHF_WRITE) != 0)
1748 {
1749 if (type == elfcpp::SHT_PROGBITS)
1750 {
1751 if ((flags & elfcpp::SHF_TLS) != 0)
1752 is_relro = true;
1753 else if (strcmp(name, ".data.rel.ro") == 0)
1754 is_relro = true;
1755 else if (strcmp(name, ".data.rel.ro.local") == 0)
1756 {
1757 is_relro = true;
1758 is_relro_local = true;
1759 }
1760 else if (strcmp(name, ".ctors") == 0
1761 || strcmp(name, ".dtors") == 0
1762 || strcmp(name, ".jcr") == 0)
1763 is_relro = true;
1764 }
1765 else if (type == elfcpp::SHT_INIT_ARRAY
1766 || type == elfcpp::SHT_FINI_ARRAY
1767 || type == elfcpp::SHT_PREINIT_ARRAY)
1768 is_relro = true;
1769 }
1770
1771 if (is_relro)
1772 os->set_is_relro();
1773
1774 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1775 order = this->default_section_order(os, is_relro_local);
1776
1777 os->set_order(order);
1778
1779 parameters->target().new_output_section(os);
1780
1781 this->section_list_.push_back(os);
1782
1783 // The GNU linker by default sorts some sections by priority, so we
1784 // do the same. We need to know that this might happen before we
1785 // attach any input sections.
1786 if (!this->script_options_->saw_sections_clause()
1787 && !parameters->options().relocatable()
1788 && (strcmp(name, ".init_array") == 0
1789 || strcmp(name, ".fini_array") == 0
1790 || (!parameters->options().ctors_in_init_array()
1791 && (strcmp(name, ".ctors") == 0
1792 || strcmp(name, ".dtors") == 0))))
1793 os->set_may_sort_attached_input_sections();
1794
1795 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1796 // sections before other .text sections. We are compatible. We
1797 // need to know that this might happen before we attach any input
1798 // sections.
1799 if (parameters->options().text_reorder()
1800 && !this->script_options_->saw_sections_clause()
1801 && !this->is_section_ordering_specified()
1802 && !parameters->options().relocatable()
1803 && strcmp(name, ".text") == 0)
1804 os->set_may_sort_attached_input_sections();
1805
1806 // GNU linker sorts section by name with --sort-section=name.
1807 if (strcmp(parameters->options().sort_section(), "name") == 0)
1808 os->set_must_sort_attached_input_sections();
1809
1810 // Check for .stab*str sections, as .stab* sections need to link to
1811 // them.
1812 if (type == elfcpp::SHT_STRTAB
1813 && !this->have_stabstr_section_
1814 && strncmp(name, ".stab", 5) == 0
1815 && strcmp(name + strlen(name) - 3, "str") == 0)
1816 this->have_stabstr_section_ = true;
1817
1818 // During a full incremental link, we add patch space to most
1819 // PROGBITS and NOBITS sections. Flag those that may be
1820 // arbitrarily padded.
1821 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1822 && order != ORDER_INTERP
1823 && order != ORDER_INIT
1824 && order != ORDER_PLT
1825 && order != ORDER_FINI
1826 && order != ORDER_RELRO_LAST
1827 && order != ORDER_NON_RELRO_FIRST
1828 && strcmp(name, ".eh_frame") != 0
1829 && strcmp(name, ".ctors") != 0
1830 && strcmp(name, ".dtors") != 0
1831 && strcmp(name, ".jcr") != 0)
1832 {
1833 os->set_is_patch_space_allowed();
1834
1835 // Certain sections require "holes" to be filled with
1836 // specific fill patterns. These fill patterns may have
1837 // a minimum size, so we must prevent allocations from the
1838 // free list that leave a hole smaller than the minimum.
1839 if (strcmp(name, ".debug_info") == 0)
1840 os->set_free_space_fill(new Output_fill_debug_info(false));
1841 else if (strcmp(name, ".debug_types") == 0)
1842 os->set_free_space_fill(new Output_fill_debug_info(true));
1843 else if (strcmp(name, ".debug_line") == 0)
1844 os->set_free_space_fill(new Output_fill_debug_line());
1845 }
1846
1847 // If we have already attached the sections to segments, then we
1848 // need to attach this one now. This happens for sections created
1849 // directly by the linker.
1850 if (this->sections_are_attached_)
1851 this->attach_section_to_segment(&parameters->target(), os);
1852
1853 return os;
1854 }
1855
1856 // Return the default order in which a section should be placed in an
1857 // output segment. This function captures a lot of the ideas in
1858 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1859 // linker created section is normally set when the section is created;
1860 // this function is used for input sections.
1861
1862 Output_section_order
1863 Layout::default_section_order(Output_section* os, bool is_relro_local)
1864 {
1865 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1866 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1867 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1868 bool is_bss = false;
1869
1870 switch (os->type())
1871 {
1872 default:
1873 case elfcpp::SHT_PROGBITS:
1874 break;
1875 case elfcpp::SHT_NOBITS:
1876 is_bss = true;
1877 break;
1878 case elfcpp::SHT_RELA:
1879 case elfcpp::SHT_REL:
1880 if (!is_write)
1881 return ORDER_DYNAMIC_RELOCS;
1882 break;
1883 case elfcpp::SHT_HASH:
1884 case elfcpp::SHT_DYNAMIC:
1885 case elfcpp::SHT_SHLIB:
1886 case elfcpp::SHT_DYNSYM:
1887 case elfcpp::SHT_GNU_HASH:
1888 case elfcpp::SHT_GNU_verdef:
1889 case elfcpp::SHT_GNU_verneed:
1890 case elfcpp::SHT_GNU_versym:
1891 if (!is_write)
1892 return ORDER_DYNAMIC_LINKER;
1893 break;
1894 case elfcpp::SHT_NOTE:
1895 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1896 }
1897
1898 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1899 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1900
1901 if (!is_bss && !is_write)
1902 {
1903 if (is_execinstr)
1904 {
1905 if (strcmp(os->name(), ".init") == 0)
1906 return ORDER_INIT;
1907 else if (strcmp(os->name(), ".fini") == 0)
1908 return ORDER_FINI;
1909 else if (parameters->options().keep_text_section_prefix())
1910 {
1911 // -z,keep-text-section-prefix introduces additional
1912 // output sections.
1913 if (strcmp(os->name(), ".text.hot") == 0)
1914 return ORDER_TEXT_HOT;
1915 else if (strcmp(os->name(), ".text.startup") == 0)
1916 return ORDER_TEXT_STARTUP;
1917 else if (strcmp(os->name(), ".text.exit") == 0)
1918 return ORDER_TEXT_EXIT;
1919 else if (strcmp(os->name(), ".text.unlikely") == 0)
1920 return ORDER_TEXT_UNLIKELY;
1921 }
1922 }
1923 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1924 }
1925
1926 if (os->is_relro())
1927 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1928
1929 if (os->is_small_section())
1930 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1931 if (os->is_large_section())
1932 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1933
1934 return is_bss ? ORDER_BSS : ORDER_DATA;
1935 }
1936
1937 // Attach output sections to segments. This is called after we have
1938 // seen all the input sections.
1939
1940 void
1941 Layout::attach_sections_to_segments(const Target* target)
1942 {
1943 for (Section_list::iterator p = this->section_list_.begin();
1944 p != this->section_list_.end();
1945 ++p)
1946 this->attach_section_to_segment(target, *p);
1947
1948 this->sections_are_attached_ = true;
1949 }
1950
1951 // Attach an output section to a segment.
1952
1953 void
1954 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1955 {
1956 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1957 this->unattached_section_list_.push_back(os);
1958 else
1959 this->attach_allocated_section_to_segment(target, os);
1960 }
1961
1962 // Attach an allocated output section to a segment.
1963
1964 void
1965 Layout::attach_allocated_section_to_segment(const Target* target,
1966 Output_section* os)
1967 {
1968 elfcpp::Elf_Xword flags = os->flags();
1969 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1970
1971 if (parameters->options().relocatable())
1972 return;
1973
1974 // If we have a SECTIONS clause, we can't handle the attachment to
1975 // segments until after we've seen all the sections.
1976 if (this->script_options_->saw_sections_clause())
1977 return;
1978
1979 gold_assert(!this->script_options_->saw_phdrs_clause());
1980
1981 // This output section goes into a PT_LOAD segment.
1982
1983 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1984
1985 // If this output section's segment has extra flags that need to be set,
1986 // coming from a linker plugin, do that.
1987 seg_flags |= os->extra_segment_flags();
1988
1989 // Check for --section-start.
1990 uint64_t addr;
1991 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1992
1993 // In general the only thing we really care about for PT_LOAD
1994 // segments is whether or not they are writable or executable,
1995 // so that is how we search for them.
1996 // Large data sections also go into their own PT_LOAD segment.
1997 // People who need segments sorted on some other basis will
1998 // have to use a linker script.
1999
2000 Segment_list::const_iterator p;
2001 if (!os->is_unique_segment())
2002 {
2003 for (p = this->segment_list_.begin();
2004 p != this->segment_list_.end();
2005 ++p)
2006 {
2007 if ((*p)->type() != elfcpp::PT_LOAD)
2008 continue;
2009 if ((*p)->is_unique_segment())
2010 continue;
2011 if (!parameters->options().omagic()
2012 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2013 continue;
2014 if ((target->isolate_execinstr() || parameters->options().rosegment())
2015 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2016 continue;
2017 // If -Tbss was specified, we need to separate the data and BSS
2018 // segments.
2019 if (parameters->options().user_set_Tbss())
2020 {
2021 if ((os->type() == elfcpp::SHT_NOBITS)
2022 == (*p)->has_any_data_sections())
2023 continue;
2024 }
2025 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2026 continue;
2027
2028 if (is_address_set)
2029 {
2030 if ((*p)->are_addresses_set())
2031 continue;
2032
2033 (*p)->add_initial_output_data(os);
2034 (*p)->update_flags_for_output_section(seg_flags);
2035 (*p)->set_addresses(addr, addr);
2036 break;
2037 }
2038
2039 (*p)->add_output_section_to_load(this, os, seg_flags);
2040 break;
2041 }
2042 }
2043
2044 if (p == this->segment_list_.end()
2045 || os->is_unique_segment())
2046 {
2047 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2048 seg_flags);
2049 if (os->is_large_data_section())
2050 oseg->set_is_large_data_segment();
2051 oseg->add_output_section_to_load(this, os, seg_flags);
2052 if (is_address_set)
2053 oseg->set_addresses(addr, addr);
2054 // Check if segment should be marked unique. For segments marked
2055 // unique by linker plugins, set the new alignment if specified.
2056 if (os->is_unique_segment())
2057 {
2058 oseg->set_is_unique_segment();
2059 if (os->segment_alignment() != 0)
2060 oseg->set_minimum_p_align(os->segment_alignment());
2061 }
2062 }
2063
2064 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2065 // segment.
2066 if (os->type() == elfcpp::SHT_NOTE)
2067 {
2068 uint64_t os_align = os->addralign();
2069
2070 // See if we already have an equivalent PT_NOTE segment.
2071 for (p = this->segment_list_.begin();
2072 p != segment_list_.end();
2073 ++p)
2074 {
2075 if ((*p)->type() == elfcpp::PT_NOTE
2076 && (*p)->align() == os_align
2077 && (((*p)->flags() & elfcpp::PF_W)
2078 == (seg_flags & elfcpp::PF_W)))
2079 {
2080 (*p)->add_output_section_to_nonload(os, seg_flags);
2081 break;
2082 }
2083 }
2084
2085 if (p == this->segment_list_.end())
2086 {
2087 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2088 seg_flags);
2089 oseg->add_output_section_to_nonload(os, seg_flags);
2090 oseg->set_align(os_align);
2091 }
2092 }
2093
2094 // If we see a loadable SHF_TLS section, we create a PT_TLS
2095 // segment. There can only be one such segment.
2096 if ((flags & elfcpp::SHF_TLS) != 0)
2097 {
2098 if (this->tls_segment_ == NULL)
2099 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2100 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2101 }
2102
2103 // If -z relro is in effect, and we see a relro section, we create a
2104 // PT_GNU_RELRO segment. There can only be one such segment.
2105 if (os->is_relro() && parameters->options().relro())
2106 {
2107 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2108 if (this->relro_segment_ == NULL)
2109 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2110 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2111 }
2112
2113 // If we see a section named .interp, put it into a PT_INTERP
2114 // segment. This seems broken to me, but this is what GNU ld does,
2115 // and glibc expects it.
2116 if (strcmp(os->name(), ".interp") == 0
2117 && !this->script_options_->saw_phdrs_clause())
2118 {
2119 if (this->interp_segment_ == NULL)
2120 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2121 else
2122 gold_warning(_("multiple '.interp' sections in input files "
2123 "may cause confusing PT_INTERP segment"));
2124 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2125 }
2126 }
2127
2128 // Make an output section for a script.
2129
2130 Output_section*
2131 Layout::make_output_section_for_script(
2132 const char* name,
2133 Script_sections::Section_type section_type)
2134 {
2135 name = this->namepool_.add(name, false, NULL);
2136 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2137 if (section_type == Script_sections::ST_NOLOAD)
2138 sh_flags = 0;
2139 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2140 sh_flags, ORDER_INVALID,
2141 false);
2142 os->set_found_in_sections_clause();
2143 if (section_type == Script_sections::ST_NOLOAD)
2144 os->set_is_noload();
2145 return os;
2146 }
2147
2148 // Return the number of segments we expect to see.
2149
2150 size_t
2151 Layout::expected_segment_count() const
2152 {
2153 size_t ret = this->segment_list_.size();
2154
2155 // If we didn't see a SECTIONS clause in a linker script, we should
2156 // already have the complete list of segments. Otherwise we ask the
2157 // SECTIONS clause how many segments it expects, and add in the ones
2158 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2159
2160 if (!this->script_options_->saw_sections_clause())
2161 return ret;
2162 else
2163 {
2164 const Script_sections* ss = this->script_options_->script_sections();
2165 return ret + ss->expected_segment_count(this);
2166 }
2167 }
2168
2169 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2170 // is whether we saw a .note.GNU-stack section in the object file.
2171 // GNU_STACK_FLAGS is the section flags. The flags give the
2172 // protection required for stack memory. We record this in an
2173 // executable as a PT_GNU_STACK segment. If an object file does not
2174 // have a .note.GNU-stack segment, we must assume that it is an old
2175 // object. On some targets that will force an executable stack.
2176
2177 void
2178 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2179 const Object* obj)
2180 {
2181 if (!seen_gnu_stack)
2182 {
2183 this->input_without_gnu_stack_note_ = true;
2184 if (parameters->options().warn_execstack()
2185 && parameters->target().is_default_stack_executable())
2186 gold_warning(_("%s: missing .note.GNU-stack section"
2187 " implies executable stack"),
2188 obj->name().c_str());
2189 }
2190 else
2191 {
2192 this->input_with_gnu_stack_note_ = true;
2193 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2194 {
2195 this->input_requires_executable_stack_ = true;
2196 if (parameters->options().warn_execstack())
2197 gold_warning(_("%s: requires executable stack"),
2198 obj->name().c_str());
2199 }
2200 }
2201 }
2202
2203 // Read a value with given size and endianness.
2204
2205 static inline uint64_t
2206 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2207 const Object* object)
2208 {
2209 uint64_t val = 0;
2210 if (size == 4)
2211 {
2212 if (is_big_endian)
2213 val = elfcpp::Swap<32, true>::readval(buf);
2214 else
2215 val = elfcpp::Swap<32, false>::readval(buf);
2216 }
2217 else if (size == 8)
2218 {
2219 if (is_big_endian)
2220 val = elfcpp::Swap<64, true>::readval(buf);
2221 else
2222 val = elfcpp::Swap<64, false>::readval(buf);
2223 }
2224 else
2225 {
2226 gold_warning(_("%s: in .note.gnu.property section, "
2227 "pr_datasz must be 4 or 8"),
2228 object->name().c_str());
2229 }
2230 return val;
2231 }
2232
2233 // Write a value with given size and endianness.
2234
2235 static inline void
2236 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2237 bool is_big_endian)
2238 {
2239 if (size == 4)
2240 {
2241 if (is_big_endian)
2242 elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2243 else
2244 elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2245 }
2246 else if (size == 8)
2247 {
2248 if (is_big_endian)
2249 elfcpp::Swap<64, true>::writeval(buf, value);
2250 else
2251 elfcpp::Swap<64, false>::writeval(buf, value);
2252 }
2253 else
2254 {
2255 // We will have already complained about this.
2256 }
2257 }
2258
2259 // Handle the .note.gnu.property section at layout time.
2260
2261 void
2262 Layout::layout_gnu_property(unsigned int note_type,
2263 unsigned int pr_type,
2264 size_t pr_datasz,
2265 const unsigned char* pr_data,
2266 const Object* object)
2267 {
2268 // We currently support only the one note type.
2269 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2270
2271 if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2272 && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2273 {
2274 // Target-dependent property value; call the target to record.
2275 const int size = parameters->target().get_size();
2276 const bool is_big_endian = parameters->target().is_big_endian();
2277 if (size == 32)
2278 {
2279 if (is_big_endian)
2280 {
2281 #ifdef HAVE_TARGET_32_BIG
2282 parameters->sized_target<32, true>()->
2283 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2284 object);
2285 #else
2286 gold_unreachable();
2287 #endif
2288 }
2289 else
2290 {
2291 #ifdef HAVE_TARGET_32_LITTLE
2292 parameters->sized_target<32, false>()->
2293 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2294 object);
2295 #else
2296 gold_unreachable();
2297 #endif
2298 }
2299 }
2300 else if (size == 64)
2301 {
2302 if (is_big_endian)
2303 {
2304 #ifdef HAVE_TARGET_64_BIG
2305 parameters->sized_target<64, true>()->
2306 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2307 object);
2308 #else
2309 gold_unreachable();
2310 #endif
2311 }
2312 else
2313 {
2314 #ifdef HAVE_TARGET_64_LITTLE
2315 parameters->sized_target<64, false>()->
2316 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2317 object);
2318 #else
2319 gold_unreachable();
2320 #endif
2321 }
2322 }
2323 else
2324 gold_unreachable();
2325 return;
2326 }
2327
2328 Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2329 if (pprop == this->gnu_properties_.end())
2330 {
2331 Gnu_property prop;
2332 prop.pr_datasz = pr_datasz;
2333 prop.pr_data = new unsigned char[pr_datasz];
2334 memcpy(prop.pr_data, pr_data, pr_datasz);
2335 this->gnu_properties_[pr_type] = prop;
2336 }
2337 else
2338 {
2339 const bool is_big_endian = parameters->target().is_big_endian();
2340 switch (pr_type)
2341 {
2342 case elfcpp::GNU_PROPERTY_STACK_SIZE:
2343 // Record the maximum value seen.
2344 {
2345 uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2346 pprop->second.pr_data,
2347 is_big_endian, object);
2348 uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2349 is_big_endian, object);
2350 if (val2 > val1)
2351 write_sized_value(val2, pprop->second.pr_datasz,
2352 pprop->second.pr_data, is_big_endian);
2353 }
2354 break;
2355 case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2356 // No data to merge.
2357 break;
2358 default:
2359 gold_warning(_("%s: unknown program property type %d "
2360 "in .note.gnu.property section"),
2361 object->name().c_str(), pr_type);
2362 }
2363 }
2364 }
2365
2366 // Merge per-object properties with program properties.
2367 // This lets the target identify objects that are missing certain
2368 // properties, in cases where properties must be ANDed together.
2369
2370 void
2371 Layout::merge_gnu_properties(const Object* object)
2372 {
2373 const int size = parameters->target().get_size();
2374 const bool is_big_endian = parameters->target().is_big_endian();
2375 if (size == 32)
2376 {
2377 if (is_big_endian)
2378 {
2379 #ifdef HAVE_TARGET_32_BIG
2380 parameters->sized_target<32, true>()->merge_gnu_properties(object);
2381 #else
2382 gold_unreachable();
2383 #endif
2384 }
2385 else
2386 {
2387 #ifdef HAVE_TARGET_32_LITTLE
2388 parameters->sized_target<32, false>()->merge_gnu_properties(object);
2389 #else
2390 gold_unreachable();
2391 #endif
2392 }
2393 }
2394 else if (size == 64)
2395 {
2396 if (is_big_endian)
2397 {
2398 #ifdef HAVE_TARGET_64_BIG
2399 parameters->sized_target<64, true>()->merge_gnu_properties(object);
2400 #else
2401 gold_unreachable();
2402 #endif
2403 }
2404 else
2405 {
2406 #ifdef HAVE_TARGET_64_LITTLE
2407 parameters->sized_target<64, false>()->merge_gnu_properties(object);
2408 #else
2409 gold_unreachable();
2410 #endif
2411 }
2412 }
2413 else
2414 gold_unreachable();
2415 }
2416
2417 // Add a target-specific property for the output .note.gnu.property section.
2418
2419 void
2420 Layout::add_gnu_property(unsigned int note_type,
2421 unsigned int pr_type,
2422 size_t pr_datasz,
2423 const unsigned char* pr_data)
2424 {
2425 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2426
2427 Gnu_property prop;
2428 prop.pr_datasz = pr_datasz;
2429 prop.pr_data = new unsigned char[pr_datasz];
2430 memcpy(prop.pr_data, pr_data, pr_datasz);
2431 this->gnu_properties_[pr_type] = prop;
2432 }
2433
2434 // Create automatic note sections.
2435
2436 void
2437 Layout::create_notes()
2438 {
2439 this->create_gnu_properties_note();
2440 this->create_gold_note();
2441 this->create_stack_segment();
2442 this->create_build_id();
2443 this->create_package_metadata();
2444 }
2445
2446 // Create the dynamic sections which are needed before we read the
2447 // relocs.
2448
2449 void
2450 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2451 {
2452 if (parameters->doing_static_link())
2453 return;
2454
2455 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2456 elfcpp::SHT_DYNAMIC,
2457 (elfcpp::SHF_ALLOC
2458 | elfcpp::SHF_WRITE),
2459 false, ORDER_RELRO,
2460 true, false, false);
2461
2462 // A linker script may discard .dynamic, so check for NULL.
2463 if (this->dynamic_section_ != NULL)
2464 {
2465 this->dynamic_symbol_ =
2466 symtab->define_in_output_data("_DYNAMIC", NULL,
2467 Symbol_table::PREDEFINED,
2468 this->dynamic_section_, 0, 0,
2469 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2470 elfcpp::STV_HIDDEN, 0, false, false);
2471
2472 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2473
2474 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2475 }
2476 }
2477
2478 // For each output section whose name can be represented as C symbol,
2479 // define __start and __stop symbols for the section. This is a GNU
2480 // extension.
2481
2482 void
2483 Layout::define_section_symbols(Symbol_table* symtab)
2484 {
2485 const elfcpp::STV visibility = parameters->options().start_stop_visibility_enum();
2486 for (Section_list::const_iterator p = this->section_list_.begin();
2487 p != this->section_list_.end();
2488 ++p)
2489 {
2490 const char* const name = (*p)->name();
2491 if (is_cident(name))
2492 {
2493 const std::string name_string(name);
2494 const std::string start_name(cident_section_start_prefix
2495 + name_string);
2496 const std::string stop_name(cident_section_stop_prefix
2497 + name_string);
2498
2499 symtab->define_in_output_data(start_name.c_str(),
2500 NULL, // version
2501 Symbol_table::PREDEFINED,
2502 *p,
2503 0, // value
2504 0, // symsize
2505 elfcpp::STT_NOTYPE,
2506 elfcpp::STB_GLOBAL,
2507 visibility,
2508 0, // nonvis
2509 false, // offset_is_from_end
2510 true); // only_if_ref
2511
2512 symtab->define_in_output_data(stop_name.c_str(),
2513 NULL, // version
2514 Symbol_table::PREDEFINED,
2515 *p,
2516 0, // value
2517 0, // symsize
2518 elfcpp::STT_NOTYPE,
2519 elfcpp::STB_GLOBAL,
2520 visibility,
2521 0, // nonvis
2522 true, // offset_is_from_end
2523 true); // only_if_ref
2524 }
2525 }
2526 }
2527
2528 // Define symbols for group signatures.
2529
2530 void
2531 Layout::define_group_signatures(Symbol_table* symtab)
2532 {
2533 for (Group_signatures::iterator p = this->group_signatures_.begin();
2534 p != this->group_signatures_.end();
2535 ++p)
2536 {
2537 Symbol* sym = symtab->lookup(p->signature, NULL);
2538 if (sym != NULL)
2539 p->section->set_info_symndx(sym);
2540 else
2541 {
2542 // Force the name of the group section to the group
2543 // signature, and use the group's section symbol as the
2544 // signature symbol.
2545 if (strcmp(p->section->name(), p->signature) != 0)
2546 {
2547 const char* name = this->namepool_.add(p->signature,
2548 true, NULL);
2549 p->section->set_name(name);
2550 }
2551 p->section->set_needs_symtab_index();
2552 p->section->set_info_section_symndx(p->section);
2553 }
2554 }
2555
2556 this->group_signatures_.clear();
2557 }
2558
2559 // Find the first read-only PT_LOAD segment, creating one if
2560 // necessary.
2561
2562 Output_segment*
2563 Layout::find_first_load_seg(const Target* target)
2564 {
2565 Output_segment* best = NULL;
2566 for (Segment_list::const_iterator p = this->segment_list_.begin();
2567 p != this->segment_list_.end();
2568 ++p)
2569 {
2570 if ((*p)->type() == elfcpp::PT_LOAD
2571 && ((*p)->flags() & elfcpp::PF_R) != 0
2572 && (parameters->options().omagic()
2573 || ((*p)->flags() & elfcpp::PF_W) == 0)
2574 && (!target->isolate_execinstr()
2575 || ((*p)->flags() & elfcpp::PF_X) == 0))
2576 {
2577 if (best == NULL || this->segment_precedes(*p, best))
2578 best = *p;
2579 }
2580 }
2581 if (best != NULL)
2582 return best;
2583
2584 gold_assert(!this->script_options_->saw_phdrs_clause());
2585
2586 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2587 elfcpp::PF_R);
2588 return load_seg;
2589 }
2590
2591 // Save states of all current output segments. Store saved states
2592 // in SEGMENT_STATES.
2593
2594 void
2595 Layout::save_segments(Segment_states* segment_states)
2596 {
2597 for (Segment_list::const_iterator p = this->segment_list_.begin();
2598 p != this->segment_list_.end();
2599 ++p)
2600 {
2601 Output_segment* segment = *p;
2602 // Shallow copy.
2603 Output_segment* copy = new Output_segment(*segment);
2604 (*segment_states)[segment] = copy;
2605 }
2606 }
2607
2608 // Restore states of output segments and delete any segment not found in
2609 // SEGMENT_STATES.
2610
2611 void
2612 Layout::restore_segments(const Segment_states* segment_states)
2613 {
2614 // Go through the segment list and remove any segment added in the
2615 // relaxation loop.
2616 this->tls_segment_ = NULL;
2617 this->relro_segment_ = NULL;
2618 Segment_list::iterator list_iter = this->segment_list_.begin();
2619 while (list_iter != this->segment_list_.end())
2620 {
2621 Output_segment* segment = *list_iter;
2622 Segment_states::const_iterator states_iter =
2623 segment_states->find(segment);
2624 if (states_iter != segment_states->end())
2625 {
2626 const Output_segment* copy = states_iter->second;
2627 // Shallow copy to restore states.
2628 *segment = *copy;
2629
2630 // Also fix up TLS and RELRO segment pointers as appropriate.
2631 if (segment->type() == elfcpp::PT_TLS)
2632 this->tls_segment_ = segment;
2633 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2634 this->relro_segment_ = segment;
2635
2636 ++list_iter;
2637 }
2638 else
2639 {
2640 list_iter = this->segment_list_.erase(list_iter);
2641 // This is a segment created during section layout. It should be
2642 // safe to remove it since we should have removed all pointers to it.
2643 delete segment;
2644 }
2645 }
2646 }
2647
2648 // Clean up after relaxation so that sections can be laid out again.
2649
2650 void
2651 Layout::clean_up_after_relaxation()
2652 {
2653 // Restore the segments to point state just prior to the relaxation loop.
2654 Script_sections* script_section = this->script_options_->script_sections();
2655 script_section->release_segments();
2656 this->restore_segments(this->segment_states_);
2657
2658 // Reset section addresses and file offsets
2659 for (Section_list::iterator p = this->section_list_.begin();
2660 p != this->section_list_.end();
2661 ++p)
2662 {
2663 (*p)->restore_states();
2664
2665 // If an input section changes size because of relaxation,
2666 // we need to adjust the section offsets of all input sections.
2667 // after such a section.
2668 if ((*p)->section_offsets_need_adjustment())
2669 (*p)->adjust_section_offsets();
2670
2671 (*p)->reset_address_and_file_offset();
2672 }
2673
2674 // Reset special output object address and file offsets.
2675 for (Data_list::iterator p = this->special_output_list_.begin();
2676 p != this->special_output_list_.end();
2677 ++p)
2678 (*p)->reset_address_and_file_offset();
2679
2680 // A linker script may have created some output section data objects.
2681 // They are useless now.
2682 for (Output_section_data_list::const_iterator p =
2683 this->script_output_section_data_list_.begin();
2684 p != this->script_output_section_data_list_.end();
2685 ++p)
2686 delete *p;
2687 this->script_output_section_data_list_.clear();
2688
2689 // Special-case fill output objects are recreated each time through
2690 // the relaxation loop.
2691 this->reset_relax_output();
2692 }
2693
2694 void
2695 Layout::reset_relax_output()
2696 {
2697 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2698 p != this->relax_output_list_.end();
2699 ++p)
2700 delete *p;
2701 this->relax_output_list_.clear();
2702 }
2703
2704 // Prepare for relaxation.
2705
2706 void
2707 Layout::prepare_for_relaxation()
2708 {
2709 // Create an relaxation debug check if in debugging mode.
2710 if (is_debugging_enabled(DEBUG_RELAXATION))
2711 this->relaxation_debug_check_ = new Relaxation_debug_check();
2712
2713 // Save segment states.
2714 this->segment_states_ = new Segment_states();
2715 this->save_segments(this->segment_states_);
2716
2717 for(Section_list::const_iterator p = this->section_list_.begin();
2718 p != this->section_list_.end();
2719 ++p)
2720 (*p)->save_states();
2721
2722 if (is_debugging_enabled(DEBUG_RELAXATION))
2723 this->relaxation_debug_check_->check_output_data_for_reset_values(
2724 this->section_list_, this->special_output_list_,
2725 this->relax_output_list_);
2726
2727 // Also enable recording of output section data from scripts.
2728 this->record_output_section_data_from_script_ = true;
2729 }
2730
2731 // If the user set the address of the text segment, that may not be
2732 // compatible with putting the segment headers and file headers into
2733 // that segment. For isolate_execinstr() targets, it's the rodata
2734 // segment rather than text where we might put the headers.
2735 static inline bool
2736 load_seg_unusable_for_headers(const Target* target)
2737 {
2738 const General_options& options = parameters->options();
2739 if (target->isolate_execinstr())
2740 return (options.user_set_Trodata_segment()
2741 && options.Trodata_segment() % target->abi_pagesize() != 0);
2742 else
2743 return (options.user_set_Ttext()
2744 && options.Ttext() % target->abi_pagesize() != 0);
2745 }
2746
2747 // Relaxation loop body: If target has no relaxation, this runs only once
2748 // Otherwise, the target relaxation hook is called at the end of
2749 // each iteration. If the hook returns true, it means re-layout of
2750 // section is required.
2751 //
2752 // The number of segments created by a linking script without a PHDRS
2753 // clause may be affected by section sizes and alignments. There is
2754 // a remote chance that relaxation causes different number of PT_LOAD
2755 // segments are created and sections are attached to different segments.
2756 // Therefore, we always throw away all segments created during section
2757 // layout. In order to be able to restart the section layout, we keep
2758 // a copy of the segment list right before the relaxation loop and use
2759 // that to restore the segments.
2760 //
2761 // PASS is the current relaxation pass number.
2762 // SYMTAB is a symbol table.
2763 // PLOAD_SEG is the address of a pointer for the load segment.
2764 // PHDR_SEG is a pointer to the PHDR segment.
2765 // SEGMENT_HEADERS points to the output segment header.
2766 // FILE_HEADER points to the output file header.
2767 // PSHNDX is the address to store the output section index.
2768
2769 off_t inline
2770 Layout::relaxation_loop_body(
2771 int pass,
2772 Target* target,
2773 Symbol_table* symtab,
2774 Output_segment** pload_seg,
2775 Output_segment* phdr_seg,
2776 Output_segment_headers* segment_headers,
2777 Output_file_header* file_header,
2778 unsigned int* pshndx)
2779 {
2780 // If this is not the first iteration, we need to clean up after
2781 // relaxation so that we can lay out the sections again.
2782 if (pass != 0)
2783 this->clean_up_after_relaxation();
2784
2785 // If there is a SECTIONS clause, put all the input sections into
2786 // the required order.
2787 Output_segment* load_seg;
2788 if (this->script_options_->saw_sections_clause())
2789 load_seg = this->set_section_addresses_from_script(symtab);
2790 else if (parameters->options().relocatable())
2791 load_seg = NULL;
2792 else
2793 load_seg = this->find_first_load_seg(target);
2794
2795 if (parameters->options().oformat_enum()
2796 != General_options::OBJECT_FORMAT_ELF)
2797 load_seg = NULL;
2798
2799 if (load_seg_unusable_for_headers(target))
2800 {
2801 load_seg = NULL;
2802 phdr_seg = NULL;
2803 }
2804
2805 gold_assert(phdr_seg == NULL
2806 || load_seg != NULL
2807 || this->script_options_->saw_sections_clause());
2808
2809 // If the address of the load segment we found has been set by
2810 // --section-start rather than by a script, then adjust the VMA and
2811 // LMA downward if possible to include the file and section headers.
2812 uint64_t header_gap = 0;
2813 if (load_seg != NULL
2814 && load_seg->are_addresses_set()
2815 && !this->script_options_->saw_sections_clause()
2816 && !parameters->options().relocatable())
2817 {
2818 file_header->finalize_data_size();
2819 segment_headers->finalize_data_size();
2820 size_t sizeof_headers = (file_header->data_size()
2821 + segment_headers->data_size());
2822 const uint64_t abi_pagesize = target->abi_pagesize();
2823 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2824 hdr_paddr &= ~(abi_pagesize - 1);
2825 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2826 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2827 load_seg = NULL;
2828 else
2829 {
2830 load_seg->set_addresses(load_seg->vaddr() - subtract,
2831 load_seg->paddr() - subtract);
2832 header_gap = subtract - sizeof_headers;
2833 }
2834 }
2835
2836 // Lay out the segment headers.
2837 if (!parameters->options().relocatable())
2838 {
2839 gold_assert(segment_headers != NULL);
2840 if (header_gap != 0 && load_seg != NULL)
2841 {
2842 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2843 load_seg->add_initial_output_data(z);
2844 }
2845 if (load_seg != NULL)
2846 load_seg->add_initial_output_data(segment_headers);
2847 if (phdr_seg != NULL)
2848 phdr_seg->add_initial_output_data(segment_headers);
2849 }
2850
2851 // Lay out the file header.
2852 if (load_seg != NULL)
2853 load_seg->add_initial_output_data(file_header);
2854
2855 if (this->script_options_->saw_phdrs_clause()
2856 && !parameters->options().relocatable())
2857 {
2858 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2859 // clause in a linker script.
2860 Script_sections* ss = this->script_options_->script_sections();
2861 ss->put_headers_in_phdrs(file_header, segment_headers);
2862 }
2863
2864 // We set the output section indexes in set_segment_offsets and
2865 // set_section_indexes.
2866 *pshndx = 1;
2867
2868 // Set the file offsets of all the segments, and all the sections
2869 // they contain.
2870 off_t off;
2871 if (!parameters->options().relocatable())
2872 off = this->set_segment_offsets(target, load_seg, pshndx);
2873 else
2874 off = this->set_relocatable_section_offsets(file_header, pshndx);
2875
2876 // Verify that the dummy relaxation does not change anything.
2877 if (is_debugging_enabled(DEBUG_RELAXATION))
2878 {
2879 if (pass == 0)
2880 this->relaxation_debug_check_->read_sections(this->section_list_);
2881 else
2882 this->relaxation_debug_check_->verify_sections(this->section_list_);
2883 }
2884
2885 *pload_seg = load_seg;
2886 return off;
2887 }
2888
2889 // Search the list of patterns and find the position of the given section
2890 // name in the output section. If the section name matches a glob
2891 // pattern and a non-glob name, then the non-glob position takes
2892 // precedence. Return 0 if no match is found.
2893
2894 unsigned int
2895 Layout::find_section_order_index(const std::string& section_name)
2896 {
2897 Unordered_map<std::string, unsigned int>::iterator map_it;
2898 map_it = this->input_section_position_.find(section_name);
2899 if (map_it != this->input_section_position_.end())
2900 return map_it->second;
2901
2902 // Absolute match failed. Linear search the glob patterns.
2903 std::vector<std::string>::iterator it;
2904 for (it = this->input_section_glob_.begin();
2905 it != this->input_section_glob_.end();
2906 ++it)
2907 {
2908 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2909 {
2910 map_it = this->input_section_position_.find(*it);
2911 gold_assert(map_it != this->input_section_position_.end());
2912 return map_it->second;
2913 }
2914 }
2915 return 0;
2916 }
2917
2918 // Read the sequence of input sections from the file specified with
2919 // option --section-ordering-file.
2920
2921 void
2922 Layout::read_layout_from_file()
2923 {
2924 const char* filename = parameters->options().section_ordering_file();
2925 std::ifstream in;
2926 std::string line;
2927
2928 in.open(filename);
2929 if (!in)
2930 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2931 filename, strerror(errno));
2932
2933 File_read::record_file_read(filename);
2934
2935 std::getline(in, line); // this chops off the trailing \n, if any
2936 unsigned int position = 1;
2937 this->set_section_ordering_specified();
2938
2939 while (in)
2940 {
2941 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2942 line.resize(line.length() - 1);
2943 // Ignore comments, beginning with '#'
2944 if (line[0] == '#')
2945 {
2946 std::getline(in, line);
2947 continue;
2948 }
2949 this->input_section_position_[line] = position;
2950 // Store all glob patterns in a vector.
2951 if (is_wildcard_string(line.c_str()))
2952 this->input_section_glob_.push_back(line);
2953 position++;
2954 std::getline(in, line);
2955 }
2956 }
2957
2958 // Finalize the layout. When this is called, we have created all the
2959 // output sections and all the output segments which are based on
2960 // input sections. We have several things to do, and we have to do
2961 // them in the right order, so that we get the right results correctly
2962 // and efficiently.
2963
2964 // 1) Finalize the list of output segments and create the segment
2965 // table header.
2966
2967 // 2) Finalize the dynamic symbol table and associated sections.
2968
2969 // 3) Determine the final file offset of all the output segments.
2970
2971 // 4) Determine the final file offset of all the SHF_ALLOC output
2972 // sections.
2973
2974 // 5) Create the symbol table sections and the section name table
2975 // section.
2976
2977 // 6) Finalize the symbol table: set symbol values to their final
2978 // value and make a final determination of which symbols are going
2979 // into the output symbol table.
2980
2981 // 7) Create the section table header.
2982
2983 // 8) Determine the final file offset of all the output sections which
2984 // are not SHF_ALLOC, including the section table header.
2985
2986 // 9) Finalize the ELF file header.
2987
2988 // This function returns the size of the output file.
2989
2990 off_t
2991 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2992 Target* target, const Task* task)
2993 {
2994 unsigned int local_dynamic_count = 0;
2995 unsigned int forced_local_dynamic_count = 0;
2996
2997 target->finalize_sections(this, input_objects, symtab);
2998
2999 this->count_local_symbols(task, input_objects);
3000
3001 this->link_stabs_sections();
3002
3003 Output_segment* phdr_seg = NULL;
3004 if (!parameters->options().relocatable() && !parameters->doing_static_link())
3005 {
3006 // There was a dynamic object in the link. We need to create
3007 // some information for the dynamic linker.
3008
3009 // Create the PT_PHDR segment which will hold the program
3010 // headers.
3011 if (!this->script_options_->saw_phdrs_clause())
3012 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3013
3014 // Create the dynamic symbol table, including the hash table.
3015 Output_section* dynstr;
3016 std::vector<Symbol*> dynamic_symbols;
3017 Versions versions(*this->script_options()->version_script_info(),
3018 &this->dynpool_);
3019 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3020 &local_dynamic_count,
3021 &forced_local_dynamic_count,
3022 &dynamic_symbols,
3023 &versions);
3024
3025 // Create the .interp section to hold the name of the
3026 // interpreter, and put it in a PT_INTERP segment. Don't do it
3027 // if we saw a .interp section in an input file.
3028 if ((!parameters->options().shared()
3029 || parameters->options().dynamic_linker() != NULL)
3030 && this->interp_segment_ == NULL)
3031 this->create_interp(target);
3032
3033 // Finish the .dynamic section to hold the dynamic data, and put
3034 // it in a PT_DYNAMIC segment.
3035 this->finish_dynamic_section(input_objects, symtab);
3036
3037 // We should have added everything we need to the dynamic string
3038 // table.
3039 this->dynpool_.set_string_offsets();
3040
3041 // Create the version sections. We can't do this until the
3042 // dynamic string table is complete.
3043 this->create_version_sections(&versions, symtab,
3044 (local_dynamic_count
3045 + forced_local_dynamic_count),
3046 dynamic_symbols, dynstr);
3047
3048 // Set the size of the _DYNAMIC symbol. We can't do this until
3049 // after we call create_version_sections.
3050 this->set_dynamic_symbol_size(symtab);
3051 }
3052
3053 // Create segment headers.
3054 Output_segment_headers* segment_headers =
3055 (parameters->options().relocatable()
3056 ? NULL
3057 : new Output_segment_headers(this->segment_list_));
3058
3059 // Lay out the file header.
3060 Output_file_header* file_header = new Output_file_header(target, symtab,
3061 segment_headers);
3062
3063 this->special_output_list_.push_back(file_header);
3064 if (segment_headers != NULL)
3065 this->special_output_list_.push_back(segment_headers);
3066
3067 // Find approriate places for orphan output sections if we are using
3068 // a linker script.
3069 if (this->script_options_->saw_sections_clause())
3070 this->place_orphan_sections_in_script();
3071
3072 Output_segment* load_seg;
3073 off_t off;
3074 unsigned int shndx;
3075 int pass = 0;
3076
3077 // Take a snapshot of the section layout as needed.
3078 if (target->may_relax())
3079 this->prepare_for_relaxation();
3080
3081 // Run the relaxation loop to lay out sections.
3082 do
3083 {
3084 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3085 phdr_seg, segment_headers, file_header,
3086 &shndx);
3087 pass++;
3088 }
3089 while (target->may_relax()
3090 && target->relax(pass, input_objects, symtab, this, task));
3091
3092 // If there is a load segment that contains the file and program headers,
3093 // provide a symbol __ehdr_start pointing there.
3094 // A program can use this to examine itself robustly.
3095 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3096 if (ehdr_start != NULL && ehdr_start->is_predefined())
3097 {
3098 if (load_seg != NULL)
3099 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3100 else
3101 ehdr_start->set_undefined();
3102 }
3103
3104 // Set the file offsets of all the non-data sections we've seen so
3105 // far which don't have to wait for the input sections. We need
3106 // this in order to finalize local symbols in non-allocated
3107 // sections.
3108 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3109
3110 // Set the section indexes of all unallocated sections seen so far,
3111 // in case any of them are somehow referenced by a symbol.
3112 shndx = this->set_section_indexes(shndx);
3113
3114 // Create the symbol table sections.
3115 this->create_symtab_sections(input_objects, symtab, shndx, &off,
3116 local_dynamic_count);
3117 if (!parameters->doing_static_link())
3118 this->assign_local_dynsym_offsets(input_objects);
3119
3120 // Process any symbol assignments from a linker script. This must
3121 // be called after the symbol table has been finalized.
3122 this->script_options_->finalize_symbols(symtab, this);
3123
3124 // Create the incremental inputs sections.
3125 if (this->incremental_inputs_)
3126 {
3127 this->incremental_inputs_->finalize();
3128 this->create_incremental_info_sections(symtab);
3129 }
3130
3131 // Create the .shstrtab section.
3132 Output_section* shstrtab_section = this->create_shstrtab();
3133
3134 // Set the file offsets of the rest of the non-data sections which
3135 // don't have to wait for the input sections.
3136 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3137
3138 // Now that all sections have been created, set the section indexes
3139 // for any sections which haven't been done yet.
3140 shndx = this->set_section_indexes(shndx);
3141
3142 // Create the section table header.
3143 this->create_shdrs(shstrtab_section, &off);
3144
3145 // If there are no sections which require postprocessing, we can
3146 // handle the section names now, and avoid a resize later.
3147 if (!this->any_postprocessing_sections_)
3148 {
3149 off = this->set_section_offsets(off,
3150 POSTPROCESSING_SECTIONS_PASS);
3151 off =
3152 this->set_section_offsets(off,
3153 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3154 }
3155
3156 file_header->set_section_info(this->section_headers_, shstrtab_section);
3157
3158 // Now we know exactly where everything goes in the output file
3159 // (except for non-allocated sections which require postprocessing).
3160 Output_data::layout_complete();
3161
3162 this->output_file_size_ = off;
3163
3164 return off;
3165 }
3166
3167 // Create a note header following the format defined in the ELF ABI.
3168 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3169 // of the section to create, DESCSZ is the size of the descriptor.
3170 // ALLOCATE is true if the section should be allocated in memory.
3171 // This returns the new note section. It sets *TRAILING_PADDING to
3172 // the number of trailing zero bytes required.
3173
3174 Output_section*
3175 Layout::create_note(const char* name, int note_type,
3176 const char* section_name, size_t descsz,
3177 bool allocate, size_t* trailing_padding)
3178 {
3179 // Authorities all agree that the values in a .note field should
3180 // be aligned on 4-byte boundaries for 32-bit binaries. However,
3181 // they differ on what the alignment is for 64-bit binaries.
3182 // The GABI says unambiguously they take 8-byte alignment:
3183 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3184 // Other documentation says alignment should always be 4 bytes:
3185 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3186 // GNU ld and GNU readelf both support the latter (at least as of
3187 // version 2.16.91), and glibc always generates the latter for
3188 // .note.ABI-tag (as of version 1.6), so that's the one we go with
3189 // here.
3190 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
3191 const int size = parameters->target().get_size();
3192 #else
3193 const int size = 32;
3194 #endif
3195 // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size.
3196 const int addralign = ((note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
3197 ? parameters->target().get_size()
3198 : size) / 8);
3199
3200 // The contents of the .note section.
3201 size_t namesz = strlen(name) + 1;
3202 size_t aligned_namesz = align_address(namesz, size / 8);
3203 size_t aligned_descsz = align_address(descsz, size / 8);
3204
3205 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3206
3207 unsigned char* buffer = new unsigned char[notehdrsz];
3208 memset(buffer, 0, notehdrsz);
3209
3210 bool is_big_endian = parameters->target().is_big_endian();
3211
3212 if (size == 32)
3213 {
3214 if (!is_big_endian)
3215 {
3216 elfcpp::Swap<32, false>::writeval(buffer, namesz);
3217 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3218 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3219 }
3220 else
3221 {
3222 elfcpp::Swap<32, true>::writeval(buffer, namesz);
3223 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3224 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3225 }
3226 }
3227 else if (size == 64)
3228 {
3229 if (!is_big_endian)
3230 {
3231 elfcpp::Swap<64, false>::writeval(buffer, namesz);
3232 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3233 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3234 }
3235 else
3236 {
3237 elfcpp::Swap<64, true>::writeval(buffer, namesz);
3238 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3239 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3240 }
3241 }
3242 else
3243 gold_unreachable();
3244
3245 memcpy(buffer + 3 * (size / 8), name, namesz);
3246
3247 elfcpp::Elf_Xword flags = 0;
3248 Output_section_order order = ORDER_INVALID;
3249 if (allocate)
3250 {
3251 flags = elfcpp::SHF_ALLOC;
3252 order = (note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
3253 ? ORDER_PROPERTY_NOTE : ORDER_RO_NOTE);
3254 }
3255 Output_section* os = this->choose_output_section(NULL, section_name,
3256 elfcpp::SHT_NOTE,
3257 flags, false, order, false,
3258 false, true);
3259 if (os == NULL)
3260 return NULL;
3261
3262 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3263 addralign,
3264 "** note header");
3265 os->add_output_section_data(posd);
3266
3267 *trailing_padding = aligned_descsz - descsz;
3268
3269 return os;
3270 }
3271
3272 // Create a .note.gnu.property section to record program properties
3273 // accumulated from the input files.
3274
3275 void
3276 Layout::create_gnu_properties_note()
3277 {
3278 parameters->target().finalize_gnu_properties(this);
3279
3280 if (this->gnu_properties_.empty())
3281 return;
3282
3283 const unsigned int size = parameters->target().get_size();
3284 const bool is_big_endian = parameters->target().is_big_endian();
3285
3286 // Compute the total size of the properties array.
3287 size_t descsz = 0;
3288 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3289 prop != this->gnu_properties_.end();
3290 ++prop)
3291 {
3292 descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3293 }
3294
3295 // Create the note section.
3296 size_t trailing_padding;
3297 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3298 ".note.gnu.property", descsz,
3299 true, &trailing_padding);
3300 if (os == NULL)
3301 return;
3302 gold_assert(trailing_padding == 0);
3303
3304 // Allocate and fill the properties array.
3305 unsigned char* desc = new unsigned char[descsz];
3306 unsigned char* p = desc;
3307 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3308 prop != this->gnu_properties_.end();
3309 ++prop)
3310 {
3311 size_t datasz = prop->second.pr_datasz;
3312 size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3313 write_sized_value(prop->first, 4, p, is_big_endian);
3314 write_sized_value(datasz, 4, p + 4, is_big_endian);
3315 memcpy(p + 8, prop->second.pr_data, datasz);
3316 if (aligned_datasz > datasz)
3317 memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3318 p += 8 + aligned_datasz;
3319 }
3320 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3321 os->add_output_section_data(posd);
3322 }
3323
3324 // For an executable or shared library, create a note to record the
3325 // version of gold used to create the binary.
3326
3327 void
3328 Layout::create_gold_note()
3329 {
3330 if (parameters->options().relocatable()
3331 || parameters->incremental_update())
3332 return;
3333
3334 std::string desc = std::string("gold ") + gold::get_version_string();
3335
3336 Output_section* os;
3337 Output_section_data* posd;
3338
3339 if (!parameters->options().enable_linker_version())
3340 {
3341 size_t trailing_padding;
3342
3343 os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3344 ".note.gnu.gold-version", desc.size(),
3345 false, &trailing_padding);
3346 if (os == NULL)
3347 return;
3348
3349 posd = new Output_data_const(desc, 4);
3350 os->add_output_section_data(posd);
3351
3352 if (trailing_padding > 0)
3353 {
3354 posd = new Output_data_zero_fill(trailing_padding, 0);
3355 os->add_output_section_data(posd);
3356 }
3357 }
3358 else
3359 {
3360 os = this->choose_output_section(NULL, ".comment",
3361 elfcpp::SHT_PROGBITS, 0,
3362 false, ORDER_INVALID,
3363 false, false, false);
3364 if (os == NULL)
3365 return;
3366
3367 posd = new Output_data_const(desc, 1);
3368 os->add_output_section_data(posd);
3369 }
3370 }
3371
3372 // Record whether the stack should be executable. This can be set
3373 // from the command line using the -z execstack or -z noexecstack
3374 // options. Otherwise, if any input file has a .note.GNU-stack
3375 // section with the SHF_EXECINSTR flag set, the stack should be
3376 // executable. Otherwise, if at least one input file a
3377 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3378 // section, we use the target default for whether the stack should be
3379 // executable. If -z stack-size was used to set a p_memsz value for
3380 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3381 // don't generate a stack note. When generating a object file, we
3382 // create a .note.GNU-stack section with the appropriate marking.
3383 // When generating an executable or shared library, we create a
3384 // PT_GNU_STACK segment.
3385
3386 void
3387 Layout::create_stack_segment()
3388 {
3389 bool is_stack_executable;
3390 if (parameters->options().is_execstack_set())
3391 {
3392 is_stack_executable = parameters->options().is_stack_executable();
3393 if (!is_stack_executable
3394 && this->input_requires_executable_stack_
3395 && parameters->options().warn_execstack())
3396 gold_warning(_("one or more inputs require executable stack, "
3397 "but -z noexecstack was given"));
3398 }
3399 else if (!this->input_with_gnu_stack_note_
3400 && (!parameters->options().user_set_stack_size()
3401 || parameters->options().relocatable()))
3402 return;
3403 else
3404 {
3405 if (this->input_requires_executable_stack_)
3406 is_stack_executable = true;
3407 else if (this->input_without_gnu_stack_note_)
3408 is_stack_executable =
3409 parameters->target().is_default_stack_executable();
3410 else
3411 is_stack_executable = false;
3412 }
3413
3414 if (parameters->options().relocatable())
3415 {
3416 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3417 elfcpp::Elf_Xword flags = 0;
3418 if (is_stack_executable)
3419 flags |= elfcpp::SHF_EXECINSTR;
3420 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3421 ORDER_INVALID, false);
3422 }
3423 else
3424 {
3425 if (this->script_options_->saw_phdrs_clause())
3426 return;
3427 int flags = elfcpp::PF_R | elfcpp::PF_W;
3428 if (is_stack_executable)
3429 flags |= elfcpp::PF_X;
3430 Output_segment* seg =
3431 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3432 seg->set_size(parameters->options().stack_size());
3433 // BFD lets targets override this default alignment, but the only
3434 // targets that do so are ones that Gold does not support so far.
3435 seg->set_minimum_p_align(16);
3436 }
3437 }
3438
3439 // If --build-id was used, set up the build ID note.
3440
3441 void
3442 Layout::create_build_id()
3443 {
3444 if (!parameters->options().user_set_build_id())
3445 return;
3446
3447 const char* style = parameters->options().build_id();
3448 if (strcmp(style, "none") == 0)
3449 return;
3450
3451 // Set DESCSZ to the size of the note descriptor. When possible,
3452 // set DESC to the note descriptor contents.
3453 size_t descsz;
3454 std::string desc;
3455 if (strcmp(style, "md5") == 0)
3456 descsz = 128 / 8;
3457 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3458 descsz = 160 / 8;
3459 else if (strcmp(style, "uuid") == 0)
3460 {
3461 #ifndef __MINGW32__
3462 const size_t uuidsz = 128 / 8;
3463
3464 char buffer[uuidsz];
3465 memset(buffer, 0, uuidsz);
3466
3467 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3468 if (descriptor < 0)
3469 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3470 strerror(errno));
3471 else
3472 {
3473 ssize_t got = ::read(descriptor, buffer, uuidsz);
3474 release_descriptor(descriptor, true);
3475 if (got < 0)
3476 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3477 else if (static_cast<size_t>(got) != uuidsz)
3478 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3479 uuidsz, got);
3480 }
3481
3482 desc.assign(buffer, uuidsz);
3483 descsz = uuidsz;
3484 #else // __MINGW32__
3485 UUID uuid;
3486 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3487
3488 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3489 if (!rpc_library)
3490 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3491 else
3492 {
3493 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3494 GetProcAddress(rpc_library, "UuidCreate"));
3495 if (!uuid_create)
3496 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3497 else if (uuid_create(&uuid) != RPC_S_OK)
3498 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3499 FreeLibrary(rpc_library);
3500 }
3501 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3502 descsz = sizeof(UUID);
3503 #endif // __MINGW32__
3504 }
3505 else if (strncmp(style, "0x", 2) == 0)
3506 {
3507 hex_init();
3508 const char* p = style + 2;
3509 while (*p != '\0')
3510 {
3511 if (hex_p(p[0]) && hex_p(p[1]))
3512 {
3513 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3514 desc += c;
3515 p += 2;
3516 }
3517 else if (*p == '-' || *p == ':')
3518 ++p;
3519 else
3520 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3521 style);
3522 }
3523 descsz = desc.size();
3524 }
3525 else
3526 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3527
3528 // Create the note.
3529 size_t trailing_padding;
3530 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3531 ".note.gnu.build-id", descsz, true,
3532 &trailing_padding);
3533 if (os == NULL)
3534 return;
3535
3536 if (!desc.empty())
3537 {
3538 // We know the value already, so we fill it in now.
3539 gold_assert(desc.size() == descsz);
3540
3541 Output_section_data* posd = new Output_data_const(desc, 4);
3542 os->add_output_section_data(posd);
3543
3544 if (trailing_padding != 0)
3545 {
3546 posd = new Output_data_zero_fill(trailing_padding, 0);
3547 os->add_output_section_data(posd);
3548 }
3549 }
3550 else
3551 {
3552 // We need to compute a checksum after we have completed the
3553 // link.
3554 gold_assert(trailing_padding == 0);
3555 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3556 os->add_output_section_data(this->build_id_note_);
3557 }
3558 }
3559
3560 // If --package-metadata was used, set up the package metadata note.
3561 // https://systemd.io/ELF_PACKAGE_METADATA/
3562
3563 void
3564 Layout::create_package_metadata()
3565 {
3566 if (!parameters->options().user_set_package_metadata())
3567 return;
3568
3569 const char* desc = parameters->options().package_metadata();
3570 if (strcmp(desc, "") == 0)
3571 return;
3572
3573 #ifdef HAVE_JANSSON
3574 json_error_t json_error;
3575 json_t *json = json_loads(desc, 0, &json_error);
3576 if (json)
3577 json_decref(json);
3578 else
3579 {
3580 gold_fatal(_("error: --package-metadata=%s does not contain valid "
3581 "JSON: %s\n"),
3582 desc, json_error.text);
3583 }
3584 #endif
3585
3586 // Create the note.
3587 size_t trailing_padding;
3588 // Ensure the trailing NULL byte is always included, as per specification.
3589 size_t descsz = strlen(desc) + 1;
3590 Output_section* os = this->create_note("FDO", elfcpp::FDO_PACKAGING_METADATA,
3591 ".note.package", descsz, true,
3592 &trailing_padding);
3593 if (os == NULL)
3594 return;
3595
3596 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3597 os->add_output_section_data(posd);
3598
3599 if (trailing_padding != 0)
3600 {
3601 posd = new Output_data_zero_fill(trailing_padding, 0);
3602 os->add_output_section_data(posd);
3603 }
3604 }
3605
3606 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3607 // field of the former should point to the latter. I'm not sure who
3608 // started this, but the GNU linker does it, and some tools depend
3609 // upon it.
3610
3611 void
3612 Layout::link_stabs_sections()
3613 {
3614 if (!this->have_stabstr_section_)
3615 return;
3616
3617 for (Section_list::iterator p = this->section_list_.begin();
3618 p != this->section_list_.end();
3619 ++p)
3620 {
3621 if ((*p)->type() != elfcpp::SHT_STRTAB)
3622 continue;
3623
3624 const char* name = (*p)->name();
3625 if (strncmp(name, ".stab", 5) != 0)
3626 continue;
3627
3628 size_t len = strlen(name);
3629 if (strcmp(name + len - 3, "str") != 0)
3630 continue;
3631
3632 std::string stab_name(name, len - 3);
3633 Output_section* stab_sec;
3634 stab_sec = this->find_output_section(stab_name.c_str());
3635 if (stab_sec != NULL)
3636 stab_sec->set_link_section(*p);
3637 }
3638 }
3639
3640 // Create .gnu_incremental_inputs and related sections needed
3641 // for the next run of incremental linking to check what has changed.
3642
3643 void
3644 Layout::create_incremental_info_sections(Symbol_table* symtab)
3645 {
3646 Incremental_inputs* incr = this->incremental_inputs_;
3647
3648 gold_assert(incr != NULL);
3649
3650 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3651 incr->create_data_sections(symtab);
3652
3653 // Add the .gnu_incremental_inputs section.
3654 const char* incremental_inputs_name =
3655 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3656 Output_section* incremental_inputs_os =
3657 this->make_output_section(incremental_inputs_name,
3658 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3659 ORDER_INVALID, false);
3660 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3661
3662 // Add the .gnu_incremental_symtab section.
3663 const char* incremental_symtab_name =
3664 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3665 Output_section* incremental_symtab_os =
3666 this->make_output_section(incremental_symtab_name,
3667 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3668 ORDER_INVALID, false);
3669 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3670 incremental_symtab_os->set_entsize(4);
3671
3672 // Add the .gnu_incremental_relocs section.
3673 const char* incremental_relocs_name =
3674 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3675 Output_section* incremental_relocs_os =
3676 this->make_output_section(incremental_relocs_name,
3677 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3678 ORDER_INVALID, false);
3679 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3680 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3681
3682 // Add the .gnu_incremental_got_plt section.
3683 const char* incremental_got_plt_name =
3684 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3685 Output_section* incremental_got_plt_os =
3686 this->make_output_section(incremental_got_plt_name,
3687 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3688 ORDER_INVALID, false);
3689 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3690
3691 // Add the .gnu_incremental_strtab section.
3692 const char* incremental_strtab_name =
3693 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3694 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3695 elfcpp::SHT_STRTAB, 0,
3696 ORDER_INVALID, false);
3697 Output_data_strtab* strtab_data =
3698 new Output_data_strtab(incr->get_stringpool());
3699 incremental_strtab_os->add_output_section_data(strtab_data);
3700
3701 incremental_inputs_os->set_after_input_sections();
3702 incremental_symtab_os->set_after_input_sections();
3703 incremental_relocs_os->set_after_input_sections();
3704 incremental_got_plt_os->set_after_input_sections();
3705
3706 incremental_inputs_os->set_link_section(incremental_strtab_os);
3707 incremental_symtab_os->set_link_section(incremental_inputs_os);
3708 incremental_relocs_os->set_link_section(incremental_inputs_os);
3709 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3710 }
3711
3712 // Return whether SEG1 should be before SEG2 in the output file. This
3713 // is based entirely on the segment type and flags. When this is
3714 // called the segment addresses have normally not yet been set.
3715
3716 bool
3717 Layout::segment_precedes(const Output_segment* seg1,
3718 const Output_segment* seg2)
3719 {
3720 // In order to produce a stable ordering if we're called with the same pointer
3721 // return false.
3722 if (seg1 == seg2)
3723 return false;
3724
3725 elfcpp::Elf_Word type1 = seg1->type();
3726 elfcpp::Elf_Word type2 = seg2->type();
3727
3728 // The single PT_PHDR segment is required to precede any loadable
3729 // segment. We simply make it always first.
3730 if (type1 == elfcpp::PT_PHDR)
3731 {
3732 gold_assert(type2 != elfcpp::PT_PHDR);
3733 return true;
3734 }
3735 if (type2 == elfcpp::PT_PHDR)
3736 return false;
3737
3738 // The single PT_INTERP segment is required to precede any loadable
3739 // segment. We simply make it always second.
3740 if (type1 == elfcpp::PT_INTERP)
3741 {
3742 gold_assert(type2 != elfcpp::PT_INTERP);
3743 return true;
3744 }
3745 if (type2 == elfcpp::PT_INTERP)
3746 return false;
3747
3748 // We then put PT_LOAD segments before any other segments.
3749 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3750 return true;
3751 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3752 return false;
3753
3754 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3755 // segment, because that is where the dynamic linker expects to find
3756 // it (this is just for efficiency; other positions would also work
3757 // correctly).
3758 if (type1 == elfcpp::PT_TLS
3759 && type2 != elfcpp::PT_TLS
3760 && type2 != elfcpp::PT_GNU_RELRO)
3761 return false;
3762 if (type2 == elfcpp::PT_TLS
3763 && type1 != elfcpp::PT_TLS
3764 && type1 != elfcpp::PT_GNU_RELRO)
3765 return true;
3766
3767 // We put the PT_GNU_RELRO segment last, because that is where the
3768 // dynamic linker expects to find it (as with PT_TLS, this is just
3769 // for efficiency).
3770 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3771 return false;
3772 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3773 return true;
3774
3775 const elfcpp::Elf_Word flags1 = seg1->flags();
3776 const elfcpp::Elf_Word flags2 = seg2->flags();
3777
3778 // The order of non-PT_LOAD segments is unimportant. We simply sort
3779 // by the numeric segment type and flags values. There should not
3780 // be more than one segment with the same type and flags, except
3781 // when a linker script specifies such.
3782 if (type1 != elfcpp::PT_LOAD)
3783 {
3784 if (type1 != type2)
3785 return type1 < type2;
3786 uint64_t align1 = seg1->align();
3787 uint64_t align2 = seg2->align();
3788 // Place segments with larger alignments first.
3789 if (align1 != align2)
3790 return align1 > align2;
3791 gold_assert(flags1 != flags2
3792 || this->script_options_->saw_phdrs_clause());
3793 return flags1 < flags2;
3794 }
3795
3796 // If the addresses are set already, sort by load address.
3797 if (seg1->are_addresses_set())
3798 {
3799 if (!seg2->are_addresses_set())
3800 return true;
3801
3802 unsigned int section_count1 = seg1->output_section_count();
3803 unsigned int section_count2 = seg2->output_section_count();
3804 if (section_count1 == 0 && section_count2 > 0)
3805 return true;
3806 if (section_count1 > 0 && section_count2 == 0)
3807 return false;
3808
3809 uint64_t paddr1 = (seg1->are_addresses_set()
3810 ? seg1->paddr()
3811 : seg1->first_section_load_address());
3812 uint64_t paddr2 = (seg2->are_addresses_set()
3813 ? seg2->paddr()
3814 : seg2->first_section_load_address());
3815
3816 if (paddr1 != paddr2)
3817 return paddr1 < paddr2;
3818 }
3819 else if (seg2->are_addresses_set())
3820 return false;
3821
3822 // A segment which holds large data comes after a segment which does
3823 // not hold large data.
3824 if (seg1->is_large_data_segment())
3825 {
3826 if (!seg2->is_large_data_segment())
3827 return false;
3828 }
3829 else if (seg2->is_large_data_segment())
3830 return true;
3831
3832 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3833 // segments come before writable segments. Then writable segments
3834 // with data come before writable segments without data. Then
3835 // executable segments come before non-executable segments. Then
3836 // the unlikely case of a non-readable segment comes before the
3837 // normal case of a readable segment. If there are multiple
3838 // segments with the same type and flags, we require that the
3839 // address be set, and we sort by virtual address and then physical
3840 // address.
3841 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3842 return (flags1 & elfcpp::PF_W) == 0;
3843 if ((flags1 & elfcpp::PF_W) != 0
3844 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3845 return seg1->has_any_data_sections();
3846 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3847 return (flags1 & elfcpp::PF_X) != 0;
3848 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3849 return (flags1 & elfcpp::PF_R) == 0;
3850
3851 // We shouldn't get here--we shouldn't create segments which we
3852 // can't distinguish. Unless of course we are using a weird linker
3853 // script or overlapping --section-start options. We could also get
3854 // here if plugins want unique segments for subsets of sections.
3855 gold_assert(this->script_options_->saw_phdrs_clause()
3856 || parameters->options().any_section_start()
3857 || this->is_unique_segment_for_sections_specified()
3858 || parameters->options().text_unlikely_segment());
3859 return false;
3860 }
3861
3862 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3863
3864 static off_t
3865 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3866 {
3867 uint64_t unsigned_off = off;
3868 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3869 | (addr & (abi_pagesize - 1)));
3870 if (aligned_off < unsigned_off)
3871 aligned_off += abi_pagesize;
3872 return aligned_off;
3873 }
3874
3875 // On targets where the text segment contains only executable code,
3876 // a non-executable segment is never the text segment.
3877
3878 static inline bool
3879 is_text_segment(const Target* target, const Output_segment* seg)
3880 {
3881 elfcpp::Elf_Xword flags = seg->flags();
3882 if ((flags & elfcpp::PF_W) != 0)
3883 return false;
3884 if ((flags & elfcpp::PF_X) == 0)
3885 return !target->isolate_execinstr();
3886 return true;
3887 }
3888
3889 // Set the file offsets of all the segments, and all the sections they
3890 // contain. They have all been created. LOAD_SEG must be laid out
3891 // first. Return the offset of the data to follow.
3892
3893 off_t
3894 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3895 unsigned int* pshndx)
3896 {
3897 // Sort them into the final order. We use a stable sort so that we
3898 // don't randomize the order of indistinguishable segments created
3899 // by linker scripts.
3900 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3901 Layout::Compare_segments(this));
3902
3903 // Find the PT_LOAD segments, and set their addresses and offsets
3904 // and their section's addresses and offsets.
3905 uint64_t start_addr;
3906 if (parameters->options().user_set_Ttext())
3907 start_addr = parameters->options().Ttext();
3908 else if (parameters->options().output_is_position_independent())
3909 start_addr = 0;
3910 else
3911 start_addr = target->default_text_segment_address();
3912
3913 uint64_t addr = start_addr;
3914 off_t off = 0;
3915
3916 // If LOAD_SEG is NULL, then the file header and segment headers
3917 // will not be loadable. But they still need to be at offset 0 in
3918 // the file. Set their offsets now.
3919 if (load_seg == NULL)
3920 {
3921 for (Data_list::iterator p = this->special_output_list_.begin();
3922 p != this->special_output_list_.end();
3923 ++p)
3924 {
3925 off = align_address(off, (*p)->addralign());
3926 (*p)->set_address_and_file_offset(0, off);
3927 off += (*p)->data_size();
3928 }
3929 }
3930
3931 unsigned int increase_relro = this->increase_relro_;
3932 if (this->script_options_->saw_sections_clause())
3933 increase_relro = 0;
3934
3935 const bool check_sections = parameters->options().check_sections();
3936 Output_segment* last_load_segment = NULL;
3937
3938 unsigned int shndx_begin = *pshndx;
3939 unsigned int shndx_load_seg = *pshndx;
3940
3941 for (Segment_list::iterator p = this->segment_list_.begin();
3942 p != this->segment_list_.end();
3943 ++p)
3944 {
3945 if ((*p)->type() == elfcpp::PT_LOAD)
3946 {
3947 if (target->isolate_execinstr())
3948 {
3949 // When we hit the segment that should contain the
3950 // file headers, reset the file offset so we place
3951 // it and subsequent segments appropriately.
3952 // We'll fix up the preceding segments below.
3953 if (load_seg == *p)
3954 {
3955 if (off == 0)
3956 load_seg = NULL;
3957 else
3958 {
3959 off = 0;
3960 shndx_load_seg = *pshndx;
3961 }
3962 }
3963 }
3964 else
3965 {
3966 // Verify that the file headers fall into the first segment.
3967 if (load_seg != NULL && load_seg != *p)
3968 gold_unreachable();
3969 load_seg = NULL;
3970 }
3971
3972 bool are_addresses_set = (*p)->are_addresses_set();
3973 if (are_addresses_set)
3974 {
3975 // When it comes to setting file offsets, we care about
3976 // the physical address.
3977 addr = (*p)->paddr();
3978 }
3979 else if (parameters->options().user_set_Ttext()
3980 && (parameters->options().omagic()
3981 || is_text_segment(target, *p)))
3982 {
3983 are_addresses_set = true;
3984 }
3985 else if (parameters->options().user_set_Trodata_segment()
3986 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3987 {
3988 addr = parameters->options().Trodata_segment();
3989 are_addresses_set = true;
3990 }
3991 else if (parameters->options().user_set_Tdata()
3992 && ((*p)->flags() & elfcpp::PF_W) != 0
3993 && (!parameters->options().user_set_Tbss()
3994 || (*p)->has_any_data_sections()))
3995 {
3996 addr = parameters->options().Tdata();
3997 are_addresses_set = true;
3998 }
3999 else if (parameters->options().user_set_Tbss()
4000 && ((*p)->flags() & elfcpp::PF_W) != 0
4001 && !(*p)->has_any_data_sections())
4002 {
4003 addr = parameters->options().Tbss();
4004 are_addresses_set = true;
4005 }
4006
4007 uint64_t orig_addr = addr;
4008 uint64_t orig_off = off;
4009
4010 uint64_t aligned_addr = 0;
4011 uint64_t abi_pagesize = target->abi_pagesize();
4012 uint64_t common_pagesize = target->common_pagesize();
4013
4014 if (!parameters->options().nmagic()
4015 && !parameters->options().omagic())
4016 (*p)->set_minimum_p_align(abi_pagesize);
4017
4018 if (!are_addresses_set)
4019 {
4020 // Skip the address forward one page, maintaining the same
4021 // position within the page. This lets us store both segments
4022 // overlapping on a single page in the file, but the loader will
4023 // put them on different pages in memory. We will revisit this
4024 // decision once we know the size of the segment.
4025
4026 uint64_t max_align = (*p)->maximum_alignment();
4027 if (max_align > abi_pagesize)
4028 addr = align_address(addr, max_align);
4029 aligned_addr = addr;
4030
4031 if (load_seg == *p)
4032 {
4033 // This is the segment that will contain the file
4034 // headers, so its offset will have to be exactly zero.
4035 gold_assert(orig_off == 0);
4036
4037 // If the target wants a fixed minimum distance from the
4038 // text segment to the read-only segment, move up now.
4039 uint64_t min_addr =
4040 start_addr + (parameters->options().user_set_rosegment_gap()
4041 ? parameters->options().rosegment_gap()
4042 : target->rosegment_gap());
4043 if (addr < min_addr)
4044 addr = min_addr;
4045
4046 // But this is not the first segment! To make its
4047 // address congruent with its offset, that address better
4048 // be aligned to the ABI-mandated page size.
4049 addr = align_address(addr, abi_pagesize);
4050 aligned_addr = addr;
4051 }
4052 else
4053 {
4054 if ((addr & (abi_pagesize - 1)) != 0)
4055 addr = addr + abi_pagesize;
4056
4057 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4058 }
4059 }
4060
4061 if (!parameters->options().nmagic()
4062 && !parameters->options().omagic())
4063 {
4064 // Here we are also taking care of the case when
4065 // the maximum segment alignment is larger than the page size.
4066 off = align_file_offset(off, addr,
4067 std::max(abi_pagesize,
4068 (*p)->maximum_alignment()));
4069 }
4070 else
4071 {
4072 // This is -N or -n with a section script which prevents
4073 // us from using a load segment. We need to ensure that
4074 // the file offset is aligned to the alignment of the
4075 // segment. This is because the linker script
4076 // implicitly assumed a zero offset. If we don't align
4077 // here, then the alignment of the sections in the
4078 // linker script may not match the alignment of the
4079 // sections in the set_section_addresses call below,
4080 // causing an error about dot moving backward.
4081 off = align_address(off, (*p)->maximum_alignment());
4082 }
4083
4084 unsigned int shndx_hold = *pshndx;
4085 bool has_relro = false;
4086 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4087 false, addr,
4088 &increase_relro,
4089 &has_relro,
4090 &off, pshndx);
4091
4092 // Now that we know the size of this segment, we may be able
4093 // to save a page in memory, at the cost of wasting some
4094 // file space, by instead aligning to the start of a new
4095 // page. Here we use the real machine page size rather than
4096 // the ABI mandated page size. If the segment has been
4097 // aligned so that the relro data ends at a page boundary,
4098 // we do not try to realign it.
4099
4100 if (!are_addresses_set
4101 && !has_relro
4102 && aligned_addr != addr
4103 && !parameters->incremental())
4104 {
4105 uint64_t first_off = (common_pagesize
4106 - (aligned_addr
4107 & (common_pagesize - 1)));
4108 uint64_t last_off = new_addr & (common_pagesize - 1);
4109 if (first_off > 0
4110 && last_off > 0
4111 && ((aligned_addr & ~ (common_pagesize - 1))
4112 != (new_addr & ~ (common_pagesize - 1)))
4113 && first_off + last_off <= common_pagesize)
4114 {
4115 *pshndx = shndx_hold;
4116 addr = align_address(aligned_addr, common_pagesize);
4117 addr = align_address(addr, (*p)->maximum_alignment());
4118 if ((addr & (abi_pagesize - 1)) != 0)
4119 addr = addr + abi_pagesize;
4120 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4121 off = align_file_offset(off, addr, abi_pagesize);
4122
4123 increase_relro = this->increase_relro_;
4124 if (this->script_options_->saw_sections_clause())
4125 increase_relro = 0;
4126 has_relro = false;
4127
4128 new_addr = (*p)->set_section_addresses(target, this,
4129 true, addr,
4130 &increase_relro,
4131 &has_relro,
4132 &off, pshndx);
4133 }
4134 }
4135
4136 addr = new_addr;
4137
4138 // Implement --check-sections. We know that the segments
4139 // are sorted by LMA.
4140 if (check_sections && last_load_segment != NULL)
4141 {
4142 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4143 if (last_load_segment->paddr() + last_load_segment->memsz()
4144 > (*p)->paddr())
4145 {
4146 unsigned long long lb1 = last_load_segment->paddr();
4147 unsigned long long le1 = lb1 + last_load_segment->memsz();
4148 unsigned long long lb2 = (*p)->paddr();
4149 unsigned long long le2 = lb2 + (*p)->memsz();
4150 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4151 "[0x%llx -> 0x%llx]"),
4152 lb1, le1, lb2, le2);
4153 }
4154 }
4155 last_load_segment = *p;
4156 }
4157 }
4158
4159 if (load_seg != NULL && target->isolate_execinstr())
4160 {
4161 // Process the early segments again, setting their file offsets
4162 // so they land after the segments starting at LOAD_SEG.
4163 off = align_file_offset(off, 0, target->abi_pagesize());
4164
4165 this->reset_relax_output();
4166
4167 for (Segment_list::iterator p = this->segment_list_.begin();
4168 *p != load_seg;
4169 ++p)
4170 {
4171 if ((*p)->type() == elfcpp::PT_LOAD)
4172 {
4173 // We repeat the whole job of assigning addresses and
4174 // offsets, but we really only want to change the offsets and
4175 // must ensure that the addresses all come out the same as
4176 // they did the first time through.
4177 bool has_relro = false;
4178 const uint64_t old_addr = (*p)->vaddr();
4179 const uint64_t old_end = old_addr + (*p)->memsz();
4180 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4181 true, old_addr,
4182 &increase_relro,
4183 &has_relro,
4184 &off,
4185 &shndx_begin);
4186 gold_assert(new_addr == old_end);
4187 }
4188 }
4189
4190 gold_assert(shndx_begin == shndx_load_seg);
4191 }
4192
4193 // Handle the non-PT_LOAD segments, setting their offsets from their
4194 // section's offsets.
4195 for (Segment_list::iterator p = this->segment_list_.begin();
4196 p != this->segment_list_.end();
4197 ++p)
4198 {
4199 // PT_GNU_STACK was set up correctly when it was created.
4200 if ((*p)->type() != elfcpp::PT_LOAD
4201 && (*p)->type() != elfcpp::PT_GNU_STACK)
4202 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4203 ? increase_relro
4204 : 0);
4205 }
4206
4207 // Set the TLS offsets for each section in the PT_TLS segment.
4208 if (this->tls_segment_ != NULL)
4209 this->tls_segment_->set_tls_offsets();
4210
4211 return off;
4212 }
4213
4214 // Set the offsets of all the allocated sections when doing a
4215 // relocatable link. This does the same jobs as set_segment_offsets,
4216 // only for a relocatable link.
4217
4218 off_t
4219 Layout::set_relocatable_section_offsets(Output_data* file_header,
4220 unsigned int* pshndx)
4221 {
4222 off_t off = 0;
4223
4224 file_header->set_address_and_file_offset(0, 0);
4225 off += file_header->data_size();
4226
4227 for (Section_list::iterator p = this->section_list_.begin();
4228 p != this->section_list_.end();
4229 ++p)
4230 {
4231 // We skip unallocated sections here, except that group sections
4232 // have to come first.
4233 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4234 && (*p)->type() != elfcpp::SHT_GROUP)
4235 continue;
4236
4237 off = align_address(off, (*p)->addralign());
4238
4239 // The linker script might have set the address.
4240 if (!(*p)->is_address_valid())
4241 (*p)->set_address(0);
4242 (*p)->set_file_offset(off);
4243 (*p)->finalize_data_size();
4244 if ((*p)->type() != elfcpp::SHT_NOBITS)
4245 off += (*p)->data_size();
4246
4247 (*p)->set_out_shndx(*pshndx);
4248 ++*pshndx;
4249 }
4250
4251 return off;
4252 }
4253
4254 // Set the file offset of all the sections not associated with a
4255 // segment.
4256
4257 off_t
4258 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4259 {
4260 off_t startoff = off;
4261 off_t maxoff = off;
4262
4263 for (Section_list::iterator p = this->unattached_section_list_.begin();
4264 p != this->unattached_section_list_.end();
4265 ++p)
4266 {
4267 // The symtab section is handled in create_symtab_sections.
4268 if (*p == this->symtab_section_)
4269 continue;
4270
4271 // If we've already set the data size, don't set it again.
4272 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4273 continue;
4274
4275 if (pass == BEFORE_INPUT_SECTIONS_PASS
4276 && (*p)->requires_postprocessing())
4277 {
4278 (*p)->create_postprocessing_buffer();
4279 this->any_postprocessing_sections_ = true;
4280 }
4281
4282 if (pass == BEFORE_INPUT_SECTIONS_PASS
4283 && (*p)->after_input_sections())
4284 continue;
4285 else if (pass == POSTPROCESSING_SECTIONS_PASS
4286 && (!(*p)->after_input_sections()
4287 || (*p)->type() == elfcpp::SHT_STRTAB))
4288 continue;
4289 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4290 && (!(*p)->after_input_sections()
4291 || (*p)->type() != elfcpp::SHT_STRTAB))
4292 continue;
4293
4294 if (!parameters->incremental_update())
4295 {
4296 off = align_address(off, (*p)->addralign());
4297 (*p)->set_file_offset(off);
4298 (*p)->finalize_data_size();
4299 }
4300 else
4301 {
4302 // Incremental update: allocate file space from free list.
4303 (*p)->pre_finalize_data_size();
4304 off_t current_size = (*p)->current_data_size();
4305 off = this->allocate(current_size, (*p)->addralign(), startoff);
4306 if (off == -1)
4307 {
4308 if (is_debugging_enabled(DEBUG_INCREMENTAL))
4309 this->free_list_.dump();
4310 gold_assert((*p)->output_section() != NULL);
4311 gold_fallback(_("out of patch space for section %s; "
4312 "relink with --incremental-full"),
4313 (*p)->output_section()->name());
4314 }
4315 (*p)->set_file_offset(off);
4316 (*p)->finalize_data_size();
4317 if ((*p)->data_size() > current_size)
4318 {
4319 gold_assert((*p)->output_section() != NULL);
4320 gold_fallback(_("%s: section changed size; "
4321 "relink with --incremental-full"),
4322 (*p)->output_section()->name());
4323 }
4324 gold_debug(DEBUG_INCREMENTAL,
4325 "set_section_offsets: %08lx %08lx %s",
4326 static_cast<long>(off),
4327 static_cast<long>((*p)->data_size()),
4328 ((*p)->output_section() != NULL
4329 ? (*p)->output_section()->name() : "(special)"));
4330 }
4331
4332 off += (*p)->data_size();
4333 if (off > maxoff)
4334 maxoff = off;
4335
4336 // At this point the name must be set.
4337 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4338 this->namepool_.add((*p)->name(), false, NULL);
4339 }
4340 return maxoff;
4341 }
4342
4343 // Set the section indexes of all the sections not associated with a
4344 // segment.
4345
4346 unsigned int
4347 Layout::set_section_indexes(unsigned int shndx)
4348 {
4349 for (Section_list::iterator p = this->unattached_section_list_.begin();
4350 p != this->unattached_section_list_.end();
4351 ++p)
4352 {
4353 if (!(*p)->has_out_shndx())
4354 {
4355 (*p)->set_out_shndx(shndx);
4356 ++shndx;
4357 }
4358 }
4359 return shndx;
4360 }
4361
4362 // Set the section addresses according to the linker script. This is
4363 // only called when we see a SECTIONS clause. This returns the
4364 // program segment which should hold the file header and segment
4365 // headers, if any. It will return NULL if they should not be in a
4366 // segment.
4367
4368 Output_segment*
4369 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4370 {
4371 Script_sections* ss = this->script_options_->script_sections();
4372 gold_assert(ss->saw_sections_clause());
4373 return this->script_options_->set_section_addresses(symtab, this);
4374 }
4375
4376 // Place the orphan sections in the linker script.
4377
4378 void
4379 Layout::place_orphan_sections_in_script()
4380 {
4381 Script_sections* ss = this->script_options_->script_sections();
4382 gold_assert(ss->saw_sections_clause());
4383
4384 // Place each orphaned output section in the script.
4385 for (Section_list::iterator p = this->section_list_.begin();
4386 p != this->section_list_.end();
4387 ++p)
4388 {
4389 if (!(*p)->found_in_sections_clause())
4390 ss->place_orphan(*p);
4391 }
4392 }
4393
4394 // Count the local symbols in the regular symbol table and the dynamic
4395 // symbol table, and build the respective string pools.
4396
4397 void
4398 Layout::count_local_symbols(const Task* task,
4399 const Input_objects* input_objects)
4400 {
4401 // First, figure out an upper bound on the number of symbols we'll
4402 // be inserting into each pool. This helps us create the pools with
4403 // the right size, to avoid unnecessary hashtable resizing.
4404 unsigned int symbol_count = 0;
4405 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4406 p != input_objects->relobj_end();
4407 ++p)
4408 symbol_count += (*p)->local_symbol_count();
4409
4410 // Go from "upper bound" to "estimate." We overcount for two
4411 // reasons: we double-count symbols that occur in more than one
4412 // object file, and we count symbols that are dropped from the
4413 // output. Add it all together and assume we overcount by 100%.
4414 symbol_count /= 2;
4415
4416 // We assume all symbols will go into both the sympool and dynpool.
4417 this->sympool_.reserve(symbol_count);
4418 this->dynpool_.reserve(symbol_count);
4419
4420 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4421 p != input_objects->relobj_end();
4422 ++p)
4423 {
4424 Task_lock_obj<Object> tlo(task, *p);
4425 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4426 }
4427 }
4428
4429 // Create the symbol table sections. Here we also set the final
4430 // values of the symbols. At this point all the loadable sections are
4431 // fully laid out. SHNUM is the number of sections so far.
4432
4433 void
4434 Layout::create_symtab_sections(const Input_objects* input_objects,
4435 Symbol_table* symtab,
4436 unsigned int shnum,
4437 off_t* poff,
4438 unsigned int local_dynamic_count)
4439 {
4440 int symsize;
4441 unsigned int align;
4442 if (parameters->target().get_size() == 32)
4443 {
4444 symsize = elfcpp::Elf_sizes<32>::sym_size;
4445 align = 4;
4446 }
4447 else if (parameters->target().get_size() == 64)
4448 {
4449 symsize = elfcpp::Elf_sizes<64>::sym_size;
4450 align = 8;
4451 }
4452 else
4453 gold_unreachable();
4454
4455 // Compute file offsets relative to the start of the symtab section.
4456 off_t off = 0;
4457
4458 // Save space for the dummy symbol at the start of the section. We
4459 // never bother to write this out--it will just be left as zero.
4460 off += symsize;
4461 unsigned int local_symbol_index = 1;
4462
4463 // Add STT_SECTION symbols for each Output section which needs one.
4464 for (Section_list::iterator p = this->section_list_.begin();
4465 p != this->section_list_.end();
4466 ++p)
4467 {
4468 if (!(*p)->needs_symtab_index())
4469 (*p)->set_symtab_index(-1U);
4470 else
4471 {
4472 (*p)->set_symtab_index(local_symbol_index);
4473 ++local_symbol_index;
4474 off += symsize;
4475 }
4476 }
4477
4478 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4479 p != input_objects->relobj_end();
4480 ++p)
4481 {
4482 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4483 off, symtab);
4484 off += (index - local_symbol_index) * symsize;
4485 local_symbol_index = index;
4486 }
4487
4488 unsigned int local_symcount = local_symbol_index;
4489 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4490
4491 off_t dynoff;
4492 size_t dyncount;
4493 if (this->dynsym_section_ == NULL)
4494 {
4495 dynoff = 0;
4496 dyncount = 0;
4497 }
4498 else
4499 {
4500 off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4501 dynoff = this->dynsym_section_->offset() + locsize;
4502 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4503 gold_assert(static_cast<off_t>(dyncount * symsize)
4504 == this->dynsym_section_->data_size() - locsize);
4505 }
4506
4507 off_t global_off = off;
4508 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4509 &this->sympool_, &local_symcount);
4510
4511 if (!parameters->options().strip_all())
4512 {
4513 this->sympool_.set_string_offsets();
4514
4515 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4516 Output_section* osymtab = this->make_output_section(symtab_name,
4517 elfcpp::SHT_SYMTAB,
4518 0, ORDER_INVALID,
4519 false);
4520 this->symtab_section_ = osymtab;
4521
4522 Output_section_data* pos = new Output_data_fixed_space(off, align,
4523 "** symtab");
4524 osymtab->add_output_section_data(pos);
4525
4526 // We generate a .symtab_shndx section if we have more than
4527 // SHN_LORESERVE sections. Technically it is possible that we
4528 // don't need one, because it is possible that there are no
4529 // symbols in any of sections with indexes larger than
4530 // SHN_LORESERVE. That is probably unusual, though, and it is
4531 // easier to always create one than to compute section indexes
4532 // twice (once here, once when writing out the symbols).
4533 if (shnum >= elfcpp::SHN_LORESERVE)
4534 {
4535 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4536 false, NULL);
4537 Output_section* osymtab_xindex =
4538 this->make_output_section(symtab_xindex_name,
4539 elfcpp::SHT_SYMTAB_SHNDX, 0,
4540 ORDER_INVALID, false);
4541
4542 size_t symcount = off / symsize;
4543 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4544
4545 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4546
4547 osymtab_xindex->set_link_section(osymtab);
4548 osymtab_xindex->set_addralign(4);
4549 osymtab_xindex->set_entsize(4);
4550
4551 osymtab_xindex->set_after_input_sections();
4552
4553 // This tells the driver code to wait until the symbol table
4554 // has written out before writing out the postprocessing
4555 // sections, including the .symtab_shndx section.
4556 this->any_postprocessing_sections_ = true;
4557 }
4558
4559 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4560 Output_section* ostrtab = this->make_output_section(strtab_name,
4561 elfcpp::SHT_STRTAB,
4562 0, ORDER_INVALID,
4563 false);
4564
4565 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4566 ostrtab->add_output_section_data(pstr);
4567
4568 off_t symtab_off;
4569 if (!parameters->incremental_update())
4570 symtab_off = align_address(*poff, align);
4571 else
4572 {
4573 symtab_off = this->allocate(off, align, *poff);
4574 if (off == -1)
4575 gold_fallback(_("out of patch space for symbol table; "
4576 "relink with --incremental-full"));
4577 gold_debug(DEBUG_INCREMENTAL,
4578 "create_symtab_sections: %08lx %08lx .symtab",
4579 static_cast<long>(symtab_off),
4580 static_cast<long>(off));
4581 }
4582
4583 symtab->set_file_offset(symtab_off + global_off);
4584 osymtab->set_file_offset(symtab_off);
4585 osymtab->finalize_data_size();
4586 osymtab->set_link_section(ostrtab);
4587 osymtab->set_info(local_symcount);
4588 osymtab->set_entsize(symsize);
4589
4590 if (symtab_off + off > *poff)
4591 *poff = symtab_off + off;
4592 }
4593 }
4594
4595 // Create the .shstrtab section, which holds the names of the
4596 // sections. At the time this is called, we have created all the
4597 // output sections except .shstrtab itself.
4598
4599 Output_section*
4600 Layout::create_shstrtab()
4601 {
4602 // FIXME: We don't need to create a .shstrtab section if we are
4603 // stripping everything.
4604
4605 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4606
4607 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4608 ORDER_INVALID, false);
4609
4610 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4611 {
4612 // We can't write out this section until we've set all the
4613 // section names, and we don't set the names of compressed
4614 // output sections until relocations are complete. FIXME: With
4615 // the current names we use, this is unnecessary.
4616 os->set_after_input_sections();
4617 }
4618
4619 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4620 os->add_output_section_data(posd);
4621
4622 return os;
4623 }
4624
4625 // Create the section headers. SIZE is 32 or 64. OFF is the file
4626 // offset.
4627
4628 void
4629 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4630 {
4631 Output_section_headers* oshdrs;
4632 oshdrs = new Output_section_headers(this,
4633 &this->segment_list_,
4634 &this->section_list_,
4635 &this->unattached_section_list_,
4636 &this->namepool_,
4637 shstrtab_section);
4638 off_t off;
4639 if (!parameters->incremental_update())
4640 off = align_address(*poff, oshdrs->addralign());
4641 else
4642 {
4643 oshdrs->pre_finalize_data_size();
4644 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4645 if (off == -1)
4646 gold_fallback(_("out of patch space for section header table; "
4647 "relink with --incremental-full"));
4648 gold_debug(DEBUG_INCREMENTAL,
4649 "create_shdrs: %08lx %08lx (section header table)",
4650 static_cast<long>(off),
4651 static_cast<long>(off + oshdrs->data_size()));
4652 }
4653 oshdrs->set_address_and_file_offset(0, off);
4654 off += oshdrs->data_size();
4655 if (off > *poff)
4656 *poff = off;
4657 this->section_headers_ = oshdrs;
4658 }
4659
4660 // Count the allocated sections.
4661
4662 size_t
4663 Layout::allocated_output_section_count() const
4664 {
4665 size_t section_count = 0;
4666 for (Segment_list::const_iterator p = this->segment_list_.begin();
4667 p != this->segment_list_.end();
4668 ++p)
4669 section_count += (*p)->output_section_count();
4670 return section_count;
4671 }
4672
4673 // Create the dynamic symbol table.
4674 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4675 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4676 // to the number of global symbols that have been forced local.
4677 // We need to remember the former because the forced-local symbols are
4678 // written along with the global symbols in Symtab::write_globals().
4679
4680 void
4681 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4682 Symbol_table* symtab,
4683 Output_section** pdynstr,
4684 unsigned int* plocal_dynamic_count,
4685 unsigned int* pforced_local_dynamic_count,
4686 std::vector<Symbol*>* pdynamic_symbols,
4687 Versions* pversions)
4688 {
4689 // Count all the symbols in the dynamic symbol table, and set the
4690 // dynamic symbol indexes.
4691
4692 // Skip symbol 0, which is always all zeroes.
4693 unsigned int index = 1;
4694
4695 // Add STT_SECTION symbols for each Output section which needs one.
4696 for (Section_list::iterator p = this->section_list_.begin();
4697 p != this->section_list_.end();
4698 ++p)
4699 {
4700 if (!(*p)->needs_dynsym_index())
4701 (*p)->set_dynsym_index(-1U);
4702 else
4703 {
4704 (*p)->set_dynsym_index(index);
4705 ++index;
4706 }
4707 }
4708
4709 // Count the local symbols that need to go in the dynamic symbol table,
4710 // and set the dynamic symbol indexes.
4711 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4712 p != input_objects->relobj_end();
4713 ++p)
4714 {
4715 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4716 index = new_index;
4717 }
4718
4719 unsigned int local_symcount = index;
4720 unsigned int forced_local_count = 0;
4721
4722 index = symtab->set_dynsym_indexes(index, &forced_local_count,
4723 pdynamic_symbols, &this->dynpool_,
4724 pversions);
4725
4726 *plocal_dynamic_count = local_symcount;
4727 *pforced_local_dynamic_count = forced_local_count;
4728
4729 int symsize;
4730 unsigned int align;
4731 const int size = parameters->target().get_size();
4732 if (size == 32)
4733 {
4734 symsize = elfcpp::Elf_sizes<32>::sym_size;
4735 align = 4;
4736 }
4737 else if (size == 64)
4738 {
4739 symsize = elfcpp::Elf_sizes<64>::sym_size;
4740 align = 8;
4741 }
4742 else
4743 gold_unreachable();
4744
4745 // Create the dynamic symbol table section.
4746
4747 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4748 elfcpp::SHT_DYNSYM,
4749 elfcpp::SHF_ALLOC,
4750 false,
4751 ORDER_DYNAMIC_LINKER,
4752 false, false, false);
4753
4754 // Check for NULL as a linker script may discard .dynsym.
4755 if (dynsym != NULL)
4756 {
4757 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4758 align,
4759 "** dynsym");
4760 dynsym->add_output_section_data(odata);
4761
4762 dynsym->set_info(local_symcount + forced_local_count);
4763 dynsym->set_entsize(symsize);
4764 dynsym->set_addralign(align);
4765
4766 this->dynsym_section_ = dynsym;
4767 }
4768
4769 Output_data_dynamic* const odyn = this->dynamic_data_;
4770 if (odyn != NULL)
4771 {
4772 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4773 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4774 }
4775
4776 // If there are more than SHN_LORESERVE allocated sections, we
4777 // create a .dynsym_shndx section. It is possible that we don't
4778 // need one, because it is possible that there are no dynamic
4779 // symbols in any of the sections with indexes larger than
4780 // SHN_LORESERVE. This is probably unusual, though, and at this
4781 // time we don't know the actual section indexes so it is
4782 // inconvenient to check.
4783 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4784 {
4785 Output_section* dynsym_xindex =
4786 this->choose_output_section(NULL, ".dynsym_shndx",
4787 elfcpp::SHT_SYMTAB_SHNDX,
4788 elfcpp::SHF_ALLOC,
4789 false, ORDER_DYNAMIC_LINKER, false, false,
4790 false);
4791
4792 if (dynsym_xindex != NULL)
4793 {
4794 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4795
4796 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4797
4798 dynsym_xindex->set_link_section(dynsym);
4799 dynsym_xindex->set_addralign(4);
4800 dynsym_xindex->set_entsize(4);
4801
4802 dynsym_xindex->set_after_input_sections();
4803
4804 // This tells the driver code to wait until the symbol table
4805 // has written out before writing out the postprocessing
4806 // sections, including the .dynsym_shndx section.
4807 this->any_postprocessing_sections_ = true;
4808 }
4809 }
4810
4811 // Create the dynamic string table section.
4812
4813 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4814 elfcpp::SHT_STRTAB,
4815 elfcpp::SHF_ALLOC,
4816 false,
4817 ORDER_DYNAMIC_LINKER,
4818 false, false, false);
4819 *pdynstr = dynstr;
4820 if (dynstr != NULL)
4821 {
4822 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4823 dynstr->add_output_section_data(strdata);
4824
4825 if (dynsym != NULL)
4826 dynsym->set_link_section(dynstr);
4827 if (this->dynamic_section_ != NULL)
4828 this->dynamic_section_->set_link_section(dynstr);
4829
4830 if (odyn != NULL)
4831 {
4832 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4833 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4834 }
4835 }
4836
4837 // Create the hash tables. The Gnu-style hash table must be
4838 // built first, because it changes the order of the symbols
4839 // in the dynamic symbol table.
4840
4841 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4842 || strcmp(parameters->options().hash_style(), "both") == 0)
4843 {
4844 unsigned char* phash;
4845 unsigned int hashlen;
4846 Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4847 local_symcount + forced_local_count,
4848 &phash, &hashlen);
4849
4850 Output_section* hashsec =
4851 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4852 elfcpp::SHF_ALLOC, false,
4853 ORDER_DYNAMIC_LINKER, false, false,
4854 false);
4855
4856 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4857 hashlen,
4858 align,
4859 "** hash");
4860 if (hashsec != NULL && hashdata != NULL)
4861 hashsec->add_output_section_data(hashdata);
4862
4863 if (hashsec != NULL)
4864 {
4865 if (dynsym != NULL)
4866 hashsec->set_link_section(dynsym);
4867
4868 // For a 64-bit target, the entries in .gnu.hash do not have
4869 // a uniform size, so we only set the entry size for a
4870 // 32-bit target.
4871 if (parameters->target().get_size() == 32)
4872 hashsec->set_entsize(4);
4873
4874 if (odyn != NULL)
4875 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4876 }
4877 }
4878
4879 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4880 || strcmp(parameters->options().hash_style(), "both") == 0)
4881 {
4882 unsigned char* phash;
4883 unsigned int hashlen;
4884 Dynobj::create_elf_hash_table(*pdynamic_symbols,
4885 local_symcount + forced_local_count,
4886 &phash, &hashlen);
4887
4888 Output_section* hashsec =
4889 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4890 elfcpp::SHF_ALLOC, false,
4891 ORDER_DYNAMIC_LINKER, false, false,
4892 false);
4893
4894 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4895 hashlen,
4896 align,
4897 "** hash");
4898 if (hashsec != NULL && hashdata != NULL)
4899 hashsec->add_output_section_data(hashdata);
4900
4901 if (hashsec != NULL)
4902 {
4903 if (dynsym != NULL)
4904 hashsec->set_link_section(dynsym);
4905 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4906 }
4907
4908 if (odyn != NULL)
4909 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4910 }
4911 }
4912
4913 // Assign offsets to each local portion of the dynamic symbol table.
4914
4915 void
4916 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4917 {
4918 Output_section* dynsym = this->dynsym_section_;
4919 if (dynsym == NULL)
4920 return;
4921
4922 off_t off = dynsym->offset();
4923
4924 // Skip the dummy symbol at the start of the section.
4925 off += dynsym->entsize();
4926
4927 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4928 p != input_objects->relobj_end();
4929 ++p)
4930 {
4931 unsigned int count = (*p)->set_local_dynsym_offset(off);
4932 off += count * dynsym->entsize();
4933 }
4934 }
4935
4936 // Create the version sections.
4937
4938 void
4939 Layout::create_version_sections(const Versions* versions,
4940 const Symbol_table* symtab,
4941 unsigned int local_symcount,
4942 const std::vector<Symbol*>& dynamic_symbols,
4943 const Output_section* dynstr)
4944 {
4945 if (!versions->any_defs() && !versions->any_needs())
4946 return;
4947
4948 switch (parameters->size_and_endianness())
4949 {
4950 #ifdef HAVE_TARGET_32_LITTLE
4951 case Parameters::TARGET_32_LITTLE:
4952 this->sized_create_version_sections<32, false>(versions, symtab,
4953 local_symcount,
4954 dynamic_symbols, dynstr);
4955 break;
4956 #endif
4957 #ifdef HAVE_TARGET_32_BIG
4958 case Parameters::TARGET_32_BIG:
4959 this->sized_create_version_sections<32, true>(versions, symtab,
4960 local_symcount,
4961 dynamic_symbols, dynstr);
4962 break;
4963 #endif
4964 #ifdef HAVE_TARGET_64_LITTLE
4965 case Parameters::TARGET_64_LITTLE:
4966 this->sized_create_version_sections<64, false>(versions, symtab,
4967 local_symcount,
4968 dynamic_symbols, dynstr);
4969 break;
4970 #endif
4971 #ifdef HAVE_TARGET_64_BIG
4972 case Parameters::TARGET_64_BIG:
4973 this->sized_create_version_sections<64, true>(versions, symtab,
4974 local_symcount,
4975 dynamic_symbols, dynstr);
4976 break;
4977 #endif
4978 default:
4979 gold_unreachable();
4980 }
4981 }
4982
4983 // Create the version sections, sized version.
4984
4985 template<int size, bool big_endian>
4986 void
4987 Layout::sized_create_version_sections(
4988 const Versions* versions,
4989 const Symbol_table* symtab,
4990 unsigned int local_symcount,
4991 const std::vector<Symbol*>& dynamic_symbols,
4992 const Output_section* dynstr)
4993 {
4994 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4995 elfcpp::SHT_GNU_versym,
4996 elfcpp::SHF_ALLOC,
4997 false,
4998 ORDER_DYNAMIC_LINKER,
4999 false, false, false);
5000
5001 // Check for NULL since a linker script may discard this section.
5002 if (vsec != NULL)
5003 {
5004 unsigned char* vbuf;
5005 unsigned int vsize;
5006 versions->symbol_section_contents<size, big_endian>(symtab,
5007 &this->dynpool_,
5008 local_symcount,
5009 dynamic_symbols,
5010 &vbuf, &vsize);
5011
5012 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
5013 "** versions");
5014
5015 vsec->add_output_section_data(vdata);
5016 vsec->set_entsize(2);
5017 vsec->set_link_section(this->dynsym_section_);
5018 }
5019
5020 Output_data_dynamic* const odyn = this->dynamic_data_;
5021 if (odyn != NULL && vsec != NULL)
5022 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
5023
5024 if (versions->any_defs())
5025 {
5026 Output_section* vdsec;
5027 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
5028 elfcpp::SHT_GNU_verdef,
5029 elfcpp::SHF_ALLOC,
5030 false, ORDER_DYNAMIC_LINKER, false,
5031 false, false);
5032
5033 if (vdsec != NULL)
5034 {
5035 unsigned char* vdbuf;
5036 unsigned int vdsize;
5037 unsigned int vdentries;
5038 versions->def_section_contents<size, big_endian>(&this->dynpool_,
5039 &vdbuf, &vdsize,
5040 &vdentries);
5041
5042 Output_section_data* vddata =
5043 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
5044
5045 vdsec->add_output_section_data(vddata);
5046 vdsec->set_link_section(dynstr);
5047 vdsec->set_info(vdentries);
5048
5049 if (odyn != NULL)
5050 {
5051 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
5052 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
5053 }
5054 }
5055 }
5056
5057 if (versions->any_needs())
5058 {
5059 Output_section* vnsec;
5060 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
5061 elfcpp::SHT_GNU_verneed,
5062 elfcpp::SHF_ALLOC,
5063 false, ORDER_DYNAMIC_LINKER, false,
5064 false, false);
5065
5066 if (vnsec != NULL)
5067 {
5068 unsigned char* vnbuf;
5069 unsigned int vnsize;
5070 unsigned int vnentries;
5071 versions->need_section_contents<size, big_endian>(&this->dynpool_,
5072 &vnbuf, &vnsize,
5073 &vnentries);
5074
5075 Output_section_data* vndata =
5076 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
5077
5078 vnsec->add_output_section_data(vndata);
5079 vnsec->set_link_section(dynstr);
5080 vnsec->set_info(vnentries);
5081
5082 if (odyn != NULL)
5083 {
5084 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
5085 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
5086 }
5087 }
5088 }
5089 }
5090
5091 // Create the .interp section and PT_INTERP segment.
5092
5093 void
5094 Layout::create_interp(const Target* target)
5095 {
5096 gold_assert(this->interp_segment_ == NULL);
5097
5098 const char* interp = parameters->options().dynamic_linker();
5099 if (interp == NULL)
5100 {
5101 interp = target->dynamic_linker();
5102 gold_assert(interp != NULL);
5103 }
5104
5105 size_t len = strlen(interp) + 1;
5106
5107 Output_section_data* odata = new Output_data_const(interp, len, 1);
5108
5109 Output_section* osec = this->choose_output_section(NULL, ".interp",
5110 elfcpp::SHT_PROGBITS,
5111 elfcpp::SHF_ALLOC,
5112 false, ORDER_INTERP,
5113 false, false, false);
5114 if (osec != NULL)
5115 osec->add_output_section_data(odata);
5116 }
5117
5118 // Add dynamic tags for the PLT and the dynamic relocs. This is
5119 // called by the target-specific code. This does nothing if not doing
5120 // a dynamic link.
5121
5122 // USE_REL is true for REL relocs rather than RELA relocs.
5123
5124 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5125
5126 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5127 // and we also set DT_PLTREL. We use PLT_REL's output section, since
5128 // some targets have multiple reloc sections in PLT_REL.
5129
5130 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5131 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
5132 // section.
5133
5134 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5135 // executable.
5136
5137 void
5138 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5139 const Output_data* plt_rel,
5140 const Output_data_reloc_generic* dyn_rel,
5141 bool add_debug, bool dynrel_includes_plt,
5142 bool custom_relcount)
5143 {
5144 Output_data_dynamic* odyn = this->dynamic_data_;
5145 if (odyn == NULL)
5146 return;
5147
5148 if (plt_got != NULL && plt_got->output_section() != NULL)
5149 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5150
5151 if (plt_rel != NULL && plt_rel->output_section() != NULL)
5152 {
5153 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5154 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5155 odyn->add_constant(elfcpp::DT_PLTREL,
5156 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5157 }
5158
5159 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5160 || (dynrel_includes_plt
5161 && plt_rel != NULL
5162 && plt_rel->output_section() != NULL))
5163 {
5164 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5165 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5166 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5167 (have_dyn_rel
5168 ? dyn_rel->output_section()
5169 : plt_rel->output_section()));
5170 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5171 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5172 odyn->add_section_size(size_tag,
5173 dyn_rel->output_section(),
5174 plt_rel->output_section());
5175 else if (have_dyn_rel)
5176 odyn->add_section_size(size_tag, dyn_rel->output_section());
5177 else
5178 odyn->add_section_size(size_tag, plt_rel->output_section());
5179 const int size = parameters->target().get_size();
5180 elfcpp::DT rel_tag;
5181 int rel_size;
5182 if (use_rel)
5183 {
5184 rel_tag = elfcpp::DT_RELENT;
5185 if (size == 32)
5186 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5187 else if (size == 64)
5188 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5189 else
5190 gold_unreachable();
5191 }
5192 else
5193 {
5194 rel_tag = elfcpp::DT_RELAENT;
5195 if (size == 32)
5196 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5197 else if (size == 64)
5198 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5199 else
5200 gold_unreachable();
5201 }
5202 odyn->add_constant(rel_tag, rel_size);
5203
5204 if (parameters->options().combreloc() && have_dyn_rel)
5205 {
5206 size_t c = dyn_rel->relative_reloc_count();
5207 if (c != 0)
5208 {
5209 elfcpp::DT tag
5210 = use_rel ? elfcpp::DT_RELCOUNT : elfcpp::DT_RELACOUNT;
5211 if (custom_relcount)
5212 odyn->add_custom(tag);
5213 else
5214 odyn->add_constant(tag, c);
5215 }
5216 }
5217 }
5218
5219 if (add_debug && !parameters->options().shared())
5220 {
5221 // The value of the DT_DEBUG tag is filled in by the dynamic
5222 // linker at run time, and used by the debugger.
5223 odyn->add_constant(elfcpp::DT_DEBUG, 0);
5224 }
5225 }
5226
5227 void
5228 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5229 {
5230 Output_data_dynamic* odyn = this->dynamic_data_;
5231 if (odyn == NULL)
5232 return;
5233 odyn->add_constant(tag, val);
5234 }
5235
5236 // Finish the .dynamic section and PT_DYNAMIC segment.
5237
5238 void
5239 Layout::finish_dynamic_section(const Input_objects* input_objects,
5240 const Symbol_table* symtab)
5241 {
5242 if (!this->script_options_->saw_phdrs_clause()
5243 && this->dynamic_section_ != NULL)
5244 {
5245 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5246 (elfcpp::PF_R
5247 | elfcpp::PF_W));
5248 oseg->add_output_section_to_nonload(this->dynamic_section_,
5249 elfcpp::PF_R | elfcpp::PF_W);
5250 }
5251
5252 Output_data_dynamic* const odyn = this->dynamic_data_;
5253 if (odyn == NULL)
5254 return;
5255
5256 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5257 p != input_objects->dynobj_end();
5258 ++p)
5259 {
5260 if (!(*p)->is_needed() && (*p)->as_needed())
5261 {
5262 // This dynamic object was linked with --as-needed, but it
5263 // is not needed.
5264 continue;
5265 }
5266
5267 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5268 }
5269
5270 if (parameters->options().shared())
5271 {
5272 const char* soname = parameters->options().soname();
5273 if (soname != NULL)
5274 odyn->add_string(elfcpp::DT_SONAME, soname);
5275 }
5276
5277 Symbol* sym = symtab->lookup(parameters->options().init());
5278 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5279 odyn->add_symbol(elfcpp::DT_INIT, sym);
5280
5281 sym = symtab->lookup(parameters->options().fini());
5282 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5283 odyn->add_symbol(elfcpp::DT_FINI, sym);
5284
5285 // Look for .init_array, .preinit_array and .fini_array by checking
5286 // section types.
5287 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5288 p != this->section_list_.end();
5289 ++p)
5290 switch((*p)->type())
5291 {
5292 case elfcpp::SHT_FINI_ARRAY:
5293 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5294 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5295 break;
5296 case elfcpp::SHT_INIT_ARRAY:
5297 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5298 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5299 break;
5300 case elfcpp::SHT_PREINIT_ARRAY:
5301 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5302 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5303 break;
5304 default:
5305 break;
5306 }
5307
5308 // Add a DT_RPATH entry if needed.
5309 const General_options::Dir_list& rpath(parameters->options().rpath());
5310 if (!rpath.empty())
5311 {
5312 std::string rpath_val;
5313 for (General_options::Dir_list::const_iterator p = rpath.begin();
5314 p != rpath.end();
5315 ++p)
5316 {
5317 if (rpath_val.empty())
5318 rpath_val = p->name();
5319 else
5320 {
5321 // Eliminate duplicates.
5322 General_options::Dir_list::const_iterator q;
5323 for (q = rpath.begin(); q != p; ++q)
5324 if (q->name() == p->name())
5325 break;
5326 if (q == p)
5327 {
5328 rpath_val += ':';
5329 rpath_val += p->name();
5330 }
5331 }
5332 }
5333
5334 if (!parameters->options().enable_new_dtags())
5335 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5336 else
5337 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5338 }
5339
5340 // Look for text segments that have dynamic relocations.
5341 bool have_textrel = false;
5342 if (!this->script_options_->saw_sections_clause())
5343 {
5344 for (Segment_list::const_iterator p = this->segment_list_.begin();
5345 p != this->segment_list_.end();
5346 ++p)
5347 {
5348 if ((*p)->type() == elfcpp::PT_LOAD
5349 && ((*p)->flags() & elfcpp::PF_W) == 0
5350 && (*p)->has_dynamic_reloc())
5351 {
5352 have_textrel = true;
5353 break;
5354 }
5355 }
5356 }
5357 else
5358 {
5359 // We don't know the section -> segment mapping, so we are
5360 // conservative and just look for readonly sections with
5361 // relocations. If those sections wind up in writable segments,
5362 // then we have created an unnecessary DT_TEXTREL entry.
5363 for (Section_list::const_iterator p = this->section_list_.begin();
5364 p != this->section_list_.end();
5365 ++p)
5366 {
5367 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5368 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5369 && (*p)->has_dynamic_reloc())
5370 {
5371 have_textrel = true;
5372 break;
5373 }
5374 }
5375 }
5376
5377 if (parameters->options().filter() != NULL)
5378 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5379 if (parameters->options().any_auxiliary())
5380 {
5381 for (options::String_set::const_iterator p =
5382 parameters->options().auxiliary_begin();
5383 p != parameters->options().auxiliary_end();
5384 ++p)
5385 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5386 }
5387
5388 // Add a DT_FLAGS entry if necessary.
5389 unsigned int flags = 0;
5390 if (have_textrel)
5391 {
5392 // Add a DT_TEXTREL for compatibility with older loaders.
5393 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5394 flags |= elfcpp::DF_TEXTREL;
5395
5396 if (parameters->options().text())
5397 gold_error(_("read-only segment has dynamic relocations"));
5398 else if (parameters->options().warn_shared_textrel()
5399 && parameters->options().shared())
5400 gold_warning(_("shared library text segment is not shareable"));
5401 }
5402 if (parameters->options().shared() && this->has_static_tls())
5403 flags |= elfcpp::DF_STATIC_TLS;
5404 if (parameters->options().origin())
5405 flags |= elfcpp::DF_ORIGIN;
5406 if (parameters->options().Bsymbolic()
5407 && !parameters->options().have_dynamic_list())
5408 {
5409 flags |= elfcpp::DF_SYMBOLIC;
5410 // Add DT_SYMBOLIC for compatibility with older loaders.
5411 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5412 }
5413 if (parameters->options().now())
5414 flags |= elfcpp::DF_BIND_NOW;
5415 if (flags != 0)
5416 odyn->add_constant(elfcpp::DT_FLAGS, flags);
5417
5418 flags = 0;
5419 if (parameters->options().global())
5420 flags |= elfcpp::DF_1_GLOBAL;
5421 if (parameters->options().initfirst())
5422 flags |= elfcpp::DF_1_INITFIRST;
5423 if (parameters->options().interpose())
5424 flags |= elfcpp::DF_1_INTERPOSE;
5425 if (parameters->options().loadfltr())
5426 flags |= elfcpp::DF_1_LOADFLTR;
5427 if (parameters->options().nodefaultlib())
5428 flags |= elfcpp::DF_1_NODEFLIB;
5429 if (parameters->options().nodelete())
5430 flags |= elfcpp::DF_1_NODELETE;
5431 if (parameters->options().nodlopen())
5432 flags |= elfcpp::DF_1_NOOPEN;
5433 if (parameters->options().nodump())
5434 flags |= elfcpp::DF_1_NODUMP;
5435 if (!parameters->options().shared())
5436 flags &= ~(elfcpp::DF_1_INITFIRST
5437 | elfcpp::DF_1_NODELETE
5438 | elfcpp::DF_1_NOOPEN);
5439 if (parameters->options().origin())
5440 flags |= elfcpp::DF_1_ORIGIN;
5441 if (parameters->options().now())
5442 flags |= elfcpp::DF_1_NOW;
5443 if (parameters->options().Bgroup())
5444 flags |= elfcpp::DF_1_GROUP;
5445 if (parameters->options().pie())
5446 flags |= elfcpp::DF_1_PIE;
5447 if (flags != 0)
5448 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5449
5450 flags = 0;
5451 if (parameters->options().unique())
5452 flags |= elfcpp::DF_GNU_1_UNIQUE;
5453 if (flags != 0)
5454 odyn->add_constant(elfcpp::DT_GNU_FLAGS_1, flags);
5455 }
5456
5457 // Set the size of the _DYNAMIC symbol table to be the size of the
5458 // dynamic data.
5459
5460 void
5461 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5462 {
5463 Output_data_dynamic* const odyn = this->dynamic_data_;
5464 if (odyn == NULL)
5465 return;
5466 odyn->finalize_data_size();
5467 if (this->dynamic_symbol_ == NULL)
5468 return;
5469 off_t data_size = odyn->data_size();
5470 const int size = parameters->target().get_size();
5471 if (size == 32)
5472 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5473 else if (size == 64)
5474 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5475 else
5476 gold_unreachable();
5477 }
5478
5479 // The mapping of input section name prefixes to output section names.
5480 // In some cases one prefix is itself a prefix of another prefix; in
5481 // such a case the longer prefix must come first. These prefixes are
5482 // based on the GNU linker default ELF linker script.
5483
5484 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5485 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5486 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5487 {
5488 MAPPING_INIT(".text.", ".text"),
5489 MAPPING_INIT(".rodata.", ".rodata"),
5490 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5491 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5492 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5493 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5494 MAPPING_INIT(".data.", ".data"),
5495 MAPPING_INIT(".bss.", ".bss"),
5496 MAPPING_INIT(".tdata.", ".tdata"),
5497 MAPPING_INIT(".tbss.", ".tbss"),
5498 MAPPING_INIT(".init_array.", ".init_array"),
5499 MAPPING_INIT(".fini_array.", ".fini_array"),
5500 MAPPING_INIT(".sdata.", ".sdata"),
5501 MAPPING_INIT(".sbss.", ".sbss"),
5502 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5503 // differently depending on whether it is creating a shared library.
5504 MAPPING_INIT(".sdata2.", ".sdata"),
5505 MAPPING_INIT(".sbss2.", ".sbss"),
5506 MAPPING_INIT(".lrodata.", ".lrodata"),
5507 MAPPING_INIT(".ldata.", ".ldata"),
5508 MAPPING_INIT(".lbss.", ".lbss"),
5509 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5510 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5511 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5512 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5513 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5514 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5515 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5516 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5517 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5518 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5519 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5520 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5521 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5522 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5523 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5524 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5525 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5526 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5527 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5528 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5529 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5530 MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5531 };
5532
5533 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5534 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5535 {
5536 MAPPING_INIT(".text.hot.", ".text.hot"),
5537 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5538 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5539 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5540 MAPPING_INIT(".text.startup.", ".text.startup"),
5541 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5542 MAPPING_INIT(".text.exit.", ".text.exit"),
5543 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5544 MAPPING_INIT(".text.", ".text"),
5545 };
5546 #undef MAPPING_INIT
5547 #undef MAPPING_INIT_EXACT
5548
5549 const int Layout::section_name_mapping_count =
5550 (sizeof(Layout::section_name_mapping)
5551 / sizeof(Layout::section_name_mapping[0]));
5552
5553 const int Layout::text_section_name_mapping_count =
5554 (sizeof(Layout::text_section_name_mapping)
5555 / sizeof(Layout::text_section_name_mapping[0]));
5556
5557 // Find section name NAME in PSNM and return the mapped name if found
5558 // with the length set in PLEN.
5559 const char *
5560 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5561 const int count,
5562 const char* name, size_t* plen)
5563 {
5564 for (int i = 0; i < count; ++i, ++psnm)
5565 {
5566 if (psnm->fromlen > 0)
5567 {
5568 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5569 {
5570 *plen = psnm->tolen;
5571 return psnm->to;
5572 }
5573 }
5574 else
5575 {
5576 if (strcmp(name, psnm->from) == 0)
5577 {
5578 *plen = psnm->tolen;
5579 return psnm->to;
5580 }
5581 }
5582 }
5583 return NULL;
5584 }
5585
5586 // Choose the output section name to use given an input section name.
5587 // Set *PLEN to the length of the name. *PLEN is initialized to the
5588 // length of NAME.
5589
5590 const char*
5591 Layout::output_section_name(const Relobj* relobj, const char* name,
5592 size_t* plen)
5593 {
5594 // gcc 4.3 generates the following sorts of section names when it
5595 // needs a section name specific to a function:
5596 // .text.FN
5597 // .rodata.FN
5598 // .sdata2.FN
5599 // .data.FN
5600 // .data.rel.FN
5601 // .data.rel.local.FN
5602 // .data.rel.ro.FN
5603 // .data.rel.ro.local.FN
5604 // .sdata.FN
5605 // .bss.FN
5606 // .sbss.FN
5607 // .tdata.FN
5608 // .tbss.FN
5609
5610 // The GNU linker maps all of those to the part before the .FN,
5611 // except that .data.rel.local.FN is mapped to .data, and
5612 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5613 // beginning with .data.rel.ro.local are grouped together.
5614
5615 // For an anonymous namespace, the string FN can contain a '.'.
5616
5617 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5618 // GNU linker maps to .rodata.
5619
5620 // The .data.rel.ro sections are used with -z relro. The sections
5621 // are recognized by name. We use the same names that the GNU
5622 // linker does for these sections.
5623
5624 // It is hard to handle this in a principled way, so we don't even
5625 // try. We use a table of mappings. If the input section name is
5626 // not found in the table, we simply use it as the output section
5627 // name.
5628
5629 if (parameters->options().keep_text_section_prefix()
5630 && is_prefix_of(".text", name))
5631 {
5632 const char* match = match_section_name(text_section_name_mapping,
5633 text_section_name_mapping_count,
5634 name, plen);
5635 if (match != NULL)
5636 return match;
5637 }
5638
5639 const char* match = match_section_name(section_name_mapping,
5640 section_name_mapping_count, name, plen);
5641 if (match != NULL)
5642 return match;
5643
5644 // As an additional complication, .ctors sections are output in
5645 // either .ctors or .init_array sections, and .dtors sections are
5646 // output in either .dtors or .fini_array sections.
5647 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5648 {
5649 if (parameters->options().ctors_in_init_array())
5650 {
5651 *plen = 11;
5652 return name[1] == 'c' ? ".init_array" : ".fini_array";
5653 }
5654 else
5655 {
5656 *plen = 6;
5657 return name[1] == 'c' ? ".ctors" : ".dtors";
5658 }
5659 }
5660 if (parameters->options().ctors_in_init_array()
5661 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5662 {
5663 // To make .init_array/.fini_array work with gcc we must exclude
5664 // .ctors and .dtors sections from the crtbegin and crtend
5665 // files.
5666 if (relobj == NULL
5667 || (!Layout::match_file_name(relobj, "crtbegin")
5668 && !Layout::match_file_name(relobj, "crtend")))
5669 {
5670 *plen = 11;
5671 return name[1] == 'c' ? ".init_array" : ".fini_array";
5672 }
5673 }
5674
5675 return name;
5676 }
5677
5678 // Return true if RELOBJ is an input file whose base name matches
5679 // FILE_NAME. The base name must have an extension of ".o", and must
5680 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5681 // to match crtbegin.o as well as crtbeginS.o without getting confused
5682 // by other possibilities. Overall matching the file name this way is
5683 // a dreadful hack, but the GNU linker does it in order to better
5684 // support gcc, and we need to be compatible.
5685
5686 bool
5687 Layout::match_file_name(const Relobj* relobj, const char* match)
5688 {
5689 const std::string& file_name(relobj->name());
5690 const char* base_name = lbasename(file_name.c_str());
5691 size_t match_len = strlen(match);
5692 if (strncmp(base_name, match, match_len) != 0)
5693 return false;
5694 size_t base_len = strlen(base_name);
5695 if (base_len != match_len + 2 && base_len != match_len + 3)
5696 return false;
5697 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5698 }
5699
5700 // Check if a comdat group or .gnu.linkonce section with the given
5701 // NAME is selected for the link. If there is already a section,
5702 // *KEPT_SECTION is set to point to the existing section and the
5703 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5704 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5705 // *KEPT_SECTION is set to the internal copy and the function returns
5706 // true.
5707
5708 bool
5709 Layout::find_or_add_kept_section(const std::string& name,
5710 Relobj* object,
5711 unsigned int shndx,
5712 bool is_comdat,
5713 bool is_group_name,
5714 Kept_section** kept_section)
5715 {
5716 // It's normal to see a couple of entries here, for the x86 thunk
5717 // sections. If we see more than a few, we're linking a C++
5718 // program, and we resize to get more space to minimize rehashing.
5719 if (this->signatures_.size() > 4
5720 && !this->resized_signatures_)
5721 {
5722 reserve_unordered_map(&this->signatures_,
5723 this->number_of_input_files_ * 64);
5724 this->resized_signatures_ = true;
5725 }
5726
5727 Kept_section candidate;
5728 std::pair<Signatures::iterator, bool> ins =
5729 this->signatures_.insert(std::make_pair(name, candidate));
5730
5731 if (kept_section != NULL)
5732 *kept_section = &ins.first->second;
5733 if (ins.second)
5734 {
5735 // This is the first time we've seen this signature.
5736 ins.first->second.set_object(object);
5737 ins.first->second.set_shndx(shndx);
5738 if (is_comdat)
5739 ins.first->second.set_is_comdat();
5740 if (is_group_name)
5741 ins.first->second.set_is_group_name();
5742 return true;
5743 }
5744
5745 // We have already seen this signature.
5746
5747 if (ins.first->second.is_group_name())
5748 {
5749 // We've already seen a real section group with this signature.
5750 // If the kept group is from a plugin object, and we're in the
5751 // replacement phase, accept the new one as a replacement.
5752 if (ins.first->second.object() == NULL
5753 && parameters->options().plugins()->in_replacement_phase())
5754 {
5755 ins.first->second.set_object(object);
5756 ins.first->second.set_shndx(shndx);
5757 return true;
5758 }
5759 return false;
5760 }
5761 else if (is_group_name)
5762 {
5763 // This is a real section group, and we've already seen a
5764 // linkonce section with this signature. Record that we've seen
5765 // a section group, and don't include this section group.
5766 ins.first->second.set_is_group_name();
5767 return false;
5768 }
5769 else
5770 {
5771 // We've already seen a linkonce section and this is a linkonce
5772 // section. These don't block each other--this may be the same
5773 // symbol name with different section types.
5774 return true;
5775 }
5776 }
5777
5778 // Store the allocated sections into the section list.
5779
5780 void
5781 Layout::get_allocated_sections(Section_list* section_list) const
5782 {
5783 for (Section_list::const_iterator p = this->section_list_.begin();
5784 p != this->section_list_.end();
5785 ++p)
5786 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5787 section_list->push_back(*p);
5788 }
5789
5790 // Store the executable sections into the section list.
5791
5792 void
5793 Layout::get_executable_sections(Section_list* section_list) const
5794 {
5795 for (Section_list::const_iterator p = this->section_list_.begin();
5796 p != this->section_list_.end();
5797 ++p)
5798 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5799 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5800 section_list->push_back(*p);
5801 }
5802
5803 // Create an output segment.
5804
5805 Output_segment*
5806 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5807 {
5808 gold_assert(!parameters->options().relocatable());
5809 Output_segment* oseg = new Output_segment(type, flags);
5810 this->segment_list_.push_back(oseg);
5811
5812 if (type == elfcpp::PT_TLS)
5813 this->tls_segment_ = oseg;
5814 else if (type == elfcpp::PT_GNU_RELRO)
5815 this->relro_segment_ = oseg;
5816 else if (type == elfcpp::PT_INTERP)
5817 this->interp_segment_ = oseg;
5818
5819 return oseg;
5820 }
5821
5822 // Return the file offset of the normal symbol table.
5823
5824 off_t
5825 Layout::symtab_section_offset() const
5826 {
5827 if (this->symtab_section_ != NULL)
5828 return this->symtab_section_->offset();
5829 return 0;
5830 }
5831
5832 // Return the section index of the normal symbol table. It may have
5833 // been stripped by the -s/--strip-all option.
5834
5835 unsigned int
5836 Layout::symtab_section_shndx() const
5837 {
5838 if (this->symtab_section_ != NULL)
5839 return this->symtab_section_->out_shndx();
5840 return 0;
5841 }
5842
5843 // Write out the Output_sections. Most won't have anything to write,
5844 // since most of the data will come from input sections which are
5845 // handled elsewhere. But some Output_sections do have Output_data.
5846
5847 void
5848 Layout::write_output_sections(Output_file* of) const
5849 {
5850 for (Section_list::const_iterator p = this->section_list_.begin();
5851 p != this->section_list_.end();
5852 ++p)
5853 {
5854 if (!(*p)->after_input_sections())
5855 (*p)->write(of);
5856 }
5857 }
5858
5859 // Write out data not associated with a section or the symbol table.
5860
5861 void
5862 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5863 {
5864 if (!parameters->options().strip_all())
5865 {
5866 const Output_section* symtab_section = this->symtab_section_;
5867 for (Section_list::const_iterator p = this->section_list_.begin();
5868 p != this->section_list_.end();
5869 ++p)
5870 {
5871 if ((*p)->needs_symtab_index())
5872 {
5873 gold_assert(symtab_section != NULL);
5874 unsigned int index = (*p)->symtab_index();
5875 gold_assert(index > 0 && index != -1U);
5876 off_t off = (symtab_section->offset()
5877 + index * symtab_section->entsize());
5878 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5879 }
5880 }
5881 }
5882
5883 const Output_section* dynsym_section = this->dynsym_section_;
5884 for (Section_list::const_iterator p = this->section_list_.begin();
5885 p != this->section_list_.end();
5886 ++p)
5887 {
5888 if ((*p)->needs_dynsym_index())
5889 {
5890 gold_assert(dynsym_section != NULL);
5891 unsigned int index = (*p)->dynsym_index();
5892 gold_assert(index > 0 && index != -1U);
5893 off_t off = (dynsym_section->offset()
5894 + index * dynsym_section->entsize());
5895 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5896 }
5897 }
5898
5899 // Write out the Output_data which are not in an Output_section.
5900 for (Data_list::const_iterator p = this->special_output_list_.begin();
5901 p != this->special_output_list_.end();
5902 ++p)
5903 (*p)->write(of);
5904
5905 // Write out the Output_data which are not in an Output_section
5906 // and are regenerated in each iteration of relaxation.
5907 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5908 p != this->relax_output_list_.end();
5909 ++p)
5910 (*p)->write(of);
5911 }
5912
5913 // Write out the Output_sections which can only be written after the
5914 // input sections are complete.
5915
5916 void
5917 Layout::write_sections_after_input_sections(Output_file* of)
5918 {
5919 // Determine the final section offsets, and thus the final output
5920 // file size. Note we finalize the .shstrab last, to allow the
5921 // after_input_section sections to modify their section-names before
5922 // writing.
5923 if (this->any_postprocessing_sections_)
5924 {
5925 off_t off = this->output_file_size_;
5926 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5927
5928 // Now that we've finalized the names, we can finalize the shstrab.
5929 off =
5930 this->set_section_offsets(off,
5931 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5932
5933 if (off > this->output_file_size_)
5934 {
5935 of->resize(off);
5936 this->output_file_size_ = off;
5937 }
5938 }
5939
5940 for (Section_list::const_iterator p = this->section_list_.begin();
5941 p != this->section_list_.end();
5942 ++p)
5943 {
5944 if ((*p)->after_input_sections())
5945 (*p)->write(of);
5946 }
5947
5948 this->section_headers_->write(of);
5949 }
5950
5951 // If a tree-style build ID was requested, the parallel part of that computation
5952 // is already done, and the final hash-of-hashes is computed here. For other
5953 // types of build IDs, all the work is done here.
5954
5955 void
5956 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5957 size_t size_of_hashes) const
5958 {
5959 if (this->build_id_note_ == NULL)
5960 return;
5961
5962 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5963 this->build_id_note_->data_size());
5964
5965 if (array_of_hashes == NULL)
5966 {
5967 const size_t output_file_size = this->output_file_size();
5968 const unsigned char* iv = of->get_input_view(0, output_file_size);
5969 const char* style = parameters->options().build_id();
5970
5971 // If we get here with style == "tree" then the output must be
5972 // too small for chunking, and we use SHA-1 in that case.
5973 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5974 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5975 else if (strcmp(style, "md5") == 0)
5976 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5977 else
5978 gold_unreachable();
5979
5980 of->free_input_view(0, output_file_size, iv);
5981 }
5982 else
5983 {
5984 // Non-overlapping substrings of the output file have been hashed.
5985 // Compute SHA-1 hash of the hashes.
5986 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5987 size_of_hashes, ov);
5988 delete[] array_of_hashes;
5989 }
5990
5991 of->write_output_view(this->build_id_note_->offset(),
5992 this->build_id_note_->data_size(),
5993 ov);
5994 }
5995
5996 // Write out a binary file. This is called after the link is
5997 // complete. IN is the temporary output file we used to generate the
5998 // ELF code. We simply walk through the segments, read them from
5999 // their file offset in IN, and write them to their load address in
6000 // the output file. FIXME: with a bit more work, we could support
6001 // S-records and/or Intel hex format here.
6002
6003 void
6004 Layout::write_binary(Output_file* in) const
6005 {
6006 gold_assert(parameters->options().oformat_enum()
6007 == General_options::OBJECT_FORMAT_BINARY);
6008
6009 // Get the size of the binary file.
6010 uint64_t max_load_address = 0;
6011 for (Segment_list::const_iterator p = this->segment_list_.begin();
6012 p != this->segment_list_.end();
6013 ++p)
6014 {
6015 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
6016 {
6017 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
6018 if (max_paddr > max_load_address)
6019 max_load_address = max_paddr;
6020 }
6021 }
6022
6023 Output_file out(parameters->options().output_file_name());
6024 out.open(max_load_address);
6025
6026 for (Segment_list::const_iterator p = this->segment_list_.begin();
6027 p != this->segment_list_.end();
6028 ++p)
6029 {
6030 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
6031 {
6032 const unsigned char* vin = in->get_input_view((*p)->offset(),
6033 (*p)->filesz());
6034 unsigned char* vout = out.get_output_view((*p)->paddr(),
6035 (*p)->filesz());
6036 memcpy(vout, vin, (*p)->filesz());
6037 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
6038 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
6039 }
6040 }
6041
6042 out.close();
6043 }
6044
6045 // Print the output sections to the map file.
6046
6047 void
6048 Layout::print_to_mapfile(Mapfile* mapfile) const
6049 {
6050 for (Segment_list::const_iterator p = this->segment_list_.begin();
6051 p != this->segment_list_.end();
6052 ++p)
6053 (*p)->print_sections_to_mapfile(mapfile);
6054 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
6055 p != this->unattached_section_list_.end();
6056 ++p)
6057 (*p)->print_to_mapfile(mapfile);
6058 }
6059
6060 // Print statistical information to stderr. This is used for --stats.
6061
6062 void
6063 Layout::print_stats() const
6064 {
6065 this->namepool_.print_stats("section name pool");
6066 this->sympool_.print_stats("output symbol name pool");
6067 this->dynpool_.print_stats("dynamic name pool");
6068
6069 for (Section_list::const_iterator p = this->section_list_.begin();
6070 p != this->section_list_.end();
6071 ++p)
6072 (*p)->print_merge_stats();
6073 }
6074
6075 // Write_sections_task methods.
6076
6077 // We can always run this task.
6078
6079 Task_token*
6080 Write_sections_task::is_runnable()
6081 {
6082 return NULL;
6083 }
6084
6085 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
6086 // when finished.
6087
6088 void
6089 Write_sections_task::locks(Task_locker* tl)
6090 {
6091 tl->add(this, this->output_sections_blocker_);
6092 if (this->input_sections_blocker_ != NULL)
6093 tl->add(this, this->input_sections_blocker_);
6094 tl->add(this, this->final_blocker_);
6095 }
6096
6097 // Run the task--write out the data.
6098
6099 void
6100 Write_sections_task::run(Workqueue*)
6101 {
6102 this->layout_->write_output_sections(this->of_);
6103 }
6104
6105 // Write_data_task methods.
6106
6107 // We can always run this task.
6108
6109 Task_token*
6110 Write_data_task::is_runnable()
6111 {
6112 return NULL;
6113 }
6114
6115 // We need to unlock FINAL_BLOCKER when finished.
6116
6117 void
6118 Write_data_task::locks(Task_locker* tl)
6119 {
6120 tl->add(this, this->final_blocker_);
6121 }
6122
6123 // Run the task--write out the data.
6124
6125 void
6126 Write_data_task::run(Workqueue*)
6127 {
6128 this->layout_->write_data(this->symtab_, this->of_);
6129 }
6130
6131 // Write_symbols_task methods.
6132
6133 // We can always run this task.
6134
6135 Task_token*
6136 Write_symbols_task::is_runnable()
6137 {
6138 return NULL;
6139 }
6140
6141 // We need to unlock FINAL_BLOCKER when finished.
6142
6143 void
6144 Write_symbols_task::locks(Task_locker* tl)
6145 {
6146 tl->add(this, this->final_blocker_);
6147 }
6148
6149 // Run the task--write out the symbols.
6150
6151 void
6152 Write_symbols_task::run(Workqueue*)
6153 {
6154 this->symtab_->write_globals(this->sympool_, this->dynpool_,
6155 this->layout_->symtab_xindex(),
6156 this->layout_->dynsym_xindex(), this->of_);
6157 }
6158
6159 // Write_after_input_sections_task methods.
6160
6161 // We can only run this task after the input sections have completed.
6162
6163 Task_token*
6164 Write_after_input_sections_task::is_runnable()
6165 {
6166 if (this->input_sections_blocker_->is_blocked())
6167 return this->input_sections_blocker_;
6168 return NULL;
6169 }
6170
6171 // We need to unlock FINAL_BLOCKER when finished.
6172
6173 void
6174 Write_after_input_sections_task::locks(Task_locker* tl)
6175 {
6176 tl->add(this, this->final_blocker_);
6177 }
6178
6179 // Run the task.
6180
6181 void
6182 Write_after_input_sections_task::run(Workqueue*)
6183 {
6184 this->layout_->write_sections_after_input_sections(this->of_);
6185 }
6186
6187 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6188 // or as a "tree" where each chunk of the string is hashed and then those
6189 // hashes are put into a (much smaller) string which is hashed with sha1.
6190 // We compute a checksum over the entire file because that is simplest.
6191
6192 void
6193 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6194 {
6195 Task_token* post_hash_tasks_blocker = new Task_token(true);
6196 const Layout* layout = this->layout_;
6197 Output_file* of = this->of_;
6198 const size_t filesize = (layout->output_file_size() <= 0 ? 0
6199 : static_cast<size_t>(layout->output_file_size()));
6200 unsigned char* array_of_hashes = NULL;
6201 size_t size_of_hashes = 0;
6202
6203 if (strcmp(this->options_->build_id(), "tree") == 0
6204 && this->options_->build_id_chunk_size_for_treehash() > 0
6205 && filesize > 0
6206 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6207 {
6208 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6209 const size_t chunk_size =
6210 this->options_->build_id_chunk_size_for_treehash();
6211 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6212 post_hash_tasks_blocker->add_blockers(num_hashes);
6213 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6214 array_of_hashes = new unsigned char[size_of_hashes];
6215 unsigned char *dst = array_of_hashes;
6216 for (size_t i = 0, src_offset = 0; i < num_hashes;
6217 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6218 {
6219 size_t size = std::min(chunk_size, filesize - src_offset);
6220 workqueue->queue(new Hash_task(of,
6221 src_offset,
6222 size,
6223 dst,
6224 post_hash_tasks_blocker));
6225 }
6226 }
6227
6228 // Queue the final task to write the build id and close the output file.
6229 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6230 layout,
6231 of,
6232 array_of_hashes,
6233 size_of_hashes),
6234 post_hash_tasks_blocker,
6235 "Task_function Close_task_runner"));
6236 }
6237
6238 // Close_task_runner methods.
6239
6240 // Finish up the build ID computation, if necessary, and write a binary file,
6241 // if necessary. Then close the output file.
6242
6243 void
6244 Close_task_runner::run(Workqueue*, const Task*)
6245 {
6246 // At this point the multi-threaded part of the build ID computation,
6247 // if any, is done. See Build_id_task_runner.
6248 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6249 this->size_of_hashes_);
6250
6251 // If we've been asked to create a binary file, we do so here.
6252 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6253 this->layout_->write_binary(this->of_);
6254
6255 if (this->options_->dependency_file())
6256 File_read::write_dependency_file(this->options_->dependency_file(),
6257 this->options_->output_file_name());
6258
6259 this->of_->close();
6260 }
6261
6262 // Instantiate the templates we need. We could use the configure
6263 // script to restrict this to only the ones for implemented targets.
6264
6265 #ifdef HAVE_TARGET_32_LITTLE
6266 template
6267 Output_section*
6268 Layout::init_fixed_output_section<32, false>(
6269 const char* name,
6270 elfcpp::Shdr<32, false>& shdr);
6271 #endif
6272
6273 #ifdef HAVE_TARGET_32_BIG
6274 template
6275 Output_section*
6276 Layout::init_fixed_output_section<32, true>(
6277 const char* name,
6278 elfcpp::Shdr<32, true>& shdr);
6279 #endif
6280
6281 #ifdef HAVE_TARGET_64_LITTLE
6282 template
6283 Output_section*
6284 Layout::init_fixed_output_section<64, false>(
6285 const char* name,
6286 elfcpp::Shdr<64, false>& shdr);
6287 #endif
6288
6289 #ifdef HAVE_TARGET_64_BIG
6290 template
6291 Output_section*
6292 Layout::init_fixed_output_section<64, true>(
6293 const char* name,
6294 elfcpp::Shdr<64, true>& shdr);
6295 #endif
6296
6297 #ifdef HAVE_TARGET_32_LITTLE
6298 template
6299 Output_section*
6300 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6301 unsigned int shndx,
6302 const char* name,
6303 const elfcpp::Shdr<32, false>& shdr,
6304 unsigned int, unsigned int, unsigned int, off_t*);
6305 #endif
6306
6307 #ifdef HAVE_TARGET_32_BIG
6308 template
6309 Output_section*
6310 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6311 unsigned int shndx,
6312 const char* name,
6313 const elfcpp::Shdr<32, true>& shdr,
6314 unsigned int, unsigned int, unsigned int, off_t*);
6315 #endif
6316
6317 #ifdef HAVE_TARGET_64_LITTLE
6318 template
6319 Output_section*
6320 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6321 unsigned int shndx,
6322 const char* name,
6323 const elfcpp::Shdr<64, false>& shdr,
6324 unsigned int, unsigned int, unsigned int, off_t*);
6325 #endif
6326
6327 #ifdef HAVE_TARGET_64_BIG
6328 template
6329 Output_section*
6330 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6331 unsigned int shndx,
6332 const char* name,
6333 const elfcpp::Shdr<64, true>& shdr,
6334 unsigned int, unsigned int, unsigned int, off_t*);
6335 #endif
6336
6337 #ifdef HAVE_TARGET_32_LITTLE
6338 template
6339 Output_section*
6340 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6341 unsigned int reloc_shndx,
6342 const elfcpp::Shdr<32, false>& shdr,
6343 Output_section* data_section,
6344 Relocatable_relocs* rr);
6345 #endif
6346
6347 #ifdef HAVE_TARGET_32_BIG
6348 template
6349 Output_section*
6350 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6351 unsigned int reloc_shndx,
6352 const elfcpp::Shdr<32, true>& shdr,
6353 Output_section* data_section,
6354 Relocatable_relocs* rr);
6355 #endif
6356
6357 #ifdef HAVE_TARGET_64_LITTLE
6358 template
6359 Output_section*
6360 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6361 unsigned int reloc_shndx,
6362 const elfcpp::Shdr<64, false>& shdr,
6363 Output_section* data_section,
6364 Relocatable_relocs* rr);
6365 #endif
6366
6367 #ifdef HAVE_TARGET_64_BIG
6368 template
6369 Output_section*
6370 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6371 unsigned int reloc_shndx,
6372 const elfcpp::Shdr<64, true>& shdr,
6373 Output_section* data_section,
6374 Relocatable_relocs* rr);
6375 #endif
6376
6377 #ifdef HAVE_TARGET_32_LITTLE
6378 template
6379 void
6380 Layout::layout_group<32, false>(Symbol_table* symtab,
6381 Sized_relobj_file<32, false>* object,
6382 unsigned int,
6383 const char* group_section_name,
6384 const char* signature,
6385 const elfcpp::Shdr<32, false>& shdr,
6386 elfcpp::Elf_Word flags,
6387 std::vector<unsigned int>* shndxes);
6388 #endif
6389
6390 #ifdef HAVE_TARGET_32_BIG
6391 template
6392 void
6393 Layout::layout_group<32, true>(Symbol_table* symtab,
6394 Sized_relobj_file<32, true>* object,
6395 unsigned int,
6396 const char* group_section_name,
6397 const char* signature,
6398 const elfcpp::Shdr<32, true>& shdr,
6399 elfcpp::Elf_Word flags,
6400 std::vector<unsigned int>* shndxes);
6401 #endif
6402
6403 #ifdef HAVE_TARGET_64_LITTLE
6404 template
6405 void
6406 Layout::layout_group<64, false>(Symbol_table* symtab,
6407 Sized_relobj_file<64, false>* object,
6408 unsigned int,
6409 const char* group_section_name,
6410 const char* signature,
6411 const elfcpp::Shdr<64, false>& shdr,
6412 elfcpp::Elf_Word flags,
6413 std::vector<unsigned int>* shndxes);
6414 #endif
6415
6416 #ifdef HAVE_TARGET_64_BIG
6417 template
6418 void
6419 Layout::layout_group<64, true>(Symbol_table* symtab,
6420 Sized_relobj_file<64, true>* object,
6421 unsigned int,
6422 const char* group_section_name,
6423 const char* signature,
6424 const elfcpp::Shdr<64, true>& shdr,
6425 elfcpp::Elf_Word flags,
6426 std::vector<unsigned int>* shndxes);
6427 #endif
6428
6429 #ifdef HAVE_TARGET_32_LITTLE
6430 template
6431 Output_section*
6432 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6433 const unsigned char* symbols,
6434 off_t symbols_size,
6435 const unsigned char* symbol_names,
6436 off_t symbol_names_size,
6437 unsigned int shndx,
6438 const elfcpp::Shdr<32, false>& shdr,
6439 unsigned int reloc_shndx,
6440 unsigned int reloc_type,
6441 off_t* off);
6442 #endif
6443
6444 #ifdef HAVE_TARGET_32_BIG
6445 template
6446 Output_section*
6447 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6448 const unsigned char* symbols,
6449 off_t symbols_size,
6450 const unsigned char* symbol_names,
6451 off_t symbol_names_size,
6452 unsigned int shndx,
6453 const elfcpp::Shdr<32, true>& shdr,
6454 unsigned int reloc_shndx,
6455 unsigned int reloc_type,
6456 off_t* off);
6457 #endif
6458
6459 #ifdef HAVE_TARGET_64_LITTLE
6460 template
6461 Output_section*
6462 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6463 const unsigned char* symbols,
6464 off_t symbols_size,
6465 const unsigned char* symbol_names,
6466 off_t symbol_names_size,
6467 unsigned int shndx,
6468 const elfcpp::Shdr<64, false>& shdr,
6469 unsigned int reloc_shndx,
6470 unsigned int reloc_type,
6471 off_t* off);
6472 #endif
6473
6474 #ifdef HAVE_TARGET_64_BIG
6475 template
6476 Output_section*
6477 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6478 const unsigned char* symbols,
6479 off_t symbols_size,
6480 const unsigned char* symbol_names,
6481 off_t symbol_names_size,
6482 unsigned int shndx,
6483 const elfcpp::Shdr<64, true>& shdr,
6484 unsigned int reloc_shndx,
6485 unsigned int reloc_type,
6486 off_t* off);
6487 #endif
6488
6489 #ifdef HAVE_TARGET_32_LITTLE
6490 template
6491 void
6492 Layout::add_to_gdb_index(bool is_type_unit,
6493 Sized_relobj<32, false>* object,
6494 const unsigned char* symbols,
6495 off_t symbols_size,
6496 unsigned int shndx,
6497 unsigned int reloc_shndx,
6498 unsigned int reloc_type);
6499 #endif
6500
6501 #ifdef HAVE_TARGET_32_BIG
6502 template
6503 void
6504 Layout::add_to_gdb_index(bool is_type_unit,
6505 Sized_relobj<32, true>* object,
6506 const unsigned char* symbols,
6507 off_t symbols_size,
6508 unsigned int shndx,
6509 unsigned int reloc_shndx,
6510 unsigned int reloc_type);
6511 #endif
6512
6513 #ifdef HAVE_TARGET_64_LITTLE
6514 template
6515 void
6516 Layout::add_to_gdb_index(bool is_type_unit,
6517 Sized_relobj<64, false>* object,
6518 const unsigned char* symbols,
6519 off_t symbols_size,
6520 unsigned int shndx,
6521 unsigned int reloc_shndx,
6522 unsigned int reloc_type);
6523 #endif
6524
6525 #ifdef HAVE_TARGET_64_BIG
6526 template
6527 void
6528 Layout::add_to_gdb_index(bool is_type_unit,
6529 Sized_relobj<64, true>* object,
6530 const unsigned char* symbols,
6531 off_t symbols_size,
6532 unsigned int shndx,
6533 unsigned int reloc_shndx,
6534 unsigned int reloc_type);
6535 #endif
6536
6537 } // End namespace gold.