flash functions soould now operate correctly
[ecpprog.git] / jtag_tap.c
1 /**
2 * Code adapted from Arduino-JTAG;
3 * portions copyright (c) 2015 Marcelo Roberto Jimenez <marcelo.jimenez (at) gmail (dot) com>.
4 * portions copyright (c) 2019 Katherine J. Temkin <kate@ktemkin.com>
5 * portions copyright (c) 2019 Great Scott Gadgets <ktemkin@greatscottgadgets.com>
6 */
7
8 #include <ftdi.h>
9 #include <stdio.h>
10 #include <stdint.h>
11 #include <stdbool.h>
12 #include <stdlib.h>
13 #include <unistd.h>
14
15 #include "mpsse.h"
16 #include "jtag.h"
17
18 void jtag_state_ack(bool tms);
19
20 /*
21 * Low nibble : TMS == 0
22 * High nibble: TMS == 1
23 */
24
25 #define TMS_T(TMS_HIGH_STATE, TMS_LOW_STATE) (((TMS_HIGH_STATE) << 4) | (TMS_LOW_STATE))
26
27 static const uint8_t tms_transitions[] = {
28 /* STATE_TEST_LOGIC_RESET */ TMS_T(STATE_TEST_LOGIC_RESET, STATE_RUN_TEST_IDLE),
29 /* STATE_RUN_TEST_IDLE */ TMS_T(STATE_SELECT_DR_SCAN, STATE_RUN_TEST_IDLE),
30 /* STATE_SELECT_DR_SCAN */ TMS_T(STATE_SELECT_IR_SCAN, STATE_CAPTURE_DR),
31 /* STATE_CAPTURE_DR */ TMS_T(STATE_EXIT1_DR, STATE_SHIFT_DR),
32 /* STATE_SHIFT_DR */ TMS_T(STATE_EXIT1_DR, STATE_SHIFT_DR),
33 /* STATE_EXIT1_DR */ TMS_T(STATE_UPDATE_DR, STATE_PAUSE_DR),
34 /* STATE_PAUSE_DR */ TMS_T(STATE_EXIT2_DR, STATE_PAUSE_DR),
35 /* STATE_EXIT2_DR */ TMS_T(STATE_UPDATE_DR, STATE_SHIFT_DR),
36 /* STATE_UPDATE_DR */ TMS_T(STATE_SELECT_DR_SCAN, STATE_RUN_TEST_IDLE),
37 /* STATE_SELECT_IR_SCAN */ TMS_T(STATE_TEST_LOGIC_RESET, STATE_CAPTURE_IR),
38 /* STATE_CAPTURE_IR */ TMS_T(STATE_EXIT1_IR, STATE_SHIFT_IR),
39 /* STATE_SHIFT_IR */ TMS_T(STATE_EXIT1_IR, STATE_SHIFT_IR),
40 /* STATE_EXIT1_IR */ TMS_T(STATE_UPDATE_IR, STATE_PAUSE_IR),
41 /* STATE_PAUSE_IR */ TMS_T(STATE_EXIT2_IR, STATE_PAUSE_IR),
42 /* STATE_EXIT2_IR */ TMS_T(STATE_UPDATE_IR, STATE_SHIFT_IR),
43 /* STATE_UPDATE_IR */ TMS_T(STATE_SELECT_DR_SCAN, STATE_RUN_TEST_IDLE),
44 };
45
46 #define BITSTR(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P) ( \
47 ((uint16_t)(A) << 15) | \
48 ((uint16_t)(B) << 14) | \
49 ((uint16_t)(C) << 13) | \
50 ((uint16_t)(D) << 12) | \
51 ((uint16_t)(E) << 11) | \
52 ((uint16_t)(F) << 10) | \
53 ((uint16_t)(G) << 9) | \
54 ((uint16_t)(H) << 8) | \
55 ((uint16_t)(I) << 7) | \
56 ((uint16_t)(J) << 6) | \
57 ((uint16_t)(K) << 5) | \
58 ((uint16_t)(L) << 4) | \
59 ((uint16_t)(M) << 3) | \
60 ((uint16_t)(N) << 2) | \
61 ((uint16_t)(O) << 1) | \
62 ((uint16_t)(P) << 0) )
63
64 /*
65 * The index of this vector is the current state. The i-th bit tells you the
66 * value TMS must assume in order to go to state "i".
67
68 ------------------------------------------------------------------------------------------------------------
69 | | || F | E | D | C || B | A | 9 | 8 || 7 | 6 | 5 | 4 || 3 | 2 | 1 | 0 || HEX |
70 ------------------------------------------------------------------------------------------------------------
71 | STATE_TEST_LOGIC_RESET | 0 || 0 | 0 | 0 | 0 || 0 | 0 | 0 | 0 || 0 | 0 | 0 | 0 || 0 | 0 | 0 | 1 || 0x0001 |
72 | STATE_RUN_TEST_IDLE | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 0 | 1 || 0xFFFD |
73 | STATE_SELECT_DR_SCAN | 2 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 0 || 0 | 0 | 0 | 0 || 0 | x | 1 | 1 || 0xFE03 |
74 | STATE_CAPTURE_DR | 3 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 0 || x | 1 | 1 | 1 || 0xFFE7 |
75 | STATE_SHIFT_DR | 4 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 0 || 1 | 1 | 1 | 1 || 0xFFEF |
76 | STATE_EXIT1_DR | 5 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0 | 0 | x | 0 || 1 | 1 | 1 | 1 || 0xFF0F |
77 | STATE_PAUSE_DR | 6 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 0 | 1 | 1 || 1 | 1 | 1 | 1 || 0xFFBF |
78 | STATE_EXIT2_DR | 7 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || x | 0 | 0 | 0 || 1 | 1 | 1 | 1 || 0xFF0F |
79 | STATE_UPDATE_DR | 8 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | x || 1 | 1 | 1 | 1 || 1 | 1 | 0 | 1 || 0xFEFD |
80 | STATE_SELECT_IR_SCAN | 9 || 0 | 0 | 0 | 0 || 0 | 0 | x | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0x01FF |
81 | STATE_CAPTURE_IR | A || 1 | 1 | 1 | 1 || 0 | x | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0xF3FF |
82 | STATE_SHIFT_IR | B || 1 | 1 | 1 | 1 || 0 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0xF7FF |
83 | STATE_EXIT1_IR | C || 1 | 0 | 0 | x || 0 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0x87FF |
84 | STATE_PAUSE_IR | D || 1 | 1 | 0 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0xDFFF |
85 | STATE_EXIT2_IR | E || 1 | x | 0 | 0 || 0 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 0x87FF |
86 | STATE_UPDATE_IR | F || x | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 1 | 1 || 1 | 1 | 0 | 1 || 0x7FFD |
87 ------------------------------------------------------------------------------------------------------------
88
89 */
90 static const uint16_t tms_map[] = {
91 /* STATE_TEST_LOGIC_RESET */ BITSTR( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ),
92 /* STATE_RUN_TEST_IDLE */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1 ),
93 /* STATE_SELECT_DR_SCAN */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1 ),
94 /* STATE_CAPTURE_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1 ),
95 /* STATE_SHIFT_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1 ),
96 /* STATE_EXIT1_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1 ),
97 /* STATE_PAUSE_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 ),
98 /* STATE_EXIT2_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1 ),
99 /* STATE_UPDATE_DR */ BITSTR( 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1 ),
100 /* STATE_SELECT_IR_SCAN */ BITSTR( 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ),
101 /* STATE_CAPTURE_IR */ BITSTR( 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ),
102 /* STATE_SHIFT_IR */ BITSTR( 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ),
103 /* STATE_EXIT1_IR */ BITSTR( 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ),
104 /* STATE_PAUSE_IR */ BITSTR( 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ),
105 /* STATE_EXIT2_IR */ BITSTR( 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ),
106 /* STATE_UPDATE_IR */ BITSTR( 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1 ),
107 };
108
109 static uint8_t current_state;
110
111 uint8_t jtag_current_state(void)
112 {
113 return current_state;
114 }
115
116 void jtag_set_current_state(uint8_t state)
117 {
118 current_state = state;
119 }
120
121
122 /**
123 * Hook for any per-platform initialization that needs to occur.
124 */
125 __attribute__((weak)) void jtag_platform_init(void)
126 {
127
128 }
129
130
131 /**
132 * Performs any start-of-day tasks necessary to talk JTAG to our FPGA.
133 */
134 void jtag_init(void)
135 {
136 jtag_platform_init();
137 jtag_set_current_state(STATE_TEST_LOGIC_RESET);
138 jtag_go_to_state(STATE_TEST_LOGIC_RESET);
139 }
140
141 uint8_t data[32*1024];
142 uint8_t* ptr;
143 uint16_t rx_cnt;
144
145 extern struct ftdi_context mpsse_ftdic;
146
147 static inline uint8_t jtag_pulse_clock_and_read_tdo(bool tms, bool tdi)
148 {
149 uint8_t ret;
150 *ptr++ = MC_DATA_TMS | MC_DATA_IN | MC_DATA_LSB | MC_DATA_BITS;
151 *ptr++ = 0;
152 *ptr++ = (tdi ? 0x80 : 0) | (tms ? 0x01 : 0);
153 rx_cnt++;
154 }
155
156 static void _jtag_tap_shift(
157 uint8_t *input_data,
158 uint8_t *output_data,
159 uint32_t data_bits,
160 bool must_end)
161 {
162
163 //printf("_jtag_tap_shift(0x%08x,0x%08x,%u,%s);\n",input_data, output_data, data_bits, must_end ? "true" : "false");
164 uint32_t bit_count = data_bits;
165 uint32_t byte_count = (data_bits + 7) / 8;
166 rx_cnt = 0;
167 ptr = data;
168
169 for (uint32_t i = 0; i < byte_count; ++i) {
170 uint8_t byte_out = input_data[i];
171 uint8_t tdo_byte = 0;
172 for (int j = 0; j < 8 && bit_count-- > 0; ++j) {
173 bool tms = false;
174 if (bit_count == 0 && must_end) {
175 tms = true;
176 jtag_state_ack(1);
177 }
178 jtag_pulse_clock_and_read_tdo(tms, byte_out & 1);
179 byte_out >>= 1;
180 }
181 }
182
183 mpsse_xfer(data, ptr-data, rx_cnt);
184
185 /* Data out from the FTDI is actually from an internal shift register
186 * Instead of reconstructing the bitpattern, we can just take every 8th byte.*/
187 for(int i = 0; i < rx_cnt/8; i++)
188 output_data[i] = data[7+i*8];
189 }
190
191 #define MIN(a,b) (a < b) ? a : b
192
193 void jtag_tap_shift(
194 uint8_t *input_data,
195 uint8_t *output_data,
196 uint32_t data_bits,
197 bool must_end)
198 {
199 uint32_t data_bits_sent = 0;
200 while(data_bits_sent != data_bits){
201
202 uint32_t _data_bits = MIN(256, data_bits);
203 bool last = (data_bits_sent + _data_bits) == data_bits;
204
205 _jtag_tap_shift(
206 input_data + data_bits_sent/8,
207 output_data + data_bits_sent/8,
208 _data_bits,
209 last & must_end
210 );
211 data_bits_sent += _data_bits;
212 }
213 }
214
215 void jtag_state_ack(bool tms)
216 {
217 if (tms) {
218 jtag_set_current_state((tms_transitions[jtag_current_state()] >> 4) & 0xf);
219 } else {
220 jtag_set_current_state(tms_transitions[jtag_current_state()] & 0xf);
221 }
222 }
223
224 void jtag_go_to_state(unsigned state)
225 {
226
227 if (state == STATE_TEST_LOGIC_RESET) {
228 for (int i = 0; i < 5; ++i) {
229 jtag_state_ack(true);
230 }
231
232 uint8_t data[3] = {
233 MC_DATA_TMS | MC_DATA_LSB | MC_DATA_BITS,
234 5 - 1,
235 0b11111
236 };
237 mpsse_xfer(data, 3, 0);
238
239 } else {
240 uint8_t d = 0;
241 uint8_t count = 0;
242
243 uint8_t* ptr = data;
244
245 while (jtag_current_state() != state) {
246 uint8_t data[3] = {
247 MC_DATA_TMS | MC_DATA_LSB | MC_DATA_ICN | MC_DATA_BITS,
248 0,
249 (tms_map[jtag_current_state()] >> state) & 1
250 };
251
252 jtag_state_ack((tms_map[jtag_current_state()] >> state) & 1);
253 mpsse_xfer(data, 3, 0);
254 }
255 }
256 }
257
258 void jtag_wait_time(uint32_t microseconds)
259 {
260 uint16_t bytes = microseconds / 8;
261 uint8_t remain = microseconds % 8;
262
263 uint8_t data[3] = {
264 MC_CLK_N8,
265 bytes & 0xFF,
266 (bytes >> 8) & 0xFF
267 };
268 mpsse_xfer(data, 3, 0);
269
270 if(remain){
271 data[0] = MC_CLK_N;
272 data[1] = remain;
273 mpsse_xfer(data, 2, 0);
274 }
275 }
276