change pseudocode to match openpower-isa.git
[libreriscv.git] / openpower / sv / rfc / ls013.mdwn
1 # RFC ls013 Min/Max GPR/FPR
2
3 * Funded by NLnet under the Privacy and Enhanced Trust Programme, EU
4 Horizon2020 Grant 825310, and NGI0 Entrust No 101069594
5 * <https://libre-soc.org/openpower/sv/rfc/ls013/>
6 * <https://git.openpower.foundation/isa/PowerISA/issues/TODO>
7 * <https://bugs.libre-soc.org/show_bug.cgi?id=1057>
8
9 **Severity**: Major
10
11 **Status**: New
12
13 **Date**: 14 Apr 2023
14
15 **Target**: v3.2B
16
17 **Source**: v3.1B
18
19 **Books and Section affected**:
20
21 ```
22 Book I Fixed-Point and Floating-Point Instructions
23 Appendix E Power ISA sorted by opcode
24 Appendix F Power ISA sorted by version
25 Appendix G Power ISA sorted by Compliancy Subset
26 Appendix H Power ISA sorted by mnemonic
27 ```
28
29 **Summary**
30
31 ```
32 Instructions added
33 ```
34
35 **Submitter**: Luke Leighton (Libre-SOC)
36
37 **Requester**: Libre-SOC
38
39 **Impact on processor**:
40
41 ```
42 Addition of new GPR-based and FPR-based instructions
43 ```
44
45 **Impact on software**:
46
47 ```
48 Requires support for new instructions in assembler, debuggers,
49 and related tools.
50 ```
51
52 **Keywords**:
53
54 ```
55 GPR, FPR, min, max, fmin, fmax
56 ```
57
58 **Motivation**
59
60 Minimum/Maximum are common operations that can take an astounding number of
61 operations to implement in software. Additionally, Vector Reduce-Min/Max are
62 common vector operations, and SVP64 Parallel Reduction needs a single Scalar
63 instruction in order to effectively implement Reduce-Min/Max.
64
65 **Notes and Observations**:
66
67 1. SVP64 REMAP Parallel Reduction needs a single Scalar instruction to
68 work with, for best effectiveness. With no SFFS minimum/maximum
69 instructions Simple-V min/max Parallel Reduction is severely compromised.
70 2. Once one FP min/max mode is implemented the rest are not much more hardware.
71 3. There exists similar instructions in VSX (not IEEE754-2019 though).
72 This is frequently used to justify not adding them. However SVP64/VSX may
73 have different meaning from SVP64/SFFS, so it is *really* crucial to have
74 SFFS ops even if "equivalent" to VSX in order for SVP64 to not be
75 compromised (non-orthogonal).
76 4. FP min/max are rather complex to implement in software, the most commonly
77 used FP max function `fmax` from glibc compiled for SFFS is an astounding
78 32 instructions.
79
80 **Changes**
81
82 Add the following entries to:
83
84 * the Appendices of Book I
85 * Book I 3.3.9 Fixed-Point Arithmetic Instructions
86 * Book I 4.6.6.1 Floating-Point Elementary Arithmetic Instructions
87 * Book I 1.6.1 and 1.6.2
88
89 ----------------
90
91 \newpage{}
92
93 # Floating-Point Instructions
94
95 This group is to provide Floating-Point min/max however with IEEE754 having advanced
96 to 2019 there are now subtle differences. These are selectable with a Mode Field, `FMM`.
97
98 ## `FMM` -- Floating Min/Max Mode
99
100 <a id="fmm-floating-min-max-mode"></a>
101
102 <!-- hyphens in table determine width of columns for pandoc -- -->
103 | `FMM`| Extended Mnemonic | Origin | Semantics |
104 |------|-------------------------------|--------------------|--------------------------------------------|
105 | 0000 | fminnum08[s] FRT,FRA,FRB | IEEE 754-2008 | minNum(FRA,FRB) (1) |
106 | 0001 | fmin19[s] FRT,FRA,FRB | IEEE 754-2019 | minimum(FRA,FRB) |
107 | 0010 | fminnum19[s] FRT,FRA,FRB | IEEE 754-2019 | minimumNumber(FRA,FRB) |
108 | 0011 | fminc[s] FRT,FRA,FRB | x86 minss (4) | FRA\<FRB ? FRA:FRB |
109 | 0100 | fminmagnum08[s] FRT,FRA,FRB | IEEE 754-2008 (3) | mmmag(FRA,FRB,False,fminnum08) (2) |
110 | 0101 | fminmag19[s] FRT,FRA,FRB | IEEE 754-2019 | mmmag(FRA,FRB,False,fmin19) (2) |
111 | 0110 | fminmagnum19[s] FRT,FRA,FRB | IEEE 754-2019 | mmmag(FRA,FRB,False,fminnum19) (2) |
112 | 0111 | fminmagc[s] FRT,FRA,FRB | - | mmmag(FRA,FRB,False,fminc) (2) |
113 | 1000 | fmaxnum08[s] FRT,FRA,FRB | IEEE 754-2008 | maxNum(FRA,FRB) (1) |
114 | 1001 | fmax19[s] FRT,FRA,FRB | IEEE 754-2019 | maximum(FRA,FRB) |
115 | 1010 | fmaxnum19[s] FRT,FRA,FRB | IEEE 754-2019 | maximumNumber(FRA,FRB) |
116 | 1011 | fmaxc[s] FRT,FRA,FRB | x86 maxss (4) | FRA\>FRB ? FRA:FRB |
117 | 1100 | fmaxmagnum08[s] FRT,FRA,FRB | IEEE 754-2008 (3) | mmmag(FRA,FRB,True,fmaxnum08) (2) |
118 | 1101 | fmaxmag19[s] FRT,FRA,FRB | IEEE 754-2019 | mmmag(FRA,FRB,True,fmax19) (2) |
119 | 1110 | fmaxmagnum19[s] FRT,FRA,FRB | IEEE 754-2019 | mmmag(FRA,FRB,True,fmaxnum19) (2) |
120 | 1111 | fmaxmagc[s] FRT,FRA,FRB | - | mmmag(FRA,FRB,True,fmaxc) (2) |
121
122 Note (1): for the purposes of minNum/maxNum, -0.0 is defined to be less than
123 +0.0. This is left unspecified in IEEE 754-2008.
124
125 Note (2): mmmag(x, y, cmp, fallback) is defined as:
126
127 ```python
128 def mmmag(x, y, is_max, fallback):
129 a = abs(x) < abs(y)
130 b = abs(x) > abs(y)
131 if is_max:
132 a, b = b, a # swap
133 if a:
134 return x
135 if b:
136 return y
137 # equal magnitudes, or NaN input(s)
138 return fallback(x, y)
139 ```
140
141 Note (3): TODO: icr if IEEE 754-2008 has min/maxMagNum like IEEE 754-2019's
142 minimum/maximumMagnitudeNumber
143
144 Note (4) or Win32's min macro
145
146 ----------------
147
148 \newpage{}
149
150 ## Floating Minimum/Maximum MM-form
151
152 * fminmax FRT, FRA, FRB, FMM
153 * fminmax. FRT, FRA, FRB, FMM
154
155 ```
156 |0 |6 |11 |16 |21 |25 |31 |
157 | PO | FRT | FRA | FRB | FMM | XO | Rc |
158 ```
159
160 ```
161 result <- [0] * 64
162 a <- (FRA)
163 b <- (FRB)
164 abs_a <- 0b0 || a[1:63]
165 abs_b <- 0b0 || b[1:63]
166 a_is_nan <- abs_a >u 0x7FF0_0000_0000_0000
167 a_is_snan <- a_is_nan & (a[12] = 0)
168 b_is_nan <- abs_b >u 0x7FF0_0000_0000_0000
169 b_is_snan <- b_is_nan & (b[12] = 0)
170 any_snan <- a_is_snan | b_is_snan
171 a_quieted <- a
172 a_quieted[12] = 1
173 b_quieted <- b
174 b_quieted[12] = 1
175 if a_is_nan | b_is_nan then
176 if FMM[2:3] = 0b00 then # min/maxnum08
177 if a_is_snan then result <- a_quieted
178 else if b_is_snan then result <- b_quieted
179 else if a_is_nan & b_is_nan then result <- a_quieted
180 else if a_is_nan then result <- b
181 else result <- a
182 if FMM[2:3] = 0b01 then # min/max19
183 if a_is_nan then result <- a_quieted
184 else result <- b_quieted
185 if FMM[2:3] = 0b10 then # min/maxnum19
186 if a_is_nan & b_is_nan then result <- a_quieted
187 else if a_is_nan then result <- b
188 else result <- a
189 if FMM[2:3] = 0b11 then # min/maxc
190 result <- b
191 else
192 cmp_l <- a
193 cmp_r <- b
194 if FMM[1] then # min/maxmag
195 if abs_a != abs_b then
196 cmp_l <- abs_a
197 cmp_r <- abs_b
198 if FMM[2:3] = 0b11 then # min/maxc
199 if abs_a = 0 then cmp_l[0:63] <- 0
200 if abs_b = 0 then cmp_r[0:63] <- 0
201 if FMM[0] then # max
202 # swap cmp_* so comparison goes the other way
203 cmp_l, cmp_r <- cmp_r, cmp_l
204 if cmp_l[0] = 1 then
205 if cmp_r[0] = 0 then result <- a
206 else if cmp_l >u cmp_r then
207 # IEEE 754 is sign-magnitude,
208 # so bigger magnitude negative is smaller
209 result <- a
210 else result <- b
211 else if cmp_r[0] = 1 then result <- b
212 else if cmp_l <u cmp_r then result <- a
213 else result <- b
214 if any_snan then SetFX(FPSCR.VXSNAN)
215 if (FPSCR.VE = 0) & ¬any_snan then (FRT) <- result
216 ```
217
218 Compute the minimum/maximum of FRA and FRB, according to FMM, and store the
219 result in FRT.
220
221 Special Registers altered:
222
223 ```
224 FX VXSNAN
225 CR1 (if Rc=1)
226 ```
227
228 Extended Mnemonics:
229
230 see [`FMM` -- Floating Min/Max Mode](#fmm-floating-min-max-mode)
231
232 ----------
233
234 # Fixed-Point Instructions
235
236 These are signed and unsigned, min or max. SVP64 Prefixing defines Saturation
237 semantics therefore Saturated variants of these instructions need not be proposed.
238
239 ## `MMM` -- Integer Min/Max Mode
240
241 <a id="mmm-integer-min-max-mode"></a>
242
243 * bit 0: set if word variant else dword
244 * bit 1: set if signed else unsigned
245 * bit 2: set if max else min
246
247 | `MMM` | Extended Mnemonic | Semantics |
248 |-------|-------------------|----------------------------------------------|
249 | 000 | `minu RT,RA,RB` | `(uint64_t)RA < (uint64_t)RB ? RA : RB` |
250 | 001 | `maxu RT,RA,RB` | `(uint64_t)RA > (uint64_t)RB ? RA : RB` |
251 | 010 | `mins RT,RA,RB` | ` (int64_t)RA < (int64_t)RB ? RA : RB` |
252 | 011 | `maxs RT,RA,RB` | ` (int64_t)RA > (int64_t)RB ? RA : RB` |
253 | 100 | `minuw RT,RA,RB` | `(uint32_t)RA < (uint32_t)RB ? RA : RB` |
254 | 101 | `maxuw RT,RA,RB` | `(uint32_t)RA > (uint32_t)RB ? RA : RB` |
255 | 110 | `minsw RT,RA,RB` | ` (int32_t)RA < (int32_t)RB ? RA : RB` |
256 | 111 | `maxsw RT,RA,RB` | ` (int32_t)RA > (int32_t)RB ? RA : RB` |
257
258 ## Minimum/Maximum MM-Form
259
260 * minmax RT, RA, RB, MMM
261 * minmax. RT, RA, RB, MMM
262
263 ```
264 |0 |6 |11 |16 |21 |24 |25 |31 |
265 | PO | RT | RA | RB | MMM | / | XO | Rc |
266 ```
267
268 ```
269 a <- (RA|0)
270 b <- (RB)
271 if MMM[0] then # word mode
272 # shift left by XLEN/2 to make the dword comparison
273 # do word comparison of the original inputs
274 a <- a[XLEN/2:XLEN-1] || [0] * XLEN/2
275 b <- b[XLEN/2:XLEN-1] || [0] * XLEN/2
276 if MMM[1] then # signed mode
277 # invert sign bits to make the unsigned comparison
278 # do signed comparison of the original inputs
279 a[0] <- ¬a[0]
280 b[0] <- ¬b[0]
281 # if Rc = 1 then store the result of comparing a and b to CR0
282 if Rc = 1 then
283 if a <u b then
284 CR0 <- 0b100 || XER.SO
285 if a = b then
286 CR0 <- 0b001 || XER.SO
287 if a >u b then
288 CR0 <- 0b010 || XER.SO
289 if MMM[2] then # max mode
290 # swap a and b to make the less than comparison do
291 # greater than comparison of the original inputs
292 t <- a
293 a <- b
294 b <- t
295 # store the entire selected source (even in word mode)
296 # if Rc = 1 then store the result of comparing a and b to CR0
297 if a <u b then RT <- (RA|0)
298 else RT <- (RB)
299 ```
300
301 Compute the integer minimum/maximum according to `MMM` of `(RA|0)` and `(RB)`
302 and store the result in `RT`.
303
304 Special Registers altered:
305
306 ```
307 CR0 (if Rc=1)
308 ```
309
310 Extended Mnemonics:
311
312 see [`MMM` -- Integer Min/Max Mode](#mmm-integer-min-max-mode)
313
314 ----------
315
316 \newpage{}
317
318 # Instruction Formats
319
320 Add the following entries to Book I 1.6.1 Word Instruction Formats:
321
322 ## MM-FORM
323
324 ```
325 |0 |6 |11 |16 |21 |24 |25 |31 |
326 | PO | FRT | FRA | FRB | FMM | XO | Rc |
327 | PO | RT | RA | RB | MMM | / | XO | Rc |
328 ```
329
330 Add the following new fields to Book I 1.6.2 Word Instruction Fields:
331
332 ```
333 FMM (21:24)
334 Field used to specify minimum/maximum mode for fminmax.
335
336 Formats: MM
337
338 MMM (21:23)
339 Field used to specify minimum/maximum mode for integer minmax.
340
341 Formats: MM
342 ```
343
344 Add `MM` to the `Formats:` list for all of `FRT`, `FRA`, `FRB`, `XO (25:30)`,
345 `Rc`, `RT`, `RA` and `RB`.
346
347 ----------
348
349 \newpage{}
350
351 # Appendices
352
353 Appendix E Power ISA sorted by opcode
354 Appendix F Power ISA sorted by version
355 Appendix G Power ISA sorted by Compliancy Subset
356 Appendix H Power ISA sorted by mnemonic
357
358 | Form | Book | Page | Version | Mnemonic | Description |
359 |------|------|------|---------|----------|-------------|
360 | MM | I | # | 3.2B | fminmax | Floating Minimum/Maximum |
361 | MM | I | # | 3.2B | minmax | Minimum/Maximum |
362
363 ## fmax instruction count
364
365 32 instructions are required in SFFS to emulate fmax.
366
367 ```
368 #include <stdint.h>
369 #include <string.h>
370
371 inline uint64_t asuint64(double f) {
372 union {
373 double f;
374 uint64_t i;
375 } u = {f};
376 return u.i;
377 }
378
379 inline int issignaling(double v) {
380 // copied from glibc:
381 // https://github.com/bminor/glibc/blob/e2756903/sysdeps/ieee754/dbl-64/math_config.h#L101
382 uint64_t ix = asuint64(v);
383 return 2 * (ix ^ 0x0008000000000000) > 2 * 0x7ff8000000000000ULL;
384 }
385
386 double fmax(double x, double y) {
387 // copied from glibc:
388 // https://github.com/bminor/glibc/blob/e2756903/math/s_fmax_template.c
389 if(__builtin_isgreaterequal(x, y))
390 return x;
391 else if(__builtin_isless(x, y))
392 return y;
393 else if(issignaling(x) || issignaling(y))
394 return x + y;
395 else
396 return __builtin_isnan(y) ? x : y;
397 }
398 ```
399
400 Assembly listing:
401
402 ```
403 fmax(double, double):
404 fcmpu 0,1,2
405 fmr 0,1
406 cror 30,1,2
407 beq 7,.L12
408 blt 0,.L13
409 stfd 1,-16(1)
410 lis 9,0x8
411 li 8,-1
412 sldi 9,9,32
413 rldicr 8,8,0,11
414 ori 2,2,0
415 ld 10,-16(1)
416 xor 10,10,9
417 sldi 10,10,1
418 cmpld 0,10,8
419 bgt 0,.L5
420 stfd 2,-16(1)
421 ori 2,2,0
422 ld 10,-16(1)
423 xor 9,10,9
424 sldi 9,9,1
425 cmpld 0,9,8
426 ble 0,.L6
427 .L5:
428 fadd 1,0,2
429 blr
430 .L13:
431 fmr 1,2
432 blr
433 .L6:
434 fcmpu 0,2,2
435 fmr 1,2
436 bnulr 0
437 .L12:
438 fmr 1,0
439 blr
440 .long 0
441 .byte 0,9,0,0,0,0,0,0
442 ```
443
444 [[!tag opf_rfc]]
445