[xcc,sim] implement FP using softfloat
[riscv-isa-sim.git] / softfloat / softfloat-specialize
1
2 /*============================================================================
3
4 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
5 Arithmetic Package, Release 2b.
6
7 Written by John R. Hauser. This work was made possible in part by the
8 International Computer Science Institute, located at Suite 600, 1947 Center
9 Street, Berkeley, California 94704. Funding was partially provided by the
10 National Science Foundation under grant MIP-9311980. The original version
11 of this code was written as part of a project to build a fixed-point vector
12 processor in collaboration with the University of California at Berkeley,
13 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
14 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
15 arithmetic/SoftFloat.html'.
16
17 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
18 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
19 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
20 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
21 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
22 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
23 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
24 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
25
26 Derivative works are acceptable, even for commercial purposes, so long as
27 (1) the source code for the derivative work includes prominent notice that
28 the work is derivative, and (2) the source code includes prominent notice with
29 these four paragraphs for those parts of this code that are retained.
30
31 =============================================================================*/
32
33 /*----------------------------------------------------------------------------
34 | Underflow tininess-detection mode, statically initialized to default value.
35 | (The declaration in `softfloat.h' must match the `int8' type here.)
36 *----------------------------------------------------------------------------*/
37 int8 float_detect_tininess = float_tininess_before_rounding;
38
39 /*----------------------------------------------------------------------------
40 | Raises the exceptions specified by `flags'. Floating-point traps can be
41 | defined here if desired. It is currently not possible for such a trap
42 | to substitute a result value. If traps are not implemented, this routine
43 | should be simply `float_exception_flags |= flags;'.
44 *----------------------------------------------------------------------------*/
45
46 void float_raise( int8 flags )
47 {
48
49 float_exception_flags |= flags;
50
51 }
52
53 /*----------------------------------------------------------------------------
54 | Internal canonical NaN format.
55 *----------------------------------------------------------------------------*/
56 typedef struct {
57 flag sign;
58 bits64 high, low;
59 } commonNaNT;
60
61 /*----------------------------------------------------------------------------
62 | The pattern for a default generated single-precision NaN.
63 *----------------------------------------------------------------------------*/
64 #define float32_default_nan 0x7FFFFFFF
65
66 /*----------------------------------------------------------------------------
67 | Returns 1 if the single-precision floating-point value `a' is a NaN;
68 | otherwise returns 0.
69 *----------------------------------------------------------------------------*/
70
71 flag float32_is_nan( float32 a )
72 {
73
74 return ( 0xFF000000 < (bits32) ( a<<1 ) );
75
76 }
77
78 /*----------------------------------------------------------------------------
79 | Returns 1 if the single-precision floating-point value `a' is a signaling
80 | NaN; otherwise returns 0.
81 *----------------------------------------------------------------------------*/
82
83 flag float32_is_signaling_nan( float32 a )
84 {
85
86 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
87
88 }
89
90 /*----------------------------------------------------------------------------
91 | Returns the result of converting the single-precision floating-point NaN
92 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
93 | exception is raised.
94 *----------------------------------------------------------------------------*/
95
96 static commonNaNT float32ToCommonNaN( float32 a )
97 {
98 commonNaNT z;
99
100 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
101 z.sign = a>>31;
102 z.low = 0;
103 z.high = ( (bits64) a )<<41;
104 return z;
105
106 }
107
108 /*----------------------------------------------------------------------------
109 | Returns the result of converting the canonical NaN `a' to the single-
110 | precision floating-point format.
111 *----------------------------------------------------------------------------*/
112
113 static float32 commonNaNToFloat32( commonNaNT a )
114 {
115
116 return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
117
118 }
119
120 /*----------------------------------------------------------------------------
121 | Takes two single-precision floating-point values `a' and `b', one of which
122 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
123 | signaling NaN, the invalid exception is raised.
124 *----------------------------------------------------------------------------*/
125
126 static float32 propagateFloat32NaN( float32 a, float32 b )
127 {
128 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
129
130 aIsNaN = float32_is_nan( a );
131 aIsSignalingNaN = float32_is_signaling_nan( a );
132 bIsNaN = float32_is_nan( b );
133 bIsSignalingNaN = float32_is_signaling_nan( b );
134 a |= 0x00400000;
135 b |= 0x00400000;
136 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
137 return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
138
139 }
140
141 /*----------------------------------------------------------------------------
142 | The pattern for a default generated double-precision NaN.
143 *----------------------------------------------------------------------------*/
144 #define float64_default_nan LIT64( 0x7FFFFFFFFFFFFFFF )
145
146 /*----------------------------------------------------------------------------
147 | Returns 1 if the double-precision floating-point value `a' is a NaN;
148 | otherwise returns 0.
149 *----------------------------------------------------------------------------*/
150
151 flag float64_is_nan( float64 a )
152 {
153
154 return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
155
156 }
157
158 /*----------------------------------------------------------------------------
159 | Returns 1 if the double-precision floating-point value `a' is a signaling
160 | NaN; otherwise returns 0.
161 *----------------------------------------------------------------------------*/
162
163 flag float64_is_signaling_nan( float64 a )
164 {
165
166 return
167 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
168 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
169
170 }
171
172 /*----------------------------------------------------------------------------
173 | Returns the result of converting the double-precision floating-point NaN
174 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
175 | exception is raised.
176 *----------------------------------------------------------------------------*/
177
178 static commonNaNT float64ToCommonNaN( float64 a )
179 {
180 commonNaNT z;
181
182 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
183 z.sign = a>>63;
184 z.low = 0;
185 z.high = a<<12;
186 return z;
187
188 }
189
190 /*----------------------------------------------------------------------------
191 | Returns the result of converting the canonical NaN `a' to the double-
192 | precision floating-point format.
193 *----------------------------------------------------------------------------*/
194
195 static float64 commonNaNToFloat64( commonNaNT a )
196 {
197
198 return
199 ( ( (bits64) a.sign )<<63 )
200 | LIT64( 0x7FF8000000000000 )
201 | ( a.high>>12 );
202
203 }
204
205 /*----------------------------------------------------------------------------
206 | Takes two double-precision floating-point values `a' and `b', one of which
207 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
208 | signaling NaN, the invalid exception is raised.
209 *----------------------------------------------------------------------------*/
210
211 static float64 propagateFloat64NaN( float64 a, float64 b )
212 {
213 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
214
215 aIsNaN = float64_is_nan( a );
216 aIsSignalingNaN = float64_is_signaling_nan( a );
217 bIsNaN = float64_is_nan( b );
218 bIsSignalingNaN = float64_is_signaling_nan( b );
219 a |= LIT64( 0x0008000000000000 );
220 b |= LIT64( 0x0008000000000000 );
221 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
222 return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
223
224 }
225
226 #ifdef FLOATX80
227
228 /*----------------------------------------------------------------------------
229 | The pattern for a default generated extended double-precision NaN. The
230 | `high' and `low' values hold the most- and least-significant bits,
231 | respectively.
232 *----------------------------------------------------------------------------*/
233 #define floatx80_default_nan_high 0x7FFF
234 #define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
235
236 /*----------------------------------------------------------------------------
237 | Returns 1 if the extended double-precision floating-point value `a' is a
238 | NaN; otherwise returns 0.
239 *----------------------------------------------------------------------------*/
240
241 flag floatx80_is_nan( floatx80 a )
242 {
243
244 return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
245
246 }
247
248 /*----------------------------------------------------------------------------
249 | Returns 1 if the extended double-precision floating-point value `a' is a
250 | signaling NaN; otherwise returns 0.
251 *----------------------------------------------------------------------------*/
252
253 flag floatx80_is_signaling_nan( floatx80 a )
254 {
255 bits64 aLow;
256
257 aLow = a.low & ~ LIT64( 0x4000000000000000 );
258 return
259 ( ( a.high & 0x7FFF ) == 0x7FFF )
260 && (bits64) ( aLow<<1 )
261 && ( a.low == aLow );
262
263 }
264
265 /*----------------------------------------------------------------------------
266 | Returns the result of converting the extended double-precision floating-
267 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
268 | invalid exception is raised.
269 *----------------------------------------------------------------------------*/
270
271 static commonNaNT floatx80ToCommonNaN( floatx80 a )
272 {
273 commonNaNT z;
274
275 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
276 z.sign = a.high>>15;
277 z.low = 0;
278 z.high = a.low<<1;
279 return z;
280
281 }
282
283 /*----------------------------------------------------------------------------
284 | Returns the result of converting the canonical NaN `a' to the extended
285 | double-precision floating-point format.
286 *----------------------------------------------------------------------------*/
287
288 static floatx80 commonNaNToFloatx80( commonNaNT a )
289 {
290 floatx80 z;
291
292 z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
293 z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
294 return z;
295
296 }
297
298 /*----------------------------------------------------------------------------
299 | Takes two extended double-precision floating-point values `a' and `b', one
300 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
301 | `b' is a signaling NaN, the invalid exception is raised.
302 *----------------------------------------------------------------------------*/
303
304 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
305 {
306 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
307
308 aIsNaN = floatx80_is_nan( a );
309 aIsSignalingNaN = floatx80_is_signaling_nan( a );
310 bIsNaN = floatx80_is_nan( b );
311 bIsSignalingNaN = floatx80_is_signaling_nan( b );
312 a.low |= LIT64( 0xC000000000000000 );
313 b.low |= LIT64( 0xC000000000000000 );
314 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
315 return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
316
317 }
318
319 #endif
320
321 #ifdef FLOAT128
322
323 /*----------------------------------------------------------------------------
324 | The pattern for a default generated quadruple-precision NaN. The `high' and
325 | `low' values hold the most- and least-significant bits, respectively.
326 *----------------------------------------------------------------------------*/
327 #define float128_default_nan_high LIT64( 0x7FFFFFFFFFFFFFFF )
328 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
329
330 /*----------------------------------------------------------------------------
331 | Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
332 | otherwise returns 0.
333 *----------------------------------------------------------------------------*/
334
335 flag float128_is_nan( float128 a )
336 {
337
338 return
339 ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
340 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
341
342 }
343
344 /*----------------------------------------------------------------------------
345 | Returns 1 if the quadruple-precision floating-point value `a' is a
346 | signaling NaN; otherwise returns 0.
347 *----------------------------------------------------------------------------*/
348
349 flag float128_is_signaling_nan( float128 a )
350 {
351
352 return
353 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
354 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
355
356 }
357
358 /*----------------------------------------------------------------------------
359 | Returns the result of converting the quadruple-precision floating-point NaN
360 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
361 | exception is raised.
362 *----------------------------------------------------------------------------*/
363
364 static commonNaNT float128ToCommonNaN( float128 a )
365 {
366 commonNaNT z;
367
368 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
369 z.sign = a.high>>63;
370 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
371 return z;
372
373 }
374
375 /*----------------------------------------------------------------------------
376 | Returns the result of converting the canonical NaN `a' to the quadruple-
377 | precision floating-point format.
378 *----------------------------------------------------------------------------*/
379
380 static float128 commonNaNToFloat128( commonNaNT a )
381 {
382 float128 z;
383
384 shift128Right( a.high, a.low, 16, &z.high, &z.low );
385 z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
386 return z;
387
388 }
389
390 /*----------------------------------------------------------------------------
391 | Takes two quadruple-precision floating-point values `a' and `b', one of
392 | which is a NaN, and returns the appropriate NaN result. If either `a' or
393 | `b' is a signaling NaN, the invalid exception is raised.
394 *----------------------------------------------------------------------------*/
395
396 static float128 propagateFloat128NaN( float128 a, float128 b )
397 {
398 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
399
400 aIsNaN = float128_is_nan( a );
401 aIsSignalingNaN = float128_is_signaling_nan( a );
402 bIsNaN = float128_is_nan( b );
403 bIsSignalingNaN = float128_is_signaling_nan( b );
404 a.high |= LIT64( 0x0000800000000000 );
405 b.high |= LIT64( 0x0000800000000000 );
406 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
407 return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
408
409 }
410
411 #endif
412