0488f416f5a5f45e315c027c1e89fc69fa7a903f
[openpower-isa.git] / src / openpower / decoder / isa / caller.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Copyright (C) 2020 Michael Nolan
4 # Funded by NLnet http://nlnet.nl
5 """core of the python-based POWER9 simulator
6
7 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
8 not speed, it is for both learning and educational purposes, as well as
9 a method of verifying the HDL.
10
11 related bugs:
12
13 * https://bugs.libre-soc.org/show_bug.cgi?id=424
14 """
15
16 from collections import namedtuple
17 from copy import deepcopy
18 from functools import wraps
19 import os
20 import errno
21 import struct
22 from openpower.syscalls import ppc_flags
23 import sys
24 from elftools.elf.elffile import ELFFile # for isinstance
25
26 from nmigen.sim import Settle
27 import openpower.syscalls
28 from openpower.consts import (MSRb, PIb, # big-endian (PowerISA versions)
29 SVP64CROffs, SVP64MODEb)
30 from openpower.decoder.helpers import (ISACallerHelper, ISAFPHelpers, exts,
31 gtu, undefined, copy_assign_rhs)
32 from openpower.decoder.isa.mem import Mem, MemMMap, MemException, LoadedELF
33 from openpower.decoder.isa.radixmmu import RADIX
34 from openpower.decoder.isa.svshape import SVSHAPE
35 from openpower.decoder.isa.svstate import SVP64State
36 from openpower.decoder.orderedset import OrderedSet
37 from openpower.decoder.power_enums import (FPTRANS_INSNS, CRInSel, CROutSel,
38 In1Sel, In2Sel, In3Sel, LDSTMode,
39 MicrOp, OutSel, SVMode,
40 SVP64LDSTmode, SVP64PredCR,
41 SVP64PredInt, SVP64PredMode,
42 SVP64RMMode, SVPType, XER_bits,
43 insns, spr_byname, spr_dict,
44 BFP_FLAG_NAMES)
45 from openpower.insndb.core import SVP64Instruction
46 from openpower.decoder.power_svp64 import SVP64RM, decode_extra
47 from openpower.decoder.selectable_int import (FieldSelectableInt,
48 SelectableInt, selectconcat,
49 EFFECTIVELY_UNLIMITED)
50 from openpower.consts import DEFAULT_MSR
51 from openpower.fpscr import FPSCRState
52 from openpower.xer import XERState
53 from openpower.util import LogType, log
54
55 LDST_UPDATE_INSNS = ['ldu', 'lwzu', 'lbzu', 'lhzu', 'lhau', 'lfsu', 'lfdu',
56 'stwu', 'stbu', 'sthu', 'stfsu', 'stfdu', 'stdu',
57 ]
58
59
60 instruction_info = namedtuple('instruction_info',
61 'func read_regs uninit_regs write_regs ' +
62 'special_regs op_fields form asmregs')
63
64 special_sprs = {
65 'LR': 8,
66 'CTR': 9,
67 'TAR': 815,
68 'XER': 1,
69 'VRSAVE': 256}
70
71
72 # rrright. this is here basically because the compiler pywriter returns
73 # results in a specific priority order. to make sure regs match up they
74 # need partial sorting. sigh.
75 REG_SORT_ORDER = {
76 # TODO (lkcl): adjust other registers that should be in a particular order
77 # probably CA, CA32, and CR
78 "FRT": 0,
79 "FRA": 0,
80 "FRB": 0,
81 "FRC": 0,
82 "FRS": 0,
83 "RT": 0,
84 "RA": 0,
85 "RB": 0,
86 "RC": 0,
87 "RS": 0,
88 "BI": 0,
89 "CR": 0,
90 "LR": 0,
91 "CTR": 0,
92 "TAR": 0,
93 "MSR": 0,
94 "SVSTATE": 0,
95 "SVSHAPE0": 0,
96 "SVSHAPE1": 0,
97 "SVSHAPE2": 0,
98 "SVSHAPE3": 0,
99
100 "CA": 0,
101 "CA32": 0,
102
103 "FPSCR": 1,
104
105 "overflow": 7, # should definitely be last
106 "CR0": 8, # likewise
107 }
108
109 fregs = ['FRA', 'FRB', 'FRC', 'FRS', 'FRT']
110
111
112 def get_masked_reg(regs, base, offs, ew_bits):
113 # rrrright. start by breaking down into row/col, based on elwidth
114 gpr_offs = offs // (64 // ew_bits)
115 gpr_col = offs % (64 // ew_bits)
116 # compute the mask based on ew_bits
117 mask = (1 << ew_bits) - 1
118 # now select the 64-bit register, but get its value (easier)
119 val = regs[base + gpr_offs]
120 # shift down so element we want is at LSB
121 val >>= gpr_col * ew_bits
122 # mask so we only return the LSB element
123 return val & mask
124
125
126 def set_masked_reg(regs, base, offs, ew_bits, value):
127 # rrrright. start by breaking down into row/col, based on elwidth
128 gpr_offs = offs // (64//ew_bits)
129 gpr_col = offs % (64//ew_bits)
130 # compute the mask based on ew_bits
131 mask = (1 << ew_bits)-1
132 # now select the 64-bit register, but get its value (easier)
133 val = regs[base+gpr_offs]
134 # now mask out the bit we don't want
135 val = val & ~(mask << (gpr_col*ew_bits))
136 # then wipe the bit we don't want from the value
137 value = value & mask
138 # OR the new value in, shifted up
139 val |= value << (gpr_col*ew_bits)
140 regs[base+gpr_offs] = val
141
142
143 def create_args(reglist, extra=None):
144 retval = list(OrderedSet(reglist))
145 retval.sort(key=lambda reg: REG_SORT_ORDER.get(reg, 0))
146 if extra is not None:
147 return [extra] + retval
148 return retval
149
150
151 def create_full_args(*, read_regs, special_regs, uninit_regs, write_regs,
152 extra=None):
153 return create_args([
154 *read_regs, *uninit_regs, *write_regs, *special_regs], extra=extra)
155
156
157 def is_ffirst_mode(dec2):
158 rm_mode = yield dec2.rm_dec.mode
159 return rm_mode == SVP64RMMode.FFIRST.value
160
161
162 class GPR(dict):
163 def __init__(self, decoder, isacaller, svstate, regfile):
164 dict.__init__(self)
165 self.sd = decoder
166 self.isacaller = isacaller
167 self.svstate = svstate
168 for i in range(len(regfile)):
169 self[i] = SelectableInt(regfile[i], 64)
170
171 def __call__(self, ridx, is_vec=False, offs=0, elwidth=64):
172 if isinstance(ridx, SelectableInt):
173 ridx = ridx.value
174 if elwidth == 64:
175 return self[ridx+offs]
176 # rrrright. start by breaking down into row/col, based on elwidth
177 gpr_offs = offs // (64//elwidth)
178 gpr_col = offs % (64//elwidth)
179 # now select the 64-bit register, but get its value (easier)
180 val = self[ridx+gpr_offs].value
181 # now shift down and mask out
182 val = val >> (gpr_col*elwidth) & ((1 << elwidth)-1)
183 # finally, return a SelectableInt at the required elwidth
184 log("GPR call", ridx, "isvec", is_vec, "offs", offs,
185 "elwid", elwidth, "offs/col", gpr_offs, gpr_col, "val", hex(val))
186 return SelectableInt(val, elwidth)
187
188 def set_form(self, form):
189 self.form = form
190
191 def write(self, rnum, value, is_vec=False, elwidth=64):
192 # get internal value
193 if isinstance(rnum, SelectableInt):
194 rnum = rnum.value
195 if isinstance(value, SelectableInt):
196 value = value.value
197 # compatibility...
198 if isinstance(rnum, tuple):
199 rnum, base, offs = rnum
200 else:
201 base, offs = rnum, 0
202 # rrrright. start by breaking down into row/col, based on elwidth
203 gpr_offs = offs // (64//elwidth)
204 gpr_col = offs % (64//elwidth)
205 # compute the mask based on elwidth
206 mask = (1 << elwidth)-1
207 # now select the 64-bit register, but get its value (easier)
208 val = self[base+gpr_offs].value
209 # now mask out the bit we don't want
210 val = val & ~(mask << (gpr_col*elwidth))
211 # then wipe the bit we don't want from the value
212 value = value & mask
213 # OR the new value in, shifted up
214 val |= value << (gpr_col*elwidth)
215 # finally put the damn value into the regfile
216 log("GPR write", base, "isvec", is_vec, "offs", offs,
217 "elwid", elwidth, "offs/col", gpr_offs, gpr_col, "val", hex(val),
218 "@", base+gpr_offs)
219 dict.__setitem__(self, base+gpr_offs, SelectableInt(val, 64))
220
221 def __setitem__(self, rnum, value):
222 # rnum = rnum.value # only SelectableInt allowed
223 log("GPR setitem", rnum, value)
224 if isinstance(rnum, SelectableInt):
225 rnum = rnum.value
226 dict.__setitem__(self, rnum, value)
227
228 def getz(self, rnum, rvalue=None):
229 # rnum = rnum.value # only SelectableInt allowed
230 log("GPR getzero?", rnum, rvalue)
231 if rvalue is not None:
232 if rnum == 0:
233 return SelectableInt(0, rvalue.bits)
234 return rvalue
235 if rnum == 0:
236 return SelectableInt(0, 64)
237 return self[rnum]
238
239 def _get_regnum(self, attr):
240 getform = self.sd.sigforms[self.form]
241 rnum = getattr(getform, attr)
242 return rnum
243
244 def ___getitem__(self, attr):
245 """ XXX currently not used
246 """
247 rnum = self._get_regnum(attr)
248 log("GPR getitem", attr, rnum)
249 return self.regfile[rnum]
250
251 def dump(self, printout=True):
252 res = []
253 for i in range(len(self)):
254 res.append(self[i].value)
255 if printout:
256 for i in range(0, len(res), 8):
257 s = []
258 for j in range(8):
259 s.append("%08x" % res[i+j])
260 s = ' '.join(s)
261 log("reg", "%2d" % i, s, kind=LogType.InstrInOuts)
262 return res
263
264
265 class SPR(dict):
266 def __init__(self, dec2, initial_sprs={}, gpr=None):
267 self.sd = dec2
268 self.gpr = gpr # for SVSHAPE[0-3]
269 dict.__init__(self)
270 for key, v in initial_sprs.items():
271 if isinstance(key, SelectableInt):
272 key = key.value
273 key = special_sprs.get(key, key)
274 if isinstance(key, int):
275 info = spr_dict[key]
276 else:
277 info = spr_byname[key]
278 if not isinstance(v, SelectableInt):
279 v = SelectableInt(v, info.length)
280 self[key] = v
281
282 def __getitem__(self, key):
283 #log("get spr", key)
284 #log("dict", self.items())
285 # if key in special_sprs get the special spr, otherwise return key
286 if isinstance(key, SelectableInt):
287 key = key.value
288 if isinstance(key, int):
289 key = spr_dict[key].SPR
290 key = special_sprs.get(key, key)
291 if key == 'HSRR0': # HACK!
292 key = 'SRR0'
293 if key == 'HSRR1': # HACK!
294 key = 'SRR1'
295 if key in self:
296 res = dict.__getitem__(self, key)
297 else:
298 if isinstance(key, int):
299 info = spr_dict[key]
300 else:
301 info = spr_byname[key]
302 self[key] = SelectableInt(0, info.length)
303 res = dict.__getitem__(self, key)
304 #log("spr returning", key, res)
305 return res
306
307 def __setitem__(self, key, value):
308 if isinstance(key, SelectableInt):
309 key = key.value
310 if isinstance(key, int):
311 key = spr_dict[key].SPR
312 log("spr key", key)
313 key = special_sprs.get(key, key)
314 if key == 'HSRR0': # HACK!
315 self.__setitem__('SRR0', value)
316 if key == 'HSRR1': # HACK!
317 self.__setitem__('SRR1', value)
318 if key == 1:
319 value = XERState(value)
320 if key in ('SVSHAPE0', 'SVSHAPE1', 'SVSHAPE2', 'SVSHAPE3'):
321 value = SVSHAPE(value, self.gpr)
322 log("setting spr", key, value)
323 dict.__setitem__(self, key, value)
324
325 def __call__(self, ridx):
326 return self[ridx]
327
328 def dump(self, printout=True):
329 res = []
330 keys = list(self.keys())
331 # keys.sort()
332 for k in keys:
333 sprname = spr_dict.get(k, None)
334 if sprname is None:
335 sprname = k
336 else:
337 sprname = sprname.SPR
338 res.append((sprname, self[k].value))
339 if printout:
340 for sprname, value in res:
341 print(" ", sprname, hex(value))
342 return res
343
344
345 class PC:
346 def __init__(self, pc_init=0):
347 self.CIA = SelectableInt(pc_init, 64)
348 self.NIA = self.CIA + SelectableInt(4, 64) # only true for v3.0B!
349
350 def update_nia(self, is_svp64):
351 increment = 8 if is_svp64 else 4
352 self.NIA = self.CIA + SelectableInt(increment, 64)
353
354 def update(self, namespace, is_svp64):
355 """updates the program counter (PC) by 4 if v3.0B mode or 8 if SVP64
356 """
357 self.CIA = namespace['NIA'].narrow(64)
358 self.update_nia(is_svp64)
359 namespace['CIA'] = self.CIA
360 namespace['NIA'] = self.NIA
361
362
363 # CR register fields
364 # See PowerISA Version 3.0 B Book 1
365 # Section 2.3.1 Condition Register pages 30 - 31
366 class CRFields:
367 LT = FL = 0 # negative, less than, floating-point less than
368 GT = FG = 1 # positive, greater than, floating-point greater than
369 EQ = FE = 2 # equal, floating-point equal
370 SO = FU = 3 # summary overflow, floating-point unordered
371
372 def __init__(self, init=0):
373 # rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
374 # self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
375 self.cr = SelectableInt(init, 64) # underlying reg
376 # field-selectable versions of Condition Register TODO check bitranges?
377 self.crl = []
378 for i in range(8):
379 bits = tuple(range(i*4+32, (i+1)*4+32))
380 _cr = FieldSelectableInt(self.cr, bits)
381 self.crl.append(_cr)
382
383
384 # decode SVP64 predicate integer to reg number and invert
385 def get_predint(gpr, mask):
386 r3 = gpr(3)
387 r10 = gpr(10)
388 r30 = gpr(30)
389 log("get_predint", mask, SVP64PredInt.ALWAYS.value)
390 if mask == SVP64PredInt.ALWAYS.value:
391 return 0xffff_ffff_ffff_ffff # 64 bits of 1
392 if mask == SVP64PredInt.R3_UNARY.value:
393 return 1 << (r3.value & 0b111111)
394 if mask == SVP64PredInt.R3.value:
395 return r3.value
396 if mask == SVP64PredInt.R3_N.value:
397 return ~r3.value
398 if mask == SVP64PredInt.R10.value:
399 return r10.value
400 if mask == SVP64PredInt.R10_N.value:
401 return ~r10.value
402 if mask == SVP64PredInt.R30.value:
403 return r30.value
404 if mask == SVP64PredInt.R30_N.value:
405 return ~r30.value
406
407
408 # decode SVP64 predicate CR to reg number and invert status
409 def _get_predcr(mask):
410 if mask == SVP64PredCR.LT.value:
411 return 0, 1
412 if mask == SVP64PredCR.GE.value:
413 return 0, 0
414 if mask == SVP64PredCR.GT.value:
415 return 1, 1
416 if mask == SVP64PredCR.LE.value:
417 return 1, 0
418 if mask == SVP64PredCR.EQ.value:
419 return 2, 1
420 if mask == SVP64PredCR.NE.value:
421 return 2, 0
422 if mask == SVP64PredCR.SO.value:
423 return 3, 1
424 if mask == SVP64PredCR.NS.value:
425 return 3, 0
426
427
428 # read individual CR fields (0..VL-1), extract the required bit
429 # and construct the mask
430 def get_predcr(crl, predselect, vl):
431 idx, noninv = _get_predcr(predselect)
432 mask = 0
433 for i in range(vl):
434 cr = crl[i+SVP64CROffs.CRPred]
435 if cr[idx].value == noninv:
436 mask |= (1 << i)
437 log("get_predcr", vl, idx, noninv, i+SVP64CROffs.CRPred,
438 bin(cr.asint()), cr[idx].value, bin(mask))
439 return mask
440
441
442 # TODO, really should just be using PowerDecoder2
443 def get_idx_map(dec2, name):
444 op = dec2.dec.op
445 in1_sel = yield op.in1_sel
446 in2_sel = yield op.in2_sel
447 in3_sel = yield op.in3_sel
448 in1 = yield dec2.e.read_reg1.data
449 # identify which regnames map to in1/2/3
450 if name == 'RA' or name == 'RA_OR_ZERO':
451 if (in1_sel == In1Sel.RA.value or
452 (in1_sel == In1Sel.RA_OR_ZERO.value and in1 != 0)):
453 return 1
454 if in1_sel == In1Sel.RA_OR_ZERO.value:
455 return 1
456 elif name == 'RB':
457 if in2_sel == In2Sel.RB.value:
458 return 2
459 if in3_sel == In3Sel.RB.value:
460 return 3
461 # XXX TODO, RC doesn't exist yet!
462 elif name == 'RC':
463 if in3_sel == In3Sel.RC.value:
464 return 3
465 elif name in ['EA', 'RS']:
466 if in1_sel == In1Sel.RS.value:
467 return 1
468 if in2_sel == In2Sel.RS.value:
469 return 2
470 if in3_sel == In3Sel.RS.value:
471 return 3
472 elif name == 'FRA':
473 if in1_sel == In1Sel.FRA.value:
474 return 1
475 if in3_sel == In3Sel.FRA.value:
476 return 3
477 elif name == 'FRB':
478 if in2_sel == In2Sel.FRB.value:
479 return 2
480 elif name == 'FRC':
481 if in3_sel == In3Sel.FRC.value:
482 return 3
483 elif name == 'FRS':
484 if in1_sel == In1Sel.FRS.value:
485 return 1
486 if in3_sel == In3Sel.FRS.value:
487 return 3
488 elif name == 'FRT':
489 if in1_sel == In1Sel.FRT.value:
490 return 1
491 elif name == 'RT':
492 if in1_sel == In1Sel.RT.value:
493 return 1
494 return None
495
496
497 # TODO, really should just be using PowerDecoder2
498 def get_idx_in(dec2, name, ewmode=False):
499 idx = yield from get_idx_map(dec2, name)
500 if idx is None:
501 return None, False
502 op = dec2.dec.op
503 in1_sel = yield op.in1_sel
504 in2_sel = yield op.in2_sel
505 in3_sel = yield op.in3_sel
506 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
507 in1 = yield dec2.e.read_reg1.data
508 in2 = yield dec2.e.read_reg2.data
509 in3 = yield dec2.e.read_reg3.data
510 if ewmode:
511 in1_base = yield dec2.e.read_reg1.base
512 in2_base = yield dec2.e.read_reg2.base
513 in3_base = yield dec2.e.read_reg3.base
514 in1_offs = yield dec2.e.read_reg1.offs
515 in2_offs = yield dec2.e.read_reg2.offs
516 in3_offs = yield dec2.e.read_reg3.offs
517 in1 = (in1, in1_base, in1_offs)
518 in2 = (in2, in2_base, in2_offs)
519 in3 = (in3, in3_base, in3_offs)
520
521 in1_isvec = yield dec2.in1_isvec
522 in2_isvec = yield dec2.in2_isvec
523 in3_isvec = yield dec2.in3_isvec
524 log("get_idx_in in1", name, in1_sel, In1Sel.RA.value,
525 in1, in1_isvec)
526 log("get_idx_in in2", name, in2_sel, In2Sel.RB.value,
527 in2, in2_isvec)
528 log("get_idx_in in3", name, in3_sel, In3Sel.RS.value,
529 in3, in3_isvec)
530 log("get_idx_in FRS in3", name, in3_sel, In3Sel.FRS.value,
531 in3, in3_isvec)
532 log("get_idx_in FRB in2", name, in2_sel, In2Sel.FRB.value,
533 in2, in2_isvec)
534 log("get_idx_in FRC in3", name, in3_sel, In3Sel.FRC.value,
535 in3, in3_isvec)
536 if idx == 1:
537 return in1, in1_isvec
538 if idx == 2:
539 return in2, in2_isvec
540 if idx == 3:
541 return in3, in3_isvec
542 return None, False
543
544
545 # TODO, really should just be using PowerDecoder2
546 def get_cr_in(dec2, name):
547 op = dec2.dec.op
548 in_sel = yield op.cr_in
549 in_bitfield = yield dec2.dec_cr_in.cr_bitfield.data
550 sv_cr_in = yield op.sv_cr_in
551 spec = yield dec2.crin_svdec.spec
552 sv_override = yield dec2.dec_cr_in.sv_override
553 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
554 in1 = yield dec2.e.read_cr1.data
555 cr_isvec = yield dec2.cr_in_isvec
556 log("get_cr_in", in_sel, CROutSel.CR0.value, in1, cr_isvec)
557 log(" sv_cr_in", sv_cr_in)
558 log(" cr_bf", in_bitfield)
559 log(" spec", spec)
560 log(" override", sv_override)
561 # identify which regnames map to in / o2
562 if name == 'BI':
563 if in_sel == CRInSel.BI.value:
564 return in1, cr_isvec
565 if name in ['BA', 'BB']:
566 if in_sel == CRInSel.BA_BB.value:
567 return in1, cr_isvec
568 if name == 'BFA':
569 if in_sel == CRInSel.BFA.value:
570 return in1, cr_isvec
571 log("get_cr_in not found", name)
572 return None, False
573
574
575 # TODO, really should just be using PowerDecoder2
576 def get_cr_out(dec2, name):
577 op = dec2.dec.op
578 out_sel = yield op.cr_out
579 out_bitfield = yield dec2.dec_cr_out.cr_bitfield.data
580 sv_cr_out = yield op.sv_cr_out
581 spec = yield dec2.crout_svdec.spec
582 sv_override = yield dec2.dec_cr_out.sv_override
583 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
584 out = yield dec2.e.write_cr.data
585 o_isvec = yield dec2.cr_out_isvec
586 log("get_cr_out", out_sel, CROutSel.CR0.value, out, o_isvec)
587 log(" sv_cr_out", sv_cr_out)
588 log(" cr_bf", out_bitfield)
589 log(" spec", spec)
590 log(" override", sv_override)
591 # identify which regnames map to out / o2
592 if name == 'BF':
593 if out_sel == CROutSel.BF.value:
594 return out, o_isvec
595 if name == 'BT':
596 if out_sel == CROutSel.BT.value:
597 return out, o_isvec
598 if name == 'CR0':
599 if out_sel == CROutSel.CR0.value:
600 return out, o_isvec
601 if name == 'CR1': # these are not actually calculated correctly
602 if out_sel == CROutSel.CR1.value:
603 return out, o_isvec
604 # check RC1 set? if so return implicit vector, this is a REAL bad hack
605 RC1 = yield dec2.rm_dec.RC1
606 if RC1:
607 log("get_cr_out RC1 mode")
608 if name == 'CR0':
609 return 0, True # XXX TODO: offset CR0 from SVSTATE SPR
610 if name == 'CR1':
611 return 1, True # XXX TODO: offset CR1 from SVSTATE SPR
612 # nope - not found.
613 log("get_cr_out not found", name)
614 return None, False
615
616
617 # TODO, really should just be using PowerDecoder2
618 def get_out_map(dec2, name):
619 op = dec2.dec.op
620 out_sel = yield op.out_sel
621 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
622 out = yield dec2.e.write_reg.data
623 # identify which regnames map to out / o2
624 if name == 'RA':
625 if out_sel == OutSel.RA.value:
626 return True
627 elif name == 'RT':
628 if out_sel == OutSel.RT.value:
629 return True
630 if out_sel == OutSel.RT_OR_ZERO.value and out != 0:
631 return True
632 elif name == 'RT_OR_ZERO':
633 if out_sel == OutSel.RT_OR_ZERO.value:
634 return True
635 elif name == 'FRA':
636 if out_sel == OutSel.FRA.value:
637 return True
638 elif name == 'FRS':
639 if out_sel == OutSel.FRS.value:
640 return True
641 elif name == 'FRT':
642 if out_sel == OutSel.FRT.value:
643 return True
644 return False
645
646
647 # TODO, really should just be using PowerDecoder2
648 def get_idx_out(dec2, name, ewmode=False):
649 op = dec2.dec.op
650 out_sel = yield op.out_sel
651 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
652 out = yield dec2.e.write_reg.data
653 o_isvec = yield dec2.o_isvec
654 if ewmode:
655 offs = yield dec2.e.write_reg.offs
656 base = yield dec2.e.write_reg.base
657 out = (out, base, offs)
658 # identify which regnames map to out / o2
659 ismap = yield from get_out_map(dec2, name)
660 if ismap:
661 log("get_idx_out", name, out_sel, out, o_isvec)
662 return out, o_isvec
663 log("get_idx_out not found", name, out_sel, out, o_isvec)
664 return None, False
665
666
667 # TODO, really should just be using PowerDecoder2
668 def get_out2_map(dec2, name):
669 # check first if register is activated for write
670 op = dec2.dec.op
671 out_sel = yield op.out_sel
672 out = yield dec2.e.write_ea.data
673 out_ok = yield dec2.e.write_ea.ok
674 if not out_ok:
675 return False
676
677 if name in ['EA', 'RA']:
678 if hasattr(op, "upd"):
679 # update mode LD/ST uses read-reg A also as an output
680 upd = yield op.upd
681 log("get_idx_out2", upd, LDSTMode.update.value,
682 out_sel, OutSel.RA.value,
683 out)
684 if upd == LDSTMode.update.value:
685 return True
686 if name == 'RS':
687 fft_en = yield dec2.implicit_rs
688 if fft_en:
689 log("get_idx_out2", out_sel, OutSel.RS.value,
690 out)
691 return True
692 if name == 'FRS':
693 fft_en = yield dec2.implicit_rs
694 if fft_en:
695 log("get_idx_out2", out_sel, OutSel.FRS.value,
696 out)
697 return True
698 return False
699
700
701 # TODO, really should just be using PowerDecoder2
702 def get_idx_out2(dec2, name, ewmode=False):
703 # check first if register is activated for write
704 op = dec2.dec.op
705 out_sel = yield op.out_sel
706 out = yield dec2.e.write_ea.data
707 if ewmode:
708 offs = yield dec2.e.write_ea.offs
709 base = yield dec2.e.write_ea.base
710 out = (out, base, offs)
711 o_isvec = yield dec2.o2_isvec
712 ismap = yield from get_out2_map(dec2, name)
713 if ismap:
714 log("get_idx_out2", name, out_sel, out, o_isvec)
715 return out, o_isvec
716 return None, False
717
718
719 class StepLoop:
720 """deals with svstate looping.
721 """
722
723 def __init__(self, svstate):
724 self.svstate = svstate
725 self.new_iterators()
726
727 def new_iterators(self):
728 self.src_it = self.src_iterator()
729 self.dst_it = self.dst_iterator()
730 self.loopend = False
731 self.new_srcstep = 0
732 self.new_dststep = 0
733 self.new_ssubstep = 0
734 self.new_dsubstep = 0
735 self.pred_dst_zero = 0
736 self.pred_src_zero = 0
737
738 def src_iterator(self):
739 """source-stepping iterator
740 """
741 pack = self.svstate.pack
742
743 # source step
744 if pack:
745 # pack advances subvl in *outer* loop
746 while True: # outer subvl loop
747 while True: # inner vl loop
748 vl = self.svstate.vl
749 subvl = self.subvl
750 srcmask = self.srcmask
751 srcstep = self.svstate.srcstep
752 pred_src_zero = ((1 << srcstep) & srcmask) != 0
753 if self.pred_sz or pred_src_zero:
754 self.pred_src_zero = not pred_src_zero
755 log(" advance src", srcstep, vl,
756 self.svstate.ssubstep, subvl)
757 # yield actual substep/srcstep
758 yield (self.svstate.ssubstep, srcstep)
759 # the way yield works these could have been modified.
760 vl = self.svstate.vl
761 subvl = self.subvl
762 srcstep = self.svstate.srcstep
763 log(" advance src check", srcstep, vl,
764 self.svstate.ssubstep, subvl, srcstep == vl-1,
765 self.svstate.ssubstep == subvl)
766 if srcstep == vl-1: # end-point
767 self.svstate.srcstep = SelectableInt(0, 7) # reset
768 if self.svstate.ssubstep == subvl: # end-point
769 log(" advance pack stop")
770 return
771 break # exit inner loop
772 self.svstate.srcstep += SelectableInt(1, 7) # advance ss
773 subvl = self.subvl
774 if self.svstate.ssubstep == subvl: # end-point
775 self.svstate.ssubstep = SelectableInt(0, 2) # reset
776 log(" advance pack stop")
777 return
778 self.svstate.ssubstep += SelectableInt(1, 2)
779
780 else:
781 # these cannot be done as for-loops because SVSTATE may change
782 # (srcstep/substep may be modified, interrupted, subvl/vl change)
783 # but they *can* be done as while-loops as long as every SVSTATE
784 # "thing" is re-read every single time a yield gives indices
785 while True: # outer vl loop
786 while True: # inner subvl loop
787 vl = self.svstate.vl
788 subvl = self.subvl
789 srcmask = self.srcmask
790 srcstep = self.svstate.srcstep
791 pred_src_zero = ((1 << srcstep) & srcmask) != 0
792 if self.pred_sz or pred_src_zero:
793 self.pred_src_zero = not pred_src_zero
794 log(" advance src", srcstep, vl,
795 self.svstate.ssubstep, subvl)
796 # yield actual substep/srcstep
797 yield (self.svstate.ssubstep, srcstep)
798 if self.svstate.ssubstep == subvl: # end-point
799 self.svstate.ssubstep = SelectableInt(0, 2) # reset
800 break # exit inner loop
801 self.svstate.ssubstep += SelectableInt(1, 2)
802 vl = self.svstate.vl
803 if srcstep == vl-1: # end-point
804 self.svstate.srcstep = SelectableInt(0, 7) # reset
805 self.loopend = True
806 return
807 self.svstate.srcstep += SelectableInt(1, 7) # advance srcstep
808
809 def dst_iterator(self):
810 """dest-stepping iterator
811 """
812 unpack = self.svstate.unpack
813
814 # dest step
815 if unpack:
816 # pack advances subvl in *outer* loop
817 while True: # outer subvl loop
818 while True: # inner vl loop
819 vl = self.svstate.vl
820 subvl = self.subvl
821 dstmask = self.dstmask
822 dststep = self.svstate.dststep
823 pred_dst_zero = ((1 << dststep) & dstmask) != 0
824 if self.pred_dz or pred_dst_zero:
825 self.pred_dst_zero = not pred_dst_zero
826 log(" advance dst", dststep, vl,
827 self.svstate.dsubstep, subvl)
828 # yield actual substep/dststep
829 yield (self.svstate.dsubstep, dststep)
830 # the way yield works these could have been modified.
831 vl = self.svstate.vl
832 dststep = self.svstate.dststep
833 log(" advance dst check", dststep, vl,
834 self.svstate.ssubstep, subvl)
835 if dststep == vl-1: # end-point
836 self.svstate.dststep = SelectableInt(0, 7) # reset
837 if self.svstate.dsubstep == subvl: # end-point
838 log(" advance unpack stop")
839 return
840 break
841 self.svstate.dststep += SelectableInt(1, 7) # advance ds
842 subvl = self.subvl
843 if self.svstate.dsubstep == subvl: # end-point
844 self.svstate.dsubstep = SelectableInt(0, 2) # reset
845 log(" advance unpack stop")
846 return
847 self.svstate.dsubstep += SelectableInt(1, 2)
848 else:
849 # these cannot be done as for-loops because SVSTATE may change
850 # (dststep/substep may be modified, interrupted, subvl/vl change)
851 # but they *can* be done as while-loops as long as every SVSTATE
852 # "thing" is re-read every single time a yield gives indices
853 while True: # outer vl loop
854 while True: # inner subvl loop
855 subvl = self.subvl
856 dstmask = self.dstmask
857 dststep = self.svstate.dststep
858 pred_dst_zero = ((1 << dststep) & dstmask) != 0
859 if self.pred_dz or pred_dst_zero:
860 self.pred_dst_zero = not pred_dst_zero
861 log(" advance dst", dststep, self.svstate.vl,
862 self.svstate.dsubstep, subvl)
863 # yield actual substep/dststep
864 yield (self.svstate.dsubstep, dststep)
865 if self.svstate.dsubstep == subvl: # end-point
866 self.svstate.dsubstep = SelectableInt(0, 2) # reset
867 break
868 self.svstate.dsubstep += SelectableInt(1, 2)
869 subvl = self.subvl
870 vl = self.svstate.vl
871 if dststep == vl-1: # end-point
872 self.svstate.dststep = SelectableInt(0, 7) # reset
873 return
874 self.svstate.dststep += SelectableInt(1, 7) # advance dststep
875
876 def src_iterate(self):
877 """source-stepping iterator
878 """
879 subvl = self.subvl
880 vl = self.svstate.vl
881 pack = self.svstate.pack
882 unpack = self.svstate.unpack
883 ssubstep = self.svstate.ssubstep
884 end_ssub = ssubstep == subvl
885 end_src = self.svstate.srcstep == vl-1
886 log(" pack/unpack/subvl", pack, unpack, subvl,
887 "end", end_src,
888 "sub", end_ssub)
889 # first source step
890 srcstep = self.svstate.srcstep
891 srcmask = self.srcmask
892 if pack:
893 # pack advances subvl in *outer* loop
894 while True:
895 assert srcstep <= vl-1
896 end_src = srcstep == vl-1
897 if end_src:
898 if end_ssub:
899 self.loopend = True
900 else:
901 self.svstate.ssubstep += SelectableInt(1, 2)
902 srcstep = 0 # reset
903 break
904 else:
905 srcstep += 1 # advance srcstep
906 if not self.srcstep_skip:
907 break
908 if ((1 << srcstep) & srcmask) != 0:
909 break
910 else:
911 log(" sskip", bin(srcmask), bin(1 << srcstep))
912 else:
913 # advance subvl in *inner* loop
914 if end_ssub:
915 while True:
916 assert srcstep <= vl-1
917 end_src = srcstep == vl-1
918 if end_src: # end-point
919 self.loopend = True
920 srcstep = 0
921 break
922 else:
923 srcstep += 1
924 if not self.srcstep_skip:
925 break
926 if ((1 << srcstep) & srcmask) != 0:
927 break
928 else:
929 log(" sskip", bin(srcmask), bin(1 << srcstep))
930 self.svstate.ssubstep = SelectableInt(0, 2) # reset
931 else:
932 # advance ssubstep
933 self.svstate.ssubstep += SelectableInt(1, 2)
934
935 self.svstate.srcstep = SelectableInt(srcstep, 7)
936 log(" advance src", self.svstate.srcstep, self.svstate.ssubstep,
937 self.loopend)
938
939 def dst_iterate(self):
940 """dest step iterator
941 """
942 vl = self.svstate.vl
943 subvl = self.subvl
944 pack = self.svstate.pack
945 unpack = self.svstate.unpack
946 dsubstep = self.svstate.dsubstep
947 end_dsub = dsubstep == subvl
948 dststep = self.svstate.dststep
949 end_dst = dststep == vl-1
950 dstmask = self.dstmask
951 log(" pack/unpack/subvl", pack, unpack, subvl,
952 "end", end_dst,
953 "sub", end_dsub)
954 # now dest step
955 if unpack:
956 # unpack advances subvl in *outer* loop
957 while True:
958 assert dststep <= vl-1
959 end_dst = dststep == vl-1
960 if end_dst:
961 if end_dsub:
962 self.loopend = True
963 else:
964 self.svstate.dsubstep += SelectableInt(1, 2)
965 dststep = 0 # reset
966 break
967 else:
968 dststep += 1 # advance dststep
969 if not self.dststep_skip:
970 break
971 if ((1 << dststep) & dstmask) != 0:
972 break
973 else:
974 log(" dskip", bin(dstmask), bin(1 << dststep))
975 else:
976 # advance subvl in *inner* loop
977 if end_dsub:
978 while True:
979 assert dststep <= vl-1
980 end_dst = dststep == vl-1
981 if end_dst: # end-point
982 self.loopend = True
983 dststep = 0
984 break
985 else:
986 dststep += 1
987 if not self.dststep_skip:
988 break
989 if ((1 << dststep) & dstmask) != 0:
990 break
991 else:
992 log(" dskip", bin(dstmask), bin(1 << dststep))
993 self.svstate.dsubstep = SelectableInt(0, 2) # reset
994 else:
995 # advance ssubstep
996 self.svstate.dsubstep += SelectableInt(1, 2)
997
998 self.svstate.dststep = SelectableInt(dststep, 7)
999 log(" advance dst", self.svstate.dststep, self.svstate.dsubstep,
1000 self.loopend)
1001
1002 def at_loopend(self):
1003 """tells if this is the last possible element. uses the cached values
1004 for src/dst-step and sub-steps
1005 """
1006 subvl = self.subvl
1007 vl = self.svstate.vl
1008 srcstep, dststep = self.new_srcstep, self.new_dststep
1009 ssubstep, dsubstep = self.new_ssubstep, self.new_dsubstep
1010 end_ssub = ssubstep == subvl
1011 end_dsub = dsubstep == subvl
1012 if srcstep == vl-1 and end_ssub:
1013 return True
1014 if dststep == vl-1 and end_dsub:
1015 return True
1016 return False
1017
1018 def advance_svstate_steps(self):
1019 """ advance sub/steps. note that Pack/Unpack *INVERTS* the order.
1020 TODO when Pack/Unpack is set, substep becomes the *outer* loop
1021 """
1022 self.subvl = yield self.dec2.rm_dec.rm_in.subvl
1023 if self.loopend: # huhn??
1024 return
1025 self.src_iterate()
1026 self.dst_iterate()
1027
1028 def read_src_mask(self):
1029 """read/update pred_sz and src mask
1030 """
1031 # get SVSTATE VL (oh and print out some debug stuff)
1032 vl = self.svstate.vl
1033 srcstep = self.svstate.srcstep
1034 ssubstep = self.svstate.ssubstep
1035
1036 # get predicate mask (all 64 bits)
1037 srcmask = 0xffff_ffff_ffff_ffff
1038
1039 pmode = yield self.dec2.rm_dec.predmode
1040 sv_ptype = yield self.dec2.dec.op.SV_Ptype
1041 srcpred = yield self.dec2.rm_dec.srcpred
1042 dstpred = yield self.dec2.rm_dec.dstpred
1043 pred_sz = yield self.dec2.rm_dec.pred_sz
1044 if pmode == SVP64PredMode.INT.value:
1045 srcmask = dstmask = get_predint(self.gpr, dstpred)
1046 if sv_ptype == SVPType.P2.value:
1047 srcmask = get_predint(self.gpr, srcpred)
1048 elif pmode == SVP64PredMode.CR.value:
1049 srcmask = dstmask = get_predcr(self.crl, dstpred, vl)
1050 if sv_ptype == SVPType.P2.value:
1051 srcmask = get_predcr(self.crl, srcpred, vl)
1052 # work out if the ssubsteps are completed
1053 ssubstart = ssubstep == 0
1054 log(" pmode", pmode)
1055 log(" ptype", sv_ptype)
1056 log(" srcpred", bin(srcpred))
1057 log(" srcmask", bin(srcmask))
1058 log(" pred_sz", bin(pred_sz))
1059 log(" ssubstart", ssubstart)
1060
1061 # store all that above
1062 self.srcstep_skip = False
1063 self.srcmask = srcmask
1064 self.pred_sz = pred_sz
1065 self.new_ssubstep = ssubstep
1066 log(" new ssubstep", ssubstep)
1067 # until the predicate mask has a "1" bit... or we run out of VL
1068 # let srcstep==VL be the indicator to move to next instruction
1069 if not pred_sz:
1070 self.srcstep_skip = True
1071
1072 def read_dst_mask(self):
1073 """same as read_src_mask - check and record everything needed
1074 """
1075 # get SVSTATE VL (oh and print out some debug stuff)
1076 # yield Delay(1e-10) # make changes visible
1077 vl = self.svstate.vl
1078 dststep = self.svstate.dststep
1079 dsubstep = self.svstate.dsubstep
1080
1081 # get predicate mask (all 64 bits)
1082 dstmask = 0xffff_ffff_ffff_ffff
1083
1084 pmode = yield self.dec2.rm_dec.predmode
1085 reverse_gear = yield self.dec2.rm_dec.reverse_gear
1086 sv_ptype = yield self.dec2.dec.op.SV_Ptype
1087 dstpred = yield self.dec2.rm_dec.dstpred
1088 pred_dz = yield self.dec2.rm_dec.pred_dz
1089 if pmode == SVP64PredMode.INT.value:
1090 dstmask = get_predint(self.gpr, dstpred)
1091 elif pmode == SVP64PredMode.CR.value:
1092 dstmask = get_predcr(self.crl, dstpred, vl)
1093 # work out if the ssubsteps are completed
1094 dsubstart = dsubstep == 0
1095 log(" pmode", pmode)
1096 log(" ptype", sv_ptype)
1097 log(" dstpred", bin(dstpred))
1098 log(" dstmask", bin(dstmask))
1099 log(" pred_dz", bin(pred_dz))
1100 log(" dsubstart", dsubstart)
1101
1102 self.dststep_skip = False
1103 self.dstmask = dstmask
1104 self.pred_dz = pred_dz
1105 self.new_dsubstep = dsubstep
1106 log(" new dsubstep", dsubstep)
1107 if not pred_dz:
1108 self.dststep_skip = True
1109
1110 def svstate_pre_inc(self):
1111 """check if srcstep/dststep need to skip over masked-out predicate bits
1112 note that this is not supposed to do anything to substep,
1113 it is purely for skipping masked-out bits
1114 """
1115
1116 self.subvl = yield self.dec2.rm_dec.rm_in.subvl
1117 yield from self.read_src_mask()
1118 yield from self.read_dst_mask()
1119
1120 self.skip_src()
1121 self.skip_dst()
1122
1123 def skip_src(self):
1124
1125 srcstep = self.svstate.srcstep
1126 srcmask = self.srcmask
1127 pred_src_zero = self.pred_sz
1128 vl = self.svstate.vl
1129 # srcstep-skipping opportunity identified
1130 if self.srcstep_skip:
1131 # cannot do this with sv.bc - XXX TODO
1132 if srcmask == 0:
1133 self.loopend = True
1134 while (((1 << srcstep) & srcmask) == 0) and (srcstep != vl):
1135 log(" sskip", bin(1 << srcstep))
1136 srcstep += 1
1137
1138 # now work out if the relevant mask bits require zeroing
1139 if pred_src_zero:
1140 pred_src_zero = ((1 << srcstep) & srcmask) == 0
1141
1142 # store new srcstep / dststep
1143 self.new_srcstep = srcstep
1144 self.pred_src_zero = pred_src_zero
1145 log(" new srcstep", srcstep)
1146
1147 def skip_dst(self):
1148 # dststep-skipping opportunity identified
1149 dststep = self.svstate.dststep
1150 dstmask = self.dstmask
1151 pred_dst_zero = self.pred_dz
1152 vl = self.svstate.vl
1153 if self.dststep_skip:
1154 # cannot do this with sv.bc - XXX TODO
1155 if dstmask == 0:
1156 self.loopend = True
1157 while (((1 << dststep) & dstmask) == 0) and (dststep != vl):
1158 log(" dskip", bin(1 << dststep))
1159 dststep += 1
1160
1161 # now work out if the relevant mask bits require zeroing
1162 if pred_dst_zero:
1163 pred_dst_zero = ((1 << dststep) & dstmask) == 0
1164
1165 # store new srcstep / dststep
1166 self.new_dststep = dststep
1167 self.pred_dst_zero = pred_dst_zero
1168 log(" new dststep", dststep)
1169
1170
1171 class ExitSyscallCalled(Exception):
1172 pass
1173
1174
1175 class SyscallEmulator(openpower.syscalls.Dispatcher):
1176 def __init__(self, isacaller):
1177 self.__isacaller = isacaller
1178
1179 host = os.uname().machine
1180 bits = (64 if (sys.maxsize > (2**32)) else 32)
1181 host = openpower.syscalls.architecture(arch=host, bits=bits)
1182
1183 return super().__init__(guest="ppc64", host=host)
1184
1185 def __call__(self, identifier, *arguments):
1186 (identifier, *arguments) = map(int, (identifier, *arguments))
1187 return super().__call__(identifier, *arguments)
1188
1189 def sys_exit_group(self, status, *rest):
1190 self.__isacaller.halted = True
1191 raise ExitSyscallCalled(status)
1192
1193 def sys_write(self, fd, buf, count, *rest):
1194 if count != 0:
1195 buf = self.__isacaller.mem.get_ctypes(buf, count, is_write=False)
1196 else:
1197 buf = b""
1198 try:
1199 return os.write(fd, buf)
1200 except OSError as e:
1201 return -e.errno
1202
1203 def sys_writev(self, fd, iov, iovcnt, *rest):
1204 IOV_MAX = 1024
1205 if iovcnt < 0 or iovcnt > IOV_MAX:
1206 return -errno.EINVAL
1207 struct_iovec = struct.Struct("<QQ")
1208 try:
1209 if iovcnt > 0:
1210 iov = self.__isacaller.mem.get_ctypes(
1211 iov, struct_iovec.size * iovcnt, is_write=False)
1212 iov = list(struct_iovec.iter_unpack(iov))
1213 else:
1214 iov = []
1215 for i, iovec in enumerate(iov):
1216 iov_base, iov_len = iovec
1217 iov[i] = self.__isacaller.mem.get_ctypes(
1218 iov_base, iov_len, is_write=False)
1219 except (ValueError, MemException):
1220 return -errno.EFAULT
1221 try:
1222 return os.writev(fd, iov)
1223 except OSError as e:
1224 return -e.errno
1225
1226 def sys_read(self, fd, buf, count, *rest):
1227 if count != 0:
1228 buf = self.__isacaller.mem.get_ctypes(buf, count, is_write=True)
1229 else:
1230 buf = bytearray()
1231 try:
1232 return os.readv(fd, [buf])
1233 except OSError as e:
1234 return -e.errno
1235
1236 def sys_mmap(self, addr, length, prot, flags, fd, offset, *rest):
1237 return self.__isacaller.mem.mmap_syscall(
1238 addr, length, prot, flags, fd, offset, is_mmap2=False)
1239
1240 def sys_mmap2(self, addr, length, prot, flags, fd, offset, *rest):
1241 return self.__isacaller.mem.mmap_syscall(
1242 addr, length, prot, flags, fd, offset, is_mmap2=True)
1243
1244 def sys_brk(self, addr, *rest):
1245 return self.__isacaller.mem.brk_syscall(addr)
1246
1247 def sys_munmap(self, addr, length, *rest):
1248 return -errno.ENOSYS # TODO: implement
1249
1250 def sys_mprotect(self, addr, length, prot, *rest):
1251 return -errno.ENOSYS # TODO: implement
1252
1253 def sys_pkey_mprotect(self, addr, length, prot, pkey, *rest):
1254 return -errno.ENOSYS # TODO: implement
1255
1256 def sys_openat(self, dirfd, pathname, flags, mode, *rest):
1257 try:
1258 path = self.__isacaller.mem.read_cstr(pathname)
1259 except (ValueError, MemException):
1260 return -errno.EFAULT
1261 try:
1262 if dirfd == ppc_flags.AT_FDCWD:
1263 return os.open(path, flags, mode)
1264 else:
1265 return os.open(path, flags, mode, dir_fd=dirfd)
1266 except OSError as e:
1267 return -e.errno
1268
1269 def _uname(self):
1270 uname = os.uname()
1271 sysname = b'Linux'
1272 nodename = uname.nodename.encode()
1273 release = b'5.6.0-1-powerpc64le'
1274 version = b'#1 SMP Debian 5.6.7-1 (2020-04-29)'
1275 machine = b'ppc64le'
1276 domainname = b''
1277 return sysname, nodename, release, version, machine, domainname
1278
1279 def sys_uname(self, buf, *rest):
1280 s = struct.Struct("<65s65s65s65s65s")
1281 try:
1282 buf = self.__isacaller.mem.get_ctypes(buf, s.size, is_write=True)
1283 except (ValueError, MemException):
1284 return -errno.EFAULT
1285 sysname, nodename, release, version, machine, domainname = \
1286 self._uname()
1287 s.pack_into(buf, 0, sysname, nodename, release, version, machine)
1288 return 0
1289
1290 def sys_newuname(self, buf, *rest):
1291 name_len = ppc_flags.__NEW_UTS_LEN + 1
1292 s = struct.Struct("<%ds%ds%ds%ds%ds%ds" % ((name_len,) * 6))
1293 try:
1294 buf = self.__isacaller.mem.get_ctypes(buf, s.size, is_write=True)
1295 except (ValueError, MemException):
1296 return -errno.EFAULT
1297 sysname, nodename, release, version, machine, domainname = \
1298 self._uname()
1299 s.pack_into(buf, 0,
1300 sysname, nodename, release, version, machine, domainname)
1301 return 0
1302
1303 def sys_readlink(self, pathname, buf, bufsiz, *rest):
1304 dirfd = ppc_flags.AT_FDCWD
1305 return self.sys_readlinkat(dirfd, pathname, buf, bufsiz)
1306
1307 def sys_readlinkat(self, dirfd, pathname, buf, bufsiz, *rest):
1308 try:
1309 path = self.__isacaller.mem.read_cstr(pathname)
1310 if bufsiz != 0:
1311 buf = self.__isacaller.mem.get_ctypes(
1312 buf, bufsiz, is_write=True)
1313 else:
1314 buf = bytearray()
1315 except (ValueError, MemException):
1316 return -errno.EFAULT
1317 try:
1318 if dirfd == ppc_flags.AT_FDCWD:
1319 result = os.readlink(path)
1320 else:
1321 result = os.readlink(path, dir_fd=dirfd)
1322 retval = min(len(result), len(buf))
1323 buf[:retval] = result[:retval]
1324 return retval
1325 except OSError as e:
1326 return -e.errno
1327
1328
1329 class ISACaller(ISACallerHelper, ISAFPHelpers, StepLoop):
1330 # decoder2 - an instance of power_decoder2
1331 # regfile - a list of initial values for the registers
1332 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
1333 # respect_pc - tracks the program counter. requires initial_insns
1334 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
1335 initial_mem=None, initial_msr=0,
1336 initial_svstate=0,
1337 initial_insns=None,
1338 fpregfile=None,
1339 respect_pc=False,
1340 disassembly=None,
1341 initial_pc=0,
1342 bigendian=False,
1343 mmu=False,
1344 icachemmu=False,
1345 initial_fpscr=0,
1346 insnlog=None,
1347 use_mmap_mem=False,
1348 use_syscall_emu=False,
1349 emulating_mmap=False,
1350 real_page_size=None):
1351 if use_syscall_emu:
1352 self.syscall = SyscallEmulator(isacaller=self)
1353 if not use_mmap_mem:
1354 log("forcing use_mmap_mem due to use_syscall_emu active")
1355 use_mmap_mem = True
1356 else:
1357 self.syscall = None
1358
1359 # we will eventually be able to load ELF files without use_syscall_emu
1360 # (e.g. the linux kernel), so do it in a separate if block
1361 if isinstance(initial_insns, ELFFile):
1362 if not use_mmap_mem:
1363 log("forcing use_mmap_mem due to loading an ELF file")
1364 use_mmap_mem = True
1365 if not emulating_mmap:
1366 log("forcing emulating_mmap due to loading an ELF file")
1367 emulating_mmap = True
1368
1369 # trace log file for model output. if None do nothing
1370 self.insnlog = insnlog
1371 self.insnlog_is_file = hasattr(insnlog, "write")
1372 if not self.insnlog_is_file and self.insnlog:
1373 self.insnlog = open(self.insnlog, "w")
1374
1375 self.bigendian = bigendian
1376 self.halted = False
1377 self.is_svp64_mode = False
1378 self.respect_pc = respect_pc
1379 if initial_sprs is None:
1380 initial_sprs = {}
1381 if initial_mem is None:
1382 initial_mem = {}
1383 if fpregfile is None:
1384 fpregfile = [0] * 32
1385 if initial_insns is None:
1386 initial_insns = {}
1387 assert self.respect_pc == False, "instructions required to honor pc"
1388 if initial_msr is None:
1389 initial_msr = DEFAULT_MSR
1390
1391 log("ISACaller insns", respect_pc, initial_insns, disassembly)
1392 log("ISACaller initial_msr", initial_msr)
1393
1394 # "fake program counter" mode (for unit testing)
1395 self.fake_pc = 0
1396 disasm_start = 0
1397 if not respect_pc:
1398 if isinstance(initial_mem, tuple):
1399 self.fake_pc = initial_mem[0]
1400 disasm_start = self.fake_pc
1401 else:
1402 disasm_start = initial_pc
1403
1404 # disassembly: we need this for now (not given from the decoder)
1405 self.disassembly = {}
1406 if disassembly:
1407 for i, code in enumerate(disassembly):
1408 self.disassembly[i*4 + disasm_start] = code
1409
1410 # set up registers, instruction memory, data memory, PC, SPRs, MSR, CR
1411 self.svp64rm = SVP64RM()
1412 if initial_svstate is None:
1413 initial_svstate = 0
1414 if isinstance(initial_svstate, int):
1415 initial_svstate = SVP64State(initial_svstate)
1416 # SVSTATE, MSR and PC
1417 StepLoop.__init__(self, initial_svstate)
1418 self.msr = SelectableInt(initial_msr, 64) # underlying reg
1419 self.pc = PC()
1420 # GPR FPR SPR registers
1421 initial_sprs = deepcopy(initial_sprs) # so as not to get modified
1422 self.gpr = GPR(decoder2, self, self.svstate, regfile)
1423 self.fpr = GPR(decoder2, self, self.svstate, fpregfile)
1424 # initialise SPRs before MMU
1425 self.spr = SPR(decoder2, initial_sprs, gpr=self.gpr)
1426
1427 # set up 4 dummy SVSHAPEs if they aren't already set up
1428 for i in range(4):
1429 sname = 'SVSHAPE%d' % i
1430 val = self.spr.get(sname, 0)
1431 # make sure it's an SVSHAPE -- conversion done by SPR.__setitem__
1432 self.spr[sname] = val
1433 self.last_op_svshape = False
1434
1435 # "raw" memory
1436 if use_mmap_mem:
1437 self.mem = MemMMap(row_bytes=8,
1438 initial_mem=initial_mem,
1439 misaligned_ok=True,
1440 emulating_mmap=emulating_mmap)
1441 self.imem = self.mem
1442 lelf = self.mem.initialize(row_bytes=4, initial_mem=initial_insns)
1443 if isinstance(lelf, LoadedELF): # stuff parsed from ELF
1444 initial_pc = lelf.pc
1445 for k, v in lelf.gprs.items():
1446 self.gpr[k] = SelectableInt(v, 64)
1447 initial_fpscr = lelf.fpscr
1448 self.mem.log_fancy(kind=LogType.InstrInOuts)
1449 else:
1450 self.mem = Mem(row_bytes=8, initial_mem=initial_mem,
1451 misaligned_ok=True)
1452 self.mem.log_fancy(kind=LogType.InstrInOuts)
1453 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
1454 # MMU mode, redirect underlying Mem through RADIX
1455 if mmu:
1456 self.mem = RADIX(self.mem, self)
1457 if icachemmu:
1458 self.imem = RADIX(self.imem, self)
1459
1460 # TODO, needed here:
1461 # FPR (same as GPR except for FP nums)
1462 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
1463 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
1464 self.fpscr = FPSCRState(initial_fpscr)
1465
1466 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
1467 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
1468 # -- Done
1469 # 2.3.2 LR (actually SPR #8) -- Done
1470 # 2.3.3 CTR (actually SPR #9) -- Done
1471 # 2.3.4 TAR (actually SPR #815)
1472 # 3.2.2 p45 XER (actually SPR #1) -- Done
1473 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
1474
1475 # create CR then allow portions of it to be "selectable" (below)
1476 self.cr_fields = CRFields(initial_cr)
1477 self.cr = self.cr_fields.cr
1478 self.cr_backup = 0 # sigh, dreadful hack: for fail-first (VLi)
1479
1480 # "undefined", just set to variable-bit-width int (use exts "max")
1481 # self.undefined = SelectableInt(0, EFFECTIVELY_UNLIMITED)
1482
1483 self.namespace = {}
1484 self.namespace.update(self.spr)
1485 self.namespace.update({'GPR': self.gpr,
1486 'FPR': self.fpr,
1487 'MEM': self.mem,
1488 'SPR': self.spr,
1489 'memassign': self.memassign,
1490 'NIA': self.pc.NIA,
1491 'CIA': self.pc.CIA,
1492 'SVSTATE': self.svstate,
1493 'SVSHAPE0': self.spr['SVSHAPE0'],
1494 'SVSHAPE1': self.spr['SVSHAPE1'],
1495 'SVSHAPE2': self.spr['SVSHAPE2'],
1496 'SVSHAPE3': self.spr['SVSHAPE3'],
1497 'CR': self.cr,
1498 'MSR': self.msr,
1499 'FPSCR': self.fpscr,
1500 'undefined': undefined,
1501 'mode_is_64bit': True,
1502 'SO': XER_bits['SO'],
1503 'XLEN': 64, # elwidth overrides
1504 })
1505
1506 # for LR/SC
1507 if real_page_size is None:
1508 # PowerISA v3.1B Book III Section 6.7 page 1191 (1217)
1509 # defines real page size as 2 ** 12 bytes (4KiB)
1510 real_page_size = 2 ** 12
1511 self.real_page_size = real_page_size
1512 self.reserve_addr = SelectableInt(0, self.XLEN)
1513 self.reserve = SelectableInt(0, 1)
1514 self.reserve_length = SelectableInt(0, 4)
1515
1516 self.namespace.update({'RESERVE': self.RESERVE,
1517 'RESERVE_ADDR': self.RESERVE_ADDR,
1518 'RESERVE_LENGTH': self.RESERVE_LENGTH,
1519 'REAL_PAGE_SIZE': self.REAL_PAGE_SIZE,
1520 })
1521
1522 for name in BFP_FLAG_NAMES:
1523 setattr(self, name, 0)
1524
1525 # update pc to requested start point
1526 self.set_pc(initial_pc)
1527
1528 # field-selectable versions of Condition Register
1529 self.crl = self.cr_fields.crl
1530 for i in range(8):
1531 self.namespace["CR%d" % i] = self.crl[i]
1532
1533 self.decoder = decoder2.dec
1534 self.dec2 = decoder2
1535
1536 super().__init__(XLEN=self.namespace["XLEN"], FPSCR=self.fpscr)
1537
1538 def trace(self, out):
1539 if self.insnlog is None:
1540 return
1541 self.insnlog.write(out)
1542
1543 @property
1544 def XLEN(self):
1545 return self.namespace["XLEN"]
1546
1547 @property
1548 def RESERVE(self):
1549 return self.reserve
1550
1551 @property
1552 def RESERVE_LENGTH(self):
1553 return self.reserve_length
1554
1555 @property
1556 def RESERVE_ADDR(self):
1557 return self.reserve_addr
1558
1559 @property
1560 def REAL_PAGE_SIZE(self):
1561 return self.real_page_size
1562
1563 def real_addr(self, EA):
1564 """ get the "real address to which `EA` maps"
1565
1566 Specified in PowerISA v3.1B Book II Section 1.7.2.1 page 1049 (1075)
1567 """
1568 # FIXME: translate EA to a physical address
1569 return EA
1570
1571 @property
1572 def FPSCR(self):
1573 return self.fpscr
1574
1575 def call_trap(self, trap_addr, trap_bit):
1576 """calls TRAP and sets up NIA to the new execution location.
1577 next instruction will begin at trap_addr.
1578 """
1579 self.TRAP(trap_addr, trap_bit)
1580 self.namespace['NIA'] = self.trap_nia
1581 self.pc.update(self.namespace, self.is_svp64_mode)
1582
1583 def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
1584 """TRAP> saves PC, MSR (and TODO SVSTATE), and updates MSR
1585
1586 TRAP function is callable from inside the pseudocode itself,
1587 hence the default arguments. when calling from inside ISACaller
1588 it is best to use call_trap()
1589
1590 trap_addr: int | SelectableInt
1591 the address to go to (before any modifications from `KAIVB`)
1592 trap_bit: int | None
1593 the bit in `SRR1` to set, `None` means don't set any bits.
1594 """
1595 if isinstance(trap_addr, SelectableInt):
1596 trap_addr = trap_addr.value
1597 # https://bugs.libre-soc.org/show_bug.cgi?id=859
1598 kaivb = self.spr['KAIVB'].value
1599 msr = self.namespace['MSR'].value
1600 log("TRAP:", hex(trap_addr), hex(msr), "kaivb", hex(kaivb))
1601 # store CIA(+4?) in SRR0, set NIA to 0x700
1602 # store MSR in SRR1, set MSR to um errr something, have to check spec
1603 # store SVSTATE (if enabled) in SVSRR0
1604 self.spr['SRR0'].value = self.pc.CIA.value
1605 self.spr['SRR1'].value = msr
1606 if self.is_svp64_mode:
1607 self.spr['SVSRR0'] = self.namespace['SVSTATE'].value
1608 self.trap_nia = SelectableInt(trap_addr | (kaivb & ~0x1fff), 64)
1609 if trap_bit is not None:
1610 self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
1611
1612 # set exception bits. TODO: this should, based on the address
1613 # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
1614 # bits appropriately. however it turns out that *for now* in all
1615 # cases (all trap_addrs) the exact same thing is needed.
1616 self.msr[MSRb.IR] = 0
1617 self.msr[MSRb.DR] = 0
1618 self.msr[MSRb.FE0] = 0
1619 self.msr[MSRb.FE1] = 0
1620 self.msr[MSRb.EE] = 0
1621 self.msr[MSRb.RI] = 0
1622 self.msr[MSRb.SF] = 1
1623 self.msr[MSRb.TM] = 0
1624 self.msr[MSRb.VEC] = 0
1625 self.msr[MSRb.VSX] = 0
1626 self.msr[MSRb.PR] = 0
1627 self.msr[MSRb.FP] = 0
1628 self.msr[MSRb.PMM] = 0
1629 self.msr[MSRb.TEs] = 0
1630 self.msr[MSRb.TEe] = 0
1631 self.msr[MSRb.UND] = 0
1632 self.msr[MSRb.LE] = 1
1633
1634 def memassign(self, ea, sz, val):
1635 self.mem.memassign(ea, sz, val)
1636
1637 def prep_namespace(self, insn_name, formname, op_fields, xlen):
1638 # TODO: get field names from form in decoder*1* (not decoder2)
1639 # decoder2 is hand-created, and decoder1.sigform is auto-generated
1640 # from spec
1641 # then "yield" fields only from op_fields rather than hard-coded
1642 # list, here.
1643 fields = self.decoder.sigforms[formname]
1644 log("prep_namespace", formname, op_fields, insn_name)
1645 for name in op_fields:
1646 # CR immediates. deal with separately. needs modifying
1647 # pseudocode
1648 crlen5 = ['BC', 'BA', 'BB', 'BT', 'BI'] # 5-bit
1649 crlen3 = ['BF', 'BFA'] # 3-bit (BF: bit-field)
1650 if self.is_svp64_mode and name in crlen5:
1651 # 5-bit, must reconstruct the value
1652 if name in ['BT']:
1653 regnum, is_vec = yield from get_cr_out(self.dec2, name)
1654 else:
1655 regnum, is_vec = yield from get_cr_in(self.dec2, name)
1656 sig = getattr(fields, name)
1657 val = yield sig
1658 # low 2 LSBs (CR field selector) remain same, CR num extended
1659 assert regnum <= 7, "sigh, TODO, 128 CR fields"
1660 val = (val & 0b11) | (regnum << 2)
1661 elif self.is_svp64_mode and name in crlen3:
1662 if name in ['BF']:
1663 regnum, is_vec = yield from get_cr_out(self.dec2, name)
1664 else:
1665 regnum, is_vec = yield from get_cr_in(self.dec2, name)
1666 log('hack %s' % name, regnum, is_vec)
1667 val = regnum
1668 else:
1669 sig = getattr(fields, name)
1670 val = yield sig
1671 # these are all opcode fields involved in index-selection of CR,
1672 # and need to do "standard" arithmetic. CR[BA+32] for example
1673 # would, if using SelectableInt, only be 5-bit.
1674 if name not in crlen3 and name not in crlen5:
1675 val = SelectableInt(val, sig.width)
1676
1677 # finally put the field into the namespace
1678 self.namespace[name] = val
1679
1680 self.namespace['XER'] = self.spr['XER']
1681 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
1682 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
1683 self.namespace['OV'] = self.spr['XER'][XER_bits['OV']].value
1684 self.namespace['OV32'] = self.spr['XER'][XER_bits['OV32']].value
1685 self.namespace['XLEN'] = xlen
1686 self.namespace['RESERVE'] = self.reserve
1687 self.namespace['RESERVE_ADDR'] = self.reserve_addr
1688 self.namespace['RESERVE_LENGTH'] = self.reserve_length
1689
1690 # add some SVSTATE convenience variables
1691 vl = self.svstate.vl
1692 srcstep = self.svstate.srcstep
1693 self.namespace['VL'] = vl
1694 self.namespace['srcstep'] = srcstep
1695
1696 # take a copy of the CR field value: if non-VLi fail-first fails
1697 # this is because the pseudocode writes *directly* to CR. sigh
1698 self.cr_backup = self.cr.value
1699
1700 # sv.bc* need some extra fields
1701 if not self.is_svp64_mode or not insn_name.startswith("sv.bc"):
1702 return
1703
1704 # blegh grab bits manually
1705 mode = yield self.dec2.rm_dec.rm_in.mode
1706 # convert to SelectableInt before test
1707 mode = SelectableInt(mode, 5)
1708 bc_vlset = mode[SVP64MODEb.BC_VLSET] != 0
1709 bc_vli = mode[SVP64MODEb.BC_VLI] != 0
1710 bc_snz = mode[SVP64MODEb.BC_SNZ] != 0
1711 bc_vsb = yield self.dec2.rm_dec.bc_vsb
1712 bc_ctrtest = yield self.dec2.rm_dec.bc_ctrtest
1713 bc_lru = yield self.dec2.rm_dec.bc_lru
1714 bc_gate = yield self.dec2.rm_dec.bc_gate
1715 sz = yield self.dec2.rm_dec.pred_sz
1716 self.namespace['mode'] = SelectableInt(mode, 5)
1717 self.namespace['ALL'] = SelectableInt(bc_gate, 1)
1718 self.namespace['VSb'] = SelectableInt(bc_vsb, 1)
1719 self.namespace['LRu'] = SelectableInt(bc_lru, 1)
1720 self.namespace['CTRtest'] = SelectableInt(bc_ctrtest, 1)
1721 self.namespace['VLSET'] = SelectableInt(bc_vlset, 1)
1722 self.namespace['VLI'] = SelectableInt(bc_vli, 1)
1723 self.namespace['sz'] = SelectableInt(sz, 1)
1724 self.namespace['SNZ'] = SelectableInt(bc_snz, 1)
1725
1726 def get_kludged_op_add_ca_ov(self, inputs, inp_ca_ov):
1727 """ this was not at all necessary to do. this function massively
1728 duplicates - in a laborious and complex fashion - the contents of
1729 the CSV files that were extracted two years ago from microwatt's
1730 source code. A-inversion is the "inv A" column, output inversion
1731 is the "inv out" column, carry-in equal to 0 or 1 or CA is the
1732 "cry in" column
1733
1734 all of that information is available in
1735 self.instrs[ins_name].op_fields
1736 where info is usually assigned to self.instrs[ins_name]
1737
1738 https://git.libre-soc.org/?p=openpower-isa.git;a=blob;f=openpower/isatables/minor_31.csv;hb=HEAD
1739
1740 the immediate constants are *also* decoded correctly and placed
1741 usually by DecodeIn2Imm into operand2, as part of power_decoder2.py
1742 """
1743 def ca(a, b, ca_in, width):
1744 mask = (1 << width) - 1
1745 y = (a & mask) + (b & mask) + ca_in
1746 return y >> width
1747
1748 asmcode = yield self.dec2.dec.op.asmcode
1749 insn = insns.get(asmcode)
1750 SI = yield self.dec2.dec.SI
1751 SI &= 0xFFFF
1752 CA, OV = inp_ca_ov
1753 inputs = [i.value for i in inputs]
1754 if SI & 0x8000:
1755 SI -= 0x10000
1756 if insn in ("add", "addo", "addc", "addco"):
1757 a = inputs[0]
1758 b = inputs[1]
1759 ca_in = 0
1760 elif insn == "addic" or insn == "addic.":
1761 a = inputs[0]
1762 b = SI
1763 ca_in = 0
1764 elif insn in ("subf", "subfo", "subfc", "subfco"):
1765 a = ~inputs[0]
1766 b = inputs[1]
1767 ca_in = 1
1768 elif insn == "subfic":
1769 a = ~inputs[0]
1770 b = SI
1771 ca_in = 1
1772 elif insn == "adde" or insn == "addeo":
1773 a = inputs[0]
1774 b = inputs[1]
1775 ca_in = CA
1776 elif insn == "subfe" or insn == "subfeo":
1777 a = ~inputs[0]
1778 b = inputs[1]
1779 ca_in = CA
1780 elif insn == "addme" or insn == "addmeo":
1781 a = inputs[0]
1782 b = ~0
1783 ca_in = CA
1784 elif insn == "addze" or insn == "addzeo":
1785 a = inputs[0]
1786 b = 0
1787 ca_in = CA
1788 elif insn == "subfme" or insn == "subfmeo":
1789 a = ~inputs[0]
1790 b = ~0
1791 ca_in = CA
1792 elif insn == "subfze" or insn == "subfzeo":
1793 a = ~inputs[0]
1794 b = 0
1795 ca_in = CA
1796 elif insn == "addex":
1797 # CA[32] aren't actually written, just generate so we have
1798 # something to return
1799 ca64 = ov64 = ca(inputs[0], inputs[1], OV, 64)
1800 ca32 = ov32 = ca(inputs[0], inputs[1], OV, 32)
1801 return ca64, ca32, ov64, ov32
1802 elif insn == "neg" or insn == "nego":
1803 a = ~inputs[0]
1804 b = 0
1805 ca_in = 1
1806 else:
1807 raise NotImplementedError(
1808 "op_add kludge unimplemented instruction: ", asmcode, insn)
1809
1810 ca64 = ca(a, b, ca_in, 64)
1811 ca32 = ca(a, b, ca_in, 32)
1812 ov64 = ca64 != ca(a, b, ca_in, 63)
1813 ov32 = ca32 != ca(a, b, ca_in, 31)
1814 return ca64, ca32, ov64, ov32
1815
1816 def handle_carry_(self, inputs, output, ca, ca32, inp_ca_ov):
1817 if ca is not None and ca32 is not None:
1818 return
1819 op = yield self.dec2.e.do.insn_type
1820 if op == MicrOp.OP_ADD.value and ca is None and ca32 is None:
1821 retval = yield from self.get_kludged_op_add_ca_ov(
1822 inputs, inp_ca_ov)
1823 ca, ca32, ov, ov32 = retval
1824 asmcode = yield self.dec2.dec.op.asmcode
1825 if insns.get(asmcode) == 'addex':
1826 # TODO: if 32-bit mode, set ov to ov32
1827 self.spr['XER'][XER_bits['OV']] = ov
1828 self.spr['XER'][XER_bits['OV32']] = ov32
1829 log(f"write OV/OV32 OV={ov} OV32={ov32}",
1830 kind=LogType.InstrInOuts)
1831 else:
1832 # TODO: if 32-bit mode, set ca to ca32
1833 self.spr['XER'][XER_bits['CA']] = ca
1834 self.spr['XER'][XER_bits['CA32']] = ca32
1835 log(f"write CA/CA32 CA={ca} CA32={ca32}",
1836 kind=LogType.InstrInOuts)
1837 return
1838 inv_a = yield self.dec2.e.do.invert_in
1839 if inv_a:
1840 inputs[0] = ~inputs[0]
1841
1842 imm_ok = yield self.dec2.e.do.imm_data.ok
1843 if imm_ok:
1844 imm = yield self.dec2.e.do.imm_data.data
1845 inputs.append(SelectableInt(imm, 64))
1846 gts = []
1847 for x in inputs:
1848 log("gt input", x, output)
1849 gt = (gtu(x, output))
1850 gts.append(gt)
1851 log(gts)
1852 cy = 1 if any(gts) else 0
1853 log("CA", cy, gts)
1854 if ca is None: # already written
1855 self.spr['XER'][XER_bits['CA']] = cy
1856
1857 # 32 bit carry
1858 # ARGH... different for OP_ADD... *sigh*...
1859 op = yield self.dec2.e.do.insn_type
1860 if op == MicrOp.OP_ADD.value:
1861 res32 = (output.value & (1 << 32)) != 0
1862 a32 = (inputs[0].value & (1 << 32)) != 0
1863 if len(inputs) >= 2:
1864 b32 = (inputs[1].value & (1 << 32)) != 0
1865 else:
1866 b32 = False
1867 cy32 = res32 ^ a32 ^ b32
1868 log("CA32 ADD", cy32)
1869 else:
1870 gts = []
1871 for x in inputs:
1872 log("input", x, output)
1873 log(" x[32:64]", x, x[32:64])
1874 log(" o[32:64]", output, output[32:64])
1875 gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
1876 gts.append(gt)
1877 cy32 = 1 if any(gts) else 0
1878 log("CA32", cy32, gts)
1879 if ca32 is None: # already written
1880 self.spr['XER'][XER_bits['CA32']] = cy32
1881
1882 def handle_overflow(self, inputs, output, div_overflow, inp_ca_ov):
1883 op = yield self.dec2.e.do.insn_type
1884 if op == MicrOp.OP_ADD.value:
1885 retval = yield from self.get_kludged_op_add_ca_ov(
1886 inputs, inp_ca_ov)
1887 ca, ca32, ov, ov32 = retval
1888 # TODO: if 32-bit mode, set ov to ov32
1889 self.spr['XER'][XER_bits['OV']] = ov
1890 self.spr['XER'][XER_bits['OV32']] = ov32
1891 self.spr['XER'][XER_bits['SO']] |= ov
1892 return
1893 if hasattr(self.dec2.e.do, "invert_in"):
1894 inv_a = yield self.dec2.e.do.invert_in
1895 if inv_a:
1896 inputs[0] = ~inputs[0]
1897
1898 imm_ok = yield self.dec2.e.do.imm_data.ok
1899 if imm_ok:
1900 imm = yield self.dec2.e.do.imm_data.data
1901 inputs.append(SelectableInt(imm, 64))
1902 log("handle_overflow", inputs, output, div_overflow)
1903 if len(inputs) < 2 and div_overflow is None:
1904 return
1905
1906 # div overflow is different: it's returned by the pseudo-code
1907 # because it's more complex than can be done by analysing the output
1908 if div_overflow is not None:
1909 ov, ov32 = div_overflow, div_overflow
1910 # arithmetic overflow can be done by analysing the input and output
1911 elif len(inputs) >= 2:
1912 # OV (64-bit)
1913 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
1914 output_sgn = exts(output.value, output.bits) < 0
1915 ov = 1 if input_sgn[0] == input_sgn[1] and \
1916 output_sgn != input_sgn[0] else 0
1917
1918 # OV (32-bit)
1919 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
1920 output32_sgn = exts(output.value, 32) < 0
1921 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
1922 output32_sgn != input32_sgn[0] else 0
1923
1924 # now update XER OV/OV32/SO
1925 so = self.spr['XER'][XER_bits['SO']]
1926 new_so = so | ov # sticky overflow ORs in old with new
1927 self.spr['XER'][XER_bits['OV']] = ov
1928 self.spr['XER'][XER_bits['OV32']] = ov32
1929 self.spr['XER'][XER_bits['SO']] = new_so
1930 log(" set overflow", ov, ov32, so, new_so)
1931
1932 def handle_comparison(self, out, cr_idx=0, overflow=None, no_so=False):
1933 assert isinstance(out, SelectableInt), \
1934 "out zero not a SelectableInt %s" % repr(outputs)
1935 log("handle_comparison", out.bits, hex(out.value))
1936 # TODO - XXX *processor* in 32-bit mode
1937 # https://bugs.libre-soc.org/show_bug.cgi?id=424
1938 # if is_32bit:
1939 # o32 = exts(out.value, 32)
1940 # print ("handle_comparison exts 32 bit", hex(o32))
1941 out = exts(out.value, out.bits)
1942 log("handle_comparison exts", hex(out))
1943 # create the three main CR flags, EQ GT LT
1944 zero = SelectableInt(out == 0, 1)
1945 positive = SelectableInt(out > 0, 1)
1946 negative = SelectableInt(out < 0, 1)
1947 # get (or not) XER.SO. for setvl this is important *not* to read SO
1948 if no_so:
1949 SO = SelectableInt(1, 0)
1950 else:
1951 SO = self.spr['XER'][XER_bits['SO']]
1952 log("handle_comparison SO", SO.value,
1953 "overflow", overflow,
1954 "zero", zero.value,
1955 "+ve", positive.value,
1956 "-ve", negative.value)
1957 # alternative overflow checking (setvl mainly at the moment)
1958 if overflow is not None and overflow == 1:
1959 SO = SelectableInt(1, 1)
1960 # create the four CR field values and set the required CR field
1961 cr_field = selectconcat(negative, positive, zero, SO)
1962 log("handle_comparison cr_field", self.cr, cr_idx, cr_field)
1963 self.crl[cr_idx].eq(cr_field)
1964 return cr_field
1965
1966 def set_pc(self, pc_val):
1967 self.namespace['NIA'] = SelectableInt(pc_val, 64)
1968 self.pc.update(self.namespace, self.is_svp64_mode)
1969
1970 def get_next_insn(self):
1971 """check instruction
1972 """
1973 if self.respect_pc:
1974 pc = self.pc.CIA.value
1975 else:
1976 pc = self.fake_pc
1977 ins = self.imem.ld(pc, 4, False, True, instr_fetch=True)
1978 if ins is None:
1979 raise KeyError("no instruction at 0x%x" % pc)
1980 return pc, ins
1981
1982 def setup_one(self):
1983 """set up one instruction
1984 """
1985 pc, insn = self.get_next_insn()
1986 yield from self.setup_next_insn(pc, insn)
1987
1988 # cache since it's really slow to construct
1989 __PREFIX_CACHE = SVP64Instruction.Prefix(SelectableInt(value=0, bits=32))
1990
1991 def __decode_prefix(self, opcode):
1992 pfx = self.__PREFIX_CACHE
1993 pfx.storage.eq(opcode)
1994 return pfx
1995
1996 def setup_next_insn(self, pc, ins):
1997 """set up next instruction
1998 """
1999 self._pc = pc
2000 log("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
2001 log("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
2002
2003 yield self.dec2.sv_rm.eq(0)
2004 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
2005 yield self.dec2.dec.bigendian.eq(self.bigendian)
2006 yield self.dec2.state.msr.eq(self.msr.value)
2007 yield self.dec2.state.pc.eq(pc)
2008 if self.svstate is not None:
2009 yield self.dec2.state.svstate.eq(self.svstate.value)
2010
2011 # SVP64. first, check if the opcode is EXT001, and SVP64 id bits set
2012 yield Settle()
2013 opcode = yield self.dec2.dec.opcode_in
2014 opcode = SelectableInt(value=opcode, bits=32)
2015 pfx = self.__decode_prefix(opcode)
2016 log("prefix test: opcode:", pfx.PO, bin(pfx.PO), pfx.id)
2017 self.is_svp64_mode = bool((pfx.PO == 0b000001) and (pfx.id == 0b11))
2018 self.pc.update_nia(self.is_svp64_mode)
2019 # set SVP64 decode
2020 yield self.dec2.is_svp64_mode.eq(self.is_svp64_mode)
2021 self.namespace['NIA'] = self.pc.NIA
2022 self.namespace['SVSTATE'] = self.svstate
2023 if not self.is_svp64_mode:
2024 return
2025
2026 # in SVP64 mode. decode/print out svp64 prefix, get v3.0B instruction
2027 log("svp64.rm", bin(pfx.rm))
2028 log(" svstate.vl", self.svstate.vl)
2029 log(" svstate.mvl", self.svstate.maxvl)
2030 ins = self.imem.ld(pc+4, 4, False, True, instr_fetch=True)
2031 log(" svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
2032 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
2033 yield self.dec2.sv_rm.eq(int(pfx.rm)) # svp64 prefix
2034 yield Settle()
2035
2036 def execute_one(self):
2037 """execute one instruction
2038 """
2039 # get the disassembly code for this instruction
2040 if not self.disassembly:
2041 code = yield from self.get_assembly_name()
2042 else:
2043 offs, dbg = 0, ""
2044 if self.is_svp64_mode:
2045 offs, dbg = 4, "svp64 "
2046 code = self.disassembly[self._pc+offs]
2047 log(" %s sim-execute" % dbg, hex(self._pc), code)
2048 opname = code.split(' ')[0]
2049 try:
2050 yield from self.call(opname) # execute the instruction
2051 except MemException as e: # check for memory errors
2052 if e.args[0] == 'unaligned': # alignment error
2053 # run a Trap but set DAR first
2054 print("memory unaligned exception, DAR", e.dar, repr(e))
2055 self.spr['DAR'] = SelectableInt(e.dar, 64)
2056 self.call_trap(0x600, PIb.PRIV) # 0x600, privileged
2057 return
2058 elif e.args[0] == 'invalid': # invalid
2059 # run a Trap but set DAR first
2060 log("RADIX MMU memory invalid error, mode %s" % e.mode)
2061 if e.mode == 'EXECUTE':
2062 # XXX TODO: must set a few bits in SRR1,
2063 # see microwatt loadstore1.vhdl
2064 # if m_in.segerr = '0' then
2065 # v.srr1(47 - 33) := m_in.invalid;
2066 # v.srr1(47 - 35) := m_in.perm_error; -- noexec fault
2067 # v.srr1(47 - 44) := m_in.badtree;
2068 # v.srr1(47 - 45) := m_in.rc_error;
2069 # v.intr_vec := 16#400#;
2070 # else
2071 # v.intr_vec := 16#480#;
2072 self.call_trap(0x400, PIb.PRIV) # 0x400, privileged
2073 else:
2074 self.call_trap(0x300, PIb.PRIV) # 0x300, privileged
2075 return
2076 # not supported yet:
2077 raise e # ... re-raise
2078
2079 # append to the trace log file
2080 self.trace(" # %s\n" % code)
2081
2082 log("gprs after code", code)
2083 self.gpr.dump()
2084 crs = []
2085 for i in range(len(self.crl)):
2086 crs.append(bin(self.crl[i].asint()))
2087 log("crs", " ".join(crs))
2088 log("vl,maxvl", self.svstate.vl, self.svstate.maxvl)
2089
2090 # don't use this except in special circumstances
2091 if not self.respect_pc:
2092 self.fake_pc += 4
2093
2094 log("execute one, CIA NIA", hex(self.pc.CIA.value),
2095 hex(self.pc.NIA.value))
2096
2097 def get_assembly_name(self):
2098 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
2099 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
2100 dec_insn = yield self.dec2.e.do.insn
2101 insn_1_11 = yield self.dec2.e.do.insn[1:11]
2102 asmcode = yield self.dec2.dec.op.asmcode
2103 int_op = yield self.dec2.dec.op.internal_op
2104 log("get assembly name asmcode", asmcode, int_op,
2105 hex(dec_insn), bin(insn_1_11))
2106 asmop = insns.get(asmcode, None)
2107
2108 # sigh reconstruct the assembly instruction name
2109 if hasattr(self.dec2.e.do, "oe"):
2110 ov_en = yield self.dec2.e.do.oe.oe
2111 ov_ok = yield self.dec2.e.do.oe.ok
2112 else:
2113 ov_en = False
2114 ov_ok = False
2115 if hasattr(self.dec2.e.do, "rc"):
2116 rc_en = yield self.dec2.e.do.rc.rc
2117 rc_ok = yield self.dec2.e.do.rc.ok
2118 else:
2119 rc_en = False
2120 rc_ok = False
2121 # annoying: ignore rc_ok if RC1 is set (for creating *assembly name*)
2122 RC1 = yield self.dec2.rm_dec.RC1
2123 if RC1:
2124 rc_en = False
2125 rc_ok = False
2126 # grrrr have to special-case MUL op (see DecodeOE)
2127 log("ov %d en %d rc %d en %d op %d" %
2128 (ov_ok, ov_en, rc_ok, rc_en, int_op))
2129 if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
2130 log("mul op")
2131 if rc_en & rc_ok:
2132 asmop += "."
2133 else:
2134 if not asmop.endswith("."): # don't add "." to "andis."
2135 if rc_en & rc_ok:
2136 asmop += "."
2137 if hasattr(self.dec2.e.do, "lk"):
2138 lk = yield self.dec2.e.do.lk
2139 if lk:
2140 asmop += "l"
2141 log("int_op", int_op)
2142 if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
2143 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
2144 log("AA", AA)
2145 if AA:
2146 asmop += "a"
2147 spr_msb = yield from self.get_spr_msb()
2148 if int_op == MicrOp.OP_MFCR.value:
2149 if spr_msb:
2150 asmop = 'mfocrf'
2151 else:
2152 asmop = 'mfcr'
2153 # XXX TODO: for whatever weird reason this doesn't work
2154 # https://bugs.libre-soc.org/show_bug.cgi?id=390
2155 if int_op == MicrOp.OP_MTCRF.value:
2156 if spr_msb:
2157 asmop = 'mtocrf'
2158 else:
2159 asmop = 'mtcrf'
2160 return asmop
2161
2162 def reset_remaps(self):
2163 self.remap_loopends = [0] * 4
2164 self.remap_idxs = [0, 1, 2, 3]
2165
2166 def get_remap_indices(self):
2167 """WARNING, this function stores remap_idxs and remap_loopends
2168 in the class for later use. this to avoid problems with yield
2169 """
2170 # go through all iterators in lock-step, advance to next remap_idx
2171 srcstep, dststep, ssubstep, dsubstep = self.get_src_dststeps()
2172 # get four SVSHAPEs. here we are hard-coding
2173 self.reset_remaps()
2174 SVSHAPE0 = self.spr['SVSHAPE0']
2175 SVSHAPE1 = self.spr['SVSHAPE1']
2176 SVSHAPE2 = self.spr['SVSHAPE2']
2177 SVSHAPE3 = self.spr['SVSHAPE3']
2178 # set up the iterators
2179 remaps = [(SVSHAPE0, SVSHAPE0.get_iterator()),
2180 (SVSHAPE1, SVSHAPE1.get_iterator()),
2181 (SVSHAPE2, SVSHAPE2.get_iterator()),
2182 (SVSHAPE3, SVSHAPE3.get_iterator()),
2183 ]
2184
2185 dbg = []
2186 for i, (shape, remap) in enumerate(remaps):
2187 # zero is "disabled"
2188 if shape.value == 0x0:
2189 self.remap_idxs[i] = 0
2190 # pick src or dststep depending on reg num (0-2=in, 3-4=out)
2191 step = dststep if (i in [3, 4]) else srcstep
2192 # this is terrible. O(N^2) looking for the match. but hey.
2193 for idx, (remap_idx, loopends) in enumerate(remap):
2194 if idx == step:
2195 break
2196 self.remap_idxs[i] = remap_idx
2197 self.remap_loopends[i] = loopends
2198 dbg.append((i, step, remap_idx, loopends))
2199 for (i, step, remap_idx, loopends) in dbg:
2200 log("SVSHAPE %d idx, end" % i, step, remap_idx, bin(loopends))
2201 return remaps
2202
2203 def get_spr_msb(self):
2204 dec_insn = yield self.dec2.e.do.insn
2205 return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
2206
2207 def call(self, name, syscall_emu_active=False):
2208 """call(opcode) - the primary execution point for instructions
2209 """
2210 self.last_st_addr = None # reset the last known store address
2211 self.last_ld_addr = None # etc.
2212
2213 ins_name = name.strip() # remove spaces if not already done so
2214 if self.halted:
2215 log("halted - not executing", ins_name)
2216 return
2217
2218 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
2219 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
2220 asmop = yield from self.get_assembly_name()
2221 log("call", ins_name, asmop, kind=LogType.InstrInOuts)
2222
2223 # sv.setvl is *not* a loop-function. sigh
2224 log("is_svp64_mode", self.is_svp64_mode, asmop)
2225
2226 # check privileged
2227 int_op = yield self.dec2.dec.op.internal_op
2228 spr_msb = yield from self.get_spr_msb()
2229
2230 instr_is_privileged = False
2231 if int_op in [MicrOp.OP_ATTN.value,
2232 MicrOp.OP_MFMSR.value,
2233 MicrOp.OP_MTMSR.value,
2234 MicrOp.OP_MTMSRD.value,
2235 # TODO: OP_TLBIE
2236 MicrOp.OP_RFID.value]:
2237 instr_is_privileged = True
2238 if int_op in [MicrOp.OP_MFSPR.value,
2239 MicrOp.OP_MTSPR.value] and spr_msb:
2240 instr_is_privileged = True
2241
2242 # check MSR priv bit and whether op is privileged: if so, throw trap
2243 PR = self.msr[MSRb.PR]
2244 log("is priv", instr_is_privileged, hex(self.msr.value), PR)
2245 if instr_is_privileged and PR == 1:
2246 self.call_trap(0x700, PIb.PRIV)
2247 return
2248
2249 # check halted condition
2250 if ins_name == 'attn':
2251 self.halted = True
2252 return
2253
2254 # User mode system call emulation consists of several steps:
2255 # 1. Detect whether instruction is sc or scv.
2256 # 2. Call the HDL implementation which invokes trap.
2257 # 3. Reroute the guest system call to host system call.
2258 # 4. Force return from the interrupt as if we had guest OS.
2259 # FIXME: enable PPC_FEATURE2_SCV in mem.py DEFAULT_AT_HWCAP2 when
2260 # scv emulation works.
2261 if ((asmop in ("sc", "scv")) and
2262 (self.syscall is not None) and
2263 not syscall_emu_active):
2264 # Memoize PC and trigger an interrupt
2265 if self.respect_pc:
2266 pc = self.pc.CIA.value
2267 else:
2268 pc = self.fake_pc
2269 yield from self.call(asmop, syscall_emu_active=True)
2270
2271 # Reroute the syscall to host OS
2272 identifier = self.gpr(0)
2273 arguments = map(self.gpr, range(3, 9))
2274 result = self.syscall(identifier, *arguments)
2275 self.gpr.write(3, result, False, self.namespace["XLEN"])
2276
2277 # Return from interrupt
2278 yield from self.call("rfid", syscall_emu_active=True)
2279 return
2280 elif ((name in ("rfid", "hrfid")) and syscall_emu_active):
2281 asmop = "rfid"
2282
2283 # check illegal instruction
2284 illegal = False
2285 if ins_name not in ['mtcrf', 'mtocrf']:
2286 illegal = ins_name != asmop
2287
2288 # list of instructions not being supported by binutils (.long)
2289 dotstrp = asmop[:-1] if asmop[-1] == '.' else asmop
2290 if dotstrp in [*FPTRANS_INSNS,
2291 *LDST_UPDATE_INSNS,
2292 'ffmadds', 'fdmadds', 'ffadds',
2293 'minmax',
2294 "brh", "brw", "brd",
2295 'setvl', 'svindex', 'svremap', 'svstep',
2296 'svshape', 'svshape2',
2297 'ternlogi', 'bmask', 'cprop', 'gbbd',
2298 'absdu', 'absds', 'absdacs', 'absdacu', 'avgadd',
2299 'fmvis', 'fishmv', 'pcdec', "maddedu", "divmod2du",
2300 "dsld", "dsrd", "maddedus",
2301 "sadd", "saddw", "sadduw",
2302 "cffpr", "cffpro",
2303 "mffpr", "mffprs",
2304 "ctfpr", "ctfprs",
2305 "mtfpr", "mtfprs",
2306 "maddsubrs", "maddrs", "msubrs",
2307 "cfuged", "cntlzdm", "cnttzdm", "pdepd", "pextd",
2308 "setbc", "setbcr", "setnbc", "setnbcr",
2309 ]:
2310 illegal = False
2311 ins_name = dotstrp
2312
2313 # match against instructions treated as nop, see nop below
2314 if asmop.startswith("dcbt"):
2315 illegal = False
2316 ins_name = "nop"
2317
2318 # branch-conditional redirects to sv.bc
2319 if asmop.startswith('bc') and self.is_svp64_mode:
2320 ins_name = 'sv.%s' % ins_name
2321
2322 # ld-immediate-with-pi mode redirects to ld-with-postinc
2323 ldst_imm_postinc = False
2324 if 'u' in ins_name and self.is_svp64_mode:
2325 ldst_pi = yield self.dec2.rm_dec.ldst_postinc
2326 if ldst_pi:
2327 ins_name = ins_name.replace("u", "up")
2328 ldst_imm_postinc = True
2329 log(" enable ld/st postinc", ins_name)
2330
2331 log(" post-processed name", dotstrp, ins_name, asmop)
2332
2333 # illegal instructions call TRAP at 0x700
2334 if illegal:
2335 print("illegal", ins_name, asmop)
2336 self.call_trap(0x700, PIb.ILLEG)
2337 print("name %s != %s - calling ILLEGAL trap, PC: %x" %
2338 (ins_name, asmop, self.pc.CIA.value))
2339 return
2340
2341 # this is for setvl "Vertical" mode: if set true,
2342 # srcstep/dststep is explicitly advanced. mode says which SVSTATE to
2343 # test for Rc=1 end condition. 3 bits of all 3 loops are put into CR0
2344 self.allow_next_step_inc = False
2345 self.svstate_next_mode = 0
2346
2347 # nop has to be supported, we could let the actual op calculate
2348 # but PowerDecoder has a pattern for nop
2349 if ins_name == 'nop':
2350 self.update_pc_next()
2351 return
2352
2353 # get elwidths, defaults to 64
2354 xlen = 64
2355 ew_src = 64
2356 ew_dst = 64
2357 if self.is_svp64_mode:
2358 ew_src = yield self.dec2.rm_dec.ew_src
2359 ew_dst = yield self.dec2.rm_dec.ew_dst
2360 ew_src = 8 << (3-int(ew_src)) # convert to bitlength
2361 ew_dst = 8 << (3-int(ew_dst)) # convert to bitlength
2362 xlen = max(ew_src, ew_dst)
2363 log("elwidth", ew_src, ew_dst)
2364 log("XLEN:", self.is_svp64_mode, xlen)
2365
2366 # look up instruction in ISA.instrs, prepare namespace
2367 if ins_name == 'pcdec': # grrrr yes there are others ("stbcx." etc.)
2368 info = self.instrs[ins_name+"."]
2369 elif asmop[-1] == '.' and asmop in self.instrs:
2370 info = self.instrs[asmop]
2371 else:
2372 info = self.instrs[ins_name]
2373 yield from self.prep_namespace(ins_name, info.form, info.op_fields,
2374 xlen)
2375
2376 # dict retains order
2377 inputs = dict.fromkeys(create_full_args(
2378 read_regs=info.read_regs, special_regs=info.special_regs,
2379 uninit_regs=info.uninit_regs, write_regs=info.write_regs))
2380
2381 # preserve order of register names
2382 write_without_special_regs = OrderedSet(info.write_regs)
2383 write_without_special_regs -= OrderedSet(info.special_regs)
2384 input_names = create_args([
2385 *info.read_regs, *info.uninit_regs, *write_without_special_regs])
2386 log("input names", input_names)
2387
2388 # get SVP64 entry for the current instruction
2389 sv_rm = self.svp64rm.instrs.get(ins_name)
2390 if sv_rm is not None:
2391 dest_cr, src_cr, src_byname, dest_byname = decode_extra(sv_rm)
2392 else:
2393 dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
2394 log("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
2395
2396 # see if srcstep/dststep need skipping over masked-out predicate bits
2397 # svstep also needs advancement because it calls SVSTATE_NEXT.
2398 # bit the remaps get computed just after pre_inc moves them on
2399 # with remap_set_steps substituting for PowerDecider2 not doing it,
2400 # and SVSTATE_NEXT not being able to.use yield, the preinc on
2401 # svstep is necessary for now.
2402 self.reset_remaps()
2403 if (self.is_svp64_mode or ins_name in ['svstep']):
2404 yield from self.svstate_pre_inc()
2405 if self.is_svp64_mode:
2406 pre = yield from self.update_new_svstate_steps()
2407 if pre:
2408 self.svp64_reset_loop()
2409 self.update_nia()
2410 self.update_pc_next()
2411 return
2412 srcstep, dststep, ssubstep, dsubstep = self.get_src_dststeps()
2413 pred_dst_zero = self.pred_dst_zero
2414 pred_src_zero = self.pred_src_zero
2415 vl = self.svstate.vl
2416 subvl = yield self.dec2.rm_dec.rm_in.subvl
2417
2418 # VL=0 in SVP64 mode means "do nothing: skip instruction"
2419 if self.is_svp64_mode and vl == 0:
2420 self.pc.update(self.namespace, self.is_svp64_mode)
2421 log("SVP64: VL=0, end of call", self.namespace['CIA'],
2422 self.namespace['NIA'], kind=LogType.InstrInOuts)
2423 return
2424
2425 # for when SVREMAP is active, using pre-arranged schedule.
2426 # note: modifying PowerDecoder2 needs to "settle"
2427 remap_en = self.svstate.SVme
2428 persist = self.svstate.RMpst
2429 active = (persist or self.last_op_svshape) and remap_en != 0
2430 if self.is_svp64_mode:
2431 yield self.dec2.remap_active.eq(remap_en if active else 0)
2432 yield Settle()
2433 if persist or self.last_op_svshape:
2434 remaps = self.get_remap_indices()
2435 if self.is_svp64_mode and (persist or self.last_op_svshape):
2436 yield from self.remap_set_steps(remaps)
2437 # after that, settle down (combinatorial) to let Vector reg numbers
2438 # work themselves out
2439 yield Settle()
2440 if self.is_svp64_mode:
2441 remap_active = yield self.dec2.remap_active
2442 else:
2443 remap_active = False
2444 log("remap active", bin(remap_active), self.is_svp64_mode)
2445
2446 # LDST does *not* allow elwidth overrides on RA (Effective Address).
2447 # this has to be detected. XXX TODO: RB for ldst-idx *may* need
2448 # conversion (to 64-bit) also.
2449 # see write reg this *HAS* to also override XLEN to 64 on LDST/Update
2450 sv_mode = yield self.dec2.rm_dec.sv_mode
2451 is_ldst = (sv_mode in [SVMode.LDST_IDX.value, SVMode.LDST_IMM.value] \
2452 and self.is_svp64_mode)
2453 log("is_ldst", sv_mode, is_ldst)
2454
2455 # main input registers (RT, RA ...)
2456 for name in input_names:
2457 if name == "overflow":
2458 inputs[name] = SelectableInt(0, 1)
2459 elif name.startswith("RESERVE"):
2460 inputs[name] = getattr(self, name)
2461 elif name == "FPSCR":
2462 inputs[name] = self.FPSCR
2463 elif name in ("CA", "CA32", "OV", "OV32"):
2464 inputs[name] = self.spr['XER'][XER_bits[name]]
2465 elif name in "CR0":
2466 inputs[name] = self.crl[0]
2467 elif name in spr_byname:
2468 inputs[name] = self.spr[name]
2469 elif is_ldst and name == 'RA':
2470 regval = (yield from self.get_input(name, ew_src, 64))
2471 log("EA (RA) regval name", name, regval)
2472 inputs[name] = regval
2473 else:
2474 regval = (yield from self.get_input(name, ew_src, xlen))
2475 log("regval name", name, regval)
2476 inputs[name] = regval
2477
2478 # arrrrgh, awful hack, to get _RT into namespace
2479 if ins_name in ['setvl', 'svstep']:
2480 regname = "_RT"
2481 RT = yield self.dec2.dec.RT
2482 self.namespace[regname] = SelectableInt(RT, 5)
2483 if RT == 0:
2484 self.namespace["RT"] = SelectableInt(0, 5)
2485 regnum, is_vec = yield from get_idx_out(self.dec2, "RT")
2486 log('hack input reg %s %s' % (name, str(regnum)), is_vec)
2487
2488 # in SVP64 mode for LD/ST work out immediate
2489 # XXX TODO: replace_ds for DS-Form rather than D-Form.
2490 # use info.form to detect
2491 if self.is_svp64_mode and not ldst_imm_postinc:
2492 yield from self.check_replace_d(info, remap_active)
2493
2494 # "special" registers
2495 for special in info.special_regs:
2496 if special in special_sprs:
2497 inputs[special] = self.spr[special]
2498 else:
2499 inputs[special] = self.namespace[special]
2500
2501 # clear trap (trap) NIA
2502 self.trap_nia = None
2503
2504 # check if this was an sv.bc* and create an indicator that
2505 # this is the last check to be made as a loop. combined with
2506 # the ALL/ANY mode we can early-exit. note that BI (to test)
2507 # is an input so there is no termination if BI is scalar
2508 # (because early-termination is for *output* scalars)
2509 if self.is_svp64_mode and ins_name.startswith("sv.bc"):
2510 end_loop = srcstep == vl-1 or dststep == vl-1
2511 self.namespace['end_loop'] = SelectableInt(end_loop, 1)
2512
2513 inp_ca_ov = (self.spr['XER'][XER_bits['CA']].value,
2514 self.spr['XER'][XER_bits['OV']].value)
2515
2516 for k, v in inputs.items():
2517 if v is None:
2518 v = SelectableInt(0, self.XLEN)
2519 # prevent pseudo-code from modifying input registers
2520 v = copy_assign_rhs(v)
2521 if isinstance(v, SelectableInt):
2522 v.ok = False
2523 inputs[k] = v
2524
2525 # execute actual instruction here (finally)
2526 log("inputs", inputs)
2527 inputs = list(inputs.values())
2528 results = info.func(self, *inputs)
2529 output_names = create_args(info.write_regs)
2530 outs = {}
2531 # record .ok before anything after the pseudo-code can modify it
2532 outs_ok = {}
2533 for out, n in zip(results or [], output_names):
2534 outs[n] = out
2535 outs_ok[n] = True
2536 if isinstance(out, SelectableInt):
2537 outs_ok[n] = out.ok
2538 log("results", outs)
2539 log("results ok", outs_ok)
2540
2541 # "inject" decorator takes namespace from function locals: we need to
2542 # overwrite NIA being overwritten (sigh)
2543 if self.trap_nia is not None:
2544 self.namespace['NIA'] = self.trap_nia
2545
2546 log("after func", self.namespace['CIA'], self.namespace['NIA'])
2547
2548 # check if op was a LD/ST so that debugging can check the
2549 # address
2550 if int_op in [MicrOp.OP_STORE.value,
2551 ]:
2552 self.last_st_addr = self.mem.last_st_addr
2553 if int_op in [MicrOp.OP_LOAD.value,
2554 ]:
2555 self.last_ld_addr = self.mem.last_ld_addr
2556 log("op", int_op, MicrOp.OP_STORE.value, MicrOp.OP_LOAD.value,
2557 self.last_st_addr, self.last_ld_addr)
2558
2559 # detect if CA/CA32 already in outputs (sra*, basically)
2560 ca = outs.get("CA")
2561 ca32 = outs.get("CA32")
2562
2563 log("carry already done?", ca, ca32, output_names)
2564 # soc test_pipe_caller tests don't have output_carry
2565 has_output_carry = hasattr(self.dec2.e.do, "output_carry")
2566 carry_en = has_output_carry and (yield self.dec2.e.do.output_carry)
2567 if carry_en:
2568 yield from self.handle_carry_(
2569 inputs, results[0], ca, ca32, inp_ca_ov=inp_ca_ov)
2570
2571 # get output named "overflow" and "CR0"
2572 overflow = outs.get('overflow')
2573 cr0 = outs.get('CR0')
2574 cr1 = outs.get('CR1')
2575
2576 # soc test_pipe_caller tests don't have oe
2577 has_oe = hasattr(self.dec2.e.do, "oe")
2578 # yeah just no. not in parallel processing
2579 if has_oe and not self.is_svp64_mode:
2580 # detect if overflow was in return result
2581 ov_en = yield self.dec2.e.do.oe.oe
2582 ov_ok = yield self.dec2.e.do.oe.ok
2583 log("internal overflow", ins_name, overflow, "en?", ov_en, ov_ok)
2584 if ov_en & ov_ok:
2585 yield from self.handle_overflow(
2586 inputs, results[0], overflow, inp_ca_ov=inp_ca_ov)
2587
2588 # only do SVP64 dest predicated Rc=1 if dest-pred is not enabled
2589 rc_en = False
2590 if not self.is_svp64_mode or not pred_dst_zero:
2591 if hasattr(self.dec2.e.do, "rc"):
2592 rc_en = yield self.dec2.e.do.rc.rc
2593 # don't do Rc=1 for svstep it is handled explicitly.
2594 # XXX TODO: now that CR0 is supported, sort out svstep's pseudocode
2595 # to write directly to CR0 instead of in ISACaller. hooyahh.
2596 if rc_en and ins_name not in ['svstep']:
2597 if outs_ok.get('FPSCR', False):
2598 FPSCR = outs['FPSCR']
2599 else:
2600 FPSCR = self.FPSCR
2601 yield from self.do_rc_ov(
2602 ins_name, results[0], overflow, cr0, cr1, FPSCR)
2603
2604 # check failfirst
2605 ffirst_hit = False, False
2606 if self.is_svp64_mode:
2607 sv_mode = yield self.dec2.rm_dec.sv_mode
2608 is_cr = sv_mode == SVMode.CROP.value
2609 chk = rc_en or is_cr
2610 if outs_ok.get('CR', False):
2611 # early write so check_ffirst can see value
2612 self.namespace['CR'].eq(outs['CR'])
2613 ffirst_hit = (yield from self.check_ffirst(info, chk, srcstep))
2614
2615 # any modified return results?
2616 yield from self.do_outregs(
2617 info, outs, carry_en, ffirst_hit, ew_dst, outs_ok)
2618
2619 # check if a FP Exception occurred. TODO for DD-FFirst, check VLi
2620 # and raise the exception *after* if VLi=1 but if VLi=0 then
2621 # truncate and make the exception "disappear".
2622 if self.FPSCR.FEX and (self.msr[MSRb.FE0] or self.msr[MSRb.FE1]):
2623 self.call_trap(0x700, PIb.FP)
2624 return
2625
2626 yield from self.do_nia(asmop, ins_name, rc_en, ffirst_hit)
2627
2628 def check_ffirst(self, info, rc_en, srcstep):
2629 """fail-first mode: checks a bit of Rc Vector, truncates VL
2630 """
2631 rm_mode = yield self.dec2.rm_dec.mode
2632 ff_inv = yield self.dec2.rm_dec.inv
2633 cr_bit = yield self.dec2.rm_dec.cr_sel
2634 RC1 = yield self.dec2.rm_dec.RC1
2635 vli_ = yield self.dec2.rm_dec.vli # VL inclusive if truncated
2636 log(" ff rm_mode", rc_en, rm_mode, SVP64RMMode.FFIRST.value)
2637 log(" inv", ff_inv)
2638 log(" RC1", RC1)
2639 log(" vli", vli_)
2640 log(" cr_bit", cr_bit)
2641 log(" rc_en", rc_en)
2642 ffirst = yield from is_ffirst_mode(self.dec2)
2643 if not rc_en or not ffirst:
2644 return False, False
2645 # get the CR vevtor, do BO-test
2646 crf = "CR0"
2647 log("asmregs", info.asmregs[0], info.write_regs)
2648 if 'CR' in info.write_regs and 'BF' in info.asmregs[0]:
2649 crf = 'BF'
2650 regnum, is_vec = yield from get_cr_out(self.dec2, crf)
2651 crtest = self.crl[regnum]
2652 ffirst_hit = crtest[cr_bit] != ff_inv
2653 log("cr test", crf, regnum, int(crtest), crtest, cr_bit, ff_inv)
2654 log("cr test?", ffirst_hit)
2655 if not ffirst_hit:
2656 return False, False
2657 # Fail-first activated, truncate VL
2658 vli = SelectableInt(int(vli_), 7)
2659 self.svstate.vl = srcstep + vli
2660 yield self.dec2.state.svstate.eq(self.svstate.value)
2661 yield Settle() # let decoder update
2662 return True, vli_
2663
2664 def do_rc_ov(self, ins_name, result, overflow, cr0, cr1, FPSCR):
2665 cr_out = yield self.dec2.op.cr_out
2666 if cr_out == CROutSel.CR1.value:
2667 rc_reg = "CR1"
2668 else:
2669 rc_reg = "CR0"
2670 regnum, is_vec = yield from get_cr_out(self.dec2, rc_reg)
2671 # hang on... for `setvl` actually you want to test SVSTATE.VL
2672 is_setvl = ins_name in ('svstep', 'setvl')
2673 if is_setvl:
2674 result = SelectableInt(result.vl, 64)
2675 # else:
2676 # overflow = None # do not override overflow except in setvl
2677
2678 if rc_reg == "CR1":
2679 if cr1 is None:
2680 cr1 = int(FPSCR.FX) << 3
2681 cr1 |= int(FPSCR.FEX) << 2
2682 cr1 |= int(FPSCR.VX) << 1
2683 cr1 |= int(FPSCR.OX)
2684 log("default fp cr1", cr1)
2685 else:
2686 log("explicit cr1", cr1)
2687 self.crl[regnum].eq(cr1)
2688 elif cr0 is None:
2689 # if there was not an explicit CR0 in the pseudocode,
2690 # do implicit Rc=1
2691 c = self.handle_comparison(result, regnum, overflow, no_so=is_setvl)
2692 log("implicit cr0 %d" % regnum, c)
2693 else:
2694 # otherwise we just blat CR0 into the required regnum
2695 log("explicit cr0 %d" % regnum, cr0)
2696 self.crl[regnum].eq(cr0)
2697
2698 def do_outregs(self, info, outs, ca_en, ffirst_hit, ew_dst, outs_ok):
2699 ffirst_hit, vli = ffirst_hit
2700 # write out any regs for this instruction, but only if fail-first is ok
2701 # XXX TODO: allow CR-vector to be written out even if ffirst fails
2702 if not ffirst_hit or vli:
2703 for name, output in outs.items():
2704 if not outs_ok[name]:
2705 log("skipping writing output with .ok=False", name, output)
2706 continue
2707 yield from self.check_write(info, name, output, ca_en, ew_dst)
2708 # restore the CR value on non-VLI failfirst (from sv.cmp and others
2709 # which write directly to CR in the pseudocode (gah, what a mess)
2710 # if ffirst_hit and not vli:
2711 # self.cr.value = self.cr_backup
2712
2713 def do_nia(self, asmop, ins_name, rc_en, ffirst_hit):
2714 ffirst_hit, vli = ffirst_hit
2715 if ffirst_hit:
2716 self.svp64_reset_loop()
2717 nia_update = True
2718 else:
2719 # check advancement of src/dst/sub-steps and if PC needs updating
2720 nia_update = (yield from self.check_step_increment(
2721 rc_en, asmop, ins_name))
2722 if nia_update:
2723 self.update_pc_next()
2724
2725 def check_replace_d(self, info, remap_active):
2726 replace_d = False # update / replace constant in pseudocode
2727 ldstmode = yield self.dec2.rm_dec.ldstmode
2728 vl = self.svstate.vl
2729 subvl = yield self.dec2.rm_dec.rm_in.subvl
2730 srcstep, dststep = self.new_srcstep, self.new_dststep
2731 ssubstep, dsubstep = self.new_ssubstep, self.new_dsubstep
2732 if info.form == 'DS':
2733 # DS-Form, multiply by 4 then knock 2 bits off after
2734 imm = yield self.dec2.dec.fields.FormDS.DS[0:14] * 4
2735 else:
2736 imm = yield self.dec2.dec.fields.FormD.D[0:16]
2737 imm = exts(imm, 16) # sign-extend to integer
2738 # get the right step. LD is from srcstep, ST is dststep
2739 op = yield self.dec2.e.do.insn_type
2740 offsmul = 0
2741 if op == MicrOp.OP_LOAD.value:
2742 if remap_active:
2743 offsmul = yield self.dec2.in1_step
2744 log("D-field REMAP src", imm, offsmul, ldstmode)
2745 else:
2746 offsmul = (srcstep * (subvl+1)) + ssubstep
2747 log("D-field src", imm, offsmul, ldstmode)
2748 elif op == MicrOp.OP_STORE.value:
2749 # XXX NOTE! no bit-reversed STORE! this should not ever be used
2750 offsmul = (dststep * (subvl+1)) + dsubstep
2751 log("D-field dst", imm, offsmul, ldstmode)
2752 # Unit-Strided LD/ST adds offset*width to immediate
2753 if ldstmode == SVP64LDSTmode.UNITSTRIDE.value:
2754 ldst_len = yield self.dec2.e.do.data_len
2755 imm = SelectableInt(imm + offsmul * ldst_len, 32)
2756 replace_d = True
2757 # Element-strided multiplies the immediate by element step
2758 elif ldstmode == SVP64LDSTmode.ELSTRIDE.value:
2759 imm = SelectableInt(imm * offsmul, 32)
2760 replace_d = True
2761 if replace_d:
2762 ldst_ra_vec = yield self.dec2.rm_dec.ldst_ra_vec
2763 ldst_imz_in = yield self.dec2.rm_dec.ldst_imz_in
2764 log("LDSTmode", SVP64LDSTmode(ldstmode),
2765 offsmul, imm, ldst_ra_vec, ldst_imz_in)
2766 # new replacement D... errr.. DS
2767 if replace_d:
2768 if info.form == 'DS':
2769 # TODO: assert 2 LSBs are zero?
2770 log("DS-Form, TODO, assert 2 LSBs zero?", bin(imm.value))
2771 imm.value = imm.value >> 2
2772 self.namespace['DS'] = imm
2773 else:
2774 self.namespace['D'] = imm
2775
2776 def get_input(self, name, ew_src, xlen):
2777 # using PowerDecoder2, first, find the decoder index.
2778 # (mapping name RA RB RC RS to in1, in2, in3)
2779 regnum, is_vec = yield from get_idx_in(self.dec2, name, True)
2780 if regnum is None:
2781 # doing this is not part of svp64, it's because output
2782 # registers, to be modified, need to be in the namespace.
2783 regnum, is_vec = yield from get_idx_out(self.dec2, name, True)
2784 if regnum is None:
2785 regnum, is_vec = yield from get_idx_out2(self.dec2, name, True)
2786
2787 if isinstance(regnum, tuple):
2788 (regnum, base, offs) = regnum
2789 else:
2790 base, offs = regnum, 0 # temporary HACK
2791
2792 # in case getting the register number is needed, _RA, _RB
2793 # (HACK: only in straight non-svp64-mode for now, or elwidth == 64)
2794 regname = "_" + name
2795 if not self.is_svp64_mode or ew_src == 64:
2796 self.namespace[regname] = regnum
2797 else:
2798 # FIXME: we're trying to access a sub-register, plain register
2799 # numbers don't work for that. for now, just pass something that
2800 # can be compared to 0 and probably will cause an error if misused.
2801 # see https://bugs.libre-soc.org/show_bug.cgi?id=1221
2802 self.namespace[regname] = regnum * 10000
2803
2804 if not self.is_svp64_mode or not self.pred_src_zero:
2805 log('reading reg %s %s' % (name, str(regnum)), is_vec)
2806 if name in fregs:
2807 fval = self.fpr(base, is_vec, offs, ew_src)
2808 reg_val = SelectableInt(fval)
2809 assert ew_src == self.XLEN, "TODO fix elwidth conversion"
2810 self.trace("r:FPR:%d:%d:%d " % (base, offs, ew_src))
2811 log("read fp reg %d/%d: 0x%x" % (base, offs, reg_val.value),
2812 kind=LogType.InstrInOuts)
2813 elif name is not None:
2814 gval = self.gpr(base, is_vec, offs, ew_src)
2815 reg_val = SelectableInt(gval.value, bits=xlen)
2816 self.trace("r:GPR:%d:%d:%d " % (base, offs, ew_src))
2817 log("read int reg %d/%d: 0x%x" % (base, offs, reg_val.value),
2818 kind=LogType.InstrInOuts)
2819 else:
2820 log('zero input reg %s %s' % (name, str(regnum)), is_vec)
2821 reg_val = SelectableInt(0, ew_src)
2822 return reg_val
2823
2824 def remap_set_steps(self, remaps):
2825 """remap_set_steps sets up the in1/2/3 and out1/2 steps.
2826 they work in concert with PowerDecoder2 at the moment,
2827 there is no HDL implementation of REMAP. therefore this
2828 function, because ISACaller still uses PowerDecoder2,
2829 will *explicitly* write the dec2.XX_step values. this has
2830 to get sorted out.
2831 """
2832 # just some convenient debug info
2833 for i in range(4):
2834 sname = 'SVSHAPE%d' % i
2835 shape = self.spr[sname]
2836 log(sname, bin(shape.value))
2837 log(" lims", shape.lims)
2838 log(" mode", shape.mode)
2839 log(" skip", shape.skip)
2840
2841 # set up the list of steps to remap
2842 mi0 = self.svstate.mi0
2843 mi1 = self.svstate.mi1
2844 mi2 = self.svstate.mi2
2845 mo0 = self.svstate.mo0
2846 mo1 = self.svstate.mo1
2847 steps = [[self.dec2.in1_step, mi0], # RA
2848 [self.dec2.in2_step, mi1], # RB
2849 [self.dec2.in3_step, mi2], # RC
2850 [self.dec2.o_step, mo0], # RT
2851 [self.dec2.o2_step, mo1], # EA
2852 ]
2853 if False: # TODO
2854 rnames = ['RA', 'RB', 'RC', 'RT', 'RS']
2855 for i, reg in enumerate(rnames):
2856 idx = yield from get_idx_map(self.dec2, reg)
2857 if idx is None:
2858 idx = yield from get_idx_map(self.dec2, "F"+reg)
2859 if idx == 1: # RA
2860 steps[i][0] = self.dec2.in1_step
2861 elif idx == 2: # RB
2862 steps[i][0] = self.dec2.in2_step
2863 elif idx == 3: # RC
2864 steps[i][0] = self.dec2.in3_step
2865 log("remap step", i, reg, idx, steps[i][1])
2866 remap_idxs = self.remap_idxs
2867 rremaps = []
2868 # now cross-index the required SHAPE for each of 3-in 2-out regs
2869 rnames = ['RA', 'RB', 'RC', 'RT', 'EA']
2870 for i, (dstep, shape_idx) in enumerate(steps):
2871 (shape, remap) = remaps[shape_idx]
2872 remap_idx = remap_idxs[shape_idx]
2873 # zero is "disabled"
2874 if shape.value == 0x0:
2875 continue
2876 # now set the actual requested step to the current index
2877 if dstep is not None:
2878 yield dstep.eq(remap_idx)
2879
2880 # debug printout info
2881 rremaps.append((shape.mode, hex(shape.value), dstep,
2882 i, rnames[i], shape_idx, remap_idx))
2883 for x in rremaps:
2884 log("shape remap", x)
2885
2886 def check_write(self, info, name, output, carry_en, ew_dst):
2887 if name == 'overflow': # ignore, done already (above)
2888 return
2889 if name == 'CR0': # ignore, done already (above)
2890 return
2891 if isinstance(output, int):
2892 output = SelectableInt(output, EFFECTIVELY_UNLIMITED)
2893 # write FPSCR
2894 if name.startswith("RESERVE"):
2895 log("write %s 0x%x" % (name, output.value))
2896 getattr(self, name).eq(output)
2897 return
2898 if name in ['FPSCR', ]:
2899 log("write FPSCR 0x%x" % (output.value))
2900 self.FPSCR.eq(output)
2901 return
2902 # write carry flags
2903 if name in ['CA', 'CA32']:
2904 if carry_en:
2905 log("writing %s to XER" % name, output)
2906 log("write XER %s 0x%x" % (name, output.value))
2907 self.spr['XER'][XER_bits[name]] = output.value
2908 else:
2909 log("NOT writing %s to XER" % name, output)
2910 return
2911 # write special SPRs
2912 if name in info.special_regs:
2913 log('writing special %s' % name, output, special_sprs)
2914 log("write reg %s 0x%x" % (name, output.value),
2915 kind=LogType.InstrInOuts)
2916 if name in special_sprs:
2917 self.spr[name] = output
2918 else:
2919 self.namespace[name].eq(output)
2920 if name == 'MSR':
2921 log('msr written', hex(self.msr.value))
2922 return
2923 # find out1/out2 PR/FPR
2924 regnum, is_vec = yield from get_idx_out(self.dec2, name, True)
2925 if regnum is None:
2926 regnum, is_vec = yield from get_idx_out2(self.dec2, name, True)
2927 if regnum is None:
2928 # temporary hack for not having 2nd output
2929 regnum = yield getattr(self.decoder, name)
2930 is_vec = False
2931 # convenient debug prefix
2932 if name in fregs:
2933 reg_prefix = 'f'
2934 else:
2935 reg_prefix = 'r'
2936 # check zeroing due to predicate bit being zero
2937 if self.is_svp64_mode and self.pred_dst_zero:
2938 log('zeroing reg %s %s' % (str(regnum), str(output)), is_vec)
2939 output = SelectableInt(0, EFFECTIVELY_UNLIMITED)
2940 log("write reg %s%s 0x%x ew %d" % (reg_prefix, str(regnum),
2941 output.value, ew_dst),
2942 kind=LogType.InstrInOuts)
2943 # zero-extend tov64 bit begore storing (should use EXT oh well)
2944 if output.bits > 64:
2945 output = SelectableInt(output.value, 64)
2946 rnum, base, offset = regnum
2947 if name in fregs:
2948 self.fpr.write(regnum, output, is_vec, ew_dst)
2949 self.trace("w:FPR:%d:%d:%d " % (rnum, offset, ew_dst))
2950 return
2951
2952 # LDST/Update does *not* allow elwidths on RA (Effective Address).
2953 # this has to be detected, and overridden. see get_input (related)
2954 sv_mode = yield self.dec2.rm_dec.sv_mode
2955 is_ldst = (sv_mode in [SVMode.LDST_IDX.value, SVMode.LDST_IMM.value] \
2956 and self.is_svp64_mode)
2957 if is_ldst and name in ['EA', 'RA']:
2958 op = self.dec2.dec.op
2959 if hasattr(op, "upd"):
2960 # update mode LD/ST uses read-reg A also as an output
2961 upd = yield op.upd
2962 log("write is_ldst is_update", sv_mode, is_ldst, upd)
2963 if upd == LDSTMode.update.value:
2964 ew_dst = 64 # override for RA (EA) to 64-bit
2965
2966 self.gpr.write(regnum, output, is_vec, ew_dst)
2967 self.trace("w:GPR:%d:%d:%d " % (rnum, offset, ew_dst))
2968
2969 def check_step_increment(self, rc_en, asmop, ins_name):
2970 # check if it is the SVSTATE.src/dest step that needs incrementing
2971 # this is our Sub-Program-Counter loop from 0 to VL-1
2972 if not self.allow_next_step_inc:
2973 if self.is_svp64_mode:
2974 return (yield from self.svstate_post_inc(ins_name))
2975
2976 # XXX only in non-SVP64 mode!
2977 # record state of whether the current operation was an svshape,
2978 # OR svindex!
2979 # to be able to know if it should apply in the next instruction.
2980 # also (if going to use this instruction) should disable ability
2981 # to interrupt in between. sigh.
2982 self.last_op_svshape = asmop in ['svremap', 'svindex',
2983 'svshape2']
2984 return True
2985
2986 pre = False
2987 post = False
2988 nia_update = True
2989 log("SVSTATE_NEXT: inc requested, mode",
2990 self.svstate_next_mode, self.allow_next_step_inc)
2991 yield from self.svstate_pre_inc()
2992 pre = yield from self.update_new_svstate_steps()
2993 if pre:
2994 # reset at end of loop including exit Vertical Mode
2995 log("SVSTATE_NEXT: end of loop, reset")
2996 self.svp64_reset_loop()
2997 self.svstate.vfirst = 0
2998 self.update_nia()
2999 if not rc_en:
3000 return True
3001 self.handle_comparison(SelectableInt(0, 64)) # CR0
3002 return True
3003 if self.allow_next_step_inc == 2:
3004 log("SVSTATE_NEXT: read")
3005 nia_update = (yield from self.svstate_post_inc(ins_name))
3006 else:
3007 log("SVSTATE_NEXT: post-inc")
3008 # use actual (cached) src/dst-step here to check end
3009 remaps = self.get_remap_indices()
3010 remap_idxs = self.remap_idxs
3011 vl = self.svstate.vl
3012 subvl = yield self.dec2.rm_dec.rm_in.subvl
3013 if self.allow_next_step_inc != 2:
3014 yield from self.advance_svstate_steps()
3015 #self.namespace['SVSTATE'] = self.svstate.spr
3016 # set CR0 (if Rc=1) based on end
3017 endtest = 1 if self.at_loopend() else 0
3018 if rc_en:
3019 #results = [SelectableInt(endtest, 64)]
3020 # self.handle_comparison(results) # CR0
3021
3022 # see if svstep was requested, if so, which SVSTATE
3023 endings = 0b111
3024 if self.svstate_next_mode > 0:
3025 shape_idx = self.svstate_next_mode.value-1
3026 endings = self.remap_loopends[shape_idx]
3027 cr_field = SelectableInt((~endings) << 1 | endtest, 4)
3028 log("svstep Rc=1, CR0", cr_field, endtest)
3029 self.crl[0].eq(cr_field) # CR0
3030 if endtest:
3031 # reset at end of loop including exit Vertical Mode
3032 log("SVSTATE_NEXT: after increments, reset")
3033 self.svp64_reset_loop()
3034 self.svstate.vfirst = 0
3035 return nia_update
3036
3037 def SVSTATE_NEXT(self, mode, submode, RA=None):
3038 """explicitly moves srcstep/dststep on to next element, for
3039 "Vertical-First" mode. this function is called from
3040 setvl pseudo-code, as a pseudo-op "svstep"
3041
3042 WARNING: this function uses information that was created EARLIER
3043 due to it being in the middle of a yield, but this function is
3044 *NOT* called from yield (it's called from compiled pseudocode).
3045 """
3046 self.allow_next_step_inc = submode.value + 1
3047 log("SVSTATE_NEXT mode", mode, submode, self.allow_next_step_inc)
3048 self.svstate_next_mode = mode
3049 if self.svstate_next_mode > 0 and self.svstate_next_mode < 5:
3050 shape_idx = self.svstate_next_mode.value-1
3051 return SelectableInt(self.remap_idxs[shape_idx], 7)
3052 if self.svstate_next_mode == 5:
3053 self.svstate_next_mode = 0
3054 return SelectableInt(self.svstate.srcstep, 7)
3055 if self.svstate_next_mode == 6:
3056 self.svstate_next_mode = 0
3057 return SelectableInt(self.svstate.dststep, 7)
3058 if self.svstate_next_mode == 7:
3059 self.svstate_next_mode = 0
3060 return SelectableInt(self.svstate.ssubstep, 7)
3061 if self.svstate_next_mode == 8:
3062 self.svstate_next_mode = 0
3063 return SelectableInt(self.svstate.dsubstep, 7)
3064 return SelectableInt(0, 7)
3065
3066 def get_src_dststeps(self):
3067 """gets srcstep, dststep, and ssubstep, dsubstep
3068 """
3069 return (self.new_srcstep, self.new_dststep,
3070 self.new_ssubstep, self.new_dsubstep)
3071
3072 def update_svstate_namespace(self, overwrite_svstate=True):
3073 if overwrite_svstate:
3074 # note, do not get the bit-reversed srcstep here!
3075 srcstep, dststep = self.new_srcstep, self.new_dststep
3076 ssubstep, dsubstep = self.new_ssubstep, self.new_dsubstep
3077
3078 # update SVSTATE with new srcstep
3079 self.svstate.srcstep = srcstep
3080 self.svstate.dststep = dststep
3081 self.svstate.ssubstep = ssubstep
3082 self.svstate.dsubstep = dsubstep
3083 self.namespace['SVSTATE'] = self.svstate
3084 yield self.dec2.state.svstate.eq(self.svstate.value)
3085 yield Settle() # let decoder update
3086
3087 def update_new_svstate_steps(self, overwrite_svstate=True):
3088 yield from self.update_svstate_namespace(overwrite_svstate)
3089 srcstep = self.svstate.srcstep
3090 dststep = self.svstate.dststep
3091 ssubstep = self.svstate.ssubstep
3092 dsubstep = self.svstate.dsubstep
3093 pack = self.svstate.pack
3094 unpack = self.svstate.unpack
3095 vl = self.svstate.vl
3096 sv_mode = yield self.dec2.rm_dec.sv_mode
3097 subvl = yield self.dec2.rm_dec.rm_in.subvl
3098 rm_mode = yield self.dec2.rm_dec.mode
3099 ff_inv = yield self.dec2.rm_dec.inv
3100 cr_bit = yield self.dec2.rm_dec.cr_sel
3101 log(" srcstep", srcstep)
3102 log(" dststep", dststep)
3103 log(" pack", pack)
3104 log(" unpack", unpack)
3105 log(" ssubstep", ssubstep)
3106 log(" dsubstep", dsubstep)
3107 log(" vl", vl)
3108 log(" subvl", subvl)
3109 log(" rm_mode", rm_mode)
3110 log(" sv_mode", sv_mode)
3111 log(" inv", ff_inv)
3112 log(" cr_bit", cr_bit)
3113
3114 # check if end reached (we let srcstep overrun, above)
3115 # nothing needs doing (TODO zeroing): just do next instruction
3116 if self.loopend:
3117 return True
3118 return ((ssubstep == subvl and srcstep == vl) or
3119 (dsubstep == subvl and dststep == vl))
3120
3121 def svstate_post_inc(self, insn_name, vf=0):
3122 # check if SV "Vertical First" mode is enabled
3123 vfirst = self.svstate.vfirst
3124 log(" SV Vertical First", vf, vfirst)
3125 if not vf and vfirst == 1:
3126 # SV Branch-Conditional required to be as-if-vector
3127 # because there *is* no destination register
3128 # (SV normally only terminates on 1st scalar reg written
3129 # except in [slightly-misnamed] mapreduce mode)
3130 ffirst = yield from is_ffirst_mode(self.dec2)
3131 if insn_name.startswith("sv.bc") or ffirst:
3132 self.update_pc_next()
3133 return False
3134 self.update_nia()
3135 return True
3136
3137 # check if it is the SVSTATE.src/dest step that needs incrementing
3138 # this is our Sub-Program-Counter loop from 0 to VL-1
3139 # XXX twin predication TODO
3140 vl = self.svstate.vl
3141 subvl = yield self.dec2.rm_dec.rm_in.subvl
3142 mvl = self.svstate.maxvl
3143 srcstep = self.svstate.srcstep
3144 dststep = self.svstate.dststep
3145 ssubstep = self.svstate.ssubstep
3146 dsubstep = self.svstate.dsubstep
3147 pack = self.svstate.pack
3148 unpack = self.svstate.unpack
3149 rm_mode = yield self.dec2.rm_dec.mode
3150 reverse_gear = yield self.dec2.rm_dec.reverse_gear
3151 sv_ptype = yield self.dec2.dec.op.SV_Ptype
3152 out_vec = not (yield self.dec2.no_out_vec)
3153 in_vec = not (yield self.dec2.no_in_vec)
3154 rm_mode = yield self.dec2.rm_dec.mode
3155 log(" svstate.vl", vl)
3156 log(" svstate.mvl", mvl)
3157 log(" rm.subvl", subvl)
3158 log(" svstate.srcstep", srcstep)
3159 log(" svstate.dststep", dststep)
3160 log(" svstate.ssubstep", ssubstep)
3161 log(" svstate.dsubstep", dsubstep)
3162 log(" svstate.pack", pack)
3163 log(" svstate.unpack", unpack)
3164 log(" mode", rm_mode)
3165 log(" reverse", reverse_gear)
3166 log(" out_vec", out_vec)
3167 log(" in_vec", in_vec)
3168 log(" sv_ptype", sv_ptype, sv_ptype == SVPType.P2.value)
3169 log(" rm_mode", rm_mode)
3170 # check if this was an sv.bc* and if so did it succeed
3171 if self.is_svp64_mode and insn_name.startswith("sv.bc"):
3172 end_loop = self.namespace['end_loop']
3173 log("branch %s end_loop" % insn_name, end_loop)
3174 if end_loop.value:
3175 self.svp64_reset_loop()
3176 self.update_pc_next()
3177 return False
3178 # check if srcstep needs incrementing by one, stop PC advancing
3179 # but for 2-pred both src/dest have to be checked.
3180 # XXX this might not be true! it may just be LD/ST
3181 if sv_ptype == SVPType.P2.value:
3182 svp64_is_vector = (out_vec or in_vec)
3183 else:
3184 svp64_is_vector = out_vec
3185 # also if data-dependent fail-first is used, only in_vec is tested,
3186 # allowing *scalar destinations* to be used as an accumulator.
3187 # effectively this implies /mr (mapreduce mode) is 100% on with ddffirst
3188 # see https://bugs.libre-soc.org/show_bug.cgi?id=1183#c16
3189 ffirst = yield from is_ffirst_mode(self.dec2)
3190 if ffirst:
3191 svp64_is_vector = in_vec
3192
3193 # loops end at the first "hit" (source or dest)
3194 yield from self.advance_svstate_steps()
3195 loopend = self.loopend
3196 log("loopend", svp64_is_vector, loopend)
3197 if not svp64_is_vector or loopend:
3198 # reset loop to zero and update NIA
3199 self.svp64_reset_loop()
3200 self.update_nia()
3201
3202 return True
3203
3204 # still looping, advance and update NIA
3205 self.namespace['SVSTATE'] = self.svstate
3206
3207 # not an SVP64 branch, so fix PC (NIA==CIA) for next loop
3208 # (by default, NIA is CIA+4 if v3.0B or CIA+8 if SVP64)
3209 # this way we keep repeating the same instruction (with new steps)
3210 self.pc.NIA.eq(self.pc.CIA)
3211 self.namespace['NIA'] = self.pc.NIA
3212 log("end of sub-pc call", self.namespace['CIA'], self.namespace['NIA'])
3213 return False # DO NOT allow PC update whilst Sub-PC loop running
3214
3215 def update_pc_next(self):
3216 # UPDATE program counter
3217 self.pc.update(self.namespace, self.is_svp64_mode)
3218 #self.svstate.spr = self.namespace['SVSTATE']
3219 log("end of call", self.namespace['CIA'],
3220 self.namespace['NIA'],
3221 self.namespace['SVSTATE'])
3222
3223 def svp64_reset_loop(self):
3224 self.svstate.srcstep = 0
3225 self.svstate.dststep = 0
3226 self.svstate.ssubstep = 0
3227 self.svstate.dsubstep = 0
3228 self.loopend = False
3229 log(" svstate.srcstep loop end (PC to update)")
3230 self.namespace['SVSTATE'] = self.svstate
3231
3232 def update_nia(self):
3233 self.pc.update_nia(self.is_svp64_mode)
3234 self.namespace['NIA'] = self.pc.NIA
3235
3236
3237 def inject():
3238 """Decorator factory.
3239
3240 this decorator will "inject" variables into the function's namespace,
3241 from the *dictionary* in self.namespace. it therefore becomes possible
3242 to make it look like a whole stack of variables which would otherwise
3243 need "self." inserted in front of them (*and* for those variables to be
3244 added to the instance) "appear" in the function.
3245
3246 "self.namespace['SI']" for example becomes accessible as just "SI" but
3247 *only* inside the function, when decorated.
3248 """
3249 def variable_injector(func):
3250 @wraps(func)
3251 def decorator(*args, **kwargs):
3252 try:
3253 func_globals = func.__globals__ # Python 2.6+
3254 except AttributeError:
3255 func_globals = func.func_globals # Earlier versions.
3256
3257 context = args[0].namespace # variables to be injected
3258 saved_values = func_globals.copy() # Shallow copy of dict.
3259 log("globals before", context.keys())
3260 func_globals.update(context)
3261 result = func(*args, **kwargs)
3262 log("globals after", func_globals['CIA'], func_globals['NIA'])
3263 log("args[0]", args[0].namespace['CIA'],
3264 args[0].namespace['NIA'],
3265 args[0].namespace['SVSTATE'])
3266 if 'end_loop' in func_globals:
3267 log("args[0] end_loop", func_globals['end_loop'])
3268 args[0].namespace = func_globals
3269 #exec (func.__code__, func_globals)
3270
3271 # finally:
3272 # func_globals = saved_values # Undo changes.
3273
3274 return result
3275
3276 return decorator
3277
3278 return variable_injector