fix ISACaller BA/BB vector read
[openpower-isa.git] / src / openpower / decoder / isa / caller.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Copyright (C) 2020 Michael Nolan
4 # Funded by NLnet http://nlnet.nl
5 """core of the python-based POWER9 simulator
6
7 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
8 not speed, it is for both learning and educational purposes, as well as
9 a method of verifying the HDL.
10
11 related bugs:
12
13 * https://bugs.libre-soc.org/show_bug.cgi?id=424
14 """
15
16 from collections import namedtuple
17 from copy import deepcopy
18 from functools import wraps
19 import os
20 import errno
21 import struct
22 from openpower.syscalls import ppc_flags
23 import sys
24 from elftools.elf.elffile import ELFFile # for isinstance
25
26 from nmigen.sim import Settle
27 import openpower.syscalls
28 from openpower.consts import (MSRb, PIb, # big-endian (PowerISA versions)
29 SVP64CROffs, SVP64MODEb)
30 from openpower.decoder.helpers import (ISACallerHelper, ISAFPHelpers, exts,
31 gtu, undefined, copy_assign_rhs)
32 from openpower.decoder.isa.mem import Mem, MemMMap, MemException, LoadedELF
33 from openpower.decoder.isa.radixmmu import RADIX
34 from openpower.decoder.isa.svshape import SVSHAPE
35 from openpower.decoder.isa.svstate import SVP64State
36 from openpower.decoder.orderedset import OrderedSet
37 from openpower.decoder.power_enums import (FPTRANS_INSNS, CRInSel, CROutSel,
38 In1Sel, In2Sel, In3Sel, LDSTMode,
39 MicrOp, OutSel, SVMode,
40 SVP64LDSTmode, SVP64PredCR,
41 SVP64PredInt, SVP64PredMode,
42 SVP64RMMode, SVPType, XER_bits,
43 insns, spr_byname, spr_dict,
44 BFP_FLAG_NAMES)
45 from openpower.insndb.core import SVP64Instruction
46 from openpower.decoder.power_svp64 import SVP64RM, decode_extra
47 from openpower.decoder.selectable_int import (FieldSelectableInt,
48 SelectableInt, selectconcat,
49 EFFECTIVELY_UNLIMITED)
50 from openpower.consts import DEFAULT_MSR
51 from openpower.fpscr import FPSCRState
52 from openpower.xer import XERState
53 from openpower.util import LogType, log
54
55 LDST_UPDATE_INSNS = ['ldu', 'lwzu', 'lbzu', 'lhzu', 'lhau', 'lfsu', 'lfdu',
56 'stwu', 'stbu', 'sthu', 'stfsu', 'stfdu', 'stdu',
57 ]
58
59
60 instruction_info = namedtuple('instruction_info',
61 'func read_regs uninit_regs write_regs ' +
62 'special_regs op_fields form asmregs')
63
64 special_sprs = {
65 'LR': 8,
66 'CTR': 9,
67 'TAR': 815,
68 'XER': 1,
69 'VRSAVE': 256}
70
71
72 # rrright. this is here basically because the compiler pywriter returns
73 # results in a specific priority order. to make sure regs match up they
74 # need partial sorting. sigh.
75 REG_SORT_ORDER = {
76 # TODO (lkcl): adjust other registers that should be in a particular order
77 # probably CA, CA32, and CR
78 "FRT": 0,
79 "FRA": 0,
80 "FRB": 0,
81 "FRC": 0,
82 "FRS": 0,
83 "RT": 0,
84 "RA": 0,
85 "RB": 0,
86 "RC": 0,
87 "RS": 0,
88 "BI": 0,
89 "CR": 0,
90 "LR": 0,
91 "CTR": 0,
92 "TAR": 0,
93 "MSR": 0,
94 "SVSTATE": 0,
95 "SVSHAPE0": 0,
96 "SVSHAPE1": 0,
97 "SVSHAPE2": 0,
98 "SVSHAPE3": 0,
99
100 "CA": 0,
101 "CA32": 0,
102
103 "FPSCR": 1,
104
105 "overflow": 7, # should definitely be last
106 "CR0": 8, # likewise
107 }
108
109 fregs = ['FRA', 'FRB', 'FRC', 'FRS', 'FRT']
110
111
112 def get_masked_reg(regs, base, offs, ew_bits):
113 # rrrright. start by breaking down into row/col, based on elwidth
114 gpr_offs = offs // (64 // ew_bits)
115 gpr_col = offs % (64 // ew_bits)
116 # compute the mask based on ew_bits
117 mask = (1 << ew_bits) - 1
118 # now select the 64-bit register, but get its value (easier)
119 val = regs[base + gpr_offs]
120 # shift down so element we want is at LSB
121 val >>= gpr_col * ew_bits
122 # mask so we only return the LSB element
123 return val & mask
124
125
126 def set_masked_reg(regs, base, offs, ew_bits, value):
127 # rrrright. start by breaking down into row/col, based on elwidth
128 gpr_offs = offs // (64//ew_bits)
129 gpr_col = offs % (64//ew_bits)
130 # compute the mask based on ew_bits
131 mask = (1 << ew_bits)-1
132 # now select the 64-bit register, but get its value (easier)
133 val = regs[base+gpr_offs]
134 # now mask out the bit we don't want
135 val = val & ~(mask << (gpr_col*ew_bits))
136 # then wipe the bit we don't want from the value
137 value = value & mask
138 # OR the new value in, shifted up
139 val |= value << (gpr_col*ew_bits)
140 regs[base+gpr_offs] = val
141
142
143 def create_args(reglist, extra=None):
144 retval = list(OrderedSet(reglist))
145 retval.sort(key=lambda reg: REG_SORT_ORDER.get(reg, 0))
146 if extra is not None:
147 return [extra] + retval
148 return retval
149
150
151 def create_full_args(*, read_regs, special_regs, uninit_regs, write_regs,
152 extra=None):
153 return create_args([
154 *read_regs, *uninit_regs, *write_regs, *special_regs], extra=extra)
155
156
157 def is_ffirst_mode(dec2):
158 rm_mode = yield dec2.rm_dec.mode
159 return rm_mode == SVP64RMMode.FFIRST.value
160
161
162 class GPR(dict):
163 def __init__(self, decoder, isacaller, svstate, regfile):
164 dict.__init__(self)
165 self.sd = decoder
166 self.isacaller = isacaller
167 self.svstate = svstate
168 for i in range(len(regfile)):
169 self[i] = SelectableInt(regfile[i], 64)
170
171 def __call__(self, ridx, is_vec=False, offs=0, elwidth=64):
172 if isinstance(ridx, SelectableInt):
173 ridx = ridx.value
174 # scalar is enforced here
175 if not is_vec:
176 offs = 0
177 if elwidth == 64:
178 return self[ridx+offs]
179 # rrrright. start by breaking down into row/col, based on elwidth
180 gpr_offs = offs // (64//elwidth)
181 gpr_col = offs % (64//elwidth)
182 # now select the 64-bit register, but get its value (easier)
183 val = self[ridx+gpr_offs].value
184 # now shift down and mask out
185 val = val >> (gpr_col*elwidth) & ((1 << elwidth)-1)
186 # finally, return a SelectableInt at the required elwidth
187 log("GPR call", ridx, "isvec", is_vec, "offs", offs,
188 "elwid", elwidth, "offs/col", gpr_offs, gpr_col, "val", hex(val))
189 return SelectableInt(val, elwidth)
190
191 def set_form(self, form):
192 self.form = form
193
194 def write(self, rnum, value, is_vec=False, elwidth=64):
195 # get internal value
196 if isinstance(rnum, SelectableInt):
197 rnum = rnum.value
198 if isinstance(value, SelectableInt):
199 value = value.value
200 # compatibility...
201 if isinstance(rnum, tuple):
202 rnum, base, offs = rnum
203 else:
204 base, offs = rnum, 0
205 # rrrright. start by breaking down into row/col, based on elwidth
206 gpr_offs = offs // (64//elwidth)
207 gpr_col = offs % (64//elwidth)
208 # compute the mask based on elwidth
209 mask = (1 << elwidth)-1
210 # now select the 64-bit register, but get its value (easier)
211 val = self[base+gpr_offs].value
212 # now mask out the bit we don't want
213 val = val & ~(mask << (gpr_col*elwidth))
214 # then wipe the bit we don't want from the value
215 value = value & mask
216 # OR the new value in, shifted up
217 val |= value << (gpr_col*elwidth)
218 # finally put the damn value into the regfile
219 log("GPR write", base, "isvec", is_vec, "offs", offs,
220 "elwid", elwidth, "offs/col", gpr_offs, gpr_col, "val", hex(val),
221 "@", base+gpr_offs)
222 dict.__setitem__(self, base+gpr_offs, SelectableInt(val, 64))
223
224 def __setitem__(self, rnum, value):
225 # rnum = rnum.value # only SelectableInt allowed
226 log("GPR setitem", rnum, value)
227 if isinstance(rnum, SelectableInt):
228 rnum = rnum.value
229 dict.__setitem__(self, rnum, value)
230
231 def getz(self, rnum, rvalue=None):
232 # rnum = rnum.value # only SelectableInt allowed
233 log("GPR getzero?", rnum, rvalue)
234 if rvalue is not None:
235 if rnum == 0:
236 return SelectableInt(0, rvalue.bits)
237 return rvalue
238 if rnum == 0:
239 return SelectableInt(0, 64)
240 return self[rnum]
241
242 def _get_regnum(self, attr):
243 getform = self.sd.sigforms[self.form]
244 rnum = getattr(getform, attr)
245 return rnum
246
247 def ___getitem__(self, attr):
248 """ XXX currently not used
249 """
250 rnum = self._get_regnum(attr)
251 log("GPR getitem", attr, rnum)
252 return self.regfile[rnum]
253
254 def dump(self, printout=True, heading="reg"):
255 res = []
256 for i in range(len(self)):
257 res.append(self[i].value)
258 if printout:
259 for i in range(0, len(res), 8):
260 s = []
261 for j in range(8):
262 s.append("%08x" % res[i+j])
263 s = ' '.join(s)
264 log(heading, "%2d" % i, s, kind=LogType.InstrInOuts)
265 return res
266
267
268 class SPR(dict):
269 def __init__(self, dec2, initial_sprs={}, gpr=None):
270 self.sd = dec2
271 self.gpr = gpr # for SVSHAPE[0-3]
272 dict.__init__(self)
273 for key, v in initial_sprs.items():
274 if isinstance(key, SelectableInt):
275 key = key.value
276 key = special_sprs.get(key, key)
277 if isinstance(key, int):
278 info = spr_dict[key]
279 else:
280 info = spr_byname[key]
281 if not isinstance(v, SelectableInt):
282 v = SelectableInt(v, info.length)
283 self[key] = v
284
285 def __getitem__(self, key):
286 #log("get spr", key)
287 #log("dict", self.items())
288 # if key in special_sprs get the special spr, otherwise return key
289 if isinstance(key, SelectableInt):
290 key = key.value
291 if isinstance(key, int):
292 key = spr_dict[key].SPR
293 key = special_sprs.get(key, key)
294 if key == 'HSRR0': # HACK!
295 key = 'SRR0'
296 if key == 'HSRR1': # HACK!
297 key = 'SRR1'
298 if key in self:
299 res = dict.__getitem__(self, key)
300 else:
301 if isinstance(key, int):
302 info = spr_dict[key]
303 else:
304 info = spr_byname[key]
305 self[key] = SelectableInt(0, info.length)
306 res = dict.__getitem__(self, key)
307 #log("spr returning", key, res)
308 return res
309
310 def __setitem__(self, key, value):
311 if isinstance(key, SelectableInt):
312 key = key.value
313 if isinstance(key, int):
314 key = spr_dict[key].SPR
315 log("spr key", key)
316 key = special_sprs.get(key, key)
317 if key == 'HSRR0': # HACK!
318 self.__setitem__('SRR0', value)
319 if key == 'HSRR1': # HACK!
320 self.__setitem__('SRR1', value)
321 if key == 1:
322 value = XERState(value)
323 if key in ('SVSHAPE0', 'SVSHAPE1', 'SVSHAPE2', 'SVSHAPE3'):
324 value = SVSHAPE(value, self.gpr)
325 log("setting spr", key, value)
326 dict.__setitem__(self, key, value)
327
328 def __call__(self, ridx):
329 return self[ridx]
330
331 def dump(self, printout=True):
332 res = []
333 keys = list(self.keys())
334 # keys.sort()
335 for k in keys:
336 sprname = spr_dict.get(k, None)
337 if sprname is None:
338 sprname = k
339 else:
340 sprname = sprname.SPR
341 res.append((sprname, self[k].value))
342 if printout:
343 for sprname, value in res:
344 print(" ", sprname, hex(value))
345 return res
346
347
348 class PC:
349 def __init__(self, pc_init=0):
350 self.CIA = SelectableInt(pc_init, 64)
351 self.NIA = self.CIA + SelectableInt(4, 64) # only true for v3.0B!
352
353 def update_nia(self, is_svp64):
354 increment = 8 if is_svp64 else 4
355 self.NIA = self.CIA + SelectableInt(increment, 64)
356
357 def update(self, namespace, is_svp64):
358 """updates the program counter (PC) by 4 if v3.0B mode or 8 if SVP64
359 """
360 self.CIA = namespace['NIA'].narrow(64)
361 self.update_nia(is_svp64)
362 namespace['CIA'] = self.CIA
363 namespace['NIA'] = self.NIA
364
365
366 # CR register fields
367 # See PowerISA Version 3.0 B Book 1
368 # Section 2.3.1 Condition Register pages 30 - 31
369 class CRFields:
370 LT = FL = 0 # negative, less than, floating-point less than
371 GT = FG = 1 # positive, greater than, floating-point greater than
372 EQ = FE = 2 # equal, floating-point equal
373 SO = FU = 3 # summary overflow, floating-point unordered
374
375 def __init__(self, init=0):
376 # rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
377 # self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
378 self.cr = SelectableInt(init, 64) # underlying reg
379 # field-selectable versions of Condition Register TODO check bitranges?
380 self.crl = []
381 for i in range(8):
382 bits = tuple(range(i*4+32, (i+1)*4+32))
383 _cr = FieldSelectableInt(self.cr, bits)
384 self.crl.append(_cr)
385
386
387 # decode SVP64 predicate integer to reg number and invert
388 def get_predint(gpr, mask):
389 r3 = gpr(3)
390 r10 = gpr(10)
391 r30 = gpr(30)
392 log("get_predint", mask, SVP64PredInt.ALWAYS.value)
393 if mask == SVP64PredInt.ALWAYS.value:
394 return 0xffff_ffff_ffff_ffff # 64 bits of 1
395 if mask == SVP64PredInt.R3_UNARY.value:
396 return 1 << (r3.value & 0b111111)
397 if mask == SVP64PredInt.R3.value:
398 return r3.value
399 if mask == SVP64PredInt.R3_N.value:
400 return ~r3.value
401 if mask == SVP64PredInt.R10.value:
402 return r10.value
403 if mask == SVP64PredInt.R10_N.value:
404 return ~r10.value
405 if mask == SVP64PredInt.R30.value:
406 return r30.value
407 if mask == SVP64PredInt.R30_N.value:
408 return ~r30.value
409
410
411 # decode SVP64 predicate CR to reg number and invert status
412 def _get_predcr(mask):
413 if mask == SVP64PredCR.LT.value:
414 return 0, 1
415 if mask == SVP64PredCR.GE.value:
416 return 0, 0
417 if mask == SVP64PredCR.GT.value:
418 return 1, 1
419 if mask == SVP64PredCR.LE.value:
420 return 1, 0
421 if mask == SVP64PredCR.EQ.value:
422 return 2, 1
423 if mask == SVP64PredCR.NE.value:
424 return 2, 0
425 if mask == SVP64PredCR.SO.value:
426 return 3, 1
427 if mask == SVP64PredCR.NS.value:
428 return 3, 0
429
430
431 # read individual CR fields (0..VL-1), extract the required bit
432 # and construct the mask
433 def get_predcr(crl, predselect, vl):
434 idx, noninv = _get_predcr(predselect)
435 mask = 0
436 for i in range(vl):
437 cr = crl[i+SVP64CROffs.CRPred]
438 if cr[idx].value == noninv:
439 mask |= (1 << i)
440 log("get_predcr", vl, idx, noninv, i+SVP64CROffs.CRPred,
441 bin(cr.asint()), cr[idx].value, bin(mask))
442 return mask
443
444
445 # TODO, really should just be using PowerDecoder2
446 def get_idx_map(dec2, name):
447 op = dec2.dec.op
448 in1_sel = yield op.in1_sel
449 in2_sel = yield op.in2_sel
450 in3_sel = yield op.in3_sel
451 in1 = yield dec2.e.read_reg1.data
452 # identify which regnames map to in1/2/3
453 if name == 'RA' or name == 'RA_OR_ZERO':
454 if (in1_sel == In1Sel.RA.value or
455 (in1_sel == In1Sel.RA_OR_ZERO.value and in1 != 0)):
456 return 1
457 if in1_sel == In1Sel.RA_OR_ZERO.value:
458 return 1
459 elif name == 'RB':
460 if in2_sel == In2Sel.RB.value:
461 return 2
462 if in3_sel == In3Sel.RB.value:
463 return 3
464 # XXX TODO, RC doesn't exist yet!
465 elif name == 'RC':
466 if in3_sel == In3Sel.RC.value:
467 return 3
468 elif name in ['EA', 'RS']:
469 if in1_sel == In1Sel.RS.value:
470 return 1
471 if in2_sel == In2Sel.RS.value:
472 return 2
473 if in3_sel == In3Sel.RS.value:
474 return 3
475 elif name == 'FRA':
476 if in1_sel == In1Sel.FRA.value:
477 return 1
478 if in3_sel == In3Sel.FRA.value:
479 return 3
480 elif name == 'FRB':
481 if in2_sel == In2Sel.FRB.value:
482 return 2
483 elif name == 'FRC':
484 if in3_sel == In3Sel.FRC.value:
485 return 3
486 elif name == 'FRS':
487 if in1_sel == In1Sel.FRS.value:
488 return 1
489 if in3_sel == In3Sel.FRS.value:
490 return 3
491 elif name == 'FRT':
492 if in1_sel == In1Sel.FRT.value:
493 return 1
494 elif name == 'RT':
495 if in1_sel == In1Sel.RT.value:
496 return 1
497 return None
498
499
500 # TODO, really should just be using PowerDecoder2
501 def get_idx_in(dec2, name, ewmode=False):
502 idx = yield from get_idx_map(dec2, name)
503 if idx is None:
504 return None, False
505 op = dec2.dec.op
506 in1_sel = yield op.in1_sel
507 in2_sel = yield op.in2_sel
508 in3_sel = yield op.in3_sel
509 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
510 in1 = yield dec2.e.read_reg1.data
511 in2 = yield dec2.e.read_reg2.data
512 in3 = yield dec2.e.read_reg3.data
513 if ewmode:
514 in1_base = yield dec2.e.read_reg1.base
515 in2_base = yield dec2.e.read_reg2.base
516 in3_base = yield dec2.e.read_reg3.base
517 in1_offs = yield dec2.e.read_reg1.offs
518 in2_offs = yield dec2.e.read_reg2.offs
519 in3_offs = yield dec2.e.read_reg3.offs
520 in1 = (in1, in1_base, in1_offs)
521 in2 = (in2, in2_base, in2_offs)
522 in3 = (in3, in3_base, in3_offs)
523
524 in1_isvec = yield dec2.in1_isvec
525 in2_isvec = yield dec2.in2_isvec
526 in3_isvec = yield dec2.in3_isvec
527 log("get_idx_in in1", name, in1_sel, In1Sel.RA.value,
528 in1, in1_isvec)
529 log("get_idx_in in2", name, in2_sel, In2Sel.RB.value,
530 in2, in2_isvec)
531 log("get_idx_in in3", name, in3_sel, In3Sel.RS.value,
532 in3, in3_isvec)
533 log("get_idx_in FRS in3", name, in3_sel, In3Sel.FRS.value,
534 in3, in3_isvec)
535 log("get_idx_in FRB in2", name, in2_sel, In2Sel.FRB.value,
536 in2, in2_isvec)
537 log("get_idx_in FRC in3", name, in3_sel, In3Sel.FRC.value,
538 in3, in3_isvec)
539 if idx == 1:
540 return in1, in1_isvec
541 if idx == 2:
542 return in2, in2_isvec
543 if idx == 3:
544 return in3, in3_isvec
545 return None, False
546
547
548 # TODO, really should just be using PowerDecoder2
549 def get_cr_in(dec2, name):
550 op = dec2.dec.op
551 in_sel = yield op.cr_in
552 in_bitfield = yield dec2.dec_cr_in.cr_bitfield.data
553 sv_cr_in = yield op.sv_cr_in
554 spec = yield dec2.crin_svdec.spec
555 sv_override = yield dec2.dec_cr_in.sv_override
556 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
557 in1 = yield dec2.e.read_cr1.data
558 in2 = yield dec2.e.read_cr2.data
559 cr_isvec = yield dec2.cr_in_isvec
560 log("get_cr_in", name, in_sel, CROutSel.CR0.value, in1, in2, cr_isvec)
561 log(" sv_cr_in", sv_cr_in)
562 log(" cr_bf", in_bitfield)
563 log(" spec", spec)
564 log(" override", sv_override)
565 # identify which regnames map to in / o2
566 if name == 'BI':
567 if in_sel == CRInSel.BI.value:
568 return in1, cr_isvec
569 if name == 'BA':
570 if in_sel == CRInSel.BA_BB.value:
571 return in1, cr_isvec
572 if name == 'BB':
573 if in_sel == CRInSel.BA_BB.value:
574 return in2, cr_isvec
575 if name == 'BFA':
576 if in_sel == CRInSel.BFA.value:
577 return in1, cr_isvec
578 log("get_cr_in not found", name)
579 return None, False
580
581
582 # TODO, really should just be using PowerDecoder2
583 def get_cr_out(dec2, name):
584 op = dec2.dec.op
585 out_sel = yield op.cr_out
586 out_bitfield = yield dec2.dec_cr_out.cr_bitfield.data
587 sv_cr_out = yield op.sv_cr_out
588 spec = yield dec2.crout_svdec.spec
589 sv_override = yield dec2.dec_cr_out.sv_override
590 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
591 out = yield dec2.e.write_cr.data
592 o_isvec = yield dec2.cr_out_isvec
593 log("get_cr_out", out_sel, CROutSel.CR0.value, out, o_isvec)
594 log(" sv_cr_out", sv_cr_out)
595 log(" cr_bf", out_bitfield)
596 log(" spec", spec)
597 log(" override", sv_override)
598 # identify which regnames map to out / o2
599 if name == 'BF':
600 if out_sel == CROutSel.BF.value:
601 return out, o_isvec
602 if name == 'BT':
603 if out_sel == CROutSel.BT.value:
604 return out, o_isvec
605 if name == 'CR0':
606 if out_sel == CROutSel.CR0.value:
607 return out, o_isvec
608 if name == 'CR1': # these are not actually calculated correctly
609 if out_sel == CROutSel.CR1.value:
610 return out, o_isvec
611 # check RC1 set? if so return implicit vector, this is a REAL bad hack
612 RC1 = yield dec2.rm_dec.RC1
613 if RC1:
614 log("get_cr_out RC1 mode")
615 if name == 'CR0':
616 return 0, True # XXX TODO: offset CR0 from SVSTATE SPR
617 if name == 'CR1':
618 return 1, True # XXX TODO: offset CR1 from SVSTATE SPR
619 # nope - not found.
620 log("get_cr_out not found", name)
621 return None, False
622
623
624 # TODO, really should just be using PowerDecoder2
625 def get_out_map(dec2, name):
626 op = dec2.dec.op
627 out_sel = yield op.out_sel
628 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
629 out = yield dec2.e.write_reg.data
630 # identify which regnames map to out / o2
631 if name == 'RA':
632 if out_sel == OutSel.RA.value:
633 return True
634 elif name == 'RT':
635 if out_sel == OutSel.RT.value:
636 return True
637 if out_sel == OutSel.RT_OR_ZERO.value and out != 0:
638 return True
639 elif name == 'RT_OR_ZERO':
640 if out_sel == OutSel.RT_OR_ZERO.value:
641 return True
642 elif name == 'FRA':
643 if out_sel == OutSel.FRA.value:
644 return True
645 elif name == 'FRS':
646 if out_sel == OutSel.FRS.value:
647 return True
648 elif name == 'FRT':
649 if out_sel == OutSel.FRT.value:
650 return True
651 return False
652
653
654 # TODO, really should just be using PowerDecoder2
655 def get_idx_out(dec2, name, ewmode=False):
656 op = dec2.dec.op
657 out_sel = yield op.out_sel
658 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
659 out = yield dec2.e.write_reg.data
660 o_isvec = yield dec2.o_isvec
661 if ewmode:
662 offs = yield dec2.e.write_reg.offs
663 base = yield dec2.e.write_reg.base
664 out = (out, base, offs)
665 # identify which regnames map to out / o2
666 ismap = yield from get_out_map(dec2, name)
667 if ismap:
668 log("get_idx_out", name, out_sel, out, o_isvec)
669 return out, o_isvec
670 log("get_idx_out not found", name, out_sel, out, o_isvec)
671 return None, False
672
673
674 # TODO, really should just be using PowerDecoder2
675 def get_out2_map(dec2, name):
676 # check first if register is activated for write
677 op = dec2.dec.op
678 out_sel = yield op.out_sel
679 out = yield dec2.e.write_ea.data
680 out_ok = yield dec2.e.write_ea.ok
681 if not out_ok:
682 return False
683
684 if name in ['EA', 'RA']:
685 if hasattr(op, "upd"):
686 # update mode LD/ST uses read-reg A also as an output
687 upd = yield op.upd
688 log("get_idx_out2", upd, LDSTMode.update.value,
689 out_sel, OutSel.RA.value,
690 out)
691 if upd == LDSTMode.update.value:
692 return True
693 if name == 'RS':
694 fft_en = yield dec2.implicit_rs
695 if fft_en:
696 log("get_idx_out2", out_sel, OutSel.RS.value,
697 out)
698 return True
699 if name == 'FRS':
700 fft_en = yield dec2.implicit_rs
701 if fft_en:
702 log("get_idx_out2", out_sel, OutSel.FRS.value,
703 out)
704 return True
705 return False
706
707
708 # TODO, really should just be using PowerDecoder2
709 def get_idx_out2(dec2, name, ewmode=False):
710 # check first if register is activated for write
711 op = dec2.dec.op
712 out_sel = yield op.out_sel
713 out = yield dec2.e.write_ea.data
714 if ewmode:
715 offs = yield dec2.e.write_ea.offs
716 base = yield dec2.e.write_ea.base
717 out = (out, base, offs)
718 o_isvec = yield dec2.o2_isvec
719 ismap = yield from get_out2_map(dec2, name)
720 if ismap:
721 log("get_idx_out2", name, out_sel, out, o_isvec)
722 return out, o_isvec
723 return None, False
724
725
726 class StepLoop:
727 """deals with svstate looping.
728 """
729
730 def __init__(self, svstate):
731 self.svstate = svstate
732 self.new_iterators()
733
734 def new_iterators(self):
735 self.src_it = self.src_iterator()
736 self.dst_it = self.dst_iterator()
737 self.loopend = False
738 self.new_srcstep = 0
739 self.new_dststep = 0
740 self.new_ssubstep = 0
741 self.new_dsubstep = 0
742 self.pred_dst_zero = 0
743 self.pred_src_zero = 0
744
745 def src_iterator(self):
746 """source-stepping iterator
747 """
748 pack = self.svstate.pack
749
750 # source step
751 if pack:
752 # pack advances subvl in *outer* loop
753 while True: # outer subvl loop
754 while True: # inner vl loop
755 vl = self.svstate.vl
756 subvl = self.subvl
757 srcmask = self.srcmask
758 srcstep = self.svstate.srcstep
759 pred_src_zero = ((1 << srcstep) & srcmask) != 0
760 if self.pred_sz or pred_src_zero:
761 self.pred_src_zero = not pred_src_zero
762 log(" advance src", srcstep, vl,
763 self.svstate.ssubstep, subvl)
764 # yield actual substep/srcstep
765 yield (self.svstate.ssubstep, srcstep)
766 # the way yield works these could have been modified.
767 vl = self.svstate.vl
768 subvl = self.subvl
769 srcstep = self.svstate.srcstep
770 log(" advance src check", srcstep, vl,
771 self.svstate.ssubstep, subvl, srcstep == vl-1,
772 self.svstate.ssubstep == subvl)
773 if srcstep == vl-1: # end-point
774 self.svstate.srcstep = SelectableInt(0, 7) # reset
775 if self.svstate.ssubstep == subvl: # end-point
776 log(" advance pack stop")
777 return
778 break # exit inner loop
779 self.svstate.srcstep += SelectableInt(1, 7) # advance ss
780 subvl = self.subvl
781 if self.svstate.ssubstep == subvl: # end-point
782 self.svstate.ssubstep = SelectableInt(0, 2) # reset
783 log(" advance pack stop")
784 return
785 self.svstate.ssubstep += SelectableInt(1, 2)
786
787 else:
788 # these cannot be done as for-loops because SVSTATE may change
789 # (srcstep/substep may be modified, interrupted, subvl/vl change)
790 # but they *can* be done as while-loops as long as every SVSTATE
791 # "thing" is re-read every single time a yield gives indices
792 while True: # outer vl loop
793 while True: # inner subvl loop
794 vl = self.svstate.vl
795 subvl = self.subvl
796 srcmask = self.srcmask
797 srcstep = self.svstate.srcstep
798 pred_src_zero = ((1 << srcstep) & srcmask) != 0
799 if self.pred_sz or pred_src_zero:
800 self.pred_src_zero = not pred_src_zero
801 log(" advance src", srcstep, vl,
802 self.svstate.ssubstep, subvl)
803 # yield actual substep/srcstep
804 yield (self.svstate.ssubstep, srcstep)
805 if self.svstate.ssubstep == subvl: # end-point
806 self.svstate.ssubstep = SelectableInt(0, 2) # reset
807 break # exit inner loop
808 self.svstate.ssubstep += SelectableInt(1, 2)
809 vl = self.svstate.vl
810 if srcstep == vl-1: # end-point
811 self.svstate.srcstep = SelectableInt(0, 7) # reset
812 self.loopend = True
813 return
814 self.svstate.srcstep += SelectableInt(1, 7) # advance srcstep
815
816 def dst_iterator(self):
817 """dest-stepping iterator
818 """
819 unpack = self.svstate.unpack
820
821 # dest step
822 if unpack:
823 # pack advances subvl in *outer* loop
824 while True: # outer subvl loop
825 while True: # inner vl loop
826 vl = self.svstate.vl
827 subvl = self.subvl
828 dstmask = self.dstmask
829 dststep = self.svstate.dststep
830 pred_dst_zero = ((1 << dststep) & dstmask) != 0
831 if self.pred_dz or pred_dst_zero:
832 self.pred_dst_zero = not pred_dst_zero
833 log(" advance dst", dststep, vl,
834 self.svstate.dsubstep, subvl)
835 # yield actual substep/dststep
836 yield (self.svstate.dsubstep, dststep)
837 # the way yield works these could have been modified.
838 vl = self.svstate.vl
839 dststep = self.svstate.dststep
840 log(" advance dst check", dststep, vl,
841 self.svstate.ssubstep, subvl)
842 if dststep == vl-1: # end-point
843 self.svstate.dststep = SelectableInt(0, 7) # reset
844 if self.svstate.dsubstep == subvl: # end-point
845 log(" advance unpack stop")
846 return
847 break
848 self.svstate.dststep += SelectableInt(1, 7) # advance ds
849 subvl = self.subvl
850 if self.svstate.dsubstep == subvl: # end-point
851 self.svstate.dsubstep = SelectableInt(0, 2) # reset
852 log(" advance unpack stop")
853 return
854 self.svstate.dsubstep += SelectableInt(1, 2)
855 else:
856 # these cannot be done as for-loops because SVSTATE may change
857 # (dststep/substep may be modified, interrupted, subvl/vl change)
858 # but they *can* be done as while-loops as long as every SVSTATE
859 # "thing" is re-read every single time a yield gives indices
860 while True: # outer vl loop
861 while True: # inner subvl loop
862 subvl = self.subvl
863 dstmask = self.dstmask
864 dststep = self.svstate.dststep
865 pred_dst_zero = ((1 << dststep) & dstmask) != 0
866 if self.pred_dz or pred_dst_zero:
867 self.pred_dst_zero = not pred_dst_zero
868 log(" advance dst", dststep, self.svstate.vl,
869 self.svstate.dsubstep, subvl)
870 # yield actual substep/dststep
871 yield (self.svstate.dsubstep, dststep)
872 if self.svstate.dsubstep == subvl: # end-point
873 self.svstate.dsubstep = SelectableInt(0, 2) # reset
874 break
875 self.svstate.dsubstep += SelectableInt(1, 2)
876 subvl = self.subvl
877 vl = self.svstate.vl
878 if dststep == vl-1: # end-point
879 self.svstate.dststep = SelectableInt(0, 7) # reset
880 return
881 self.svstate.dststep += SelectableInt(1, 7) # advance dststep
882
883 def src_iterate(self):
884 """source-stepping iterator
885 """
886 subvl = self.subvl
887 vl = self.svstate.vl
888 pack = self.svstate.pack
889 unpack = self.svstate.unpack
890 ssubstep = self.svstate.ssubstep
891 end_ssub = ssubstep == subvl
892 end_src = self.svstate.srcstep == vl-1
893 log(" pack/unpack/subvl", pack, unpack, subvl,
894 "end", end_src,
895 "sub", end_ssub)
896 # first source step
897 srcstep = self.svstate.srcstep
898 srcmask = self.srcmask
899 if pack:
900 # pack advances subvl in *outer* loop
901 while True:
902 assert srcstep <= vl-1
903 end_src = srcstep == vl-1
904 if end_src:
905 if end_ssub:
906 self.loopend = True
907 else:
908 self.svstate.ssubstep += SelectableInt(1, 2)
909 srcstep = 0 # reset
910 break
911 else:
912 srcstep += 1 # advance srcstep
913 if not self.srcstep_skip:
914 break
915 if ((1 << srcstep) & srcmask) != 0:
916 break
917 else:
918 log(" sskip", bin(srcmask), bin(1 << srcstep))
919 else:
920 # advance subvl in *inner* loop
921 if end_ssub:
922 while True:
923 assert srcstep <= vl-1
924 end_src = srcstep == vl-1
925 if end_src: # end-point
926 self.loopend = True
927 srcstep = 0
928 break
929 else:
930 srcstep += 1
931 if not self.srcstep_skip:
932 break
933 if ((1 << srcstep) & srcmask) != 0:
934 break
935 else:
936 log(" sskip", bin(srcmask), bin(1 << srcstep))
937 self.svstate.ssubstep = SelectableInt(0, 2) # reset
938 else:
939 # advance ssubstep
940 self.svstate.ssubstep += SelectableInt(1, 2)
941
942 self.svstate.srcstep = SelectableInt(srcstep, 7)
943 log(" advance src", self.svstate.srcstep, self.svstate.ssubstep,
944 self.loopend)
945
946 def dst_iterate(self):
947 """dest step iterator
948 """
949 vl = self.svstate.vl
950 subvl = self.subvl
951 pack = self.svstate.pack
952 unpack = self.svstate.unpack
953 dsubstep = self.svstate.dsubstep
954 end_dsub = dsubstep == subvl
955 dststep = self.svstate.dststep
956 end_dst = dststep == vl-1
957 dstmask = self.dstmask
958 log(" pack/unpack/subvl", pack, unpack, subvl,
959 "end", end_dst,
960 "sub", end_dsub)
961 # now dest step
962 if unpack:
963 # unpack advances subvl in *outer* loop
964 while True:
965 assert dststep <= vl-1
966 end_dst = dststep == vl-1
967 if end_dst:
968 if end_dsub:
969 self.loopend = True
970 else:
971 self.svstate.dsubstep += SelectableInt(1, 2)
972 dststep = 0 # reset
973 break
974 else:
975 dststep += 1 # advance dststep
976 if not self.dststep_skip:
977 break
978 if ((1 << dststep) & dstmask) != 0:
979 break
980 else:
981 log(" dskip", bin(dstmask), bin(1 << dststep))
982 else:
983 # advance subvl in *inner* loop
984 if end_dsub:
985 while True:
986 assert dststep <= vl-1
987 end_dst = dststep == vl-1
988 if end_dst: # end-point
989 self.loopend = True
990 dststep = 0
991 break
992 else:
993 dststep += 1
994 if not self.dststep_skip:
995 break
996 if ((1 << dststep) & dstmask) != 0:
997 break
998 else:
999 log(" dskip", bin(dstmask), bin(1 << dststep))
1000 self.svstate.dsubstep = SelectableInt(0, 2) # reset
1001 else:
1002 # advance ssubstep
1003 self.svstate.dsubstep += SelectableInt(1, 2)
1004
1005 self.svstate.dststep = SelectableInt(dststep, 7)
1006 log(" advance dst", self.svstate.dststep, self.svstate.dsubstep,
1007 self.loopend)
1008
1009 def at_loopend(self):
1010 """tells if this is the last possible element. uses the cached values
1011 for src/dst-step and sub-steps
1012 """
1013 subvl = self.subvl
1014 vl = self.svstate.vl
1015 srcstep, dststep = self.new_srcstep, self.new_dststep
1016 ssubstep, dsubstep = self.new_ssubstep, self.new_dsubstep
1017 end_ssub = ssubstep == subvl
1018 end_dsub = dsubstep == subvl
1019 if srcstep == vl-1 and end_ssub:
1020 return True
1021 if dststep == vl-1 and end_dsub:
1022 return True
1023 return False
1024
1025 def advance_svstate_steps(self):
1026 """ advance sub/steps. note that Pack/Unpack *INVERTS* the order.
1027 TODO when Pack/Unpack is set, substep becomes the *outer* loop
1028 """
1029 self.subvl = yield self.dec2.rm_dec.rm_in.subvl
1030 if self.loopend: # huhn??
1031 return
1032 self.src_iterate()
1033 self.dst_iterate()
1034
1035 def read_src_mask(self):
1036 """read/update pred_sz and src mask
1037 """
1038 # get SVSTATE VL (oh and print out some debug stuff)
1039 vl = self.svstate.vl
1040 srcstep = self.svstate.srcstep
1041 ssubstep = self.svstate.ssubstep
1042
1043 # get predicate mask (all 64 bits)
1044 srcmask = 0xffff_ffff_ffff_ffff
1045
1046 pmode = yield self.dec2.rm_dec.predmode
1047 sv_ptype = yield self.dec2.dec.op.SV_Ptype
1048 srcpred = yield self.dec2.rm_dec.srcpred
1049 dstpred = yield self.dec2.rm_dec.dstpred
1050 pred_sz = yield self.dec2.rm_dec.pred_sz
1051 if pmode == SVP64PredMode.INT.value:
1052 srcmask = dstmask = get_predint(self.gpr, dstpred)
1053 if sv_ptype == SVPType.P2.value:
1054 srcmask = get_predint(self.gpr, srcpred)
1055 elif pmode == SVP64PredMode.CR.value:
1056 srcmask = dstmask = get_predcr(self.crl, dstpred, vl)
1057 if sv_ptype == SVPType.P2.value:
1058 srcmask = get_predcr(self.crl, srcpred, vl)
1059 # work out if the ssubsteps are completed
1060 ssubstart = ssubstep == 0
1061 log(" pmode", pmode)
1062 log(" ptype", sv_ptype)
1063 log(" srcpred", bin(srcpred))
1064 log(" srcmask", bin(srcmask))
1065 log(" pred_sz", bin(pred_sz))
1066 log(" ssubstart", ssubstart)
1067
1068 # store all that above
1069 self.srcstep_skip = False
1070 self.srcmask = srcmask
1071 self.pred_sz = pred_sz
1072 self.new_ssubstep = ssubstep
1073 log(" new ssubstep", ssubstep)
1074 # until the predicate mask has a "1" bit... or we run out of VL
1075 # let srcstep==VL be the indicator to move to next instruction
1076 if not pred_sz:
1077 self.srcstep_skip = True
1078
1079 def read_dst_mask(self):
1080 """same as read_src_mask - check and record everything needed
1081 """
1082 # get SVSTATE VL (oh and print out some debug stuff)
1083 # yield Delay(1e-10) # make changes visible
1084 vl = self.svstate.vl
1085 dststep = self.svstate.dststep
1086 dsubstep = self.svstate.dsubstep
1087
1088 # get predicate mask (all 64 bits)
1089 dstmask = 0xffff_ffff_ffff_ffff
1090
1091 pmode = yield self.dec2.rm_dec.predmode
1092 reverse_gear = yield self.dec2.rm_dec.reverse_gear
1093 sv_ptype = yield self.dec2.dec.op.SV_Ptype
1094 dstpred = yield self.dec2.rm_dec.dstpred
1095 pred_dz = yield self.dec2.rm_dec.pred_dz
1096 if pmode == SVP64PredMode.INT.value:
1097 dstmask = get_predint(self.gpr, dstpred)
1098 elif pmode == SVP64PredMode.CR.value:
1099 dstmask = get_predcr(self.crl, dstpred, vl)
1100 # work out if the ssubsteps are completed
1101 dsubstart = dsubstep == 0
1102 log(" pmode", pmode)
1103 log(" ptype", sv_ptype)
1104 log(" dstpred", bin(dstpred))
1105 log(" dstmask", bin(dstmask))
1106 log(" pred_dz", bin(pred_dz))
1107 log(" dsubstart", dsubstart)
1108
1109 self.dststep_skip = False
1110 self.dstmask = dstmask
1111 self.pred_dz = pred_dz
1112 self.new_dsubstep = dsubstep
1113 log(" new dsubstep", dsubstep)
1114 if not pred_dz:
1115 self.dststep_skip = True
1116
1117 def svstate_pre_inc(self):
1118 """check if srcstep/dststep need to skip over masked-out predicate bits
1119 note that this is not supposed to do anything to substep,
1120 it is purely for skipping masked-out bits
1121 """
1122
1123 self.subvl = yield self.dec2.rm_dec.rm_in.subvl
1124 yield from self.read_src_mask()
1125 yield from self.read_dst_mask()
1126
1127 self.skip_src()
1128 self.skip_dst()
1129
1130 def skip_src(self):
1131
1132 srcstep = self.svstate.srcstep
1133 srcmask = self.srcmask
1134 pred_src_zero = self.pred_sz
1135 vl = self.svstate.vl
1136 # srcstep-skipping opportunity identified
1137 if self.srcstep_skip:
1138 # cannot do this with sv.bc - XXX TODO
1139 if srcmask == 0:
1140 self.loopend = True
1141 while (((1 << srcstep) & srcmask) == 0) and (srcstep != vl):
1142 log(" sskip", bin(1 << srcstep))
1143 srcstep += 1
1144
1145 # now work out if the relevant mask bits require zeroing
1146 if pred_src_zero:
1147 pred_src_zero = ((1 << srcstep) & srcmask) == 0
1148
1149 # store new srcstep / dststep
1150 self.new_srcstep = srcstep
1151 self.pred_src_zero = pred_src_zero
1152 log(" new srcstep", srcstep)
1153
1154 def skip_dst(self):
1155 # dststep-skipping opportunity identified
1156 dststep = self.svstate.dststep
1157 dstmask = self.dstmask
1158 pred_dst_zero = self.pred_dz
1159 vl = self.svstate.vl
1160 if self.dststep_skip:
1161 # cannot do this with sv.bc - XXX TODO
1162 if dstmask == 0:
1163 self.loopend = True
1164 while (((1 << dststep) & dstmask) == 0) and (dststep != vl):
1165 log(" dskip", bin(1 << dststep))
1166 dststep += 1
1167
1168 # now work out if the relevant mask bits require zeroing
1169 if pred_dst_zero:
1170 pred_dst_zero = ((1 << dststep) & dstmask) == 0
1171
1172 # store new srcstep / dststep
1173 self.new_dststep = dststep
1174 self.pred_dst_zero = pred_dst_zero
1175 log(" new dststep", dststep)
1176
1177
1178 class ExitSyscallCalled(Exception):
1179 pass
1180
1181
1182 class SyscallEmulator(openpower.syscalls.Dispatcher):
1183 def __init__(self, isacaller):
1184 self.__isacaller = isacaller
1185
1186 host = os.uname().machine
1187 bits = (64 if (sys.maxsize > (2**32)) else 32)
1188 host = openpower.syscalls.architecture(arch=host, bits=bits)
1189
1190 return super().__init__(guest="ppc64", host=host)
1191
1192 def __call__(self, identifier, *arguments):
1193 (identifier, *arguments) = map(int, (identifier, *arguments))
1194 return super().__call__(identifier, *arguments)
1195
1196 def sys_exit_group(self, status, *rest):
1197 self.__isacaller.halted = True
1198 raise ExitSyscallCalled(status)
1199
1200 def sys_write(self, fd, buf, count, *rest):
1201 if count != 0:
1202 buf = self.__isacaller.mem.get_ctypes(buf, count, is_write=False)
1203 else:
1204 buf = b""
1205 try:
1206 return os.write(fd, buf)
1207 except OSError as e:
1208 return -e.errno
1209
1210 def sys_writev(self, fd, iov, iovcnt, *rest):
1211 IOV_MAX = 1024
1212 if iovcnt < 0 or iovcnt > IOV_MAX:
1213 return -errno.EINVAL
1214 struct_iovec = struct.Struct("<QQ")
1215 try:
1216 if iovcnt > 0:
1217 iov = self.__isacaller.mem.get_ctypes(
1218 iov, struct_iovec.size * iovcnt, is_write=False)
1219 iov = list(struct_iovec.iter_unpack(iov))
1220 else:
1221 iov = []
1222 for i, iovec in enumerate(iov):
1223 iov_base, iov_len = iovec
1224 iov[i] = self.__isacaller.mem.get_ctypes(
1225 iov_base, iov_len, is_write=False)
1226 except (ValueError, MemException):
1227 return -errno.EFAULT
1228 try:
1229 return os.writev(fd, iov)
1230 except OSError as e:
1231 return -e.errno
1232
1233 def sys_read(self, fd, buf, count, *rest):
1234 if count != 0:
1235 buf = self.__isacaller.mem.get_ctypes(buf, count, is_write=True)
1236 else:
1237 buf = bytearray()
1238 try:
1239 return os.readv(fd, [buf])
1240 except OSError as e:
1241 return -e.errno
1242
1243 def sys_mmap(self, addr, length, prot, flags, fd, offset, *rest):
1244 return self.__isacaller.mem.mmap_syscall(
1245 addr, length, prot, flags, fd, offset, is_mmap2=False)
1246
1247 def sys_mmap2(self, addr, length, prot, flags, fd, offset, *rest):
1248 return self.__isacaller.mem.mmap_syscall(
1249 addr, length, prot, flags, fd, offset, is_mmap2=True)
1250
1251 def sys_brk(self, addr, *rest):
1252 return self.__isacaller.mem.brk_syscall(addr)
1253
1254 def sys_munmap(self, addr, length, *rest):
1255 return -errno.ENOSYS # TODO: implement
1256
1257 def sys_mprotect(self, addr, length, prot, *rest):
1258 return -errno.ENOSYS # TODO: implement
1259
1260 def sys_pkey_mprotect(self, addr, length, prot, pkey, *rest):
1261 return -errno.ENOSYS # TODO: implement
1262
1263 def sys_openat(self, dirfd, pathname, flags, mode, *rest):
1264 try:
1265 path = self.__isacaller.mem.read_cstr(pathname)
1266 except (ValueError, MemException):
1267 return -errno.EFAULT
1268 try:
1269 if dirfd == ppc_flags.AT_FDCWD:
1270 return os.open(path, flags, mode)
1271 else:
1272 return os.open(path, flags, mode, dir_fd=dirfd)
1273 except OSError as e:
1274 return -e.errno
1275
1276 def _uname(self):
1277 uname = os.uname()
1278 sysname = b'Linux'
1279 nodename = uname.nodename.encode()
1280 release = b'5.6.0-1-powerpc64le'
1281 version = b'#1 SMP Debian 5.6.7-1 (2020-04-29)'
1282 machine = b'ppc64le'
1283 domainname = b''
1284 return sysname, nodename, release, version, machine, domainname
1285
1286 def sys_uname(self, buf, *rest):
1287 s = struct.Struct("<65s65s65s65s65s")
1288 try:
1289 buf = self.__isacaller.mem.get_ctypes(buf, s.size, is_write=True)
1290 except (ValueError, MemException):
1291 return -errno.EFAULT
1292 sysname, nodename, release, version, machine, domainname = \
1293 self._uname()
1294 s.pack_into(buf, 0, sysname, nodename, release, version, machine)
1295 return 0
1296
1297 def sys_newuname(self, buf, *rest):
1298 name_len = ppc_flags.__NEW_UTS_LEN + 1
1299 s = struct.Struct("<%ds%ds%ds%ds%ds%ds" % ((name_len,) * 6))
1300 try:
1301 buf = self.__isacaller.mem.get_ctypes(buf, s.size, is_write=True)
1302 except (ValueError, MemException):
1303 return -errno.EFAULT
1304 sysname, nodename, release, version, machine, domainname = \
1305 self._uname()
1306 s.pack_into(buf, 0,
1307 sysname, nodename, release, version, machine, domainname)
1308 return 0
1309
1310 def sys_readlink(self, pathname, buf, bufsiz, *rest):
1311 dirfd = ppc_flags.AT_FDCWD
1312 return self.sys_readlinkat(dirfd, pathname, buf, bufsiz)
1313
1314 def sys_readlinkat(self, dirfd, pathname, buf, bufsiz, *rest):
1315 try:
1316 path = self.__isacaller.mem.read_cstr(pathname)
1317 if bufsiz != 0:
1318 buf = self.__isacaller.mem.get_ctypes(
1319 buf, bufsiz, is_write=True)
1320 else:
1321 buf = bytearray()
1322 except (ValueError, MemException):
1323 return -errno.EFAULT
1324 try:
1325 if dirfd == ppc_flags.AT_FDCWD:
1326 result = os.readlink(path)
1327 else:
1328 result = os.readlink(path, dir_fd=dirfd)
1329 retval = min(len(result), len(buf))
1330 buf[:retval] = result[:retval]
1331 return retval
1332 except OSError as e:
1333 return -e.errno
1334
1335
1336 class ISACaller(ISACallerHelper, ISAFPHelpers, StepLoop):
1337 # decoder2 - an instance of power_decoder2
1338 # regfile - a list of initial values for the registers
1339 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
1340 # respect_pc - tracks the program counter. requires initial_insns
1341 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
1342 initial_mem=None, initial_msr=0,
1343 initial_svstate=0,
1344 initial_insns=None,
1345 fpregfile=None,
1346 respect_pc=False,
1347 disassembly=None,
1348 initial_pc=0,
1349 bigendian=False,
1350 mmu=False,
1351 icachemmu=False,
1352 initial_fpscr=0,
1353 insnlog=None,
1354 use_mmap_mem=False,
1355 use_syscall_emu=False,
1356 emulating_mmap=False,
1357 real_page_size=None):
1358 if use_syscall_emu:
1359 self.syscall = SyscallEmulator(isacaller=self)
1360 if not use_mmap_mem:
1361 log("forcing use_mmap_mem due to use_syscall_emu active")
1362 use_mmap_mem = True
1363 else:
1364 self.syscall = None
1365
1366 # we will eventually be able to load ELF files without use_syscall_emu
1367 # (e.g. the linux kernel), so do it in a separate if block
1368 if isinstance(initial_insns, ELFFile):
1369 if not use_mmap_mem:
1370 log("forcing use_mmap_mem due to loading an ELF file")
1371 use_mmap_mem = True
1372 if not emulating_mmap:
1373 log("forcing emulating_mmap due to loading an ELF file")
1374 emulating_mmap = True
1375
1376 # trace log file for model output. if None do nothing
1377 self.insnlog = insnlog
1378 self.insnlog_is_file = hasattr(insnlog, "write")
1379 if not self.insnlog_is_file and self.insnlog:
1380 self.insnlog = open(self.insnlog, "w")
1381
1382 self.bigendian = bigendian
1383 self.halted = False
1384 self.is_svp64_mode = False
1385 self.respect_pc = respect_pc
1386 if initial_sprs is None:
1387 initial_sprs = {}
1388 if initial_mem is None:
1389 initial_mem = {}
1390 if fpregfile is None:
1391 fpregfile = [0] * 32
1392 if initial_insns is None:
1393 initial_insns = {}
1394 assert self.respect_pc == False, "instructions required to honor pc"
1395 if initial_msr is None:
1396 initial_msr = DEFAULT_MSR
1397
1398 log("ISACaller insns", respect_pc, initial_insns, disassembly)
1399 log("ISACaller initial_msr", initial_msr)
1400
1401 # "fake program counter" mode (for unit testing)
1402 self.fake_pc = 0
1403 disasm_start = 0
1404 if not respect_pc:
1405 if isinstance(initial_mem, tuple):
1406 self.fake_pc = initial_mem[0]
1407 disasm_start = self.fake_pc
1408 else:
1409 disasm_start = initial_pc
1410
1411 # disassembly: we need this for now (not given from the decoder)
1412 self.disassembly = {}
1413 if disassembly:
1414 for i, code in enumerate(disassembly):
1415 self.disassembly[i*4 + disasm_start] = code
1416
1417 # set up registers, instruction memory, data memory, PC, SPRs, MSR, CR
1418 self.svp64rm = SVP64RM()
1419 if initial_svstate is None:
1420 initial_svstate = 0
1421 if isinstance(initial_svstate, int):
1422 initial_svstate = SVP64State(initial_svstate)
1423 # SVSTATE, MSR and PC
1424 StepLoop.__init__(self, initial_svstate)
1425 self.msr = SelectableInt(initial_msr, 64) # underlying reg
1426 self.pc = PC()
1427 # GPR FPR SPR registers
1428 initial_sprs = deepcopy(initial_sprs) # so as not to get modified
1429 self.gpr = GPR(decoder2, self, self.svstate, regfile)
1430 self.fpr = GPR(decoder2, self, self.svstate, fpregfile)
1431 # initialise SPRs before MMU
1432 self.spr = SPR(decoder2, initial_sprs, gpr=self.gpr)
1433
1434 # set up 4 dummy SVSHAPEs if they aren't already set up
1435 for i in range(4):
1436 sname = 'SVSHAPE%d' % i
1437 val = self.spr.get(sname, 0)
1438 # make sure it's an SVSHAPE -- conversion done by SPR.__setitem__
1439 self.spr[sname] = val
1440 self.last_op_svshape = False
1441
1442 # "raw" memory
1443 if use_mmap_mem:
1444 self.mem = MemMMap(row_bytes=8,
1445 initial_mem=initial_mem,
1446 misaligned_ok=True,
1447 emulating_mmap=emulating_mmap)
1448 self.imem = self.mem
1449 lelf = self.mem.initialize(row_bytes=4, initial_mem=initial_insns)
1450 if isinstance(lelf, LoadedELF): # stuff parsed from ELF
1451 initial_pc = lelf.pc
1452 for k, v in lelf.gprs.items():
1453 self.gpr[k] = SelectableInt(v, 64)
1454 initial_fpscr = lelf.fpscr
1455 self.mem.log_fancy(kind=LogType.InstrInOuts)
1456 else:
1457 self.mem = Mem(row_bytes=8, initial_mem=initial_mem,
1458 misaligned_ok=True)
1459 self.mem.log_fancy(kind=LogType.InstrInOuts)
1460 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
1461 # MMU mode, redirect underlying Mem through RADIX
1462 if mmu:
1463 self.mem = RADIX(self.mem, self)
1464 if icachemmu:
1465 self.imem = RADIX(self.imem, self)
1466
1467 # TODO, needed here:
1468 # FPR (same as GPR except for FP nums)
1469 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
1470 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
1471 self.fpscr = FPSCRState(initial_fpscr)
1472
1473 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
1474 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
1475 # -- Done
1476 # 2.3.2 LR (actually SPR #8) -- Done
1477 # 2.3.3 CTR (actually SPR #9) -- Done
1478 # 2.3.4 TAR (actually SPR #815)
1479 # 3.2.2 p45 XER (actually SPR #1) -- Done
1480 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
1481
1482 # create CR then allow portions of it to be "selectable" (below)
1483 self.cr_fields = CRFields(initial_cr)
1484 self.cr = self.cr_fields.cr
1485 self.cr_backup = 0 # sigh, dreadful hack: for fail-first (VLi)
1486
1487 # "undefined", just set to variable-bit-width int (use exts "max")
1488 # self.undefined = SelectableInt(0, EFFECTIVELY_UNLIMITED)
1489
1490 self.namespace = {}
1491 self.namespace.update(self.spr)
1492 self.namespace.update({'GPR': self.gpr,
1493 'FPR': self.fpr,
1494 'MEM': self.mem,
1495 'SPR': self.spr,
1496 'memassign': self.memassign,
1497 'NIA': self.pc.NIA,
1498 'CIA': self.pc.CIA,
1499 'SVSTATE': self.svstate,
1500 'SVSHAPE0': self.spr['SVSHAPE0'],
1501 'SVSHAPE1': self.spr['SVSHAPE1'],
1502 'SVSHAPE2': self.spr['SVSHAPE2'],
1503 'SVSHAPE3': self.spr['SVSHAPE3'],
1504 'CR': self.cr,
1505 'MSR': self.msr,
1506 'FPSCR': self.fpscr,
1507 'undefined': undefined,
1508 'mode_is_64bit': True,
1509 'SO': XER_bits['SO'],
1510 'XLEN': 64, # elwidth overrides
1511 })
1512
1513 # for LR/SC
1514 if real_page_size is None:
1515 # PowerISA v3.1B Book III Section 6.7 page 1191 (1217)
1516 # defines real page size as 2 ** 12 bytes (4KiB)
1517 real_page_size = 2 ** 12
1518 self.real_page_size = real_page_size
1519 self.reserve_addr = SelectableInt(0, self.XLEN)
1520 self.reserve = SelectableInt(0, 1)
1521 self.reserve_length = SelectableInt(0, 4)
1522
1523 self.namespace.update({'RESERVE': self.RESERVE,
1524 'RESERVE_ADDR': self.RESERVE_ADDR,
1525 'RESERVE_LENGTH': self.RESERVE_LENGTH,
1526 'REAL_PAGE_SIZE': self.REAL_PAGE_SIZE,
1527 })
1528
1529 for name in BFP_FLAG_NAMES:
1530 setattr(self, name, 0)
1531
1532 # update pc to requested start point
1533 self.set_pc(initial_pc)
1534
1535 # field-selectable versions of Condition Register
1536 self.crl = self.cr_fields.crl
1537 for i in range(8):
1538 self.namespace["CR%d" % i] = self.crl[i]
1539
1540 self.decoder = decoder2.dec
1541 self.dec2 = decoder2
1542
1543 super().__init__(XLEN=self.namespace["XLEN"], FPSCR=self.fpscr)
1544
1545 def trace(self, out):
1546 if self.insnlog is None:
1547 return
1548 self.insnlog.write(out)
1549
1550 @property
1551 def XLEN(self):
1552 return self.namespace["XLEN"]
1553
1554 @property
1555 def RESERVE(self):
1556 return self.reserve
1557
1558 @property
1559 def RESERVE_LENGTH(self):
1560 return self.reserve_length
1561
1562 @property
1563 def RESERVE_ADDR(self):
1564 return self.reserve_addr
1565
1566 @property
1567 def REAL_PAGE_SIZE(self):
1568 return self.real_page_size
1569
1570 def real_addr(self, EA):
1571 """ get the "real address to which `EA` maps"
1572
1573 Specified in PowerISA v3.1B Book II Section 1.7.2.1 page 1049 (1075)
1574 """
1575 # FIXME: translate EA to a physical address
1576 return EA
1577
1578 @property
1579 def FPSCR(self):
1580 return self.fpscr
1581
1582 def call_trap(self, trap_addr, trap_bit):
1583 """calls TRAP and sets up NIA to the new execution location.
1584 next instruction will begin at trap_addr.
1585 """
1586 self.TRAP(trap_addr, trap_bit)
1587 self.namespace['NIA'] = self.trap_nia
1588 self.pc.update(self.namespace, self.is_svp64_mode)
1589
1590 def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
1591 """TRAP> saves PC, MSR (and TODO SVSTATE), and updates MSR
1592
1593 TRAP function is callable from inside the pseudocode itself,
1594 hence the default arguments. when calling from inside ISACaller
1595 it is best to use call_trap()
1596
1597 trap_addr: int | SelectableInt
1598 the address to go to (before any modifications from `KAIVB`)
1599 trap_bit: int | None
1600 the bit in `SRR1` to set, `None` means don't set any bits.
1601 """
1602 if isinstance(trap_addr, SelectableInt):
1603 trap_addr = trap_addr.value
1604 # https://bugs.libre-soc.org/show_bug.cgi?id=859
1605 kaivb = self.spr['KAIVB'].value
1606 msr = self.namespace['MSR'].value
1607 log("TRAP:", hex(trap_addr), hex(msr), "kaivb", hex(kaivb))
1608 # store CIA(+4?) in SRR0, set NIA to 0x700
1609 # store MSR in SRR1, set MSR to um errr something, have to check spec
1610 # store SVSTATE (if enabled) in SVSRR0
1611 self.spr['SRR0'].value = self.pc.CIA.value
1612 self.spr['SRR1'].value = msr
1613 if self.is_svp64_mode:
1614 self.spr['SVSRR0'] = self.namespace['SVSTATE'].value
1615 self.trap_nia = SelectableInt(trap_addr | (kaivb & ~0x1fff), 64)
1616 if trap_bit is not None:
1617 self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
1618
1619 # set exception bits. TODO: this should, based on the address
1620 # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
1621 # bits appropriately. however it turns out that *for now* in all
1622 # cases (all trap_addrs) the exact same thing is needed.
1623 self.msr[MSRb.IR] = 0
1624 self.msr[MSRb.DR] = 0
1625 self.msr[MSRb.FE0] = 0
1626 self.msr[MSRb.FE1] = 0
1627 self.msr[MSRb.EE] = 0
1628 self.msr[MSRb.RI] = 0
1629 self.msr[MSRb.SF] = 1
1630 self.msr[MSRb.TM] = 0
1631 self.msr[MSRb.VEC] = 0
1632 self.msr[MSRb.VSX] = 0
1633 self.msr[MSRb.PR] = 0
1634 self.msr[MSRb.FP] = 0
1635 self.msr[MSRb.PMM] = 0
1636 self.msr[MSRb.TEs] = 0
1637 self.msr[MSRb.TEe] = 0
1638 self.msr[MSRb.UND] = 0
1639 self.msr[MSRb.LE] = 1
1640
1641 def memassign(self, ea, sz, val):
1642 self.mem.memassign(ea, sz, val)
1643
1644 def prep_namespace(self, insn_name, formname, op_fields, xlen):
1645 # TODO: get field names from form in decoder*1* (not decoder2)
1646 # decoder2 is hand-created, and decoder1.sigform is auto-generated
1647 # from spec
1648 # then "yield" fields only from op_fields rather than hard-coded
1649 # list, here.
1650 fields = self.decoder.sigforms[formname]
1651 log("prep_namespace", formname, op_fields, insn_name)
1652 for name in op_fields:
1653 # CR immediates. deal with separately. needs modifying
1654 # pseudocode
1655 crlen5 = ['BC', 'BA', 'BB', 'BT', 'BI'] # 5-bit
1656 crlen3 = ['BF', 'BFA'] # 3-bit (BF: bit-field)
1657 if self.is_svp64_mode and name in crlen5:
1658 # 5-bit, must reconstruct the value
1659 if name in ['BT']:
1660 regnum, is_vec = yield from get_cr_out(self.dec2, name)
1661 else:
1662 regnum, is_vec = yield from get_cr_in(self.dec2, name)
1663 sig = getattr(fields, name)
1664 val = yield sig
1665 # low 2 LSBs (CR field selector) remain same, CR num extended
1666 assert regnum <= 7, "sigh, TODO, 128 CR fields"
1667 val = (val & 0b11) | (regnum << 2)
1668 elif self.is_svp64_mode and name in crlen3:
1669 if name in ['BF']:
1670 regnum, is_vec = yield from get_cr_out(self.dec2, name)
1671 else:
1672 regnum, is_vec = yield from get_cr_in(self.dec2, name)
1673 log('hack %s' % name, regnum, is_vec)
1674 val = regnum
1675 else:
1676 sig = getattr(fields, name)
1677 val = yield sig
1678 # these are all opcode fields involved in index-selection of CR,
1679 # and need to do "standard" arithmetic. CR[BA+32] for example
1680 # would, if using SelectableInt, only be 5-bit.
1681 if name not in crlen3 and name not in crlen5:
1682 val = SelectableInt(val, sig.width)
1683
1684 # finally put the field into the namespace
1685 self.namespace[name] = val
1686
1687 self.namespace['XER'] = self.spr['XER']
1688 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
1689 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
1690 self.namespace['OV'] = self.spr['XER'][XER_bits['OV']].value
1691 self.namespace['OV32'] = self.spr['XER'][XER_bits['OV32']].value
1692 self.namespace['XLEN'] = xlen
1693 self.namespace['RESERVE'] = self.reserve
1694 self.namespace['RESERVE_ADDR'] = self.reserve_addr
1695 self.namespace['RESERVE_LENGTH'] = self.reserve_length
1696
1697 # add some SVSTATE convenience variables
1698 vl = self.svstate.vl
1699 srcstep = self.svstate.srcstep
1700 self.namespace['VL'] = vl
1701 self.namespace['srcstep'] = srcstep
1702
1703 # take a copy of the CR field value: if non-VLi fail-first fails
1704 # this is because the pseudocode writes *directly* to CR. sigh
1705 self.cr_backup = self.cr.value
1706
1707 # sv.bc* need some extra fields
1708 if not self.is_svp64_mode or not insn_name.startswith("sv.bc"):
1709 return
1710
1711 # blegh grab bits manually
1712 mode = yield self.dec2.rm_dec.rm_in.mode
1713 # convert to SelectableInt before test
1714 mode = SelectableInt(mode, 5)
1715 bc_vlset = mode[SVP64MODEb.BC_VLSET] != 0
1716 bc_vli = mode[SVP64MODEb.BC_VLI] != 0
1717 bc_snz = mode[SVP64MODEb.BC_SNZ] != 0
1718 bc_vsb = yield self.dec2.rm_dec.bc_vsb
1719 bc_ctrtest = yield self.dec2.rm_dec.bc_ctrtest
1720 bc_lru = yield self.dec2.rm_dec.bc_lru
1721 bc_gate = yield self.dec2.rm_dec.bc_gate
1722 sz = yield self.dec2.rm_dec.pred_sz
1723 self.namespace['mode'] = SelectableInt(mode, 5)
1724 self.namespace['ALL'] = SelectableInt(bc_gate, 1)
1725 self.namespace['VSb'] = SelectableInt(bc_vsb, 1)
1726 self.namespace['LRu'] = SelectableInt(bc_lru, 1)
1727 self.namespace['CTRtest'] = SelectableInt(bc_ctrtest, 1)
1728 self.namespace['VLSET'] = SelectableInt(bc_vlset, 1)
1729 self.namespace['VLI'] = SelectableInt(bc_vli, 1)
1730 self.namespace['sz'] = SelectableInt(sz, 1)
1731 self.namespace['SNZ'] = SelectableInt(bc_snz, 1)
1732
1733 def get_kludged_op_add_ca_ov(self, inputs, inp_ca_ov):
1734 """ this was not at all necessary to do. this function massively
1735 duplicates - in a laborious and complex fashion - the contents of
1736 the CSV files that were extracted two years ago from microwatt's
1737 source code. A-inversion is the "inv A" column, output inversion
1738 is the "inv out" column, carry-in equal to 0 or 1 or CA is the
1739 "cry in" column
1740
1741 all of that information is available in
1742 self.instrs[ins_name].op_fields
1743 where info is usually assigned to self.instrs[ins_name]
1744
1745 https://git.libre-soc.org/?p=openpower-isa.git;a=blob;f=openpower/isatables/minor_31.csv;hb=HEAD
1746
1747 the immediate constants are *also* decoded correctly and placed
1748 usually by DecodeIn2Imm into operand2, as part of power_decoder2.py
1749 """
1750 def ca(a, b, ca_in, width):
1751 mask = (1 << width) - 1
1752 y = (a & mask) + (b & mask) + ca_in
1753 return y >> width
1754
1755 asmcode = yield self.dec2.dec.op.asmcode
1756 insn = insns.get(asmcode)
1757 SI = yield self.dec2.dec.SI
1758 SI &= 0xFFFF
1759 CA, OV = inp_ca_ov
1760 inputs = [i.value for i in inputs]
1761 if SI & 0x8000:
1762 SI -= 0x10000
1763 if insn in ("add", "addo", "addc", "addco"):
1764 a = inputs[0]
1765 b = inputs[1]
1766 ca_in = 0
1767 elif insn == "addic" or insn == "addic.":
1768 a = inputs[0]
1769 b = SI
1770 ca_in = 0
1771 elif insn in ("subf", "subfo", "subfc", "subfco"):
1772 a = ~inputs[0]
1773 b = inputs[1]
1774 ca_in = 1
1775 elif insn == "subfic":
1776 a = ~inputs[0]
1777 b = SI
1778 ca_in = 1
1779 elif insn == "adde" or insn == "addeo":
1780 a = inputs[0]
1781 b = inputs[1]
1782 ca_in = CA
1783 elif insn == "subfe" or insn == "subfeo":
1784 a = ~inputs[0]
1785 b = inputs[1]
1786 ca_in = CA
1787 elif insn == "addme" or insn == "addmeo":
1788 a = inputs[0]
1789 b = ~0
1790 ca_in = CA
1791 elif insn == "addze" or insn == "addzeo":
1792 a = inputs[0]
1793 b = 0
1794 ca_in = CA
1795 elif insn == "subfme" or insn == "subfmeo":
1796 a = ~inputs[0]
1797 b = ~0
1798 ca_in = CA
1799 elif insn == "subfze" or insn == "subfzeo":
1800 a = ~inputs[0]
1801 b = 0
1802 ca_in = CA
1803 elif insn == "addex":
1804 # CA[32] aren't actually written, just generate so we have
1805 # something to return
1806 ca64 = ov64 = ca(inputs[0], inputs[1], OV, 64)
1807 ca32 = ov32 = ca(inputs[0], inputs[1], OV, 32)
1808 return ca64, ca32, ov64, ov32
1809 elif insn == "neg" or insn == "nego":
1810 a = ~inputs[0]
1811 b = 0
1812 ca_in = 1
1813 else:
1814 raise NotImplementedError(
1815 "op_add kludge unimplemented instruction: ", asmcode, insn)
1816
1817 ca64 = ca(a, b, ca_in, 64)
1818 ca32 = ca(a, b, ca_in, 32)
1819 ov64 = ca64 != ca(a, b, ca_in, 63)
1820 ov32 = ca32 != ca(a, b, ca_in, 31)
1821 return ca64, ca32, ov64, ov32
1822
1823 def handle_carry_(self, inputs, output, ca, ca32, inp_ca_ov):
1824 if ca is not None and ca32 is not None:
1825 return
1826 op = yield self.dec2.e.do.insn_type
1827 if op == MicrOp.OP_ADD.value and ca is None and ca32 is None:
1828 retval = yield from self.get_kludged_op_add_ca_ov(
1829 inputs, inp_ca_ov)
1830 ca, ca32, ov, ov32 = retval
1831 asmcode = yield self.dec2.dec.op.asmcode
1832 if insns.get(asmcode) == 'addex':
1833 # TODO: if 32-bit mode, set ov to ov32
1834 self.spr['XER'][XER_bits['OV']] = ov
1835 self.spr['XER'][XER_bits['OV32']] = ov32
1836 log(f"write OV/OV32 OV={ov} OV32={ov32}",
1837 kind=LogType.InstrInOuts)
1838 else:
1839 # TODO: if 32-bit mode, set ca to ca32
1840 self.spr['XER'][XER_bits['CA']] = ca
1841 self.spr['XER'][XER_bits['CA32']] = ca32
1842 log(f"write CA/CA32 CA={ca} CA32={ca32}",
1843 kind=LogType.InstrInOuts)
1844 return
1845 inv_a = yield self.dec2.e.do.invert_in
1846 if inv_a:
1847 inputs[0] = ~inputs[0]
1848
1849 imm_ok = yield self.dec2.e.do.imm_data.ok
1850 if imm_ok:
1851 imm = yield self.dec2.e.do.imm_data.data
1852 inputs.append(SelectableInt(imm, 64))
1853 gts = []
1854 for x in inputs:
1855 log("gt input", x, output)
1856 gt = (gtu(x, output))
1857 gts.append(gt)
1858 log(gts)
1859 cy = 1 if any(gts) else 0
1860 log("CA", cy, gts)
1861 if ca is None: # already written
1862 self.spr['XER'][XER_bits['CA']] = cy
1863
1864 # 32 bit carry
1865 # ARGH... different for OP_ADD... *sigh*...
1866 op = yield self.dec2.e.do.insn_type
1867 if op == MicrOp.OP_ADD.value:
1868 res32 = (output.value & (1 << 32)) != 0
1869 a32 = (inputs[0].value & (1 << 32)) != 0
1870 if len(inputs) >= 2:
1871 b32 = (inputs[1].value & (1 << 32)) != 0
1872 else:
1873 b32 = False
1874 cy32 = res32 ^ a32 ^ b32
1875 log("CA32 ADD", cy32)
1876 else:
1877 gts = []
1878 for x in inputs:
1879 log("input", x, output)
1880 log(" x[32:64]", x, x[32:64])
1881 log(" o[32:64]", output, output[32:64])
1882 gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
1883 gts.append(gt)
1884 cy32 = 1 if any(gts) else 0
1885 log("CA32", cy32, gts)
1886 if ca32 is None: # already written
1887 self.spr['XER'][XER_bits['CA32']] = cy32
1888
1889 def handle_overflow(self, inputs, output, div_overflow, inp_ca_ov):
1890 op = yield self.dec2.e.do.insn_type
1891 if op == MicrOp.OP_ADD.value:
1892 retval = yield from self.get_kludged_op_add_ca_ov(
1893 inputs, inp_ca_ov)
1894 ca, ca32, ov, ov32 = retval
1895 # TODO: if 32-bit mode, set ov to ov32
1896 self.spr['XER'][XER_bits['OV']] = ov
1897 self.spr['XER'][XER_bits['OV32']] = ov32
1898 self.spr['XER'][XER_bits['SO']] |= ov
1899 return
1900 if hasattr(self.dec2.e.do, "invert_in"):
1901 inv_a = yield self.dec2.e.do.invert_in
1902 if inv_a:
1903 inputs[0] = ~inputs[0]
1904
1905 imm_ok = yield self.dec2.e.do.imm_data.ok
1906 if imm_ok:
1907 imm = yield self.dec2.e.do.imm_data.data
1908 inputs.append(SelectableInt(imm, 64))
1909 log("handle_overflow", inputs, output, div_overflow)
1910 if len(inputs) < 2 and div_overflow is None:
1911 return
1912
1913 # div overflow is different: it's returned by the pseudo-code
1914 # because it's more complex than can be done by analysing the output
1915 if div_overflow is not None:
1916 ov, ov32 = div_overflow, div_overflow
1917 # arithmetic overflow can be done by analysing the input and output
1918 elif len(inputs) >= 2:
1919 # OV (64-bit)
1920 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
1921 output_sgn = exts(output.value, output.bits) < 0
1922 ov = 1 if input_sgn[0] == input_sgn[1] and \
1923 output_sgn != input_sgn[0] else 0
1924
1925 # OV (32-bit)
1926 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
1927 output32_sgn = exts(output.value, 32) < 0
1928 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
1929 output32_sgn != input32_sgn[0] else 0
1930
1931 # now update XER OV/OV32/SO
1932 so = self.spr['XER'][XER_bits['SO']]
1933 new_so = so | ov # sticky overflow ORs in old with new
1934 self.spr['XER'][XER_bits['OV']] = ov
1935 self.spr['XER'][XER_bits['OV32']] = ov32
1936 self.spr['XER'][XER_bits['SO']] = new_so
1937 log(" set overflow", ov, ov32, so, new_so)
1938
1939 def handle_comparison(self, out, cr_idx=0, overflow=None, no_so=False):
1940 assert isinstance(out, SelectableInt), \
1941 "out zero not a SelectableInt %s" % repr(outputs)
1942 log("handle_comparison", out.bits, hex(out.value))
1943 # TODO - XXX *processor* in 32-bit mode
1944 # https://bugs.libre-soc.org/show_bug.cgi?id=424
1945 # if is_32bit:
1946 # o32 = exts(out.value, 32)
1947 # print ("handle_comparison exts 32 bit", hex(o32))
1948 out = exts(out.value, out.bits)
1949 log("handle_comparison exts", hex(out))
1950 # create the three main CR flags, EQ GT LT
1951 zero = SelectableInt(out == 0, 1)
1952 positive = SelectableInt(out > 0, 1)
1953 negative = SelectableInt(out < 0, 1)
1954 # get (or not) XER.SO. for setvl this is important *not* to read SO
1955 if no_so:
1956 SO = SelectableInt(1, 0)
1957 else:
1958 SO = self.spr['XER'][XER_bits['SO']]
1959 log("handle_comparison SO", SO.value,
1960 "overflow", overflow,
1961 "zero", zero.value,
1962 "+ve", positive.value,
1963 "-ve", negative.value)
1964 # alternative overflow checking (setvl mainly at the moment)
1965 if overflow is not None and overflow == 1:
1966 SO = SelectableInt(1, 1)
1967 # create the four CR field values and set the required CR field
1968 cr_field = selectconcat(negative, positive, zero, SO)
1969 log("handle_comparison cr_field", self.cr, cr_idx, cr_field)
1970 self.crl[cr_idx].eq(cr_field)
1971 return cr_field
1972
1973 def set_pc(self, pc_val):
1974 self.namespace['NIA'] = SelectableInt(pc_val, 64)
1975 self.pc.update(self.namespace, self.is_svp64_mode)
1976
1977 def get_next_insn(self):
1978 """check instruction
1979 """
1980 if self.respect_pc:
1981 pc = self.pc.CIA.value
1982 else:
1983 pc = self.fake_pc
1984 ins = self.imem.ld(pc, 4, False, True, instr_fetch=True)
1985 if ins is None:
1986 raise KeyError("no instruction at 0x%x" % pc)
1987 return pc, ins
1988
1989 def setup_one(self):
1990 """set up one instruction
1991 """
1992 pc, insn = self.get_next_insn()
1993 yield from self.setup_next_insn(pc, insn)
1994
1995 # cache since it's really slow to construct
1996 __PREFIX_CACHE = SVP64Instruction.Prefix(SelectableInt(value=0, bits=32))
1997
1998 def __decode_prefix(self, opcode):
1999 pfx = self.__PREFIX_CACHE
2000 pfx.storage.eq(opcode)
2001 return pfx
2002
2003 def setup_next_insn(self, pc, ins):
2004 """set up next instruction
2005 """
2006 self._pc = pc
2007 log("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
2008 log("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
2009
2010 yield self.dec2.sv_rm.eq(0)
2011 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
2012 yield self.dec2.dec.bigendian.eq(self.bigendian)
2013 yield self.dec2.state.msr.eq(self.msr.value)
2014 yield self.dec2.state.pc.eq(pc)
2015 if self.svstate is not None:
2016 yield self.dec2.state.svstate.eq(self.svstate.value)
2017
2018 # SVP64. first, check if the opcode is EXT001, and SVP64 id bits set
2019 yield Settle()
2020 opcode = yield self.dec2.dec.opcode_in
2021 opcode = SelectableInt(value=opcode, bits=32)
2022 pfx = self.__decode_prefix(opcode)
2023 log("prefix test: opcode:", pfx.PO, bin(pfx.PO), pfx.id)
2024 self.is_svp64_mode = bool((pfx.PO == 0b000001) and (pfx.id == 0b11))
2025 self.pc.update_nia(self.is_svp64_mode)
2026 # set SVP64 decode
2027 yield self.dec2.is_svp64_mode.eq(self.is_svp64_mode)
2028 self.namespace['NIA'] = self.pc.NIA
2029 self.namespace['SVSTATE'] = self.svstate
2030 if not self.is_svp64_mode:
2031 return
2032
2033 # in SVP64 mode. decode/print out svp64 prefix, get v3.0B instruction
2034 log("svp64.rm", bin(pfx.rm))
2035 log(" svstate.vl", self.svstate.vl)
2036 log(" svstate.mvl", self.svstate.maxvl)
2037 ins = self.imem.ld(pc+4, 4, False, True, instr_fetch=True)
2038 log(" svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
2039 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
2040 yield self.dec2.sv_rm.eq(int(pfx.rm)) # svp64 prefix
2041 yield Settle()
2042
2043 def execute_one(self):
2044 """execute one instruction
2045 """
2046 # get the disassembly code for this instruction
2047 if not self.disassembly:
2048 code = yield from self.get_assembly_name()
2049 else:
2050 offs, dbg = 0, ""
2051 if self.is_svp64_mode:
2052 offs, dbg = 4, "svp64 "
2053 code = self.disassembly[self._pc+offs]
2054 log(" %s sim-execute" % dbg, hex(self._pc), code)
2055 opname = code.split(' ')[0]
2056 try:
2057 asmop = yield from self.call(opname) # execute the instruction
2058 except MemException as e: # check for memory errors
2059 if e.args[0] == 'unaligned': # alignment error
2060 # run a Trap but set DAR first
2061 print("memory unaligned exception, DAR", e.dar, repr(e))
2062 self.spr['DAR'] = SelectableInt(e.dar, 64)
2063 self.call_trap(0x600, PIb.PRIV) # 0x600, privileged
2064 return
2065 elif e.args[0] == 'invalid': # invalid
2066 # run a Trap but set DAR first
2067 log("RADIX MMU memory invalid error, mode %s" % e.mode)
2068 if e.mode == 'EXECUTE':
2069 # XXX TODO: must set a few bits in SRR1,
2070 # see microwatt loadstore1.vhdl
2071 # if m_in.segerr = '0' then
2072 # v.srr1(47 - 33) := m_in.invalid;
2073 # v.srr1(47 - 35) := m_in.perm_error; -- noexec fault
2074 # v.srr1(47 - 44) := m_in.badtree;
2075 # v.srr1(47 - 45) := m_in.rc_error;
2076 # v.intr_vec := 16#400#;
2077 # else
2078 # v.intr_vec := 16#480#;
2079 self.call_trap(0x400, PIb.PRIV) # 0x400, privileged
2080 else:
2081 self.call_trap(0x300, PIb.PRIV) # 0x300, privileged
2082 return
2083 # not supported yet:
2084 raise e # ... re-raise
2085
2086 # append to the trace log file
2087 self.trace(" # %s %s\n" % (asmop, code))
2088
2089 log("gprs after insn %s - code" % asmop, code)
2090 self.gpr.dump()
2091 crs = []
2092 for i in range(len(self.crl)):
2093 crs.append(bin(self.crl[i].asint()))
2094 log("crs", " ".join(crs))
2095 log("vl,maxvl", self.svstate.vl, self.svstate.maxvl)
2096
2097 # don't use this except in special circumstances
2098 if not self.respect_pc:
2099 self.fake_pc += 4
2100
2101 log("execute one, CIA NIA", hex(self.pc.CIA.value),
2102 hex(self.pc.NIA.value))
2103
2104 def get_assembly_name(self):
2105 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
2106 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
2107 dec_insn = yield self.dec2.e.do.insn
2108 insn_1_11 = yield self.dec2.e.do.insn[1:11]
2109 asmcode = yield self.dec2.dec.op.asmcode
2110 int_op = yield self.dec2.dec.op.internal_op
2111 log("get assembly name asmcode", asmcode, int_op,
2112 hex(dec_insn), bin(insn_1_11))
2113 asmop = insns.get(asmcode, None)
2114
2115 # sigh reconstruct the assembly instruction name
2116 if hasattr(self.dec2.e.do, "oe"):
2117 ov_en = yield self.dec2.e.do.oe.oe
2118 ov_ok = yield self.dec2.e.do.oe.ok
2119 else:
2120 ov_en = False
2121 ov_ok = False
2122 if hasattr(self.dec2.e.do, "rc"):
2123 rc_en = yield self.dec2.e.do.rc.rc
2124 rc_ok = yield self.dec2.e.do.rc.ok
2125 else:
2126 rc_en = False
2127 rc_ok = False
2128 # annoying: ignore rc_ok if RC1 is set (for creating *assembly name*)
2129 RC1 = yield self.dec2.rm_dec.RC1
2130 if RC1:
2131 rc_en = False
2132 rc_ok = False
2133 # grrrr have to special-case MUL op (see DecodeOE)
2134 log("ov %d en %d rc %d en %d op %d" %
2135 (ov_ok, ov_en, rc_ok, rc_en, int_op))
2136 if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
2137 log("mul op")
2138 if rc_en & rc_ok:
2139 asmop += "."
2140 else:
2141 if not asmop.endswith("."): # don't add "." to "andis."
2142 if rc_en & rc_ok:
2143 asmop += "."
2144 if hasattr(self.dec2.e.do, "lk"):
2145 lk = yield self.dec2.e.do.lk
2146 if lk:
2147 asmop += "l"
2148 log("int_op", int_op)
2149 if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
2150 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
2151 log("AA", AA)
2152 if AA:
2153 asmop += "a"
2154 spr_msb = yield from self.get_spr_msb()
2155 if int_op == MicrOp.OP_MFCR.value:
2156 if spr_msb:
2157 asmop = 'mfocrf'
2158 else:
2159 asmop = 'mfcr'
2160 # XXX TODO: for whatever weird reason this doesn't work
2161 # https://bugs.libre-soc.org/show_bug.cgi?id=390
2162 if int_op == MicrOp.OP_MTCRF.value:
2163 if spr_msb:
2164 asmop = 'mtocrf'
2165 else:
2166 asmop = 'mtcrf'
2167 return asmop
2168
2169 def reset_remaps(self):
2170 self.remap_loopends = [0] * 4
2171 self.remap_idxs = [0, 1, 2, 3]
2172
2173 def get_remap_indices(self):
2174 """WARNING, this function stores remap_idxs and remap_loopends
2175 in the class for later use. this to avoid problems with yield
2176 """
2177 # go through all iterators in lock-step, advance to next remap_idx
2178 srcstep, dststep, ssubstep, dsubstep = self.get_src_dststeps()
2179 # get four SVSHAPEs. here we are hard-coding
2180 self.reset_remaps()
2181 SVSHAPE0 = self.spr['SVSHAPE0']
2182 SVSHAPE1 = self.spr['SVSHAPE1']
2183 SVSHAPE2 = self.spr['SVSHAPE2']
2184 SVSHAPE3 = self.spr['SVSHAPE3']
2185 # set up the iterators
2186 remaps = [(SVSHAPE0, SVSHAPE0.get_iterator()),
2187 (SVSHAPE1, SVSHAPE1.get_iterator()),
2188 (SVSHAPE2, SVSHAPE2.get_iterator()),
2189 (SVSHAPE3, SVSHAPE3.get_iterator()),
2190 ]
2191
2192 dbg = []
2193 for i, (shape, remap) in enumerate(remaps):
2194 # zero is "disabled"
2195 if shape.value == 0x0:
2196 self.remap_idxs[i] = 0
2197 # pick src or dststep depending on reg num (0-2=in, 3-4=out)
2198 step = dststep if (i in [3, 4]) else srcstep
2199 # this is terrible. O(N^2) looking for the match. but hey.
2200 for idx, (remap_idx, loopends) in enumerate(remap):
2201 if idx == step:
2202 break
2203 self.remap_idxs[i] = remap_idx
2204 self.remap_loopends[i] = loopends
2205 dbg.append((i, step, remap_idx, loopends))
2206 for (i, step, remap_idx, loopends) in dbg:
2207 log("SVSHAPE %d idx, end" % i, step, remap_idx, bin(loopends))
2208 return remaps
2209
2210 def get_spr_msb(self):
2211 dec_insn = yield self.dec2.e.do.insn
2212 return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
2213
2214 def call(self, name, syscall_emu_active=False):
2215 """call(opcode) - the primary execution point for instructions
2216 """
2217 self.last_st_addr = None # reset the last known store address
2218 self.last_ld_addr = None # etc.
2219
2220 ins_name = name.strip() # remove spaces if not already done so
2221 if self.halted:
2222 log("halted - not executing", ins_name)
2223 return name
2224
2225 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
2226 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
2227 asmop = yield from self.get_assembly_name()
2228 log("call", ins_name, asmop, kind=LogType.InstrInOuts)
2229
2230 # sv.setvl is *not* a loop-function. sigh
2231 log("is_svp64_mode", self.is_svp64_mode, asmop)
2232
2233 # check privileged
2234 int_op = yield self.dec2.dec.op.internal_op
2235 spr_msb = yield from self.get_spr_msb()
2236
2237 instr_is_privileged = False
2238 if int_op in [MicrOp.OP_ATTN.value,
2239 MicrOp.OP_MFMSR.value,
2240 MicrOp.OP_MTMSR.value,
2241 MicrOp.OP_MTMSRD.value,
2242 # TODO: OP_TLBIE
2243 MicrOp.OP_RFID.value]:
2244 instr_is_privileged = True
2245 if int_op in [MicrOp.OP_MFSPR.value,
2246 MicrOp.OP_MTSPR.value] and spr_msb:
2247 instr_is_privileged = True
2248
2249 # check MSR priv bit and whether op is privileged: if so, throw trap
2250 PR = self.msr[MSRb.PR]
2251 log("is priv", instr_is_privileged, hex(self.msr.value), PR)
2252 if instr_is_privileged and PR == 1:
2253 self.call_trap(0x700, PIb.PRIV)
2254 return asmop
2255
2256 # check halted condition
2257 if ins_name == 'attn':
2258 self.halted = True
2259 return asmop
2260
2261 # User mode system call emulation consists of several steps:
2262 # 1. Detect whether instruction is sc or scv.
2263 # 2. Call the HDL implementation which invokes trap.
2264 # 3. Reroute the guest system call to host system call.
2265 # 4. Force return from the interrupt as if we had guest OS.
2266 # FIXME: enable PPC_FEATURE2_SCV in mem.py DEFAULT_AT_HWCAP2 when
2267 # scv emulation works.
2268 if ((asmop in ("sc", "scv")) and
2269 (self.syscall is not None) and
2270 not syscall_emu_active):
2271 # Memoize PC and trigger an interrupt
2272 if self.respect_pc:
2273 pc = self.pc.CIA.value
2274 else:
2275 pc = self.fake_pc
2276 yield from self.call(asmop, syscall_emu_active=True)
2277
2278 # Reroute the syscall to host OS
2279 identifier = self.gpr(0)
2280 arguments = map(self.gpr, range(3, 9))
2281 result = self.syscall(identifier, *arguments)
2282 self.gpr.write(3, result, False, self.namespace["XLEN"])
2283
2284 # Return from interrupt
2285 yield from self.call("rfid", syscall_emu_active=True)
2286 return asmop
2287 elif ((name in ("rfid", "hrfid")) and syscall_emu_active):
2288 asmop = "rfid"
2289
2290 # check illegal instruction
2291 illegal = False
2292 if ins_name not in ['mtcrf', 'mtocrf']:
2293 illegal = ins_name != asmop
2294
2295 # list of instructions not being supported by binutils (.long)
2296 dotstrp = asmop[:-1] if asmop[-1] == '.' else asmop
2297 if dotstrp in [*FPTRANS_INSNS,
2298 *LDST_UPDATE_INSNS,
2299 'ffmadds', 'fdmadds', 'ffadds',
2300 'minmax',
2301 "brh", "brw", "brd",
2302 'setvl', 'svindex', 'svremap', 'svstep',
2303 'svshape', 'svshape2',
2304 'ternlogi', 'bmask', 'cprop', 'gbbd',
2305 'absdu', 'absds', 'absdacs', 'absdacu', 'avgadd',
2306 'fmvis', 'fishmv', 'pcdec', "maddedu", "divmod2du",
2307 "dsld", "dsrd", "maddedus",
2308 "sadd", "saddw", "sadduw",
2309 "cffpr", "cffpro",
2310 "mffpr", "mffprs",
2311 "ctfpr", "ctfprs",
2312 "mtfpr", "mtfprs",
2313 "maddsubrs", "maddrs", "msubrs",
2314 "cfuged", "cntlzdm", "cnttzdm", "pdepd", "pextd",
2315 "setbc", "setbcr", "setnbc", "setnbcr",
2316 ]:
2317 illegal = False
2318 ins_name = dotstrp
2319
2320 # match against instructions treated as nop, see nop below
2321 if asmop.startswith("dcbt"):
2322 illegal = False
2323 ins_name = "nop"
2324
2325 # branch-conditional redirects to sv.bc
2326 if asmop.startswith('bc') and self.is_svp64_mode:
2327 ins_name = 'sv.%s' % ins_name
2328
2329 # ld-immediate-with-pi mode redirects to ld-with-postinc
2330 ldst_imm_postinc = False
2331 if 'u' in ins_name and self.is_svp64_mode:
2332 ldst_pi = yield self.dec2.rm_dec.ldst_postinc
2333 if ldst_pi:
2334 ins_name = ins_name.replace("u", "up")
2335 ldst_imm_postinc = True
2336 log(" enable ld/st postinc", ins_name)
2337
2338 log(" post-processed name", dotstrp, ins_name, asmop)
2339
2340 # illegal instructions call TRAP at 0x700
2341 if illegal:
2342 print("illegal", ins_name, asmop)
2343 self.call_trap(0x700, PIb.ILLEG)
2344 print("name %s != %s - calling ILLEGAL trap, PC: %x" %
2345 (ins_name, asmop, self.pc.CIA.value))
2346 return asmop
2347
2348 # this is for setvl "Vertical" mode: if set true,
2349 # srcstep/dststep is explicitly advanced. mode says which SVSTATE to
2350 # test for Rc=1 end condition. 3 bits of all 3 loops are put into CR0
2351 self.allow_next_step_inc = False
2352 self.svstate_next_mode = 0
2353
2354 # nop has to be supported, we could let the actual op calculate
2355 # but PowerDecoder has a pattern for nop
2356 if ins_name == 'nop':
2357 self.update_pc_next()
2358 return asmop
2359
2360 # get elwidths, defaults to 64
2361 xlen = 64
2362 ew_src = 64
2363 ew_dst = 64
2364 if self.is_svp64_mode:
2365 ew_src = yield self.dec2.rm_dec.ew_src
2366 ew_dst = yield self.dec2.rm_dec.ew_dst
2367 ew_src = 8 << (3-int(ew_src)) # convert to bitlength
2368 ew_dst = 8 << (3-int(ew_dst)) # convert to bitlength
2369 xlen = max(ew_src, ew_dst)
2370 log("elwidth", ew_src, ew_dst)
2371 log("XLEN:", self.is_svp64_mode, xlen)
2372
2373 # look up instruction in ISA.instrs, prepare namespace
2374 if ins_name == 'pcdec': # grrrr yes there are others ("stbcx." etc.)
2375 info = self.instrs[ins_name+"."]
2376 elif asmop[-1] == '.' and asmop in self.instrs:
2377 info = self.instrs[asmop]
2378 else:
2379 info = self.instrs[ins_name]
2380 yield from self.prep_namespace(ins_name, info.form, info.op_fields,
2381 xlen)
2382
2383 # dict retains order
2384 inputs = dict.fromkeys(create_full_args(
2385 read_regs=info.read_regs, special_regs=info.special_regs,
2386 uninit_regs=info.uninit_regs, write_regs=info.write_regs))
2387
2388 # preserve order of register names
2389 write_without_special_regs = OrderedSet(info.write_regs)
2390 write_without_special_regs -= OrderedSet(info.special_regs)
2391 input_names = create_args([
2392 *info.read_regs, *info.uninit_regs, *write_without_special_regs])
2393 log("input names", input_names)
2394
2395 # get SVP64 entry for the current instruction
2396 sv_rm = self.svp64rm.instrs.get(ins_name)
2397 if sv_rm is not None:
2398 dest_cr, src_cr, src_byname, dest_byname = decode_extra(sv_rm)
2399 else:
2400 dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
2401 log("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
2402
2403 # see if srcstep/dststep need skipping over masked-out predicate bits
2404 # svstep also needs advancement because it calls SVSTATE_NEXT.
2405 # bit the remaps get computed just after pre_inc moves them on
2406 # with remap_set_steps substituting for PowerDecider2 not doing it,
2407 # and SVSTATE_NEXT not being able to.use yield, the preinc on
2408 # svstep is necessary for now.
2409 self.reset_remaps()
2410 if (self.is_svp64_mode or ins_name in ['svstep']):
2411 yield from self.svstate_pre_inc()
2412 if self.is_svp64_mode:
2413 pre = yield from self.update_new_svstate_steps()
2414 if pre:
2415 self.svp64_reset_loop()
2416 self.update_nia()
2417 self.update_pc_next()
2418 return asmop
2419 srcstep, dststep, ssubstep, dsubstep = self.get_src_dststeps()
2420 pred_dst_zero = self.pred_dst_zero
2421 pred_src_zero = self.pred_src_zero
2422 vl = self.svstate.vl
2423 subvl = yield self.dec2.rm_dec.rm_in.subvl
2424
2425 # VL=0 in SVP64 mode means "do nothing: skip instruction"
2426 if self.is_svp64_mode and vl == 0:
2427 self.pc.update(self.namespace, self.is_svp64_mode)
2428 log("SVP64: VL=0, end of call", self.namespace['CIA'],
2429 self.namespace['NIA'], kind=LogType.InstrInOuts)
2430 return asmop
2431
2432 # for when SVREMAP is active, using pre-arranged schedule.
2433 # note: modifying PowerDecoder2 needs to "settle"
2434 remap_en = self.svstate.SVme
2435 persist = self.svstate.RMpst
2436 active = (persist or self.last_op_svshape) and remap_en != 0
2437 if self.is_svp64_mode:
2438 yield self.dec2.remap_active.eq(remap_en if active else 0)
2439 yield Settle()
2440 if persist or self.last_op_svshape:
2441 remaps = self.get_remap_indices()
2442 if self.is_svp64_mode and (persist or self.last_op_svshape):
2443 yield from self.remap_set_steps(remaps)
2444 # after that, settle down (combinatorial) to let Vector reg numbers
2445 # work themselves out
2446 yield Settle()
2447 if self.is_svp64_mode:
2448 remap_active = yield self.dec2.remap_active
2449 else:
2450 remap_active = False
2451 log("remap active", bin(remap_active), self.is_svp64_mode)
2452
2453 # LDST does *not* allow elwidth overrides on RA (Effective Address).
2454 # this has to be detected. XXX TODO: RB for ldst-idx *may* need
2455 # conversion (to 64-bit) also.
2456 # see write reg this *HAS* to also override XLEN to 64 on LDST/Update
2457 sv_mode = yield self.dec2.rm_dec.sv_mode
2458 is_ldst = (sv_mode in [SVMode.LDST_IDX.value, SVMode.LDST_IMM.value] \
2459 and self.is_svp64_mode)
2460 log("is_ldst", sv_mode, is_ldst)
2461
2462 # main input registers (RT, RA ...)
2463 for name in input_names:
2464 if name == "overflow":
2465 inputs[name] = SelectableInt(0, 1)
2466 elif name.startswith("RESERVE"):
2467 inputs[name] = getattr(self, name)
2468 elif name == "FPSCR":
2469 inputs[name] = self.FPSCR
2470 elif name in ("CA", "CA32", "OV", "OV32"):
2471 inputs[name] = self.spr['XER'][XER_bits[name]]
2472 elif name in "CR0":
2473 inputs[name] = self.crl[0]
2474 elif name in spr_byname:
2475 inputs[name] = self.spr[name]
2476 elif is_ldst and name == 'RA':
2477 regval = (yield from self.get_input(name, ew_src, 64))
2478 log("EA (RA) regval name", name, regval)
2479 inputs[name] = regval
2480 else:
2481 regval = (yield from self.get_input(name, ew_src, xlen))
2482 log("regval name", name, regval)
2483 inputs[name] = regval
2484
2485 # arrrrgh, awful hack, to get _RT into namespace
2486 if ins_name in ['setvl', 'svstep']:
2487 regname = "_RT"
2488 RT = yield self.dec2.dec.RT
2489 self.namespace[regname] = SelectableInt(RT, 5)
2490 if RT == 0:
2491 self.namespace["RT"] = SelectableInt(0, 5)
2492 regnum, is_vec = yield from get_idx_out(self.dec2, "RT")
2493 log('hack input reg %s %s' % (name, str(regnum)), is_vec)
2494
2495 # in SVP64 mode for LD/ST work out immediate
2496 # XXX TODO: replace_ds for DS-Form rather than D-Form.
2497 # use info.form to detect
2498 if self.is_svp64_mode and not ldst_imm_postinc:
2499 yield from self.check_replace_d(info, remap_active)
2500
2501 # "special" registers
2502 for special in info.special_regs:
2503 if special in special_sprs:
2504 inputs[special] = self.spr[special]
2505 else:
2506 inputs[special] = self.namespace[special]
2507
2508 # clear trap (trap) NIA
2509 self.trap_nia = None
2510
2511 # check if this was an sv.bc* and create an indicator that
2512 # this is the last check to be made as a loop. combined with
2513 # the ALL/ANY mode we can early-exit. note that BI (to test)
2514 # is an input so there is no termination if BI is scalar
2515 # (because early-termination is for *output* scalars)
2516 if self.is_svp64_mode and ins_name.startswith("sv.bc"):
2517 end_loop = srcstep == vl-1 or dststep == vl-1
2518 self.namespace['end_loop'] = SelectableInt(end_loop, 1)
2519
2520 inp_ca_ov = (self.spr['XER'][XER_bits['CA']].value,
2521 self.spr['XER'][XER_bits['OV']].value)
2522
2523 for k, v in inputs.items():
2524 if v is None:
2525 v = SelectableInt(0, self.XLEN)
2526 # prevent pseudo-code from modifying input registers
2527 v = copy_assign_rhs(v)
2528 if isinstance(v, SelectableInt):
2529 v.ok = False
2530 inputs[k] = v
2531
2532 # execute actual instruction here (finally)
2533 log("inputs", inputs)
2534 inputs = list(inputs.values())
2535 results = info.func(self, *inputs)
2536 output_names = create_args(info.write_regs)
2537 outs = {}
2538 # record .ok before anything after the pseudo-code can modify it
2539 outs_ok = {}
2540 for out, n in zip(results or [], output_names):
2541 outs[n] = out
2542 outs_ok[n] = True
2543 if isinstance(out, SelectableInt):
2544 outs_ok[n] = out.ok
2545 log("results", outs)
2546 log("results ok", outs_ok)
2547
2548 # "inject" decorator takes namespace from function locals: we need to
2549 # overwrite NIA being overwritten (sigh)
2550 if self.trap_nia is not None:
2551 self.namespace['NIA'] = self.trap_nia
2552
2553 log("after func", self.namespace['CIA'], self.namespace['NIA'])
2554
2555 # check if op was a LD/ST so that debugging can check the
2556 # address
2557 if int_op in [MicrOp.OP_STORE.value,
2558 ]:
2559 self.last_st_addr = self.mem.last_st_addr
2560 if int_op in [MicrOp.OP_LOAD.value,
2561 ]:
2562 self.last_ld_addr = self.mem.last_ld_addr
2563 log("op", int_op, MicrOp.OP_STORE.value, MicrOp.OP_LOAD.value,
2564 self.last_st_addr, self.last_ld_addr)
2565
2566 # detect if CA/CA32 already in outputs (sra*, basically)
2567 ca = outs.get("CA")
2568 ca32 = outs.get("CA32")
2569
2570 log("carry already done?", ca, ca32, output_names)
2571 # soc test_pipe_caller tests don't have output_carry
2572 has_output_carry = hasattr(self.dec2.e.do, "output_carry")
2573 carry_en = has_output_carry and (yield self.dec2.e.do.output_carry)
2574 if carry_en:
2575 yield from self.handle_carry_(
2576 inputs, results[0], ca, ca32, inp_ca_ov=inp_ca_ov)
2577
2578 # get output named "overflow" and "CR0"
2579 overflow = outs.get('overflow')
2580 cr0 = outs.get('CR0')
2581 cr1 = outs.get('CR1')
2582
2583 # soc test_pipe_caller tests don't have oe
2584 has_oe = hasattr(self.dec2.e.do, "oe")
2585 # yeah just no. not in parallel processing
2586 if has_oe and not self.is_svp64_mode:
2587 # detect if overflow was in return result
2588 ov_en = yield self.dec2.e.do.oe.oe
2589 ov_ok = yield self.dec2.e.do.oe.ok
2590 log("internal overflow", ins_name, overflow, "en?", ov_en, ov_ok)
2591 if ov_en & ov_ok:
2592 yield from self.handle_overflow(
2593 inputs, results[0], overflow, inp_ca_ov=inp_ca_ov)
2594
2595 # only do SVP64 dest predicated Rc=1 if dest-pred is not enabled
2596 rc_en = False
2597 if not self.is_svp64_mode or not pred_dst_zero:
2598 if hasattr(self.dec2.e.do, "rc"):
2599 rc_en = yield self.dec2.e.do.rc.rc
2600 # don't do Rc=1 for svstep it is handled explicitly.
2601 # XXX TODO: now that CR0 is supported, sort out svstep's pseudocode
2602 # to write directly to CR0 instead of in ISACaller. hooyahh.
2603 if rc_en and ins_name not in ['svstep']:
2604 if outs_ok.get('FPSCR', False):
2605 FPSCR = outs['FPSCR']
2606 else:
2607 FPSCR = self.FPSCR
2608 yield from self.do_rc_ov(
2609 ins_name, results[0], overflow, cr0, cr1, FPSCR)
2610
2611 # check failfirst
2612 ffirst_hit = False, False
2613 if self.is_svp64_mode:
2614 sv_mode = yield self.dec2.rm_dec.sv_mode
2615 is_cr = sv_mode == SVMode.CROP.value
2616 chk = rc_en or is_cr
2617 if outs_ok.get('CR', False):
2618 # early write so check_ffirst can see value
2619 self.namespace['CR'].eq(outs['CR'])
2620 ffirst_hit = (yield from self.check_ffirst(info, chk, srcstep))
2621
2622 # any modified return results?
2623 yield from self.do_outregs(
2624 info, outs, carry_en, ffirst_hit, ew_dst, outs_ok)
2625
2626 # check if a FP Exception occurred. TODO for DD-FFirst, check VLi
2627 # and raise the exception *after* if VLi=1 but if VLi=0 then
2628 # truncate and make the exception "disappear".
2629 if self.FPSCR.FEX and (self.msr[MSRb.FE0] or self.msr[MSRb.FE1]):
2630 self.call_trap(0x700, PIb.FP)
2631 return asmop
2632
2633 yield from self.do_nia(asmop, ins_name, rc_en, ffirst_hit)
2634 return asmop
2635
2636 def check_ffirst(self, info, rc_en, srcstep):
2637 """fail-first mode: checks a bit of Rc Vector, truncates VL
2638 """
2639 rm_mode = yield self.dec2.rm_dec.mode
2640 ff_inv = yield self.dec2.rm_dec.inv
2641 cr_bit = yield self.dec2.rm_dec.cr_sel
2642 RC1 = yield self.dec2.rm_dec.RC1
2643 vli_ = yield self.dec2.rm_dec.vli # VL inclusive if truncated
2644 log(" ff rm_mode", rc_en, rm_mode, SVP64RMMode.FFIRST.value)
2645 log(" inv", ff_inv)
2646 log(" RC1", RC1)
2647 log(" vli", vli_)
2648 log(" cr_bit", cr_bit)
2649 log(" rc_en", rc_en)
2650 ffirst = yield from is_ffirst_mode(self.dec2)
2651 if not rc_en or not ffirst:
2652 return False, False
2653 # get the CR vevtor, do BO-test
2654 crf = "CR0"
2655 log("asmregs", info.asmregs[0], info.write_regs)
2656 if 'CR' in info.write_regs and 'BF' in info.asmregs[0]:
2657 crf = 'BF'
2658 regnum, is_vec = yield from get_cr_out(self.dec2, crf)
2659 crtest = self.crl[regnum]
2660 ffirst_hit = crtest[cr_bit] != ff_inv
2661 log("cr test", crf, regnum, int(crtest), crtest, cr_bit, ff_inv)
2662 log("cr test?", ffirst_hit)
2663 if not ffirst_hit:
2664 return False, False
2665 # Fail-first activated, truncate VL
2666 vli = SelectableInt(int(vli_), 7)
2667 self.svstate.vl = srcstep + vli
2668 yield self.dec2.state.svstate.eq(self.svstate.value)
2669 yield Settle() # let decoder update
2670 return True, vli_
2671
2672 def do_rc_ov(self, ins_name, result, overflow, cr0, cr1, FPSCR):
2673 cr_out = yield self.dec2.op.cr_out
2674 if cr_out == CROutSel.CR1.value:
2675 rc_reg = "CR1"
2676 else:
2677 rc_reg = "CR0"
2678 regnum, is_vec = yield from get_cr_out(self.dec2, rc_reg)
2679 # hang on... for `setvl` actually you want to test SVSTATE.VL
2680 is_setvl = ins_name in ('svstep', 'setvl')
2681 if is_setvl:
2682 result = SelectableInt(result.vl, 64)
2683 # else:
2684 # overflow = None # do not override overflow except in setvl
2685
2686 if rc_reg == "CR1":
2687 if cr1 is None:
2688 cr1 = int(FPSCR.FX) << 3
2689 cr1 |= int(FPSCR.FEX) << 2
2690 cr1 |= int(FPSCR.VX) << 1
2691 cr1 |= int(FPSCR.OX)
2692 log("default fp cr1", cr1)
2693 else:
2694 log("explicit cr1", cr1)
2695 self.crl[regnum].eq(cr1)
2696 elif cr0 is None:
2697 # if there was not an explicit CR0 in the pseudocode,
2698 # do implicit Rc=1
2699 c = self.handle_comparison(result, regnum, overflow, no_so=is_setvl)
2700 log("implicit cr0 %d" % regnum, c)
2701 else:
2702 # otherwise we just blat CR0 into the required regnum
2703 log("explicit cr0 %d" % regnum, cr0)
2704 self.crl[regnum].eq(cr0)
2705
2706 def do_outregs(self, info, outs, ca_en, ffirst_hit, ew_dst, outs_ok):
2707 ffirst_hit, vli = ffirst_hit
2708 # write out any regs for this instruction, but only if fail-first is ok
2709 # XXX TODO: allow CR-vector to be written out even if ffirst fails
2710 if not ffirst_hit or vli:
2711 for name, output in outs.items():
2712 if not outs_ok[name]:
2713 log("skipping writing output with .ok=False", name, output)
2714 continue
2715 yield from self.check_write(info, name, output, ca_en, ew_dst)
2716 # restore the CR value on non-VLI failfirst (from sv.cmp and others
2717 # which write directly to CR in the pseudocode (gah, what a mess)
2718 # if ffirst_hit and not vli:
2719 # self.cr.value = self.cr_backup
2720
2721 def do_nia(self, asmop, ins_name, rc_en, ffirst_hit):
2722 ffirst_hit, vli = ffirst_hit
2723 if ffirst_hit:
2724 self.svp64_reset_loop()
2725 nia_update = True
2726 else:
2727 # check advancement of src/dst/sub-steps and if PC needs updating
2728 nia_update = (yield from self.check_step_increment(
2729 rc_en, asmop, ins_name))
2730 if nia_update:
2731 self.update_pc_next()
2732
2733 def check_replace_d(self, info, remap_active):
2734 replace_d = False # update / replace constant in pseudocode
2735 ldstmode = yield self.dec2.rm_dec.ldstmode
2736 vl = self.svstate.vl
2737 subvl = yield self.dec2.rm_dec.rm_in.subvl
2738 srcstep, dststep = self.new_srcstep, self.new_dststep
2739 ssubstep, dsubstep = self.new_ssubstep, self.new_dsubstep
2740 if info.form == 'DS':
2741 # DS-Form, multiply by 4 then knock 2 bits off after
2742 imm = yield self.dec2.dec.fields.FormDS.DS[0:14] * 4
2743 else:
2744 imm = yield self.dec2.dec.fields.FormD.D[0:16]
2745 imm = exts(imm, 16) # sign-extend to integer
2746 # get the right step. LD is from srcstep, ST is dststep
2747 op = yield self.dec2.e.do.insn_type
2748 offsmul = 0
2749 if op == MicrOp.OP_LOAD.value:
2750 if remap_active:
2751 offsmul = yield self.dec2.in1_step
2752 log("D-field REMAP src", imm, offsmul, ldstmode)
2753 else:
2754 offsmul = (srcstep * (subvl+1)) + ssubstep
2755 log("D-field src", imm, offsmul, ldstmode)
2756 elif op == MicrOp.OP_STORE.value:
2757 # XXX NOTE! no bit-reversed STORE! this should not ever be used
2758 offsmul = (dststep * (subvl+1)) + dsubstep
2759 log("D-field dst", imm, offsmul, ldstmode)
2760 # Unit-Strided LD/ST adds offset*width to immediate
2761 if ldstmode == SVP64LDSTmode.UNITSTRIDE.value:
2762 ldst_len = yield self.dec2.e.do.data_len
2763 imm = SelectableInt(imm + offsmul * ldst_len, 32)
2764 replace_d = True
2765 # Element-strided multiplies the immediate by element step
2766 elif ldstmode == SVP64LDSTmode.ELSTRIDE.value:
2767 imm = SelectableInt(imm * offsmul, 32)
2768 replace_d = True
2769 if replace_d:
2770 ldst_ra_vec = yield self.dec2.rm_dec.ldst_ra_vec
2771 ldst_imz_in = yield self.dec2.rm_dec.ldst_imz_in
2772 log("LDSTmode", SVP64LDSTmode(ldstmode),
2773 offsmul, imm, ldst_ra_vec, ldst_imz_in)
2774 # new replacement D... errr.. DS
2775 if replace_d:
2776 if info.form == 'DS':
2777 # TODO: assert 2 LSBs are zero?
2778 log("DS-Form, TODO, assert 2 LSBs zero?", bin(imm.value))
2779 imm.value = imm.value >> 2
2780 self.namespace['DS'] = imm
2781 else:
2782 self.namespace['D'] = imm
2783
2784 def get_input(self, name, ew_src, xlen):
2785 # using PowerDecoder2, first, find the decoder index.
2786 # (mapping name RA RB RC RS to in1, in2, in3)
2787 regnum, is_vec = yield from get_idx_in(self.dec2, name, True)
2788 if regnum is None:
2789 # doing this is not part of svp64, it's because output
2790 # registers, to be modified, need to be in the namespace.
2791 regnum, is_vec = yield from get_idx_out(self.dec2, name, True)
2792 if regnum is None:
2793 regnum, is_vec = yield from get_idx_out2(self.dec2, name, True)
2794
2795 if isinstance(regnum, tuple):
2796 (regnum, base, offs) = regnum
2797 else:
2798 base, offs = regnum, 0 # temporary HACK
2799
2800 # in case getting the register number is needed, _RA, _RB
2801 # (HACK: only in straight non-svp64-mode for now, or elwidth == 64)
2802 regname = "_" + name
2803 if not self.is_svp64_mode or ew_src == 64:
2804 self.namespace[regname] = regnum
2805 else:
2806 # FIXME: we're trying to access a sub-register, plain register
2807 # numbers don't work for that. for now, just pass something that
2808 # can be compared to 0 and probably will cause an error if misused.
2809 # see https://bugs.libre-soc.org/show_bug.cgi?id=1221
2810 self.namespace[regname] = regnum * 10000
2811
2812 if not self.is_svp64_mode or not self.pred_src_zero:
2813 log('reading reg %s %s' % (name, str(regnum)), is_vec)
2814 if name in fregs:
2815 fval = self.fpr(base, is_vec, offs, ew_src)
2816 reg_val = SelectableInt(fval)
2817 assert ew_src == self.XLEN, "TODO fix elwidth conversion"
2818 self.trace("r:FPR:%d:%d:%d " % (base, offs, ew_src))
2819 log("read fp reg %d/%d: 0x%x" % (base, offs, reg_val.value),
2820 kind=LogType.InstrInOuts)
2821 elif name is not None:
2822 gval = self.gpr(base, is_vec, offs, ew_src)
2823 reg_val = SelectableInt(gval.value, bits=xlen)
2824 self.trace("r:GPR:%d:%d:%d " % (base, offs, ew_src))
2825 log("read int reg %d/%d: 0x%x" % (base, offs, reg_val.value),
2826 kind=LogType.InstrInOuts)
2827 else:
2828 log('zero input reg %s %s' % (name, str(regnum)), is_vec)
2829 reg_val = SelectableInt(0, ew_src)
2830 return reg_val
2831
2832 def remap_set_steps(self, remaps):
2833 """remap_set_steps sets up the in1/2/3 and out1/2 steps.
2834 they work in concert with PowerDecoder2 at the moment,
2835 there is no HDL implementation of REMAP. therefore this
2836 function, because ISACaller still uses PowerDecoder2,
2837 will *explicitly* write the dec2.XX_step values. this has
2838 to get sorted out.
2839 """
2840 # just some convenient debug info
2841 for i in range(4):
2842 sname = 'SVSHAPE%d' % i
2843 shape = self.spr[sname]
2844 log(sname, bin(shape.value))
2845 log(" lims", shape.lims)
2846 log(" mode", shape.mode)
2847 log(" skip", shape.skip)
2848
2849 # set up the list of steps to remap
2850 mi0 = self.svstate.mi0
2851 mi1 = self.svstate.mi1
2852 mi2 = self.svstate.mi2
2853 mo0 = self.svstate.mo0
2854 mo1 = self.svstate.mo1
2855 steps = [[self.dec2.in1_step, mi0], # RA
2856 [self.dec2.in2_step, mi1], # RB
2857 [self.dec2.in3_step, mi2], # RC
2858 [self.dec2.o_step, mo0], # RT
2859 [self.dec2.o2_step, mo1], # EA
2860 ]
2861 if False: # TODO
2862 rnames = ['RA', 'RB', 'RC', 'RT', 'RS']
2863 for i, reg in enumerate(rnames):
2864 idx = yield from get_idx_map(self.dec2, reg)
2865 if idx is None:
2866 idx = yield from get_idx_map(self.dec2, "F"+reg)
2867 if idx == 1: # RA
2868 steps[i][0] = self.dec2.in1_step
2869 elif idx == 2: # RB
2870 steps[i][0] = self.dec2.in2_step
2871 elif idx == 3: # RC
2872 steps[i][0] = self.dec2.in3_step
2873 log("remap step", i, reg, idx, steps[i][1])
2874 remap_idxs = self.remap_idxs
2875 rremaps = []
2876 # now cross-index the required SHAPE for each of 3-in 2-out regs
2877 rnames = ['RA', 'RB', 'RC', 'RT', 'EA']
2878 for i, (dstep, shape_idx) in enumerate(steps):
2879 (shape, remap) = remaps[shape_idx]
2880 remap_idx = remap_idxs[shape_idx]
2881 # zero is "disabled"
2882 if shape.value == 0x0:
2883 continue
2884 # now set the actual requested step to the current index
2885 if dstep is not None:
2886 yield dstep.eq(remap_idx)
2887
2888 # debug printout info
2889 rremaps.append((shape.mode, hex(shape.value), dstep,
2890 i, rnames[i], shape_idx, remap_idx))
2891 for x in rremaps:
2892 log("shape remap", x)
2893
2894 def check_write(self, info, name, output, carry_en, ew_dst):
2895 if name == 'overflow': # ignore, done already (above)
2896 return
2897 if name == 'CR0': # ignore, done already (above)
2898 return
2899 if isinstance(output, int):
2900 output = SelectableInt(output, EFFECTIVELY_UNLIMITED)
2901 # write FPSCR
2902 if name.startswith("RESERVE"):
2903 log("write %s 0x%x" % (name, output.value))
2904 getattr(self, name).eq(output)
2905 return
2906 if name in ['FPSCR', ]:
2907 log("write FPSCR 0x%x" % (output.value))
2908 self.FPSCR.eq(output)
2909 return
2910 # write carry flags
2911 if name in ['CA', 'CA32']:
2912 if carry_en:
2913 log("writing %s to XER" % name, output)
2914 log("write XER %s 0x%x" % (name, output.value))
2915 self.spr['XER'][XER_bits[name]] = output.value
2916 else:
2917 log("NOT writing %s to XER" % name, output)
2918 return
2919 # write special SPRs
2920 if name in info.special_regs:
2921 log('writing special %s' % name, output, special_sprs)
2922 log("write reg %s 0x%x" % (name, output.value),
2923 kind=LogType.InstrInOuts)
2924 if name in special_sprs:
2925 self.spr[name] = output
2926 else:
2927 self.namespace[name].eq(output)
2928 if name == 'MSR':
2929 log('msr written', hex(self.msr.value))
2930 return
2931 # find out1/out2 PR/FPR
2932 regnum, is_vec = yield from get_idx_out(self.dec2, name, True)
2933 if regnum is None:
2934 regnum, is_vec = yield from get_idx_out2(self.dec2, name, True)
2935 if regnum is None:
2936 # temporary hack for not having 2nd output
2937 regnum = yield getattr(self.decoder, name)
2938 is_vec = False
2939 # convenient debug prefix
2940 if name in fregs:
2941 reg_prefix = 'f'
2942 else:
2943 reg_prefix = 'r'
2944 # check zeroing due to predicate bit being zero
2945 if self.is_svp64_mode and self.pred_dst_zero:
2946 log('zeroing reg %s %s' % (str(regnum), str(output)), is_vec)
2947 output = SelectableInt(0, EFFECTIVELY_UNLIMITED)
2948 log("write reg %s%s 0x%x ew %d" % (reg_prefix, str(regnum),
2949 output.value, ew_dst),
2950 kind=LogType.InstrInOuts)
2951 # zero-extend tov64 bit begore storing (should use EXT oh well)
2952 if output.bits > 64:
2953 output = SelectableInt(output.value, 64)
2954 rnum, base, offset = regnum
2955 if name in fregs:
2956 self.fpr.write(regnum, output, is_vec, ew_dst)
2957 self.trace("w:FPR:%d:%d:%d " % (rnum, offset, ew_dst))
2958 return
2959
2960 # LDST/Update does *not* allow elwidths on RA (Effective Address).
2961 # this has to be detected, and overridden. see get_input (related)
2962 sv_mode = yield self.dec2.rm_dec.sv_mode
2963 is_ldst = (sv_mode in [SVMode.LDST_IDX.value, SVMode.LDST_IMM.value] \
2964 and self.is_svp64_mode)
2965 if is_ldst and name in ['EA', 'RA']:
2966 op = self.dec2.dec.op
2967 if hasattr(op, "upd"):
2968 # update mode LD/ST uses read-reg A also as an output
2969 upd = yield op.upd
2970 log("write is_ldst is_update", sv_mode, is_ldst, upd)
2971 if upd == LDSTMode.update.value:
2972 ew_dst = 64 # override for RA (EA) to 64-bit
2973
2974 self.gpr.write(regnum, output, is_vec, ew_dst)
2975 self.trace("w:GPR:%d:%d:%d " % (rnum, offset, ew_dst))
2976
2977 def check_step_increment(self, rc_en, asmop, ins_name):
2978 # check if it is the SVSTATE.src/dest step that needs incrementing
2979 # this is our Sub-Program-Counter loop from 0 to VL-1
2980 if not self.allow_next_step_inc:
2981 if self.is_svp64_mode:
2982 return (yield from self.svstate_post_inc(ins_name))
2983
2984 # XXX only in non-SVP64 mode!
2985 # record state of whether the current operation was an svshape,
2986 # OR svindex!
2987 # to be able to know if it should apply in the next instruction.
2988 # also (if going to use this instruction) should disable ability
2989 # to interrupt in between. sigh.
2990 self.last_op_svshape = asmop in ['svremap', 'svindex',
2991 'svshape2']
2992 return True
2993
2994 pre = False
2995 post = False
2996 nia_update = True
2997 log("SVSTATE_NEXT: inc requested, mode",
2998 self.svstate_next_mode, self.allow_next_step_inc)
2999 yield from self.svstate_pre_inc()
3000 pre = yield from self.update_new_svstate_steps()
3001 if pre:
3002 # reset at end of loop including exit Vertical Mode
3003 log("SVSTATE_NEXT: end of loop, reset")
3004 self.svp64_reset_loop()
3005 self.svstate.vfirst = 0
3006 self.update_nia()
3007 if not rc_en:
3008 return True
3009 self.handle_comparison(SelectableInt(0, 64)) # CR0
3010 return True
3011 if self.allow_next_step_inc == 2:
3012 log("SVSTATE_NEXT: read")
3013 nia_update = (yield from self.svstate_post_inc(ins_name))
3014 else:
3015 log("SVSTATE_NEXT: post-inc")
3016 # use actual (cached) src/dst-step here to check end
3017 remaps = self.get_remap_indices()
3018 remap_idxs = self.remap_idxs
3019 vl = self.svstate.vl
3020 subvl = yield self.dec2.rm_dec.rm_in.subvl
3021 if self.allow_next_step_inc != 2:
3022 yield from self.advance_svstate_steps()
3023 #self.namespace['SVSTATE'] = self.svstate.spr
3024 # set CR0 (if Rc=1) based on end
3025 endtest = 1 if self.at_loopend() else 0
3026 if rc_en:
3027 #results = [SelectableInt(endtest, 64)]
3028 # self.handle_comparison(results) # CR0
3029
3030 # see if svstep was requested, if so, which SVSTATE
3031 endings = 0b111
3032 if self.svstate_next_mode > 0:
3033 shape_idx = self.svstate_next_mode.value-1
3034 endings = self.remap_loopends[shape_idx]
3035 cr_field = SelectableInt((~endings) << 1 | endtest, 4)
3036 log("svstep Rc=1, CR0", cr_field, endtest)
3037 self.crl[0].eq(cr_field) # CR0
3038 if endtest:
3039 # reset at end of loop including exit Vertical Mode
3040 log("SVSTATE_NEXT: after increments, reset")
3041 self.svp64_reset_loop()
3042 self.svstate.vfirst = 0
3043 return nia_update
3044
3045 def SVSTATE_NEXT(self, mode, submode, RA=None):
3046 """explicitly moves srcstep/dststep on to next element, for
3047 "Vertical-First" mode. this function is called from
3048 setvl pseudo-code, as a pseudo-op "svstep"
3049
3050 WARNING: this function uses information that was created EARLIER
3051 due to it being in the middle of a yield, but this function is
3052 *NOT* called from yield (it's called from compiled pseudocode).
3053 """
3054 self.allow_next_step_inc = submode.value + 1
3055 log("SVSTATE_NEXT mode", mode, submode, self.allow_next_step_inc)
3056 self.svstate_next_mode = mode
3057 if self.svstate_next_mode > 0 and self.svstate_next_mode < 5:
3058 shape_idx = self.svstate_next_mode.value-1
3059 return SelectableInt(self.remap_idxs[shape_idx], 7)
3060 if self.svstate_next_mode == 5:
3061 self.svstate_next_mode = 0
3062 return SelectableInt(self.svstate.srcstep, 7)
3063 if self.svstate_next_mode == 6:
3064 self.svstate_next_mode = 0
3065 return SelectableInt(self.svstate.dststep, 7)
3066 if self.svstate_next_mode == 7:
3067 self.svstate_next_mode = 0
3068 return SelectableInt(self.svstate.ssubstep, 7)
3069 if self.svstate_next_mode == 8:
3070 self.svstate_next_mode = 0
3071 return SelectableInt(self.svstate.dsubstep, 7)
3072 return SelectableInt(0, 7)
3073
3074 def get_src_dststeps(self):
3075 """gets srcstep, dststep, and ssubstep, dsubstep
3076 """
3077 return (self.new_srcstep, self.new_dststep,
3078 self.new_ssubstep, self.new_dsubstep)
3079
3080 def update_svstate_namespace(self, overwrite_svstate=True):
3081 if overwrite_svstate:
3082 # note, do not get the bit-reversed srcstep here!
3083 srcstep, dststep = self.new_srcstep, self.new_dststep
3084 ssubstep, dsubstep = self.new_ssubstep, self.new_dsubstep
3085
3086 # update SVSTATE with new srcstep
3087 self.svstate.srcstep = srcstep
3088 self.svstate.dststep = dststep
3089 self.svstate.ssubstep = ssubstep
3090 self.svstate.dsubstep = dsubstep
3091 self.namespace['SVSTATE'] = self.svstate
3092 yield self.dec2.state.svstate.eq(self.svstate.value)
3093 yield Settle() # let decoder update
3094
3095 def update_new_svstate_steps(self, overwrite_svstate=True):
3096 yield from self.update_svstate_namespace(overwrite_svstate)
3097 srcstep = self.svstate.srcstep
3098 dststep = self.svstate.dststep
3099 ssubstep = self.svstate.ssubstep
3100 dsubstep = self.svstate.dsubstep
3101 pack = self.svstate.pack
3102 unpack = self.svstate.unpack
3103 vl = self.svstate.vl
3104 sv_mode = yield self.dec2.rm_dec.sv_mode
3105 subvl = yield self.dec2.rm_dec.rm_in.subvl
3106 rm_mode = yield self.dec2.rm_dec.mode
3107 ff_inv = yield self.dec2.rm_dec.inv
3108 cr_bit = yield self.dec2.rm_dec.cr_sel
3109 log(" srcstep", srcstep)
3110 log(" dststep", dststep)
3111 log(" pack", pack)
3112 log(" unpack", unpack)
3113 log(" ssubstep", ssubstep)
3114 log(" dsubstep", dsubstep)
3115 log(" vl", vl)
3116 log(" subvl", subvl)
3117 log(" rm_mode", rm_mode)
3118 log(" sv_mode", sv_mode)
3119 log(" inv", ff_inv)
3120 log(" cr_bit", cr_bit)
3121
3122 # check if end reached (we let srcstep overrun, above)
3123 # nothing needs doing (TODO zeroing): just do next instruction
3124 if self.loopend:
3125 return True
3126 return ((ssubstep == subvl and srcstep == vl) or
3127 (dsubstep == subvl and dststep == vl))
3128
3129 def svstate_post_inc(self, insn_name, vf=0):
3130 # check if SV "Vertical First" mode is enabled
3131 vfirst = self.svstate.vfirst
3132 log(" SV Vertical First", vf, vfirst)
3133 if not vf and vfirst == 1:
3134 # SV Branch-Conditional required to be as-if-vector
3135 # because there *is* no destination register
3136 # (SV normally only terminates on 1st scalar reg written
3137 # except in [slightly-misnamed] mapreduce mode)
3138 ffirst = yield from is_ffirst_mode(self.dec2)
3139 if insn_name.startswith("sv.bc") or ffirst:
3140 self.update_pc_next()
3141 return False
3142 self.update_nia()
3143 return True
3144
3145 # check if it is the SVSTATE.src/dest step that needs incrementing
3146 # this is our Sub-Program-Counter loop from 0 to VL-1
3147 # XXX twin predication TODO
3148 vl = self.svstate.vl
3149 subvl = yield self.dec2.rm_dec.rm_in.subvl
3150 mvl = self.svstate.maxvl
3151 srcstep = self.svstate.srcstep
3152 dststep = self.svstate.dststep
3153 ssubstep = self.svstate.ssubstep
3154 dsubstep = self.svstate.dsubstep
3155 pack = self.svstate.pack
3156 unpack = self.svstate.unpack
3157 rm_mode = yield self.dec2.rm_dec.mode
3158 reverse_gear = yield self.dec2.rm_dec.reverse_gear
3159 sv_ptype = yield self.dec2.dec.op.SV_Ptype
3160 out_vec = not (yield self.dec2.no_out_vec)
3161 in_vec = not (yield self.dec2.no_in_vec)
3162 rm_mode = yield self.dec2.rm_dec.mode
3163 log(" svstate.vl", vl)
3164 log(" svstate.mvl", mvl)
3165 log(" rm.subvl", subvl)
3166 log(" svstate.srcstep", srcstep)
3167 log(" svstate.dststep", dststep)
3168 log(" svstate.ssubstep", ssubstep)
3169 log(" svstate.dsubstep", dsubstep)
3170 log(" svstate.pack", pack)
3171 log(" svstate.unpack", unpack)
3172 log(" mode", rm_mode)
3173 log(" reverse", reverse_gear)
3174 log(" out_vec", out_vec)
3175 log(" in_vec", in_vec)
3176 log(" sv_ptype", sv_ptype, sv_ptype == SVPType.P2.value)
3177 log(" rm_mode", rm_mode)
3178 # check if this was an sv.bc* and if so did it succeed
3179 if self.is_svp64_mode and insn_name.startswith("sv.bc"):
3180 end_loop = self.namespace['end_loop']
3181 log("branch %s end_loop" % insn_name, end_loop)
3182 if end_loop.value:
3183 self.svp64_reset_loop()
3184 self.update_pc_next()
3185 return False
3186 # check if srcstep needs incrementing by one, stop PC advancing
3187 # but for 2-pred both src/dest have to be checked.
3188 # XXX this might not be true! it may just be LD/ST
3189 if sv_ptype == SVPType.P2.value:
3190 svp64_is_vector = (out_vec or in_vec)
3191 else:
3192 svp64_is_vector = out_vec
3193 # also if data-dependent fail-first is used, only in_vec is tested,
3194 # allowing *scalar destinations* to be used as an accumulator.
3195 # effectively this implies /mr (mapreduce mode) is 100% on with ddffirst
3196 # see https://bugs.libre-soc.org/show_bug.cgi?id=1183#c16
3197 ffirst = yield from is_ffirst_mode(self.dec2)
3198 if ffirst:
3199 svp64_is_vector = in_vec
3200
3201 # loops end at the first "hit" (source or dest)
3202 yield from self.advance_svstate_steps()
3203 loopend = self.loopend
3204 log("loopend", svp64_is_vector, loopend)
3205 if not svp64_is_vector or loopend:
3206 # reset loop to zero and update NIA
3207 self.svp64_reset_loop()
3208 self.update_nia()
3209
3210 return True
3211
3212 # still looping, advance and update NIA
3213 self.namespace['SVSTATE'] = self.svstate
3214
3215 # not an SVP64 branch, so fix PC (NIA==CIA) for next loop
3216 # (by default, NIA is CIA+4 if v3.0B or CIA+8 if SVP64)
3217 # this way we keep repeating the same instruction (with new steps)
3218 self.pc.NIA.eq(self.pc.CIA)
3219 self.namespace['NIA'] = self.pc.NIA
3220 log("end of sub-pc call", self.namespace['CIA'], self.namespace['NIA'])
3221 return False # DO NOT allow PC update whilst Sub-PC loop running
3222
3223 def update_pc_next(self):
3224 # UPDATE program counter
3225 self.pc.update(self.namespace, self.is_svp64_mode)
3226 #self.svstate.spr = self.namespace['SVSTATE']
3227 log("end of call", self.namespace['CIA'],
3228 self.namespace['NIA'],
3229 self.namespace['SVSTATE'])
3230
3231 def svp64_reset_loop(self):
3232 self.svstate.srcstep = 0
3233 self.svstate.dststep = 0
3234 self.svstate.ssubstep = 0
3235 self.svstate.dsubstep = 0
3236 self.loopend = False
3237 log(" svstate.srcstep loop end (PC to update)")
3238 self.namespace['SVSTATE'] = self.svstate
3239
3240 def update_nia(self):
3241 self.pc.update_nia(self.is_svp64_mode)
3242 self.namespace['NIA'] = self.pc.NIA
3243
3244
3245 def inject():
3246 """Decorator factory.
3247
3248 this decorator will "inject" variables into the function's namespace,
3249 from the *dictionary* in self.namespace. it therefore becomes possible
3250 to make it look like a whole stack of variables which would otherwise
3251 need "self." inserted in front of them (*and* for those variables to be
3252 added to the instance) "appear" in the function.
3253
3254 "self.namespace['SI']" for example becomes accessible as just "SI" but
3255 *only* inside the function, when decorated.
3256 """
3257 def variable_injector(func):
3258 @wraps(func)
3259 def decorator(*args, **kwargs):
3260 try:
3261 func_globals = func.__globals__ # Python 2.6+
3262 except AttributeError:
3263 func_globals = func.func_globals # Earlier versions.
3264
3265 context = args[0].namespace # variables to be injected
3266 saved_values = func_globals.copy() # Shallow copy of dict.
3267 log("globals before", context.keys())
3268 func_globals.update(context)
3269 result = func(*args, **kwargs)
3270 log("globals after", func_globals['CIA'], func_globals['NIA'])
3271 log("args[0]", args[0].namespace['CIA'],
3272 args[0].namespace['NIA'],
3273 args[0].namespace['SVSTATE'])
3274 if 'end_loop' in func_globals:
3275 log("args[0] end_loop", func_globals['end_loop'])
3276 args[0].namespace = func_globals
3277 #exec (func.__code__, func_globals)
3278
3279 # finally:
3280 # func_globals = saved_values # Undo changes.
3281
3282 return result
3283
3284 return decorator
3285
3286 return variable_injector