Refactor the ALU operation issuer into a class
[soc.git] / src / soc / experiment / test / test_compalu_multi.py
1 """Computation Unit (aka "ALU Manager").
2
3 Manages a Pipeline or FSM, ensuring that the start and end time are 100%
4 monitored. At no time may the ALU proceed without this module notifying
5 the Dependency Matrices. At no time is a result production "abandoned".
6 This module blocks (indicates busy) starting from when it first receives
7 an opcode until it receives notification that
8 its result(s) have been successfully stored in the regfile(s)
9
10 Documented at http://libre-soc.org/3d_gpu/architecture/compunit
11 """
12
13 from soc.experiment.alu_fsm import Shifter, CompFSMOpSubset
14 from soc.fu.alu.alu_input_record import CompALUOpSubset
15 from soc.experiment.alu_hier import ALU, DummyALU
16 from soc.experiment.compalu_multi import MultiCompUnit
17 from soc.decoder.power_enums import MicrOp
18 from nmutil.gtkw import write_gtkw
19 from nmigen import Module, Signal
20 from nmigen.cli import rtlil
21
22 # NOTE: to use cxxsim, export NMIGEN_SIM_MODE=cxxsim from the shell
23 # Also, check out the cxxsim nmigen branch, and latest yosys from git
24 from nmutil.sim_tmp_alternative import (Simulator, Settle, is_engine_pysim,
25 Passive)
26
27
28 def wrap(process):
29 def wrapper():
30 yield from process
31 return wrapper
32
33
34 class OperandProducer:
35 """
36 Produces an operand when requested by the Computation Unit
37 (`dut` parameter), using the `rel_o` / `go_i` handshake.
38
39 Attaches itself to the `dut` operand indexed by `op_index`.
40
41 Has a programmable delay between the assertion of `rel_o` and the
42 `go_i` pulse.
43
44 Data is presented only during the cycle in which `go_i` is active.
45
46 It adds itself as a passive process to the simulation (`sim` parameter).
47 Since it is passive, it will not hang the simulation, and does not need a
48 flag to terminate itself.
49 """
50 def __init__(self, sim, dut, op_index):
51 self.count = Signal(8, name=f"src{op_index + 1}_count")
52 """ transaction counter"""
53 # data and handshake signals from the DUT
54 self.port = dut.src_i[op_index]
55 self.go_i = dut.rd.go_i[op_index]
56 self.rel_o = dut.rd.rel_o[op_index]
57 # transaction parameters, passed via signals
58 self.delay = Signal(8)
59 self.data = Signal.like(self.port)
60 # add ourselves to the simulation process list
61 sim.add_sync_process(self._process)
62
63 def _process(self):
64 yield Passive()
65 while True:
66 # Settle() is needed to give a quick response to
67 # the zero delay case
68 yield Settle()
69 # wait for rel_o to become active
70 while not (yield self.rel_o):
71 yield
72 yield Settle()
73 # read the transaction parameters
74 delay = (yield self.delay)
75 data = (yield self.data)
76 # wait for `delay` cycles
77 for _ in range(delay):
78 yield
79 # activate go_i and present data, for one cycle
80 yield self.go_i.eq(1)
81 yield self.port.eq(data)
82 yield self.count.eq(self.count + 1)
83 yield
84 yield self.go_i.eq(0)
85 yield self.port.eq(0)
86
87 def send(self, data, delay):
88 """
89 Schedules the module to send some `data`, counting `delay` cycles after
90 `rel_i` becomes active.
91
92 To be called from the main test-bench process,
93 it returns in the same cycle.
94
95 Communication with the worker process is done by means of
96 combinatorial simulation-only signals.
97
98 """
99 yield self.data.eq(data)
100 yield self.delay.eq(delay)
101
102
103 class ResultConsumer:
104 """
105 Consumes a result when requested by the Computation Unit
106 (`dut` parameter), using the `rel_o` / `go_i` handshake.
107
108 Attaches itself to the `dut` result indexed by `op_index`.
109
110 Has a programmable delay between the assertion of `rel_o` and the
111 `go_i` pulse.
112
113 Data is retrieved only during the cycle in which `go_i` is active.
114
115 It adds itself as a passive process to the simulation (`sim` parameter).
116 Since it is passive, it will not hang the simulation, and does not need a
117 flag to terminate itself.
118 """
119 def __init__(self, sim, dut, op_index):
120 self.count = Signal(8, name=f"dest{op_index + 1}_count")
121 """ transaction counter"""
122 # data and handshake signals from the DUT
123 self.port = dut.dest[op_index]
124 self.go_i = dut.wr.go_i[op_index]
125 self.rel_o = dut.wr.rel_o[op_index]
126 # transaction parameters, passed via signals
127 self.delay = Signal(8)
128 self.expected = Signal.like(self.port)
129 # add ourselves to the simulation process list
130 sim.add_sync_process(self._process)
131
132 def _process(self):
133 yield Passive()
134 while True:
135 # Settle() is needed to give a quick response to
136 # the zero delay case
137 yield Settle()
138 # wait for rel_o to become active
139 while not (yield self.rel_o):
140 yield
141 yield Settle()
142 # read the transaction parameters
143 delay = (yield self.delay)
144 expected = (yield self.expected)
145 # wait for `delay` cycles
146 for _ in range(delay):
147 yield
148 # activate go_i for one cycle
149 yield self.go_i.eq(1)
150 yield self.count.eq(self.count + 1)
151 yield
152 # check received data against the expected value
153 result = (yield self.port)
154 assert result == expected,\
155 f"expected {expected}, received {result}"
156 yield self.go_i.eq(0)
157 yield self.port.eq(0)
158
159 def receive(self, expected, delay):
160 """
161 Schedules the module to receive some result,
162 counting `delay` cycles after `rel_i` becomes active.
163 As 'go_i' goes active, check the result with `expected`.
164
165 To be called from the main test-bench process,
166 it returns in the same cycle.
167
168 Communication with the worker process is done by means of
169 combinatorial simulation-only signals.
170 """
171 yield self.expected.eq(expected)
172 yield self.delay.eq(delay)
173
174
175 def op_sim(dut, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0):
176 yield dut.issue_i.eq(0)
177 yield
178 yield dut.src_i[0].eq(a)
179 yield dut.src_i[1].eq(b)
180 yield dut.oper_i.insn_type.eq(op)
181 yield dut.oper_i.invert_in.eq(inv_a)
182 yield dut.oper_i.imm_data.data.eq(imm)
183 yield dut.oper_i.imm_data.ok.eq(imm_ok)
184 yield dut.oper_i.zero_a.eq(zero_a)
185 yield dut.issue_i.eq(1)
186 yield
187 yield dut.issue_i.eq(0)
188 yield
189 if not imm_ok or not zero_a:
190 yield dut.rd.go_i.eq(0b11)
191 while True:
192 yield
193 rd_rel_o = yield dut.rd.rel_o
194 print("rd_rel", rd_rel_o)
195 if rd_rel_o:
196 break
197 yield dut.rd.go_i.eq(0)
198 else:
199 print("no go rd")
200
201 if len(dut.src_i) == 3:
202 yield dut.rd.go_i.eq(0b100)
203 while True:
204 yield
205 rd_rel_o = yield dut.rd.rel_o
206 print("rd_rel", rd_rel_o)
207 if rd_rel_o:
208 break
209 yield dut.rd.go_i.eq(0)
210 else:
211 print("no 3rd rd")
212
213 req_rel_o = yield dut.wr.rel_o
214 result = yield dut.data_o
215 print("req_rel", req_rel_o, result)
216 while True:
217 req_rel_o = yield dut.wr.rel_o
218 result = yield dut.data_o
219 print("req_rel", req_rel_o, result)
220 if req_rel_o:
221 break
222 yield
223 yield dut.wr.go_i[0].eq(1)
224 yield Settle()
225 result = yield dut.data_o
226 yield
227 print("result", result)
228 yield dut.wr.go_i[0].eq(0)
229 yield
230 return result
231
232
233 def scoreboard_sim_fsm(dut, producers, consumers):
234
235 # stores the operation count
236 op_count = 0
237
238 def op_sim_fsm(a, b, direction, expected, delays):
239 print("op_sim_fsm", a, b, direction, expected)
240 yield dut.issue_i.eq(0)
241 yield
242 # forward data and delays to the producers and consumers
243 yield from producers[0].send(a, delays[0])
244 yield from producers[1].send(b, delays[1])
245 yield from consumers[0].receive(expected, delays[2])
246 # submit operation, and assert issue_i for one cycle
247 yield dut.oper_i.sdir.eq(direction)
248 yield dut.issue_i.eq(1)
249 yield
250 yield dut.issue_i.eq(0)
251 # wait for busy to be negated
252 yield Settle()
253 while (yield dut.busy_o):
254 yield
255 yield Settle()
256 # update the operation count
257 nonlocal op_count
258 op_count = (op_count + 1) & 255
259 # check that producers and consumers have the same count
260 # this assures that no data was left unused or was lost
261 assert (yield producers[0].count) == op_count
262 assert (yield producers[1].count) == op_count
263 assert (yield consumers[0].count) == op_count
264
265 # 13 >> 2 = 3
266 # operand 1 arrives immediately
267 # operand 2 arrives after operand 1
268 # write data is accepted immediately
269 yield from op_sim_fsm(13, 2, 1, 3, [0, 2, 0])
270 # 3 << 4 = 48
271 # operand 2 arrives immediately
272 # operand 1 arrives after operand 2
273 # write data is accepted after some delay
274 yield from op_sim_fsm(3, 4, 0, 48, [2, 0, 2])
275 # 21 << 0 = 21
276 # operands 1 and 2 arrive at the same time
277 # write data is accepted after some delay
278 yield from op_sim_fsm(21, 0, 0, 21, [1, 1, 1])
279
280
281 def scoreboard_sim_dummy(dut):
282 result = yield from op_sim(dut, 5, 2, MicrOp.OP_NOP, inv_a=0,
283 imm=8, imm_ok=1)
284 assert result == 5, result
285
286 result = yield from op_sim(dut, 9, 2, MicrOp.OP_NOP, inv_a=0,
287 imm=8, imm_ok=1)
288 assert result == 9, result
289
290
291 class OpSim:
292 """ALU Operation issuer
293
294 Issues operations to the DUT"""
295 def __init__(self, dut, producers, consumers):
296 self.op_count = 0
297 self.zero_a_count = 0
298 self.imm_ok_count = 0
299 self.dut = dut
300 self.producers = producers
301 self.consumers = consumers
302
303 def issue(self, a, b, op, expected, delays,
304 inv_a=0, imm=0, imm_ok=0, zero_a=0):
305 """Executes the issue operation"""
306 dut = self.dut
307 producers = self.producers
308 consumers = self.consumers
309 print("issue", a, b, op, expected)
310 yield dut.issue_i.eq(0)
311 yield
312 # forward data and delays to the producers and consumers
313 if not zero_a:
314 yield from producers[0].send(a, delays[0])
315 if not imm_ok:
316 yield from producers[1].send(b, delays[1])
317 yield from consumers[0].receive(expected, delays[2])
318 # submit operation, and assert issue_i for one cycle
319 yield dut.oper_i.insn_type.eq(op)
320 yield dut.oper_i.invert_in.eq(inv_a)
321 yield dut.oper_i.imm_data.data.eq(imm)
322 yield dut.oper_i.imm_data.ok.eq(imm_ok)
323 yield dut.oper_i.zero_a.eq(zero_a)
324 yield dut.issue_i.eq(1)
325 yield
326 yield dut.issue_i.eq(0)
327 # wait for busy to be negated
328 yield Settle()
329 while (yield dut.busy_o):
330 yield
331 yield Settle()
332 # update the operation count
333 self.op_count = (self.op_count + 1) & 255
334 # On zero_a and imm_ok executions, the producer counters will fall
335 # behind. But, by summing the following counts, the invariant is
336 # preserved.
337 if zero_a:
338 self.zero_a_count = self.zero_a_count + 1
339 if imm_ok:
340 self.imm_ok_count = self.imm_ok_count + 1
341 # check that producers and consumers have the same count
342 # this assures that no data was left unused or was lost
343 assert (yield producers[0].count) + self.zero_a_count == self.op_count
344 assert (yield producers[1].count) + self.imm_ok_count == self.op_count
345 assert (yield consumers[0].count) == self.op_count
346
347
348 def scoreboard_sim(op):
349 # zero (no) input operands test
350 # 0 + 8 = 8
351 yield from op.issue(5, 2, MicrOp.OP_ADD,
352 zero_a=1, imm=8, imm_ok=1,
353 expected=8, delays=[0, 2, 0])
354 # 5 + 8 = 13
355 yield from op.issue(5, 2, MicrOp.OP_ADD,
356 inv_a=0, imm=8, imm_ok=1,
357 expected=13, delays=[2, 0, 2])
358 # 5 + 2 = 7
359 yield from op.issue(5, 2, MicrOp.OP_ADD,
360 expected=7, delays=[1, 1, 1])
361 # (-6) + 2 = (-4)
362 yield from op.issue(5, 2, MicrOp.OP_ADD, inv_a=1,
363 expected=65532, delays=[1, 2, 0])
364 # 0 + 2 = 2
365 yield from op.issue(5, 2, MicrOp.OP_ADD, zero_a=1,
366 expected=2, delays=[2, 0, 1])
367
368 # test combinatorial zero-delay operation
369 # In the test ALU, any operation other than ADD, MUL or SHR
370 # is zero-delay, and do a subtraction.
371 yield from op.issue(5, 2, MicrOp.OP_NOP,
372 expected=3, delays=[0, 1, 2])
373
374
375 def test_compunit_fsm():
376 top = "top.cu" if is_engine_pysim() else "cu"
377 style = {
378 'in': {'color': 'orange'},
379 'out': {'color': 'yellow'},
380 }
381 traces = [
382 'clk',
383 ('operation port', {'color': 'red'}, [
384 'cu_issue_i', 'cu_busy_o',
385 {'comment': 'operation'},
386 'oper_i_None__sdir']),
387 ('operand 1 port', 'in', [
388 ('cu_rd__rel_o[1:0]', {'bit': 1}),
389 ('cu_rd__go_i[1:0]', {'bit': 1}),
390 'src1_i[7:0]']),
391 ('operand 2 port', 'in', [
392 ('cu_rd__rel_o[1:0]', {'bit': 0}),
393 ('cu_rd__go_i[1:0]', {'bit': 0}),
394 'src2_i[7:0]']),
395 ('result port', 'out', [
396 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[7:0]']),
397 ('alu', {'module': top+'.alu'}, [
398 ('prev port', 'in', [
399 'op__sdir', 'p_data_i[7:0]', 'p_shift_i[7:0]',
400 'p_valid_i', 'p_ready_o']),
401 ('next port', 'out', [
402 'n_data_o[7:0]', 'n_valid_o', 'n_ready_i']),
403 ]),
404 ('debug', {'module': 'top'},
405 ['src1_count[7:0]', 'src2_count[7:0]', 'dest1_count[7:0]'])
406
407 ]
408 write_gtkw(
409 "test_compunit_fsm1.gtkw",
410 "test_compunit_fsm1.vcd",
411 traces, style,
412 module=top
413 )
414 m = Module()
415 alu = Shifter(8)
416 dut = MultiCompUnit(8, alu, CompFSMOpSubset)
417 m.submodules.cu = dut
418
419 vl = rtlil.convert(dut, ports=dut.ports())
420 with open("test_compunit_fsm1.il", "w") as f:
421 f.write(vl)
422
423 sim = Simulator(m)
424 sim.add_clock(1e-6)
425
426 # create one operand producer for each input port
427 prod_a = OperandProducer(sim, dut, 0)
428 prod_b = OperandProducer(sim, dut, 1)
429 # create an result consumer for the output port
430 cons = ResultConsumer(sim, dut, 0)
431 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
432 [prod_a, prod_b],
433 [cons])))
434 sim_writer = sim.write_vcd('test_compunit_fsm1.vcd',
435 traces=[prod_a.count,
436 prod_b.count,
437 cons.count])
438 with sim_writer:
439 sim.run()
440
441
442 def test_compunit():
443
444 m = Module()
445 alu = ALU(16)
446 dut = MultiCompUnit(16, alu, CompALUOpSubset)
447 m.submodules.cu = dut
448
449 vl = rtlil.convert(dut, ports=dut.ports())
450 with open("test_compunit1.il", "w") as f:
451 f.write(vl)
452
453 sim = Simulator(m)
454 sim.add_clock(1e-6)
455
456 # create one operand producer for each input port
457 prod_a = OperandProducer(sim, dut, 0)
458 prod_b = OperandProducer(sim, dut, 1)
459 # create an result consumer for the output port
460 cons = ResultConsumer(sim, dut, 0)
461 # create an operation issuer
462 op = OpSim(dut, [prod_a, prod_b], [cons])
463 sim.add_sync_process(wrap(scoreboard_sim(op)))
464 sim_writer = sim.write_vcd('test_compunit1.vcd')
465 with sim_writer:
466 sim.run()
467
468
469 class CompUnitParallelTest:
470 def __init__(self, dut):
471 self.dut = dut
472
473 # Operation cycle should not take longer than this:
474 self.MAX_BUSY_WAIT = 50
475
476 # Minimum duration in which issue_i will be kept inactive,
477 # during which busy_o must remain low.
478 self.MIN_BUSY_LOW = 5
479
480 # Number of cycles to stall until the assertion of go.
481 # One value, for each port. Can be zero, for no delay.
482 self.RD_GO_DELAY = [0, 3]
483
484 # store common data for the input operation of the processes
485 # input operation:
486 self.op = 0
487 self.inv_a = self.zero_a = 0
488 self.imm = self.imm_ok = 0
489 self.imm_control = (0, 0)
490 self.rdmaskn = (0, 0)
491 # input data:
492 self.operands = (0, 0)
493
494 # Indicates completion of the sub-processes
495 self.rd_complete = [False, False]
496
497 def driver(self):
498 print("Begin parallel test.")
499 yield from self.operation(5, 2, MicrOp.OP_ADD)
500
501 def operation(self, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0,
502 rdmaskn=(0, 0)):
503 # store data for the operation
504 self.operands = (a, b)
505 self.op = op
506 self.inv_a = inv_a
507 self.imm = imm
508 self.imm_ok = imm_ok
509 self.zero_a = zero_a
510 self.imm_control = (zero_a, imm_ok)
511 self.rdmaskn = rdmaskn
512
513 # Initialize completion flags
514 self.rd_complete = [False, False]
515
516 # trigger operation cycle
517 yield from self.issue()
518
519 # check that the sub-processes completed, before the busy_o cycle ended
520 for completion in self.rd_complete:
521 assert completion
522
523 def issue(self):
524 # issue_i starts inactive
525 yield self.dut.issue_i.eq(0)
526
527 for n in range(self.MIN_BUSY_LOW):
528 yield
529 # busy_o must remain inactive. It cannot rise on its own.
530 busy_o = yield self.dut.busy_o
531 assert not busy_o
532
533 # activate issue_i to begin the operation cycle
534 yield self.dut.issue_i.eq(1)
535
536 # at the same time, present the operation
537 yield self.dut.oper_i.insn_type.eq(self.op)
538 yield self.dut.oper_i.invert_in.eq(self.inv_a)
539 yield self.dut.oper_i.imm_data.data.eq(self.imm)
540 yield self.dut.oper_i.imm_data.ok.eq(self.imm_ok)
541 yield self.dut.oper_i.zero_a.eq(self.zero_a)
542 rdmaskn = self.rdmaskn[0] | (self.rdmaskn[1] << 1)
543 yield self.dut.rdmaskn.eq(rdmaskn)
544
545 # give one cycle for the CompUnit to latch the data
546 yield
547
548 # busy_o must keep being low in this cycle, because issue_i was
549 # low on the previous cycle.
550 # It cannot rise on its own.
551 # Also, busy_o and issue_i must never be active at the same time, ever.
552 busy_o = yield self.dut.busy_o
553 assert not busy_o
554
555 # Lower issue_i
556 yield self.dut.issue_i.eq(0)
557
558 # deactivate inputs along with issue_i, so we can be sure the data
559 # was latched at the correct cycle
560 # note: rdmaskn must be held, while busy_o is active
561 # TODO: deactivate rdmaskn when the busy_o cycle ends
562 yield self.dut.oper_i.insn_type.eq(0)
563 yield self.dut.oper_i.invert_in.eq(0)
564 yield self.dut.oper_i.imm_data.data.eq(0)
565 yield self.dut.oper_i.imm_data.ok.eq(0)
566 yield self.dut.oper_i.zero_a.eq(0)
567 yield
568
569 # wait for busy_o to lower
570 # timeout after self.MAX_BUSY_WAIT cycles
571 for n in range(self.MAX_BUSY_WAIT):
572 # sample busy_o in the current cycle
573 busy_o = yield self.dut.busy_o
574 if not busy_o:
575 # operation cycle ends when busy_o becomes inactive
576 break
577 yield
578
579 # if busy_o is still active, a timeout has occurred
580 # TODO: Uncomment this, once the test is complete:
581 # assert not busy_o
582
583 if busy_o:
584 print("If you are reading this, "
585 "it's because the above test failed, as expected,\n"
586 "with a timeout. It must pass, once the test is complete.")
587 return
588
589 print("If you are reading this, "
590 "it's because the above test unexpectedly passed.")
591
592 def rd(self, rd_idx):
593 # wait for issue_i to rise
594 while True:
595 issue_i = yield self.dut.issue_i
596 if issue_i:
597 break
598 # issue_i has not risen yet, so rd must keep low
599 rel = yield self.dut.rd.rel_o[rd_idx]
600 assert not rel
601 yield
602
603 # we do not want rd to rise on an immediate operand
604 # if it is immediate, exit the process
605 # likewise, if the read mask is active
606 # TODO: don't exit the process, monitor rd instead to ensure it
607 # doesn't rise on its own
608 if self.rdmaskn[rd_idx] or self.imm_control[rd_idx]:
609 self.rd_complete[rd_idx] = True
610 return
611
612 # issue_i has risen. rel must rise on the next cycle
613 rel = yield self.dut.rd.rel_o[rd_idx]
614 assert not rel
615
616 # stall for additional cycles. Check that rel doesn't fall on its own
617 for n in range(self.RD_GO_DELAY[rd_idx]):
618 yield
619 rel = yield self.dut.rd.rel_o[rd_idx]
620 assert rel
621
622 # Before asserting "go", make sure "rel" has risen.
623 # The use of Settle allows "go" to be set combinatorially,
624 # rising on the same cycle as "rel".
625 yield Settle()
626 rel = yield self.dut.rd.rel_o[rd_idx]
627 assert rel
628
629 # assert go for one cycle, passing along the operand value
630 yield self.dut.rd.go_i[rd_idx].eq(1)
631 yield self.dut.src_i[rd_idx].eq(self.operands[rd_idx])
632 # check that the operand was sent to the alu
633 # TODO: Properly check the alu protocol
634 yield Settle()
635 alu_input = yield self.dut.get_in(rd_idx)
636 assert alu_input == self.operands[rd_idx]
637 yield
638
639 # rel must keep high, since go was inactive in the last cycle
640 rel = yield self.dut.rd.rel_o[rd_idx]
641 assert rel
642
643 # finish the go one-clock pulse
644 yield self.dut.rd.go_i[rd_idx].eq(0)
645 yield self.dut.src_i[rd_idx].eq(0)
646 yield
647
648 # rel must have gone low in response to go being high
649 # on the previous cycle
650 rel = yield self.dut.rd.rel_o[rd_idx]
651 assert not rel
652
653 self.rd_complete[rd_idx] = True
654
655 # TODO: check that rel doesn't rise again until the end of the
656 # busy_o cycle
657
658 def wr(self, wr_idx):
659 # monitor self.dut.wr.req[rd_idx] and sets dut.wr.go[idx] for one cycle
660 yield
661 # TODO: also when dut.wr.go is set, check the output against the
662 # self.expected_o and assert. use dut.get_out(wr_idx) to do so.
663
664 def run_simulation(self, vcd_name):
665 m = Module()
666 m.submodules.cu = self.dut
667 sim = Simulator(m)
668 sim.add_clock(1e-6)
669
670 sim.add_sync_process(wrap(self.driver()))
671 sim.add_sync_process(wrap(self.rd(0)))
672 sim.add_sync_process(wrap(self.rd(1)))
673 sim.add_sync_process(wrap(self.wr(0)))
674 sim_writer = sim.write_vcd(vcd_name)
675 with sim_writer:
676 sim.run()
677
678
679 def test_compunit_regspec2_fsm():
680
681 inspec = [('INT', 'data', '0:15'),
682 ('INT', 'shift', '0:15'),
683 ]
684 outspec = [('INT', 'data', '0:15'),
685 ]
686
687 regspec = (inspec, outspec)
688
689 m = Module()
690 alu = Shifter(8)
691 dut = MultiCompUnit(regspec, alu, CompFSMOpSubset)
692 m.submodules.cu = dut
693
694 sim = Simulator(m)
695 sim.add_clock(1e-6)
696
697 # create one operand producer for each input port
698 prod_a = OperandProducer(sim, dut, 0)
699 prod_b = OperandProducer(sim, dut, 1)
700 # create an result consumer for the output port
701 cons = ResultConsumer(sim, dut, 0)
702 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
703 [prod_a, prod_b],
704 [cons])))
705 sim_writer = sim.write_vcd('test_compunit_regspec2_fsm.vcd',
706 traces=[prod_a.count,
707 prod_b.count,
708 cons.count])
709 with sim_writer:
710 sim.run()
711
712
713 def test_compunit_regspec3():
714
715 inspec = [('INT', 'a', '0:15'),
716 ('INT', 'b', '0:15'),
717 ('INT', 'c', '0:15')]
718 outspec = [('INT', 'o', '0:15'),
719 ]
720
721 regspec = (inspec, outspec)
722
723 m = Module()
724 alu = DummyALU(16)
725 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
726 m.submodules.cu = dut
727
728 sim = Simulator(m)
729 sim.add_clock(1e-6)
730
731 sim.add_sync_process(wrap(scoreboard_sim_dummy(dut)))
732 sim_writer = sim.write_vcd('test_compunit_regspec3.vcd')
733 with sim_writer:
734 sim.run()
735
736
737 def test_compunit_regspec1():
738
739 style = {
740 'in': {'color': 'orange'},
741 'out': {'color': 'yellow'},
742 }
743 traces = [
744 'clk',
745 ('operation port', {'color': 'red'}, [
746 'cu_issue_i', 'cu_busy_o',
747 {'comment': 'operation'},
748 ('oper_i_None__insn_type', {'display': 'insn_type'}),
749 ('oper_i_None__invert_in', {'display': 'invert_in'}),
750 ('oper_i_None__imm_data__data[63:0]', {'display': 'data[63:0]'}),
751 ('oper_i_None__imm_data__imm_ok', {'display': 'imm_ok'}),
752 ('oper_i_None__zero_a', {'display': 'zero_a'})]),
753 ('operand 1 port', 'in', [
754 ('cu_rd__rel_o[1:0]', {'bit': 1}),
755 ('cu_rd__go_i[1:0]', {'bit': 1}),
756 'src1_i[15:0]']),
757 ('operand 2 port', 'in', [
758 ('cu_rd__rel_o[1:0]', {'bit': 0}),
759 ('cu_rd__go_i[1:0]', {'bit': 0}),
760 'src2_i[15:0]']),
761 ('result port', 'out', [
762 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[15:0]']),
763 ('alu', {'module': 'top.cu.alu'}, [
764 ('prev port', 'in', [
765 'op__insn_type', 'op__invert_i', 'a[15:0]', 'b[15:0]',
766 'valid_i', 'ready_o']),
767 ('next port', 'out', [
768 'alu_o[15:0]', 'valid_o', 'ready_i'])]),
769 ('debug', {'module': 'top'},
770 ['src1_count[7:0]', 'src2_count[7:0]', 'dest1_count[7:0]'])]
771
772 write_gtkw("test_compunit_regspec1.gtkw",
773 "test_compunit_regspec1.vcd",
774 traces, style,
775 clk_period=1e-6,
776 module='top.cu')
777
778 inspec = [('INT', 'a', '0:15'),
779 ('INT', 'b', '0:15')]
780 outspec = [('INT', 'o', '0:15'),
781 ]
782
783 regspec = (inspec, outspec)
784
785 m = Module()
786 alu = ALU(16)
787 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
788 m.submodules.cu = dut
789
790 vl = rtlil.convert(dut, ports=dut.ports())
791 with open("test_compunit_regspec1.il", "w") as f:
792 f.write(vl)
793
794 sim = Simulator(m)
795 sim.add_clock(1e-6)
796
797 # create one operand producer for each input port
798 prod_a = OperandProducer(sim, dut, 0)
799 prod_b = OperandProducer(sim, dut, 1)
800 # create an result consumer for the output port
801 cons = ResultConsumer(sim, dut, 0)
802 # create an operation issuer
803 op = OpSim(dut, [prod_a, prod_b], [cons])
804 sim.add_sync_process(wrap(scoreboard_sim(op)))
805 sim_writer = sim.write_vcd('test_compunit_regspec1.vcd',
806 traces=[prod_a.count,
807 prod_b.count,
808 cons.count])
809 with sim_writer:
810 sim.run()
811
812 test = CompUnitParallelTest(dut)
813 test.run_simulation("test_compunit_parallel.vcd")
814
815
816 if __name__ == '__main__':
817 test_compunit()
818 test_compunit_fsm()
819 test_compunit_regspec1()
820 test_compunit_regspec2_fsm()
821 test_compunit_regspec3()