Port the ALU test case to the new parallel test style
[soc.git] / src / soc / experiment / test / test_compalu_multi.py
1 """Computation Unit (aka "ALU Manager").
2
3 Manages a Pipeline or FSM, ensuring that the start and end time are 100%
4 monitored. At no time may the ALU proceed without this module notifying
5 the Dependency Matrices. At no time is a result production "abandoned".
6 This module blocks (indicates busy) starting from when it first receives
7 an opcode until it receives notification that
8 its result(s) have been successfully stored in the regfile(s)
9
10 Documented at http://libre-soc.org/3d_gpu/architecture/compunit
11 """
12
13 from soc.experiment.alu_fsm import Shifter, CompFSMOpSubset
14 from soc.fu.alu.alu_input_record import CompALUOpSubset
15 from soc.experiment.alu_hier import ALU, DummyALU
16 from soc.experiment.compalu_multi import MultiCompUnit
17 from soc.decoder.power_enums import MicrOp
18 from nmutil.gtkw import write_gtkw
19 from nmigen import Module, Signal
20 from nmigen.cli import rtlil
21
22 # NOTE: to use cxxsim, export NMIGEN_SIM_MODE=cxxsim from the shell
23 # Also, check out the cxxsim nmigen branch, and latest yosys from git
24 from nmutil.sim_tmp_alternative import (Simulator, Settle, is_engine_pysim,
25 Passive)
26
27
28 def wrap(process):
29 def wrapper():
30 yield from process
31 return wrapper
32
33
34 class OperandProducer:
35 """
36 Produces an operand when requested by the Computation Unit
37 (`dut` parameter), using the `rel_o` / `go_i` handshake.
38
39 Attaches itself to the `dut` operand indexed by `op_index`.
40
41 Has a programmable delay between the assertion of `rel_o` and the
42 `go_i` pulse.
43
44 Data is presented only during the cycle in which `go_i` is active.
45
46 It adds itself as a passive process to the simulation (`sim` parameter).
47 Since it is passive, it will not hang the simulation, and does not need a
48 flag to terminate itself.
49 """
50 def __init__(self, sim, dut, op_index):
51 self.count = Signal(8, name=f"src{op_index + 1}_count")
52 """ transaction counter"""
53 # data and handshake signals from the DUT
54 self.port = dut.src_i[op_index]
55 self.go_i = dut.rd.go_i[op_index]
56 self.rel_o = dut.rd.rel_o[op_index]
57 # transaction parameters, passed via signals
58 self.delay = Signal(8)
59 self.data = Signal.like(self.port)
60 # add ourselves to the simulation process list
61 sim.add_sync_process(self._process)
62
63 def _process(self):
64 yield Passive()
65 while True:
66 # Settle() is needed to give a quick response to
67 # the zero delay case
68 yield Settle()
69 # wait for rel_o to become active
70 while not (yield self.rel_o):
71 yield
72 yield Settle()
73 # read the transaction parameters
74 delay = (yield self.delay)
75 data = (yield self.data)
76 # wait for `delay` cycles
77 for _ in range(delay):
78 yield
79 # activate go_i and present data, for one cycle
80 yield self.go_i.eq(1)
81 yield self.port.eq(data)
82 yield self.count.eq(self.count + 1)
83 yield
84 yield self.go_i.eq(0)
85 yield self.port.eq(0)
86
87 def send(self, data, delay):
88 """
89 Schedules the module to send some `data`, counting `delay` cycles after
90 `rel_i` becomes active.
91
92 To be called from the main test-bench process,
93 it returns in the same cycle.
94
95 Communication with the worker process is done by means of
96 combinatorial simulation-only signals.
97
98 """
99 yield self.data.eq(data)
100 yield self.delay.eq(delay)
101
102
103 class ResultConsumer:
104 """
105 Consumes a result when requested by the Computation Unit
106 (`dut` parameter), using the `rel_o` / `go_i` handshake.
107
108 Attaches itself to the `dut` result indexed by `op_index`.
109
110 Has a programmable delay between the assertion of `rel_o` and the
111 `go_i` pulse.
112
113 Data is retrieved only during the cycle in which `go_i` is active.
114
115 It adds itself as a passive process to the simulation (`sim` parameter).
116 Since it is passive, it will not hang the simulation, and does not need a
117 flag to terminate itself.
118 """
119 def __init__(self, sim, dut, op_index):
120 self.count = Signal(8, name=f"dest{op_index + 1}_count")
121 """ transaction counter"""
122 # data and handshake signals from the DUT
123 self.port = dut.dest[op_index]
124 self.go_i = dut.wr.go_i[op_index]
125 self.rel_o = dut.wr.rel_o[op_index]
126 # transaction parameters, passed via signals
127 self.delay = Signal(8)
128 self.expected = Signal.like(self.port)
129 # add ourselves to the simulation process list
130 sim.add_sync_process(self._process)
131
132 def _process(self):
133 yield Passive()
134 while True:
135 # Settle() is needed to give a quick response to
136 # the zero delay case
137 yield Settle()
138 # wait for rel_o to become active
139 while not (yield self.rel_o):
140 yield
141 yield Settle()
142 # read the transaction parameters
143 delay = (yield self.delay)
144 expected = (yield self.expected)
145 # wait for `delay` cycles
146 for _ in range(delay):
147 yield
148 # activate go_i for one cycle
149 yield self.go_i.eq(1)
150 yield self.count.eq(self.count + 1)
151 yield
152 # check received data against the expected value
153 result = (yield self.port)
154 assert result == expected,\
155 f"expected {expected}, received {result}"
156 yield self.go_i.eq(0)
157 yield self.port.eq(0)
158
159 def receive(self, expected, delay):
160 """
161 Schedules the module to receive some result,
162 counting `delay` cycles after `rel_i` becomes active.
163 As 'go_i' goes active, check the result with `expected`.
164
165 To be called from the main test-bench process,
166 it returns in the same cycle.
167
168 Communication with the worker process is done by means of
169 combinatorial simulation-only signals.
170 """
171 yield self.expected.eq(expected)
172 yield self.delay.eq(delay)
173
174
175 def op_sim(dut, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0):
176 yield dut.issue_i.eq(0)
177 yield
178 yield dut.src_i[0].eq(a)
179 yield dut.src_i[1].eq(b)
180 yield dut.oper_i.insn_type.eq(op)
181 yield dut.oper_i.invert_in.eq(inv_a)
182 yield dut.oper_i.imm_data.data.eq(imm)
183 yield dut.oper_i.imm_data.ok.eq(imm_ok)
184 yield dut.oper_i.zero_a.eq(zero_a)
185 yield dut.issue_i.eq(1)
186 yield
187 yield dut.issue_i.eq(0)
188 yield
189 if not imm_ok or not zero_a:
190 yield dut.rd.go_i.eq(0b11)
191 while True:
192 yield
193 rd_rel_o = yield dut.rd.rel_o
194 print("rd_rel", rd_rel_o)
195 if rd_rel_o:
196 break
197 yield dut.rd.go_i.eq(0)
198 else:
199 print("no go rd")
200
201 if len(dut.src_i) == 3:
202 yield dut.rd.go_i.eq(0b100)
203 while True:
204 yield
205 rd_rel_o = yield dut.rd.rel_o
206 print("rd_rel", rd_rel_o)
207 if rd_rel_o:
208 break
209 yield dut.rd.go_i.eq(0)
210 else:
211 print("no 3rd rd")
212
213 req_rel_o = yield dut.wr.rel_o
214 result = yield dut.data_o
215 print("req_rel", req_rel_o, result)
216 while True:
217 req_rel_o = yield dut.wr.rel_o
218 result = yield dut.data_o
219 print("req_rel", req_rel_o, result)
220 if req_rel_o:
221 break
222 yield
223 yield dut.wr.go_i[0].eq(1)
224 yield Settle()
225 result = yield dut.data_o
226 yield
227 print("result", result)
228 yield dut.wr.go_i[0].eq(0)
229 yield
230 return result
231
232
233 def scoreboard_sim_fsm(dut, producers, consumers):
234
235 # stores the operation count
236 op_count = 0
237
238 def op_sim_fsm(a, b, direction, expected, delays):
239 print("op_sim_fsm", a, b, direction, expected)
240 yield dut.issue_i.eq(0)
241 yield
242 # forward data and delays to the producers and consumers
243 yield from producers[0].send(a, delays[0])
244 yield from producers[1].send(b, delays[1])
245 yield from consumers[0].receive(expected, delays[2])
246 # submit operation, and assert issue_i for one cycle
247 yield dut.oper_i.sdir.eq(direction)
248 yield dut.issue_i.eq(1)
249 yield
250 yield dut.issue_i.eq(0)
251 # wait for busy to be negated
252 yield Settle()
253 while (yield dut.busy_o):
254 yield
255 yield Settle()
256 # update the operation count
257 nonlocal op_count
258 op_count = (op_count + 1) & 255
259 # check that producers and consumers have the same count
260 # this assures that no data was left unused or was lost
261 assert (yield producers[0].count) == op_count
262 assert (yield producers[1].count) == op_count
263 assert (yield consumers[0].count) == op_count
264
265 # 13 >> 2 = 3
266 # operand 1 arrives immediately
267 # operand 2 arrives after operand 1
268 # write data is accepted immediately
269 yield from op_sim_fsm(13, 2, 1, 3, [0, 2, 0])
270 # 3 << 4 = 48
271 # operand 2 arrives immediately
272 # operand 1 arrives after operand 2
273 # write data is accepted after some delay
274 yield from op_sim_fsm(3, 4, 0, 48, [2, 0, 2])
275 # 21 << 0 = 21
276 # operands 1 and 2 arrive at the same time
277 # write data is accepted after some delay
278 yield from op_sim_fsm(21, 0, 0, 21, [1, 1, 1])
279
280
281 def scoreboard_sim_dummy(dut):
282 result = yield from op_sim(dut, 5, 2, MicrOp.OP_NOP, inv_a=0,
283 imm=8, imm_ok=1)
284 assert result == 5, result
285
286 result = yield from op_sim(dut, 9, 2, MicrOp.OP_NOP, inv_a=0,
287 imm=8, imm_ok=1)
288 assert result == 9, result
289
290
291 def scoreboard_sim(dut, producers, consumers):
292
293 # stores the operation count
294 op_count = 0
295 zero_a_count = 0
296 imm_ok_count = 0
297
298 def op_sim_alu(a, b, op, expected, delays,
299 inv_a=0, imm=0, imm_ok=0, zero_a=0):
300 print("op_sim", a, b, op, expected)
301 yield dut.issue_i.eq(0)
302 yield
303 # forward data and delays to the producers and consumers
304 if not zero_a:
305 yield from producers[0].send(a, delays[0])
306 if not imm_ok:
307 yield from producers[1].send(b, delays[1])
308 yield from consumers[0].receive(expected, delays[2])
309 # submit operation, and assert issue_i for one cycle
310 yield dut.oper_i.insn_type.eq(op)
311 yield dut.oper_i.invert_in.eq(inv_a)
312 yield dut.oper_i.imm_data.data.eq(imm)
313 yield dut.oper_i.imm_data.ok.eq(imm_ok)
314 yield dut.oper_i.zero_a.eq(zero_a)
315 yield dut.issue_i.eq(1)
316 yield
317 yield dut.issue_i.eq(0)
318 # wait for busy to be negated
319 yield Settle()
320 while (yield dut.busy_o):
321 yield
322 yield Settle()
323 # update the operation count
324 nonlocal op_count, zero_a_count, imm_ok_count
325 op_count = (op_count + 1) & 255
326 # On zero_a and imm_ok executions, the producer counters will fall
327 # behind. But, by summing the following counts, the invariant is
328 # preserved.
329 if zero_a:
330 zero_a_count = zero_a_count + 1
331 if imm_ok:
332 imm_ok_count = imm_ok_count + 1
333 # check that producers and consumers have the same count
334 # this assures that no data was left unused or was lost
335 assert (yield producers[0].count) + zero_a_count == op_count
336 assert (yield producers[1].count) + imm_ok_count == op_count
337 assert (yield consumers[0].count) == op_count
338
339 # zero (no) input operands test
340 # 0 + 8 = 8
341 yield from op_sim_alu(5, 2, MicrOp.OP_ADD,
342 zero_a=1, imm=8, imm_ok=1,
343 expected=8, delays=[0, 2, 0])
344
345 # 5 + 8 = 13
346 yield from op_sim_alu(5, 2, MicrOp.OP_ADD,
347 inv_a=0, imm=8, imm_ok=1,
348 expected=13, delays=[2, 0, 2])
349
350 # 5 + 2 = 7
351 yield from op_sim_alu(5, 2, MicrOp.OP_ADD,
352 expected=7, delays=[1, 1, 1])
353
354 # (-6) + 2 = (-4)
355 yield from op_sim_alu(5, 2, MicrOp.OP_ADD, inv_a=1,
356 expected=65532, delays=[1, 2, 0])
357
358 # 0 + 2 = 2
359 yield from op_sim_alu(5, 2, MicrOp.OP_ADD, zero_a=1,
360 expected=2, delays=[2, 0, 1])
361
362 # test combinatorial zero-delay operation
363 # In the test ALU, any operation other than ADD, MUL or SHR
364 # is zero-delay, and do a subtraction.
365 yield from op_sim_alu(5, 2, MicrOp.OP_NOP,
366 expected=3, delays=[0, 1, 2])
367
368
369 def test_compunit_fsm():
370 top = "top.cu" if is_engine_pysim() else "cu"
371 style = {
372 'in': {'color': 'orange'},
373 'out': {'color': 'yellow'},
374 }
375 traces = [
376 'clk',
377 ('operation port', {'color': 'red'}, [
378 'cu_issue_i', 'cu_busy_o',
379 {'comment': 'operation'},
380 'oper_i_None__sdir']),
381 ('operand 1 port', 'in', [
382 ('cu_rd__rel_o[1:0]', {'bit': 1}),
383 ('cu_rd__go_i[1:0]', {'bit': 1}),
384 'src1_i[7:0]']),
385 ('operand 2 port', 'in', [
386 ('cu_rd__rel_o[1:0]', {'bit': 0}),
387 ('cu_rd__go_i[1:0]', {'bit': 0}),
388 'src2_i[7:0]']),
389 ('result port', 'out', [
390 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[7:0]']),
391 ('alu', {'module': top+'.alu'}, [
392 ('prev port', 'in', [
393 'op__sdir', 'p_data_i[7:0]', 'p_shift_i[7:0]',
394 'p_valid_i', 'p_ready_o']),
395 ('next port', 'out', [
396 'n_data_o[7:0]', 'n_valid_o', 'n_ready_i']),
397 ]),
398 ('debug', {'module': 'top'},
399 ['src1_count[7:0]', 'src2_count[7:0]', 'dest1_count[7:0]'])
400
401 ]
402 write_gtkw(
403 "test_compunit_fsm1.gtkw",
404 "test_compunit_fsm1.vcd",
405 traces, style,
406 module=top
407 )
408 m = Module()
409 alu = Shifter(8)
410 dut = MultiCompUnit(8, alu, CompFSMOpSubset)
411 m.submodules.cu = dut
412
413 vl = rtlil.convert(dut, ports=dut.ports())
414 with open("test_compunit_fsm1.il", "w") as f:
415 f.write(vl)
416
417 sim = Simulator(m)
418 sim.add_clock(1e-6)
419
420 # create one operand producer for each input port
421 prod_a = OperandProducer(sim, dut, 0)
422 prod_b = OperandProducer(sim, dut, 1)
423 # create an result consumer for the output port
424 cons = ResultConsumer(sim, dut, 0)
425 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
426 [prod_a, prod_b],
427 [cons])))
428 sim_writer = sim.write_vcd('test_compunit_fsm1.vcd',
429 traces=[prod_a.count,
430 prod_b.count,
431 cons.count])
432 with sim_writer:
433 sim.run()
434
435
436 def test_compunit():
437
438 m = Module()
439 alu = ALU(16)
440 dut = MultiCompUnit(16, alu, CompALUOpSubset)
441 m.submodules.cu = dut
442
443 vl = rtlil.convert(dut, ports=dut.ports())
444 with open("test_compunit1.il", "w") as f:
445 f.write(vl)
446
447 sim = Simulator(m)
448 sim.add_clock(1e-6)
449
450 # create one operand producer for each input port
451 prod_a = OperandProducer(sim, dut, 0)
452 prod_b = OperandProducer(sim, dut, 1)
453 # create an result consumer for the output port
454 cons = ResultConsumer(sim, dut, 0)
455 sim.add_sync_process(wrap(scoreboard_sim(dut,
456 [prod_a, prod_b],
457 [cons])))
458 sim_writer = sim.write_vcd('test_compunit1.vcd')
459 with sim_writer:
460 sim.run()
461
462
463 class CompUnitParallelTest:
464 def __init__(self, dut):
465 self.dut = dut
466
467 # Operation cycle should not take longer than this:
468 self.MAX_BUSY_WAIT = 50
469
470 # Minimum duration in which issue_i will be kept inactive,
471 # during which busy_o must remain low.
472 self.MIN_BUSY_LOW = 5
473
474 # Number of cycles to stall until the assertion of go.
475 # One value, for each port. Can be zero, for no delay.
476 self.RD_GO_DELAY = [0, 3]
477
478 # store common data for the input operation of the processes
479 # input operation:
480 self.op = 0
481 self.inv_a = self.zero_a = 0
482 self.imm = self.imm_ok = 0
483 self.imm_control = (0, 0)
484 self.rdmaskn = (0, 0)
485 # input data:
486 self.operands = (0, 0)
487
488 # Indicates completion of the sub-processes
489 self.rd_complete = [False, False]
490
491 def driver(self):
492 print("Begin parallel test.")
493 yield from self.operation(5, 2, MicrOp.OP_ADD)
494
495 def operation(self, a, b, op, inv_a=0, imm=0, imm_ok=0, zero_a=0,
496 rdmaskn=(0, 0)):
497 # store data for the operation
498 self.operands = (a, b)
499 self.op = op
500 self.inv_a = inv_a
501 self.imm = imm
502 self.imm_ok = imm_ok
503 self.zero_a = zero_a
504 self.imm_control = (zero_a, imm_ok)
505 self.rdmaskn = rdmaskn
506
507 # Initialize completion flags
508 self.rd_complete = [False, False]
509
510 # trigger operation cycle
511 yield from self.issue()
512
513 # check that the sub-processes completed, before the busy_o cycle ended
514 for completion in self.rd_complete:
515 assert completion
516
517 def issue(self):
518 # issue_i starts inactive
519 yield self.dut.issue_i.eq(0)
520
521 for n in range(self.MIN_BUSY_LOW):
522 yield
523 # busy_o must remain inactive. It cannot rise on its own.
524 busy_o = yield self.dut.busy_o
525 assert not busy_o
526
527 # activate issue_i to begin the operation cycle
528 yield self.dut.issue_i.eq(1)
529
530 # at the same time, present the operation
531 yield self.dut.oper_i.insn_type.eq(self.op)
532 yield self.dut.oper_i.invert_in.eq(self.inv_a)
533 yield self.dut.oper_i.imm_data.data.eq(self.imm)
534 yield self.dut.oper_i.imm_data.ok.eq(self.imm_ok)
535 yield self.dut.oper_i.zero_a.eq(self.zero_a)
536 rdmaskn = self.rdmaskn[0] | (self.rdmaskn[1] << 1)
537 yield self.dut.rdmaskn.eq(rdmaskn)
538
539 # give one cycle for the CompUnit to latch the data
540 yield
541
542 # busy_o must keep being low in this cycle, because issue_i was
543 # low on the previous cycle.
544 # It cannot rise on its own.
545 # Also, busy_o and issue_i must never be active at the same time, ever.
546 busy_o = yield self.dut.busy_o
547 assert not busy_o
548
549 # Lower issue_i
550 yield self.dut.issue_i.eq(0)
551
552 # deactivate inputs along with issue_i, so we can be sure the data
553 # was latched at the correct cycle
554 # note: rdmaskn must be held, while busy_o is active
555 # TODO: deactivate rdmaskn when the busy_o cycle ends
556 yield self.dut.oper_i.insn_type.eq(0)
557 yield self.dut.oper_i.invert_in.eq(0)
558 yield self.dut.oper_i.imm_data.data.eq(0)
559 yield self.dut.oper_i.imm_data.ok.eq(0)
560 yield self.dut.oper_i.zero_a.eq(0)
561 yield
562
563 # wait for busy_o to lower
564 # timeout after self.MAX_BUSY_WAIT cycles
565 for n in range(self.MAX_BUSY_WAIT):
566 # sample busy_o in the current cycle
567 busy_o = yield self.dut.busy_o
568 if not busy_o:
569 # operation cycle ends when busy_o becomes inactive
570 break
571 yield
572
573 # if busy_o is still active, a timeout has occurred
574 # TODO: Uncomment this, once the test is complete:
575 # assert not busy_o
576
577 if busy_o:
578 print("If you are reading this, "
579 "it's because the above test failed, as expected,\n"
580 "with a timeout. It must pass, once the test is complete.")
581 return
582
583 print("If you are reading this, "
584 "it's because the above test unexpectedly passed.")
585
586 def rd(self, rd_idx):
587 # wait for issue_i to rise
588 while True:
589 issue_i = yield self.dut.issue_i
590 if issue_i:
591 break
592 # issue_i has not risen yet, so rd must keep low
593 rel = yield self.dut.rd.rel_o[rd_idx]
594 assert not rel
595 yield
596
597 # we do not want rd to rise on an immediate operand
598 # if it is immediate, exit the process
599 # likewise, if the read mask is active
600 # TODO: don't exit the process, monitor rd instead to ensure it
601 # doesn't rise on its own
602 if self.rdmaskn[rd_idx] or self.imm_control[rd_idx]:
603 self.rd_complete[rd_idx] = True
604 return
605
606 # issue_i has risen. rel must rise on the next cycle
607 rel = yield self.dut.rd.rel_o[rd_idx]
608 assert not rel
609
610 # stall for additional cycles. Check that rel doesn't fall on its own
611 for n in range(self.RD_GO_DELAY[rd_idx]):
612 yield
613 rel = yield self.dut.rd.rel_o[rd_idx]
614 assert rel
615
616 # Before asserting "go", make sure "rel" has risen.
617 # The use of Settle allows "go" to be set combinatorially,
618 # rising on the same cycle as "rel".
619 yield Settle()
620 rel = yield self.dut.rd.rel_o[rd_idx]
621 assert rel
622
623 # assert go for one cycle, passing along the operand value
624 yield self.dut.rd.go_i[rd_idx].eq(1)
625 yield self.dut.src_i[rd_idx].eq(self.operands[rd_idx])
626 # check that the operand was sent to the alu
627 # TODO: Properly check the alu protocol
628 yield Settle()
629 alu_input = yield self.dut.get_in(rd_idx)
630 assert alu_input == self.operands[rd_idx]
631 yield
632
633 # rel must keep high, since go was inactive in the last cycle
634 rel = yield self.dut.rd.rel_o[rd_idx]
635 assert rel
636
637 # finish the go one-clock pulse
638 yield self.dut.rd.go_i[rd_idx].eq(0)
639 yield self.dut.src_i[rd_idx].eq(0)
640 yield
641
642 # rel must have gone low in response to go being high
643 # on the previous cycle
644 rel = yield self.dut.rd.rel_o[rd_idx]
645 assert not rel
646
647 self.rd_complete[rd_idx] = True
648
649 # TODO: check that rel doesn't rise again until the end of the
650 # busy_o cycle
651
652 def wr(self, wr_idx):
653 # monitor self.dut.wr.req[rd_idx] and sets dut.wr.go[idx] for one cycle
654 yield
655 # TODO: also when dut.wr.go is set, check the output against the
656 # self.expected_o and assert. use dut.get_out(wr_idx) to do so.
657
658 def run_simulation(self, vcd_name):
659 m = Module()
660 m.submodules.cu = self.dut
661 sim = Simulator(m)
662 sim.add_clock(1e-6)
663
664 sim.add_sync_process(wrap(self.driver()))
665 sim.add_sync_process(wrap(self.rd(0)))
666 sim.add_sync_process(wrap(self.rd(1)))
667 sim.add_sync_process(wrap(self.wr(0)))
668 sim_writer = sim.write_vcd(vcd_name)
669 with sim_writer:
670 sim.run()
671
672
673 def test_compunit_regspec2_fsm():
674
675 inspec = [('INT', 'data', '0:15'),
676 ('INT', 'shift', '0:15'),
677 ]
678 outspec = [('INT', 'data', '0:15'),
679 ]
680
681 regspec = (inspec, outspec)
682
683 m = Module()
684 alu = Shifter(8)
685 dut = MultiCompUnit(regspec, alu, CompFSMOpSubset)
686 m.submodules.cu = dut
687
688 sim = Simulator(m)
689 sim.add_clock(1e-6)
690
691 # create one operand producer for each input port
692 prod_a = OperandProducer(sim, dut, 0)
693 prod_b = OperandProducer(sim, dut, 1)
694 # create an result consumer for the output port
695 cons = ResultConsumer(sim, dut, 0)
696 sim.add_sync_process(wrap(scoreboard_sim_fsm(dut,
697 [prod_a, prod_b],
698 [cons])))
699 sim_writer = sim.write_vcd('test_compunit_regspec2_fsm.vcd',
700 traces=[prod_a.count,
701 prod_b.count,
702 cons.count])
703 with sim_writer:
704 sim.run()
705
706
707 def test_compunit_regspec3():
708
709 inspec = [('INT', 'a', '0:15'),
710 ('INT', 'b', '0:15'),
711 ('INT', 'c', '0:15')]
712 outspec = [('INT', 'o', '0:15'),
713 ]
714
715 regspec = (inspec, outspec)
716
717 m = Module()
718 alu = DummyALU(16)
719 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
720 m.submodules.cu = dut
721
722 sim = Simulator(m)
723 sim.add_clock(1e-6)
724
725 sim.add_sync_process(wrap(scoreboard_sim_dummy(dut)))
726 sim_writer = sim.write_vcd('test_compunit_regspec3.vcd')
727 with sim_writer:
728 sim.run()
729
730
731 def test_compunit_regspec1():
732
733 style = {
734 'in': {'color': 'orange'},
735 'out': {'color': 'yellow'},
736 }
737 traces = [
738 'clk',
739 ('operation port', {'color': 'red'}, [
740 'cu_issue_i', 'cu_busy_o',
741 {'comment': 'operation'},
742 ('oper_i_None__insn_type', {'display': 'insn_type'}),
743 ('oper_i_None__invert_in', {'display': 'invert_in'}),
744 ('oper_i_None__imm_data__data[63:0]', {'display': 'data[63:0]'}),
745 ('oper_i_None__imm_data__imm_ok', {'display': 'imm_ok'}),
746 ('oper_i_None__zero_a', {'display': 'zero_a'})]),
747 ('operand 1 port', 'in', [
748 ('cu_rd__rel_o[1:0]', {'bit': 1}),
749 ('cu_rd__go_i[1:0]', {'bit': 1}),
750 'src1_i[15:0]']),
751 ('operand 2 port', 'in', [
752 ('cu_rd__rel_o[1:0]', {'bit': 0}),
753 ('cu_rd__go_i[1:0]', {'bit': 0}),
754 'src2_i[15:0]']),
755 ('result port', 'out', [
756 'cu_wr__rel_o', 'cu_wr__go_i', 'dest1_o[15:0]']),
757 ('alu', {'module': 'top.cu.alu'}, [
758 ('prev port', 'in', [
759 'op__insn_type', 'op__invert_i', 'a[15:0]', 'b[15:0]',
760 'valid_i', 'ready_o']),
761 ('next port', 'out', [
762 'alu_o[15:0]', 'valid_o', 'ready_i'])]),
763 ('debug', {'module': 'top'},
764 ['src1_count[7:0]', 'src2_count[7:0]', 'dest1_count[7:0]'])]
765
766 write_gtkw("test_compunit_regspec1.gtkw",
767 "test_compunit_regspec1.vcd",
768 traces, style,
769 clk_period=1e-6,
770 module='top.cu')
771
772 inspec = [('INT', 'a', '0:15'),
773 ('INT', 'b', '0:15')]
774 outspec = [('INT', 'o', '0:15'),
775 ]
776
777 regspec = (inspec, outspec)
778
779 m = Module()
780 alu = ALU(16)
781 dut = MultiCompUnit(regspec, alu, CompALUOpSubset)
782 m.submodules.cu = dut
783
784 vl = rtlil.convert(dut, ports=dut.ports())
785 with open("test_compunit_regspec1.il", "w") as f:
786 f.write(vl)
787
788 sim = Simulator(m)
789 sim.add_clock(1e-6)
790
791 # create one operand producer for each input port
792 prod_a = OperandProducer(sim, dut, 0)
793 prod_b = OperandProducer(sim, dut, 1)
794 # create an result consumer for the output port
795 cons = ResultConsumer(sim, dut, 0)
796 sim.add_sync_process(wrap(scoreboard_sim(dut,
797 [prod_a, prod_b],
798 [cons])))
799 sim_writer = sim.write_vcd('test_compunit_regspec1.vcd',
800 traces=[prod_a.count,
801 prod_b.count,
802 cons.count])
803 with sim_writer:
804 sim.run()
805
806 test = CompUnitParallelTest(dut)
807 test.run_simulation("test_compunit_parallel.vcd")
808
809
810 if __name__ == '__main__':
811 test_compunit()
812 test_compunit_fsm()
813 test_compunit_regspec1()
814 test_compunit_regspec2_fsm()
815 test_compunit_regspec3()