X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fadd%2Ffsqrt.py;h=a87af61db4ded516df1f93d6cb3af933d6318af3;hb=7541ca979084de96ebdf292e1baa0a03af64d3fc;hp=6b233779d22e4c55a67f01ee82c52c9dc03b057f;hpb=a298ae5ded7672c5c913d1f1ef044a4b38bd0dfe;p=ieee754fpu.git diff --git a/src/add/fsqrt.py b/src/add/fsqrt.py index 6b233779..a87af61d 100644 --- a/src/add/fsqrt.py +++ b/src/add/fsqrt.py @@ -1,6 +1,150 @@ +from sfpy import Float32 +# XXX DO NOT USE, fails on num=65536. wark-wark... +def sqrtsimple(num): + res = 0 + bit = 1 + + while (bit < num): + bit <<= 2 + + while (bit != 0): + if (num >= res + bit): + num -= res + bit + res = (res >> 1) + bit + else: + res >>= 1 + bit >>= 2 + + return res + + +def sqrt(num): + D = num # D is input (from num) + Q = 0 + R = 0 # remainder + for i in range(64, -1, -1): # negative ranges are weird... + + R = (R<<2)|((D>>(i+i))&3) + + if R >= 0: + R -= ((Q<<2)|1) # -Q01 + else: + R += ((Q<<2)|3) # +Q11 + + Q <<= 1 + if R >= 0: + Q |= 1 # new Q + + if R < 0: + R = R + ((Q<<1)|1) + + return Q, R + + +# grabbed these from unit_test_single (convenience, this is just experimenting) + +def get_mantissa(x): + return 0x7fffff & x + +def get_exponent(x): + return ((x & 0x7f800000) >> 23) - 127 + +def set_exponent(x, e): + return (x & ~0x7f800000) | ((e+127) << 23) + +def get_sign(x): + return ((x & 0x80000000) >> 31) + +# convert FP32 to s/e/m +def create_fp32(s, e, m): + """ receive sign, exponent, mantissa, return FP32 """ + return set_exponent((s << 31) | get_mantissa(m)) + +# convert s/e/m to FP32 +def decode_fp32(x): + """ receive FP32, return sign, exponent, mantissa """ + return get_sign(x), get_exponent(x), get_mantissa(x) + + +# main function, takes mantissa and exponent as separate arguments +# returns a tuple, sqrt'd mantissa, sqrt'd exponent + +def main(mantissa, exponent): + if exponent & 1 != 0: + # shift mantissa up, subtract 1 from exp to compensate + mantissa <<= 1 + exponent -= 1 + m, r = sqrt(mantissa) + return m, r, exponent >> 1 + + +def fsqrt_test(x): + + xbits = x.bits + print ("x", x, type(x)) + sq_test = x.sqrt() + print ("sqrt", sq_test) + + print (xbits, type(xbits)) + s, e, m = decode_fp32(xbits) + print("x decode", s, e, m, hex(m)) + + m |= 1<<23 # set top bit (the missing "1" from mantissa) + m <<= 27 + + sm, sr, se = main(m, e) + lowbits = sm & 0x3 + sm >>= 2 + sm = get_mantissa(sm) + #sm += 2 + print("our sqrt", s, se, sm, hex(sm), bin(sm), "lowbits", lowbits, + "rem", hex(sr)) + if lowbits >= 2: + print ("probably needs rounding (+1 on mantissa)") + + sq_xbits = sq_test.bits + s, e, m = decode_fp32(sq_xbits) + print ("sf32 sqrt", s, e, m, hex(m), bin(m)) + print () + +if __name__ == '__main__': + + # quick test up to 1000 of two sqrt functions + for Q in range(1, int(1e4)): + print(Q, sqrt(Q), sqrtsimple(Q), int(Q**0.5)) + assert int(Q**0.5) == sqrtsimple(Q), "Q sqrtsimpl fail %d" % Q + assert int(Q**0.5) == sqrt(Q)[0], "Q sqrt fail %d" % Q + + # quick mantissa/exponent demo + for e in range(26): + for m in range(26): + ms, mr, es = main(m, e) + print("m:%d e:%d sqrt: m:%d-%d e:%d" % (m, e, ms, mr, es)) + + x = Float32(1234.123456789) + fsqrt_test(x) + x = Float32(32.1) + fsqrt_test(x) + x = Float32(16.0) + fsqrt_test(x) + x = Float32(8.0) + fsqrt_test(x) + x = Float32(8.5) + fsqrt_test(x) + x = Float32(3.14159265358979323) + fsqrt_test(x) + x = Float32(12.99392923123123) + fsqrt_test(x) + x = Float32(0.123456) + fsqrt_test(x) + """ + +Notes: +https://pdfs.semanticscholar.org/5060/4e9aff0e37089c4ab9a376c3f35761ffe28b.pdf + //This is the main code of integer sqrt function found here:http://verilogcodes.blogspot.com/2017/11/a-verilog-function-for-finding-square-root.html // @@ -15,7 +159,7 @@ function [15:0] sqrt; //intermediate signals. reg [31:0] a; reg [15:0] q; - reg [17:0] left,right,r; + reg [17:0] left,right,r; integer i; begin //initialize all the variables. @@ -26,7 +170,7 @@ begin right = 0; //input to adder/sub r = 0; //remainder //run the calculations for 16 iterations. - for(i=0;i<16;i=i+1) begin + for(i=0;i<16;i=i+1) begin right = {q,r[17],1'b1}; left = {r[15:0],a[31:30]}; a = {a[29:0],2'b00}; //left shift by 2 bits. @@ -34,10 +178,64 @@ begin r = left + right; else //subtract if r is positive r = left - right; - q = {q[14:0],!r[17]}; + q = {q[14:0],!r[17]}; end sqrt = q; //final assignment of output. end endfunction //end of Function + +c version (from paper linked from URL) + +unsigned squart(D, r) /*Non-Restoring sqrt*/ + unsigned D; /*D:32-bit unsigned integer to be square rooted */ + int *r; +{ + unsigned Q = 0; /*Q:16-bit unsigned integer (root)*/ + int R = 0; /*R:17-bit integer (remainder)*/ + int i; + for (i = 15;i>=0;i--) /*for each root bit*/ + { + if (R>=0) + { /*new remainder:*/ + R = R<<2)|((D>>(i+i))&3); + R = R-((Q<<2)|1); /*-Q01*/ + } + else + { /*new remainder:*/ + R = R<<2)|((D>>(i+i))&3); + R = R+((Q<<2)|3); /*+Q11*/ + } + if (R>=0) Q = Q<<1)|1; /*new Q:*/ + else Q = Q<<1)|0; /*new Q:*/ + } + + /*remainder adjusting*/ + if (R<0) R = R+((Q<<1)|1); + *r = R; /*return remainder*/ + return(Q); /*return root*/ +} + +From wikipedia page: + +short isqrt(short num) { + short res = 0; + short bit = 1 << 14; // The second-to-top bit is set: 1 << 30 for 32 bits + + // "bit" starts at the highest power of four <= the argument. + while (bit > num) + bit >>= 2; + + while (bit != 0) { + if (num >= res + bit) { + num -= res + bit; + res = (res >> 1) + bit; + } + else + res >>= 1; + bit >>= 2; + } + return res; +} + """