f248268815089422838fa2d5950818719e12db99
[pyelftools.git] / elftools / elf / elffile.py
1 #-------------------------------------------------------------------------------
2 # elftools: elf/elffile.py
3 #
4 # ELFFile - main class for accessing ELF files
5 #
6 # Eli Bendersky (eliben@gmail.com)
7 # This code is in the public domain
8 #-------------------------------------------------------------------------------
9 import io
10 import struct
11 import zlib
12
13 try:
14 import resource
15 PAGESIZE = resource.getpagesize()
16 except ImportError:
17 try:
18 # Windows system
19 import mmap
20 PAGESIZE = mmap.PAGESIZE
21 except ImportError:
22 # Jython
23 PAGESIZE = 4096
24
25 from ..common.py3compat import BytesIO
26 from ..common.exceptions import ELFError
27 from ..common.utils import struct_parse, elf_assert
28 from .structs import ELFStructs
29 from .sections import (
30 Section, StringTableSection, SymbolTableSection,
31 SymbolTableIndexSection, SUNWSyminfoTableSection, NullSection,
32 NoteSection, StabSection, ARMAttributesSection)
33 from .dynamic import DynamicSection, DynamicSegment
34 from .relocation import RelocationSection, RelocationHandler
35 from .gnuversions import (
36 GNUVerNeedSection, GNUVerDefSection,
37 GNUVerSymSection)
38 from .segments import Segment, InterpSegment, NoteSegment
39 from ..dwarf.dwarfinfo import DWARFInfo, DebugSectionDescriptor, DwarfConfig
40 from ..ehabi.ehabiinfo import EHABIInfo
41 from .hash import ELFHashSection, GNUHashSection
42 from .constants import SHN_INDICES
43
44 class ELFFile(object):
45 """ Creation: the constructor accepts a stream (file-like object) with the
46 contents of an ELF file.
47
48 Accessible attributes:
49
50 stream:
51 The stream holding the data of the file - must be a binary
52 stream (bytes, not string).
53
54 elfclass:
55 32 or 64 - specifies the word size of the target machine
56
57 little_endian:
58 boolean - specifies the target machine's endianness
59
60 elftype:
61 string or int, either known value of E_TYPE enum defining ELF
62 type (e.g. executable, dynamic library or core dump) or integral
63 unparsed value
64
65 header:
66 the complete ELF file header
67
68 e_ident_raw:
69 the raw e_ident field of the header
70 """
71 def __init__(self, stream):
72 self.stream = stream
73 self._identify_file()
74 self.structs = ELFStructs(
75 little_endian=self.little_endian,
76 elfclass=self.elfclass)
77
78 self.structs.create_basic_structs()
79 self.header = self._parse_elf_header()
80 self.structs.create_advanced_structs(
81 self['e_type'],
82 self['e_machine'],
83 self['e_ident']['EI_OSABI'])
84 self.stream.seek(0)
85 self.e_ident_raw = self.stream.read(16)
86
87 self._section_header_stringtable = \
88 self._get_section_header_stringtable()
89 self._section_name_map = None
90
91 def num_sections(self):
92 """ Number of sections in the file
93 """
94 if self['e_shoff'] == 0:
95 return 0
96 # From the ELF ABI documentation at
97 # https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.sheader.html:
98 # "e_shnum normally tells how many entries the section header table
99 # contains. [...] If the number of sections is greater than or equal to
100 # SHN_LORESERVE (0xff00), e_shnum has the value SHN_UNDEF (0) and the
101 # actual number of section header table entries is contained in the
102 # sh_size field of the section header at index 0 (otherwise, the sh_size
103 # member of the initial entry contains 0)."
104 if self['e_shnum'] == 0:
105 return self._get_section_header(0)['sh_size']
106 return self['e_shnum']
107
108 def get_section(self, n):
109 """ Get the section at index #n from the file (Section object or a
110 subclass)
111 """
112 section_header = self._get_section_header(n)
113 return self._make_section(section_header)
114
115 def get_section_by_name(self, name):
116 """ Get a section from the file, by name. Return None if no such
117 section exists.
118 """
119 # The first time this method is called, construct a name to number
120 # mapping
121 #
122 if self._section_name_map is None:
123 self._make_section_name_map()
124 secnum = self._section_name_map.get(name, None)
125 return None if secnum is None else self.get_section(secnum)
126
127 def get_section_index(self, section_name):
128 """ Gets the index of the section by name. Return None if no such
129 section name exists.
130 """
131 # The first time this method is called, construct a name to number
132 # mapping
133 #
134 if self._section_name_map is None:
135 self._make_section_name_map()
136 return self._section_name_map.get(section_name, None)
137
138 def iter_sections(self, type=None):
139 """ Yield all the sections in the file. If the optional |type|
140 parameter is passed, this method will only yield sections of the
141 given type. The parameter value must be a string containing the
142 name of the type as defined in the ELF specification, e.g.
143 'SHT_SYMTAB'.
144 """
145 for i in range(self.num_sections()):
146 section = self.get_section(i)
147 if type is None or section['sh_type'] == type:
148 yield section
149
150 def num_segments(self):
151 """ Number of segments in the file
152 """
153 # From: https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
154 # Section: 4.1.2 Number of Program Headers
155 # If the number of program headers is greater than or equal to
156 # PN_XNUM (0xffff), this member has the value PN_XNUM
157 # (0xffff). The actual number of program header table entries
158 # is contained in the sh_info field of the section header at
159 # index 0.
160 if self['e_phnum'] < 0xffff:
161 return self['e_phnum']
162 else:
163 return self.get_section(0)['sh_info']
164
165 def get_segment(self, n):
166 """ Get the segment at index #n from the file (Segment object)
167 """
168 segment_header = self._get_segment_header(n)
169 return self._make_segment(segment_header)
170
171 def iter_segments(self, type=None):
172 """ Yield all the segments in the file. If the optional |type|
173 parameter is passed, this method will only yield segments of the
174 given type. The parameter value must be a string containing the
175 name of the type as defined in the ELF specification, e.g.
176 'PT_LOAD'.
177 """
178 for i in range(self.num_segments()):
179 segment = self.get_segment(i)
180 if type is None or segment['p_type'] == type:
181 yield segment
182
183 def address_offsets(self, start, size=1):
184 """ Yield a file offset for each ELF segment containing a memory region.
185
186 A memory region is defined by the range [start...start+size). The
187 offset of the region is yielded.
188 """
189 end = start + size
190 # consider LOAD only to prevent same address being yielded twice
191 for seg in self.iter_segments(type='PT_LOAD'):
192 if (start >= seg['p_vaddr'] and
193 end <= seg['p_vaddr'] + seg['p_filesz']):
194 yield start - seg['p_vaddr'] + seg['p_offset']
195
196 def has_dwarf_info(self):
197 """ Check whether this file appears to have debugging information.
198 We assume that if it has the .debug_info or .zdebug_info section, it
199 has all the other required sections as well.
200 """
201 return bool(self.get_section_by_name('.debug_info') or
202 self.get_section_by_name('.zdebug_info') or
203 self.get_section_by_name('.eh_frame'))
204
205 def get_dwarf_info(self, relocate_dwarf_sections=True):
206 """ Return a DWARFInfo object representing the debugging information in
207 this file.
208
209 If relocate_dwarf_sections is True, relocations for DWARF sections
210 are looked up and applied.
211 """
212 # Expect that has_dwarf_info was called, so at least .debug_info is
213 # present.
214 # Sections that aren't found will be passed as None to DWARFInfo.
215
216 section_names = ('.debug_info', '.debug_aranges', '.debug_abbrev',
217 '.debug_str', '.debug_line', '.debug_frame',
218 '.debug_loc', '.debug_ranges', '.debug_pubtypes',
219 '.debug_pubnames', '.debug_addr', '.debug_str_offsets')
220
221 compressed = bool(self.get_section_by_name('.zdebug_info'))
222 if compressed:
223 section_names = tuple(map(lambda x: '.z' + x[1:], section_names))
224
225 # As it is loaded in the process image, .eh_frame cannot be compressed
226 section_names += ('.eh_frame', )
227
228 (debug_info_sec_name, debug_aranges_sec_name, debug_abbrev_sec_name,
229 debug_str_sec_name, debug_line_sec_name, debug_frame_sec_name,
230 debug_loc_sec_name, debug_ranges_sec_name, debug_pubtypes_name,
231 debug_pubnames_name, debug_addr_name, debug_str_offsets_name,
232 eh_frame_sec_name) = section_names
233
234 debug_sections = {}
235 for secname in section_names:
236 section = self.get_section_by_name(secname)
237 if section is None:
238 debug_sections[secname] = None
239 else:
240 dwarf_section = self._read_dwarf_section(
241 section,
242 relocate_dwarf_sections)
243 if compressed and secname.startswith('.z'):
244 dwarf_section = self._decompress_dwarf_section(dwarf_section)
245 debug_sections[secname] = dwarf_section
246
247 return DWARFInfo(
248 config=DwarfConfig(
249 little_endian=self.little_endian,
250 default_address_size=self.elfclass // 8,
251 machine_arch=self.get_machine_arch()),
252 debug_info_sec=debug_sections[debug_info_sec_name],
253 debug_aranges_sec=debug_sections[debug_aranges_sec_name],
254 debug_abbrev_sec=debug_sections[debug_abbrev_sec_name],
255 debug_frame_sec=debug_sections[debug_frame_sec_name],
256 eh_frame_sec=debug_sections[eh_frame_sec_name],
257 debug_str_sec=debug_sections[debug_str_sec_name],
258 debug_loc_sec=debug_sections[debug_loc_sec_name],
259 debug_ranges_sec=debug_sections[debug_ranges_sec_name],
260 debug_line_sec=debug_sections[debug_line_sec_name],
261 debug_pubtypes_sec=debug_sections[debug_pubtypes_name],
262 debug_pubnames_sec=debug_sections[debug_pubnames_name],
263 debug_addr_sec=debug_sections[debug_addr_name],
264 debug_str_offsets_sec=debug_sections[debug_str_offsets_name],
265 )
266
267 def has_ehabi_info(self):
268 """ Check whether this file appears to have arm exception handler index table.
269 """
270 return any(self.iter_sections(type='SHT_ARM_EXIDX'))
271
272 def get_ehabi_infos(self):
273 """ Generally, shared library and executable contain 1 .ARM.exidx section.
274 Object file contains many .ARM.exidx sections.
275 So we must traverse every section and filter sections whose type is SHT_ARM_EXIDX.
276 """
277 _ret = []
278 if self['e_type'] == 'ET_REL':
279 # TODO: support relocatable file
280 assert False, "Current version of pyelftools doesn't support relocatable file."
281 for section in self.iter_sections(type='SHT_ARM_EXIDX'):
282 _ret.append(EHABIInfo(section, self.little_endian))
283 return _ret if len(_ret) > 0 else None
284
285 def get_machine_arch(self):
286 """ Return the machine architecture, as detected from the ELF header.
287 """
288 architectures = {
289 'EM_M32' : 'AT&T WE 32100',
290 'EM_SPARC' : 'SPARC',
291 'EM_386' : 'x86',
292 'EM_68K' : 'Motorola 68000',
293 'EM_88K' : 'Motorola 88000',
294 'EM_IAMCU' : 'Intel MCU',
295 'EM_860' : 'Intel 80860',
296 'EM_MIPS' : 'MIPS',
297 'EM_S370' : 'IBM System/370',
298 'EM_MIPS_RS3_LE' : 'MIPS RS3000 Little-endian',
299 'EM_PARISC' : 'Hewlett-Packard PA-RISC',
300 'EM_VPP500' : 'Fujitsu VPP500',
301 'EM_SPARC32PLUS' : 'Enhanced SPARC',
302 'EM_960' : 'Intel 80960',
303 'EM_PPC' : 'PowerPC',
304 'EM_PPC64' : '64-bit PowerPC',
305 'EM_S390' : 'IBM System/390',
306 'EM_SPU' : 'IBM SPU/SPC',
307 'EM_V800' : 'NEC V800',
308 'EM_FR20' : 'Fujitsu FR20',
309 'EM_RH32' : 'TRW RH-32',
310 'EM_RCE' : 'Motorola RCE',
311 'EM_ARM' : 'ARM',
312 'EM_ALPHA' : 'Digital Alpha',
313 'EM_SH' : 'Hitachi SH',
314 'EM_SPARCV9' : 'SPARC Version 9',
315 'EM_TRICORE' : 'Siemens TriCore embedded processor',
316 'EM_ARC' : 'Argonaut RISC Core, Argonaut Technologies Inc.',
317 'EM_H8_300' : 'Hitachi H8/300',
318 'EM_H8_300H' : 'Hitachi H8/300H',
319 'EM_H8S' : 'Hitachi H8S',
320 'EM_H8_500' : 'Hitachi H8/500',
321 'EM_IA_64' : 'Intel IA-64',
322 'EM_MIPS_X' : 'MIPS-X',
323 'EM_COLDFIRE' : 'Motorola ColdFire',
324 'EM_68HC12' : 'Motorola M68HC12',
325 'EM_MMA' : 'Fujitsu MMA',
326 'EM_PCP' : 'Siemens PCP',
327 'EM_NCPU' : 'Sony nCPU',
328 'EM_NDR1' : 'Denso NDR1',
329 'EM_STARCORE' : 'Motorola Star*Core',
330 'EM_ME16' : 'Toyota ME16',
331 'EM_ST100' : 'STMicroelectronics ST100',
332 'EM_TINYJ' : 'Advanced Logic TinyJ',
333 'EM_X86_64' : 'x64',
334 'EM_PDSP' : 'Sony DSP',
335 'EM_PDP10' : 'Digital Equipment PDP-10',
336 'EM_PDP11' : 'Digital Equipment PDP-11',
337 'EM_FX66' : 'Siemens FX66',
338 'EM_ST9PLUS' : 'STMicroelectronics ST9+ 8/16 bit',
339 'EM_ST7' : 'STMicroelectronics ST7 8-bit',
340 'EM_68HC16' : 'Motorola MC68HC16',
341 'EM_68HC11' : 'Motorola MC68HC11',
342 'EM_68HC08' : 'Motorola MC68HC08',
343 'EM_68HC05' : 'Motorola MC68HC05',
344 'EM_SVX' : 'Silicon Graphics SVx',
345 'EM_ST19' : 'STMicroelectronics ST19 8-bit',
346 'EM_VAX' : 'Digital VAX',
347 'EM_CRIS' : 'Axis Communications 32-bit',
348 'EM_JAVELIN' : 'Infineon Technologies 32-bit',
349 'EM_FIREPATH' : 'Element 14 64-bit DSP',
350 'EM_ZSP' : 'LSI Logic 16-bit DSP',
351 'EM_MMIX' : 'Donald Knuth\'s educational 64-bit',
352 'EM_HUANY' : 'Harvard University machine-independent object files',
353 'EM_PRISM' : 'SiTera Prism',
354 'EM_AVR' : 'Atmel AVR 8-bit',
355 'EM_FR30' : 'Fujitsu FR30',
356 'EM_D10V' : 'Mitsubishi D10V',
357 'EM_D30V' : 'Mitsubishi D30V',
358 'EM_V850' : 'NEC v850',
359 'EM_M32R' : 'Mitsubishi M32R',
360 'EM_MN10300' : 'Matsushita MN10300',
361 'EM_MN10200' : 'Matsushita MN10200',
362 'EM_PJ' : 'picoJava',
363 'EM_OPENRISC' : 'OpenRISC 32-bit',
364 'EM_ARC_COMPACT' : 'ARC International ARCompact',
365 'EM_XTENSA' : 'Tensilica Xtensa',
366 'EM_VIDEOCORE' : 'Alphamosaic VideoCore',
367 'EM_TMM_GPP' : 'Thompson Multimedia',
368 'EM_NS32K' : 'National Semiconductor 32000 series',
369 'EM_TPC' : 'Tenor Network TPC',
370 'EM_SNP1K' : 'Trebia SNP 1000',
371 'EM_ST200' : 'STMicroelectronics ST200',
372 'EM_IP2K' : 'Ubicom IP2xxx',
373 'EM_MAX' : 'MAX',
374 'EM_CR' : 'National Semiconductor CompactRISC',
375 'EM_F2MC16' : 'Fujitsu F2MC16',
376 'EM_MSP430' : 'Texas Instruments msp430',
377 'EM_BLACKFIN' : 'Analog Devices Blackfin',
378 'EM_SE_C33' : 'Seiko Epson S1C33',
379 'EM_SEP' : 'Sharp',
380 'EM_ARCA' : 'Arca RISC',
381 'EM_UNICORE' : 'PKU-Unity MPRC',
382 'EM_EXCESS' : 'eXcess',
383 'EM_DXP' : 'Icera Semiconductor Deep Execution Processor',
384 'EM_ALTERA_NIOS2' : 'Altera Nios II',
385 'EM_CRX' : 'National Semiconductor CompactRISC CRX',
386 'EM_XGATE' : 'Motorola XGATE',
387 'EM_C166' : 'Infineon C16x/XC16x',
388 'EM_M16C' : 'Renesas M16C',
389 'EM_DSPIC30F' : 'Microchip Technology dsPIC30F',
390 'EM_CE' : 'Freescale Communication Engine RISC core',
391 'EM_M32C' : 'Renesas M32C',
392 'EM_TSK3000' : 'Altium TSK3000',
393 'EM_RS08' : 'Freescale RS08',
394 'EM_SHARC' : 'Analog Devices SHARC',
395 'EM_ECOG2' : 'Cyan Technology eCOG2',
396 'EM_SCORE7' : 'Sunplus S+core7 RISC',
397 'EM_DSP24' : 'New Japan Radio (NJR) 24-bit DSP',
398 'EM_VIDEOCORE3' : 'Broadcom VideoCore III',
399 'EM_LATTICEMICO32' : 'Lattice FPGA RISC',
400 'EM_SE_C17' : 'Seiko Epson C17',
401 'EM_TI_C6000' : 'TI TMS320C6000',
402 'EM_TI_C2000' : 'TI TMS320C2000',
403 'EM_TI_C5500' : 'TI TMS320C55x',
404 'EM_TI_ARP32' : 'TI Application Specific RISC, 32bit',
405 'EM_TI_PRU' : 'TI Programmable Realtime Unit',
406 'EM_MMDSP_PLUS' : 'STMicroelectronics 64bit VLIW',
407 'EM_CYPRESS_M8C' : 'Cypress M8C',
408 'EM_R32C' : 'Renesas R32C',
409 'EM_TRIMEDIA' : 'NXP Semiconductors TriMedia',
410 'EM_QDSP6' : 'QUALCOMM DSP6',
411 'EM_8051' : 'Intel 8051',
412 'EM_STXP7X' : 'STMicroelectronics STxP7x',
413 'EM_NDS32' : 'Andes Technology RISC',
414 'EM_ECOG1' : 'Cyan Technology eCOG1X',
415 'EM_ECOG1X' : 'Cyan Technology eCOG1X',
416 'EM_MAXQ30' : 'Dallas Semiconductor MAXQ30',
417 'EM_XIMO16' : 'New Japan Radio (NJR) 16-bit',
418 'EM_MANIK' : 'M2000 Reconfigurable RISC',
419 'EM_CRAYNV2' : 'Cray Inc. NV2',
420 'EM_RX' : 'Renesas RX',
421 'EM_METAG' : 'Imagination Technologies META',
422 'EM_MCST_ELBRUS' : 'MCST Elbrus',
423 'EM_ECOG16' : 'Cyan Technology eCOG16',
424 'EM_CR16' : 'National Semiconductor CompactRISC CR16 16-bit',
425 'EM_ETPU' : 'Freescale',
426 'EM_SLE9X' : 'Infineon Technologies SLE9X',
427 'EM_L10M' : 'Intel L10M',
428 'EM_K10M' : 'Intel K10M',
429 'EM_AARCH64' : 'AArch64',
430 'EM_AVR32' : 'Atmel 32-bit',
431 'EM_STM8' : 'STMicroeletronics STM8 8-bit',
432 'EM_TILE64' : 'Tilera TILE64',
433 'EM_TILEPRO' : 'Tilera TILEPro',
434 'EM_MICROBLAZE' : 'Xilinx MicroBlaze 32-bit RISC',
435 'EM_CUDA' : 'NVIDIA CUDA',
436 'EM_TILEGX' : 'Tilera TILE-Gx',
437 'EM_CLOUDSHIELD' : 'CloudShield',
438 'EM_COREA_1ST' : 'KIPO-KAIST Core-A 1st generation',
439 'EM_COREA_2ND' : 'KIPO-KAIST Core-A 2nd generation',
440 'EM_ARC_COMPACT2' : 'Synopsys ARCompact V2',
441 'EM_OPEN8' : 'Open8 8-bit RISC',
442 'EM_RL78' : 'Renesas RL78',
443 'EM_VIDEOCORE5' : 'Broadcom VideoCore V',
444 'EM_78KOR' : 'Renesas 78KOR',
445 'EM_56800EX' : 'Freescale 56800EX',
446 'EM_BA1' : 'Beyond BA1',
447 'EM_BA2' : 'Beyond BA2',
448 'EM_XCORE' : 'XMOS xCORE',
449 'EM_MCHP_PIC' : 'Microchip 8-bit PIC',
450 'EM_INTEL205' : 'Reserved by Intel',
451 'EM_INTEL206' : 'Reserved by Intel',
452 'EM_INTEL207' : 'Reserved by Intel',
453 'EM_INTEL208' : 'Reserved by Intel',
454 'EM_INTEL209' : 'Reserved by Intel',
455 'EM_KM32' : 'KM211 KM32 32-bit',
456 'EM_KMX32' : 'KM211 KMX32 32-bit',
457 'EM_KMX16' : 'KM211 KMX16 16-bit',
458 'EM_KMX8' : 'KM211 KMX8 8-bit',
459 'EM_KVARC' : 'KM211 KVARC',
460 'EM_CDP' : 'Paneve CDP',
461 'EM_COGE' : 'Cognitive',
462 'EM_COOL' : 'Bluechip Systems CoolEngine',
463 'EM_NORC' : 'Nanoradio Optimized RISC',
464 'EM_CSR_KALIMBA' : 'CSR Kalimba',
465 'EM_Z80' : 'Zilog Z80',
466 'EM_VISIUM' : 'VISIUMcore',
467 'EM_FT32' : 'FTDI Chip FT32 32-bit RISC',
468 'EM_MOXIE' : 'Moxie',
469 'EM_AMDGPU' : 'AMD GPU',
470 'EM_RISCV' : 'RISC-V'
471 }
472
473 return architectures.get(self['e_machine'], '<unknown>')
474
475 def get_shstrndx(self):
476 """ Find the string table section index for the section header table
477 """
478 # From https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html:
479 # If the section name string table section index is greater than or
480 # equal to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX
481 # (0xffff) and the actual index of the section name string table section
482 # is contained in the sh_link field of the section header at index 0.
483 if self['e_shstrndx'] != SHN_INDICES.SHN_XINDEX:
484 return self['e_shstrndx']
485 else:
486 return self._get_section_header(0)['sh_link']
487
488 #-------------------------------- PRIVATE --------------------------------#
489
490 def __getitem__(self, name):
491 """ Implement dict-like access to header entries
492 """
493 return self.header[name]
494
495 def _identify_file(self):
496 """ Verify the ELF file and identify its class and endianness.
497 """
498 # Note: this code reads the stream directly, without using ELFStructs,
499 # since we don't yet know its exact format. ELF was designed to be
500 # read like this - its e_ident field is word-size and endian agnostic.
501 self.stream.seek(0)
502 magic = self.stream.read(4)
503 elf_assert(magic == b'\x7fELF', 'Magic number does not match')
504
505 ei_class = self.stream.read(1)
506 if ei_class == b'\x01':
507 self.elfclass = 32
508 elif ei_class == b'\x02':
509 self.elfclass = 64
510 else:
511 raise ELFError('Invalid EI_CLASS %s' % repr(ei_class))
512
513 ei_data = self.stream.read(1)
514 if ei_data == b'\x01':
515 self.little_endian = True
516 elif ei_data == b'\x02':
517 self.little_endian = False
518 else:
519 raise ELFError('Invalid EI_DATA %s' % repr(ei_data))
520
521 def _section_offset(self, n):
522 """ Compute the offset of section #n in the file
523 """
524 return self['e_shoff'] + n * self['e_shentsize']
525
526 def _segment_offset(self, n):
527 """ Compute the offset of segment #n in the file
528 """
529 return self['e_phoff'] + n * self['e_phentsize']
530
531 def _make_segment(self, segment_header):
532 """ Create a Segment object of the appropriate type
533 """
534 segtype = segment_header['p_type']
535 if segtype == 'PT_INTERP':
536 return InterpSegment(segment_header, self.stream)
537 elif segtype == 'PT_DYNAMIC':
538 return DynamicSegment(segment_header, self.stream, self)
539 elif segtype == 'PT_NOTE':
540 return NoteSegment(segment_header, self.stream, self)
541 else:
542 return Segment(segment_header, self.stream)
543
544 def _get_section_header(self, n):
545 """ Find the header of section #n, parse it and return the struct
546 """
547 return struct_parse(
548 self.structs.Elf_Shdr,
549 self.stream,
550 stream_pos=self._section_offset(n))
551
552 def _get_section_name(self, section_header):
553 """ Given a section header, find this section's name in the file's
554 string table
555 """
556 name_offset = section_header['sh_name']
557 return self._section_header_stringtable.get_string(name_offset)
558
559 def _make_section(self, section_header):
560 """ Create a section object of the appropriate type
561 """
562 name = self._get_section_name(section_header)
563 sectype = section_header['sh_type']
564
565 if sectype == 'SHT_STRTAB':
566 return StringTableSection(section_header, name, self)
567 elif sectype == 'SHT_NULL':
568 return NullSection(section_header, name, self)
569 elif sectype in ('SHT_SYMTAB', 'SHT_DYNSYM', 'SHT_SUNW_LDYNSYM'):
570 return self._make_symbol_table_section(section_header, name)
571 elif sectype == 'SHT_SYMTAB_SHNDX':
572 return self._make_symbol_table_index_section(section_header, name)
573 elif sectype == 'SHT_SUNW_syminfo':
574 return self._make_sunwsyminfo_table_section(section_header, name)
575 elif sectype == 'SHT_GNU_verneed':
576 return self._make_gnu_verneed_section(section_header, name)
577 elif sectype == 'SHT_GNU_verdef':
578 return self._make_gnu_verdef_section(section_header, name)
579 elif sectype == 'SHT_GNU_versym':
580 return self._make_gnu_versym_section(section_header, name)
581 elif sectype in ('SHT_REL', 'SHT_RELA'):
582 return RelocationSection(section_header, name, self)
583 elif sectype == 'SHT_DYNAMIC':
584 return DynamicSection(section_header, name, self)
585 elif sectype == 'SHT_NOTE':
586 return NoteSection(section_header, name, self)
587 elif sectype == 'SHT_PROGBITS' and name == '.stab':
588 return StabSection(section_header, name, self)
589 elif sectype == 'SHT_ARM_ATTRIBUTES':
590 return ARMAttributesSection(section_header, name, self)
591 elif sectype == 'SHT_HASH':
592 return self._make_elf_hash_section(section_header, name)
593 elif sectype == 'SHT_GNU_HASH':
594 return self._make_gnu_hash_section(section_header, name)
595 else:
596 return Section(section_header, name, self)
597
598 def _make_section_name_map(self):
599 self._section_name_map = {}
600 for i, sec in enumerate(self.iter_sections()):
601 self._section_name_map[sec.name] = i
602
603 def _make_symbol_table_section(self, section_header, name):
604 """ Create a SymbolTableSection
605 """
606 linked_strtab_index = section_header['sh_link']
607 strtab_section = self.get_section(linked_strtab_index)
608 return SymbolTableSection(
609 section_header, name,
610 elffile=self,
611 stringtable=strtab_section)
612
613 def _make_symbol_table_index_section(self, section_header, name):
614 """ Create a SymbolTableIndexSection object
615 """
616 linked_symtab_index = section_header['sh_link']
617 return SymbolTableIndexSection(
618 section_header, name, elffile=self,
619 symboltable=linked_symtab_index)
620
621 def _make_sunwsyminfo_table_section(self, section_header, name):
622 """ Create a SUNWSyminfoTableSection
623 """
624 linked_strtab_index = section_header['sh_link']
625 strtab_section = self.get_section(linked_strtab_index)
626 return SUNWSyminfoTableSection(
627 section_header, name,
628 elffile=self,
629 symboltable=strtab_section)
630
631 def _make_gnu_verneed_section(self, section_header, name):
632 """ Create a GNUVerNeedSection
633 """
634 linked_strtab_index = section_header['sh_link']
635 strtab_section = self.get_section(linked_strtab_index)
636 return GNUVerNeedSection(
637 section_header, name,
638 elffile=self,
639 stringtable=strtab_section)
640
641 def _make_gnu_verdef_section(self, section_header, name):
642 """ Create a GNUVerDefSection
643 """
644 linked_strtab_index = section_header['sh_link']
645 strtab_section = self.get_section(linked_strtab_index)
646 return GNUVerDefSection(
647 section_header, name,
648 elffile=self,
649 stringtable=strtab_section)
650
651 def _make_gnu_versym_section(self, section_header, name):
652 """ Create a GNUVerSymSection
653 """
654 linked_strtab_index = section_header['sh_link']
655 strtab_section = self.get_section(linked_strtab_index)
656 return GNUVerSymSection(
657 section_header, name,
658 elffile=self,
659 symboltable=strtab_section)
660
661 def _make_elf_hash_section(self, section_header, name):
662 linked_symtab_index = section_header['sh_link']
663 symtab_section = self.get_section(linked_symtab_index)
664 return ELFHashSection(
665 section_header, name, self, symtab_section
666 )
667
668 def _make_gnu_hash_section(self, section_header, name):
669 linked_symtab_index = section_header['sh_link']
670 symtab_section = self.get_section(linked_symtab_index)
671 return GNUHashSection(
672 section_header, name, self, symtab_section
673 )
674
675 def _get_segment_header(self, n):
676 """ Find the header of segment #n, parse it and return the struct
677 """
678 return struct_parse(
679 self.structs.Elf_Phdr,
680 self.stream,
681 stream_pos=self._segment_offset(n))
682
683 def _get_section_header_stringtable(self):
684 """ Get the string table section corresponding to the section header
685 table.
686 """
687 stringtable_section_num = self.get_shstrndx()
688 return StringTableSection(
689 header=self._get_section_header(stringtable_section_num),
690 name='',
691 elffile=self)
692
693 def _parse_elf_header(self):
694 """ Parses the ELF file header and assigns the result to attributes
695 of this object.
696 """
697 return struct_parse(self.structs.Elf_Ehdr, self.stream, stream_pos=0)
698
699 def _read_dwarf_section(self, section, relocate_dwarf_sections):
700 """ Read the contents of a DWARF section from the stream and return a
701 DebugSectionDescriptor. Apply relocations if asked to.
702 """
703 # The section data is read into a new stream, for processing
704 section_stream = BytesIO()
705 section_stream.write(section.data())
706
707 if relocate_dwarf_sections:
708 reloc_handler = RelocationHandler(self)
709 reloc_section = reloc_handler.find_relocations_for_section(section)
710 if reloc_section is not None:
711 reloc_handler.apply_section_relocations(
712 section_stream, reloc_section)
713
714 return DebugSectionDescriptor(
715 stream=section_stream,
716 name=section.name,
717 global_offset=section['sh_offset'],
718 size=section.data_size,
719 address=section['sh_addr'])
720
721 @staticmethod
722 def _decompress_dwarf_section(section):
723 """ Returns the uncompressed contents of the provided DWARF section.
724 """
725 # TODO: support other compression formats from readelf.c
726 assert section.size > 12, 'Unsupported compression format.'
727
728 section.stream.seek(0)
729 # According to readelf.c the content should contain "ZLIB"
730 # followed by the uncompressed section size - 8 bytes in
731 # big-endian order
732 compression_type = section.stream.read(4)
733 assert compression_type == b'ZLIB', \
734 'Invalid compression type: %r' % (compression_type)
735
736 uncompressed_size = struct.unpack('>Q', section.stream.read(8))[0]
737
738 decompressor = zlib.decompressobj()
739 uncompressed_stream = BytesIO()
740 while True:
741 chunk = section.stream.read(PAGESIZE)
742 if not chunk:
743 break
744 uncompressed_stream.write(decompressor.decompress(chunk))
745 uncompressed_stream.write(decompressor.flush())
746
747 uncompressed_stream.seek(0, io.SEEK_END)
748 size = uncompressed_stream.tell()
749 assert uncompressed_size == size, \
750 'Wrong uncompressed size: expected %r, but got %r' % (
751 uncompressed_size, size,
752 )
753
754 return section._replace(stream=uncompressed_stream, size=size)