MIPS: Change all E_MIPS_* to EF_MIPS_*
[binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2023 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = false;
85 #else
86 int mips_flag_pdr = true;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define FCSR 31
108
109 #define ILLEGAL_REG (32)
110
111 #define AT mips_opts.at
112
113 extern int target_big_endian;
114
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME ".rodata"
117
118 /* Ways in which an instruction can be "appended" to the output. */
119 enum append_method {
120 /* Just add it normally. */
121 APPEND_ADD,
122
123 /* Add it normally and then add a nop. */
124 APPEND_ADD_WITH_NOP,
125
126 /* Turn an instruction with a delay slot into a "compact" version. */
127 APPEND_ADD_COMPACT,
128
129 /* Insert the instruction before the last one. */
130 APPEND_SWAP
131 };
132
133 /* Information about an instruction, including its format, operands
134 and fixups. */
135 struct mips_cl_insn
136 {
137 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
138 const struct mips_opcode *insn_mo;
139
140 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
141 a copy of INSN_MO->match with the operands filled in. If we have
142 decided to use an extended MIPS16 instruction, this includes the
143 extension. */
144 unsigned long insn_opcode;
145
146 /* The name if this is an label. */
147 char label[16];
148
149 /* The target label name if this is an branch. */
150 char target[16];
151
152 /* The frag that contains the instruction. */
153 struct frag *frag;
154
155 /* The offset into FRAG of the first instruction byte. */
156 long where;
157
158 /* The relocs associated with the instruction, if any. */
159 fixS *fixp[3];
160
161 /* True if this entry cannot be moved from its current position. */
162 unsigned int fixed_p : 1;
163
164 /* True if this instruction occurred in a .set noreorder block. */
165 unsigned int noreorder_p : 1;
166
167 /* True for mips16 instructions that jump to an absolute address. */
168 unsigned int mips16_absolute_jump_p : 1;
169
170 /* True if this instruction is complete. */
171 unsigned int complete_p : 1;
172
173 /* True if this instruction is cleared from history by unconditional
174 branch. */
175 unsigned int cleared_p : 1;
176 };
177
178 /* The ABI to use. */
179 enum mips_abi_level
180 {
181 NO_ABI = 0,
182 O32_ABI,
183 O64_ABI,
184 N32_ABI,
185 N64_ABI,
186 EABI_ABI
187 };
188
189 /* MIPS ABI we are using for this output file. */
190 static enum mips_abi_level mips_abi = NO_ABI;
191
192 /* Whether or not we have code that can call pic code. */
193 int mips_abicalls = false;
194
195 /* Whether or not we have code which can be put into a shared
196 library. */
197 static bool mips_in_shared = true;
198
199 /* This is the set of options which may be modified by the .set
200 pseudo-op. We use a struct so that .set push and .set pop are more
201 reliable. */
202
203 struct mips_set_options
204 {
205 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
206 if it has not been initialized. Changed by `.set mipsN', and the
207 -mipsN command line option, and the default CPU. */
208 int isa;
209 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
210 <asename>', by command line options, and based on the default
211 architecture. */
212 int ase;
213 /* Whether we are assembling for the mips16 processor. 0 if we are
214 not, 1 if we are, and -1 if the value has not been initialized.
215 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
216 -nomips16 command line options, and the default CPU. */
217 int mips16;
218 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
219 1 if we are, and -1 if the value has not been initialized. Changed
220 by `.set micromips' and `.set nomicromips', and the -mmicromips
221 and -mno-micromips command line options, and the default CPU. */
222 int micromips;
223 /* Non-zero if we should not reorder instructions. Changed by `.set
224 reorder' and `.set noreorder'. */
225 int noreorder;
226 /* Non-zero if we should not permit the register designated "assembler
227 temporary" to be used in instructions. The value is the register
228 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
229 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
230 unsigned int at;
231 /* Non-zero if we should warn when a macro instruction expands into
232 more than one machine instruction. Changed by `.set nomacro' and
233 `.set macro'. */
234 int warn_about_macros;
235 /* Non-zero if we should not move instructions. Changed by `.set
236 move', `.set volatile', `.set nomove', and `.set novolatile'. */
237 int nomove;
238 /* Non-zero if we should not optimize branches by moving the target
239 of the branch into the delay slot. Actually, we don't perform
240 this optimization anyhow. Changed by `.set bopt' and `.set
241 nobopt'. */
242 int nobopt;
243 /* Non-zero if we should not autoextend mips16 instructions.
244 Changed by `.set autoextend' and `.set noautoextend'. */
245 int noautoextend;
246 /* True if we should only emit 32-bit microMIPS instructions.
247 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
248 and -mno-insn32 command line options. */
249 bool insn32;
250 /* Restrict general purpose registers and floating point registers
251 to 32 bit. This is initially determined when -mgp32 or -mfp32
252 is passed but can changed if the assembler code uses .set mipsN. */
253 int gp;
254 int fp;
255 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
256 command line option, and the default CPU. */
257 int arch;
258 /* True if ".set sym32" is in effect. */
259 bool sym32;
260 /* True if floating-point operations are not allowed. Changed by .set
261 softfloat or .set hardfloat, by command line options -msoft-float or
262 -mhard-float. The default is false. */
263 bool soft_float;
264
265 /* True if only single-precision floating-point operations are allowed.
266 Changed by .set singlefloat or .set doublefloat, command-line options
267 -msingle-float or -mdouble-float. The default is false. */
268 bool single_float;
269
270 /* 1 if single-precision operations on odd-numbered registers are
271 allowed. */
272 int oddspreg;
273
274 /* The set of ASEs that should be enabled for the user specified
275 architecture. This cannot be inferred from 'arch' for all cores
276 as processors only have a unique 'arch' if they add architecture
277 specific instructions (UDI). */
278 int init_ase;
279 };
280
281 /* Specifies whether module level options have been checked yet. */
282 static bool file_mips_opts_checked = false;
283
284 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
285 value has not been initialized. Changed by `.nan legacy' and
286 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
287 options, and the default CPU. */
288 static int mips_nan2008 = -1;
289
290 /* This is the struct we use to hold the module level set of options.
291 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
292 fp fields to -1 to indicate that they have not been initialized. */
293
294 static struct mips_set_options file_mips_opts =
295 {
296 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
297 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
298 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ false,
299 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ false,
300 /* soft_float */ false, /* single_float */ false, /* oddspreg */ -1,
301 /* init_ase */ 0
302 };
303
304 /* This is similar to file_mips_opts, but for the current set of options. */
305
306 static struct mips_set_options mips_opts =
307 {
308 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
309 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
310 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ false,
311 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ false,
312 /* soft_float */ false, /* single_float */ false, /* oddspreg */ -1,
313 /* init_ase */ 0
314 };
315
316 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
317 static unsigned int file_ase_explicit;
318
319 /* These variables are filled in with the masks of registers used.
320 The object format code reads them and puts them in the appropriate
321 place. */
322 unsigned long mips_gprmask;
323 unsigned long mips_cprmask[4];
324
325 /* True if any MIPS16 code was produced. */
326 static int file_ase_mips16;
327
328 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
329 || mips_opts.isa == ISA_MIPS32R2 \
330 || mips_opts.isa == ISA_MIPS32R3 \
331 || mips_opts.isa == ISA_MIPS32R5 \
332 || mips_opts.isa == ISA_MIPS64 \
333 || mips_opts.isa == ISA_MIPS64R2 \
334 || mips_opts.isa == ISA_MIPS64R3 \
335 || mips_opts.isa == ISA_MIPS64R5)
336
337 /* True if any microMIPS code was produced. */
338 static int file_ase_micromips;
339
340 /* True if we want to create R_MIPS_JALR for jalr $25. */
341 #ifdef TE_IRIX
342 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
343 #else
344 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
345 because there's no place for any addend, the only acceptable
346 expression is a bare symbol. */
347 #define MIPS_JALR_HINT_P(EXPR) \
348 (!HAVE_IN_PLACE_ADDENDS \
349 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
350 #endif
351
352 /* The argument of the -march= flag. The architecture we are assembling. */
353 static const char *mips_arch_string;
354
355 /* The argument of the -mtune= flag. The architecture for which we
356 are optimizing. */
357 static int mips_tune = CPU_UNKNOWN;
358 static const char *mips_tune_string;
359
360 /* True when generating 32-bit code for a 64-bit processor. */
361 static int mips_32bitmode = 0;
362
363 /* True if the given ABI requires 32-bit registers. */
364 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
365
366 /* Likewise 64-bit registers. */
367 #define ABI_NEEDS_64BIT_REGS(ABI) \
368 ((ABI) == N32_ABI \
369 || (ABI) == N64_ABI \
370 || (ABI) == O64_ABI)
371
372 #define ISA_IS_R6(ISA) \
373 ((ISA) == ISA_MIPS32R6 \
374 || (ISA) == ISA_MIPS64R6)
375
376 /* Return true if ISA supports 64 bit wide gp registers. */
377 #define ISA_HAS_64BIT_REGS(ISA) \
378 ((ISA) == ISA_MIPS3 \
379 || (ISA) == ISA_MIPS4 \
380 || (ISA) == ISA_MIPS5 \
381 || (ISA) == ISA_MIPS64 \
382 || (ISA) == ISA_MIPS64R2 \
383 || (ISA) == ISA_MIPS64R3 \
384 || (ISA) == ISA_MIPS64R5 \
385 || (ISA) == ISA_MIPS64R6)
386
387 /* Return true if ISA supports 64 bit wide float registers. */
388 #define ISA_HAS_64BIT_FPRS(ISA) \
389 ((ISA) == ISA_MIPS3 \
390 || (ISA) == ISA_MIPS4 \
391 || (ISA) == ISA_MIPS5 \
392 || (ISA) == ISA_MIPS32R2 \
393 || (ISA) == ISA_MIPS32R3 \
394 || (ISA) == ISA_MIPS32R5 \
395 || (ISA) == ISA_MIPS32R6 \
396 || (ISA) == ISA_MIPS64 \
397 || (ISA) == ISA_MIPS64R2 \
398 || (ISA) == ISA_MIPS64R3 \
399 || (ISA) == ISA_MIPS64R5 \
400 || (ISA) == ISA_MIPS64R6)
401
402 /* Return true if ISA supports 64-bit right rotate (dror et al.)
403 instructions. */
404 #define ISA_HAS_DROR(ISA) \
405 ((ISA) == ISA_MIPS64R2 \
406 || (ISA) == ISA_MIPS64R3 \
407 || (ISA) == ISA_MIPS64R5 \
408 || (ISA) == ISA_MIPS64R6 \
409 || (mips_opts.micromips \
410 && ISA_HAS_64BIT_REGS (ISA)) \
411 )
412
413 /* Return true if ISA supports 32-bit right rotate (ror et al.)
414 instructions. */
415 #define ISA_HAS_ROR(ISA) \
416 ((ISA) == ISA_MIPS32R2 \
417 || (ISA) == ISA_MIPS32R3 \
418 || (ISA) == ISA_MIPS32R5 \
419 || (ISA) == ISA_MIPS32R6 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (mips_opts.ase & ASE_SMARTMIPS) \
425 || mips_opts.micromips \
426 )
427
428 /* Return true if ISA supports single-precision floats in odd registers. */
429 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
430 (((ISA) == ISA_MIPS32 \
431 || (ISA) == ISA_MIPS32R2 \
432 || (ISA) == ISA_MIPS32R3 \
433 || (ISA) == ISA_MIPS32R5 \
434 || (ISA) == ISA_MIPS32R6 \
435 || (ISA) == ISA_MIPS64 \
436 || (ISA) == ISA_MIPS64R2 \
437 || (ISA) == ISA_MIPS64R3 \
438 || (ISA) == ISA_MIPS64R5 \
439 || (ISA) == ISA_MIPS64R6 \
440 || (CPU) == CPU_ALLEGREX \
441 || (CPU) == CPU_R5900) \
442 && ((CPU) != CPU_GS464 \
443 || (CPU) != CPU_GS464E \
444 || (CPU) != CPU_GS264E))
445
446 /* Return true if ISA supports move to/from high part of a 64-bit
447 floating-point register. */
448 #define ISA_HAS_MXHC1(ISA) \
449 ((ISA) == ISA_MIPS32R2 \
450 || (ISA) == ISA_MIPS32R3 \
451 || (ISA) == ISA_MIPS32R5 \
452 || (ISA) == ISA_MIPS32R6 \
453 || (ISA) == ISA_MIPS64R2 \
454 || (ISA) == ISA_MIPS64R3 \
455 || (ISA) == ISA_MIPS64R5 \
456 || (ISA) == ISA_MIPS64R6)
457
458 /* Return true if ISA supports legacy NAN. */
459 #define ISA_HAS_LEGACY_NAN(ISA) \
460 ((ISA) == ISA_MIPS1 \
461 || (ISA) == ISA_MIPS2 \
462 || (ISA) == ISA_MIPS3 \
463 || (ISA) == ISA_MIPS4 \
464 || (ISA) == ISA_MIPS5 \
465 || (ISA) == ISA_MIPS32 \
466 || (ISA) == ISA_MIPS32R2 \
467 || (ISA) == ISA_MIPS32R3 \
468 || (ISA) == ISA_MIPS32R5 \
469 || (ISA) == ISA_MIPS64 \
470 || (ISA) == ISA_MIPS64R2 \
471 || (ISA) == ISA_MIPS64R3 \
472 || (ISA) == ISA_MIPS64R5)
473
474 #define GPR_SIZE \
475 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
476 ? 32 \
477 : mips_opts.gp)
478
479 #define FPR_SIZE \
480 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
481 ? 32 \
482 : mips_opts.fp)
483
484 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
485
486 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
487
488 /* True if relocations are stored in-place. */
489 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
490
491 /* The ABI-derived address size. */
492 #define HAVE_64BIT_ADDRESSES \
493 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
494 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
495
496 /* The size of symbolic constants (i.e., expressions of the form
497 "SYMBOL" or "SYMBOL + OFFSET"). */
498 #define HAVE_32BIT_SYMBOLS \
499 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
500 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
501
502 /* Addresses are loaded in different ways, depending on the address size
503 in use. The n32 ABI Documentation also mandates the use of additions
504 with overflow checking, but existing implementations don't follow it. */
505 #define ADDRESS_ADD_INSN \
506 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
507
508 #define ADDRESS_ADDI_INSN \
509 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
510
511 #define ADDRESS_LOAD_INSN \
512 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
513
514 #define ADDRESS_STORE_INSN \
515 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
516
517 /* Return true if the given CPU supports the MIPS16 ASE. */
518 #define CPU_HAS_MIPS16(cpu) \
519 (startswith (TARGET_CPU, "mips16") \
520 || startswith (TARGET_CANONICAL, "mips-lsi-elf"))
521
522 /* Return true if the given CPU supports the microMIPS ASE. */
523 #define CPU_HAS_MICROMIPS(cpu) 0
524
525 /* True if CPU has a dror instruction. */
526 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
527
528 /* True if CPU has a ror instruction. */
529 #define CPU_HAS_ROR(CPU) (CPU_HAS_DROR (CPU) || (CPU) == CPU_ALLEGREX)
530
531 /* True if CPU is in the Octeon family. */
532 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
533 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
534
535 /* True if CPU has seq/sne and seqi/snei instructions. */
536 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
537
538 /* True, if CPU has support for ldc1 and sdc1. */
539 #define CPU_HAS_LDC1_SDC1(CPU) (mips_opts.isa != ISA_MIPS1 \
540 && (CPU) != CPU_ALLEGREX \
541 && (CPU) != CPU_R5900)
542
543 /* True if mflo and mfhi can be immediately followed by instructions
544 which write to the HI and LO registers.
545
546 According to MIPS specifications, MIPS ISAs I, II, and III need
547 (at least) two instructions between the reads of HI/LO and
548 instructions which write them, and later ISAs do not. Contradicting
549 the MIPS specifications, some MIPS IV processor user manuals (e.g.
550 the UM for the NEC Vr5000) document needing the instructions between
551 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
552 MIPS64 and later ISAs to have the interlocks, plus any specific
553 earlier-ISA CPUs for which CPU documentation declares that the
554 instructions are really interlocked. */
555 #define hilo_interlocks \
556 (mips_opts.isa == ISA_MIPS32 \
557 || mips_opts.isa == ISA_MIPS32R2 \
558 || mips_opts.isa == ISA_MIPS32R3 \
559 || mips_opts.isa == ISA_MIPS32R5 \
560 || mips_opts.isa == ISA_MIPS32R6 \
561 || mips_opts.isa == ISA_MIPS64 \
562 || mips_opts.isa == ISA_MIPS64R2 \
563 || mips_opts.isa == ISA_MIPS64R3 \
564 || mips_opts.isa == ISA_MIPS64R5 \
565 || mips_opts.isa == ISA_MIPS64R6 \
566 || mips_opts.arch == CPU_ALLEGREX \
567 || mips_opts.arch == CPU_R4010 \
568 || mips_opts.arch == CPU_R5900 \
569 || mips_opts.arch == CPU_R10000 \
570 || mips_opts.arch == CPU_R12000 \
571 || mips_opts.arch == CPU_R14000 \
572 || mips_opts.arch == CPU_R16000 \
573 || mips_opts.arch == CPU_RM7000 \
574 || mips_opts.arch == CPU_VR5500 \
575 || mips_opts.micromips \
576 )
577
578 /* Whether the processor uses hardware interlocks to protect reads
579 from the GPRs after they are loaded from memory, and thus does not
580 require nops to be inserted. This applies to instructions marked
581 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
582 level I and microMIPS mode instructions are always interlocked. */
583 #define gpr_interlocks \
584 (mips_opts.isa != ISA_MIPS1 \
585 || mips_opts.arch == CPU_R3900 \
586 || mips_opts.arch == CPU_R5900 \
587 || mips_opts.micromips \
588 )
589
590 /* Whether the processor uses hardware interlocks to avoid delays
591 required by coprocessor instructions, and thus does not require
592 nops to be inserted. This applies to instructions marked
593 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
594 instructions marked INSN_WRITE_COND_CODE and ones marked
595 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
596 levels I, II, and III and microMIPS mode instructions are always
597 interlocked. */
598 /* Itbl support may require additional care here. */
599 #define cop_interlocks \
600 ((mips_opts.isa != ISA_MIPS1 \
601 && mips_opts.isa != ISA_MIPS2 \
602 && mips_opts.isa != ISA_MIPS3) \
603 || mips_opts.arch == CPU_R4300 \
604 || mips_opts.micromips \
605 )
606
607 /* Whether the processor uses hardware interlocks to protect reads
608 from coprocessor registers after they are loaded from memory, and
609 thus does not require nops to be inserted. This applies to
610 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
611 requires at MIPS ISA level I and microMIPS mode instructions are
612 always interlocked. */
613 #define cop_mem_interlocks \
614 (mips_opts.isa != ISA_MIPS1 \
615 || mips_opts.micromips \
616 )
617
618 /* Is this a mfhi or mflo instruction? */
619 #define MF_HILO_INSN(PINFO) \
620 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
621
622 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
623 has been selected. This implies, in particular, that addresses of text
624 labels have their LSB set. */
625 #define HAVE_CODE_COMPRESSION \
626 ((mips_opts.mips16 | mips_opts.micromips) != 0)
627
628 /* The minimum and maximum signed values that can be stored in a GPR. */
629 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
630 #define GPR_SMIN (-GPR_SMAX - 1)
631
632 /* MIPS PIC level. */
633
634 enum mips_pic_level mips_pic;
635
636 /* 1 if we should generate 32 bit offsets from the $gp register in
637 SVR4_PIC mode. Currently has no meaning in other modes. */
638 static int mips_big_got = 0;
639
640 /* 1 if trap instructions should used for overflow rather than break
641 instructions. */
642 static int mips_trap = 0;
643
644 /* 1 if double width floating point constants should not be constructed
645 by assembling two single width halves into two single width floating
646 point registers which just happen to alias the double width destination
647 register. On some architectures this aliasing can be disabled by a bit
648 in the status register, and the setting of this bit cannot be determined
649 automatically at assemble time. */
650 static int mips_disable_float_construction;
651
652 /* Non-zero if any .set noreorder directives were used. */
653
654 static int mips_any_noreorder;
655
656 /* Non-zero if nops should be inserted when the register referenced in
657 an mfhi/mflo instruction is read in the next two instructions. */
658 static int mips_7000_hilo_fix;
659
660 /* The size of objects in the small data section. */
661 static unsigned int g_switch_value = 8;
662 /* Whether the -G option was used. */
663 static int g_switch_seen = 0;
664
665 #define N_RMASK 0xc4
666 #define N_VFP 0xd4
667
668 /* If we can determine in advance that GP optimization won't be
669 possible, we can skip the relaxation stuff that tries to produce
670 GP-relative references. This makes delay slot optimization work
671 better.
672
673 This function can only provide a guess, but it seems to work for
674 gcc output. It needs to guess right for gcc, otherwise gcc
675 will put what it thinks is a GP-relative instruction in a branch
676 delay slot.
677
678 I don't know if a fix is needed for the SVR4_PIC mode. I've only
679 fixed it for the non-PIC mode. KR 95/04/07 */
680 static int nopic_need_relax (symbolS *, int);
681
682 /* Handle of the OPCODE hash table. */
683 static htab_t op_hash = NULL;
684
685 /* The opcode hash table we use for the mips16. */
686 static htab_t mips16_op_hash = NULL;
687
688 /* The opcode hash table we use for the microMIPS ASE. */
689 static htab_t micromips_op_hash = NULL;
690
691 /* This array holds the chars that always start a comment. If the
692 pre-processor is disabled, these aren't very useful. */
693 const char comment_chars[] = "#";
694
695 /* This array holds the chars that only start a comment at the beginning of
696 a line. If the line seems to have the form '# 123 filename'
697 .line and .file directives will appear in the pre-processed output. */
698 /* Note that input_file.c hand checks for '#' at the beginning of the
699 first line of the input file. This is because the compiler outputs
700 #NO_APP at the beginning of its output. */
701 /* Also note that C style comments are always supported. */
702 const char line_comment_chars[] = "#";
703
704 /* This array holds machine specific line separator characters. */
705 const char line_separator_chars[] = ";";
706
707 /* Chars that can be used to separate mant from exp in floating point nums. */
708 const char EXP_CHARS[] = "eE";
709
710 /* Chars that mean this number is a floating point constant.
711 As in 0f12.456
712 or 0d1.2345e12. */
713 const char FLT_CHARS[] = "rRsSfFdDxXpP";
714
715 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
716 changed in read.c . Ideally it shouldn't have to know about it at all,
717 but nothing is ideal around here. */
718
719 /* Types of printf format used for instruction-related error messages.
720 "I" means int ("%d") and "S" means string ("%s"). */
721 enum mips_insn_error_format
722 {
723 ERR_FMT_PLAIN,
724 ERR_FMT_I,
725 ERR_FMT_SS,
726 };
727
728 /* Information about an error that was found while assembling the current
729 instruction. */
730 struct mips_insn_error
731 {
732 /* We sometimes need to match an instruction against more than one
733 opcode table entry. Errors found during this matching are reported
734 against a particular syntactic argument rather than against the
735 instruction as a whole. We grade these messages so that errors
736 against argument N have a greater priority than an error against
737 any argument < N, since the former implies that arguments up to N
738 were acceptable and that the opcode entry was therefore a closer match.
739 If several matches report an error against the same argument,
740 we only use that error if it is the same in all cases.
741
742 min_argnum is the minimum argument number for which an error message
743 should be accepted. It is 0 if MSG is against the instruction as
744 a whole. */
745 int min_argnum;
746
747 /* The printf()-style message, including its format and arguments. */
748 enum mips_insn_error_format format;
749 const char *msg;
750 union
751 {
752 int i;
753 const char *ss[2];
754 } u;
755 };
756
757 /* The error that should be reported for the current instruction. */
758 static struct mips_insn_error insn_error;
759
760 static int auto_align = 1;
761
762 /* When outputting SVR4 PIC code, the assembler needs to know the
763 offset in the stack frame from which to restore the $gp register.
764 This is set by the .cprestore pseudo-op, and saved in this
765 variable. */
766 static offsetT mips_cprestore_offset = -1;
767
768 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
769 more optimizations, it can use a register value instead of a memory-saved
770 offset and even an other register than $gp as global pointer. */
771 static offsetT mips_cpreturn_offset = -1;
772 static int mips_cpreturn_register = -1;
773 static int mips_gp_register = GP;
774 static int mips_gprel_offset = 0;
775
776 /* Whether mips_cprestore_offset has been set in the current function
777 (or whether it has already been warned about, if not). */
778 static int mips_cprestore_valid = 0;
779
780 /* This is the register which holds the stack frame, as set by the
781 .frame pseudo-op. This is needed to implement .cprestore. */
782 static int mips_frame_reg = SP;
783
784 /* Whether mips_frame_reg has been set in the current function
785 (or whether it has already been warned about, if not). */
786 static int mips_frame_reg_valid = 0;
787
788 /* To output NOP instructions correctly, we need to keep information
789 about the previous two instructions. */
790
791 /* Whether we are optimizing. The default value of 2 means to remove
792 unneeded NOPs and swap branch instructions when possible. A value
793 of 1 means to not swap branches. A value of 0 means to always
794 insert NOPs. */
795 static int mips_optimize = 2;
796
797 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
798 equivalent to seeing no -g option at all. */
799 static int mips_debug = 0;
800
801 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
802 #define MAX_VR4130_NOPS 4
803
804 /* The maximum number of NOPs needed to fill delay slots. */
805 #define MAX_DELAY_NOPS 2
806
807 /* The maximum number of NOPs needed for any purpose. */
808 #define MAX_NOPS 4
809
810 /* The maximum range of context length of ll/sc. */
811 #define MAX_LLSC_RANGE 20
812
813 /* A list of previous instructions, with index 0 being the most recent.
814 We need to look back MAX_NOPS instructions when filling delay slots
815 or working around processor errata. We need to look back one
816 instruction further if we're thinking about using history[0] to
817 fill a branch delay slot. */
818 static struct mips_cl_insn history[1 + MAX_NOPS + MAX_LLSC_RANGE];
819
820 /* The maximum number of LABELS detect for the same address. */
821 #define MAX_LABELS_SAME 10
822
823 /* Arrays of operands for each instruction. */
824 #define MAX_OPERANDS 6
825 struct mips_operand_array
826 {
827 const struct mips_operand *operand[MAX_OPERANDS];
828 };
829 static struct mips_operand_array *mips_operands;
830 static struct mips_operand_array *mips16_operands;
831 static struct mips_operand_array *micromips_operands;
832
833 /* Nop instructions used by emit_nop. */
834 static struct mips_cl_insn nop_insn;
835 static struct mips_cl_insn mips16_nop_insn;
836 static struct mips_cl_insn micromips_nop16_insn;
837 static struct mips_cl_insn micromips_nop32_insn;
838
839 /* Sync instructions used by insert sync. */
840 static struct mips_cl_insn sync_insn;
841
842 /* The appropriate nop for the current mode. */
843 #define NOP_INSN (mips_opts.mips16 \
844 ? &mips16_nop_insn \
845 : (mips_opts.micromips \
846 ? (mips_opts.insn32 \
847 ? &micromips_nop32_insn \
848 : &micromips_nop16_insn) \
849 : &nop_insn))
850
851 /* The size of NOP_INSN in bytes. */
852 #define NOP_INSN_SIZE ((mips_opts.mips16 \
853 || (mips_opts.micromips && !mips_opts.insn32)) \
854 ? 2 : 4)
855
856 /* If this is set, it points to a frag holding nop instructions which
857 were inserted before the start of a noreorder section. If those
858 nops turn out to be unnecessary, the size of the frag can be
859 decreased. */
860 static fragS *prev_nop_frag;
861
862 /* The number of nop instructions we created in prev_nop_frag. */
863 static int prev_nop_frag_holds;
864
865 /* The number of nop instructions that we know we need in
866 prev_nop_frag. */
867 static int prev_nop_frag_required;
868
869 /* The number of instructions we've seen since prev_nop_frag. */
870 static int prev_nop_frag_since;
871
872 /* Relocations against symbols are sometimes done in two parts, with a HI
873 relocation and a LO relocation. Each relocation has only 16 bits of
874 space to store an addend. This means that in order for the linker to
875 handle carries correctly, it must be able to locate both the HI and
876 the LO relocation. This means that the relocations must appear in
877 order in the relocation table.
878
879 In order to implement this, we keep track of each unmatched HI
880 relocation. We then sort them so that they immediately precede the
881 corresponding LO relocation. */
882
883 struct mips_hi_fixup
884 {
885 /* Next HI fixup. */
886 struct mips_hi_fixup *next;
887 /* This fixup. */
888 fixS *fixp;
889 /* The section this fixup is in. */
890 segT seg;
891 };
892
893 /* The list of unmatched HI relocs. */
894
895 static struct mips_hi_fixup *mips_hi_fixup_list;
896
897 /* Map mips16 register numbers to normal MIPS register numbers. */
898
899 static const unsigned int mips16_to_32_reg_map[] =
900 {
901 16, 17, 2, 3, 4, 5, 6, 7
902 };
903
904 /* Map microMIPS register numbers to normal MIPS register numbers. */
905
906 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
907
908 /* The microMIPS registers with type h. */
909 static const unsigned int micromips_to_32_reg_h_map1[] =
910 {
911 5, 5, 6, 4, 4, 4, 4, 4
912 };
913 static const unsigned int micromips_to_32_reg_h_map2[] =
914 {
915 6, 7, 7, 21, 22, 5, 6, 7
916 };
917
918 /* The microMIPS registers with type m. */
919 static const unsigned int micromips_to_32_reg_m_map[] =
920 {
921 0, 17, 2, 3, 16, 18, 19, 20
922 };
923
924 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
925
926 /* Classifies the kind of instructions we're interested in when
927 implementing -mfix-vr4120. */
928 enum fix_vr4120_class
929 {
930 FIX_VR4120_MACC,
931 FIX_VR4120_DMACC,
932 FIX_VR4120_MULT,
933 FIX_VR4120_DMULT,
934 FIX_VR4120_DIV,
935 FIX_VR4120_MTHILO,
936 NUM_FIX_VR4120_CLASSES
937 };
938
939 /* ...likewise -mfix-loongson2f-jump. */
940 static bool mips_fix_loongson2f_jump;
941
942 /* ...likewise -mfix-loongson2f-nop. */
943 static bool mips_fix_loongson2f_nop;
944
945 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
946 static bool mips_fix_loongson2f;
947
948 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
949 there must be at least one other instruction between an instruction
950 of type X and an instruction of type Y. */
951 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
952
953 /* True if -mfix-vr4120 is in force. */
954 static int mips_fix_vr4120;
955
956 /* ...likewise -mfix-vr4130. */
957 static int mips_fix_vr4130;
958
959 /* ...likewise -mfix-24k. */
960 static int mips_fix_24k;
961
962 /* ...likewise -mfix-rm7000 */
963 static int mips_fix_rm7000;
964
965 /* ...likewise -mfix-cn63xxp1 */
966 static bool mips_fix_cn63xxp1;
967
968 /* ...likewise -mfix-r5900 */
969 static bool mips_fix_r5900;
970 static bool mips_fix_r5900_explicit;
971
972 /* ...likewise -mfix-loongson3-llsc. */
973 static bool mips_fix_loongson3_llsc = DEFAULT_MIPS_FIX_LOONGSON3_LLSC;
974
975 /* We don't relax branches by default, since this causes us to expand
976 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
977 fail to compute the offset before expanding the macro to the most
978 efficient expansion. */
979
980 static int mips_relax_branch;
981
982 /* TRUE if checks are suppressed for invalid branches between ISA modes.
983 Needed for broken assembly produced by some GCC versions and some
984 sloppy code out there, where branches to data labels are present. */
985 static bool mips_ignore_branch_isa;
986 \f
987 /* The expansion of many macros depends on the type of symbol that
988 they refer to. For example, when generating position-dependent code,
989 a macro that refers to a symbol may have two different expansions,
990 one which uses GP-relative addresses and one which uses absolute
991 addresses. When generating SVR4-style PIC, a macro may have
992 different expansions for local and global symbols.
993
994 We handle these situations by generating both sequences and putting
995 them in variant frags. In position-dependent code, the first sequence
996 will be the GP-relative one and the second sequence will be the
997 absolute one. In SVR4 PIC, the first sequence will be for global
998 symbols and the second will be for local symbols.
999
1000 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
1001 SECOND are the lengths of the two sequences in bytes. These fields
1002 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
1003 the subtype has the following flags:
1004
1005 RELAX_PIC
1006 Set if generating PIC code.
1007
1008 RELAX_USE_SECOND
1009 Set if it has been decided that we should use the second
1010 sequence instead of the first.
1011
1012 RELAX_SECOND_LONGER
1013 Set in the first variant frag if the macro's second implementation
1014 is longer than its first. This refers to the macro as a whole,
1015 not an individual relaxation.
1016
1017 RELAX_NOMACRO
1018 Set in the first variant frag if the macro appeared in a .set nomacro
1019 block and if one alternative requires a warning but the other does not.
1020
1021 RELAX_DELAY_SLOT
1022 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
1023 delay slot.
1024
1025 RELAX_DELAY_SLOT_16BIT
1026 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
1027 16-bit instruction.
1028
1029 RELAX_DELAY_SLOT_SIZE_FIRST
1030 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
1031 the macro is of the wrong size for the branch delay slot.
1032
1033 RELAX_DELAY_SLOT_SIZE_SECOND
1034 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1035 the macro is of the wrong size for the branch delay slot.
1036
1037 The frag's "opcode" points to the first fixup for relaxable code.
1038
1039 Relaxable macros are generated using a sequence such as:
1040
1041 relax_start (SYMBOL);
1042 ... generate first expansion ...
1043 relax_switch ();
1044 ... generate second expansion ...
1045 relax_end ();
1046
1047 The code and fixups for the unwanted alternative are discarded
1048 by md_convert_frag. */
1049 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1050 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1051
1052 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1053 #define RELAX_SECOND(X) ((X) & 0xff)
1054 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1055 #define RELAX_USE_SECOND 0x20000
1056 #define RELAX_SECOND_LONGER 0x40000
1057 #define RELAX_NOMACRO 0x80000
1058 #define RELAX_DELAY_SLOT 0x100000
1059 #define RELAX_DELAY_SLOT_16BIT 0x200000
1060 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1061 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1062
1063 /* Branch without likely bit. If label is out of range, we turn:
1064
1065 beq reg1, reg2, label
1066 delay slot
1067
1068 into
1069
1070 bne reg1, reg2, 0f
1071 nop
1072 j label
1073 0: delay slot
1074
1075 with the following opcode replacements:
1076
1077 beq <-> bne
1078 blez <-> bgtz
1079 bltz <-> bgez
1080 bc1f <-> bc1t
1081
1082 bltzal <-> bgezal (with jal label instead of j label)
1083
1084 Even though keeping the delay slot instruction in the delay slot of
1085 the branch would be more efficient, it would be very tricky to do
1086 correctly, because we'd have to introduce a variable frag *after*
1087 the delay slot instruction, and expand that instead. Let's do it
1088 the easy way for now, even if the branch-not-taken case now costs
1089 one additional instruction. Out-of-range branches are not supposed
1090 to be common, anyway.
1091
1092 Branch likely. If label is out of range, we turn:
1093
1094 beql reg1, reg2, label
1095 delay slot (annulled if branch not taken)
1096
1097 into
1098
1099 beql reg1, reg2, 1f
1100 nop
1101 beql $0, $0, 2f
1102 nop
1103 1: j[al] label
1104 delay slot (executed only if branch taken)
1105 2:
1106
1107 It would be possible to generate a shorter sequence by losing the
1108 likely bit, generating something like:
1109
1110 bne reg1, reg2, 0f
1111 nop
1112 j[al] label
1113 delay slot (executed only if branch taken)
1114 0:
1115
1116 beql -> bne
1117 bnel -> beq
1118 blezl -> bgtz
1119 bgtzl -> blez
1120 bltzl -> bgez
1121 bgezl -> bltz
1122 bc1fl -> bc1t
1123 bc1tl -> bc1f
1124
1125 bltzall -> bgezal (with jal label instead of j label)
1126 bgezall -> bltzal (ditto)
1127
1128
1129 but it's not clear that it would actually improve performance. */
1130 #define RELAX_BRANCH_ENCODE(at, pic, \
1131 uncond, likely, link, toofar) \
1132 ((relax_substateT) \
1133 (0xc0000000 \
1134 | ((at) & 0x1f) \
1135 | ((pic) ? 0x20 : 0) \
1136 | ((toofar) ? 0x40 : 0) \
1137 | ((link) ? 0x80 : 0) \
1138 | ((likely) ? 0x100 : 0) \
1139 | ((uncond) ? 0x200 : 0)))
1140 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1141 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1142 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1143 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1144 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1145 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1146 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1147
1148 /* For mips16 code, we use an entirely different form of relaxation.
1149 mips16 supports two versions of most instructions which take
1150 immediate values: a small one which takes some small value, and a
1151 larger one which takes a 16 bit value. Since branches also follow
1152 this pattern, relaxing these values is required.
1153
1154 We can assemble both mips16 and normal MIPS code in a single
1155 object. Therefore, we need to support this type of relaxation at
1156 the same time that we support the relaxation described above. We
1157 use the high bit of the subtype field to distinguish these cases.
1158
1159 The information we store for this type of relaxation is the
1160 argument code found in the opcode file for this relocation, whether
1161 the user explicitly requested a small or extended form, and whether
1162 the relocation is in a jump or jal delay slot. That tells us the
1163 size of the value, and how it should be stored. We also store
1164 whether the fragment is considered to be extended or not. We also
1165 store whether this is known to be a branch to a different section,
1166 whether we have tried to relax this frag yet, and whether we have
1167 ever extended a PC relative fragment because of a shift count. */
1168 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1169 small, ext, \
1170 dslot, jal_dslot) \
1171 (0x80000000 \
1172 | ((type) & 0xff) \
1173 | ((e2) ? 0x100 : 0) \
1174 | ((pic) ? 0x200 : 0) \
1175 | ((sym32) ? 0x400 : 0) \
1176 | ((nomacro) ? 0x800 : 0) \
1177 | ((small) ? 0x1000 : 0) \
1178 | ((ext) ? 0x2000 : 0) \
1179 | ((dslot) ? 0x4000 : 0) \
1180 | ((jal_dslot) ? 0x8000 : 0))
1181
1182 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1183 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1184 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1185 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1186 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1187 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1188 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1189 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1190 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1191 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1192
1193 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1194 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1195 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1196 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1197 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1198 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1199 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1200 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1201 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1202
1203 /* For microMIPS code, we use relaxation similar to one we use for
1204 MIPS16 code. Some instructions that take immediate values support
1205 two encodings: a small one which takes some small value, and a
1206 larger one which takes a 16 bit value. As some branches also follow
1207 this pattern, relaxing these values is required.
1208
1209 We can assemble both microMIPS and normal MIPS code in a single
1210 object. Therefore, we need to support this type of relaxation at
1211 the same time that we support the relaxation described above. We
1212 use one of the high bits of the subtype field to distinguish these
1213 cases.
1214
1215 The information we store for this type of relaxation is the argument
1216 code found in the opcode file for this relocation, the register
1217 selected as the assembler temporary, whether in the 32-bit
1218 instruction mode, whether the branch is unconditional, whether it is
1219 compact, whether there is no delay-slot instruction available to fill
1220 in, whether it stores the link address implicitly in $ra, whether
1221 relaxation of out-of-range 32-bit branches to a sequence of
1222 instructions is enabled, and whether the displacement of a branch is
1223 too large to fit as an immediate argument of a 16-bit and a 32-bit
1224 branch, respectively. */
1225 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1226 uncond, compact, link, nods, \
1227 relax32, toofar16, toofar32) \
1228 (0x40000000 \
1229 | ((type) & 0xff) \
1230 | (((at) & 0x1f) << 8) \
1231 | ((insn32) ? 0x2000 : 0) \
1232 | ((pic) ? 0x4000 : 0) \
1233 | ((uncond) ? 0x8000 : 0) \
1234 | ((compact) ? 0x10000 : 0) \
1235 | ((link) ? 0x20000 : 0) \
1236 | ((nods) ? 0x40000 : 0) \
1237 | ((relax32) ? 0x80000 : 0) \
1238 | ((toofar16) ? 0x100000 : 0) \
1239 | ((toofar32) ? 0x200000 : 0))
1240 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1241 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1242 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1243 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1244 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1245 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1246 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1247 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1248 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1249 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1250
1251 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1252 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1253 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1254 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1255 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1256 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1257
1258 /* Sign-extend 16-bit value X. */
1259 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1260
1261 /* Is the given value a sign-extended 32-bit value? */
1262 #define IS_SEXT_32BIT_NUM(x) \
1263 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1264 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1265
1266 /* Is the given value a sign-extended 16-bit value? */
1267 #define IS_SEXT_16BIT_NUM(x) \
1268 (((x) &~ (offsetT) 0x7fff) == 0 \
1269 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1270
1271 /* Is the given value a sign-extended 12-bit value? */
1272 #define IS_SEXT_12BIT_NUM(x) \
1273 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1274
1275 /* Is the given value a sign-extended 9-bit value? */
1276 #define IS_SEXT_9BIT_NUM(x) \
1277 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1278
1279 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1280 #define IS_ZEXT_32BIT_NUM(x) \
1281 (((x) &~ (offsetT) 0xffffffff) == 0 \
1282 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1283
1284 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1285 SHIFT places. */
1286 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1287 (((STRUCT) >> (SHIFT)) & (MASK))
1288
1289 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1290 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1291 (!(MICROMIPS) \
1292 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1293 : EXTRACT_BITS ((INSN).insn_opcode, \
1294 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1295 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1296 EXTRACT_BITS ((INSN).insn_opcode, \
1297 MIPS16OP_MASK_##FIELD, \
1298 MIPS16OP_SH_##FIELD)
1299
1300 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1301 #define MIPS16_EXTEND (0xf000U << 16)
1302 \f
1303 /* Whether or not we are emitting a branch-likely macro. */
1304 static bool emit_branch_likely_macro = false;
1305
1306 /* Global variables used when generating relaxable macros. See the
1307 comment above RELAX_ENCODE for more details about how relaxation
1308 is used. */
1309 static struct {
1310 /* 0 if we're not emitting a relaxable macro.
1311 1 if we're emitting the first of the two relaxation alternatives.
1312 2 if we're emitting the second alternative. */
1313 int sequence;
1314
1315 /* The first relaxable fixup in the current frag. (In other words,
1316 the first fixup that refers to relaxable code.) */
1317 fixS *first_fixup;
1318
1319 /* sizes[0] says how many bytes of the first alternative are stored in
1320 the current frag. Likewise sizes[1] for the second alternative. */
1321 unsigned int sizes[2];
1322
1323 /* The symbol on which the choice of sequence depends. */
1324 symbolS *symbol;
1325 } mips_relax;
1326 \f
1327 /* Global variables used to decide whether a macro needs a warning. */
1328 static struct {
1329 /* True if the macro is in a branch delay slot. */
1330 bool delay_slot_p;
1331
1332 /* Set to the length in bytes required if the macro is in a delay slot
1333 that requires a specific length of instruction, otherwise zero. */
1334 unsigned int delay_slot_length;
1335
1336 /* For relaxable macros, sizes[0] is the length of the first alternative
1337 in bytes and sizes[1] is the length of the second alternative.
1338 For non-relaxable macros, both elements give the length of the
1339 macro in bytes. */
1340 unsigned int sizes[2];
1341
1342 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1343 instruction of the first alternative in bytes and first_insn_sizes[1]
1344 is the length of the first instruction of the second alternative.
1345 For non-relaxable macros, both elements give the length of the first
1346 instruction in bytes.
1347
1348 Set to zero if we haven't yet seen the first instruction. */
1349 unsigned int first_insn_sizes[2];
1350
1351 /* For relaxable macros, insns[0] is the number of instructions for the
1352 first alternative and insns[1] is the number of instructions for the
1353 second alternative.
1354
1355 For non-relaxable macros, both elements give the number of
1356 instructions for the macro. */
1357 unsigned int insns[2];
1358
1359 /* The first variant frag for this macro. */
1360 fragS *first_frag;
1361 } mips_macro_warning;
1362 \f
1363 /* Prototypes for static functions. */
1364
1365 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1366
1367 static void append_insn
1368 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1369 bool expansionp);
1370 static void mips_no_prev_insn (void);
1371 static void macro_build (expressionS *, const char *, const char *, ...);
1372 static void mips16_macro_build
1373 (expressionS *, const char *, const char *, va_list *);
1374 static void load_register (int, expressionS *, int);
1375 static void macro_start (void);
1376 static void macro_end (void);
1377 static void macro (struct mips_cl_insn *ip, char *str);
1378 static void mips16_macro (struct mips_cl_insn * ip);
1379 static void mips_ip (char *str, struct mips_cl_insn * ip);
1380 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1381 static unsigned long mips16_immed_extend (offsetT, unsigned int);
1382 static void mips16_immed
1383 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1384 unsigned int, unsigned long *);
1385 static size_t my_getSmallExpression
1386 (expressionS *, bfd_reloc_code_real_type *, char *);
1387 static void my_getExpression (expressionS *, char *);
1388 static void s_align (int);
1389 static void s_change_sec (int);
1390 static void s_change_section (int);
1391 static void s_cons (int);
1392 static void s_float_cons (int);
1393 static void s_mips_globl (int);
1394 static void s_option (int);
1395 static void s_mipsset (int);
1396 static void s_abicalls (int);
1397 static void s_cpload (int);
1398 static void s_cpsetup (int);
1399 static void s_cplocal (int);
1400 static void s_cprestore (int);
1401 static void s_cpreturn (int);
1402 static void s_dtprelword (int);
1403 static void s_dtpreldword (int);
1404 static void s_tprelword (int);
1405 static void s_tpreldword (int);
1406 static void s_gpvalue (int);
1407 static void s_gpword (int);
1408 static void s_gpdword (int);
1409 static void s_ehword (int);
1410 static void s_cpadd (int);
1411 static void s_insn (int);
1412 static void s_nan (int);
1413 static void s_module (int);
1414 static void s_mips_ent (int);
1415 static void s_mips_end (int);
1416 static void s_mips_frame (int);
1417 static void s_mips_mask (int reg_type);
1418 static void s_mips_stab (int);
1419 static void s_mips_weakext (int);
1420 static void s_mips_file (int);
1421 static void s_mips_loc (int);
1422 static bool pic_need_relax (symbolS *);
1423 static int relaxed_branch_length (fragS *, asection *, int);
1424 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1425 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1426 static void file_mips_check_options (void);
1427
1428 /* Table and functions used to map between CPU/ISA names, and
1429 ISA levels, and CPU numbers. */
1430
1431 struct mips_cpu_info
1432 {
1433 const char *name; /* CPU or ISA name. */
1434 int flags; /* MIPS_CPU_* flags. */
1435 int ase; /* Set of ASEs implemented by the CPU. */
1436 int isa; /* ISA level. */
1437 int cpu; /* CPU number (default CPU if ISA). */
1438 };
1439
1440 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1441
1442 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1443 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1444 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1445 \f
1446 /* Command-line options. */
1447 const char *md_shortopts = "O::g::G:";
1448
1449 enum options
1450 {
1451 OPTION_MARCH = OPTION_MD_BASE,
1452 OPTION_MTUNE,
1453 OPTION_MIPS1,
1454 OPTION_MIPS2,
1455 OPTION_MIPS3,
1456 OPTION_MIPS4,
1457 OPTION_MIPS5,
1458 OPTION_MIPS32,
1459 OPTION_MIPS64,
1460 OPTION_MIPS32R2,
1461 OPTION_MIPS32R3,
1462 OPTION_MIPS32R5,
1463 OPTION_MIPS32R6,
1464 OPTION_MIPS64R2,
1465 OPTION_MIPS64R3,
1466 OPTION_MIPS64R5,
1467 OPTION_MIPS64R6,
1468 OPTION_MIPS16,
1469 OPTION_NO_MIPS16,
1470 OPTION_MIPS3D,
1471 OPTION_NO_MIPS3D,
1472 OPTION_MDMX,
1473 OPTION_NO_MDMX,
1474 OPTION_DSP,
1475 OPTION_NO_DSP,
1476 OPTION_MT,
1477 OPTION_NO_MT,
1478 OPTION_VIRT,
1479 OPTION_NO_VIRT,
1480 OPTION_MSA,
1481 OPTION_NO_MSA,
1482 OPTION_SMARTMIPS,
1483 OPTION_NO_SMARTMIPS,
1484 OPTION_DSPR2,
1485 OPTION_NO_DSPR2,
1486 OPTION_DSPR3,
1487 OPTION_NO_DSPR3,
1488 OPTION_EVA,
1489 OPTION_NO_EVA,
1490 OPTION_XPA,
1491 OPTION_NO_XPA,
1492 OPTION_MICROMIPS,
1493 OPTION_NO_MICROMIPS,
1494 OPTION_MCU,
1495 OPTION_NO_MCU,
1496 OPTION_MIPS16E2,
1497 OPTION_NO_MIPS16E2,
1498 OPTION_CRC,
1499 OPTION_NO_CRC,
1500 OPTION_M4650,
1501 OPTION_NO_M4650,
1502 OPTION_M4010,
1503 OPTION_NO_M4010,
1504 OPTION_M4100,
1505 OPTION_NO_M4100,
1506 OPTION_M3900,
1507 OPTION_NO_M3900,
1508 OPTION_M7000_HILO_FIX,
1509 OPTION_MNO_7000_HILO_FIX,
1510 OPTION_FIX_24K,
1511 OPTION_NO_FIX_24K,
1512 OPTION_FIX_RM7000,
1513 OPTION_NO_FIX_RM7000,
1514 OPTION_FIX_LOONGSON3_LLSC,
1515 OPTION_NO_FIX_LOONGSON3_LLSC,
1516 OPTION_FIX_LOONGSON2F_JUMP,
1517 OPTION_NO_FIX_LOONGSON2F_JUMP,
1518 OPTION_FIX_LOONGSON2F_NOP,
1519 OPTION_NO_FIX_LOONGSON2F_NOP,
1520 OPTION_FIX_VR4120,
1521 OPTION_NO_FIX_VR4120,
1522 OPTION_FIX_VR4130,
1523 OPTION_NO_FIX_VR4130,
1524 OPTION_FIX_CN63XXP1,
1525 OPTION_NO_FIX_CN63XXP1,
1526 OPTION_FIX_R5900,
1527 OPTION_NO_FIX_R5900,
1528 OPTION_TRAP,
1529 OPTION_BREAK,
1530 OPTION_EB,
1531 OPTION_EL,
1532 OPTION_FP32,
1533 OPTION_GP32,
1534 OPTION_CONSTRUCT_FLOATS,
1535 OPTION_NO_CONSTRUCT_FLOATS,
1536 OPTION_FP64,
1537 OPTION_FPXX,
1538 OPTION_GP64,
1539 OPTION_RELAX_BRANCH,
1540 OPTION_NO_RELAX_BRANCH,
1541 OPTION_IGNORE_BRANCH_ISA,
1542 OPTION_NO_IGNORE_BRANCH_ISA,
1543 OPTION_INSN32,
1544 OPTION_NO_INSN32,
1545 OPTION_MSHARED,
1546 OPTION_MNO_SHARED,
1547 OPTION_MSYM32,
1548 OPTION_MNO_SYM32,
1549 OPTION_SOFT_FLOAT,
1550 OPTION_HARD_FLOAT,
1551 OPTION_SINGLE_FLOAT,
1552 OPTION_DOUBLE_FLOAT,
1553 OPTION_32,
1554 OPTION_CALL_SHARED,
1555 OPTION_CALL_NONPIC,
1556 OPTION_NON_SHARED,
1557 OPTION_XGOT,
1558 OPTION_MABI,
1559 OPTION_N32,
1560 OPTION_64,
1561 OPTION_MDEBUG,
1562 OPTION_NO_MDEBUG,
1563 OPTION_PDR,
1564 OPTION_NO_PDR,
1565 OPTION_MVXWORKS_PIC,
1566 OPTION_NAN,
1567 OPTION_ODD_SPREG,
1568 OPTION_NO_ODD_SPREG,
1569 OPTION_GINV,
1570 OPTION_NO_GINV,
1571 OPTION_LOONGSON_MMI,
1572 OPTION_NO_LOONGSON_MMI,
1573 OPTION_LOONGSON_CAM,
1574 OPTION_NO_LOONGSON_CAM,
1575 OPTION_LOONGSON_EXT,
1576 OPTION_NO_LOONGSON_EXT,
1577 OPTION_LOONGSON_EXT2,
1578 OPTION_NO_LOONGSON_EXT2,
1579 OPTION_END_OF_ENUM
1580 };
1581
1582 struct option md_longopts[] =
1583 {
1584 /* Options which specify architecture. */
1585 {"march", required_argument, NULL, OPTION_MARCH},
1586 {"mtune", required_argument, NULL, OPTION_MTUNE},
1587 {"mips0", no_argument, NULL, OPTION_MIPS1},
1588 {"mips1", no_argument, NULL, OPTION_MIPS1},
1589 {"mips2", no_argument, NULL, OPTION_MIPS2},
1590 {"mips3", no_argument, NULL, OPTION_MIPS3},
1591 {"mips4", no_argument, NULL, OPTION_MIPS4},
1592 {"mips5", no_argument, NULL, OPTION_MIPS5},
1593 {"mips32", no_argument, NULL, OPTION_MIPS32},
1594 {"mips64", no_argument, NULL, OPTION_MIPS64},
1595 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1596 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1597 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1598 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1599 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1600 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1601 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1602 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1603
1604 /* Options which specify Application Specific Extensions (ASEs). */
1605 {"mips16", no_argument, NULL, OPTION_MIPS16},
1606 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1607 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1608 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1609 {"mdmx", no_argument, NULL, OPTION_MDMX},
1610 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1611 {"mdsp", no_argument, NULL, OPTION_DSP},
1612 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1613 {"mmt", no_argument, NULL, OPTION_MT},
1614 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1615 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1616 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1617 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1618 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1619 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1620 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1621 {"meva", no_argument, NULL, OPTION_EVA},
1622 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1623 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1624 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1625 {"mmcu", no_argument, NULL, OPTION_MCU},
1626 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1627 {"mvirt", no_argument, NULL, OPTION_VIRT},
1628 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1629 {"mmsa", no_argument, NULL, OPTION_MSA},
1630 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1631 {"mxpa", no_argument, NULL, OPTION_XPA},
1632 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1633 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1634 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
1635 {"mcrc", no_argument, NULL, OPTION_CRC},
1636 {"mno-crc", no_argument, NULL, OPTION_NO_CRC},
1637 {"mginv", no_argument, NULL, OPTION_GINV},
1638 {"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
1639 {"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
1640 {"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
1641 {"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
1642 {"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
1643 {"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
1644 {"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
1645 {"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
1646 {"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
1647
1648 /* Old-style architecture options. Don't add more of these. */
1649 {"m4650", no_argument, NULL, OPTION_M4650},
1650 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1651 {"m4010", no_argument, NULL, OPTION_M4010},
1652 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1653 {"m4100", no_argument, NULL, OPTION_M4100},
1654 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1655 {"m3900", no_argument, NULL, OPTION_M3900},
1656 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1657
1658 /* Options which enable bug fixes. */
1659 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1660 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1661 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1662 {"mfix-loongson3-llsc", no_argument, NULL, OPTION_FIX_LOONGSON3_LLSC},
1663 {"mno-fix-loongson3-llsc", no_argument, NULL, OPTION_NO_FIX_LOONGSON3_LLSC},
1664 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1665 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1666 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1667 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1668 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1669 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1670 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1671 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1672 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1673 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1674 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1675 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1676 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1677 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1678 {"mfix-r5900", no_argument, NULL, OPTION_FIX_R5900},
1679 {"mno-fix-r5900", no_argument, NULL, OPTION_NO_FIX_R5900},
1680
1681 /* Miscellaneous options. */
1682 {"trap", no_argument, NULL, OPTION_TRAP},
1683 {"no-break", no_argument, NULL, OPTION_TRAP},
1684 {"break", no_argument, NULL, OPTION_BREAK},
1685 {"no-trap", no_argument, NULL, OPTION_BREAK},
1686 {"EB", no_argument, NULL, OPTION_EB},
1687 {"EL", no_argument, NULL, OPTION_EL},
1688 {"mfp32", no_argument, NULL, OPTION_FP32},
1689 {"mgp32", no_argument, NULL, OPTION_GP32},
1690 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1691 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1692 {"mfp64", no_argument, NULL, OPTION_FP64},
1693 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1694 {"mgp64", no_argument, NULL, OPTION_GP64},
1695 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1696 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1697 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1698 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1699 {"minsn32", no_argument, NULL, OPTION_INSN32},
1700 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1701 {"mshared", no_argument, NULL, OPTION_MSHARED},
1702 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1703 {"msym32", no_argument, NULL, OPTION_MSYM32},
1704 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1705 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1706 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1707 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1708 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1709 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1710 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1711
1712 /* Strictly speaking this next option is ELF specific,
1713 but we allow it for other ports as well in order to
1714 make testing easier. */
1715 {"32", no_argument, NULL, OPTION_32},
1716
1717 /* ELF-specific options. */
1718 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1719 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1720 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1721 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1722 {"xgot", no_argument, NULL, OPTION_XGOT},
1723 {"mabi", required_argument, NULL, OPTION_MABI},
1724 {"n32", no_argument, NULL, OPTION_N32},
1725 {"64", no_argument, NULL, OPTION_64},
1726 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1727 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1728 {"mpdr", no_argument, NULL, OPTION_PDR},
1729 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1730 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1731 {"mnan", required_argument, NULL, OPTION_NAN},
1732
1733 {NULL, no_argument, NULL, 0}
1734 };
1735 size_t md_longopts_size = sizeof (md_longopts);
1736 \f
1737 /* Information about either an Application Specific Extension or an
1738 optional architecture feature that, for simplicity, we treat in the
1739 same way as an ASE. */
1740 struct mips_ase
1741 {
1742 /* The name of the ASE, used in both the command-line and .set options. */
1743 const char *name;
1744
1745 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1746 and 64-bit architectures, the flags here refer to the subset that
1747 is available on both. */
1748 unsigned int flags;
1749
1750 /* The ASE_* flag used for instructions that are available on 64-bit
1751 architectures but that are not included in FLAGS. */
1752 unsigned int flags64;
1753
1754 /* The command-line options that turn the ASE on and off. */
1755 int option_on;
1756 int option_off;
1757
1758 /* The minimum required architecture revisions for MIPS32, MIPS64,
1759 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1760 int mips32_rev;
1761 int mips64_rev;
1762 int micromips32_rev;
1763 int micromips64_rev;
1764
1765 /* The architecture where the ASE was removed or -1 if the extension has not
1766 been removed. */
1767 int rem_rev;
1768 };
1769
1770 /* A table of all supported ASEs. */
1771 static const struct mips_ase mips_ases[] = {
1772 { "dsp", ASE_DSP, ASE_DSP64,
1773 OPTION_DSP, OPTION_NO_DSP,
1774 2, 2, 2, 2,
1775 -1 },
1776
1777 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1778 OPTION_DSPR2, OPTION_NO_DSPR2,
1779 2, 2, 2, 2,
1780 -1 },
1781
1782 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1783 OPTION_DSPR3, OPTION_NO_DSPR3,
1784 6, 6, -1, -1,
1785 -1 },
1786
1787 { "eva", ASE_EVA, 0,
1788 OPTION_EVA, OPTION_NO_EVA,
1789 2, 2, 2, 2,
1790 -1 },
1791
1792 { "mcu", ASE_MCU, 0,
1793 OPTION_MCU, OPTION_NO_MCU,
1794 2, 2, 2, 2,
1795 -1 },
1796
1797 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1798 { "mdmx", ASE_MDMX, 0,
1799 OPTION_MDMX, OPTION_NO_MDMX,
1800 -1, 1, -1, -1,
1801 6 },
1802
1803 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1804 { "mips3d", ASE_MIPS3D, 0,
1805 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1806 2, 1, -1, -1,
1807 6 },
1808
1809 { "mt", ASE_MT, 0,
1810 OPTION_MT, OPTION_NO_MT,
1811 2, 2, -1, -1,
1812 -1 },
1813
1814 { "smartmips", ASE_SMARTMIPS, 0,
1815 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1816 1, -1, -1, -1,
1817 6 },
1818
1819 { "virt", ASE_VIRT, ASE_VIRT64,
1820 OPTION_VIRT, OPTION_NO_VIRT,
1821 2, 2, 2, 2,
1822 -1 },
1823
1824 { "msa", ASE_MSA, ASE_MSA64,
1825 OPTION_MSA, OPTION_NO_MSA,
1826 2, 2, 2, 2,
1827 -1 },
1828
1829 { "xpa", ASE_XPA, 0,
1830 OPTION_XPA, OPTION_NO_XPA,
1831 2, 2, 2, 2,
1832 -1 },
1833
1834 { "mips16e2", ASE_MIPS16E2, 0,
1835 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1836 2, 2, -1, -1,
1837 6 },
1838
1839 { "crc", ASE_CRC, ASE_CRC64,
1840 OPTION_CRC, OPTION_NO_CRC,
1841 6, 6, -1, -1,
1842 -1 },
1843
1844 { "ginv", ASE_GINV, 0,
1845 OPTION_GINV, OPTION_NO_GINV,
1846 6, 6, 6, 6,
1847 -1 },
1848
1849 { "loongson-mmi", ASE_LOONGSON_MMI, 0,
1850 OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
1851 0, 0, -1, -1,
1852 -1 },
1853
1854 { "loongson-cam", ASE_LOONGSON_CAM, 0,
1855 OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
1856 0, 0, -1, -1,
1857 -1 },
1858
1859 { "loongson-ext", ASE_LOONGSON_EXT, 0,
1860 OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
1861 0, 0, -1, -1,
1862 -1 },
1863
1864 { "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
1865 OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
1866 0, 0, -1, -1,
1867 -1 },
1868 };
1869
1870 /* The set of ASEs that require -mfp64. */
1871 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1872
1873 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1874 static const unsigned int mips_ase_groups[] = {
1875 ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
1876 ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
1877 };
1878 \f
1879 /* Pseudo-op table.
1880
1881 The following pseudo-ops from the Kane and Heinrich MIPS book
1882 should be defined here, but are currently unsupported: .alias,
1883 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1884
1885 The following pseudo-ops from the Kane and Heinrich MIPS book are
1886 specific to the type of debugging information being generated, and
1887 should be defined by the object format: .aent, .begin, .bend,
1888 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1889 .vreg.
1890
1891 The following pseudo-ops from the Kane and Heinrich MIPS book are
1892 not MIPS CPU specific, but are also not specific to the object file
1893 format. This file is probably the best place to define them, but
1894 they are not currently supported: .asm0, .endr, .lab, .struct. */
1895
1896 static const pseudo_typeS mips_pseudo_table[] =
1897 {
1898 /* MIPS specific pseudo-ops. */
1899 {"option", s_option, 0},
1900 {"set", s_mipsset, 0},
1901 {"rdata", s_change_sec, 'r'},
1902 {"sdata", s_change_sec, 's'},
1903 {"livereg", s_ignore, 0},
1904 {"abicalls", s_abicalls, 0},
1905 {"cpload", s_cpload, 0},
1906 {"cpsetup", s_cpsetup, 0},
1907 {"cplocal", s_cplocal, 0},
1908 {"cprestore", s_cprestore, 0},
1909 {"cpreturn", s_cpreturn, 0},
1910 {"dtprelword", s_dtprelword, 0},
1911 {"dtpreldword", s_dtpreldword, 0},
1912 {"tprelword", s_tprelword, 0},
1913 {"tpreldword", s_tpreldword, 0},
1914 {"gpvalue", s_gpvalue, 0},
1915 {"gpword", s_gpword, 0},
1916 {"gpdword", s_gpdword, 0},
1917 {"ehword", s_ehword, 0},
1918 {"cpadd", s_cpadd, 0},
1919 {"insn", s_insn, 0},
1920 {"nan", s_nan, 0},
1921 {"module", s_module, 0},
1922
1923 /* Relatively generic pseudo-ops that happen to be used on MIPS
1924 chips. */
1925 {"asciiz", stringer, 8 + 1},
1926 {"bss", s_change_sec, 'b'},
1927 {"err", s_err, 0},
1928 {"half", s_cons, 1},
1929 {"dword", s_cons, 3},
1930 {"weakext", s_mips_weakext, 0},
1931 {"origin", s_org, 0},
1932 {"repeat", s_rept, 0},
1933
1934 /* For MIPS this is non-standard, but we define it for consistency. */
1935 {"sbss", s_change_sec, 'B'},
1936
1937 /* These pseudo-ops are defined in read.c, but must be overridden
1938 here for one reason or another. */
1939 {"align", s_align, 0},
1940 {"byte", s_cons, 0},
1941 {"data", s_change_sec, 'd'},
1942 {"double", s_float_cons, 'd'},
1943 {"float", s_float_cons, 'f'},
1944 {"globl", s_mips_globl, 0},
1945 {"global", s_mips_globl, 0},
1946 {"hword", s_cons, 1},
1947 {"int", s_cons, 2},
1948 {"long", s_cons, 2},
1949 {"octa", s_cons, 4},
1950 {"quad", s_cons, 3},
1951 {"section", s_change_section, 0},
1952 {"short", s_cons, 1},
1953 {"single", s_float_cons, 'f'},
1954 {"stabd", s_mips_stab, 'd'},
1955 {"stabn", s_mips_stab, 'n'},
1956 {"stabs", s_mips_stab, 's'},
1957 {"text", s_change_sec, 't'},
1958 {"word", s_cons, 2},
1959
1960 { "extern", ecoff_directive_extern, 0},
1961
1962 { NULL, NULL, 0 },
1963 };
1964
1965 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1966 {
1967 /* These pseudo-ops should be defined by the object file format.
1968 However, a.out doesn't support them, so we have versions here. */
1969 {"aent", s_mips_ent, 1},
1970 {"bgnb", s_ignore, 0},
1971 {"end", s_mips_end, 0},
1972 {"endb", s_ignore, 0},
1973 {"ent", s_mips_ent, 0},
1974 {"file", s_mips_file, 0},
1975 {"fmask", s_mips_mask, 'F'},
1976 {"frame", s_mips_frame, 0},
1977 {"loc", s_mips_loc, 0},
1978 {"mask", s_mips_mask, 'R'},
1979 {"verstamp", s_ignore, 0},
1980 { NULL, NULL, 0 },
1981 };
1982
1983 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1984 purpose of the `.dc.a' internal pseudo-op. */
1985
1986 int
1987 mips_address_bytes (void)
1988 {
1989 file_mips_check_options ();
1990 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1991 }
1992
1993 extern void pop_insert (const pseudo_typeS *);
1994
1995 void
1996 mips_pop_insert (void)
1997 {
1998 pop_insert (mips_pseudo_table);
1999 if (! ECOFF_DEBUGGING)
2000 pop_insert (mips_nonecoff_pseudo_table);
2001 }
2002 \f
2003 /* Symbols labelling the current insn. */
2004
2005 struct insn_label_list
2006 {
2007 struct insn_label_list *next;
2008 symbolS *label;
2009 };
2010
2011 static struct insn_label_list *free_insn_labels;
2012 #define label_list tc_segment_info_data.labels
2013
2014 static void mips_clear_insn_labels (void);
2015 static void mips_mark_labels (void);
2016 static void mips_compressed_mark_labels (void);
2017
2018 static inline void
2019 mips_clear_insn_labels (void)
2020 {
2021 struct insn_label_list **pl;
2022 segment_info_type *si;
2023
2024 if (now_seg)
2025 {
2026 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
2027 ;
2028
2029 si = seg_info (now_seg);
2030 *pl = si->label_list;
2031 si->label_list = NULL;
2032 }
2033 }
2034
2035 /* Mark instruction labels in MIPS16/microMIPS mode. */
2036
2037 static inline void
2038 mips_mark_labels (void)
2039 {
2040 if (HAVE_CODE_COMPRESSION)
2041 mips_compressed_mark_labels ();
2042 }
2043 \f
2044 static char *expr_parse_end;
2045
2046 /* An expression in a macro instruction. This is set by mips_ip and
2047 mips16_ip and when populated is always an O_constant. */
2048
2049 static expressionS imm_expr;
2050
2051 /* The relocatable field in an instruction and the relocs associated
2052 with it. These variables are used for instructions like LUI and
2053 JAL as well as true offsets. They are also used for address
2054 operands in macros. */
2055
2056 static expressionS offset_expr;
2057 static bfd_reloc_code_real_type offset_reloc[3]
2058 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2059
2060 /* This is set to the resulting size of the instruction to be produced
2061 by mips16_ip if an explicit extension is used or by mips_ip if an
2062 explicit size is supplied. */
2063
2064 static unsigned int forced_insn_length;
2065
2066 /* True if we are assembling an instruction. All dot symbols defined during
2067 this time should be treated as code labels. */
2068
2069 static bool mips_assembling_insn;
2070
2071 /* The pdr segment for per procedure frame/regmask info. Not used for
2072 ECOFF debugging. */
2073
2074 static segT pdr_seg;
2075
2076 /* The default target format to use. */
2077
2078 #if defined (TE_FreeBSD)
2079 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2080 #elif defined (TE_TMIPS)
2081 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2082 #else
2083 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2084 #endif
2085
2086 const char *
2087 mips_target_format (void)
2088 {
2089 switch (OUTPUT_FLAVOR)
2090 {
2091 case bfd_target_elf_flavour:
2092 #ifdef TE_VXWORKS
2093 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
2094 return (target_big_endian
2095 ? "elf32-bigmips-vxworks"
2096 : "elf32-littlemips-vxworks");
2097 #endif
2098 return (target_big_endian
2099 ? (HAVE_64BIT_OBJECTS
2100 ? ELF_TARGET ("elf64-", "big")
2101 : (HAVE_NEWABI
2102 ? ELF_TARGET ("elf32-n", "big")
2103 : ELF_TARGET ("elf32-", "big")))
2104 : (HAVE_64BIT_OBJECTS
2105 ? ELF_TARGET ("elf64-", "little")
2106 : (HAVE_NEWABI
2107 ? ELF_TARGET ("elf32-n", "little")
2108 : ELF_TARGET ("elf32-", "little"))));
2109 default:
2110 abort ();
2111 return NULL;
2112 }
2113 }
2114
2115 /* Return the ISA revision that is currently in use, or 0 if we are
2116 generating code for MIPS V or below. */
2117
2118 static int
2119 mips_isa_rev (void)
2120 {
2121 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2122 return 2;
2123
2124 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2125 return 3;
2126
2127 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2128 return 5;
2129
2130 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2131 return 6;
2132
2133 /* microMIPS implies revision 2 or above. */
2134 if (mips_opts.micromips)
2135 return 2;
2136
2137 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2138 return 1;
2139
2140 return 0;
2141 }
2142
2143 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2144
2145 static unsigned int
2146 mips_ase_mask (unsigned int flags)
2147 {
2148 unsigned int i;
2149
2150 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2151 if (flags & mips_ase_groups[i])
2152 flags |= mips_ase_groups[i];
2153 return flags;
2154 }
2155
2156 /* Check whether the current ISA supports ASE. Issue a warning if
2157 appropriate. */
2158
2159 static void
2160 mips_check_isa_supports_ase (const struct mips_ase *ase)
2161 {
2162 const char *base;
2163 int min_rev, size;
2164 static unsigned int warned_isa;
2165 static unsigned int warned_fp32;
2166
2167 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2168 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2169 else
2170 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2171 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2172 && (warned_isa & ase->flags) != ase->flags)
2173 {
2174 warned_isa |= ase->flags;
2175 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2176 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2177 if (min_rev < 0)
2178 as_warn (_("the %d-bit %s architecture does not support the"
2179 " `%s' extension"), size, base, ase->name);
2180 else
2181 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2182 ase->name, base, size, min_rev);
2183 }
2184 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2185 && (warned_isa & ase->flags) != ase->flags)
2186 {
2187 warned_isa |= ase->flags;
2188 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2189 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2190 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2191 ase->name, base, size, ase->rem_rev);
2192 }
2193
2194 if ((ase->flags & FP64_ASES)
2195 && mips_opts.fp != 64
2196 && (warned_fp32 & ase->flags) != ase->flags)
2197 {
2198 warned_fp32 |= ase->flags;
2199 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2200 }
2201 }
2202
2203 /* Check all enabled ASEs to see whether they are supported by the
2204 chosen architecture. */
2205
2206 static void
2207 mips_check_isa_supports_ases (void)
2208 {
2209 unsigned int i, mask;
2210
2211 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2212 {
2213 mask = mips_ase_mask (mips_ases[i].flags);
2214 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2215 mips_check_isa_supports_ase (&mips_ases[i]);
2216 }
2217 }
2218
2219 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2220 that were affected. */
2221
2222 static unsigned int
2223 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2224 bool enabled_p)
2225 {
2226 unsigned int mask;
2227
2228 mask = mips_ase_mask (ase->flags);
2229 opts->ase &= ~mask;
2230
2231 /* Clear combination ASE flags, which need to be recalculated based on
2232 updated regular ASE settings. */
2233 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT | ASE_EVA_R6);
2234
2235 if (enabled_p)
2236 opts->ase |= ase->flags;
2237
2238 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2239 instructions which are only valid when both ASEs are enabled.
2240 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2241 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2242 {
2243 opts->ase |= ASE_XPA_VIRT;
2244 mask |= ASE_XPA_VIRT;
2245 }
2246 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2247 {
2248 opts->ase |= ASE_MIPS16E2_MT;
2249 mask |= ASE_MIPS16E2_MT;
2250 }
2251
2252 /* The EVA Extension has instructions which are only valid when the R6 ISA
2253 is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
2254 present. */
2255 if (((opts->ase & ASE_EVA) != 0) && ISA_IS_R6 (opts->isa))
2256 {
2257 opts->ase |= ASE_EVA_R6;
2258 mask |= ASE_EVA_R6;
2259 }
2260
2261 return mask;
2262 }
2263
2264 /* Return the ASE called NAME, or null if none. */
2265
2266 static const struct mips_ase *
2267 mips_lookup_ase (const char *name)
2268 {
2269 unsigned int i;
2270
2271 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2272 if (strcmp (name, mips_ases[i].name) == 0)
2273 return &mips_ases[i];
2274 return NULL;
2275 }
2276
2277 /* Return the length of a microMIPS instruction in bytes. If bits of
2278 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2279 otherwise it is a 32-bit instruction. */
2280
2281 static inline unsigned int
2282 micromips_insn_length (const struct mips_opcode *mo)
2283 {
2284 return mips_opcode_32bit_p (mo) ? 4 : 2;
2285 }
2286
2287 /* Return the length of MIPS16 instruction OPCODE. */
2288
2289 static inline unsigned int
2290 mips16_opcode_length (unsigned long opcode)
2291 {
2292 return (opcode >> 16) == 0 ? 2 : 4;
2293 }
2294
2295 /* Return the length of instruction INSN. */
2296
2297 static inline unsigned int
2298 insn_length (const struct mips_cl_insn *insn)
2299 {
2300 if (mips_opts.micromips)
2301 return micromips_insn_length (insn->insn_mo);
2302 else if (mips_opts.mips16)
2303 return mips16_opcode_length (insn->insn_opcode);
2304 else
2305 return 4;
2306 }
2307
2308 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2309
2310 static void
2311 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2312 {
2313 size_t i;
2314
2315 insn->insn_mo = mo;
2316 insn->insn_opcode = mo->match;
2317 insn->frag = NULL;
2318 insn->where = 0;
2319 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2320 insn->fixp[i] = NULL;
2321 insn->fixed_p = (mips_opts.noreorder > 0);
2322 insn->noreorder_p = (mips_opts.noreorder > 0);
2323 insn->mips16_absolute_jump_p = 0;
2324 insn->complete_p = 0;
2325 insn->cleared_p = 0;
2326 }
2327
2328 /* Get a list of all the operands in INSN. */
2329
2330 static const struct mips_operand_array *
2331 insn_operands (const struct mips_cl_insn *insn)
2332 {
2333 if (insn->insn_mo >= &mips_opcodes[0]
2334 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2335 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2336
2337 if (insn->insn_mo >= &mips16_opcodes[0]
2338 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2339 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2340
2341 if (insn->insn_mo >= &micromips_opcodes[0]
2342 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2343 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2344
2345 abort ();
2346 }
2347
2348 /* Get a description of operand OPNO of INSN. */
2349
2350 static const struct mips_operand *
2351 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2352 {
2353 const struct mips_operand_array *operands;
2354
2355 operands = insn_operands (insn);
2356 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2357 abort ();
2358 return operands->operand[opno];
2359 }
2360
2361 /* Install UVAL as the value of OPERAND in INSN. */
2362
2363 static inline void
2364 insn_insert_operand (struct mips_cl_insn *insn,
2365 const struct mips_operand *operand, unsigned int uval)
2366 {
2367 if (mips_opts.mips16
2368 && operand->type == OP_INT && operand->lsb == 0
2369 && mips_opcode_32bit_p (insn->insn_mo))
2370 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2371 else
2372 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2373 }
2374
2375 /* Extract the value of OPERAND from INSN. */
2376
2377 static inline unsigned
2378 insn_extract_operand (const struct mips_cl_insn *insn,
2379 const struct mips_operand *operand)
2380 {
2381 return mips_extract_operand (operand, insn->insn_opcode);
2382 }
2383
2384 /* Record the current MIPS16/microMIPS mode in now_seg. */
2385
2386 static void
2387 mips_record_compressed_mode (void)
2388 {
2389 segment_info_type *si;
2390
2391 si = seg_info (now_seg);
2392 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2393 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2394 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2395 si->tc_segment_info_data.micromips = mips_opts.micromips;
2396 }
2397
2398 /* Read a standard MIPS instruction from BUF. */
2399
2400 static unsigned long
2401 read_insn (char *buf)
2402 {
2403 if (target_big_endian)
2404 return bfd_getb32 ((bfd_byte *) buf);
2405 else
2406 return bfd_getl32 ((bfd_byte *) buf);
2407 }
2408
2409 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2410 the next byte. */
2411
2412 static char *
2413 write_insn (char *buf, unsigned int insn)
2414 {
2415 md_number_to_chars (buf, insn, 4);
2416 return buf + 4;
2417 }
2418
2419 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2420 has length LENGTH. */
2421
2422 static unsigned long
2423 read_compressed_insn (char *buf, unsigned int length)
2424 {
2425 unsigned long insn;
2426 unsigned int i;
2427
2428 insn = 0;
2429 for (i = 0; i < length; i += 2)
2430 {
2431 insn <<= 16;
2432 if (target_big_endian)
2433 insn |= bfd_getb16 ((char *) buf);
2434 else
2435 insn |= bfd_getl16 ((char *) buf);
2436 buf += 2;
2437 }
2438 return insn;
2439 }
2440
2441 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2442 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2443
2444 static char *
2445 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2446 {
2447 unsigned int i;
2448
2449 for (i = 0; i < length; i += 2)
2450 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2451 return buf + length;
2452 }
2453
2454 /* Install INSN at the location specified by its "frag" and "where" fields. */
2455
2456 static void
2457 install_insn (const struct mips_cl_insn *insn)
2458 {
2459 char *f = insn->frag->fr_literal + insn->where;
2460 if (HAVE_CODE_COMPRESSION)
2461 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2462 else
2463 write_insn (f, insn->insn_opcode);
2464 mips_record_compressed_mode ();
2465 }
2466
2467 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2468 and install the opcode in the new location. */
2469
2470 static void
2471 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2472 {
2473 size_t i;
2474
2475 insn->frag = frag;
2476 insn->where = where;
2477 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2478 if (insn->fixp[i] != NULL)
2479 {
2480 insn->fixp[i]->fx_frag = frag;
2481 insn->fixp[i]->fx_where = where;
2482 }
2483 install_insn (insn);
2484 }
2485
2486 /* Add INSN to the end of the output. */
2487
2488 static void
2489 add_fixed_insn (struct mips_cl_insn *insn)
2490 {
2491 char *f = frag_more (insn_length (insn));
2492 move_insn (insn, frag_now, f - frag_now->fr_literal);
2493 }
2494
2495 /* Start a variant frag and move INSN to the start of the variant part,
2496 marking it as fixed. The other arguments are as for frag_var. */
2497
2498 static void
2499 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2500 relax_substateT subtype, symbolS *symbol, offsetT offset)
2501 {
2502 frag_grow (max_chars);
2503 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2504 insn->fixed_p = 1;
2505 frag_var (rs_machine_dependent, max_chars, var,
2506 subtype, symbol, offset, NULL);
2507 }
2508
2509 /* Insert N copies of INSN into the history buffer, starting at
2510 position FIRST. Neither FIRST nor N need to be clipped. */
2511
2512 static void
2513 insert_into_history (unsigned int first, unsigned int n,
2514 const struct mips_cl_insn *insn)
2515 {
2516 if (mips_relax.sequence != 2)
2517 {
2518 unsigned int i;
2519
2520 for (i = ARRAY_SIZE (history); i-- > first;)
2521 if (i >= first + n)
2522 history[i] = history[i - n];
2523 else
2524 history[i] = *insn;
2525 }
2526 }
2527
2528 /* Clear the error in insn_error. */
2529
2530 static void
2531 clear_insn_error (void)
2532 {
2533 memset (&insn_error, 0, sizeof (insn_error));
2534 }
2535
2536 /* Possibly record error message MSG for the current instruction.
2537 If the error is about a particular argument, ARGNUM is the 1-based
2538 number of that argument, otherwise it is 0. FORMAT is the format
2539 of MSG. Return true if MSG was used, false if the current message
2540 was kept. */
2541
2542 static bool
2543 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2544 const char *msg)
2545 {
2546 if (argnum == 0)
2547 {
2548 /* Give priority to errors against specific arguments, and to
2549 the first whole-instruction message. */
2550 if (insn_error.msg)
2551 return false;
2552 }
2553 else
2554 {
2555 /* Keep insn_error if it is against a later argument. */
2556 if (argnum < insn_error.min_argnum)
2557 return false;
2558
2559 /* If both errors are against the same argument but are different,
2560 give up on reporting a specific error for this argument.
2561 See the comment about mips_insn_error for details. */
2562 if (argnum == insn_error.min_argnum
2563 && insn_error.msg
2564 && strcmp (insn_error.msg, msg) != 0)
2565 {
2566 insn_error.msg = 0;
2567 insn_error.min_argnum += 1;
2568 return false;
2569 }
2570 }
2571 insn_error.min_argnum = argnum;
2572 insn_error.format = format;
2573 insn_error.msg = msg;
2574 return true;
2575 }
2576
2577 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2578 as for set_insn_error_format. */
2579
2580 static void
2581 set_insn_error (int argnum, const char *msg)
2582 {
2583 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2584 }
2585
2586 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2587 as for set_insn_error_format. */
2588
2589 static void
2590 set_insn_error_i (int argnum, const char *msg, int i)
2591 {
2592 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2593 insn_error.u.i = i;
2594 }
2595
2596 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2597 are as for set_insn_error_format. */
2598
2599 static void
2600 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2601 {
2602 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2603 {
2604 insn_error.u.ss[0] = s1;
2605 insn_error.u.ss[1] = s2;
2606 }
2607 }
2608
2609 /* Report the error in insn_error, which is against assembly code STR. */
2610
2611 static void
2612 report_insn_error (const char *str)
2613 {
2614 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2615
2616 switch (insn_error.format)
2617 {
2618 case ERR_FMT_PLAIN:
2619 as_bad (msg, str);
2620 break;
2621
2622 case ERR_FMT_I:
2623 as_bad (msg, insn_error.u.i, str);
2624 break;
2625
2626 case ERR_FMT_SS:
2627 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2628 break;
2629 }
2630
2631 free ((char *) msg);
2632 }
2633
2634 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2635 the idea is to make it obvious at a glance that each errata is
2636 included. */
2637
2638 static void
2639 init_vr4120_conflicts (void)
2640 {
2641 #define CONFLICT(FIRST, SECOND) \
2642 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2643
2644 /* Errata 21 - [D]DIV[U] after [D]MACC */
2645 CONFLICT (MACC, DIV);
2646 CONFLICT (DMACC, DIV);
2647
2648 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2649 CONFLICT (DMULT, DMULT);
2650 CONFLICT (DMULT, DMACC);
2651 CONFLICT (DMACC, DMULT);
2652 CONFLICT (DMACC, DMACC);
2653
2654 /* Errata 24 - MT{LO,HI} after [D]MACC */
2655 CONFLICT (MACC, MTHILO);
2656 CONFLICT (DMACC, MTHILO);
2657
2658 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2659 instruction is executed immediately after a MACC or DMACC
2660 instruction, the result of [either instruction] is incorrect." */
2661 CONFLICT (MACC, MULT);
2662 CONFLICT (MACC, DMULT);
2663 CONFLICT (DMACC, MULT);
2664 CONFLICT (DMACC, DMULT);
2665
2666 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2667 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2668 DDIV or DDIVU instruction, the result of the MACC or
2669 DMACC instruction is incorrect.". */
2670 CONFLICT (DMULT, MACC);
2671 CONFLICT (DMULT, DMACC);
2672 CONFLICT (DIV, MACC);
2673 CONFLICT (DIV, DMACC);
2674
2675 #undef CONFLICT
2676 }
2677
2678 struct regname {
2679 const char *name;
2680 unsigned int num;
2681 };
2682
2683 #define RNUM_MASK 0x00000ff
2684 #define RTYPE_MASK 0x0ffff00
2685 #define RTYPE_NUM 0x0000100
2686 #define RTYPE_FPU 0x0000200
2687 #define RTYPE_FCC 0x0000400
2688 #define RTYPE_VEC 0x0000800
2689 #define RTYPE_GP 0x0001000
2690 #define RTYPE_CP0 0x0002000
2691 #define RTYPE_PC 0x0004000
2692 #define RTYPE_ACC 0x0008000
2693 #define RTYPE_CCC 0x0010000
2694 #define RTYPE_VI 0x0020000
2695 #define RTYPE_VF 0x0040000
2696 #define RTYPE_R5900_I 0x0080000
2697 #define RTYPE_R5900_Q 0x0100000
2698 #define RTYPE_R5900_R 0x0200000
2699 #define RTYPE_R5900_ACC 0x0400000
2700 #define RTYPE_MSA 0x0800000
2701 #define RWARN 0x8000000
2702
2703 #define GENERIC_REGISTER_NUMBERS \
2704 {"$0", RTYPE_NUM | 0}, \
2705 {"$1", RTYPE_NUM | 1}, \
2706 {"$2", RTYPE_NUM | 2}, \
2707 {"$3", RTYPE_NUM | 3}, \
2708 {"$4", RTYPE_NUM | 4}, \
2709 {"$5", RTYPE_NUM | 5}, \
2710 {"$6", RTYPE_NUM | 6}, \
2711 {"$7", RTYPE_NUM | 7}, \
2712 {"$8", RTYPE_NUM | 8}, \
2713 {"$9", RTYPE_NUM | 9}, \
2714 {"$10", RTYPE_NUM | 10}, \
2715 {"$11", RTYPE_NUM | 11}, \
2716 {"$12", RTYPE_NUM | 12}, \
2717 {"$13", RTYPE_NUM | 13}, \
2718 {"$14", RTYPE_NUM | 14}, \
2719 {"$15", RTYPE_NUM | 15}, \
2720 {"$16", RTYPE_NUM | 16}, \
2721 {"$17", RTYPE_NUM | 17}, \
2722 {"$18", RTYPE_NUM | 18}, \
2723 {"$19", RTYPE_NUM | 19}, \
2724 {"$20", RTYPE_NUM | 20}, \
2725 {"$21", RTYPE_NUM | 21}, \
2726 {"$22", RTYPE_NUM | 22}, \
2727 {"$23", RTYPE_NUM | 23}, \
2728 {"$24", RTYPE_NUM | 24}, \
2729 {"$25", RTYPE_NUM | 25}, \
2730 {"$26", RTYPE_NUM | 26}, \
2731 {"$27", RTYPE_NUM | 27}, \
2732 {"$28", RTYPE_NUM | 28}, \
2733 {"$29", RTYPE_NUM | 29}, \
2734 {"$30", RTYPE_NUM | 30}, \
2735 {"$31", RTYPE_NUM | 31}
2736
2737 #define FPU_REGISTER_NAMES \
2738 {"$f0", RTYPE_FPU | 0}, \
2739 {"$f1", RTYPE_FPU | 1}, \
2740 {"$f2", RTYPE_FPU | 2}, \
2741 {"$f3", RTYPE_FPU | 3}, \
2742 {"$f4", RTYPE_FPU | 4}, \
2743 {"$f5", RTYPE_FPU | 5}, \
2744 {"$f6", RTYPE_FPU | 6}, \
2745 {"$f7", RTYPE_FPU | 7}, \
2746 {"$f8", RTYPE_FPU | 8}, \
2747 {"$f9", RTYPE_FPU | 9}, \
2748 {"$f10", RTYPE_FPU | 10}, \
2749 {"$f11", RTYPE_FPU | 11}, \
2750 {"$f12", RTYPE_FPU | 12}, \
2751 {"$f13", RTYPE_FPU | 13}, \
2752 {"$f14", RTYPE_FPU | 14}, \
2753 {"$f15", RTYPE_FPU | 15}, \
2754 {"$f16", RTYPE_FPU | 16}, \
2755 {"$f17", RTYPE_FPU | 17}, \
2756 {"$f18", RTYPE_FPU | 18}, \
2757 {"$f19", RTYPE_FPU | 19}, \
2758 {"$f20", RTYPE_FPU | 20}, \
2759 {"$f21", RTYPE_FPU | 21}, \
2760 {"$f22", RTYPE_FPU | 22}, \
2761 {"$f23", RTYPE_FPU | 23}, \
2762 {"$f24", RTYPE_FPU | 24}, \
2763 {"$f25", RTYPE_FPU | 25}, \
2764 {"$f26", RTYPE_FPU | 26}, \
2765 {"$f27", RTYPE_FPU | 27}, \
2766 {"$f28", RTYPE_FPU | 28}, \
2767 {"$f29", RTYPE_FPU | 29}, \
2768 {"$f30", RTYPE_FPU | 30}, \
2769 {"$f31", RTYPE_FPU | 31}
2770
2771 #define FPU_CONDITION_CODE_NAMES \
2772 {"$fcc0", RTYPE_FCC | 0}, \
2773 {"$fcc1", RTYPE_FCC | 1}, \
2774 {"$fcc2", RTYPE_FCC | 2}, \
2775 {"$fcc3", RTYPE_FCC | 3}, \
2776 {"$fcc4", RTYPE_FCC | 4}, \
2777 {"$fcc5", RTYPE_FCC | 5}, \
2778 {"$fcc6", RTYPE_FCC | 6}, \
2779 {"$fcc7", RTYPE_FCC | 7}
2780
2781 #define COPROC_CONDITION_CODE_NAMES \
2782 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2783 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2784 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2785 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2786 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2787 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2788 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2789 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2790
2791 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2792 {"$a4", RTYPE_GP | 8}, \
2793 {"$a5", RTYPE_GP | 9}, \
2794 {"$a6", RTYPE_GP | 10}, \
2795 {"$a7", RTYPE_GP | 11}, \
2796 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2797 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2798 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2799 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2800 {"$t0", RTYPE_GP | 12}, \
2801 {"$t1", RTYPE_GP | 13}, \
2802 {"$t2", RTYPE_GP | 14}, \
2803 {"$t3", RTYPE_GP | 15}
2804
2805 #define O32_SYMBOLIC_REGISTER_NAMES \
2806 {"$t0", RTYPE_GP | 8}, \
2807 {"$t1", RTYPE_GP | 9}, \
2808 {"$t2", RTYPE_GP | 10}, \
2809 {"$t3", RTYPE_GP | 11}, \
2810 {"$t4", RTYPE_GP | 12}, \
2811 {"$t5", RTYPE_GP | 13}, \
2812 {"$t6", RTYPE_GP | 14}, \
2813 {"$t7", RTYPE_GP | 15}, \
2814 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2815 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2816 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2817 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2818
2819 /* Remaining symbolic register names. */
2820 #define SYMBOLIC_REGISTER_NAMES \
2821 {"$zero", RTYPE_GP | 0}, \
2822 {"$at", RTYPE_GP | 1}, \
2823 {"$AT", RTYPE_GP | 1}, \
2824 {"$v0", RTYPE_GP | 2}, \
2825 {"$v1", RTYPE_GP | 3}, \
2826 {"$a0", RTYPE_GP | 4}, \
2827 {"$a1", RTYPE_GP | 5}, \
2828 {"$a2", RTYPE_GP | 6}, \
2829 {"$a3", RTYPE_GP | 7}, \
2830 {"$s0", RTYPE_GP | 16}, \
2831 {"$s1", RTYPE_GP | 17}, \
2832 {"$s2", RTYPE_GP | 18}, \
2833 {"$s3", RTYPE_GP | 19}, \
2834 {"$s4", RTYPE_GP | 20}, \
2835 {"$s5", RTYPE_GP | 21}, \
2836 {"$s6", RTYPE_GP | 22}, \
2837 {"$s7", RTYPE_GP | 23}, \
2838 {"$t8", RTYPE_GP | 24}, \
2839 {"$t9", RTYPE_GP | 25}, \
2840 {"$k0", RTYPE_GP | 26}, \
2841 {"$kt0", RTYPE_GP | 26}, \
2842 {"$k1", RTYPE_GP | 27}, \
2843 {"$kt1", RTYPE_GP | 27}, \
2844 {"$gp", RTYPE_GP | 28}, \
2845 {"$sp", RTYPE_GP | 29}, \
2846 {"$s8", RTYPE_GP | 30}, \
2847 {"$fp", RTYPE_GP | 30}, \
2848 {"$ra", RTYPE_GP | 31}
2849
2850 #define MIPS16_SPECIAL_REGISTER_NAMES \
2851 {"$pc", RTYPE_PC | 0}
2852
2853 #define MDMX_VECTOR_REGISTER_NAMES \
2854 /* {"$v0", RTYPE_VEC | 0}, Clash with REG 2 above. */ \
2855 /* {"$v1", RTYPE_VEC | 1}, Clash with REG 3 above. */ \
2856 {"$v2", RTYPE_VEC | 2}, \
2857 {"$v3", RTYPE_VEC | 3}, \
2858 {"$v4", RTYPE_VEC | 4}, \
2859 {"$v5", RTYPE_VEC | 5}, \
2860 {"$v6", RTYPE_VEC | 6}, \
2861 {"$v7", RTYPE_VEC | 7}, \
2862 {"$v8", RTYPE_VEC | 8}, \
2863 {"$v9", RTYPE_VEC | 9}, \
2864 {"$v10", RTYPE_VEC | 10}, \
2865 {"$v11", RTYPE_VEC | 11}, \
2866 {"$v12", RTYPE_VEC | 12}, \
2867 {"$v13", RTYPE_VEC | 13}, \
2868 {"$v14", RTYPE_VEC | 14}, \
2869 {"$v15", RTYPE_VEC | 15}, \
2870 {"$v16", RTYPE_VEC | 16}, \
2871 {"$v17", RTYPE_VEC | 17}, \
2872 {"$v18", RTYPE_VEC | 18}, \
2873 {"$v19", RTYPE_VEC | 19}, \
2874 {"$v20", RTYPE_VEC | 20}, \
2875 {"$v21", RTYPE_VEC | 21}, \
2876 {"$v22", RTYPE_VEC | 22}, \
2877 {"$v23", RTYPE_VEC | 23}, \
2878 {"$v24", RTYPE_VEC | 24}, \
2879 {"$v25", RTYPE_VEC | 25}, \
2880 {"$v26", RTYPE_VEC | 26}, \
2881 {"$v27", RTYPE_VEC | 27}, \
2882 {"$v28", RTYPE_VEC | 28}, \
2883 {"$v29", RTYPE_VEC | 29}, \
2884 {"$v30", RTYPE_VEC | 30}, \
2885 {"$v31", RTYPE_VEC | 31}
2886
2887 #define R5900_I_NAMES \
2888 {"$I", RTYPE_R5900_I | 0}
2889
2890 #define R5900_Q_NAMES \
2891 {"$Q", RTYPE_R5900_Q | 0}
2892
2893 #define R5900_R_NAMES \
2894 {"$R", RTYPE_R5900_R | 0}
2895
2896 #define R5900_ACC_NAMES \
2897 {"$ACC", RTYPE_R5900_ACC | 0 }
2898
2899 #define MIPS_DSP_ACCUMULATOR_NAMES \
2900 {"$ac0", RTYPE_ACC | 0}, \
2901 {"$ac1", RTYPE_ACC | 1}, \
2902 {"$ac2", RTYPE_ACC | 2}, \
2903 {"$ac3", RTYPE_ACC | 3}
2904
2905 static const struct regname reg_names[] = {
2906 GENERIC_REGISTER_NUMBERS,
2907 FPU_REGISTER_NAMES,
2908 FPU_CONDITION_CODE_NAMES,
2909 COPROC_CONDITION_CODE_NAMES,
2910
2911 /* The $txx registers depends on the abi,
2912 these will be added later into the symbol table from
2913 one of the tables below once mips_abi is set after
2914 parsing of arguments from the command line. */
2915 SYMBOLIC_REGISTER_NAMES,
2916
2917 MIPS16_SPECIAL_REGISTER_NAMES,
2918 MDMX_VECTOR_REGISTER_NAMES,
2919 R5900_I_NAMES,
2920 R5900_Q_NAMES,
2921 R5900_R_NAMES,
2922 R5900_ACC_NAMES,
2923 MIPS_DSP_ACCUMULATOR_NAMES,
2924 {0, 0}
2925 };
2926
2927 static const struct regname reg_names_o32[] = {
2928 O32_SYMBOLIC_REGISTER_NAMES,
2929 {0, 0}
2930 };
2931
2932 static const struct regname reg_names_n32n64[] = {
2933 N32N64_SYMBOLIC_REGISTER_NAMES,
2934 {0, 0}
2935 };
2936
2937 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2938 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2939 of these register symbols, return the associated vector register,
2940 otherwise return SYMVAL itself. */
2941
2942 static unsigned int
2943 mips_prefer_vec_regno (unsigned int symval)
2944 {
2945 if ((symval & -2) == (RTYPE_GP | 2))
2946 return RTYPE_VEC | (symval & 1);
2947 return symval;
2948 }
2949
2950 /* Return true if string [S, E) is a valid register name, storing its
2951 symbol value in *SYMVAL_PTR if so. */
2952
2953 static bool
2954 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2955 {
2956 char save_c;
2957 symbolS *symbol;
2958
2959 /* Terminate name. */
2960 save_c = *e;
2961 *e = '\0';
2962
2963 /* Look up the name. */
2964 symbol = symbol_find (s);
2965 *e = save_c;
2966
2967 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2968 return false;
2969
2970 *symval_ptr = S_GET_VALUE (symbol);
2971 return true;
2972 }
2973
2974 /* Return true if the string at *SPTR is a valid register name. Allow it
2975 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2976 is nonnull.
2977
2978 When returning true, move *SPTR past the register, store the
2979 register's symbol value in *SYMVAL_PTR and the channel mask in
2980 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2981 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2982 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2983
2984 static bool
2985 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2986 unsigned int *channels_ptr)
2987 {
2988 char *s, *e, *m;
2989 const char *q;
2990 unsigned int channels, symval, bit;
2991
2992 /* Find end of name. */
2993 s = e = *sptr;
2994 if (is_name_beginner (*e))
2995 ++e;
2996 while (is_part_of_name (*e))
2997 ++e;
2998
2999 channels = 0;
3000 if (!mips_parse_register_1 (s, e, &symval))
3001 {
3002 if (!channels_ptr)
3003 return false;
3004
3005 /* Eat characters from the end of the string that are valid
3006 channel suffixes. The preceding register must be $ACC or
3007 end with a digit, so there is no ambiguity. */
3008 bit = 1;
3009 m = e;
3010 for (q = "wzyx"; *q; q++, bit <<= 1)
3011 if (m > s && m[-1] == *q)
3012 {
3013 --m;
3014 channels |= bit;
3015 }
3016
3017 if (channels == 0
3018 || !mips_parse_register_1 (s, m, &symval)
3019 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
3020 return false;
3021 }
3022
3023 *sptr = e;
3024 *symval_ptr = symval;
3025 if (channels_ptr)
3026 *channels_ptr = channels;
3027 return true;
3028 }
3029
3030 /* Check if SPTR points at a valid register specifier according to TYPES.
3031 If so, then return 1, advance S to consume the specifier and store
3032 the register's number in REGNOP, otherwise return 0. */
3033
3034 static int
3035 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
3036 {
3037 unsigned int regno;
3038
3039 if (mips_parse_register (s, &regno, NULL))
3040 {
3041 if (types & RTYPE_VEC)
3042 regno = mips_prefer_vec_regno (regno);
3043 if (regno & types)
3044 regno &= RNUM_MASK;
3045 else
3046 regno = ~0;
3047 }
3048 else
3049 {
3050 if (types & RWARN)
3051 as_warn (_("unrecognized register name `%s'"), *s);
3052 regno = ~0;
3053 }
3054 if (regnop)
3055 *regnop = regno;
3056 return regno <= RNUM_MASK;
3057 }
3058
3059 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
3060 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
3061
3062 static char *
3063 mips_parse_vu0_channels (char *s, unsigned int *channels)
3064 {
3065 unsigned int i;
3066
3067 *channels = 0;
3068 for (i = 0; i < 4; i++)
3069 if (*s == "xyzw"[i])
3070 {
3071 *channels |= 1 << (3 - i);
3072 ++s;
3073 }
3074 return s;
3075 }
3076
3077 /* Token types for parsed operand lists. */
3078 enum mips_operand_token_type {
3079 /* A plain register, e.g. $f2. */
3080 OT_REG,
3081
3082 /* A 4-bit XYZW channel mask. */
3083 OT_CHANNELS,
3084
3085 /* A constant vector index, e.g. [1]. */
3086 OT_INTEGER_INDEX,
3087
3088 /* A register vector index, e.g. [$2]. */
3089 OT_REG_INDEX,
3090
3091 /* A continuous range of registers, e.g. $s0-$s4. */
3092 OT_REG_RANGE,
3093
3094 /* A (possibly relocated) expression. */
3095 OT_INTEGER,
3096
3097 /* A floating-point value. */
3098 OT_FLOAT,
3099
3100 /* A single character. This can be '(', ')' or ',', but '(' only appears
3101 before OT_REGs. */
3102 OT_CHAR,
3103
3104 /* A doubled character, either "--" or "++". */
3105 OT_DOUBLE_CHAR,
3106
3107 /* The end of the operand list. */
3108 OT_END
3109 };
3110
3111 /* A parsed operand token. */
3112 struct mips_operand_token
3113 {
3114 /* The type of token. */
3115 enum mips_operand_token_type type;
3116 union
3117 {
3118 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3119 unsigned int regno;
3120
3121 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3122 unsigned int channels;
3123
3124 /* The integer value of an OT_INTEGER_INDEX. */
3125 addressT index;
3126
3127 /* The two register symbol values involved in an OT_REG_RANGE. */
3128 struct {
3129 unsigned int regno1;
3130 unsigned int regno2;
3131 } reg_range;
3132
3133 /* The value of an OT_INTEGER. The value is represented as an
3134 expression and the relocation operators that were applied to
3135 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3136 relocation operators were used. */
3137 struct {
3138 expressionS value;
3139 bfd_reloc_code_real_type relocs[3];
3140 } integer;
3141
3142 /* The binary data for an OT_FLOAT constant, and the number of bytes
3143 in the constant. */
3144 struct {
3145 unsigned char data[8];
3146 int length;
3147 } flt;
3148
3149 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3150 char ch;
3151 } u;
3152 };
3153
3154 /* An obstack used to construct lists of mips_operand_tokens. */
3155 static struct obstack mips_operand_tokens;
3156
3157 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3158
3159 static void
3160 mips_add_token (struct mips_operand_token *token,
3161 enum mips_operand_token_type type)
3162 {
3163 token->type = type;
3164 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3165 }
3166
3167 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3168 and OT_REG tokens for them if so, and return a pointer to the first
3169 unconsumed character. Return null otherwise. */
3170
3171 static char *
3172 mips_parse_base_start (char *s)
3173 {
3174 struct mips_operand_token token;
3175 unsigned int regno, channels;
3176 bool decrement_p;
3177
3178 if (*s != '(')
3179 return 0;
3180
3181 ++s;
3182 SKIP_SPACE_TABS (s);
3183
3184 /* Only match "--" as part of a base expression. In other contexts "--X"
3185 is a double negative. */
3186 decrement_p = (s[0] == '-' && s[1] == '-');
3187 if (decrement_p)
3188 {
3189 s += 2;
3190 SKIP_SPACE_TABS (s);
3191 }
3192
3193 /* Allow a channel specifier because that leads to better error messages
3194 than treating something like "$vf0x++" as an expression. */
3195 if (!mips_parse_register (&s, &regno, &channels))
3196 return 0;
3197
3198 token.u.ch = '(';
3199 mips_add_token (&token, OT_CHAR);
3200
3201 if (decrement_p)
3202 {
3203 token.u.ch = '-';
3204 mips_add_token (&token, OT_DOUBLE_CHAR);
3205 }
3206
3207 token.u.regno = regno;
3208 mips_add_token (&token, OT_REG);
3209
3210 if (channels)
3211 {
3212 token.u.channels = channels;
3213 mips_add_token (&token, OT_CHANNELS);
3214 }
3215
3216 /* For consistency, only match "++" as part of base expressions too. */
3217 SKIP_SPACE_TABS (s);
3218 if (s[0] == '+' && s[1] == '+')
3219 {
3220 s += 2;
3221 token.u.ch = '+';
3222 mips_add_token (&token, OT_DOUBLE_CHAR);
3223 }
3224
3225 return s;
3226 }
3227
3228 /* Parse one or more tokens from S. Return a pointer to the first
3229 unconsumed character on success. Return null if an error was found
3230 and store the error text in insn_error. FLOAT_FORMAT is as for
3231 mips_parse_arguments. */
3232
3233 static char *
3234 mips_parse_argument_token (char *s, char float_format)
3235 {
3236 char *end, *save_in;
3237 const char *err;
3238 unsigned int regno1, regno2, channels;
3239 struct mips_operand_token token;
3240
3241 /* First look for "($reg", since we want to treat that as an
3242 OT_CHAR and OT_REG rather than an expression. */
3243 end = mips_parse_base_start (s);
3244 if (end)
3245 return end;
3246
3247 /* Handle other characters that end up as OT_CHARs. */
3248 if (*s == ')' || *s == ',')
3249 {
3250 token.u.ch = *s;
3251 mips_add_token (&token, OT_CHAR);
3252 ++s;
3253 return s;
3254 }
3255
3256 /* Handle tokens that start with a register. */
3257 if (mips_parse_register (&s, &regno1, &channels))
3258 {
3259 if (channels)
3260 {
3261 /* A register and a VU0 channel suffix. */
3262 token.u.regno = regno1;
3263 mips_add_token (&token, OT_REG);
3264
3265 token.u.channels = channels;
3266 mips_add_token (&token, OT_CHANNELS);
3267 return s;
3268 }
3269
3270 SKIP_SPACE_TABS (s);
3271 if (*s == '-')
3272 {
3273 /* A register range. */
3274 ++s;
3275 SKIP_SPACE_TABS (s);
3276 if (!mips_parse_register (&s, &regno2, NULL))
3277 {
3278 set_insn_error (0, _("invalid register range"));
3279 return 0;
3280 }
3281
3282 token.u.reg_range.regno1 = regno1;
3283 token.u.reg_range.regno2 = regno2;
3284 mips_add_token (&token, OT_REG_RANGE);
3285 return s;
3286 }
3287
3288 /* Add the register itself. */
3289 token.u.regno = regno1;
3290 mips_add_token (&token, OT_REG);
3291
3292 /* Check for a vector index. */
3293 if (*s == '[')
3294 {
3295 ++s;
3296 SKIP_SPACE_TABS (s);
3297 if (mips_parse_register (&s, &token.u.regno, NULL))
3298 mips_add_token (&token, OT_REG_INDEX);
3299 else
3300 {
3301 expressionS element;
3302
3303 my_getExpression (&element, s);
3304 if (element.X_op != O_constant)
3305 {
3306 set_insn_error (0, _("vector element must be constant"));
3307 return 0;
3308 }
3309 s = expr_parse_end;
3310 token.u.index = element.X_add_number;
3311 mips_add_token (&token, OT_INTEGER_INDEX);
3312 }
3313 SKIP_SPACE_TABS (s);
3314 if (*s != ']')
3315 {
3316 set_insn_error (0, _("missing `]'"));
3317 return 0;
3318 }
3319 ++s;
3320 }
3321 return s;
3322 }
3323
3324 if (float_format)
3325 {
3326 /* First try to treat expressions as floats. */
3327 save_in = input_line_pointer;
3328 input_line_pointer = s;
3329 err = md_atof (float_format, (char *) token.u.flt.data,
3330 &token.u.flt.length);
3331 end = input_line_pointer;
3332 input_line_pointer = save_in;
3333 if (err && *err)
3334 {
3335 set_insn_error (0, err);
3336 return 0;
3337 }
3338 if (s != end)
3339 {
3340 mips_add_token (&token, OT_FLOAT);
3341 return end;
3342 }
3343 }
3344
3345 /* Treat everything else as an integer expression. */
3346 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3347 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3348 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3349 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3350 s = expr_parse_end;
3351 mips_add_token (&token, OT_INTEGER);
3352 return s;
3353 }
3354
3355 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3356 if expressions should be treated as 32-bit floating-point constants,
3357 'd' if they should be treated as 64-bit floating-point constants,
3358 or 0 if they should be treated as integer expressions (the usual case).
3359
3360 Return a list of tokens on success, otherwise return 0. The caller
3361 must obstack_free the list after use. */
3362
3363 static struct mips_operand_token *
3364 mips_parse_arguments (char *s, char float_format)
3365 {
3366 struct mips_operand_token token;
3367
3368 SKIP_SPACE_TABS (s);
3369 while (*s)
3370 {
3371 s = mips_parse_argument_token (s, float_format);
3372 if (!s)
3373 {
3374 obstack_free (&mips_operand_tokens,
3375 obstack_finish (&mips_operand_tokens));
3376 return 0;
3377 }
3378 SKIP_SPACE_TABS (s);
3379 }
3380 mips_add_token (&token, OT_END);
3381 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3382 }
3383
3384 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3385 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3386
3387 static bool
3388 is_opcode_valid (const struct mips_opcode *mo)
3389 {
3390 int isa = mips_opts.isa;
3391 int ase = mips_opts.ase;
3392 int fp_s, fp_d;
3393 unsigned int i;
3394
3395 if (ISA_HAS_64BIT_REGS (isa))
3396 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3397 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3398 ase |= mips_ases[i].flags64;
3399
3400 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3401 return false;
3402
3403 /* Check whether the instruction or macro requires single-precision or
3404 double-precision floating-point support. Note that this information is
3405 stored differently in the opcode table for insns and macros. */
3406 if (mo->pinfo == INSN_MACRO)
3407 {
3408 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3409 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3410 }
3411 else
3412 {
3413 fp_s = mo->pinfo & FP_S;
3414 fp_d = mo->pinfo & FP_D;
3415 }
3416
3417 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3418 return false;
3419
3420 if (fp_s && mips_opts.soft_float)
3421 return false;
3422
3423 return true;
3424 }
3425
3426 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3427 selected ISA and architecture. */
3428
3429 static bool
3430 is_opcode_valid_16 (const struct mips_opcode *mo)
3431 {
3432 int isa = mips_opts.isa;
3433 int ase = mips_opts.ase;
3434 unsigned int i;
3435
3436 if (ISA_HAS_64BIT_REGS (isa))
3437 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3438 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3439 ase |= mips_ases[i].flags64;
3440
3441 return opcode_is_member (mo, isa, ase, mips_opts.arch);
3442 }
3443
3444 /* Return TRUE if the size of the microMIPS opcode MO matches one
3445 explicitly requested. Always TRUE in the standard MIPS mode.
3446 Use is_size_valid_16 for MIPS16 opcodes. */
3447
3448 static bool
3449 is_size_valid (const struct mips_opcode *mo)
3450 {
3451 if (!mips_opts.micromips)
3452 return true;
3453
3454 if (mips_opts.insn32)
3455 {
3456 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3457 return false;
3458 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3459 return false;
3460 }
3461 if (!forced_insn_length)
3462 return true;
3463 if (mo->pinfo == INSN_MACRO)
3464 return false;
3465 return forced_insn_length == micromips_insn_length (mo);
3466 }
3467
3468 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3469 explicitly requested. */
3470
3471 static bool
3472 is_size_valid_16 (const struct mips_opcode *mo)
3473 {
3474 if (!forced_insn_length)
3475 return true;
3476 if (mo->pinfo == INSN_MACRO)
3477 return false;
3478 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3479 return false;
3480 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3481 return false;
3482 return true;
3483 }
3484
3485 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3486 of the preceding instruction. Always TRUE in the standard MIPS mode.
3487
3488 We don't accept macros in 16-bit delay slots to avoid a case where
3489 a macro expansion fails because it relies on a preceding 32-bit real
3490 instruction to have matched and does not handle the operands correctly.
3491 The only macros that may expand to 16-bit instructions are JAL that
3492 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3493 and BGT (that likewise cannot be placed in a delay slot) that decay to
3494 a NOP. In all these cases the macros precede any corresponding real
3495 instruction definitions in the opcode table, so they will match in the
3496 second pass where the size of the delay slot is ignored and therefore
3497 produce correct code. */
3498
3499 static bool
3500 is_delay_slot_valid (const struct mips_opcode *mo)
3501 {
3502 if (!mips_opts.micromips)
3503 return true;
3504
3505 if (mo->pinfo == INSN_MACRO)
3506 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3507 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3508 && micromips_insn_length (mo) != 4)
3509 return false;
3510 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3511 && micromips_insn_length (mo) != 2)
3512 return false;
3513
3514 return true;
3515 }
3516
3517 /* For consistency checking, verify that all bits of OPCODE are specified
3518 either by the match/mask part of the instruction definition, or by the
3519 operand list. Also build up a list of operands in OPERANDS.
3520
3521 INSN_BITS says which bits of the instruction are significant.
3522 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3523 provides the mips_operand description of each operand. DECODE_OPERAND
3524 is null for MIPS16 instructions. */
3525
3526 static int
3527 validate_mips_insn (const struct mips_opcode *opcode,
3528 unsigned long insn_bits,
3529 const struct mips_operand *(*decode_operand) (const char *),
3530 struct mips_operand_array *operands)
3531 {
3532 const char *s;
3533 unsigned long used_bits, doubled, undefined, opno, mask;
3534 const struct mips_operand *operand;
3535
3536 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3537 if ((mask & opcode->match) != opcode->match)
3538 {
3539 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3540 opcode->name, opcode->args);
3541 return 0;
3542 }
3543 used_bits = 0;
3544 opno = 0;
3545 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3546 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3547 for (s = opcode->args; *s; ++s)
3548 switch (*s)
3549 {
3550 case ',':
3551 case '(':
3552 case ')':
3553 break;
3554
3555 case '#':
3556 s++;
3557 break;
3558
3559 default:
3560 if (!decode_operand)
3561 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3562 else
3563 operand = decode_operand (s);
3564 if (!operand && opcode->pinfo != INSN_MACRO)
3565 {
3566 as_bad (_("internal: unknown operand type: %s %s"),
3567 opcode->name, opcode->args);
3568 return 0;
3569 }
3570 gas_assert (opno < MAX_OPERANDS);
3571 operands->operand[opno] = operand;
3572 if (!decode_operand && operand
3573 && operand->type == OP_INT && operand->lsb == 0
3574 && mips_opcode_32bit_p (opcode))
3575 used_bits |= mips16_immed_extend (-1, operand->size);
3576 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3577 {
3578 used_bits = mips_insert_operand (operand, used_bits, -1);
3579 if (operand->type == OP_MDMX_IMM_REG)
3580 /* Bit 5 is the format selector (OB vs QH). The opcode table
3581 has separate entries for each format. */
3582 used_bits &= ~(1 << (operand->lsb + 5));
3583 if (operand->type == OP_ENTRY_EXIT_LIST)
3584 used_bits &= ~(mask & 0x700);
3585 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3586 operand field that cannot be fully described with LSB/SIZE. */
3587 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3588 used_bits &= ~0x6000;
3589 }
3590 /* Skip prefix characters. */
3591 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3592 ++s;
3593 opno += 1;
3594 break;
3595 }
3596 doubled = used_bits & mask & insn_bits;
3597 if (doubled)
3598 {
3599 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3600 " %s %s"), doubled, opcode->name, opcode->args);
3601 return 0;
3602 }
3603 used_bits |= mask;
3604 undefined = ~used_bits & insn_bits;
3605 if (opcode->pinfo != INSN_MACRO && undefined)
3606 {
3607 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3608 undefined, opcode->name, opcode->args);
3609 return 0;
3610 }
3611 used_bits &= ~insn_bits;
3612 if (used_bits)
3613 {
3614 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3615 used_bits, opcode->name, opcode->args);
3616 return 0;
3617 }
3618 return 1;
3619 }
3620
3621 /* The MIPS16 version of validate_mips_insn. */
3622
3623 static int
3624 validate_mips16_insn (const struct mips_opcode *opcode,
3625 struct mips_operand_array *operands)
3626 {
3627 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3628
3629 return validate_mips_insn (opcode, insn_bits, 0, operands);
3630 }
3631
3632 /* The microMIPS version of validate_mips_insn. */
3633
3634 static int
3635 validate_micromips_insn (const struct mips_opcode *opc,
3636 struct mips_operand_array *operands)
3637 {
3638 unsigned long insn_bits;
3639 unsigned long major;
3640 unsigned int length;
3641
3642 if (opc->pinfo == INSN_MACRO)
3643 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3644 operands);
3645
3646 length = micromips_insn_length (opc);
3647 if (length != 2 && length != 4)
3648 {
3649 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3650 "%s %s"), length, opc->name, opc->args);
3651 return 0;
3652 }
3653 major = opc->match >> (10 + 8 * (length - 2));
3654 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3655 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3656 {
3657 as_bad (_("internal error: bad microMIPS opcode "
3658 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3659 return 0;
3660 }
3661
3662 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3663 insn_bits = 1 << 4 * length;
3664 insn_bits <<= 4 * length;
3665 insn_bits -= 1;
3666 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3667 operands);
3668 }
3669
3670 /* This function is called once, at assembler startup time. It should set up
3671 all the tables, etc. that the MD part of the assembler will need. */
3672
3673 void
3674 md_begin (void)
3675 {
3676 int i = 0;
3677 int broken = 0;
3678
3679 if (mips_pic != NO_PIC)
3680 {
3681 if (g_switch_seen && g_switch_value != 0)
3682 as_bad (_("-G may not be used in position-independent code"));
3683 g_switch_value = 0;
3684 }
3685 else if (mips_abicalls)
3686 {
3687 if (g_switch_seen && g_switch_value != 0)
3688 as_bad (_("-G may not be used with abicalls"));
3689 g_switch_value = 0;
3690 }
3691
3692 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3693 as_warn (_("could not set architecture and machine"));
3694
3695 op_hash = str_htab_create ();
3696
3697 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3698 for (i = 0; i < NUMOPCODES;)
3699 {
3700 const char *name = mips_opcodes[i].name;
3701
3702 if (str_hash_insert (op_hash, name, &mips_opcodes[i], 0) != NULL)
3703 as_fatal (_("duplicate %s"), name);
3704 do
3705 {
3706 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3707 decode_mips_operand, &mips_operands[i]))
3708 broken = 1;
3709
3710 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3711 {
3712 create_insn (&nop_insn, mips_opcodes + i);
3713 if (mips_fix_loongson2f_nop)
3714 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3715 nop_insn.fixed_p = 1;
3716 }
3717
3718 if (sync_insn.insn_mo == NULL && strcmp (name, "sync") == 0)
3719 create_insn (&sync_insn, mips_opcodes + i);
3720
3721 ++i;
3722 }
3723 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3724 }
3725
3726 mips16_op_hash = str_htab_create ();
3727 mips16_operands = XCNEWVEC (struct mips_operand_array,
3728 bfd_mips16_num_opcodes);
3729
3730 i = 0;
3731 while (i < bfd_mips16_num_opcodes)
3732 {
3733 const char *name = mips16_opcodes[i].name;
3734
3735 if (str_hash_insert (mips16_op_hash, name, &mips16_opcodes[i], 0))
3736 as_fatal (_("duplicate %s"), name);
3737 do
3738 {
3739 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3740 broken = 1;
3741 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3742 {
3743 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3744 mips16_nop_insn.fixed_p = 1;
3745 }
3746 ++i;
3747 }
3748 while (i < bfd_mips16_num_opcodes
3749 && strcmp (mips16_opcodes[i].name, name) == 0);
3750 }
3751
3752 micromips_op_hash = str_htab_create ();
3753 micromips_operands = XCNEWVEC (struct mips_operand_array,
3754 bfd_micromips_num_opcodes);
3755
3756 i = 0;
3757 while (i < bfd_micromips_num_opcodes)
3758 {
3759 const char *name = micromips_opcodes[i].name;
3760
3761 if (str_hash_insert (micromips_op_hash, name, &micromips_opcodes[i], 0))
3762 as_fatal (_("duplicate %s"), name);
3763 do
3764 {
3765 struct mips_cl_insn *micromips_nop_insn;
3766
3767 if (!validate_micromips_insn (&micromips_opcodes[i],
3768 &micromips_operands[i]))
3769 broken = 1;
3770
3771 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3772 {
3773 if (micromips_insn_length (micromips_opcodes + i) == 2)
3774 micromips_nop_insn = &micromips_nop16_insn;
3775 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3776 micromips_nop_insn = &micromips_nop32_insn;
3777 else
3778 continue;
3779
3780 if (micromips_nop_insn->insn_mo == NULL
3781 && strcmp (name, "nop") == 0)
3782 {
3783 create_insn (micromips_nop_insn, micromips_opcodes + i);
3784 micromips_nop_insn->fixed_p = 1;
3785 }
3786 }
3787 }
3788 while (++i < bfd_micromips_num_opcodes
3789 && strcmp (micromips_opcodes[i].name, name) == 0);
3790 }
3791
3792 if (broken)
3793 as_fatal (_("broken assembler, no assembly attempted"));
3794
3795 /* We add all the general register names to the symbol table. This
3796 helps us detect invalid uses of them. */
3797 for (i = 0; reg_names[i].name; i++)
3798 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3799 &zero_address_frag,
3800 reg_names[i].num));
3801 if (HAVE_NEWABI)
3802 for (i = 0; reg_names_n32n64[i].name; i++)
3803 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3804 &zero_address_frag,
3805 reg_names_n32n64[i].num));
3806 else
3807 for (i = 0; reg_names_o32[i].name; i++)
3808 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3809 &zero_address_frag,
3810 reg_names_o32[i].num));
3811
3812 for (i = 0; i < 32; i++)
3813 {
3814 char regname[16];
3815
3816 /* R5900 VU0 floating-point register. */
3817 sprintf (regname, "$vf%d", i);
3818 symbol_table_insert (symbol_new (regname, reg_section,
3819 &zero_address_frag, RTYPE_VF | i));
3820
3821 /* R5900 VU0 integer register. */
3822 sprintf (regname, "$vi%d", i);
3823 symbol_table_insert (symbol_new (regname, reg_section,
3824 &zero_address_frag, RTYPE_VI | i));
3825
3826 /* MSA register. */
3827 sprintf (regname, "$w%d", i);
3828 symbol_table_insert (symbol_new (regname, reg_section,
3829 &zero_address_frag, RTYPE_MSA | i));
3830 }
3831
3832 obstack_init (&mips_operand_tokens);
3833
3834 mips_no_prev_insn ();
3835
3836 mips_gprmask = 0;
3837 mips_cprmask[0] = 0;
3838 mips_cprmask[1] = 0;
3839 mips_cprmask[2] = 0;
3840 mips_cprmask[3] = 0;
3841
3842 /* set the default alignment for the text section (2**2) */
3843 record_alignment (text_section, 2);
3844
3845 bfd_set_gp_size (stdoutput, g_switch_value);
3846
3847 /* On a native system other than VxWorks, sections must be aligned
3848 to 16 byte boundaries. When configured for an embedded ELF
3849 target, we don't bother. */
3850 if (!startswith (TARGET_OS, "elf")
3851 && !startswith (TARGET_OS, "vxworks"))
3852 {
3853 bfd_set_section_alignment (text_section, 4);
3854 bfd_set_section_alignment (data_section, 4);
3855 bfd_set_section_alignment (bss_section, 4);
3856 }
3857
3858 /* Create a .reginfo section for register masks and a .mdebug
3859 section for debugging information. */
3860 {
3861 segT seg;
3862 subsegT subseg;
3863 flagword flags;
3864 segT sec;
3865
3866 seg = now_seg;
3867 subseg = now_subseg;
3868
3869 /* The ABI says this section should be loaded so that the
3870 running program can access it. However, we don't load it
3871 if we are configured for an embedded target. */
3872 flags = SEC_READONLY | SEC_DATA;
3873 if (!startswith (TARGET_OS, "elf"))
3874 flags |= SEC_ALLOC | SEC_LOAD;
3875
3876 if (mips_abi != N64_ABI)
3877 {
3878 sec = subseg_new (".reginfo", (subsegT) 0);
3879
3880 bfd_set_section_flags (sec, flags);
3881 bfd_set_section_alignment (sec, HAVE_NEWABI ? 3 : 2);
3882
3883 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3884 }
3885 else
3886 {
3887 /* The 64-bit ABI uses a .MIPS.options section rather than
3888 .reginfo section. */
3889 sec = subseg_new (".MIPS.options", (subsegT) 0);
3890 bfd_set_section_flags (sec, flags);
3891 bfd_set_section_alignment (sec, 3);
3892
3893 /* Set up the option header. */
3894 {
3895 Elf_Internal_Options opthdr;
3896 char *f;
3897
3898 opthdr.kind = ODK_REGINFO;
3899 opthdr.size = (sizeof (Elf_External_Options)
3900 + sizeof (Elf64_External_RegInfo));
3901 opthdr.section = 0;
3902 opthdr.info = 0;
3903 f = frag_more (sizeof (Elf_External_Options));
3904 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3905 (Elf_External_Options *) f);
3906
3907 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3908 }
3909 }
3910
3911 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3912 bfd_set_section_flags (sec,
3913 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3914 bfd_set_section_alignment (sec, 3);
3915 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3916
3917 if (ECOFF_DEBUGGING)
3918 {
3919 sec = subseg_new (".mdebug", (subsegT) 0);
3920 bfd_set_section_flags (sec, SEC_HAS_CONTENTS | SEC_READONLY);
3921 bfd_set_section_alignment (sec, 2);
3922 }
3923 else if (mips_flag_pdr)
3924 {
3925 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3926 bfd_set_section_flags (pdr_seg,
3927 SEC_READONLY | SEC_RELOC | SEC_DEBUGGING);
3928 bfd_set_section_alignment (pdr_seg, 2);
3929 }
3930
3931 subseg_set (seg, subseg);
3932 }
3933
3934 if (mips_fix_vr4120)
3935 init_vr4120_conflicts ();
3936 }
3937
3938 static inline void
3939 fpabi_incompatible_with (int fpabi, const char *what)
3940 {
3941 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3942 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3943 }
3944
3945 static inline void
3946 fpabi_requires (int fpabi, const char *what)
3947 {
3948 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3949 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3950 }
3951
3952 /* Check -mabi and register sizes against the specified FP ABI. */
3953 static void
3954 check_fpabi (int fpabi)
3955 {
3956 switch (fpabi)
3957 {
3958 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3959 if (file_mips_opts.soft_float)
3960 fpabi_incompatible_with (fpabi, "softfloat");
3961 else if (file_mips_opts.single_float)
3962 fpabi_incompatible_with (fpabi, "singlefloat");
3963 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3964 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3965 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3966 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3967 break;
3968
3969 case Val_GNU_MIPS_ABI_FP_XX:
3970 if (mips_abi != O32_ABI)
3971 fpabi_requires (fpabi, "-mabi=32");
3972 else if (file_mips_opts.soft_float)
3973 fpabi_incompatible_with (fpabi, "softfloat");
3974 else if (file_mips_opts.single_float)
3975 fpabi_incompatible_with (fpabi, "singlefloat");
3976 else if (file_mips_opts.fp != 0)
3977 fpabi_requires (fpabi, "fp=xx");
3978 break;
3979
3980 case Val_GNU_MIPS_ABI_FP_64A:
3981 case Val_GNU_MIPS_ABI_FP_64:
3982 if (mips_abi != O32_ABI)
3983 fpabi_requires (fpabi, "-mabi=32");
3984 else if (file_mips_opts.soft_float)
3985 fpabi_incompatible_with (fpabi, "softfloat");
3986 else if (file_mips_opts.single_float)
3987 fpabi_incompatible_with (fpabi, "singlefloat");
3988 else if (file_mips_opts.fp != 64)
3989 fpabi_requires (fpabi, "fp=64");
3990 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3991 fpabi_incompatible_with (fpabi, "nooddspreg");
3992 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3993 fpabi_requires (fpabi, "nooddspreg");
3994 break;
3995
3996 case Val_GNU_MIPS_ABI_FP_SINGLE:
3997 if (file_mips_opts.soft_float)
3998 fpabi_incompatible_with (fpabi, "softfloat");
3999 else if (!file_mips_opts.single_float)
4000 fpabi_requires (fpabi, "singlefloat");
4001 break;
4002
4003 case Val_GNU_MIPS_ABI_FP_SOFT:
4004 if (!file_mips_opts.soft_float)
4005 fpabi_requires (fpabi, "softfloat");
4006 break;
4007
4008 case Val_GNU_MIPS_ABI_FP_OLD_64:
4009 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
4010 Tag_GNU_MIPS_ABI_FP, fpabi);
4011 break;
4012
4013 case Val_GNU_MIPS_ABI_FP_NAN2008:
4014 /* Silently ignore compatibility value. */
4015 break;
4016
4017 default:
4018 as_warn (_(".gnu_attribute %d,%d is not a recognized"
4019 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
4020 break;
4021 }
4022 }
4023
4024 /* Perform consistency checks on the current options. */
4025
4026 static void
4027 mips_check_options (struct mips_set_options *opts, bool abi_checks)
4028 {
4029 /* Check the size of integer registers agrees with the ABI and ISA. */
4030 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
4031 as_bad (_("`gp=64' used with a 32-bit processor"));
4032 else if (abi_checks
4033 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
4034 as_bad (_("`gp=32' used with a 64-bit ABI"));
4035 else if (abi_checks
4036 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
4037 as_bad (_("`gp=64' used with a 32-bit ABI"));
4038
4039 /* Check the size of the float registers agrees with the ABI and ISA. */
4040 switch (opts->fp)
4041 {
4042 case 0:
4043 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
4044 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
4045 else if (opts->single_float == 1)
4046 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
4047 break;
4048 case 64:
4049 if (!ISA_HAS_64BIT_FPRS (opts->isa))
4050 as_bad (_("`fp=64' used with a 32-bit fpu"));
4051 else if (abi_checks
4052 && ABI_NEEDS_32BIT_REGS (mips_abi)
4053 && !ISA_HAS_MXHC1 (opts->isa))
4054 as_warn (_("`fp=64' used with a 32-bit ABI"));
4055 break;
4056 case 32:
4057 if (abi_checks
4058 && ABI_NEEDS_64BIT_REGS (mips_abi))
4059 as_warn (_("`fp=32' used with a 64-bit ABI"));
4060 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
4061 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
4062 break;
4063 default:
4064 as_bad (_("Unknown size of floating point registers"));
4065 break;
4066 }
4067
4068 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
4069 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4070
4071 if (opts->micromips == 1 && opts->mips16 == 1)
4072 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
4073 else if (ISA_IS_R6 (opts->isa)
4074 && (opts->micromips == 1
4075 || opts->mips16 == 1))
4076 as_fatal (_("`%s' cannot be used with `%s'"),
4077 opts->micromips ? "micromips" : "mips16",
4078 mips_cpu_info_from_isa (opts->isa)->name);
4079
4080 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
4081 as_fatal (_("branch relaxation is not supported in `%s'"),
4082 mips_cpu_info_from_isa (opts->isa)->name);
4083 }
4084
4085 /* Perform consistency checks on the module level options exactly once.
4086 This is a deferred check that happens:
4087 at the first .set directive
4088 or, at the first pseudo op that generates code (inc .dc.a)
4089 or, at the first instruction
4090 or, at the end. */
4091
4092 static void
4093 file_mips_check_options (void)
4094 {
4095 if (file_mips_opts_checked)
4096 return;
4097
4098 /* The following code determines the register size.
4099 Similar code was added to GCC 3.3 (see override_options() in
4100 config/mips/mips.c). The GAS and GCC code should be kept in sync
4101 as much as possible. */
4102
4103 if (file_mips_opts.gp < 0)
4104 {
4105 /* Infer the integer register size from the ABI and processor.
4106 Restrict ourselves to 32-bit registers if that's all the
4107 processor has, or if the ABI cannot handle 64-bit registers. */
4108 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4109 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4110 ? 32 : 64;
4111 }
4112
4113 if (file_mips_opts.fp < 0)
4114 {
4115 /* No user specified float register size.
4116 ??? GAS treats single-float processors as though they had 64-bit
4117 float registers (although it complains when double-precision
4118 instructions are used). As things stand, saying they have 32-bit
4119 registers would lead to spurious "register must be even" messages.
4120 So here we assume float registers are never smaller than the
4121 integer ones. */
4122 if (file_mips_opts.gp == 64)
4123 /* 64-bit integer registers implies 64-bit float registers. */
4124 file_mips_opts.fp = 64;
4125 else if ((file_mips_opts.ase & FP64_ASES)
4126 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4127 /* Handle ASEs that require 64-bit float registers, if possible. */
4128 file_mips_opts.fp = 64;
4129 else if (ISA_IS_R6 (mips_opts.isa))
4130 /* R6 implies 64-bit float registers. */
4131 file_mips_opts.fp = 64;
4132 else
4133 /* 32-bit float registers. */
4134 file_mips_opts.fp = 32;
4135 }
4136
4137 /* Disable operations on odd-numbered floating-point registers by default
4138 when using the FPXX ABI. */
4139 if (file_mips_opts.oddspreg < 0)
4140 {
4141 if (file_mips_opts.fp == 0)
4142 file_mips_opts.oddspreg = 0;
4143 else
4144 file_mips_opts.oddspreg = 1;
4145 }
4146
4147 /* End of GCC-shared inference code. */
4148
4149 /* This flag is set when we have a 64-bit capable CPU but use only
4150 32-bit wide registers. Note that EABI does not use it. */
4151 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4152 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4153 || mips_abi == O32_ABI))
4154 mips_32bitmode = 1;
4155
4156 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4157 as_bad (_("trap exception not supported at ISA 1"));
4158
4159 /* If the selected architecture includes support for ASEs, enable
4160 generation of code for them. */
4161 if (file_mips_opts.mips16 == -1)
4162 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4163 if (file_mips_opts.micromips == -1)
4164 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4165 ? 1 : 0;
4166
4167 if (mips_nan2008 == -1)
4168 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4169 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4170 as_fatal (_("`%s' does not support legacy NaN"),
4171 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4172
4173 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4174 being selected implicitly. */
4175 if (file_mips_opts.fp != 64)
4176 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4177
4178 /* If the user didn't explicitly select or deselect a particular ASE,
4179 use the default setting for the CPU. */
4180 file_mips_opts.ase |= (file_mips_opts.init_ase & ~file_ase_explicit);
4181
4182 /* Set up the current options. These may change throughout assembly. */
4183 mips_opts = file_mips_opts;
4184
4185 mips_check_isa_supports_ases ();
4186 mips_check_options (&file_mips_opts, true);
4187 file_mips_opts_checked = true;
4188
4189 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4190 as_warn (_("could not set architecture and machine"));
4191 }
4192
4193 void
4194 md_assemble (char *str)
4195 {
4196 struct mips_cl_insn insn;
4197 bfd_reloc_code_real_type unused_reloc[3]
4198 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4199
4200 file_mips_check_options ();
4201
4202 imm_expr.X_op = O_absent;
4203 offset_expr.X_op = O_absent;
4204 offset_reloc[0] = BFD_RELOC_UNUSED;
4205 offset_reloc[1] = BFD_RELOC_UNUSED;
4206 offset_reloc[2] = BFD_RELOC_UNUSED;
4207
4208 mips_mark_labels ();
4209 mips_assembling_insn = true;
4210 clear_insn_error ();
4211
4212 if (mips_opts.mips16)
4213 mips16_ip (str, &insn);
4214 else
4215 {
4216 mips_ip (str, &insn);
4217 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4218 str, insn.insn_opcode));
4219 }
4220
4221 if (insn_error.msg)
4222 report_insn_error (str);
4223 else if (insn.insn_mo->pinfo == INSN_MACRO)
4224 {
4225 macro_start ();
4226 if (mips_opts.mips16)
4227 mips16_macro (&insn);
4228 else
4229 macro (&insn, str);
4230 macro_end ();
4231 }
4232 else
4233 {
4234 if (offset_expr.X_op != O_absent)
4235 append_insn (&insn, &offset_expr, offset_reloc, false);
4236 else
4237 append_insn (&insn, NULL, unused_reloc, false);
4238 }
4239
4240 mips_assembling_insn = false;
4241 }
4242
4243 /* Convenience functions for abstracting away the differences between
4244 MIPS16 and non-MIPS16 relocations. */
4245
4246 static inline bool
4247 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4248 {
4249 switch (reloc)
4250 {
4251 case BFD_RELOC_MIPS16_JMP:
4252 case BFD_RELOC_MIPS16_GPREL:
4253 case BFD_RELOC_MIPS16_GOT16:
4254 case BFD_RELOC_MIPS16_CALL16:
4255 case BFD_RELOC_MIPS16_HI16_S:
4256 case BFD_RELOC_MIPS16_HI16:
4257 case BFD_RELOC_MIPS16_LO16:
4258 case BFD_RELOC_MIPS16_16_PCREL_S1:
4259 return true;
4260
4261 default:
4262 return false;
4263 }
4264 }
4265
4266 static inline bool
4267 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4268 {
4269 switch (reloc)
4270 {
4271 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4272 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4273 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4274 case BFD_RELOC_MICROMIPS_GPREL16:
4275 case BFD_RELOC_MICROMIPS_JMP:
4276 case BFD_RELOC_MICROMIPS_HI16:
4277 case BFD_RELOC_MICROMIPS_HI16_S:
4278 case BFD_RELOC_MICROMIPS_LO16:
4279 case BFD_RELOC_MICROMIPS_LITERAL:
4280 case BFD_RELOC_MICROMIPS_GOT16:
4281 case BFD_RELOC_MICROMIPS_CALL16:
4282 case BFD_RELOC_MICROMIPS_GOT_HI16:
4283 case BFD_RELOC_MICROMIPS_GOT_LO16:
4284 case BFD_RELOC_MICROMIPS_CALL_HI16:
4285 case BFD_RELOC_MICROMIPS_CALL_LO16:
4286 case BFD_RELOC_MICROMIPS_SUB:
4287 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4288 case BFD_RELOC_MICROMIPS_GOT_OFST:
4289 case BFD_RELOC_MICROMIPS_GOT_DISP:
4290 case BFD_RELOC_MICROMIPS_HIGHEST:
4291 case BFD_RELOC_MICROMIPS_HIGHER:
4292 case BFD_RELOC_MICROMIPS_SCN_DISP:
4293 case BFD_RELOC_MICROMIPS_JALR:
4294 return true;
4295
4296 default:
4297 return false;
4298 }
4299 }
4300
4301 static inline bool
4302 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4303 {
4304 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4305 }
4306
4307 static inline bool
4308 b_reloc_p (bfd_reloc_code_real_type reloc)
4309 {
4310 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4311 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4312 || reloc == BFD_RELOC_16_PCREL_S2
4313 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4314 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4315 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4316 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4317 }
4318
4319 static inline bool
4320 got16_reloc_p (bfd_reloc_code_real_type reloc)
4321 {
4322 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4323 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4324 }
4325
4326 static inline bool
4327 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4328 {
4329 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4330 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4331 }
4332
4333 static inline bool
4334 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4335 {
4336 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4337 || reloc == BFD_RELOC_MICROMIPS_LO16);
4338 }
4339
4340 static inline bool
4341 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4342 {
4343 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4344 }
4345
4346 static inline bool
4347 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4348 {
4349 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4350 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4351 }
4352
4353 /* Return true if RELOC is a PC-relative relocation that does not have
4354 full address range. */
4355
4356 static inline bool
4357 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4358 {
4359 switch (reloc)
4360 {
4361 case BFD_RELOC_16_PCREL_S2:
4362 case BFD_RELOC_MIPS16_16_PCREL_S1:
4363 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4364 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4365 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4366 case BFD_RELOC_MIPS_21_PCREL_S2:
4367 case BFD_RELOC_MIPS_26_PCREL_S2:
4368 case BFD_RELOC_MIPS_18_PCREL_S3:
4369 case BFD_RELOC_MIPS_19_PCREL_S2:
4370 return true;
4371
4372 case BFD_RELOC_32_PCREL:
4373 case BFD_RELOC_HI16_S_PCREL:
4374 case BFD_RELOC_LO16_PCREL:
4375 return HAVE_64BIT_ADDRESSES;
4376
4377 default:
4378 return false;
4379 }
4380 }
4381
4382 /* Return true if the given relocation might need a matching %lo().
4383 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4384 need a matching %lo() when applied to local symbols. */
4385
4386 static inline bool
4387 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4388 {
4389 return (HAVE_IN_PLACE_ADDENDS
4390 && (hi16_reloc_p (reloc)
4391 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4392 all GOT16 relocations evaluate to "G". */
4393 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4394 }
4395
4396 /* Return the type of %lo() reloc needed by RELOC, given that
4397 reloc_needs_lo_p. */
4398
4399 static inline bfd_reloc_code_real_type
4400 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4401 {
4402 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4403 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4404 : BFD_RELOC_LO16));
4405 }
4406
4407 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4408 relocation. */
4409
4410 static inline bool
4411 fixup_has_matching_lo_p (fixS *fixp)
4412 {
4413 return (fixp->fx_next != NULL
4414 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4415 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4416 && fixp->fx_offset == fixp->fx_next->fx_offset);
4417 }
4418
4419 /* Move all labels in LABELS to the current insertion point. TEXT_P
4420 says whether the labels refer to text or data. */
4421
4422 static void
4423 mips_move_labels (struct insn_label_list *labels, bool text_p)
4424 {
4425 struct insn_label_list *l;
4426 valueT val;
4427
4428 for (l = labels; l != NULL; l = l->next)
4429 {
4430 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4431 symbol_set_frag (l->label, frag_now);
4432 val = (valueT) frag_now_fix ();
4433 /* MIPS16/microMIPS text labels are stored as odd.
4434 We just carry the ISA mode bit forward. */
4435 if (text_p && HAVE_CODE_COMPRESSION)
4436 val |= (S_GET_VALUE (l->label) & 0x1);
4437 S_SET_VALUE (l->label, val);
4438 }
4439 }
4440
4441 /* Move all labels in insn_labels to the current insertion point
4442 and treat them as text labels. */
4443
4444 static void
4445 mips_move_text_labels (void)
4446 {
4447 mips_move_labels (seg_info (now_seg)->label_list, true);
4448 }
4449
4450 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4451
4452 static bool
4453 s_is_linkonce (symbolS *sym, segT from_seg)
4454 {
4455 bool linkonce = false;
4456 segT symseg = S_GET_SEGMENT (sym);
4457
4458 if (symseg != from_seg && !S_IS_LOCAL (sym))
4459 {
4460 if ((bfd_section_flags (symseg) & SEC_LINK_ONCE))
4461 linkonce = true;
4462 /* The GNU toolchain uses an extension for ELF: a section
4463 beginning with the magic string .gnu.linkonce is a
4464 linkonce section. */
4465 if (startswith (segment_name (symseg), ".gnu.linkonce"))
4466 linkonce = true;
4467 }
4468 return linkonce;
4469 }
4470
4471 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4472 linker to handle them specially, such as generating jalx instructions
4473 when needed. We also make them odd for the duration of the assembly,
4474 in order to generate the right sort of code. We will make them even
4475 in the adjust_symtab routine, while leaving them marked. This is
4476 convenient for the debugger and the disassembler. The linker knows
4477 to make them odd again. */
4478
4479 static void
4480 mips_compressed_mark_label (symbolS *label)
4481 {
4482 gas_assert (HAVE_CODE_COMPRESSION);
4483
4484 if (mips_opts.mips16)
4485 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4486 else
4487 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4488 if ((S_GET_VALUE (label) & 1) == 0
4489 /* Don't adjust the address if the label is global or weak, or
4490 in a link-once section, since we'll be emitting symbol reloc
4491 references to it which will be patched up by the linker, and
4492 the final value of the symbol may or may not be MIPS16/microMIPS. */
4493 && !S_IS_WEAK (label)
4494 && !S_IS_EXTERNAL (label)
4495 && !s_is_linkonce (label, now_seg))
4496 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4497 }
4498
4499 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4500
4501 static void
4502 mips_compressed_mark_labels (void)
4503 {
4504 struct insn_label_list *l;
4505
4506 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4507 mips_compressed_mark_label (l->label);
4508 }
4509
4510 /* End the current frag. Make it a variant frag and record the
4511 relaxation info. */
4512
4513 static void
4514 relax_close_frag (void)
4515 {
4516 mips_macro_warning.first_frag = frag_now;
4517 frag_var (rs_machine_dependent, 0, 0,
4518 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4519 mips_pic != NO_PIC),
4520 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4521
4522 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4523 mips_relax.first_fixup = 0;
4524 }
4525
4526 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4527 See the comment above RELAX_ENCODE for more details. */
4528
4529 static void
4530 relax_start (symbolS *symbol)
4531 {
4532 gas_assert (mips_relax.sequence == 0);
4533 mips_relax.sequence = 1;
4534 mips_relax.symbol = symbol;
4535 }
4536
4537 /* Start generating the second version of a relaxable sequence.
4538 See the comment above RELAX_ENCODE for more details. */
4539
4540 static void
4541 relax_switch (void)
4542 {
4543 gas_assert (mips_relax.sequence == 1);
4544 mips_relax.sequence = 2;
4545 }
4546
4547 /* End the current relaxable sequence. */
4548
4549 static void
4550 relax_end (void)
4551 {
4552 gas_assert (mips_relax.sequence == 2);
4553 relax_close_frag ();
4554 mips_relax.sequence = 0;
4555 }
4556
4557 /* Return true if IP is a delayed branch or jump. */
4558
4559 static inline bool
4560 delayed_branch_p (const struct mips_cl_insn *ip)
4561 {
4562 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4563 | INSN_COND_BRANCH_DELAY
4564 | INSN_COND_BRANCH_LIKELY)) != 0;
4565 }
4566
4567 /* Return true if IP is a compact branch or jump. */
4568
4569 static inline bool
4570 compact_branch_p (const struct mips_cl_insn *ip)
4571 {
4572 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4573 | INSN2_COND_BRANCH)) != 0;
4574 }
4575
4576 /* Return true if IP is an unconditional branch or jump. */
4577
4578 static inline bool
4579 uncond_branch_p (const struct mips_cl_insn *ip)
4580 {
4581 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4582 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4583 }
4584
4585 /* Return true if IP is a branch-likely instruction. */
4586
4587 static inline bool
4588 branch_likely_p (const struct mips_cl_insn *ip)
4589 {
4590 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4591 }
4592
4593 /* Return the type of nop that should be used to fill the delay slot
4594 of delayed branch IP. */
4595
4596 static struct mips_cl_insn *
4597 get_delay_slot_nop (const struct mips_cl_insn *ip)
4598 {
4599 if (mips_opts.micromips
4600 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4601 return &micromips_nop32_insn;
4602 return NOP_INSN;
4603 }
4604
4605 /* Return a mask that has bit N set if OPCODE reads the register(s)
4606 in operand N. */
4607
4608 static unsigned int
4609 insn_read_mask (const struct mips_opcode *opcode)
4610 {
4611 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4612 }
4613
4614 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4615 in operand N. */
4616
4617 static unsigned int
4618 insn_write_mask (const struct mips_opcode *opcode)
4619 {
4620 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4621 }
4622
4623 /* Return a mask of the registers specified by operand OPERAND of INSN.
4624 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4625 is set. */
4626
4627 static unsigned int
4628 operand_reg_mask (const struct mips_cl_insn *insn,
4629 const struct mips_operand *operand,
4630 unsigned int type_mask)
4631 {
4632 unsigned int uval, vsel;
4633
4634 switch (operand->type)
4635 {
4636 case OP_INT:
4637 case OP_MAPPED_INT:
4638 case OP_MSB:
4639 case OP_PCREL:
4640 case OP_PERF_REG:
4641 case OP_ADDIUSP_INT:
4642 case OP_ENTRY_EXIT_LIST:
4643 case OP_REPEAT_DEST_REG:
4644 case OP_REPEAT_PREV_REG:
4645 case OP_PC:
4646 case OP_VU0_SUFFIX:
4647 case OP_VU0_MATCH_SUFFIX:
4648 case OP_IMM_INDEX:
4649 abort ();
4650
4651 case OP_REG28:
4652 return 1 << 28;
4653
4654 case OP_REG:
4655 case OP_OPTIONAL_REG:
4656 {
4657 const struct mips_reg_operand *reg_op;
4658
4659 reg_op = (const struct mips_reg_operand *) operand;
4660 if (!(type_mask & (1 << reg_op->reg_type)))
4661 return 0;
4662 uval = insn_extract_operand (insn, operand);
4663 return 1u << mips_decode_reg_operand (reg_op, uval);
4664 }
4665
4666 case OP_REG_PAIR:
4667 {
4668 const struct mips_reg_pair_operand *pair_op;
4669
4670 pair_op = (const struct mips_reg_pair_operand *) operand;
4671 if (!(type_mask & (1 << pair_op->reg_type)))
4672 return 0;
4673 uval = insn_extract_operand (insn, operand);
4674 return (1u << pair_op->reg1_map[uval]) | (1u << pair_op->reg2_map[uval]);
4675 }
4676
4677 case OP_CLO_CLZ_DEST:
4678 if (!(type_mask & (1 << OP_REG_GP)))
4679 return 0;
4680 uval = insn_extract_operand (insn, operand);
4681 return (1u << (uval & 31)) | (1u << (uval >> 5));
4682
4683 case OP_SAME_RS_RT:
4684 if (!(type_mask & (1 << OP_REG_GP)))
4685 return 0;
4686 uval = insn_extract_operand (insn, operand);
4687 gas_assert ((uval & 31) == (uval >> 5));
4688 return 1u << (uval & 31);
4689
4690 case OP_CHECK_PREV:
4691 case OP_NON_ZERO_REG:
4692 if (!(type_mask & (1 << OP_REG_GP)))
4693 return 0;
4694 uval = insn_extract_operand (insn, operand);
4695 return 1u << (uval & 31);
4696
4697 case OP_LWM_SWM_LIST:
4698 abort ();
4699
4700 case OP_SAVE_RESTORE_LIST:
4701 abort ();
4702
4703 case OP_MDMX_IMM_REG:
4704 if (!(type_mask & (1 << OP_REG_VEC)))
4705 return 0;
4706 uval = insn_extract_operand (insn, operand);
4707 vsel = uval >> 5;
4708 if ((vsel & 0x18) == 0x18)
4709 return 0;
4710 return 1u << (uval & 31);
4711
4712 case OP_REG_INDEX:
4713 if (!(type_mask & (1 << OP_REG_GP)))
4714 return 0;
4715 return 1u << insn_extract_operand (insn, operand);
4716 }
4717 abort ();
4718 }
4719
4720 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4721 where bit N of OPNO_MASK is set if operand N should be included.
4722 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4723 is set. */
4724
4725 static unsigned int
4726 insn_reg_mask (const struct mips_cl_insn *insn,
4727 unsigned int type_mask, unsigned int opno_mask)
4728 {
4729 unsigned int opno, reg_mask;
4730
4731 opno = 0;
4732 reg_mask = 0;
4733 while (opno_mask != 0)
4734 {
4735 if (opno_mask & 1)
4736 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4737 opno_mask >>= 1;
4738 opno += 1;
4739 }
4740 return reg_mask;
4741 }
4742
4743 /* Return the mask of core registers that IP reads. */
4744
4745 static unsigned int
4746 gpr_read_mask (const struct mips_cl_insn *ip)
4747 {
4748 unsigned long pinfo, pinfo2;
4749 unsigned int mask;
4750
4751 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4752 pinfo = ip->insn_mo->pinfo;
4753 pinfo2 = ip->insn_mo->pinfo2;
4754 if (pinfo & INSN_UDI)
4755 {
4756 /* UDI instructions have traditionally been assumed to read RS
4757 and RT. */
4758 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4759 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4760 }
4761 if (pinfo & INSN_READ_GPR_24)
4762 mask |= 1 << 24;
4763 if (pinfo2 & INSN2_READ_GPR_16)
4764 mask |= 1 << 16;
4765 if (pinfo2 & INSN2_READ_SP)
4766 mask |= 1 << SP;
4767 if (pinfo2 & INSN2_READ_GPR_31)
4768 mask |= 1u << 31;
4769 /* Don't include register 0. */
4770 return mask & ~1;
4771 }
4772
4773 /* Return the mask of core registers that IP writes. */
4774
4775 static unsigned int
4776 gpr_write_mask (const struct mips_cl_insn *ip)
4777 {
4778 unsigned long pinfo, pinfo2;
4779 unsigned int mask;
4780
4781 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4782 pinfo = ip->insn_mo->pinfo;
4783 pinfo2 = ip->insn_mo->pinfo2;
4784 if (pinfo & INSN_WRITE_GPR_24)
4785 mask |= 1 << 24;
4786 if (pinfo & INSN_WRITE_GPR_31)
4787 mask |= 1u << 31;
4788 if (pinfo & INSN_UDI)
4789 /* UDI instructions have traditionally been assumed to write to RD. */
4790 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4791 if (pinfo2 & INSN2_WRITE_SP)
4792 mask |= 1 << SP;
4793 /* Don't include register 0. */
4794 return mask & ~1;
4795 }
4796
4797 /* Return the mask of floating-point registers that IP reads. */
4798
4799 static unsigned int
4800 fpr_read_mask (const struct mips_cl_insn *ip)
4801 {
4802 unsigned long pinfo;
4803 unsigned int mask;
4804
4805 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4806 | (1 << OP_REG_MSA)),
4807 insn_read_mask (ip->insn_mo));
4808 pinfo = ip->insn_mo->pinfo;
4809 /* Conservatively treat all operands to an FP_D instruction are doubles.
4810 (This is overly pessimistic for things like cvt.d.s.) */
4811 if (FPR_SIZE != 64 && (pinfo & FP_D))
4812 mask |= mask << 1;
4813 return mask;
4814 }
4815
4816 /* Return the mask of floating-point registers that IP writes. */
4817
4818 static unsigned int
4819 fpr_write_mask (const struct mips_cl_insn *ip)
4820 {
4821 unsigned long pinfo;
4822 unsigned int mask;
4823
4824 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4825 | (1 << OP_REG_MSA)),
4826 insn_write_mask (ip->insn_mo));
4827 pinfo = ip->insn_mo->pinfo;
4828 /* Conservatively treat all operands to an FP_D instruction are doubles.
4829 (This is overly pessimistic for things like cvt.s.d.) */
4830 if (FPR_SIZE != 64 && (pinfo & FP_D))
4831 mask |= mask << 1;
4832 return mask;
4833 }
4834
4835 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4836 Check whether that is allowed. */
4837
4838 static bool
4839 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4840 {
4841 const char *s = insn->name;
4842 bool oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4843 || FPR_SIZE == 64) && mips_opts.oddspreg;
4844
4845 if (insn->pinfo == INSN_MACRO)
4846 /* Let a macro pass, we'll catch it later when it is expanded. */
4847 return true;
4848
4849 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4850 otherwise it depends on oddspreg. */
4851 if ((insn->pinfo & FP_S)
4852 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4853 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4854 return FPR_SIZE == 32 || oddspreg;
4855
4856 /* Allow odd registers for single-precision ops and double-precision if the
4857 floating-point registers are 64-bit wide. */
4858 switch (insn->pinfo & (FP_S | FP_D))
4859 {
4860 case FP_S:
4861 case 0:
4862 return oddspreg;
4863 case FP_D:
4864 return FPR_SIZE == 64;
4865 default:
4866 break;
4867 }
4868
4869 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4870 s = strchr (insn->name, '.');
4871 if (s != NULL && opnum == 2)
4872 s = strchr (s + 1, '.');
4873 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4874 return oddspreg;
4875
4876 return FPR_SIZE == 64;
4877 }
4878
4879 /* Information about an instruction argument that we're trying to match. */
4880 struct mips_arg_info
4881 {
4882 /* The instruction so far. */
4883 struct mips_cl_insn *insn;
4884
4885 /* The first unconsumed operand token. */
4886 struct mips_operand_token *token;
4887
4888 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4889 int opnum;
4890
4891 /* The 1-based argument number, for error reporting. This does not
4892 count elided optional registers, etc.. */
4893 int argnum;
4894
4895 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4896 unsigned int last_regno;
4897
4898 /* If the first operand was an OP_REG, this is the register that it
4899 specified, otherwise it is ILLEGAL_REG. */
4900 unsigned int dest_regno;
4901
4902 /* The value of the last OP_INT operand. Only used for OP_MSB,
4903 where it gives the lsb position. */
4904 unsigned int last_op_int;
4905
4906 /* If true, match routines should assume that no later instruction
4907 alternative matches and should therefore be as accommodating as
4908 possible. Match routines should not report errors if something
4909 is only invalid for !LAX_MATCH. */
4910 bool lax_match;
4911
4912 /* True if a reference to the current AT register was seen. */
4913 bool seen_at;
4914 };
4915
4916 /* Record that the argument is out of range. */
4917
4918 static void
4919 match_out_of_range (struct mips_arg_info *arg)
4920 {
4921 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4922 }
4923
4924 /* Record that the argument isn't constant but needs to be. */
4925
4926 static void
4927 match_not_constant (struct mips_arg_info *arg)
4928 {
4929 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4930 arg->argnum);
4931 }
4932
4933 /* Try to match an OT_CHAR token for character CH. Consume the token
4934 and return true on success, otherwise return false. */
4935
4936 static bool
4937 match_char (struct mips_arg_info *arg, char ch)
4938 {
4939 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4940 {
4941 ++arg->token;
4942 if (ch == ',')
4943 arg->argnum += 1;
4944 return true;
4945 }
4946 return false;
4947 }
4948
4949 /* Try to get an expression from the next tokens in ARG. Consume the
4950 tokens and return true on success, storing the expression value in
4951 VALUE and relocation types in R. */
4952
4953 static bool
4954 match_expression (struct mips_arg_info *arg, expressionS *value,
4955 bfd_reloc_code_real_type *r)
4956 {
4957 /* If the next token is a '(' that was parsed as being part of a base
4958 expression, assume we have an elided offset. The later match will fail
4959 if this turns out to be wrong. */
4960 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4961 {
4962 value->X_op = O_constant;
4963 value->X_add_number = 0;
4964 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4965 return true;
4966 }
4967
4968 /* Reject register-based expressions such as "0+$2" and "(($2))".
4969 For plain registers the default error seems more appropriate. */
4970 if (arg->token->type == OT_INTEGER
4971 && arg->token->u.integer.value.X_op == O_register)
4972 {
4973 set_insn_error (arg->argnum, _("register value used as expression"));
4974 return false;
4975 }
4976
4977 if (arg->token->type == OT_INTEGER)
4978 {
4979 *value = arg->token->u.integer.value;
4980 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4981 ++arg->token;
4982 return true;
4983 }
4984
4985 set_insn_error_i
4986 (arg->argnum, _("operand %d must be an immediate expression"),
4987 arg->argnum);
4988 return false;
4989 }
4990
4991 /* Try to get a constant expression from the next tokens in ARG. Consume
4992 the tokens and return true on success, storing the constant value
4993 in *VALUE. */
4994
4995 static bool
4996 match_const_int (struct mips_arg_info *arg, offsetT *value)
4997 {
4998 expressionS ex;
4999 bfd_reloc_code_real_type r[3];
5000
5001 if (!match_expression (arg, &ex, r))
5002 return false;
5003
5004 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
5005 *value = ex.X_add_number;
5006 else
5007 {
5008 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
5009 match_out_of_range (arg);
5010 else
5011 match_not_constant (arg);
5012 return false;
5013 }
5014 return true;
5015 }
5016
5017 /* Return the RTYPE_* flags for a register operand of type TYPE that
5018 appears in instruction OPCODE. */
5019
5020 static unsigned int
5021 convert_reg_type (const struct mips_opcode *opcode,
5022 enum mips_reg_operand_type type)
5023 {
5024 switch (type)
5025 {
5026 case OP_REG_GP:
5027 return RTYPE_NUM | RTYPE_GP;
5028
5029 case OP_REG_FP:
5030 /* Allow vector register names for MDMX if the instruction is a 64-bit
5031 FPR load, store or move (including moves to and from GPRs). */
5032 if ((mips_opts.ase & ASE_MDMX)
5033 && (opcode->pinfo & FP_D)
5034 && (opcode->pinfo & (INSN_COPROC_MOVE
5035 | INSN_COPROC_MEMORY_DELAY
5036 | INSN_LOAD_COPROC
5037 | INSN_LOAD_MEMORY
5038 | INSN_STORE_MEMORY)))
5039 return RTYPE_FPU | RTYPE_VEC;
5040 return RTYPE_FPU;
5041
5042 case OP_REG_CCC:
5043 if (opcode->pinfo & (FP_D | FP_S))
5044 return RTYPE_CCC | RTYPE_FCC;
5045 return RTYPE_CCC;
5046
5047 case OP_REG_VEC:
5048 if (opcode->membership & INSN_5400)
5049 return RTYPE_FPU;
5050 return RTYPE_FPU | RTYPE_VEC;
5051
5052 case OP_REG_ACC:
5053 return RTYPE_ACC;
5054
5055 case OP_REG_COPRO:
5056 case OP_REG_CONTROL:
5057 if (opcode->name[strlen (opcode->name) - 1] == '0')
5058 return RTYPE_NUM | RTYPE_CP0;
5059 return RTYPE_NUM;
5060
5061 case OP_REG_HW:
5062 return RTYPE_NUM;
5063
5064 case OP_REG_VI:
5065 return RTYPE_NUM | RTYPE_VI;
5066
5067 case OP_REG_VF:
5068 return RTYPE_NUM | RTYPE_VF;
5069
5070 case OP_REG_R5900_I:
5071 return RTYPE_R5900_I;
5072
5073 case OP_REG_R5900_Q:
5074 return RTYPE_R5900_Q;
5075
5076 case OP_REG_R5900_R:
5077 return RTYPE_R5900_R;
5078
5079 case OP_REG_R5900_ACC:
5080 return RTYPE_R5900_ACC;
5081
5082 case OP_REG_MSA:
5083 return RTYPE_MSA;
5084
5085 case OP_REG_MSA_CTRL:
5086 return RTYPE_NUM;
5087 }
5088 abort ();
5089 }
5090
5091 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5092
5093 static void
5094 check_regno (struct mips_arg_info *arg,
5095 enum mips_reg_operand_type type, unsigned int regno)
5096 {
5097 if (AT && type == OP_REG_GP && regno == AT)
5098 arg->seen_at = true;
5099
5100 if (type == OP_REG_FP
5101 && (regno & 1) != 0
5102 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
5103 {
5104 /* This was a warning prior to introducing O32 FPXX and FP64 support
5105 so maintain a warning for FP32 but raise an error for the new
5106 cases. */
5107 if (FPR_SIZE == 32)
5108 as_warn (_("float register should be even, was %d"), regno);
5109 else
5110 as_bad (_("float register should be even, was %d"), regno);
5111 }
5112
5113 if (type == OP_REG_CCC)
5114 {
5115 const char *name;
5116 size_t length;
5117
5118 name = arg->insn->insn_mo->name;
5119 length = strlen (name);
5120 if ((regno & 1) != 0
5121 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5122 || (length >= 5 && startswith (name + length - 5, "any2"))))
5123 as_warn (_("condition code register should be even for %s, was %d"),
5124 name, regno);
5125
5126 if ((regno & 3) != 0
5127 && (length >= 5 && startswith (name + length - 5, "any4")))
5128 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5129 name, regno);
5130 }
5131 }
5132
5133 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5134 a register of type TYPE. Return true on success, storing the register
5135 number in *REGNO and warning about any dubious uses. */
5136
5137 static bool
5138 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5139 unsigned int symval, unsigned int *regno)
5140 {
5141 if (type == OP_REG_VEC)
5142 symval = mips_prefer_vec_regno (symval);
5143 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5144 return false;
5145
5146 *regno = symval & RNUM_MASK;
5147 check_regno (arg, type, *regno);
5148 return true;
5149 }
5150
5151 /* Try to interpret the next token in ARG as a register of type TYPE.
5152 Consume the token and return true on success, storing the register
5153 number in *REGNO. Return false on failure. */
5154
5155 static bool
5156 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5157 unsigned int *regno)
5158 {
5159 if (arg->token->type == OT_REG
5160 && match_regno (arg, type, arg->token->u.regno, regno))
5161 {
5162 ++arg->token;
5163 return true;
5164 }
5165 return false;
5166 }
5167
5168 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5169 Consume the token and return true on success, storing the register numbers
5170 in *REGNO1 and *REGNO2. Return false on failure. */
5171
5172 static bool
5173 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5174 unsigned int *regno1, unsigned int *regno2)
5175 {
5176 if (match_reg (arg, type, regno1))
5177 {
5178 *regno2 = *regno1;
5179 return true;
5180 }
5181 if (arg->token->type == OT_REG_RANGE
5182 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5183 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5184 && *regno1 <= *regno2)
5185 {
5186 ++arg->token;
5187 return true;
5188 }
5189 return false;
5190 }
5191
5192 /* OP_INT matcher. */
5193
5194 static bool
5195 match_int_operand (struct mips_arg_info *arg,
5196 const struct mips_operand *operand_base)
5197 {
5198 const struct mips_int_operand *operand;
5199 unsigned int uval;
5200 int min_val, max_val, factor;
5201 offsetT sval;
5202
5203 operand = (const struct mips_int_operand *) operand_base;
5204 factor = 1 << operand->shift;
5205 min_val = mips_int_operand_min (operand);
5206 max_val = mips_int_operand_max (operand);
5207
5208 if (operand_base->lsb == 0
5209 && operand_base->size == 16
5210 && operand->shift == 0
5211 && operand->bias == 0
5212 && (operand->max_val == 32767 || operand->max_val == 65535))
5213 {
5214 /* The operand can be relocated. */
5215 if (!match_expression (arg, &offset_expr, offset_reloc))
5216 return false;
5217
5218 if (offset_expr.X_op == O_big)
5219 {
5220 match_out_of_range (arg);
5221 return false;
5222 }
5223
5224 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5225 /* Relocation operators were used. Accept the argument and
5226 leave the relocation value in offset_expr and offset_relocs
5227 for the caller to process. */
5228 return true;
5229
5230 if (offset_expr.X_op != O_constant)
5231 {
5232 /* Accept non-constant operands if no later alternative matches,
5233 leaving it for the caller to process. */
5234 if (!arg->lax_match)
5235 {
5236 match_not_constant (arg);
5237 return false;
5238 }
5239 offset_reloc[0] = BFD_RELOC_LO16;
5240 return true;
5241 }
5242
5243 /* Clear the global state; we're going to install the operand
5244 ourselves. */
5245 sval = offset_expr.X_add_number;
5246 offset_expr.X_op = O_absent;
5247
5248 /* For compatibility with older assemblers, we accept
5249 0x8000-0xffff as signed 16-bit numbers when only
5250 signed numbers are allowed. */
5251 if (sval > max_val)
5252 {
5253 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5254 if (!arg->lax_match && sval <= max_val)
5255 {
5256 match_out_of_range (arg);
5257 return false;
5258 }
5259 }
5260 }
5261 else
5262 {
5263 if (!match_const_int (arg, &sval))
5264 return false;
5265 }
5266
5267 arg->last_op_int = sval;
5268
5269 if (sval < min_val || sval > max_val || sval % factor)
5270 {
5271 match_out_of_range (arg);
5272 return false;
5273 }
5274
5275 uval = (unsigned int) sval >> operand->shift;
5276 uval -= operand->bias;
5277
5278 /* Handle -mfix-cn63xxp1. */
5279 if (arg->opnum == 1
5280 && mips_fix_cn63xxp1
5281 && !mips_opts.micromips
5282 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5283 switch (uval)
5284 {
5285 case 5:
5286 case 25:
5287 case 26:
5288 case 27:
5289 case 28:
5290 case 29:
5291 case 30:
5292 case 31:
5293 /* These are ok. */
5294 break;
5295
5296 default:
5297 /* The rest must be changed to 28. */
5298 uval = 28;
5299 break;
5300 }
5301
5302 insn_insert_operand (arg->insn, operand_base, uval);
5303 return true;
5304 }
5305
5306 /* OP_MAPPED_INT matcher. */
5307
5308 static bool
5309 match_mapped_int_operand (struct mips_arg_info *arg,
5310 const struct mips_operand *operand_base)
5311 {
5312 const struct mips_mapped_int_operand *operand;
5313 unsigned int uval, num_vals;
5314 offsetT sval;
5315
5316 operand = (const struct mips_mapped_int_operand *) operand_base;
5317 if (!match_const_int (arg, &sval))
5318 return false;
5319
5320 num_vals = 1 << operand_base->size;
5321 for (uval = 0; uval < num_vals; uval++)
5322 if (operand->int_map[uval] == sval)
5323 break;
5324 if (uval == num_vals)
5325 {
5326 match_out_of_range (arg);
5327 return false;
5328 }
5329
5330 insn_insert_operand (arg->insn, operand_base, uval);
5331 return true;
5332 }
5333
5334 /* OP_MSB matcher. */
5335
5336 static bool
5337 match_msb_operand (struct mips_arg_info *arg,
5338 const struct mips_operand *operand_base)
5339 {
5340 const struct mips_msb_operand *operand;
5341 int min_val, max_val, max_high;
5342 offsetT size, sval, high;
5343
5344 operand = (const struct mips_msb_operand *) operand_base;
5345 min_val = operand->bias;
5346 max_val = min_val + (1 << operand_base->size) - 1;
5347 max_high = operand->opsize;
5348
5349 if (!match_const_int (arg, &size))
5350 return false;
5351
5352 high = size + arg->last_op_int;
5353 sval = operand->add_lsb ? high : size;
5354
5355 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5356 {
5357 match_out_of_range (arg);
5358 return false;
5359 }
5360 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5361 return true;
5362 }
5363
5364 /* OP_REG matcher. */
5365
5366 static bool
5367 match_reg_operand (struct mips_arg_info *arg,
5368 const struct mips_operand *operand_base)
5369 {
5370 const struct mips_reg_operand *operand;
5371 unsigned int regno, uval, num_vals;
5372
5373 operand = (const struct mips_reg_operand *) operand_base;
5374 if (!match_reg (arg, operand->reg_type, &regno))
5375 return false;
5376
5377 if (operand->reg_map)
5378 {
5379 num_vals = 1 << operand->root.size;
5380 for (uval = 0; uval < num_vals; uval++)
5381 if (operand->reg_map[uval] == regno)
5382 break;
5383 if (num_vals == uval)
5384 return false;
5385 }
5386 else
5387 uval = regno;
5388
5389 arg->last_regno = regno;
5390 if (arg->opnum == 1)
5391 arg->dest_regno = regno;
5392 insn_insert_operand (arg->insn, operand_base, uval);
5393 return true;
5394 }
5395
5396 /* OP_REG_PAIR matcher. */
5397
5398 static bool
5399 match_reg_pair_operand (struct mips_arg_info *arg,
5400 const struct mips_operand *operand_base)
5401 {
5402 const struct mips_reg_pair_operand *operand;
5403 unsigned int regno1, regno2, uval, num_vals;
5404
5405 operand = (const struct mips_reg_pair_operand *) operand_base;
5406 if (!match_reg (arg, operand->reg_type, &regno1)
5407 || !match_char (arg, ',')
5408 || !match_reg (arg, operand->reg_type, &regno2))
5409 return false;
5410
5411 num_vals = 1 << operand_base->size;
5412 for (uval = 0; uval < num_vals; uval++)
5413 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5414 break;
5415 if (uval == num_vals)
5416 return false;
5417
5418 insn_insert_operand (arg->insn, operand_base, uval);
5419 return true;
5420 }
5421
5422 /* OP_PCREL matcher. The caller chooses the relocation type. */
5423
5424 static bool
5425 match_pcrel_operand (struct mips_arg_info *arg)
5426 {
5427 bfd_reloc_code_real_type r[3];
5428
5429 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5430 }
5431
5432 /* OP_PERF_REG matcher. */
5433
5434 static bool
5435 match_perf_reg_operand (struct mips_arg_info *arg,
5436 const struct mips_operand *operand)
5437 {
5438 offsetT sval;
5439
5440 if (!match_const_int (arg, &sval))
5441 return false;
5442
5443 if (sval != 0
5444 && (sval != 1
5445 || (mips_opts.arch == CPU_R5900
5446 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5447 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5448 {
5449 set_insn_error (arg->argnum, _("invalid performance register"));
5450 return false;
5451 }
5452
5453 insn_insert_operand (arg->insn, operand, sval);
5454 return true;
5455 }
5456
5457 /* OP_ADDIUSP matcher. */
5458
5459 static bool
5460 match_addiusp_operand (struct mips_arg_info *arg,
5461 const struct mips_operand *operand)
5462 {
5463 offsetT sval;
5464 unsigned int uval;
5465
5466 if (!match_const_int (arg, &sval))
5467 return false;
5468
5469 if (sval % 4)
5470 {
5471 match_out_of_range (arg);
5472 return false;
5473 }
5474
5475 sval /= 4;
5476 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5477 {
5478 match_out_of_range (arg);
5479 return false;
5480 }
5481
5482 uval = (unsigned int) sval;
5483 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5484 insn_insert_operand (arg->insn, operand, uval);
5485 return true;
5486 }
5487
5488 /* OP_CLO_CLZ_DEST matcher. */
5489
5490 static bool
5491 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5492 const struct mips_operand *operand)
5493 {
5494 unsigned int regno;
5495
5496 if (!match_reg (arg, OP_REG_GP, &regno))
5497 return false;
5498
5499 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5500 return true;
5501 }
5502
5503 /* OP_CHECK_PREV matcher. */
5504
5505 static bool
5506 match_check_prev_operand (struct mips_arg_info *arg,
5507 const struct mips_operand *operand_base)
5508 {
5509 const struct mips_check_prev_operand *operand;
5510 unsigned int regno;
5511
5512 operand = (const struct mips_check_prev_operand *) operand_base;
5513
5514 if (!match_reg (arg, OP_REG_GP, &regno))
5515 return false;
5516
5517 if (!operand->zero_ok && regno == 0)
5518 return false;
5519
5520 if ((operand->less_than_ok && regno < arg->last_regno)
5521 || (operand->greater_than_ok && regno > arg->last_regno)
5522 || (operand->equal_ok && regno == arg->last_regno))
5523 {
5524 arg->last_regno = regno;
5525 insn_insert_operand (arg->insn, operand_base, regno);
5526 return true;
5527 }
5528
5529 return false;
5530 }
5531
5532 /* OP_SAME_RS_RT matcher. */
5533
5534 static bool
5535 match_same_rs_rt_operand (struct mips_arg_info *arg,
5536 const struct mips_operand *operand)
5537 {
5538 unsigned int regno;
5539
5540 if (!match_reg (arg, OP_REG_GP, &regno))
5541 return false;
5542
5543 if (regno == 0)
5544 {
5545 set_insn_error (arg->argnum, _("the source register must not be $0"));
5546 return false;
5547 }
5548
5549 arg->last_regno = regno;
5550
5551 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5552 return true;
5553 }
5554
5555 /* OP_LWM_SWM_LIST matcher. */
5556
5557 static bool
5558 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5559 const struct mips_operand *operand)
5560 {
5561 unsigned int reglist, sregs, ra, regno1, regno2;
5562 struct mips_arg_info reset;
5563
5564 reglist = 0;
5565 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5566 return false;
5567 do
5568 {
5569 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5570 {
5571 reglist |= 1 << FP;
5572 regno2 = S7;
5573 }
5574 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5575 reset = *arg;
5576 }
5577 while (match_char (arg, ',')
5578 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5579 *arg = reset;
5580
5581 if (operand->size == 2)
5582 {
5583 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5584
5585 s0, ra
5586 s0, s1, ra, s2, s3
5587 s0-s2, ra
5588
5589 and any permutations of these. */
5590 if ((reglist & 0xfff1ffff) != 0x80010000)
5591 return false;
5592
5593 sregs = (reglist >> 17) & 7;
5594 ra = 0;
5595 }
5596 else
5597 {
5598 /* The list must include at least one of ra and s0-sN,
5599 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5600 which are $23 and $30 respectively.) E.g.:
5601
5602 ra
5603 s0
5604 ra, s0, s1, s2
5605 s0-s8
5606 s0-s5, ra
5607
5608 and any permutations of these. */
5609 if ((reglist & 0x3f00ffff) != 0)
5610 return false;
5611
5612 ra = (reglist >> 27) & 0x10;
5613 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5614 }
5615 sregs += 1;
5616 if ((sregs & -sregs) != sregs)
5617 return false;
5618
5619 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5620 return true;
5621 }
5622
5623 /* OP_ENTRY_EXIT_LIST matcher. */
5624
5625 static unsigned int
5626 match_entry_exit_operand (struct mips_arg_info *arg,
5627 const struct mips_operand *operand)
5628 {
5629 unsigned int mask;
5630 bool is_exit;
5631
5632 /* The format is the same for both ENTRY and EXIT, but the constraints
5633 are different. */
5634 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5635 mask = (is_exit ? 7 << 3 : 0);
5636 do
5637 {
5638 unsigned int regno1, regno2;
5639 bool is_freg;
5640
5641 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5642 is_freg = false;
5643 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5644 is_freg = true;
5645 else
5646 return false;
5647
5648 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5649 {
5650 mask &= ~(7 << 3);
5651 mask |= (5 + regno2) << 3;
5652 }
5653 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5654 mask |= (regno2 - 3) << 3;
5655 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5656 mask |= (regno2 - 15) << 1;
5657 else if (regno1 == RA && regno2 == RA)
5658 mask |= 1;
5659 else
5660 return false;
5661 }
5662 while (match_char (arg, ','));
5663
5664 insn_insert_operand (arg->insn, operand, mask);
5665 return true;
5666 }
5667
5668 /* Encode regular MIPS SAVE/RESTORE instruction operands according to
5669 the argument register mask AMASK, the number of static registers
5670 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5671 respectively, and the frame size FRAME_SIZE. */
5672
5673 static unsigned int
5674 mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5675 unsigned int ra, unsigned int s0, unsigned int s1,
5676 unsigned int frame_size)
5677 {
5678 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5679 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5680 }
5681
5682 /* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5683 argument register mask AMASK, the number of static registers saved
5684 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5685 respectively, and the frame size FRAME_SIZE. */
5686
5687 static unsigned int
5688 mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5689 unsigned int ra, unsigned int s0, unsigned int s1,
5690 unsigned int frame_size)
5691 {
5692 unsigned int args;
5693
5694 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5695 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5696 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5697 | ((frame_size & 0xf0) << 16));
5698 return args;
5699 }
5700
5701 /* OP_SAVE_RESTORE_LIST matcher. */
5702
5703 static bool
5704 match_save_restore_list_operand (struct mips_arg_info *arg)
5705 {
5706 unsigned int opcode, args, statics, sregs;
5707 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5708 unsigned int arg_mask, ra, s0, s1;
5709 offsetT frame_size;
5710
5711 opcode = arg->insn->insn_opcode;
5712 frame_size = 0;
5713 num_frame_sizes = 0;
5714 args = 0;
5715 statics = 0;
5716 sregs = 0;
5717 ra = 0;
5718 s0 = 0;
5719 s1 = 0;
5720 do
5721 {
5722 unsigned int regno1, regno2;
5723
5724 if (arg->token->type == OT_INTEGER)
5725 {
5726 /* Handle the frame size. */
5727 if (!match_const_int (arg, &frame_size))
5728 return false;
5729 num_frame_sizes += 1;
5730 }
5731 else
5732 {
5733 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5734 return false;
5735
5736 while (regno1 <= regno2)
5737 {
5738 if (regno1 >= 4 && regno1 <= 7)
5739 {
5740 if (num_frame_sizes == 0)
5741 /* args $a0-$a3 */
5742 args |= 1 << (regno1 - 4);
5743 else
5744 /* statics $a0-$a3 */
5745 statics |= 1 << (regno1 - 4);
5746 }
5747 else if (regno1 >= 16 && regno1 <= 23)
5748 /* $s0-$s7 */
5749 sregs |= 1 << (regno1 - 16);
5750 else if (regno1 == 30)
5751 /* $s8 */
5752 sregs |= 1 << 8;
5753 else if (regno1 == 31)
5754 /* Add $ra to insn. */
5755 ra = 1;
5756 else
5757 return false;
5758 regno1 += 1;
5759 if (regno1 == 24)
5760 regno1 = 30;
5761 }
5762 }
5763 }
5764 while (match_char (arg, ','));
5765
5766 /* Encode args/statics combination. */
5767 if (args & statics)
5768 return false;
5769 else if (args == 0xf)
5770 /* All $a0-$a3 are args. */
5771 arg_mask = MIPS_SVRS_ALL_ARGS;
5772 else if (statics == 0xf)
5773 /* All $a0-$a3 are statics. */
5774 arg_mask = MIPS_SVRS_ALL_STATICS;
5775 else
5776 {
5777 /* Count arg registers. */
5778 num_args = 0;
5779 while (args & 0x1)
5780 {
5781 args >>= 1;
5782 num_args += 1;
5783 }
5784 if (args != 0)
5785 return false;
5786
5787 /* Count static registers. */
5788 num_statics = 0;
5789 while (statics & 0x8)
5790 {
5791 statics = (statics << 1) & 0xf;
5792 num_statics += 1;
5793 }
5794 if (statics != 0)
5795 return false;
5796
5797 /* Encode args/statics. */
5798 arg_mask = (num_args << 2) | num_statics;
5799 }
5800
5801 /* Encode $s0/$s1. */
5802 if (sregs & (1 << 0)) /* $s0 */
5803 s0 = 1;
5804 if (sregs & (1 << 1)) /* $s1 */
5805 s1 = 1;
5806 sregs >>= 2;
5807
5808 /* Encode $s2-$s8. */
5809 num_sregs = 0;
5810 while (sregs & 1)
5811 {
5812 sregs >>= 1;
5813 num_sregs += 1;
5814 }
5815 if (sregs != 0)
5816 return false;
5817
5818 /* Encode frame size. */
5819 if (num_frame_sizes == 0)
5820 {
5821 set_insn_error (arg->argnum, _("missing frame size"));
5822 return false;
5823 }
5824 if (num_frame_sizes > 1)
5825 {
5826 set_insn_error (arg->argnum, _("frame size specified twice"));
5827 return false;
5828 }
5829 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5830 {
5831 set_insn_error (arg->argnum, _("invalid frame size"));
5832 return false;
5833 }
5834 frame_size /= 8;
5835
5836 /* Finally build the instruction. */
5837 if (mips_opts.mips16)
5838 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5839 frame_size);
5840 else if (!mips_opts.micromips)
5841 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5842 frame_size);
5843 else
5844 abort ();
5845
5846 arg->insn->insn_opcode = opcode;
5847 return true;
5848 }
5849
5850 /* OP_MDMX_IMM_REG matcher. */
5851
5852 static bool
5853 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5854 const struct mips_operand *operand)
5855 {
5856 unsigned int regno, uval;
5857 bool is_qh;
5858 const struct mips_opcode *opcode;
5859
5860 /* The mips_opcode records whether this is an octobyte or quadhalf
5861 instruction. Start out with that bit in place. */
5862 opcode = arg->insn->insn_mo;
5863 uval = mips_extract_operand (operand, opcode->match);
5864 is_qh = (uval != 0);
5865
5866 if (arg->token->type == OT_REG)
5867 {
5868 if ((opcode->membership & INSN_5400)
5869 && strcmp (opcode->name, "rzu.ob") == 0)
5870 {
5871 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5872 arg->argnum);
5873 return false;
5874 }
5875
5876 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5877 return false;
5878 ++arg->token;
5879
5880 /* Check whether this is a vector register or a broadcast of
5881 a single element. */
5882 if (arg->token->type == OT_INTEGER_INDEX)
5883 {
5884 if (arg->token->u.index > (is_qh ? 3 : 7))
5885 {
5886 set_insn_error (arg->argnum, _("invalid element selector"));
5887 return false;
5888 }
5889 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5890 ++arg->token;
5891 }
5892 else
5893 {
5894 /* A full vector. */
5895 if ((opcode->membership & INSN_5400)
5896 && (strcmp (opcode->name, "sll.ob") == 0
5897 || strcmp (opcode->name, "srl.ob") == 0))
5898 {
5899 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5900 arg->argnum);
5901 return false;
5902 }
5903
5904 if (is_qh)
5905 uval |= MDMX_FMTSEL_VEC_QH << 5;
5906 else
5907 uval |= MDMX_FMTSEL_VEC_OB << 5;
5908 }
5909 uval |= regno;
5910 }
5911 else
5912 {
5913 offsetT sval;
5914
5915 if (!match_const_int (arg, &sval))
5916 return false;
5917 if (sval < 0 || sval > 31)
5918 {
5919 match_out_of_range (arg);
5920 return false;
5921 }
5922 uval |= (sval & 31);
5923 if (is_qh)
5924 uval |= MDMX_FMTSEL_IMM_QH << 5;
5925 else
5926 uval |= MDMX_FMTSEL_IMM_OB << 5;
5927 }
5928 insn_insert_operand (arg->insn, operand, uval);
5929 return true;
5930 }
5931
5932 /* OP_IMM_INDEX matcher. */
5933
5934 static bool
5935 match_imm_index_operand (struct mips_arg_info *arg,
5936 const struct mips_operand *operand)
5937 {
5938 unsigned int max_val;
5939
5940 if (arg->token->type != OT_INTEGER_INDEX)
5941 return false;
5942
5943 max_val = (1 << operand->size) - 1;
5944 if (arg->token->u.index > max_val)
5945 {
5946 match_out_of_range (arg);
5947 return false;
5948 }
5949 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5950 ++arg->token;
5951 return true;
5952 }
5953
5954 /* OP_REG_INDEX matcher. */
5955
5956 static bool
5957 match_reg_index_operand (struct mips_arg_info *arg,
5958 const struct mips_operand *operand)
5959 {
5960 unsigned int regno;
5961
5962 if (arg->token->type != OT_REG_INDEX)
5963 return false;
5964
5965 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5966 return false;
5967
5968 insn_insert_operand (arg->insn, operand, regno);
5969 ++arg->token;
5970 return true;
5971 }
5972
5973 /* OP_PC matcher. */
5974
5975 static bool
5976 match_pc_operand (struct mips_arg_info *arg)
5977 {
5978 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5979 {
5980 ++arg->token;
5981 return true;
5982 }
5983 return false;
5984 }
5985
5986 /* OP_REG28 matcher. */
5987
5988 static bool
5989 match_reg28_operand (struct mips_arg_info *arg)
5990 {
5991 unsigned int regno;
5992
5993 if (arg->token->type == OT_REG
5994 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5995 && regno == GP)
5996 {
5997 ++arg->token;
5998 return true;
5999 }
6000 return false;
6001 }
6002
6003 /* OP_NON_ZERO_REG matcher. */
6004
6005 static bool
6006 match_non_zero_reg_operand (struct mips_arg_info *arg,
6007 const struct mips_operand *operand)
6008 {
6009 unsigned int regno;
6010
6011 if (!match_reg (arg, OP_REG_GP, &regno))
6012 return false;
6013
6014 if (regno == 0)
6015 {
6016 set_insn_error (arg->argnum, _("the source register must not be $0"));
6017 return false;
6018 }
6019
6020 arg->last_regno = regno;
6021 insn_insert_operand (arg->insn, operand, regno);
6022 return true;
6023 }
6024
6025 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
6026 register that we need to match. */
6027
6028 static bool
6029 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
6030 {
6031 unsigned int regno;
6032
6033 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
6034 }
6035
6036 /* Try to match a floating-point constant from ARG for LI.S or LI.D.
6037 LENGTH is the length of the value in bytes (4 for float, 8 for double)
6038 and USING_GPRS says whether the destination is a GPR rather than an FPR.
6039
6040 Return the constant in IMM and OFFSET as follows:
6041
6042 - If the constant should be loaded via memory, set IMM to O_absent and
6043 OFFSET to the memory address.
6044
6045 - Otherwise, if the constant should be loaded into two 32-bit registers,
6046 set IMM to the O_constant to load into the high register and OFFSET
6047 to the corresponding value for the low register.
6048
6049 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
6050
6051 These constants only appear as the last operand in an instruction,
6052 and every instruction that accepts them in any variant accepts them
6053 in all variants. This means we don't have to worry about backing out
6054 any changes if the instruction does not match. We just match
6055 unconditionally and report an error if the constant is invalid. */
6056
6057 static bool
6058 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
6059 expressionS *offset, int length, bool using_gprs)
6060 {
6061 char *p;
6062 segT seg, new_seg;
6063 subsegT subseg;
6064 const char *newname;
6065 unsigned char *data;
6066
6067 /* Where the constant is placed is based on how the MIPS assembler
6068 does things:
6069
6070 length == 4 && using_gprs -- immediate value only
6071 length == 8 && using_gprs -- .rdata or immediate value
6072 length == 4 && !using_gprs -- .lit4 or immediate value
6073 length == 8 && !using_gprs -- .lit8 or immediate value
6074
6075 The .lit4 and .lit8 sections are only used if permitted by the
6076 -G argument. */
6077 if (arg->token->type != OT_FLOAT)
6078 {
6079 set_insn_error (arg->argnum, _("floating-point expression required"));
6080 return false;
6081 }
6082
6083 gas_assert (arg->token->u.flt.length == length);
6084 data = arg->token->u.flt.data;
6085 ++arg->token;
6086
6087 /* Handle 32-bit constants for which an immediate value is best. */
6088 if (length == 4
6089 && (using_gprs
6090 || g_switch_value < 4
6091 || (data[0] == 0 && data[1] == 0)
6092 || (data[2] == 0 && data[3] == 0)))
6093 {
6094 imm->X_op = O_constant;
6095 if (!target_big_endian)
6096 imm->X_add_number = bfd_getl32 (data);
6097 else
6098 imm->X_add_number = bfd_getb32 (data);
6099 offset->X_op = O_absent;
6100 return true;
6101 }
6102
6103 /* Handle 64-bit constants for which an immediate value is best. */
6104 if (length == 8
6105 && !mips_disable_float_construction
6106 /* Constants can only be constructed in GPRs and copied to FPRs if the
6107 GPRs are at least as wide as the FPRs or MTHC1 is available.
6108 Unlike most tests for 32-bit floating-point registers this check
6109 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6110 permit 64-bit moves without MXHC1.
6111 Force the constant into memory otherwise. */
6112 && (using_gprs
6113 || GPR_SIZE == 64
6114 || ISA_HAS_MXHC1 (mips_opts.isa)
6115 || FPR_SIZE == 32)
6116 && ((data[0] == 0 && data[1] == 0)
6117 || (data[2] == 0 && data[3] == 0))
6118 && ((data[4] == 0 && data[5] == 0)
6119 || (data[6] == 0 && data[7] == 0)))
6120 {
6121 /* The value is simple enough to load with a couple of instructions.
6122 If using 32-bit registers, set IMM to the high order 32 bits and
6123 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6124 64 bit constant. */
6125 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
6126 {
6127 imm->X_op = O_constant;
6128 offset->X_op = O_constant;
6129 if (!target_big_endian)
6130 {
6131 imm->X_add_number = bfd_getl32 (data + 4);
6132 offset->X_add_number = bfd_getl32 (data);
6133 }
6134 else
6135 {
6136 imm->X_add_number = bfd_getb32 (data);
6137 offset->X_add_number = bfd_getb32 (data + 4);
6138 }
6139 if (offset->X_add_number == 0)
6140 offset->X_op = O_absent;
6141 }
6142 else
6143 {
6144 imm->X_op = O_constant;
6145 if (!target_big_endian)
6146 imm->X_add_number = bfd_getl64 (data);
6147 else
6148 imm->X_add_number = bfd_getb64 (data);
6149 offset->X_op = O_absent;
6150 }
6151 return true;
6152 }
6153
6154 /* Switch to the right section. */
6155 seg = now_seg;
6156 subseg = now_subseg;
6157 if (length == 4)
6158 {
6159 gas_assert (!using_gprs && g_switch_value >= 4);
6160 newname = ".lit4";
6161 }
6162 else
6163 {
6164 if (using_gprs || g_switch_value < 8)
6165 newname = RDATA_SECTION_NAME;
6166 else
6167 newname = ".lit8";
6168 }
6169
6170 new_seg = subseg_new (newname, (subsegT) 0);
6171 bfd_set_section_flags (new_seg,
6172 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6173 frag_align (length == 4 ? 2 : 3, 0, 0);
6174 if (!startswith (TARGET_OS, "elf"))
6175 record_alignment (new_seg, 4);
6176 else
6177 record_alignment (new_seg, length == 4 ? 2 : 3);
6178 if (seg == now_seg)
6179 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
6180
6181 /* Set the argument to the current address in the section. */
6182 imm->X_op = O_absent;
6183 offset->X_op = O_symbol;
6184 offset->X_add_symbol = symbol_temp_new_now ();
6185 offset->X_add_number = 0;
6186
6187 /* Put the floating point number into the section. */
6188 p = frag_more (length);
6189 memcpy (p, data, length);
6190
6191 /* Switch back to the original section. */
6192 subseg_set (seg, subseg);
6193 return true;
6194 }
6195
6196 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6197 them. */
6198
6199 static bool
6200 match_vu0_suffix_operand (struct mips_arg_info *arg,
6201 const struct mips_operand *operand,
6202 bool match_p)
6203 {
6204 unsigned int uval;
6205
6206 /* The operand can be an XYZW mask or a single 2-bit channel index
6207 (with X being 0). */
6208 gas_assert (operand->size == 2 || operand->size == 4);
6209
6210 /* The suffix can be omitted when it is already part of the opcode. */
6211 if (arg->token->type != OT_CHANNELS)
6212 return match_p;
6213
6214 uval = arg->token->u.channels;
6215 if (operand->size == 2)
6216 {
6217 /* Check that a single bit is set and convert it into a 2-bit index. */
6218 if ((uval & -uval) != uval)
6219 return false;
6220 uval = 4 - ffs (uval);
6221 }
6222
6223 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6224 return false;
6225
6226 ++arg->token;
6227 if (!match_p)
6228 insn_insert_operand (arg->insn, operand, uval);
6229 return true;
6230 }
6231
6232 /* Try to match a token from ARG against OPERAND. Consume the token
6233 and return true on success, otherwise return false. */
6234
6235 static bool
6236 match_operand (struct mips_arg_info *arg,
6237 const struct mips_operand *operand)
6238 {
6239 switch (operand->type)
6240 {
6241 case OP_INT:
6242 return match_int_operand (arg, operand);
6243
6244 case OP_MAPPED_INT:
6245 return match_mapped_int_operand (arg, operand);
6246
6247 case OP_MSB:
6248 return match_msb_operand (arg, operand);
6249
6250 case OP_REG:
6251 case OP_OPTIONAL_REG:
6252 return match_reg_operand (arg, operand);
6253
6254 case OP_REG_PAIR:
6255 return match_reg_pair_operand (arg, operand);
6256
6257 case OP_PCREL:
6258 return match_pcrel_operand (arg);
6259
6260 case OP_PERF_REG:
6261 return match_perf_reg_operand (arg, operand);
6262
6263 case OP_ADDIUSP_INT:
6264 return match_addiusp_operand (arg, operand);
6265
6266 case OP_CLO_CLZ_DEST:
6267 return match_clo_clz_dest_operand (arg, operand);
6268
6269 case OP_LWM_SWM_LIST:
6270 return match_lwm_swm_list_operand (arg, operand);
6271
6272 case OP_ENTRY_EXIT_LIST:
6273 return match_entry_exit_operand (arg, operand);
6274
6275 case OP_SAVE_RESTORE_LIST:
6276 return match_save_restore_list_operand (arg);
6277
6278 case OP_MDMX_IMM_REG:
6279 return match_mdmx_imm_reg_operand (arg, operand);
6280
6281 case OP_REPEAT_DEST_REG:
6282 return match_tied_reg_operand (arg, arg->dest_regno);
6283
6284 case OP_REPEAT_PREV_REG:
6285 return match_tied_reg_operand (arg, arg->last_regno);
6286
6287 case OP_PC:
6288 return match_pc_operand (arg);
6289
6290 case OP_REG28:
6291 return match_reg28_operand (arg);
6292
6293 case OP_VU0_SUFFIX:
6294 return match_vu0_suffix_operand (arg, operand, false);
6295
6296 case OP_VU0_MATCH_SUFFIX:
6297 return match_vu0_suffix_operand (arg, operand, true);
6298
6299 case OP_IMM_INDEX:
6300 return match_imm_index_operand (arg, operand);
6301
6302 case OP_REG_INDEX:
6303 return match_reg_index_operand (arg, operand);
6304
6305 case OP_SAME_RS_RT:
6306 return match_same_rs_rt_operand (arg, operand);
6307
6308 case OP_CHECK_PREV:
6309 return match_check_prev_operand (arg, operand);
6310
6311 case OP_NON_ZERO_REG:
6312 return match_non_zero_reg_operand (arg, operand);
6313 }
6314 abort ();
6315 }
6316
6317 /* ARG is the state after successfully matching an instruction.
6318 Issue any queued-up warnings. */
6319
6320 static void
6321 check_completed_insn (struct mips_arg_info *arg)
6322 {
6323 if (arg->seen_at)
6324 {
6325 if (AT == ATREG)
6326 as_warn (_("used $at without \".set noat\""));
6327 else
6328 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6329 }
6330 }
6331
6332 /* Return true if modifying general-purpose register REG needs a delay. */
6333
6334 static bool
6335 reg_needs_delay (unsigned int reg)
6336 {
6337 unsigned long prev_pinfo;
6338
6339 prev_pinfo = history[0].insn_mo->pinfo;
6340 if (!mips_opts.noreorder
6341 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6342 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6343 && (gpr_write_mask (&history[0]) & (1 << reg)))
6344 return true;
6345
6346 return false;
6347 }
6348
6349 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6350 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6351 by VR4120 errata. */
6352
6353 static unsigned int
6354 classify_vr4120_insn (const char *name)
6355 {
6356 if (startswith (name, "macc"))
6357 return FIX_VR4120_MACC;
6358 if (startswith (name, "dmacc"))
6359 return FIX_VR4120_DMACC;
6360 if (startswith (name, "mult"))
6361 return FIX_VR4120_MULT;
6362 if (startswith (name, "dmult"))
6363 return FIX_VR4120_DMULT;
6364 if (strstr (name, "div"))
6365 return FIX_VR4120_DIV;
6366 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6367 return FIX_VR4120_MTHILO;
6368 return NUM_FIX_VR4120_CLASSES;
6369 }
6370
6371 #define INSN_ERET 0x42000018
6372 #define INSN_DERET 0x4200001f
6373 #define INSN_DMULT 0x1c
6374 #define INSN_DMULTU 0x1d
6375
6376 /* Return the number of instructions that must separate INSN1 and INSN2,
6377 where INSN1 is the earlier instruction. Return the worst-case value
6378 for any INSN2 if INSN2 is null. */
6379
6380 static unsigned int
6381 insns_between (const struct mips_cl_insn *insn1,
6382 const struct mips_cl_insn *insn2)
6383 {
6384 unsigned long pinfo1, pinfo2;
6385 unsigned int mask;
6386
6387 /* If INFO2 is null, pessimistically assume that all flags are set for
6388 the second instruction. */
6389 pinfo1 = insn1->insn_mo->pinfo;
6390 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6391
6392 /* For most targets, write-after-read dependencies on the HI and LO
6393 registers must be separated by at least two instructions. */
6394 if (!hilo_interlocks)
6395 {
6396 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6397 return 2;
6398 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6399 return 2;
6400 }
6401
6402 /* If we're working around r7000 errata, there must be two instructions
6403 between an mfhi or mflo and any instruction that uses the result. */
6404 if (mips_7000_hilo_fix
6405 && !mips_opts.micromips
6406 && MF_HILO_INSN (pinfo1)
6407 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6408 return 2;
6409
6410 /* If we're working around 24K errata, one instruction is required
6411 if an ERET or DERET is followed by a branch instruction. */
6412 if (mips_fix_24k && !mips_opts.micromips)
6413 {
6414 if (insn1->insn_opcode == INSN_ERET
6415 || insn1->insn_opcode == INSN_DERET)
6416 {
6417 if (insn2 == NULL
6418 || insn2->insn_opcode == INSN_ERET
6419 || insn2->insn_opcode == INSN_DERET
6420 || delayed_branch_p (insn2))
6421 return 1;
6422 }
6423 }
6424
6425 /* If we're working around PMC RM7000 errata, there must be three
6426 nops between a dmult and a load instruction. */
6427 if (mips_fix_rm7000 && !mips_opts.micromips)
6428 {
6429 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6430 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6431 {
6432 if (pinfo2 & INSN_LOAD_MEMORY)
6433 return 3;
6434 }
6435 }
6436
6437 /* If working around VR4120 errata, check for combinations that need
6438 a single intervening instruction. */
6439 if (mips_fix_vr4120 && !mips_opts.micromips)
6440 {
6441 unsigned int class1, class2;
6442
6443 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6444 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6445 {
6446 if (insn2 == NULL)
6447 return 1;
6448 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6449 if (vr4120_conflicts[class1] & (1 << class2))
6450 return 1;
6451 }
6452 }
6453
6454 if (!HAVE_CODE_COMPRESSION)
6455 {
6456 /* Check for GPR or coprocessor load delays. All such delays
6457 are on the RT register. */
6458 /* Itbl support may require additional care here. */
6459 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6460 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6461 {
6462 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6463 return 1;
6464 }
6465
6466 /* Check for generic coprocessor hazards.
6467
6468 This case is not handled very well. There is no special
6469 knowledge of CP0 handling, and the coprocessors other than
6470 the floating point unit are not distinguished at all. */
6471 /* Itbl support may require additional care here. FIXME!
6472 Need to modify this to include knowledge about
6473 user specified delays! */
6474 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6475 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6476 {
6477 /* Handle cases where INSN1 writes to a known general coprocessor
6478 register. There must be a one instruction delay before INSN2
6479 if INSN2 reads that register, otherwise no delay is needed. */
6480 mask = fpr_write_mask (insn1);
6481 if (mask != 0)
6482 {
6483 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6484 return 1;
6485 }
6486 else
6487 {
6488 /* Read-after-write dependencies on the control registers
6489 require a two-instruction gap. */
6490 if ((pinfo1 & INSN_WRITE_COND_CODE)
6491 && (pinfo2 & INSN_READ_COND_CODE))
6492 return 2;
6493
6494 /* We don't know exactly what INSN1 does. If INSN2 is
6495 also a coprocessor instruction, assume there must be
6496 a one instruction gap. */
6497 if (pinfo2 & INSN_COP)
6498 return 1;
6499 }
6500 }
6501
6502 /* Check for read-after-write dependencies on the coprocessor
6503 control registers in cases where INSN1 does not need a general
6504 coprocessor delay. This means that INSN1 is a floating point
6505 comparison instruction. */
6506 /* Itbl support may require additional care here. */
6507 else if (!cop_interlocks
6508 && (pinfo1 & INSN_WRITE_COND_CODE)
6509 && (pinfo2 & INSN_READ_COND_CODE))
6510 return 1;
6511 }
6512
6513 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6514 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6515 and pause. */
6516 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6517 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6518 || (insn2 && delayed_branch_p (insn2))))
6519 return 1;
6520
6521 return 0;
6522 }
6523
6524 /* Return the number of nops that would be needed to work around the
6525 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6526 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6527 that are contained within the first IGNORE instructions of HIST. */
6528
6529 static int
6530 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6531 const struct mips_cl_insn *insn)
6532 {
6533 int i, j;
6534 unsigned int mask;
6535
6536 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6537 are not affected by the errata. */
6538 if (insn != 0
6539 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6540 || strcmp (insn->insn_mo->name, "mtlo") == 0
6541 || strcmp (insn->insn_mo->name, "mthi") == 0))
6542 return 0;
6543
6544 /* Search for the first MFLO or MFHI. */
6545 for (i = 0; i < MAX_VR4130_NOPS; i++)
6546 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6547 {
6548 /* Extract the destination register. */
6549 mask = gpr_write_mask (&hist[i]);
6550
6551 /* No nops are needed if INSN reads that register. */
6552 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6553 return 0;
6554
6555 /* ...or if any of the intervening instructions do. */
6556 for (j = 0; j < i; j++)
6557 if (gpr_read_mask (&hist[j]) & mask)
6558 return 0;
6559
6560 if (i >= ignore)
6561 return MAX_VR4130_NOPS - i;
6562 }
6563 return 0;
6564 }
6565
6566 #define BASE_REG_EQ(INSN1, INSN2) \
6567 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6568 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6569
6570 /* Return the minimum alignment for this store instruction. */
6571
6572 static int
6573 fix_24k_align_to (const struct mips_opcode *mo)
6574 {
6575 if (strcmp (mo->name, "sh") == 0)
6576 return 2;
6577
6578 if (strcmp (mo->name, "swc1") == 0
6579 || strcmp (mo->name, "swc2") == 0
6580 || strcmp (mo->name, "sw") == 0
6581 || strcmp (mo->name, "sc") == 0
6582 || strcmp (mo->name, "s.s") == 0)
6583 return 4;
6584
6585 if (strcmp (mo->name, "sdc1") == 0
6586 || strcmp (mo->name, "sdc2") == 0
6587 || strcmp (mo->name, "s.d") == 0)
6588 return 8;
6589
6590 /* sb, swl, swr */
6591 return 1;
6592 }
6593
6594 struct fix_24k_store_info
6595 {
6596 /* Immediate offset, if any, for this store instruction. */
6597 short off;
6598 /* Alignment required by this store instruction. */
6599 int align_to;
6600 /* True for register offsets. */
6601 int register_offset;
6602 };
6603
6604 /* Comparison function used by qsort. */
6605
6606 static int
6607 fix_24k_sort (const void *a, const void *b)
6608 {
6609 const struct fix_24k_store_info *pos1 = a;
6610 const struct fix_24k_store_info *pos2 = b;
6611
6612 return (pos1->off - pos2->off);
6613 }
6614
6615 /* INSN is a store instruction. Try to record the store information
6616 in STINFO. Return false if the information isn't known. */
6617
6618 static bool
6619 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6620 const struct mips_cl_insn *insn)
6621 {
6622 /* The instruction must have a known offset. */
6623 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6624 return false;
6625
6626 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6627 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6628 return true;
6629 }
6630
6631 /* Return the number of nops that would be needed to work around the 24k
6632 "lost data on stores during refill" errata if instruction INSN
6633 immediately followed the 2 instructions described by HIST.
6634 Ignore hazards that are contained within the first IGNORE
6635 instructions of HIST.
6636
6637 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6638 for the data cache refills and store data. The following describes
6639 the scenario where the store data could be lost.
6640
6641 * A data cache miss, due to either a load or a store, causing fill
6642 data to be supplied by the memory subsystem
6643 * The first three doublewords of fill data are returned and written
6644 into the cache
6645 * A sequence of four stores occurs in consecutive cycles around the
6646 final doubleword of the fill:
6647 * Store A
6648 * Store B
6649 * Store C
6650 * Zero, One or more instructions
6651 * Store D
6652
6653 The four stores A-D must be to different doublewords of the line that
6654 is being filled. The fourth instruction in the sequence above permits
6655 the fill of the final doubleword to be transferred from the FSB into
6656 the cache. In the sequence above, the stores may be either integer
6657 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6658 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6659 different doublewords on the line. If the floating point unit is
6660 running in 1:2 mode, it is not possible to create the sequence above
6661 using only floating point store instructions.
6662
6663 In this case, the cache line being filled is incorrectly marked
6664 invalid, thereby losing the data from any store to the line that
6665 occurs between the original miss and the completion of the five
6666 cycle sequence shown above.
6667
6668 The workarounds are:
6669
6670 * Run the data cache in write-through mode.
6671 * Insert a non-store instruction between
6672 Store A and Store B or Store B and Store C. */
6673
6674 static int
6675 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6676 const struct mips_cl_insn *insn)
6677 {
6678 struct fix_24k_store_info pos[3];
6679 int align, i, base_offset;
6680
6681 if (ignore >= 2)
6682 return 0;
6683
6684 /* If the previous instruction wasn't a store, there's nothing to
6685 worry about. */
6686 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6687 return 0;
6688
6689 /* If the instructions after the previous one are unknown, we have
6690 to assume the worst. */
6691 if (!insn)
6692 return 1;
6693
6694 /* Check whether we are dealing with three consecutive stores. */
6695 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6696 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6697 return 0;
6698
6699 /* If we don't know the relationship between the store addresses,
6700 assume the worst. */
6701 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6702 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6703 return 1;
6704
6705 if (!fix_24k_record_store_info (&pos[0], insn)
6706 || !fix_24k_record_store_info (&pos[1], &hist[0])
6707 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6708 return 1;
6709
6710 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6711
6712 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6713 X bytes and such that the base register + X is known to be aligned
6714 to align bytes. */
6715
6716 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6717 align = 8;
6718 else
6719 {
6720 align = pos[0].align_to;
6721 base_offset = pos[0].off;
6722 for (i = 1; i < 3; i++)
6723 if (align < pos[i].align_to)
6724 {
6725 align = pos[i].align_to;
6726 base_offset = pos[i].off;
6727 }
6728 for (i = 0; i < 3; i++)
6729 pos[i].off -= base_offset;
6730 }
6731
6732 pos[0].off &= ~align + 1;
6733 pos[1].off &= ~align + 1;
6734 pos[2].off &= ~align + 1;
6735
6736 /* If any two stores write to the same chunk, they also write to the
6737 same doubleword. The offsets are still sorted at this point. */
6738 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6739 return 0;
6740
6741 /* A range of at least 9 bytes is needed for the stores to be in
6742 non-overlapping doublewords. */
6743 if (pos[2].off - pos[0].off <= 8)
6744 return 0;
6745
6746 if (pos[2].off - pos[1].off >= 24
6747 || pos[1].off - pos[0].off >= 24
6748 || pos[2].off - pos[0].off >= 32)
6749 return 0;
6750
6751 return 1;
6752 }
6753
6754 /* Return the number of nops that would be needed if instruction INSN
6755 immediately followed the MAX_NOPS instructions given by HIST,
6756 where HIST[0] is the most recent instruction. Ignore hazards
6757 between INSN and the first IGNORE instructions in HIST.
6758
6759 If INSN is null, return the worse-case number of nops for any
6760 instruction. */
6761
6762 static int
6763 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6764 const struct mips_cl_insn *insn)
6765 {
6766 int i, nops, tmp_nops;
6767
6768 nops = 0;
6769 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6770 {
6771 tmp_nops = insns_between (hist + i, insn) - i;
6772 if (tmp_nops > nops)
6773 nops = tmp_nops;
6774 }
6775
6776 if (mips_fix_vr4130 && !mips_opts.micromips)
6777 {
6778 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6779 if (tmp_nops > nops)
6780 nops = tmp_nops;
6781 }
6782
6783 if (mips_fix_24k && !mips_opts.micromips)
6784 {
6785 tmp_nops = nops_for_24k (ignore, hist, insn);
6786 if (tmp_nops > nops)
6787 nops = tmp_nops;
6788 }
6789
6790 return nops;
6791 }
6792
6793 /* The variable arguments provide NUM_INSNS extra instructions that
6794 might be added to HIST. Return the largest number of nops that
6795 would be needed after the extended sequence, ignoring hazards
6796 in the first IGNORE instructions. */
6797
6798 static int
6799 nops_for_sequence (int num_insns, int ignore,
6800 const struct mips_cl_insn *hist, ...)
6801 {
6802 va_list args;
6803 struct mips_cl_insn buffer[MAX_NOPS];
6804 struct mips_cl_insn *cursor;
6805 int nops;
6806
6807 va_start (args, hist);
6808 cursor = buffer + num_insns;
6809 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6810 while (cursor > buffer)
6811 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6812
6813 nops = nops_for_insn (ignore, buffer, NULL);
6814 va_end (args);
6815 return nops;
6816 }
6817
6818 /* Like nops_for_insn, but if INSN is a branch, take into account the
6819 worst-case delay for the branch target. */
6820
6821 static int
6822 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6823 const struct mips_cl_insn *insn)
6824 {
6825 int nops, tmp_nops;
6826
6827 nops = nops_for_insn (ignore, hist, insn);
6828 if (delayed_branch_p (insn))
6829 {
6830 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6831 hist, insn, get_delay_slot_nop (insn));
6832 if (tmp_nops > nops)
6833 nops = tmp_nops;
6834 }
6835 else if (compact_branch_p (insn))
6836 {
6837 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6838 if (tmp_nops > nops)
6839 nops = tmp_nops;
6840 }
6841 return nops;
6842 }
6843
6844 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6845
6846 static void
6847 fix_loongson2f_nop (struct mips_cl_insn * ip)
6848 {
6849 gas_assert (!HAVE_CODE_COMPRESSION);
6850 if (strcmp (ip->insn_mo->name, "nop") == 0)
6851 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6852 }
6853
6854 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6855 jr target pc &= 'hffff_ffff_cfff_ffff. */
6856
6857 static void
6858 fix_loongson2f_jump (struct mips_cl_insn * ip)
6859 {
6860 gas_assert (!HAVE_CODE_COMPRESSION);
6861 if (strcmp (ip->insn_mo->name, "j") == 0
6862 || strcmp (ip->insn_mo->name, "jr") == 0
6863 || strcmp (ip->insn_mo->name, "jalr") == 0)
6864 {
6865 int sreg;
6866 expressionS ep;
6867
6868 if (! mips_opts.at)
6869 return;
6870
6871 sreg = EXTRACT_OPERAND (0, RS, *ip);
6872 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6873 return;
6874
6875 ep.X_op = O_constant;
6876 ep.X_add_number = 0xcfff0000;
6877 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6878 ep.X_add_number = 0xffff;
6879 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6880 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6881 }
6882 }
6883
6884 static void
6885 fix_loongson2f (struct mips_cl_insn * ip)
6886 {
6887 if (mips_fix_loongson2f_nop)
6888 fix_loongson2f_nop (ip);
6889
6890 if (mips_fix_loongson2f_jump)
6891 fix_loongson2f_jump (ip);
6892 }
6893
6894 static bool
6895 has_label_name (const char *arr[], size_t len ,const char *s)
6896 {
6897 unsigned long i;
6898 for (i = 0; i < len; i++)
6899 {
6900 if (!arr[i])
6901 return false;
6902 if (streq (arr[i], s))
6903 return true;
6904 }
6905 return false;
6906 }
6907
6908 /* Fix loongson3 llsc errata: Insert sync before ll/lld. */
6909
6910 static void
6911 fix_loongson3_llsc (struct mips_cl_insn * ip)
6912 {
6913 gas_assert (!HAVE_CODE_COMPRESSION);
6914
6915 /* If is an local label and the insn is not sync,
6916 look forward that whether an branch between ll/sc jump to here
6917 if so, insert a sync. */
6918 if (seg_info (now_seg)->label_list
6919 && S_IS_LOCAL (seg_info (now_seg)->label_list->label)
6920 && (strcmp (ip->insn_mo->name, "sync") != 0))
6921 {
6922 unsigned long i;
6923 valueT label_value;
6924 const char *label_names[MAX_LABELS_SAME];
6925 const char *label_name;
6926
6927 label_name = S_GET_NAME (seg_info (now_seg)->label_list->label);
6928 label_names[0] = label_name;
6929 struct insn_label_list *llist = seg_info (now_seg)->label_list;
6930 label_value = S_GET_VALUE (llist->label);
6931
6932 for (i = 1; i < MAX_LABELS_SAME; i++)
6933 {
6934 llist = llist->next;
6935 if (!llist)
6936 break;
6937 if (S_GET_VALUE (llist->label) == label_value)
6938 label_names[i] = S_GET_NAME (llist->label);
6939 else
6940 break;
6941 }
6942 for (; i < MAX_LABELS_SAME; i++)
6943 label_names[i] = NULL;
6944
6945 unsigned long lookback = ARRAY_SIZE (history);
6946 for (i = 0; i < lookback; i++)
6947 {
6948 if (streq (history[i].insn_mo->name, "sc")
6949 || streq (history[i].insn_mo->name, "scd"))
6950 {
6951 unsigned long j;
6952
6953 for (j = i + 1; j < lookback; j++)
6954 {
6955 if (streq (history[j].insn_mo->name, "ll")
6956 || streq (history[j].insn_mo->name, "lld"))
6957 break;
6958
6959 if (delayed_branch_p (&history[j]))
6960 {
6961 if (has_label_name (label_names,
6962 MAX_LABELS_SAME,
6963 history[j].target))
6964 {
6965 add_fixed_insn (&sync_insn);
6966 insert_into_history (0, 1, &sync_insn);
6967 i = lookback;
6968 break;
6969 }
6970 }
6971 }
6972 }
6973 }
6974 }
6975 /* If we find a sc, we look forward to look for an branch insn,
6976 and see whether it jump back and out of ll/sc. */
6977 else if (streq (ip->insn_mo->name, "sc") || streq (ip->insn_mo->name, "scd"))
6978 {
6979 unsigned long lookback = ARRAY_SIZE (history) - 1;
6980 unsigned long i;
6981
6982 for (i = 0; i < lookback; i++)
6983 {
6984 if (streq (history[i].insn_mo->name, "ll")
6985 || streq (history[i].insn_mo->name, "lld"))
6986 break;
6987
6988 if (delayed_branch_p (&history[i]))
6989 {
6990 unsigned long j;
6991
6992 for (j = i + 1; j < lookback; j++)
6993 {
6994 if (streq (history[j].insn_mo->name, "ll")
6995 || streq (history[j].insn_mo->name, "lld"))
6996 break;
6997 }
6998
6999 for (; j < lookback; j++)
7000 {
7001 if (history[j].label[0] != '\0'
7002 && streq (history[j].label, history[i].target)
7003 && strcmp (history[j+1].insn_mo->name, "sync") != 0)
7004 {
7005 add_fixed_insn (&sync_insn);
7006 insert_into_history (++j, 1, &sync_insn);
7007 }
7008 }
7009 }
7010 }
7011 }
7012
7013 /* Skip if there is a sync before ll/lld. */
7014 if ((strcmp (ip->insn_mo->name, "ll") == 0
7015 || strcmp (ip->insn_mo->name, "lld") == 0)
7016 && (strcmp (history[0].insn_mo->name, "sync") != 0))
7017 {
7018 add_fixed_insn (&sync_insn);
7019 insert_into_history (0, 1, &sync_insn);
7020 }
7021 }
7022
7023 /* IP is a branch that has a delay slot, and we need to fill it
7024 automatically. Return true if we can do that by swapping IP
7025 with the previous instruction.
7026 ADDRESS_EXPR is an operand of the instruction to be used with
7027 RELOC_TYPE. */
7028
7029 static bool
7030 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
7031 bfd_reloc_code_real_type *reloc_type)
7032 {
7033 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
7034 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
7035 unsigned int fpr_read, prev_fpr_write;
7036
7037 /* -O2 and above is required for this optimization. */
7038 if (mips_optimize < 2)
7039 return false;
7040
7041 /* If we have seen .set volatile or .set nomove, don't optimize. */
7042 if (mips_opts.nomove)
7043 return false;
7044
7045 /* We can't swap if the previous instruction's position is fixed. */
7046 if (history[0].fixed_p)
7047 return false;
7048
7049 /* If the previous previous insn was in a .set noreorder, we can't
7050 swap. Actually, the MIPS assembler will swap in this situation.
7051 However, gcc configured -with-gnu-as will generate code like
7052
7053 .set noreorder
7054 lw $4,XXX
7055 .set reorder
7056 INSN
7057 bne $4,$0,foo
7058
7059 in which we can not swap the bne and INSN. If gcc is not configured
7060 -with-gnu-as, it does not output the .set pseudo-ops. */
7061 if (history[1].noreorder_p)
7062 return false;
7063
7064 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
7065 This means that the previous instruction was a 4-byte one anyhow. */
7066 if (mips_opts.mips16 && history[0].fixp[0])
7067 return false;
7068
7069 /* If the branch is itself the target of a branch, we can not swap.
7070 We cheat on this; all we check for is whether there is a label on
7071 this instruction. If there are any branches to anything other than
7072 a label, users must use .set noreorder. */
7073 if (seg_info (now_seg)->label_list)
7074 return false;
7075
7076 /* If the previous instruction is in a variant frag other than this
7077 branch's one, we cannot do the swap. This does not apply to
7078 MIPS16 code, which uses variant frags for different purposes. */
7079 if (!mips_opts.mips16
7080 && history[0].frag
7081 && history[0].frag->fr_type == rs_machine_dependent)
7082 return false;
7083
7084 /* We do not swap with instructions that cannot architecturally
7085 be placed in a branch delay slot, such as SYNC or ERET. We
7086 also refrain from swapping with a trap instruction, since it
7087 complicates trap handlers to have the trap instruction be in
7088 a delay slot. */
7089 prev_pinfo = history[0].insn_mo->pinfo;
7090 if (prev_pinfo & INSN_NO_DELAY_SLOT)
7091 return false;
7092
7093 /* Check for conflicts between the branch and the instructions
7094 before the candidate delay slot. */
7095 if (nops_for_insn (0, history + 1, ip) > 0)
7096 return false;
7097
7098 /* Check for conflicts between the swapped sequence and the
7099 target of the branch. */
7100 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
7101 return false;
7102
7103 /* If the branch reads a register that the previous
7104 instruction sets, we can not swap. */
7105 gpr_read = gpr_read_mask (ip);
7106 prev_gpr_write = gpr_write_mask (&history[0]);
7107 if (gpr_read & prev_gpr_write)
7108 return false;
7109
7110 fpr_read = fpr_read_mask (ip);
7111 prev_fpr_write = fpr_write_mask (&history[0]);
7112 if (fpr_read & prev_fpr_write)
7113 return false;
7114
7115 /* If the branch writes a register that the previous
7116 instruction sets, we can not swap. */
7117 gpr_write = gpr_write_mask (ip);
7118 if (gpr_write & prev_gpr_write)
7119 return false;
7120
7121 /* If the branch writes a register that the previous
7122 instruction reads, we can not swap. */
7123 prev_gpr_read = gpr_read_mask (&history[0]);
7124 if (gpr_write & prev_gpr_read)
7125 return false;
7126
7127 /* If one instruction sets a condition code and the
7128 other one uses a condition code, we can not swap. */
7129 pinfo = ip->insn_mo->pinfo;
7130 if ((pinfo & INSN_READ_COND_CODE)
7131 && (prev_pinfo & INSN_WRITE_COND_CODE))
7132 return false;
7133 if ((pinfo & INSN_WRITE_COND_CODE)
7134 && (prev_pinfo & INSN_READ_COND_CODE))
7135 return false;
7136
7137 /* If the previous instruction uses the PC, we can not swap. */
7138 prev_pinfo2 = history[0].insn_mo->pinfo2;
7139 if (prev_pinfo2 & INSN2_READ_PC)
7140 return false;
7141
7142 /* If the previous instruction has an incorrect size for a fixed
7143 branch delay slot in microMIPS mode, we cannot swap. */
7144 pinfo2 = ip->insn_mo->pinfo2;
7145 if (mips_opts.micromips
7146 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
7147 && insn_length (history) != 2)
7148 return false;
7149 if (mips_opts.micromips
7150 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
7151 && insn_length (history) != 4)
7152 return false;
7153
7154 /* On the R5900 short loops need to be fixed by inserting a NOP in the
7155 branch delay slot.
7156
7157 The short loop bug under certain conditions causes loops to execute
7158 only once or twice. We must ensure that the assembler never
7159 generates loops that satisfy all of the following conditions:
7160
7161 - a loop consists of less than or equal to six instructions
7162 (including the branch delay slot);
7163 - a loop contains only one conditional branch instruction at the end
7164 of the loop;
7165 - a loop does not contain any other branch or jump instructions;
7166 - a branch delay slot of the loop is not NOP (EE 2.9 or later).
7167
7168 We need to do this because of a hardware bug in the R5900 chip. */
7169 if (mips_fix_r5900
7170 /* Check if instruction has a parameter, ignore "j $31". */
7171 && (address_expr != NULL)
7172 /* Parameter must be 16 bit. */
7173 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
7174 /* Branch to same segment. */
7175 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
7176 /* Branch to same code fragment. */
7177 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
7178 /* Can only calculate branch offset if value is known. */
7179 && symbol_constant_p (address_expr->X_add_symbol)
7180 /* Check if branch is really conditional. */
7181 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
7182 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
7183 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
7184 {
7185 int distance;
7186 /* Check if loop is shorter than or equal to 6 instructions
7187 including branch and delay slot. */
7188 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
7189 if (distance <= 20)
7190 {
7191 int i;
7192 int rv;
7193
7194 rv = false;
7195 /* When the loop includes branches or jumps,
7196 it is not a short loop. */
7197 for (i = 0; i < (distance / 4); i++)
7198 {
7199 if ((history[i].cleared_p)
7200 || delayed_branch_p (&history[i]))
7201 {
7202 rv = true;
7203 break;
7204 }
7205 }
7206 if (!rv)
7207 {
7208 /* Insert nop after branch to fix short loop. */
7209 return false;
7210 }
7211 }
7212 }
7213
7214 return true;
7215 }
7216
7217 /* Decide how we should add IP to the instruction stream.
7218 ADDRESS_EXPR is an operand of the instruction to be used with
7219 RELOC_TYPE. */
7220
7221 static enum append_method
7222 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
7223 bfd_reloc_code_real_type *reloc_type)
7224 {
7225 /* The relaxed version of a macro sequence must be inherently
7226 hazard-free. */
7227 if (mips_relax.sequence == 2)
7228 return APPEND_ADD;
7229
7230 /* We must not dabble with instructions in a ".set noreorder" block. */
7231 if (mips_opts.noreorder)
7232 return APPEND_ADD;
7233
7234 /* Otherwise, it's our responsibility to fill branch delay slots. */
7235 if (delayed_branch_p (ip))
7236 {
7237 if (!branch_likely_p (ip)
7238 && can_swap_branch_p (ip, address_expr, reloc_type))
7239 return APPEND_SWAP;
7240
7241 if (mips_opts.mips16
7242 && ISA_SUPPORTS_MIPS16E
7243 && gpr_read_mask (ip) != 0)
7244 return APPEND_ADD_COMPACT;
7245
7246 if (mips_opts.micromips
7247 && ((ip->insn_opcode & 0xffe0) == 0x4580
7248 || (!forced_insn_length
7249 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7250 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7251 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7252 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7253 return APPEND_ADD_COMPACT;
7254
7255 return APPEND_ADD_WITH_NOP;
7256 }
7257
7258 return APPEND_ADD;
7259 }
7260
7261 /* IP is an instruction whose opcode we have just changed, END points
7262 to the end of the opcode table processed. Point IP->insn_mo to the
7263 new opcode's definition. */
7264
7265 static void
7266 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
7267 {
7268 const struct mips_opcode *mo;
7269
7270 for (mo = ip->insn_mo; mo < end; mo++)
7271 if (mo->pinfo != INSN_MACRO
7272 && (ip->insn_opcode & mo->mask) == mo->match)
7273 {
7274 ip->insn_mo = mo;
7275 return;
7276 }
7277 abort ();
7278 }
7279
7280 /* IP is a MIPS16 instruction whose opcode we have just changed.
7281 Point IP->insn_mo to the new opcode's definition. */
7282
7283 static void
7284 find_altered_mips16_opcode (struct mips_cl_insn *ip)
7285 {
7286 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7287 }
7288
7289 /* IP is a microMIPS instruction whose opcode we have just changed.
7290 Point IP->insn_mo to the new opcode's definition. */
7291
7292 static void
7293 find_altered_micromips_opcode (struct mips_cl_insn *ip)
7294 {
7295 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7296 }
7297
7298 /* For microMIPS macros, we need to generate a local number label
7299 as the target of branches. */
7300 #define MICROMIPS_LABEL_CHAR '\037'
7301 static unsigned long micromips_target_label;
7302 static char micromips_target_name[32];
7303
7304 static char *
7305 micromips_label_name (void)
7306 {
7307 char *p = micromips_target_name;
7308 char symbol_name_temporary[24];
7309 unsigned long l;
7310 int i;
7311
7312 if (*p)
7313 return p;
7314
7315 i = 0;
7316 l = micromips_target_label;
7317 #ifdef LOCAL_LABEL_PREFIX
7318 *p++ = LOCAL_LABEL_PREFIX;
7319 #endif
7320 *p++ = 'L';
7321 *p++ = MICROMIPS_LABEL_CHAR;
7322 do
7323 {
7324 symbol_name_temporary[i++] = l % 10 + '0';
7325 l /= 10;
7326 }
7327 while (l != 0);
7328 while (i > 0)
7329 *p++ = symbol_name_temporary[--i];
7330 *p = '\0';
7331
7332 return micromips_target_name;
7333 }
7334
7335 static void
7336 micromips_label_expr (expressionS *label_expr)
7337 {
7338 label_expr->X_op = O_symbol;
7339 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7340 label_expr->X_add_number = 0;
7341 }
7342
7343 static void
7344 micromips_label_inc (void)
7345 {
7346 micromips_target_label++;
7347 *micromips_target_name = '\0';
7348 }
7349
7350 static void
7351 micromips_add_label (void)
7352 {
7353 symbolS *s;
7354
7355 s = colon (micromips_label_name ());
7356 micromips_label_inc ();
7357 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7358 }
7359
7360 /* If assembling microMIPS code, then return the microMIPS reloc
7361 corresponding to the requested one if any. Otherwise return
7362 the reloc unchanged. */
7363
7364 static bfd_reloc_code_real_type
7365 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7366 {
7367 static const bfd_reloc_code_real_type relocs[][2] =
7368 {
7369 /* Keep sorted incrementally by the left-hand key. */
7370 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7371 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7372 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7373 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7374 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7375 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7376 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7377 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7378 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7379 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7380 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7381 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7382 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7383 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7384 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7385 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7386 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7387 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7388 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7389 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7390 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7391 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7392 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7393 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7394 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7395 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7396 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7397 };
7398 bfd_reloc_code_real_type r;
7399 size_t i;
7400
7401 if (!mips_opts.micromips)
7402 return reloc;
7403 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7404 {
7405 r = relocs[i][0];
7406 if (r > reloc)
7407 return reloc;
7408 if (r == reloc)
7409 return relocs[i][1];
7410 }
7411 return reloc;
7412 }
7413
7414 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7415 Return true on success, storing the resolved value in RESULT. */
7416
7417 static bool
7418 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7419 offsetT *result)
7420 {
7421 switch (reloc)
7422 {
7423 case BFD_RELOC_MIPS_HIGHEST:
7424 case BFD_RELOC_MICROMIPS_HIGHEST:
7425 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7426 return true;
7427
7428 case BFD_RELOC_MIPS_HIGHER:
7429 case BFD_RELOC_MICROMIPS_HIGHER:
7430 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7431 return true;
7432
7433 case BFD_RELOC_HI16_S:
7434 case BFD_RELOC_HI16_S_PCREL:
7435 case BFD_RELOC_MICROMIPS_HI16_S:
7436 case BFD_RELOC_MIPS16_HI16_S:
7437 *result = ((operand + 0x8000) >> 16) & 0xffff;
7438 return true;
7439
7440 case BFD_RELOC_HI16:
7441 case BFD_RELOC_MICROMIPS_HI16:
7442 case BFD_RELOC_MIPS16_HI16:
7443 *result = (operand >> 16) & 0xffff;
7444 return true;
7445
7446 case BFD_RELOC_LO16:
7447 case BFD_RELOC_LO16_PCREL:
7448 case BFD_RELOC_MICROMIPS_LO16:
7449 case BFD_RELOC_MIPS16_LO16:
7450 *result = operand & 0xffff;
7451 return true;
7452
7453 case BFD_RELOC_UNUSED:
7454 *result = operand;
7455 return true;
7456
7457 default:
7458 return false;
7459 }
7460 }
7461
7462 /* Output an instruction. IP is the instruction information.
7463 ADDRESS_EXPR is an operand of the instruction to be used with
7464 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7465 a macro expansion. */
7466
7467 static void
7468 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7469 bfd_reloc_code_real_type *reloc_type, bool expansionp)
7470 {
7471 unsigned long prev_pinfo2, pinfo;
7472 bool relaxed_branch = false;
7473 enum append_method method;
7474 bool relax32;
7475 int branch_disp;
7476
7477 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7478 fix_loongson2f (ip);
7479
7480 ip->target[0] = '\0';
7481 if (offset_expr.X_op == O_symbol)
7482 strncpy (ip->target, S_GET_NAME (offset_expr.X_add_symbol), 15);
7483 ip->label[0] = '\0';
7484 if (seg_info (now_seg)->label_list)
7485 strncpy (ip->label, S_GET_NAME (seg_info (now_seg)->label_list->label), 15);
7486 if (mips_fix_loongson3_llsc && !HAVE_CODE_COMPRESSION)
7487 fix_loongson3_llsc (ip);
7488
7489 file_ase_mips16 |= mips_opts.mips16;
7490 file_ase_micromips |= mips_opts.micromips;
7491
7492 prev_pinfo2 = history[0].insn_mo->pinfo2;
7493 pinfo = ip->insn_mo->pinfo;
7494
7495 /* Don't raise alarm about `nods' frags as they'll fill in the right
7496 kind of nop in relaxation if required. */
7497 if (mips_opts.micromips
7498 && !expansionp
7499 && !(history[0].frag
7500 && history[0].frag->fr_type == rs_machine_dependent
7501 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7502 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7503 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7504 && micromips_insn_length (ip->insn_mo) != 2)
7505 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7506 && micromips_insn_length (ip->insn_mo) != 4)))
7507 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7508 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7509
7510 if (address_expr == NULL)
7511 ip->complete_p = 1;
7512 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7513 && reloc_type[1] == BFD_RELOC_UNUSED
7514 && reloc_type[2] == BFD_RELOC_UNUSED
7515 && address_expr->X_op == O_constant)
7516 {
7517 switch (*reloc_type)
7518 {
7519 case BFD_RELOC_MIPS_JMP:
7520 {
7521 int shift;
7522
7523 /* Shift is 2, unusually, for microMIPS JALX. */
7524 shift = (mips_opts.micromips
7525 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7526 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7527 as_bad (_("jump to misaligned address (0x%lx)"),
7528 (unsigned long) address_expr->X_add_number);
7529 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7530 & 0x3ffffff);
7531 ip->complete_p = 1;
7532 }
7533 break;
7534
7535 case BFD_RELOC_MIPS16_JMP:
7536 if ((address_expr->X_add_number & 3) != 0)
7537 as_bad (_("jump to misaligned address (0x%lx)"),
7538 (unsigned long) address_expr->X_add_number);
7539 ip->insn_opcode |=
7540 (((address_expr->X_add_number & 0x7c0000) << 3)
7541 | ((address_expr->X_add_number & 0xf800000) >> 7)
7542 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7543 ip->complete_p = 1;
7544 break;
7545
7546 case BFD_RELOC_16_PCREL_S2:
7547 {
7548 int shift;
7549
7550 shift = mips_opts.micromips ? 1 : 2;
7551 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7552 as_bad (_("branch to misaligned address (0x%lx)"),
7553 (unsigned long) address_expr->X_add_number);
7554 if (!mips_relax_branch)
7555 {
7556 if ((address_expr->X_add_number + (1 << (shift + 15)))
7557 & ~((1 << (shift + 16)) - 1))
7558 as_bad (_("branch address range overflow (0x%lx)"),
7559 (unsigned long) address_expr->X_add_number);
7560 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7561 & 0xffff);
7562 }
7563 }
7564 break;
7565
7566 case BFD_RELOC_MIPS_21_PCREL_S2:
7567 {
7568 int shift;
7569
7570 shift = 2;
7571 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7572 as_bad (_("branch to misaligned address (0x%lx)"),
7573 (unsigned long) address_expr->X_add_number);
7574 if ((address_expr->X_add_number + (1 << (shift + 20)))
7575 & ~((1 << (shift + 21)) - 1))
7576 as_bad (_("branch address range overflow (0x%lx)"),
7577 (unsigned long) address_expr->X_add_number);
7578 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7579 & 0x1fffff);
7580 }
7581 break;
7582
7583 case BFD_RELOC_MIPS_26_PCREL_S2:
7584 {
7585 int shift;
7586
7587 shift = 2;
7588 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7589 as_bad (_("branch to misaligned address (0x%lx)"),
7590 (unsigned long) address_expr->X_add_number);
7591 if ((address_expr->X_add_number + (1 << (shift + 25)))
7592 & ~((1 << (shift + 26)) - 1))
7593 as_bad (_("branch address range overflow (0x%lx)"),
7594 (unsigned long) address_expr->X_add_number);
7595 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7596 & 0x3ffffff);
7597 }
7598 break;
7599
7600 default:
7601 {
7602 offsetT value;
7603
7604 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7605 &value))
7606 {
7607 ip->insn_opcode |= value & 0xffff;
7608 ip->complete_p = 1;
7609 }
7610 }
7611 break;
7612 }
7613 }
7614
7615 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7616 {
7617 /* There are a lot of optimizations we could do that we don't.
7618 In particular, we do not, in general, reorder instructions.
7619 If you use gcc with optimization, it will reorder
7620 instructions and generally do much more optimization then we
7621 do here; repeating all that work in the assembler would only
7622 benefit hand written assembly code, and does not seem worth
7623 it. */
7624 int nops = (mips_optimize == 0
7625 ? nops_for_insn (0, history, NULL)
7626 : nops_for_insn_or_target (0, history, ip));
7627 if (nops > 0)
7628 {
7629 fragS *old_frag;
7630 unsigned long old_frag_offset;
7631 int i;
7632
7633 old_frag = frag_now;
7634 old_frag_offset = frag_now_fix ();
7635
7636 for (i = 0; i < nops; i++)
7637 add_fixed_insn (NOP_INSN);
7638 insert_into_history (0, nops, NOP_INSN);
7639
7640 if (listing)
7641 {
7642 listing_prev_line ();
7643 /* We may be at the start of a variant frag. In case we
7644 are, make sure there is enough space for the frag
7645 after the frags created by listing_prev_line. The
7646 argument to frag_grow here must be at least as large
7647 as the argument to all other calls to frag_grow in
7648 this file. We don't have to worry about being in the
7649 middle of a variant frag, because the variants insert
7650 all needed nop instructions themselves. */
7651 frag_grow (40);
7652 }
7653
7654 mips_move_text_labels ();
7655
7656 #ifndef NO_ECOFF_DEBUGGING
7657 if (ECOFF_DEBUGGING)
7658 ecoff_fix_loc (old_frag, old_frag_offset);
7659 #endif
7660 }
7661 }
7662 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7663 {
7664 int nops;
7665
7666 /* Work out how many nops in prev_nop_frag are needed by IP,
7667 ignoring hazards generated by the first prev_nop_frag_since
7668 instructions. */
7669 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7670 gas_assert (nops <= prev_nop_frag_holds);
7671
7672 /* Enforce NOPS as a minimum. */
7673 if (nops > prev_nop_frag_required)
7674 prev_nop_frag_required = nops;
7675
7676 if (prev_nop_frag_holds == prev_nop_frag_required)
7677 {
7678 /* Settle for the current number of nops. Update the history
7679 accordingly (for the benefit of any future .set reorder code). */
7680 prev_nop_frag = NULL;
7681 insert_into_history (prev_nop_frag_since,
7682 prev_nop_frag_holds, NOP_INSN);
7683 }
7684 else
7685 {
7686 /* Allow this instruction to replace one of the nops that was
7687 tentatively added to prev_nop_frag. */
7688 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7689 prev_nop_frag_holds--;
7690 prev_nop_frag_since++;
7691 }
7692 }
7693
7694 method = get_append_method (ip, address_expr, reloc_type);
7695 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7696
7697 dwarf2_emit_insn (0);
7698 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7699 so "move" the instruction address accordingly.
7700
7701 Also, it doesn't seem appropriate for the assembler to reorder .loc
7702 entries. If this instruction is a branch that we are going to swap
7703 with the previous instruction, the two instructions should be
7704 treated as a unit, and the debug information for both instructions
7705 should refer to the start of the branch sequence. Using the
7706 current position is certainly wrong when swapping a 32-bit branch
7707 and a 16-bit delay slot, since the current position would then be
7708 in the middle of a branch. */
7709 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7710
7711 relax32 = (mips_relax_branch
7712 /* Don't try branch relaxation within .set nomacro, or within
7713 .set noat if we use $at for PIC computations. If it turns
7714 out that the branch was out-of-range, we'll get an error. */
7715 && !mips_opts.warn_about_macros
7716 && (mips_opts.at || mips_pic == NO_PIC)
7717 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7718 as they have no complementing branches. */
7719 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7720
7721 if (!HAVE_CODE_COMPRESSION
7722 && address_expr
7723 && relax32
7724 && *reloc_type == BFD_RELOC_16_PCREL_S2
7725 && delayed_branch_p (ip))
7726 {
7727 relaxed_branch = true;
7728 add_relaxed_insn (ip, (relaxed_branch_length
7729 (NULL, NULL,
7730 uncond_branch_p (ip) ? -1
7731 : branch_likely_p (ip) ? 1
7732 : 0)), 4,
7733 RELAX_BRANCH_ENCODE
7734 (AT, mips_pic != NO_PIC,
7735 uncond_branch_p (ip),
7736 branch_likely_p (ip),
7737 pinfo & INSN_WRITE_GPR_31,
7738 0),
7739 address_expr->X_add_symbol,
7740 address_expr->X_add_number);
7741 *reloc_type = BFD_RELOC_UNUSED;
7742 }
7743 else if (mips_opts.micromips
7744 && address_expr
7745 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7746 || *reloc_type > BFD_RELOC_UNUSED)
7747 && (delayed_branch_p (ip) || compact_branch_p (ip))
7748 /* Don't try branch relaxation when users specify
7749 16-bit/32-bit instructions. */
7750 && !forced_insn_length)
7751 {
7752 bool relax16 = (method != APPEND_ADD_COMPACT
7753 && *reloc_type > BFD_RELOC_UNUSED);
7754 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7755 int uncond = uncond_branch_p (ip) ? -1 : 0;
7756 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7757 int nods = method == APPEND_ADD_WITH_NOP;
7758 int al = pinfo & INSN_WRITE_GPR_31;
7759 int length32 = nods ? 8 : 4;
7760
7761 gas_assert (address_expr != NULL);
7762 gas_assert (!mips_relax.sequence);
7763
7764 relaxed_branch = true;
7765 if (nods)
7766 method = APPEND_ADD;
7767 if (relax32)
7768 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7769 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7770 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7771 mips_pic != NO_PIC,
7772 uncond, compact, al, nods,
7773 relax32, 0, 0),
7774 address_expr->X_add_symbol,
7775 address_expr->X_add_number);
7776 *reloc_type = BFD_RELOC_UNUSED;
7777 }
7778 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7779 {
7780 bool require_unextended;
7781 bool require_extended;
7782 symbolS *symbol;
7783 offsetT offset;
7784
7785 if (forced_insn_length != 0)
7786 {
7787 require_unextended = forced_insn_length == 2;
7788 require_extended = forced_insn_length == 4;
7789 }
7790 else
7791 {
7792 require_unextended = (mips_opts.noautoextend
7793 && !mips_opcode_32bit_p (ip->insn_mo));
7794 require_extended = 0;
7795 }
7796
7797 /* We need to set up a variant frag. */
7798 gas_assert (address_expr != NULL);
7799 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7800 symbol created by `make_expr_symbol' may not get a necessary
7801 external relocation produced. */
7802 if (address_expr->X_op == O_symbol)
7803 {
7804 symbol = address_expr->X_add_symbol;
7805 offset = address_expr->X_add_number;
7806 }
7807 else
7808 {
7809 symbol = make_expr_symbol (address_expr);
7810 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7811 offset = 0;
7812 }
7813 add_relaxed_insn (ip, 12, 0,
7814 RELAX_MIPS16_ENCODE
7815 (*reloc_type - BFD_RELOC_UNUSED,
7816 mips_opts.ase & ASE_MIPS16E2,
7817 mips_pic != NO_PIC,
7818 HAVE_32BIT_SYMBOLS,
7819 mips_opts.warn_about_macros,
7820 require_unextended, require_extended,
7821 delayed_branch_p (&history[0]),
7822 history[0].mips16_absolute_jump_p),
7823 symbol, offset);
7824 }
7825 else if (mips_opts.mips16 && insn_length (ip) == 2)
7826 {
7827 if (!delayed_branch_p (ip))
7828 /* Make sure there is enough room to swap this instruction with
7829 a following jump instruction. */
7830 frag_grow (6);
7831 add_fixed_insn (ip);
7832 }
7833 else
7834 {
7835 if (mips_opts.mips16
7836 && mips_opts.noreorder
7837 && delayed_branch_p (&history[0]))
7838 as_warn (_("extended instruction in delay slot"));
7839
7840 if (mips_relax.sequence)
7841 {
7842 /* If we've reached the end of this frag, turn it into a variant
7843 frag and record the information for the instructions we've
7844 written so far. */
7845 if (frag_room () < 4)
7846 relax_close_frag ();
7847 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7848 }
7849
7850 if (mips_relax.sequence != 2)
7851 {
7852 if (mips_macro_warning.first_insn_sizes[0] == 0)
7853 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7854 mips_macro_warning.sizes[0] += insn_length (ip);
7855 mips_macro_warning.insns[0]++;
7856 }
7857 if (mips_relax.sequence != 1)
7858 {
7859 if (mips_macro_warning.first_insn_sizes[1] == 0)
7860 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7861 mips_macro_warning.sizes[1] += insn_length (ip);
7862 mips_macro_warning.insns[1]++;
7863 }
7864
7865 if (mips_opts.mips16)
7866 {
7867 ip->fixed_p = 1;
7868 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7869 }
7870 add_fixed_insn (ip);
7871 }
7872
7873 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7874 {
7875 bfd_reloc_code_real_type final_type[3];
7876 reloc_howto_type *howto0;
7877 reloc_howto_type *howto;
7878 int i;
7879
7880 /* Perform any necessary conversion to microMIPS relocations
7881 and find out how many relocations there actually are. */
7882 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7883 final_type[i] = micromips_map_reloc (reloc_type[i]);
7884
7885 /* In a compound relocation, it is the final (outermost)
7886 operator that determines the relocated field. */
7887 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7888 if (!howto)
7889 abort ();
7890
7891 if (i > 1)
7892 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7893 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7894 bfd_get_reloc_size (howto),
7895 address_expr,
7896 howto0 && howto0->pc_relative,
7897 final_type[0]);
7898 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7899 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7900
7901 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7902 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7903 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7904
7905 /* These relocations can have an addend that won't fit in
7906 4 octets for 64bit assembly. */
7907 if (GPR_SIZE == 64
7908 && ! howto->partial_inplace
7909 && (reloc_type[0] == BFD_RELOC_16
7910 || reloc_type[0] == BFD_RELOC_32
7911 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7912 || reloc_type[0] == BFD_RELOC_GPREL16
7913 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7914 || reloc_type[0] == BFD_RELOC_GPREL32
7915 || reloc_type[0] == BFD_RELOC_64
7916 || reloc_type[0] == BFD_RELOC_CTOR
7917 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7918 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7919 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7920 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7921 || reloc_type[0] == BFD_RELOC_MIPS_16
7922 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7923 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7924 || hi16_reloc_p (reloc_type[0])
7925 || lo16_reloc_p (reloc_type[0])))
7926 ip->fixp[0]->fx_no_overflow = 1;
7927
7928 /* These relocations can have an addend that won't fit in 2 octets. */
7929 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7930 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7931 ip->fixp[0]->fx_no_overflow = 1;
7932
7933 if (mips_relax.sequence)
7934 {
7935 if (mips_relax.first_fixup == 0)
7936 mips_relax.first_fixup = ip->fixp[0];
7937 }
7938 else if (reloc_needs_lo_p (*reloc_type))
7939 {
7940 struct mips_hi_fixup *hi_fixup;
7941
7942 /* Reuse the last entry if it already has a matching %lo. */
7943 hi_fixup = mips_hi_fixup_list;
7944 if (hi_fixup == 0
7945 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7946 {
7947 hi_fixup = XNEW (struct mips_hi_fixup);
7948 hi_fixup->next = mips_hi_fixup_list;
7949 mips_hi_fixup_list = hi_fixup;
7950 }
7951 hi_fixup->fixp = ip->fixp[0];
7952 hi_fixup->seg = now_seg;
7953 }
7954
7955 /* Add fixups for the second and third relocations, if given.
7956 Note that the ABI allows the second relocation to be
7957 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7958 moment we only use RSS_UNDEF, but we could add support
7959 for the others if it ever becomes necessary. */
7960 for (i = 1; i < 3; i++)
7961 if (reloc_type[i] != BFD_RELOC_UNUSED)
7962 {
7963 ip->fixp[i] = fix_new (ip->frag, ip->where,
7964 ip->fixp[0]->fx_size, NULL, 0,
7965 false, final_type[i]);
7966
7967 /* Use fx_tcbit to mark compound relocs. */
7968 ip->fixp[0]->fx_tcbit = 1;
7969 ip->fixp[i]->fx_tcbit = 1;
7970 }
7971 }
7972
7973 /* Update the register mask information. */
7974 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7975 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7976
7977 switch (method)
7978 {
7979 case APPEND_ADD:
7980 insert_into_history (0, 1, ip);
7981 break;
7982
7983 case APPEND_ADD_WITH_NOP:
7984 {
7985 struct mips_cl_insn *nop;
7986
7987 insert_into_history (0, 1, ip);
7988 nop = get_delay_slot_nop (ip);
7989 add_fixed_insn (nop);
7990 insert_into_history (0, 1, nop);
7991 if (mips_relax.sequence)
7992 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7993 }
7994 break;
7995
7996 case APPEND_ADD_COMPACT:
7997 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7998 if (mips_opts.mips16)
7999 {
8000 ip->insn_opcode |= 0x0080;
8001 find_altered_mips16_opcode (ip);
8002 }
8003 /* Convert microMIPS instructions. */
8004 else if (mips_opts.micromips)
8005 {
8006 /* jr16->jrc */
8007 if ((ip->insn_opcode & 0xffe0) == 0x4580)
8008 ip->insn_opcode |= 0x0020;
8009 /* b16->bc */
8010 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
8011 ip->insn_opcode = 0x40e00000;
8012 /* beqz16->beqzc, bnez16->bnezc */
8013 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
8014 {
8015 unsigned long regno;
8016
8017 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
8018 regno &= MICROMIPSOP_MASK_MD;
8019 regno = micromips_to_32_reg_d_map[regno];
8020 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
8021 | (regno << MICROMIPSOP_SH_RS)
8022 | 0x40a00000) ^ 0x00400000;
8023 }
8024 /* beqz->beqzc, bnez->bnezc */
8025 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
8026 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
8027 | ((ip->insn_opcode >> 7) & 0x00400000)
8028 | 0x40a00000) ^ 0x00400000;
8029 /* beq $0->beqzc, bne $0->bnezc */
8030 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
8031 ip->insn_opcode = (((ip->insn_opcode >>
8032 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
8033 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
8034 | ((ip->insn_opcode >> 7) & 0x00400000)
8035 | 0x40a00000) ^ 0x00400000;
8036 else
8037 abort ();
8038 find_altered_micromips_opcode (ip);
8039 }
8040 else
8041 abort ();
8042 install_insn (ip);
8043 insert_into_history (0, 1, ip);
8044 break;
8045
8046 case APPEND_SWAP:
8047 {
8048 struct mips_cl_insn delay = history[0];
8049
8050 if (relaxed_branch || delay.frag != ip->frag)
8051 {
8052 /* Add the delay slot instruction to the end of the
8053 current frag and shrink the fixed part of the
8054 original frag. If the branch occupies the tail of
8055 the latter, move it backwards to cover the gap. */
8056 delay.frag->fr_fix -= branch_disp;
8057 if (delay.frag == ip->frag)
8058 move_insn (ip, ip->frag, ip->where - branch_disp);
8059 add_fixed_insn (&delay);
8060 }
8061 else
8062 {
8063 /* If this is not a relaxed branch and we are in the
8064 same frag, then just swap the instructions. */
8065 move_insn (ip, delay.frag, delay.where);
8066 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
8067 }
8068 history[0] = *ip;
8069 delay.fixed_p = 1;
8070 insert_into_history (0, 1, &delay);
8071 }
8072 break;
8073 }
8074
8075 /* If we have just completed an unconditional branch, clear the history. */
8076 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
8077 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
8078 {
8079 unsigned int i;
8080
8081 mips_no_prev_insn ();
8082
8083 for (i = 0; i < ARRAY_SIZE (history); i++)
8084 history[i].cleared_p = 1;
8085 }
8086
8087 /* We need to emit a label at the end of branch-likely macros. */
8088 if (emit_branch_likely_macro)
8089 {
8090 emit_branch_likely_macro = false;
8091 micromips_add_label ();
8092 }
8093
8094 /* We just output an insn, so the next one doesn't have a label. */
8095 mips_clear_insn_labels ();
8096 }
8097
8098 /* Forget that there was any previous instruction or label.
8099 When BRANCH is true, the branch history is also flushed. */
8100
8101 static void
8102 mips_no_prev_insn (void)
8103 {
8104 prev_nop_frag = NULL;
8105 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
8106 mips_clear_insn_labels ();
8107 }
8108
8109 /* This function must be called before we emit something other than
8110 instructions. It is like mips_no_prev_insn except that it inserts
8111 any NOPS that might be needed by previous instructions. */
8112
8113 void
8114 mips_emit_delays (void)
8115 {
8116 if (! mips_opts.noreorder)
8117 {
8118 int nops = nops_for_insn (0, history, NULL);
8119 if (nops > 0)
8120 {
8121 while (nops-- > 0)
8122 add_fixed_insn (NOP_INSN);
8123 mips_move_text_labels ();
8124 }
8125 }
8126 mips_no_prev_insn ();
8127 }
8128
8129 /* Start a (possibly nested) noreorder block. */
8130
8131 static void
8132 start_noreorder (void)
8133 {
8134 if (mips_opts.noreorder == 0)
8135 {
8136 unsigned int i;
8137 int nops;
8138
8139 /* None of the instructions before the .set noreorder can be moved. */
8140 for (i = 0; i < ARRAY_SIZE (history); i++)
8141 history[i].fixed_p = 1;
8142
8143 /* Insert any nops that might be needed between the .set noreorder
8144 block and the previous instructions. We will later remove any
8145 nops that turn out not to be needed. */
8146 nops = nops_for_insn (0, history, NULL);
8147 if (nops > 0)
8148 {
8149 if (mips_optimize != 0)
8150 {
8151 /* Record the frag which holds the nop instructions, so
8152 that we can remove them if we don't need them. */
8153 frag_grow (nops * NOP_INSN_SIZE);
8154 prev_nop_frag = frag_now;
8155 prev_nop_frag_holds = nops;
8156 prev_nop_frag_required = 0;
8157 prev_nop_frag_since = 0;
8158 }
8159
8160 for (; nops > 0; --nops)
8161 add_fixed_insn (NOP_INSN);
8162
8163 /* Move on to a new frag, so that it is safe to simply
8164 decrease the size of prev_nop_frag. */
8165 frag_wane (frag_now);
8166 frag_new (0);
8167 mips_move_text_labels ();
8168 }
8169 mips_mark_labels ();
8170 mips_clear_insn_labels ();
8171 }
8172 mips_opts.noreorder++;
8173 mips_any_noreorder = 1;
8174 }
8175
8176 /* End a nested noreorder block. */
8177
8178 static void
8179 end_noreorder (void)
8180 {
8181 mips_opts.noreorder--;
8182 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
8183 {
8184 /* Commit to inserting prev_nop_frag_required nops and go back to
8185 handling nop insertion the .set reorder way. */
8186 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
8187 * NOP_INSN_SIZE);
8188 insert_into_history (prev_nop_frag_since,
8189 prev_nop_frag_required, NOP_INSN);
8190 prev_nop_frag = NULL;
8191 }
8192 }
8193
8194 /* Sign-extend 32-bit mode constants that have bit 31 set and all
8195 higher bits unset. */
8196
8197 static void
8198 normalize_constant_expr (expressionS *ex)
8199 {
8200 if (ex->X_op == O_constant
8201 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8202 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8203 - 0x80000000);
8204 }
8205
8206 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
8207 all higher bits unset. */
8208
8209 static void
8210 normalize_address_expr (expressionS *ex)
8211 {
8212 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
8213 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
8214 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8215 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8216 - 0x80000000);
8217 }
8218
8219 /* Try to match TOKENS against OPCODE, storing the result in INSN.
8220 Return true if the match was successful.
8221
8222 OPCODE_EXTRA is a value that should be ORed into the opcode
8223 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8224 there are more alternatives after OPCODE and SOFT_MATCH is
8225 as for mips_arg_info. */
8226
8227 static bool
8228 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8229 struct mips_operand_token *tokens, unsigned int opcode_extra,
8230 bool lax_match, bool complete_p)
8231 {
8232 const char *args;
8233 struct mips_arg_info arg;
8234 const struct mips_operand *operand;
8235 char c;
8236
8237 imm_expr.X_op = O_absent;
8238 offset_expr.X_op = O_absent;
8239 offset_reloc[0] = BFD_RELOC_UNUSED;
8240 offset_reloc[1] = BFD_RELOC_UNUSED;
8241 offset_reloc[2] = BFD_RELOC_UNUSED;
8242
8243 create_insn (insn, opcode);
8244 /* When no opcode suffix is specified, assume ".xyzw". */
8245 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8246 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8247 else
8248 insn->insn_opcode |= opcode_extra;
8249 memset (&arg, 0, sizeof (arg));
8250 arg.insn = insn;
8251 arg.token = tokens;
8252 arg.argnum = 1;
8253 arg.last_regno = ILLEGAL_REG;
8254 arg.dest_regno = ILLEGAL_REG;
8255 arg.lax_match = lax_match;
8256 for (args = opcode->args;; ++args)
8257 {
8258 if (arg.token->type == OT_END)
8259 {
8260 /* Handle unary instructions in which only one operand is given.
8261 The source is then the same as the destination. */
8262 if (arg.opnum == 1 && *args == ',')
8263 {
8264 operand = (mips_opts.micromips
8265 ? decode_micromips_operand (args + 1)
8266 : decode_mips_operand (args + 1));
8267 if (operand && mips_optional_operand_p (operand))
8268 {
8269 arg.token = tokens;
8270 arg.argnum = 1;
8271 continue;
8272 }
8273 }
8274
8275 /* Treat elided base registers as $0. */
8276 if (strcmp (args, "(b)") == 0)
8277 args += 3;
8278
8279 if (args[0] == '+')
8280 switch (args[1])
8281 {
8282 case 'K':
8283 case 'N':
8284 /* The register suffix is optional. */
8285 args += 2;
8286 break;
8287 }
8288
8289 /* Fail the match if there were too few operands. */
8290 if (*args)
8291 return false;
8292
8293 /* Successful match. */
8294 if (!complete_p)
8295 return true;
8296 clear_insn_error ();
8297 if (arg.dest_regno == arg.last_regno
8298 && startswith (insn->insn_mo->name, "jalr"))
8299 {
8300 if (arg.opnum == 2)
8301 set_insn_error
8302 (0, _("source and destination must be different"));
8303 else if (arg.last_regno == 31)
8304 set_insn_error
8305 (0, _("a destination register must be supplied"));
8306 }
8307 else if (arg.last_regno == 31
8308 && (startswith (insn->insn_mo->name, "bltzal")
8309 || startswith (insn->insn_mo->name, "bgezal")))
8310 set_insn_error (0, _("the source register must not be $31"));
8311 check_completed_insn (&arg);
8312 return true;
8313 }
8314
8315 /* Fail the match if the line has too many operands. */
8316 if (*args == 0)
8317 return false;
8318
8319 /* Handle characters that need to match exactly. */
8320 if (*args == '(' || *args == ')' || *args == ',')
8321 {
8322 if (match_char (&arg, *args))
8323 continue;
8324 return false;
8325 }
8326 if (*args == '#')
8327 {
8328 ++args;
8329 if (arg.token->type == OT_DOUBLE_CHAR
8330 && arg.token->u.ch == *args)
8331 {
8332 ++arg.token;
8333 continue;
8334 }
8335 return false;
8336 }
8337
8338 /* Handle special macro operands. Work out the properties of
8339 other operands. */
8340 arg.opnum += 1;
8341 switch (*args)
8342 {
8343 case '-':
8344 switch (args[1])
8345 {
8346 case 'A':
8347 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8348 break;
8349
8350 case 'B':
8351 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8352 break;
8353 }
8354 break;
8355
8356 case '+':
8357 switch (args[1])
8358 {
8359 case 'i':
8360 *offset_reloc = BFD_RELOC_MIPS_JMP;
8361 break;
8362
8363 case '\'':
8364 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8365 break;
8366
8367 case '\"':
8368 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8369 break;
8370 }
8371 break;
8372
8373 case 'I':
8374 if (!match_const_int (&arg, &imm_expr.X_add_number))
8375 return false;
8376 imm_expr.X_op = O_constant;
8377 if (GPR_SIZE == 32)
8378 normalize_constant_expr (&imm_expr);
8379 continue;
8380
8381 case 'A':
8382 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8383 {
8384 /* Assume that the offset has been elided and that what
8385 we saw was a base register. The match will fail later
8386 if that assumption turns out to be wrong. */
8387 offset_expr.X_op = O_constant;
8388 offset_expr.X_add_number = 0;
8389 }
8390 else
8391 {
8392 if (!match_expression (&arg, &offset_expr, offset_reloc))
8393 return false;
8394 normalize_address_expr (&offset_expr);
8395 }
8396 continue;
8397
8398 case 'F':
8399 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8400 8, true))
8401 return false;
8402 continue;
8403
8404 case 'L':
8405 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8406 8, false))
8407 return false;
8408 continue;
8409
8410 case 'f':
8411 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8412 4, true))
8413 return false;
8414 continue;
8415
8416 case 'l':
8417 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8418 4, false))
8419 return false;
8420 continue;
8421
8422 case 'p':
8423 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8424 break;
8425
8426 case 'a':
8427 *offset_reloc = BFD_RELOC_MIPS_JMP;
8428 break;
8429
8430 case 'm':
8431 gas_assert (mips_opts.micromips);
8432 c = args[1];
8433 switch (c)
8434 {
8435 case 'D':
8436 case 'E':
8437 if (!forced_insn_length)
8438 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8439 else if (c == 'D')
8440 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8441 else
8442 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8443 break;
8444 }
8445 break;
8446 }
8447
8448 operand = (mips_opts.micromips
8449 ? decode_micromips_operand (args)
8450 : decode_mips_operand (args));
8451 if (!operand)
8452 abort ();
8453
8454 /* Skip prefixes. */
8455 if (*args == '+' || *args == 'm' || *args == '-')
8456 args++;
8457
8458 if (mips_optional_operand_p (operand)
8459 && args[1] == ','
8460 && (arg.token[0].type != OT_REG
8461 || arg.token[1].type == OT_END))
8462 {
8463 /* Assume that the register has been elided and is the
8464 same as the first operand. */
8465 arg.token = tokens;
8466 arg.argnum = 1;
8467 }
8468
8469 if (!match_operand (&arg, operand))
8470 return false;
8471 }
8472 }
8473
8474 /* Like match_insn, but for MIPS16. */
8475
8476 static bool
8477 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8478 struct mips_operand_token *tokens)
8479 {
8480 const char *args;
8481 const struct mips_operand *operand;
8482 const struct mips_operand *ext_operand;
8483 bool pcrel = false;
8484 int required_insn_length;
8485 struct mips_arg_info arg;
8486 int relax_char;
8487
8488 if (forced_insn_length)
8489 required_insn_length = forced_insn_length;
8490 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8491 required_insn_length = 2;
8492 else
8493 required_insn_length = 0;
8494
8495 create_insn (insn, opcode);
8496 imm_expr.X_op = O_absent;
8497 offset_expr.X_op = O_absent;
8498 offset_reloc[0] = BFD_RELOC_UNUSED;
8499 offset_reloc[1] = BFD_RELOC_UNUSED;
8500 offset_reloc[2] = BFD_RELOC_UNUSED;
8501 relax_char = 0;
8502
8503 memset (&arg, 0, sizeof (arg));
8504 arg.insn = insn;
8505 arg.token = tokens;
8506 arg.argnum = 1;
8507 arg.last_regno = ILLEGAL_REG;
8508 arg.dest_regno = ILLEGAL_REG;
8509 relax_char = 0;
8510 for (args = opcode->args;; ++args)
8511 {
8512 int c;
8513
8514 if (arg.token->type == OT_END)
8515 {
8516 offsetT value;
8517
8518 /* Handle unary instructions in which only one operand is given.
8519 The source is then the same as the destination. */
8520 if (arg.opnum == 1 && *args == ',')
8521 {
8522 operand = decode_mips16_operand (args[1], false);
8523 if (operand && mips_optional_operand_p (operand))
8524 {
8525 arg.token = tokens;
8526 arg.argnum = 1;
8527 continue;
8528 }
8529 }
8530
8531 /* Fail the match if there were too few operands. */
8532 if (*args)
8533 return false;
8534
8535 /* Successful match. Stuff the immediate value in now, if
8536 we can. */
8537 clear_insn_error ();
8538 if (opcode->pinfo == INSN_MACRO)
8539 {
8540 gas_assert (relax_char == 0 || relax_char == 'p');
8541 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8542 }
8543 else if (relax_char
8544 && offset_expr.X_op == O_constant
8545 && !pcrel
8546 && calculate_reloc (*offset_reloc,
8547 offset_expr.X_add_number,
8548 &value))
8549 {
8550 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8551 required_insn_length, &insn->insn_opcode);
8552 offset_expr.X_op = O_absent;
8553 *offset_reloc = BFD_RELOC_UNUSED;
8554 }
8555 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8556 {
8557 if (required_insn_length == 2)
8558 set_insn_error (0, _("invalid unextended operand value"));
8559 else if (!mips_opcode_32bit_p (opcode))
8560 {
8561 forced_insn_length = 4;
8562 insn->insn_opcode |= MIPS16_EXTEND;
8563 }
8564 }
8565 else if (relax_char)
8566 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8567
8568 check_completed_insn (&arg);
8569 return true;
8570 }
8571
8572 /* Fail the match if the line has too many operands. */
8573 if (*args == 0)
8574 return false;
8575
8576 /* Handle characters that need to match exactly. */
8577 if (*args == '(' || *args == ')' || *args == ',')
8578 {
8579 if (match_char (&arg, *args))
8580 continue;
8581 return false;
8582 }
8583
8584 arg.opnum += 1;
8585 c = *args;
8586 switch (c)
8587 {
8588 case 'p':
8589 case 'q':
8590 case 'A':
8591 case 'B':
8592 case 'E':
8593 case 'V':
8594 case 'u':
8595 relax_char = c;
8596 break;
8597
8598 case 'I':
8599 if (!match_const_int (&arg, &imm_expr.X_add_number))
8600 return false;
8601 imm_expr.X_op = O_constant;
8602 if (GPR_SIZE == 32)
8603 normalize_constant_expr (&imm_expr);
8604 continue;
8605
8606 case 'a':
8607 case 'i':
8608 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8609 break;
8610 }
8611
8612 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8613 if (!operand)
8614 abort ();
8615
8616 if (operand->type == OP_PCREL)
8617 pcrel = true;
8618 else
8619 {
8620 ext_operand = decode_mips16_operand (c, true);
8621 if (operand != ext_operand)
8622 {
8623 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8624 {
8625 offset_expr.X_op = O_constant;
8626 offset_expr.X_add_number = 0;
8627 relax_char = c;
8628 continue;
8629 }
8630
8631 if (!match_expression (&arg, &offset_expr, offset_reloc))
8632 return false;
8633
8634 /* '8' is used for SLTI(U) and has traditionally not
8635 been allowed to take relocation operators. */
8636 if (offset_reloc[0] != BFD_RELOC_UNUSED
8637 && (ext_operand->size != 16 || c == '8'))
8638 {
8639 match_not_constant (&arg);
8640 return false;
8641 }
8642
8643 if (offset_expr.X_op == O_big)
8644 {
8645 match_out_of_range (&arg);
8646 return false;
8647 }
8648
8649 relax_char = c;
8650 continue;
8651 }
8652 }
8653
8654 if (mips_optional_operand_p (operand)
8655 && args[1] == ','
8656 && (arg.token[0].type != OT_REG
8657 || arg.token[1].type == OT_END))
8658 {
8659 /* Assume that the register has been elided and is the
8660 same as the first operand. */
8661 arg.token = tokens;
8662 arg.argnum = 1;
8663 }
8664
8665 if (!match_operand (&arg, operand))
8666 return false;
8667 }
8668 }
8669
8670 /* Record that the current instruction is invalid for the current ISA. */
8671
8672 static void
8673 match_invalid_for_isa (void)
8674 {
8675 set_insn_error_ss
8676 (0, _("opcode not supported on this processor: %s (%s)"),
8677 mips_cpu_info_from_arch (mips_opts.arch)->name,
8678 mips_cpu_info_from_isa (mips_opts.isa)->name);
8679 }
8680
8681 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8682 Return true if a definite match or failure was found, storing any match
8683 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8684 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8685 tried and failed to match under normal conditions and now want to try a
8686 more relaxed match. */
8687
8688 static bool
8689 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8690 const struct mips_opcode *past, struct mips_operand_token *tokens,
8691 int opcode_extra, bool lax_match)
8692 {
8693 const struct mips_opcode *opcode;
8694 const struct mips_opcode *invalid_delay_slot;
8695 bool seen_valid_for_isa, seen_valid_for_size;
8696
8697 /* Search for a match, ignoring alternatives that don't satisfy the
8698 current ISA or forced_length. */
8699 invalid_delay_slot = 0;
8700 seen_valid_for_isa = false;
8701 seen_valid_for_size = false;
8702 opcode = first;
8703 do
8704 {
8705 gas_assert (strcmp (opcode->name, first->name) == 0);
8706 if (is_opcode_valid (opcode))
8707 {
8708 seen_valid_for_isa = true;
8709 if (is_size_valid (opcode))
8710 {
8711 bool delay_slot_ok;
8712
8713 seen_valid_for_size = true;
8714 delay_slot_ok = is_delay_slot_valid (opcode);
8715 if (match_insn (insn, opcode, tokens, opcode_extra,
8716 lax_match, delay_slot_ok))
8717 {
8718 if (!delay_slot_ok)
8719 {
8720 if (!invalid_delay_slot)
8721 invalid_delay_slot = opcode;
8722 }
8723 else
8724 return true;
8725 }
8726 }
8727 }
8728 ++opcode;
8729 }
8730 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8731
8732 /* If the only matches we found had the wrong length for the delay slot,
8733 pick the first such match. We'll issue an appropriate warning later. */
8734 if (invalid_delay_slot)
8735 {
8736 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8737 lax_match, true))
8738 return true;
8739 abort ();
8740 }
8741
8742 /* Handle the case where we didn't try to match an instruction because
8743 all the alternatives were incompatible with the current ISA. */
8744 if (!seen_valid_for_isa)
8745 {
8746 match_invalid_for_isa ();
8747 return true;
8748 }
8749
8750 /* Handle the case where we didn't try to match an instruction because
8751 all the alternatives were of the wrong size. */
8752 if (!seen_valid_for_size)
8753 {
8754 if (mips_opts.insn32)
8755 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8756 else
8757 set_insn_error_i
8758 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8759 8 * forced_insn_length);
8760 return true;
8761 }
8762
8763 return false;
8764 }
8765
8766 /* Like match_insns, but for MIPS16. */
8767
8768 static bool
8769 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8770 struct mips_operand_token *tokens)
8771 {
8772 const struct mips_opcode *opcode;
8773 bool seen_valid_for_isa;
8774 bool seen_valid_for_size;
8775
8776 /* Search for a match, ignoring alternatives that don't satisfy the
8777 current ISA. There are no separate entries for extended forms so
8778 we deal with forced_length later. */
8779 seen_valid_for_isa = false;
8780 seen_valid_for_size = false;
8781 opcode = first;
8782 do
8783 {
8784 gas_assert (strcmp (opcode->name, first->name) == 0);
8785 if (is_opcode_valid_16 (opcode))
8786 {
8787 seen_valid_for_isa = true;
8788 if (is_size_valid_16 (opcode))
8789 {
8790 seen_valid_for_size = true;
8791 if (match_mips16_insn (insn, opcode, tokens))
8792 return true;
8793 }
8794 }
8795 ++opcode;
8796 }
8797 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8798 && strcmp (opcode->name, first->name) == 0);
8799
8800 /* Handle the case where we didn't try to match an instruction because
8801 all the alternatives were incompatible with the current ISA. */
8802 if (!seen_valid_for_isa)
8803 {
8804 match_invalid_for_isa ();
8805 return true;
8806 }
8807
8808 /* Handle the case where we didn't try to match an instruction because
8809 all the alternatives were of the wrong size. */
8810 if (!seen_valid_for_size)
8811 {
8812 if (forced_insn_length == 2)
8813 set_insn_error
8814 (0, _("unrecognized unextended version of MIPS16 opcode"));
8815 else
8816 set_insn_error
8817 (0, _("unrecognized extended version of MIPS16 opcode"));
8818 return true;
8819 }
8820
8821 return false;
8822 }
8823
8824 /* Set up global variables for the start of a new macro. */
8825
8826 static void
8827 macro_start (void)
8828 {
8829 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8830 memset (&mips_macro_warning.first_insn_sizes, 0,
8831 sizeof (mips_macro_warning.first_insn_sizes));
8832 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8833 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8834 && delayed_branch_p (&history[0]));
8835 if (history[0].frag
8836 && history[0].frag->fr_type == rs_machine_dependent
8837 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8838 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8839 mips_macro_warning.delay_slot_length = 0;
8840 else
8841 switch (history[0].insn_mo->pinfo2
8842 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8843 {
8844 case INSN2_BRANCH_DELAY_32BIT:
8845 mips_macro_warning.delay_slot_length = 4;
8846 break;
8847 case INSN2_BRANCH_DELAY_16BIT:
8848 mips_macro_warning.delay_slot_length = 2;
8849 break;
8850 default:
8851 mips_macro_warning.delay_slot_length = 0;
8852 break;
8853 }
8854 mips_macro_warning.first_frag = NULL;
8855 }
8856
8857 /* Given that a macro is longer than one instruction or of the wrong size,
8858 return the appropriate warning for it. Return null if no warning is
8859 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8860 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8861 and RELAX_NOMACRO. */
8862
8863 static const char *
8864 macro_warning (relax_substateT subtype)
8865 {
8866 if (subtype & RELAX_DELAY_SLOT)
8867 return _("macro instruction expanded into multiple instructions"
8868 " in a branch delay slot");
8869 else if (subtype & RELAX_NOMACRO)
8870 return _("macro instruction expanded into multiple instructions");
8871 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8872 | RELAX_DELAY_SLOT_SIZE_SECOND))
8873 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8874 ? _("macro instruction expanded into a wrong size instruction"
8875 " in a 16-bit branch delay slot")
8876 : _("macro instruction expanded into a wrong size instruction"
8877 " in a 32-bit branch delay slot"));
8878 else
8879 return 0;
8880 }
8881
8882 /* Finish up a macro. Emit warnings as appropriate. */
8883
8884 static void
8885 macro_end (void)
8886 {
8887 /* Relaxation warning flags. */
8888 relax_substateT subtype = 0;
8889
8890 /* Check delay slot size requirements. */
8891 if (mips_macro_warning.delay_slot_length == 2)
8892 subtype |= RELAX_DELAY_SLOT_16BIT;
8893 if (mips_macro_warning.delay_slot_length != 0)
8894 {
8895 if (mips_macro_warning.delay_slot_length
8896 != mips_macro_warning.first_insn_sizes[0])
8897 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8898 if (mips_macro_warning.delay_slot_length
8899 != mips_macro_warning.first_insn_sizes[1])
8900 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8901 }
8902
8903 /* Check instruction count requirements. */
8904 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8905 {
8906 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8907 subtype |= RELAX_SECOND_LONGER;
8908 if (mips_opts.warn_about_macros)
8909 subtype |= RELAX_NOMACRO;
8910 if (mips_macro_warning.delay_slot_p)
8911 subtype |= RELAX_DELAY_SLOT;
8912 }
8913
8914 /* If both alternatives fail to fill a delay slot correctly,
8915 emit the warning now. */
8916 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8917 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8918 {
8919 relax_substateT s;
8920 const char *msg;
8921
8922 s = subtype & (RELAX_DELAY_SLOT_16BIT
8923 | RELAX_DELAY_SLOT_SIZE_FIRST
8924 | RELAX_DELAY_SLOT_SIZE_SECOND);
8925 msg = macro_warning (s);
8926 if (msg != NULL)
8927 as_warn ("%s", msg);
8928 subtype &= ~s;
8929 }
8930
8931 /* If both implementations are longer than 1 instruction, then emit the
8932 warning now. */
8933 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8934 {
8935 relax_substateT s;
8936 const char *msg;
8937
8938 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8939 msg = macro_warning (s);
8940 if (msg != NULL)
8941 as_warn ("%s", msg);
8942 subtype &= ~s;
8943 }
8944
8945 /* If any flags still set, then one implementation might need a warning
8946 and the other either will need one of a different kind or none at all.
8947 Pass any remaining flags over to relaxation. */
8948 if (mips_macro_warning.first_frag != NULL)
8949 mips_macro_warning.first_frag->fr_subtype |= subtype;
8950 }
8951
8952 /* Instruction operand formats used in macros that vary between
8953 standard MIPS and microMIPS code. */
8954
8955 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8956 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8957 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8958 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8959 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8960 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8961 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8962 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8963
8964 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8965 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8966 : cop12_fmt[mips_opts.micromips])
8967 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8968 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8969 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8970 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8971 : mem12_fmt[mips_opts.micromips])
8972 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8973 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8974 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8975
8976 /* Read a macro's relocation codes from *ARGS and store them in *R.
8977 The first argument in *ARGS will be either the code for a single
8978 relocation or -1 followed by the three codes that make up a
8979 composite relocation. */
8980
8981 static void
8982 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8983 {
8984 int i, next;
8985
8986 next = va_arg (*args, int);
8987 if (next >= 0)
8988 r[0] = (bfd_reloc_code_real_type) next;
8989 else
8990 {
8991 for (i = 0; i < 3; i++)
8992 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8993 /* This function is only used for 16-bit relocation fields.
8994 To make the macro code simpler, treat an unrelocated value
8995 in the same way as BFD_RELOC_LO16. */
8996 if (r[0] == BFD_RELOC_UNUSED)
8997 r[0] = BFD_RELOC_LO16;
8998 }
8999 }
9000
9001 /* Build an instruction created by a macro expansion. This is passed
9002 a pointer to the count of instructions created so far, an
9003 expression, the name of the instruction to build, an operand format
9004 string, and corresponding arguments. */
9005
9006 static void
9007 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
9008 {
9009 const struct mips_opcode *mo = NULL;
9010 bfd_reloc_code_real_type r[3];
9011 const struct mips_opcode *amo;
9012 const struct mips_operand *operand;
9013 htab_t hash;
9014 struct mips_cl_insn insn;
9015 va_list args;
9016 unsigned int uval;
9017
9018 va_start (args, fmt);
9019
9020 if (mips_opts.mips16)
9021 {
9022 mips16_macro_build (ep, name, fmt, &args);
9023 va_end (args);
9024 return;
9025 }
9026
9027 r[0] = BFD_RELOC_UNUSED;
9028 r[1] = BFD_RELOC_UNUSED;
9029 r[2] = BFD_RELOC_UNUSED;
9030 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
9031 amo = (struct mips_opcode *) str_hash_find (hash, name);
9032 gas_assert (amo);
9033 gas_assert (strcmp (name, amo->name) == 0);
9034
9035 do
9036 {
9037 /* Search until we get a match for NAME. It is assumed here that
9038 macros will never generate MDMX, MIPS-3D, or MT instructions.
9039 We try to match an instruction that fulfills the branch delay
9040 slot instruction length requirement (if any) of the previous
9041 instruction. While doing this we record the first instruction
9042 seen that matches all the other conditions and use it anyway
9043 if the requirement cannot be met; we will issue an appropriate
9044 warning later on. */
9045 if (strcmp (fmt, amo->args) == 0
9046 && amo->pinfo != INSN_MACRO
9047 && is_opcode_valid (amo)
9048 && is_size_valid (amo))
9049 {
9050 if (is_delay_slot_valid (amo))
9051 {
9052 mo = amo;
9053 break;
9054 }
9055 else if (!mo)
9056 mo = amo;
9057 }
9058
9059 ++amo;
9060 gas_assert (amo->name);
9061 }
9062 while (strcmp (name, amo->name) == 0);
9063
9064 gas_assert (mo);
9065 create_insn (&insn, mo);
9066 for (; *fmt; ++fmt)
9067 {
9068 switch (*fmt)
9069 {
9070 case ',':
9071 case '(':
9072 case ')':
9073 case 'z':
9074 break;
9075
9076 case 'i':
9077 case 'j':
9078 macro_read_relocs (&args, r);
9079 gas_assert (*r == BFD_RELOC_GPREL16
9080 || *r == BFD_RELOC_MIPS_HIGHER
9081 || *r == BFD_RELOC_HI16_S
9082 || *r == BFD_RELOC_LO16
9083 || *r == BFD_RELOC_MIPS_GOT_OFST
9084 || (mips_opts.micromips
9085 && (*r == BFD_RELOC_MIPS_16
9086 || *r == BFD_RELOC_MIPS_GOT16
9087 || *r == BFD_RELOC_MIPS_CALL16
9088 || *r == BFD_RELOC_MIPS_GOT_HI16
9089 || *r == BFD_RELOC_MIPS_GOT_LO16
9090 || *r == BFD_RELOC_MIPS_CALL_HI16
9091 || *r == BFD_RELOC_MIPS_CALL_LO16
9092 || *r == BFD_RELOC_MIPS_SUB
9093 || *r == BFD_RELOC_MIPS_GOT_PAGE
9094 || *r == BFD_RELOC_MIPS_HIGHEST
9095 || *r == BFD_RELOC_MIPS_GOT_DISP
9096 || *r == BFD_RELOC_MIPS_TLS_GD
9097 || *r == BFD_RELOC_MIPS_TLS_LDM
9098 || *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
9099 || *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
9100 || *r == BFD_RELOC_MIPS_TLS_GOTTPREL
9101 || *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
9102 || *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
9103 break;
9104
9105 case 'o':
9106 macro_read_relocs (&args, r);
9107 break;
9108
9109 case 'u':
9110 macro_read_relocs (&args, r);
9111 gas_assert (ep != NULL
9112 && (ep->X_op == O_constant
9113 || (ep->X_op == O_symbol
9114 && (*r == BFD_RELOC_MIPS_HIGHEST
9115 || *r == BFD_RELOC_HI16_S
9116 || *r == BFD_RELOC_HI16
9117 || *r == BFD_RELOC_GPREL16
9118 || *r == BFD_RELOC_MIPS_GOT_HI16
9119 || *r == BFD_RELOC_MIPS_CALL_HI16))));
9120 break;
9121
9122 case 'p':
9123 gas_assert (ep != NULL);
9124
9125 /*
9126 * This allows macro() to pass an immediate expression for
9127 * creating short branches without creating a symbol.
9128 *
9129 * We don't allow branch relaxation for these branches, as
9130 * they should only appear in ".set nomacro" anyway.
9131 */
9132 if (ep->X_op == O_constant)
9133 {
9134 /* For microMIPS we always use relocations for branches.
9135 So we should not resolve immediate values. */
9136 gas_assert (!mips_opts.micromips);
9137
9138 if ((ep->X_add_number & 3) != 0)
9139 as_bad (_("branch to misaligned address (0x%lx)"),
9140 (unsigned long) ep->X_add_number);
9141 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
9142 as_bad (_("branch address range overflow (0x%lx)"),
9143 (unsigned long) ep->X_add_number);
9144 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
9145 ep = NULL;
9146 }
9147 else
9148 *r = BFD_RELOC_16_PCREL_S2;
9149 break;
9150
9151 case 'a':
9152 gas_assert (ep != NULL);
9153 *r = BFD_RELOC_MIPS_JMP;
9154 break;
9155
9156 default:
9157 operand = (mips_opts.micromips
9158 ? decode_micromips_operand (fmt)
9159 : decode_mips_operand (fmt));
9160 if (!operand)
9161 abort ();
9162
9163 uval = va_arg (args, int);
9164 if (operand->type == OP_CLO_CLZ_DEST)
9165 uval |= (uval << 5);
9166 insn_insert_operand (&insn, operand, uval);
9167
9168 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
9169 ++fmt;
9170 break;
9171 }
9172 }
9173 va_end (args);
9174 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9175
9176 append_insn (&insn, ep, r, true);
9177 }
9178
9179 static void
9180 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
9181 va_list *args)
9182 {
9183 struct mips_opcode *mo;
9184 struct mips_cl_insn insn;
9185 const struct mips_operand *operand;
9186 bfd_reloc_code_real_type r[3]
9187 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
9188
9189 mo = (struct mips_opcode *) str_hash_find (mips16_op_hash, name);
9190 gas_assert (mo);
9191 gas_assert (strcmp (name, mo->name) == 0);
9192
9193 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
9194 {
9195 ++mo;
9196 gas_assert (mo->name);
9197 gas_assert (strcmp (name, mo->name) == 0);
9198 }
9199
9200 create_insn (&insn, mo);
9201 for (; *fmt; ++fmt)
9202 {
9203 int c;
9204
9205 c = *fmt;
9206 switch (c)
9207 {
9208 case ',':
9209 case '(':
9210 case ')':
9211 break;
9212
9213 case '.':
9214 case 'S':
9215 case 'P':
9216 case 'R':
9217 break;
9218
9219 case '<':
9220 case '5':
9221 case 'F':
9222 case 'H':
9223 case 'W':
9224 case 'D':
9225 case 'j':
9226 case '8':
9227 case 'V':
9228 case 'C':
9229 case 'U':
9230 case 'k':
9231 case 'K':
9232 case 'p':
9233 case 'q':
9234 {
9235 offsetT value;
9236
9237 gas_assert (ep != NULL);
9238
9239 if (ep->X_op != O_constant)
9240 *r = (int) BFD_RELOC_UNUSED + c;
9241 else if (calculate_reloc (*r, ep->X_add_number, &value))
9242 {
9243 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
9244 ep = NULL;
9245 *r = BFD_RELOC_UNUSED;
9246 }
9247 }
9248 break;
9249
9250 default:
9251 operand = decode_mips16_operand (c, false);
9252 if (!operand)
9253 abort ();
9254
9255 insn_insert_operand (&insn, operand, va_arg (*args, int));
9256 break;
9257 }
9258 }
9259
9260 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9261
9262 append_insn (&insn, ep, r, true);
9263 }
9264
9265 /*
9266 * Generate a "jalr" instruction with a relocation hint to the called
9267 * function. This occurs in NewABI PIC code.
9268 */
9269 static void
9270 macro_build_jalr (expressionS *ep, int cprestore)
9271 {
9272 static const bfd_reloc_code_real_type jalr_relocs[2]
9273 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9274 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9275 const char *jalr;
9276 char *f = NULL;
9277
9278 if (MIPS_JALR_HINT_P (ep))
9279 {
9280 frag_grow (8);
9281 f = frag_more (0);
9282 }
9283 if (mips_opts.micromips)
9284 {
9285 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9286 ? "jalr" : "jalrs");
9287 if (MIPS_JALR_HINT_P (ep)
9288 || mips_opts.insn32
9289 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9290 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9291 else
9292 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9293 }
9294 else
9295 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
9296 if (MIPS_JALR_HINT_P (ep))
9297 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, false, jalr_reloc);
9298 }
9299
9300 /*
9301 * Generate a "lui" instruction.
9302 */
9303 static void
9304 macro_build_lui (expressionS *ep, int regnum)
9305 {
9306 gas_assert (! mips_opts.mips16);
9307
9308 if (ep->X_op != O_constant)
9309 {
9310 gas_assert (ep->X_op == O_symbol);
9311 /* _gp_disp is a special case, used from s_cpload.
9312 __gnu_local_gp is used if mips_no_shared. */
9313 gas_assert (mips_pic == NO_PIC
9314 || (! HAVE_NEWABI
9315 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9316 || (! mips_in_shared
9317 && strcmp (S_GET_NAME (ep->X_add_symbol),
9318 "__gnu_local_gp") == 0));
9319 }
9320
9321 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
9322 }
9323
9324 /* Generate a sequence of instructions to do a load or store from a constant
9325 offset off of a base register (breg) into/from a target register (treg),
9326 using AT if necessary. */
9327 static void
9328 macro_build_ldst_constoffset (expressionS *ep, const char *op,
9329 int treg, int breg, int dbl)
9330 {
9331 gas_assert (ep->X_op == O_constant);
9332
9333 /* Sign-extending 32-bit constants makes their handling easier. */
9334 if (!dbl)
9335 normalize_constant_expr (ep);
9336
9337 /* Right now, this routine can only handle signed 32-bit constants. */
9338 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
9339 as_warn (_("operand overflow"));
9340
9341 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9342 {
9343 /* Signed 16-bit offset will fit in the op. Easy! */
9344 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
9345 }
9346 else
9347 {
9348 /* 32-bit offset, need multiple instructions and AT, like:
9349 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9350 addu $tempreg,$tempreg,$breg
9351 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9352 to handle the complete offset. */
9353 macro_build_lui (ep, AT);
9354 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9355 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
9356
9357 if (!mips_opts.at)
9358 as_bad (_("macro used $at after \".set noat\""));
9359 }
9360 }
9361
9362 /* set_at()
9363 * Generates code to set the $at register to true (one)
9364 * if reg is less than the immediate expression.
9365 */
9366 static void
9367 set_at (int reg, int unsignedp)
9368 {
9369 if (imm_expr.X_add_number >= -0x8000
9370 && imm_expr.X_add_number < 0x8000)
9371 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9372 AT, reg, BFD_RELOC_LO16);
9373 else
9374 {
9375 load_register (AT, &imm_expr, GPR_SIZE == 64);
9376 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
9377 }
9378 }
9379
9380 /* Count the leading zeroes by performing a binary chop. This is a
9381 bulky bit of source, but performance is a LOT better for the
9382 majority of values than a simple loop to count the bits:
9383 for (lcnt = 0; (lcnt < 32); lcnt++)
9384 if ((v) & (1 << (31 - lcnt)))
9385 break;
9386 However it is not code size friendly, and the gain will drop a bit
9387 on certain cached systems.
9388 */
9389 #define COUNT_TOP_ZEROES(v) \
9390 (((v) & ~0xffff) == 0 \
9391 ? ((v) & ~0xff) == 0 \
9392 ? ((v) & ~0xf) == 0 \
9393 ? ((v) & ~0x3) == 0 \
9394 ? ((v) & ~0x1) == 0 \
9395 ? !(v) \
9396 ? 32 \
9397 : 31 \
9398 : 30 \
9399 : ((v) & ~0x7) == 0 \
9400 ? 29 \
9401 : 28 \
9402 : ((v) & ~0x3f) == 0 \
9403 ? ((v) & ~0x1f) == 0 \
9404 ? 27 \
9405 : 26 \
9406 : ((v) & ~0x7f) == 0 \
9407 ? 25 \
9408 : 24 \
9409 : ((v) & ~0xfff) == 0 \
9410 ? ((v) & ~0x3ff) == 0 \
9411 ? ((v) & ~0x1ff) == 0 \
9412 ? 23 \
9413 : 22 \
9414 : ((v) & ~0x7ff) == 0 \
9415 ? 21 \
9416 : 20 \
9417 : ((v) & ~0x3fff) == 0 \
9418 ? ((v) & ~0x1fff) == 0 \
9419 ? 19 \
9420 : 18 \
9421 : ((v) & ~0x7fff) == 0 \
9422 ? 17 \
9423 : 16 \
9424 : ((v) & ~0xffffff) == 0 \
9425 ? ((v) & ~0xfffff) == 0 \
9426 ? ((v) & ~0x3ffff) == 0 \
9427 ? ((v) & ~0x1ffff) == 0 \
9428 ? 15 \
9429 : 14 \
9430 : ((v) & ~0x7ffff) == 0 \
9431 ? 13 \
9432 : 12 \
9433 : ((v) & ~0x3fffff) == 0 \
9434 ? ((v) & ~0x1fffff) == 0 \
9435 ? 11 \
9436 : 10 \
9437 : ((v) & ~0x7fffff) == 0 \
9438 ? 9 \
9439 : 8 \
9440 : ((v) & ~0xfffffff) == 0 \
9441 ? ((v) & ~0x3ffffff) == 0 \
9442 ? ((v) & ~0x1ffffff) == 0 \
9443 ? 7 \
9444 : 6 \
9445 : ((v) & ~0x7ffffff) == 0 \
9446 ? 5 \
9447 : 4 \
9448 : ((v) & ~0x3fffffff) == 0 \
9449 ? ((v) & ~0x1fffffff) == 0 \
9450 ? 3 \
9451 : 2 \
9452 : ((v) & ~0x7fffffff) == 0 \
9453 ? 1 \
9454 : 0)
9455
9456 /* load_register()
9457 * This routine generates the least number of instructions necessary to load
9458 * an absolute expression value into a register.
9459 */
9460 static void
9461 load_register (int reg, expressionS *ep, int dbl)
9462 {
9463 int freg;
9464 expressionS hi32, lo32;
9465
9466 if (ep->X_op != O_big)
9467 {
9468 gas_assert (ep->X_op == O_constant);
9469
9470 /* Sign-extending 32-bit constants makes their handling easier. */
9471 if (!dbl)
9472 normalize_constant_expr (ep);
9473
9474 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9475 {
9476 /* We can handle 16 bit signed values with an addiu to
9477 $zero. No need to ever use daddiu here, since $zero and
9478 the result are always correct in 32 bit mode. */
9479 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9480 return;
9481 }
9482 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9483 {
9484 /* We can handle 16 bit unsigned values with an ori to
9485 $zero. */
9486 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9487 return;
9488 }
9489 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9490 {
9491 /* 32 bit values require an lui. */
9492 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9493 if ((ep->X_add_number & 0xffff) != 0)
9494 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9495 return;
9496 }
9497 }
9498
9499 /* The value is larger than 32 bits. */
9500
9501 if (!dbl || GPR_SIZE == 32)
9502 {
9503 as_bad (_("number (0x%" PRIx64 ") larger than 32 bits"),
9504 ep->X_add_number);
9505 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9506 return;
9507 }
9508
9509 if (ep->X_op != O_big)
9510 {
9511 hi32 = *ep;
9512 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9513 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9514 hi32.X_add_number &= 0xffffffff;
9515 lo32 = *ep;
9516 lo32.X_add_number &= 0xffffffff;
9517 }
9518 else
9519 {
9520 gas_assert (ep->X_add_number > 2);
9521 if (ep->X_add_number == 3)
9522 generic_bignum[3] = 0;
9523 else if (ep->X_add_number > 4)
9524 as_bad (_("number larger than 64 bits"));
9525 lo32.X_op = O_constant;
9526 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9527 hi32.X_op = O_constant;
9528 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9529 }
9530
9531 if (hi32.X_add_number == 0)
9532 freg = 0;
9533 else
9534 {
9535 int shift, bit;
9536 unsigned long hi, lo;
9537
9538 if (hi32.X_add_number == (offsetT) 0xffffffff)
9539 {
9540 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9541 {
9542 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9543 return;
9544 }
9545 if (lo32.X_add_number & 0x80000000)
9546 {
9547 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9548 if (lo32.X_add_number & 0xffff)
9549 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9550 return;
9551 }
9552 }
9553
9554 /* Check for 16bit shifted constant. We know that hi32 is
9555 non-zero, so start the mask on the first bit of the hi32
9556 value. */
9557 shift = 17;
9558 do
9559 {
9560 unsigned long himask, lomask;
9561
9562 if (shift < 32)
9563 {
9564 himask = 0xffff >> (32 - shift);
9565 lomask = (0xffffU << shift) & 0xffffffff;
9566 }
9567 else
9568 {
9569 himask = 0xffffU << (shift - 32);
9570 lomask = 0;
9571 }
9572 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9573 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9574 {
9575 expressionS tmp;
9576
9577 tmp.X_op = O_constant;
9578 if (shift < 32)
9579 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9580 | (lo32.X_add_number >> shift));
9581 else
9582 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9583 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9584 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9585 reg, reg, (shift >= 32) ? shift - 32 : shift);
9586 return;
9587 }
9588 ++shift;
9589 }
9590 while (shift <= (64 - 16));
9591
9592 /* Find the bit number of the lowest one bit, and store the
9593 shifted value in hi/lo. */
9594 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9595 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9596 if (lo != 0)
9597 {
9598 bit = 0;
9599 while ((lo & 1) == 0)
9600 {
9601 lo >>= 1;
9602 ++bit;
9603 }
9604 if (bit != 0)
9605 {
9606 lo |= (hi & ((2UL << (bit - 1)) - 1)) << (32 - bit);
9607 hi >>= bit;
9608 }
9609 }
9610 else
9611 {
9612 bit = 32;
9613 while ((hi & 1) == 0)
9614 {
9615 hi >>= 1;
9616 ++bit;
9617 }
9618 lo = hi;
9619 hi = 0;
9620 }
9621
9622 /* Optimize if the shifted value is a (power of 2) - 1. */
9623 if ((hi == 0 && ((lo + 1) & lo) == 0)
9624 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9625 {
9626 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9627 if (shift != 0)
9628 {
9629 expressionS tmp;
9630
9631 /* This instruction will set the register to be all
9632 ones. */
9633 tmp.X_op = O_constant;
9634 tmp.X_add_number = (offsetT) -1;
9635 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9636 if (bit != 0)
9637 {
9638 bit += shift;
9639 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9640 reg, reg, (bit >= 32) ? bit - 32 : bit);
9641 }
9642 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9643 reg, reg, (shift >= 32) ? shift - 32 : shift);
9644 return;
9645 }
9646 }
9647
9648 /* Sign extend hi32 before calling load_register, because we can
9649 generally get better code when we load a sign extended value. */
9650 if ((hi32.X_add_number & 0x80000000) != 0)
9651 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9652 load_register (reg, &hi32, 0);
9653 freg = reg;
9654 }
9655 if ((lo32.X_add_number & 0xffff0000) == 0)
9656 {
9657 if (freg != 0)
9658 {
9659 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9660 freg = reg;
9661 }
9662 }
9663 else
9664 {
9665 expressionS mid16;
9666
9667 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9668 {
9669 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9670 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9671 return;
9672 }
9673
9674 if (freg != 0)
9675 {
9676 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9677 freg = reg;
9678 }
9679 mid16 = lo32;
9680 mid16.X_add_number >>= 16;
9681 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9682 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9683 freg = reg;
9684 }
9685 if ((lo32.X_add_number & 0xffff) != 0)
9686 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9687 }
9688
9689 static inline void
9690 load_delay_nop (void)
9691 {
9692 if (!gpr_interlocks)
9693 macro_build (NULL, "nop", "");
9694 }
9695
9696 /* Load an address into a register. */
9697
9698 static void
9699 load_address (int reg, expressionS *ep, int *used_at)
9700 {
9701 if (ep->X_op != O_constant
9702 && ep->X_op != O_symbol)
9703 {
9704 as_bad (_("expression too complex"));
9705 ep->X_op = O_constant;
9706 }
9707
9708 if (ep->X_op == O_constant)
9709 {
9710 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9711 return;
9712 }
9713
9714 if (mips_pic == NO_PIC)
9715 {
9716 /* If this is a reference to a GP relative symbol, we want
9717 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9718 Otherwise we want
9719 lui $reg,<sym> (BFD_RELOC_HI16_S)
9720 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9721 If we have an addend, we always use the latter form.
9722
9723 With 64bit address space and a usable $at we want
9724 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9725 lui $at,<sym> (BFD_RELOC_HI16_S)
9726 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9727 daddiu $at,<sym> (BFD_RELOC_LO16)
9728 dsll32 $reg,0
9729 daddu $reg,$reg,$at
9730
9731 If $at is already in use, we use a path which is suboptimal
9732 on superscalar processors.
9733 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9734 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9735 dsll $reg,16
9736 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9737 dsll $reg,16
9738 daddiu $reg,<sym> (BFD_RELOC_LO16)
9739
9740 For GP relative symbols in 64bit address space we can use
9741 the same sequence as in 32bit address space. */
9742 if (HAVE_64BIT_SYMBOLS)
9743 {
9744 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9745 && !nopic_need_relax (ep->X_add_symbol, 1))
9746 {
9747 relax_start (ep->X_add_symbol);
9748 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9749 mips_gp_register, BFD_RELOC_GPREL16);
9750 relax_switch ();
9751 }
9752
9753 if (*used_at == 0 && mips_opts.at)
9754 {
9755 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9756 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9757 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9758 BFD_RELOC_MIPS_HIGHER);
9759 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9760 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9761 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9762 *used_at = 1;
9763 }
9764 else
9765 {
9766 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9767 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9768 BFD_RELOC_MIPS_HIGHER);
9769 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9770 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9771 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9772 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9773 }
9774
9775 if (mips_relax.sequence)
9776 relax_end ();
9777 }
9778 else
9779 {
9780 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9781 && !nopic_need_relax (ep->X_add_symbol, 1))
9782 {
9783 relax_start (ep->X_add_symbol);
9784 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9785 mips_gp_register, BFD_RELOC_GPREL16);
9786 relax_switch ();
9787 }
9788 macro_build_lui (ep, reg);
9789 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9790 reg, reg, BFD_RELOC_LO16);
9791 if (mips_relax.sequence)
9792 relax_end ();
9793 }
9794 }
9795 else if (!mips_big_got)
9796 {
9797 expressionS ex;
9798
9799 /* If this is a reference to an external symbol, we want
9800 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9801 Otherwise we want
9802 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9803 nop
9804 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9805 If there is a constant, it must be added in after.
9806
9807 If we have NewABI, we want
9808 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9809 unless we're referencing a global symbol with a non-zero
9810 offset, in which case cst must be added separately. */
9811 if (HAVE_NEWABI)
9812 {
9813 if (ep->X_add_number)
9814 {
9815 ex.X_add_number = ep->X_add_number;
9816 ep->X_add_number = 0;
9817 relax_start (ep->X_add_symbol);
9818 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9819 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9820 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9821 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9822 ex.X_op = O_constant;
9823 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9824 reg, reg, BFD_RELOC_LO16);
9825 ep->X_add_number = ex.X_add_number;
9826 relax_switch ();
9827 }
9828 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9829 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9830 if (mips_relax.sequence)
9831 relax_end ();
9832 }
9833 else
9834 {
9835 ex.X_add_number = ep->X_add_number;
9836 ep->X_add_number = 0;
9837 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9838 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9839 load_delay_nop ();
9840 relax_start (ep->X_add_symbol);
9841 relax_switch ();
9842 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9843 BFD_RELOC_LO16);
9844 relax_end ();
9845
9846 if (ex.X_add_number != 0)
9847 {
9848 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9849 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9850 ex.X_op = O_constant;
9851 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9852 reg, reg, BFD_RELOC_LO16);
9853 }
9854 }
9855 }
9856 else if (mips_big_got)
9857 {
9858 expressionS ex;
9859
9860 /* This is the large GOT case. If this is a reference to an
9861 external symbol, we want
9862 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9863 addu $reg,$reg,$gp
9864 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9865
9866 Otherwise, for a reference to a local symbol in old ABI, we want
9867 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9868 nop
9869 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9870 If there is a constant, it must be added in after.
9871
9872 In the NewABI, for local symbols, with or without offsets, we want:
9873 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9874 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9875 */
9876 if (HAVE_NEWABI)
9877 {
9878 ex.X_add_number = ep->X_add_number;
9879 ep->X_add_number = 0;
9880 relax_start (ep->X_add_symbol);
9881 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9882 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9883 reg, reg, mips_gp_register);
9884 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9885 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9886 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9887 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9888 else if (ex.X_add_number)
9889 {
9890 ex.X_op = O_constant;
9891 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9892 BFD_RELOC_LO16);
9893 }
9894
9895 ep->X_add_number = ex.X_add_number;
9896 relax_switch ();
9897 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9898 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9899 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9900 BFD_RELOC_MIPS_GOT_OFST);
9901 relax_end ();
9902 }
9903 else
9904 {
9905 ex.X_add_number = ep->X_add_number;
9906 ep->X_add_number = 0;
9907 relax_start (ep->X_add_symbol);
9908 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9909 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9910 reg, reg, mips_gp_register);
9911 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9912 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9913 relax_switch ();
9914 if (reg_needs_delay (mips_gp_register))
9915 {
9916 /* We need a nop before loading from $gp. This special
9917 check is required because the lui which starts the main
9918 instruction stream does not refer to $gp, and so will not
9919 insert the nop which may be required. */
9920 macro_build (NULL, "nop", "");
9921 }
9922 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9923 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9924 load_delay_nop ();
9925 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9926 BFD_RELOC_LO16);
9927 relax_end ();
9928
9929 if (ex.X_add_number != 0)
9930 {
9931 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9932 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9933 ex.X_op = O_constant;
9934 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9935 BFD_RELOC_LO16);
9936 }
9937 }
9938 }
9939 else
9940 abort ();
9941
9942 if (!mips_opts.at && *used_at == 1)
9943 as_bad (_("macro used $at after \".set noat\""));
9944 }
9945
9946 /* Move the contents of register SOURCE into register DEST. */
9947
9948 static void
9949 move_register (int dest, int source)
9950 {
9951 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9952 instruction specifically requires a 32-bit one. */
9953 if (mips_opts.micromips
9954 && !mips_opts.insn32
9955 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9956 macro_build (NULL, "move", "mp,mj", dest, source);
9957 else
9958 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9959 }
9960
9961 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9962 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9963 The two alternatives are:
9964
9965 Global symbol Local symbol
9966 ------------- ------------
9967 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9968 ... ...
9969 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9970
9971 load_got_offset emits the first instruction and add_got_offset
9972 emits the second for a 16-bit offset or add_got_offset_hilo emits
9973 a sequence to add a 32-bit offset using a scratch register. */
9974
9975 static void
9976 load_got_offset (int dest, expressionS *local)
9977 {
9978 expressionS global;
9979
9980 global = *local;
9981 global.X_add_number = 0;
9982
9983 relax_start (local->X_add_symbol);
9984 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9985 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9986 relax_switch ();
9987 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9988 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9989 relax_end ();
9990 }
9991
9992 static void
9993 add_got_offset (int dest, expressionS *local)
9994 {
9995 expressionS global;
9996
9997 global.X_op = O_constant;
9998 global.X_op_symbol = NULL;
9999 global.X_add_symbol = NULL;
10000 global.X_add_number = local->X_add_number;
10001
10002 relax_start (local->X_add_symbol);
10003 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
10004 dest, dest, BFD_RELOC_LO16);
10005 relax_switch ();
10006 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
10007 relax_end ();
10008 }
10009
10010 static void
10011 add_got_offset_hilo (int dest, expressionS *local, int tmp)
10012 {
10013 expressionS global;
10014 int hold_mips_optimize;
10015
10016 global.X_op = O_constant;
10017 global.X_op_symbol = NULL;
10018 global.X_add_symbol = NULL;
10019 global.X_add_number = local->X_add_number;
10020
10021 relax_start (local->X_add_symbol);
10022 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
10023 relax_switch ();
10024 /* Set mips_optimize around the lui instruction to avoid
10025 inserting an unnecessary nop after the lw. */
10026 hold_mips_optimize = mips_optimize;
10027 mips_optimize = 2;
10028 macro_build_lui (&global, tmp);
10029 mips_optimize = hold_mips_optimize;
10030 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
10031 relax_end ();
10032
10033 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
10034 }
10035
10036 /* Emit a sequence of instructions to emulate a branch likely operation.
10037 BR is an ordinary branch corresponding to one to be emulated. BRNEG
10038 is its complementing branch with the original condition negated.
10039 CALL is set if the original branch specified the link operation.
10040 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
10041
10042 Code like this is produced in the noreorder mode:
10043
10044 BRNEG <args>, 1f
10045 nop
10046 b <sym>
10047 delay slot (executed only if branch taken)
10048 1:
10049
10050 or, if CALL is set:
10051
10052 BRNEG <args>, 1f
10053 nop
10054 bal <sym>
10055 delay slot (executed only if branch taken)
10056 1:
10057
10058 In the reorder mode the delay slot would be filled with a nop anyway,
10059 so code produced is simply:
10060
10061 BR <args>, <sym>
10062 nop
10063
10064 This function is used when producing code for the microMIPS ASE that
10065 does not implement branch likely instructions in hardware. */
10066
10067 static void
10068 macro_build_branch_likely (const char *br, const char *brneg,
10069 int call, expressionS *ep, const char *fmt,
10070 unsigned int sreg, unsigned int treg)
10071 {
10072 int noreorder = mips_opts.noreorder;
10073 expressionS expr1;
10074
10075 gas_assert (mips_opts.micromips);
10076 start_noreorder ();
10077 if (noreorder)
10078 {
10079 micromips_label_expr (&expr1);
10080 macro_build (&expr1, brneg, fmt, sreg, treg);
10081 macro_build (NULL, "nop", "");
10082 macro_build (ep, call ? "bal" : "b", "p");
10083
10084 /* Set to true so that append_insn adds a label. */
10085 emit_branch_likely_macro = true;
10086 }
10087 else
10088 {
10089 macro_build (ep, br, fmt, sreg, treg);
10090 macro_build (NULL, "nop", "");
10091 }
10092 end_noreorder ();
10093 }
10094
10095 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
10096 the condition code tested. EP specifies the branch target. */
10097
10098 static void
10099 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
10100 {
10101 const int call = 0;
10102 const char *brneg;
10103 const char *br;
10104
10105 switch (type)
10106 {
10107 case M_BC1FL:
10108 br = "bc1f";
10109 brneg = "bc1t";
10110 break;
10111 case M_BC1TL:
10112 br = "bc1t";
10113 brneg = "bc1f";
10114 break;
10115 case M_BC2FL:
10116 br = "bc2f";
10117 brneg = "bc2t";
10118 break;
10119 case M_BC2TL:
10120 br = "bc2t";
10121 brneg = "bc2f";
10122 break;
10123 default:
10124 abort ();
10125 }
10126 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
10127 }
10128
10129 /* Emit a two-argument branch macro specified by TYPE, using SREG as
10130 the register tested. EP specifies the branch target. */
10131
10132 static void
10133 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
10134 {
10135 const char *brneg = NULL;
10136 const char *br;
10137 int call = 0;
10138
10139 switch (type)
10140 {
10141 case M_BGEZ:
10142 br = "bgez";
10143 break;
10144 case M_BGEZL:
10145 br = mips_opts.micromips ? "bgez" : "bgezl";
10146 brneg = "bltz";
10147 break;
10148 case M_BGEZALL:
10149 gas_assert (mips_opts.micromips);
10150 br = mips_opts.insn32 ? "bgezal" : "bgezals";
10151 brneg = "bltz";
10152 call = 1;
10153 break;
10154 case M_BGTZ:
10155 br = "bgtz";
10156 break;
10157 case M_BGTZL:
10158 br = mips_opts.micromips ? "bgtz" : "bgtzl";
10159 brneg = "blez";
10160 break;
10161 case M_BLEZ:
10162 br = "blez";
10163 break;
10164 case M_BLEZL:
10165 br = mips_opts.micromips ? "blez" : "blezl";
10166 brneg = "bgtz";
10167 break;
10168 case M_BLTZ:
10169 br = "bltz";
10170 break;
10171 case M_BLTZL:
10172 br = mips_opts.micromips ? "bltz" : "bltzl";
10173 brneg = "bgez";
10174 break;
10175 case M_BLTZALL:
10176 gas_assert (mips_opts.micromips);
10177 br = mips_opts.insn32 ? "bltzal" : "bltzals";
10178 brneg = "bgez";
10179 call = 1;
10180 break;
10181 default:
10182 abort ();
10183 }
10184 if (mips_opts.micromips && brneg)
10185 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
10186 else
10187 macro_build (ep, br, "s,p", sreg);
10188 }
10189
10190 /* Emit a three-argument branch macro specified by TYPE, using SREG and
10191 TREG as the registers tested. EP specifies the branch target. */
10192
10193 static void
10194 macro_build_branch_rsrt (int type, expressionS *ep,
10195 unsigned int sreg, unsigned int treg)
10196 {
10197 const char *brneg = NULL;
10198 const int call = 0;
10199 const char *br;
10200
10201 switch (type)
10202 {
10203 case M_BEQ:
10204 case M_BEQ_I:
10205 br = "beq";
10206 break;
10207 case M_BEQL:
10208 case M_BEQL_I:
10209 br = mips_opts.micromips ? "beq" : "beql";
10210 brneg = "bne";
10211 break;
10212 case M_BNE:
10213 case M_BNE_I:
10214 br = "bne";
10215 break;
10216 case M_BNEL:
10217 case M_BNEL_I:
10218 br = mips_opts.micromips ? "bne" : "bnel";
10219 brneg = "beq";
10220 break;
10221 default:
10222 abort ();
10223 }
10224 if (mips_opts.micromips && brneg)
10225 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
10226 else
10227 macro_build (ep, br, "s,t,p", sreg, treg);
10228 }
10229
10230 /* Return the high part that should be loaded in order to make the low
10231 part of VALUE accessible using an offset of OFFBITS bits. */
10232
10233 static offsetT
10234 offset_high_part (offsetT value, unsigned int offbits)
10235 {
10236 offsetT bias;
10237 addressT low_mask;
10238
10239 if (offbits == 0)
10240 return value;
10241 bias = 1 << (offbits - 1);
10242 low_mask = bias * 2 - 1;
10243 return (value + bias) & ~low_mask;
10244 }
10245
10246 /* Return true if the value stored in offset_expr and offset_reloc
10247 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10248 amount that the caller wants to add without inducing overflow
10249 and ALIGN is the known alignment of the value in bytes. */
10250
10251 static bool
10252 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
10253 {
10254 if (offbits == 16)
10255 {
10256 /* Accept any relocation operator if overflow isn't a concern. */
10257 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
10258 return true;
10259
10260 /* These relocations are guaranteed not to overflow in correct links. */
10261 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
10262 || gprel16_reloc_p (*offset_reloc))
10263 return true;
10264 }
10265 if (offset_expr.X_op == O_constant
10266 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10267 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
10268 return true;
10269 return false;
10270 }
10271
10272 /*
10273 * Build macros
10274 * This routine implements the seemingly endless macro or synthesized
10275 * instructions and addressing modes in the mips assembly language. Many
10276 * of these macros are simple and are similar to each other. These could
10277 * probably be handled by some kind of table or grammar approach instead of
10278 * this verbose method. Others are not simple macros but are more like
10279 * optimizing code generation.
10280 * One interesting optimization is when several store macros appear
10281 * consecutively that would load AT with the upper half of the same address.
10282 * The ensuing load upper instructions are omitted. This implies some kind
10283 * of global optimization. We currently only optimize within a single macro.
10284 * For many of the load and store macros if the address is specified as a
10285 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10286 * first load register 'at' with zero and use it as the base register. The
10287 * mips assembler simply uses register $zero. Just one tiny optimization
10288 * we're missing.
10289 */
10290 static void
10291 macro (struct mips_cl_insn *ip, char *str)
10292 {
10293 const struct mips_operand_array *operands;
10294 unsigned int breg, i;
10295 unsigned int tempreg;
10296 int mask;
10297 int used_at = 0;
10298 expressionS label_expr;
10299 expressionS expr1;
10300 expressionS *ep;
10301 const char *s;
10302 const char *s2;
10303 const char *fmt;
10304 int likely = 0;
10305 int coproc = 0;
10306 int offbits = 16;
10307 int call = 0;
10308 int jals = 0;
10309 int dbl = 0;
10310 int imm = 0;
10311 int ust = 0;
10312 int lp = 0;
10313 int ll_sc_paired = 0;
10314 bool large_offset;
10315 int off;
10316 int hold_mips_optimize;
10317 unsigned int align;
10318 unsigned int op[MAX_OPERANDS];
10319
10320 gas_assert (! mips_opts.mips16);
10321
10322 operands = insn_operands (ip);
10323 for (i = 0; i < MAX_OPERANDS; i++)
10324 if (operands->operand[i])
10325 op[i] = insn_extract_operand (ip, operands->operand[i]);
10326 else
10327 op[i] = -1;
10328
10329 mask = ip->insn_mo->mask;
10330
10331 label_expr.X_op = O_constant;
10332 label_expr.X_op_symbol = NULL;
10333 label_expr.X_add_symbol = NULL;
10334 label_expr.X_add_number = 0;
10335
10336 expr1.X_op = O_constant;
10337 expr1.X_op_symbol = NULL;
10338 expr1.X_add_symbol = NULL;
10339 expr1.X_add_number = 1;
10340 align = 1;
10341
10342 switch (mask)
10343 {
10344 case M_DABS:
10345 dbl = 1;
10346 /* Fall through. */
10347 case M_ABS:
10348 /* bgez $a0,1f
10349 move v0,$a0
10350 sub v0,$zero,$a0
10351 1:
10352 */
10353
10354 start_noreorder ();
10355
10356 if (mips_opts.micromips)
10357 micromips_label_expr (&label_expr);
10358 else
10359 label_expr.X_add_number = 8;
10360 macro_build (&label_expr, "bgez", "s,p", op[1]);
10361 if (op[0] == op[1])
10362 macro_build (NULL, "nop", "");
10363 else
10364 move_register (op[0], op[1]);
10365 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
10366 if (mips_opts.micromips)
10367 micromips_add_label ();
10368
10369 end_noreorder ();
10370 break;
10371
10372 case M_ADD_I:
10373 s = "addi";
10374 s2 = "add";
10375 if (ISA_IS_R6 (mips_opts.isa))
10376 goto do_addi_i;
10377 else
10378 goto do_addi;
10379 case M_ADDU_I:
10380 s = "addiu";
10381 s2 = "addu";
10382 goto do_addi;
10383 case M_DADD_I:
10384 dbl = 1;
10385 s = "daddi";
10386 s2 = "dadd";
10387 if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
10388 goto do_addi;
10389 if (imm_expr.X_add_number >= -0x200
10390 && imm_expr.X_add_number < 0x200
10391 && !ISA_IS_R6 (mips_opts.isa))
10392 {
10393 macro_build (NULL, s, "t,r,.", op[0], op[1],
10394 (int) imm_expr.X_add_number);
10395 break;
10396 }
10397 goto do_addi_i;
10398 case M_DADDU_I:
10399 dbl = 1;
10400 s = "daddiu";
10401 s2 = "daddu";
10402 do_addi:
10403 if (imm_expr.X_add_number >= -0x8000
10404 && imm_expr.X_add_number < 0x8000)
10405 {
10406 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10407 break;
10408 }
10409 do_addi_i:
10410 used_at = 1;
10411 load_register (AT, &imm_expr, dbl);
10412 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10413 break;
10414
10415 case M_AND_I:
10416 s = "andi";
10417 s2 = "and";
10418 goto do_bit;
10419 case M_OR_I:
10420 s = "ori";
10421 s2 = "or";
10422 goto do_bit;
10423 case M_NOR_I:
10424 s = "";
10425 s2 = "nor";
10426 goto do_bit;
10427 case M_XOR_I:
10428 s = "xori";
10429 s2 = "xor";
10430 do_bit:
10431 if (imm_expr.X_add_number >= 0
10432 && imm_expr.X_add_number < 0x10000)
10433 {
10434 if (mask != M_NOR_I)
10435 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10436 else
10437 {
10438 macro_build (&imm_expr, "ori", "t,r,i",
10439 op[0], op[1], BFD_RELOC_LO16);
10440 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10441 }
10442 break;
10443 }
10444
10445 used_at = 1;
10446 load_register (AT, &imm_expr, GPR_SIZE == 64);
10447 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10448 break;
10449
10450 case M_BALIGN:
10451 switch (imm_expr.X_add_number)
10452 {
10453 case 0:
10454 macro_build (NULL, "nop", "");
10455 break;
10456 case 2:
10457 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10458 break;
10459 case 1:
10460 case 3:
10461 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10462 (int) imm_expr.X_add_number);
10463 break;
10464 default:
10465 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10466 (unsigned long) imm_expr.X_add_number);
10467 break;
10468 }
10469 break;
10470
10471 case M_BC1FL:
10472 case M_BC1TL:
10473 case M_BC2FL:
10474 case M_BC2TL:
10475 gas_assert (mips_opts.micromips);
10476 macro_build_branch_ccl (mask, &offset_expr,
10477 EXTRACT_OPERAND (1, BCC, *ip));
10478 break;
10479
10480 case M_BEQ_I:
10481 case M_BEQL_I:
10482 case M_BNE_I:
10483 case M_BNEL_I:
10484 if (imm_expr.X_add_number == 0)
10485 op[1] = 0;
10486 else
10487 {
10488 op[1] = AT;
10489 used_at = 1;
10490 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10491 }
10492 /* Fall through. */
10493 case M_BEQL:
10494 case M_BNEL:
10495 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10496 break;
10497
10498 case M_BGEL:
10499 likely = 1;
10500 /* Fall through. */
10501 case M_BGE:
10502 if (op[1] == 0)
10503 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10504 else if (op[0] == 0)
10505 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10506 else
10507 {
10508 used_at = 1;
10509 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10510 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10511 &offset_expr, AT, ZERO);
10512 }
10513 break;
10514
10515 case M_BGEZL:
10516 case M_BGEZALL:
10517 case M_BGTZL:
10518 case M_BLEZL:
10519 case M_BLTZL:
10520 case M_BLTZALL:
10521 macro_build_branch_rs (mask, &offset_expr, op[0]);
10522 break;
10523
10524 case M_BGTL_I:
10525 likely = 1;
10526 /* Fall through. */
10527 case M_BGT_I:
10528 /* Check for > max integer. */
10529 if (imm_expr.X_add_number >= GPR_SMAX)
10530 {
10531 do_false:
10532 /* Result is always false. */
10533 if (! likely)
10534 macro_build (NULL, "nop", "");
10535 else
10536 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10537 break;
10538 }
10539 ++imm_expr.X_add_number;
10540 /* Fall through. */
10541 case M_BGE_I:
10542 case M_BGEL_I:
10543 if (mask == M_BGEL_I)
10544 likely = 1;
10545 if (imm_expr.X_add_number == 0)
10546 {
10547 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10548 &offset_expr, op[0]);
10549 break;
10550 }
10551 if (imm_expr.X_add_number == 1)
10552 {
10553 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10554 &offset_expr, op[0]);
10555 break;
10556 }
10557 if (imm_expr.X_add_number <= GPR_SMIN)
10558 {
10559 do_true:
10560 /* Result is always true. */
10561 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10562 macro_build (&offset_expr, "b", "p");
10563 break;
10564 }
10565 used_at = 1;
10566 set_at (op[0], 0);
10567 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10568 &offset_expr, AT, ZERO);
10569 break;
10570
10571 case M_BGEUL:
10572 likely = 1;
10573 /* Fall through. */
10574 case M_BGEU:
10575 if (op[1] == 0)
10576 goto do_true;
10577 else if (op[0] == 0)
10578 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10579 &offset_expr, ZERO, op[1]);
10580 else
10581 {
10582 used_at = 1;
10583 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10584 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10585 &offset_expr, AT, ZERO);
10586 }
10587 break;
10588
10589 case M_BGTUL_I:
10590 likely = 1;
10591 /* Fall through. */
10592 case M_BGTU_I:
10593 if (op[0] == 0
10594 || (GPR_SIZE == 32
10595 && imm_expr.X_add_number == -1))
10596 goto do_false;
10597 ++imm_expr.X_add_number;
10598 /* Fall through. */
10599 case M_BGEU_I:
10600 case M_BGEUL_I:
10601 if (mask == M_BGEUL_I)
10602 likely = 1;
10603 if (imm_expr.X_add_number == 0)
10604 goto do_true;
10605 else if (imm_expr.X_add_number == 1)
10606 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10607 &offset_expr, op[0], ZERO);
10608 else
10609 {
10610 used_at = 1;
10611 set_at (op[0], 1);
10612 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10613 &offset_expr, AT, ZERO);
10614 }
10615 break;
10616
10617 case M_BGTL:
10618 likely = 1;
10619 /* Fall through. */
10620 case M_BGT:
10621 if (op[1] == 0)
10622 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10623 else if (op[0] == 0)
10624 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10625 else
10626 {
10627 used_at = 1;
10628 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10629 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10630 &offset_expr, AT, ZERO);
10631 }
10632 break;
10633
10634 case M_BGTUL:
10635 likely = 1;
10636 /* Fall through. */
10637 case M_BGTU:
10638 if (op[1] == 0)
10639 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10640 &offset_expr, op[0], ZERO);
10641 else if (op[0] == 0)
10642 goto do_false;
10643 else
10644 {
10645 used_at = 1;
10646 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10647 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10648 &offset_expr, AT, ZERO);
10649 }
10650 break;
10651
10652 case M_BLEL:
10653 likely = 1;
10654 /* Fall through. */
10655 case M_BLE:
10656 if (op[1] == 0)
10657 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10658 else if (op[0] == 0)
10659 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10660 else
10661 {
10662 used_at = 1;
10663 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10664 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10665 &offset_expr, AT, ZERO);
10666 }
10667 break;
10668
10669 case M_BLEL_I:
10670 likely = 1;
10671 /* Fall through. */
10672 case M_BLE_I:
10673 if (imm_expr.X_add_number >= GPR_SMAX)
10674 goto do_true;
10675 ++imm_expr.X_add_number;
10676 /* Fall through. */
10677 case M_BLT_I:
10678 case M_BLTL_I:
10679 if (mask == M_BLTL_I)
10680 likely = 1;
10681 if (imm_expr.X_add_number == 0)
10682 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10683 else if (imm_expr.X_add_number == 1)
10684 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10685 else
10686 {
10687 used_at = 1;
10688 set_at (op[0], 0);
10689 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10690 &offset_expr, AT, ZERO);
10691 }
10692 break;
10693
10694 case M_BLEUL:
10695 likely = 1;
10696 /* Fall through. */
10697 case M_BLEU:
10698 if (op[1] == 0)
10699 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10700 &offset_expr, op[0], ZERO);
10701 else if (op[0] == 0)
10702 goto do_true;
10703 else
10704 {
10705 used_at = 1;
10706 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10707 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10708 &offset_expr, AT, ZERO);
10709 }
10710 break;
10711
10712 case M_BLEUL_I:
10713 likely = 1;
10714 /* Fall through. */
10715 case M_BLEU_I:
10716 if (op[0] == 0
10717 || (GPR_SIZE == 32
10718 && imm_expr.X_add_number == -1))
10719 goto do_true;
10720 ++imm_expr.X_add_number;
10721 /* Fall through. */
10722 case M_BLTU_I:
10723 case M_BLTUL_I:
10724 if (mask == M_BLTUL_I)
10725 likely = 1;
10726 if (imm_expr.X_add_number == 0)
10727 goto do_false;
10728 else if (imm_expr.X_add_number == 1)
10729 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10730 &offset_expr, op[0], ZERO);
10731 else
10732 {
10733 used_at = 1;
10734 set_at (op[0], 1);
10735 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10736 &offset_expr, AT, ZERO);
10737 }
10738 break;
10739
10740 case M_BLTL:
10741 likely = 1;
10742 /* Fall through. */
10743 case M_BLT:
10744 if (op[1] == 0)
10745 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10746 else if (op[0] == 0)
10747 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10748 else
10749 {
10750 used_at = 1;
10751 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10752 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10753 &offset_expr, AT, ZERO);
10754 }
10755 break;
10756
10757 case M_BLTUL:
10758 likely = 1;
10759 /* Fall through. */
10760 case M_BLTU:
10761 if (op[1] == 0)
10762 goto do_false;
10763 else if (op[0] == 0)
10764 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10765 &offset_expr, ZERO, op[1]);
10766 else
10767 {
10768 used_at = 1;
10769 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10770 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10771 &offset_expr, AT, ZERO);
10772 }
10773 break;
10774
10775 case M_DDIV_3:
10776 dbl = 1;
10777 /* Fall through. */
10778 case M_DIV_3:
10779 s = "mflo";
10780 goto do_div3;
10781 case M_DREM_3:
10782 dbl = 1;
10783 /* Fall through. */
10784 case M_REM_3:
10785 s = "mfhi";
10786 do_div3:
10787 if (op[2] == 0)
10788 {
10789 as_warn (_("divide by zero"));
10790 if (mips_trap)
10791 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10792 else
10793 macro_build (NULL, "break", BRK_FMT, 7);
10794 break;
10795 }
10796
10797 start_noreorder ();
10798 if (mips_trap)
10799 {
10800 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10801 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10802 }
10803 else
10804 {
10805 if (mips_opts.micromips)
10806 micromips_label_expr (&label_expr);
10807 else
10808 label_expr.X_add_number = 8;
10809 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10810 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10811 macro_build (NULL, "break", BRK_FMT, 7);
10812 if (mips_opts.micromips)
10813 micromips_add_label ();
10814 }
10815 expr1.X_add_number = -1;
10816 used_at = 1;
10817 load_register (AT, &expr1, dbl);
10818 if (mips_opts.micromips)
10819 micromips_label_expr (&label_expr);
10820 else
10821 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10822 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10823 if (dbl)
10824 {
10825 expr1.X_add_number = 1;
10826 load_register (AT, &expr1, dbl);
10827 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10828 }
10829 else
10830 {
10831 expr1.X_add_number = 0x80000000;
10832 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10833 }
10834 if (mips_trap)
10835 {
10836 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10837 /* We want to close the noreorder block as soon as possible, so
10838 that later insns are available for delay slot filling. */
10839 end_noreorder ();
10840 }
10841 else
10842 {
10843 if (mips_opts.micromips)
10844 micromips_label_expr (&label_expr);
10845 else
10846 label_expr.X_add_number = 8;
10847 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10848 macro_build (NULL, "nop", "");
10849
10850 /* We want to close the noreorder block as soon as possible, so
10851 that later insns are available for delay slot filling. */
10852 end_noreorder ();
10853
10854 macro_build (NULL, "break", BRK_FMT, 6);
10855 }
10856 if (mips_opts.micromips)
10857 micromips_add_label ();
10858 macro_build (NULL, s, MFHL_FMT, op[0]);
10859 break;
10860
10861 case M_DIV_3I:
10862 s = "div";
10863 s2 = "mflo";
10864 goto do_divi;
10865 case M_DIVU_3I:
10866 s = "divu";
10867 s2 = "mflo";
10868 goto do_divi;
10869 case M_REM_3I:
10870 s = "div";
10871 s2 = "mfhi";
10872 goto do_divi;
10873 case M_REMU_3I:
10874 s = "divu";
10875 s2 = "mfhi";
10876 goto do_divi;
10877 case M_DDIV_3I:
10878 dbl = 1;
10879 s = "ddiv";
10880 s2 = "mflo";
10881 goto do_divi;
10882 case M_DDIVU_3I:
10883 dbl = 1;
10884 s = "ddivu";
10885 s2 = "mflo";
10886 goto do_divi;
10887 case M_DREM_3I:
10888 dbl = 1;
10889 s = "ddiv";
10890 s2 = "mfhi";
10891 goto do_divi;
10892 case M_DREMU_3I:
10893 dbl = 1;
10894 s = "ddivu";
10895 s2 = "mfhi";
10896 do_divi:
10897 if (imm_expr.X_add_number == 0)
10898 {
10899 as_warn (_("divide by zero"));
10900 if (mips_trap)
10901 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10902 else
10903 macro_build (NULL, "break", BRK_FMT, 7);
10904 break;
10905 }
10906 if (imm_expr.X_add_number == 1)
10907 {
10908 if (strcmp (s2, "mflo") == 0)
10909 move_register (op[0], op[1]);
10910 else
10911 move_register (op[0], ZERO);
10912 break;
10913 }
10914 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10915 {
10916 if (strcmp (s2, "mflo") == 0)
10917 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10918 else
10919 move_register (op[0], ZERO);
10920 break;
10921 }
10922
10923 used_at = 1;
10924 load_register (AT, &imm_expr, dbl);
10925 macro_build (NULL, s, "z,s,t", op[1], AT);
10926 macro_build (NULL, s2, MFHL_FMT, op[0]);
10927 break;
10928
10929 case M_DIVU_3:
10930 s = "divu";
10931 s2 = "mflo";
10932 goto do_divu3;
10933 case M_REMU_3:
10934 s = "divu";
10935 s2 = "mfhi";
10936 goto do_divu3;
10937 case M_DDIVU_3:
10938 s = "ddivu";
10939 s2 = "mflo";
10940 goto do_divu3;
10941 case M_DREMU_3:
10942 s = "ddivu";
10943 s2 = "mfhi";
10944 do_divu3:
10945 start_noreorder ();
10946 if (mips_trap)
10947 {
10948 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10949 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10950 /* We want to close the noreorder block as soon as possible, so
10951 that later insns are available for delay slot filling. */
10952 end_noreorder ();
10953 }
10954 else
10955 {
10956 if (mips_opts.micromips)
10957 micromips_label_expr (&label_expr);
10958 else
10959 label_expr.X_add_number = 8;
10960 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10961 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10962
10963 /* We want to close the noreorder block as soon as possible, so
10964 that later insns are available for delay slot filling. */
10965 end_noreorder ();
10966 macro_build (NULL, "break", BRK_FMT, 7);
10967 if (mips_opts.micromips)
10968 micromips_add_label ();
10969 }
10970 macro_build (NULL, s2, MFHL_FMT, op[0]);
10971 break;
10972
10973 case M_DLCA_AB:
10974 dbl = 1;
10975 /* Fall through. */
10976 case M_LCA_AB:
10977 call = 1;
10978 goto do_la;
10979 case M_DLA_AB:
10980 dbl = 1;
10981 /* Fall through. */
10982 case M_LA_AB:
10983 do_la:
10984 /* Load the address of a symbol into a register. If breg is not
10985 zero, we then add a base register to it. */
10986
10987 breg = op[2];
10988 if (dbl && GPR_SIZE == 32)
10989 as_warn (_("dla used to load 32-bit register; recommend using la "
10990 "instead"));
10991
10992 if (!dbl && HAVE_64BIT_OBJECTS)
10993 as_warn (_("la used to load 64-bit address; recommend using dla "
10994 "instead"));
10995
10996 if (small_offset_p (0, align, 16))
10997 {
10998 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10999 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
11000 break;
11001 }
11002
11003 if (mips_opts.at && (op[0] == breg))
11004 {
11005 tempreg = AT;
11006 used_at = 1;
11007 }
11008 else
11009 tempreg = op[0];
11010
11011 if (offset_expr.X_op != O_symbol
11012 && offset_expr.X_op != O_constant)
11013 {
11014 as_bad (_("expression too complex"));
11015 offset_expr.X_op = O_constant;
11016 }
11017
11018 if (offset_expr.X_op == O_constant)
11019 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
11020 else if (mips_pic == NO_PIC)
11021 {
11022 /* If this is a reference to a GP relative symbol, we want
11023 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
11024 Otherwise we want
11025 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11026 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11027 If we have a constant, we need two instructions anyhow,
11028 so we may as well always use the latter form.
11029
11030 With 64bit address space and a usable $at we want
11031 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11032 lui $at,<sym> (BFD_RELOC_HI16_S)
11033 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11034 daddiu $at,<sym> (BFD_RELOC_LO16)
11035 dsll32 $tempreg,0
11036 daddu $tempreg,$tempreg,$at
11037
11038 If $at is already in use, we use a path which is suboptimal
11039 on superscalar processors.
11040 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11041 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11042 dsll $tempreg,16
11043 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11044 dsll $tempreg,16
11045 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
11046
11047 For GP relative symbols in 64bit address space we can use
11048 the same sequence as in 32bit address space. */
11049 if (HAVE_64BIT_SYMBOLS)
11050 {
11051 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11052 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11053 {
11054 relax_start (offset_expr.X_add_symbol);
11055 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11056 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
11057 relax_switch ();
11058 }
11059
11060 if (used_at == 0 && mips_opts.at)
11061 {
11062 macro_build (&offset_expr, "lui", LUI_FMT,
11063 tempreg, BFD_RELOC_MIPS_HIGHEST);
11064 macro_build (&offset_expr, "lui", LUI_FMT,
11065 AT, BFD_RELOC_HI16_S);
11066 macro_build (&offset_expr, "daddiu", "t,r,j",
11067 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
11068 macro_build (&offset_expr, "daddiu", "t,r,j",
11069 AT, AT, BFD_RELOC_LO16);
11070 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11071 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11072 used_at = 1;
11073 }
11074 else
11075 {
11076 macro_build (&offset_expr, "lui", LUI_FMT,
11077 tempreg, BFD_RELOC_MIPS_HIGHEST);
11078 macro_build (&offset_expr, "daddiu", "t,r,j",
11079 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
11080 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11081 macro_build (&offset_expr, "daddiu", "t,r,j",
11082 tempreg, tempreg, BFD_RELOC_HI16_S);
11083 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11084 macro_build (&offset_expr, "daddiu", "t,r,j",
11085 tempreg, tempreg, BFD_RELOC_LO16);
11086 }
11087
11088 if (mips_relax.sequence)
11089 relax_end ();
11090 }
11091 else
11092 {
11093 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11094 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11095 {
11096 relax_start (offset_expr.X_add_symbol);
11097 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11098 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
11099 relax_switch ();
11100 }
11101 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11102 as_bad (_("offset too large"));
11103 macro_build_lui (&offset_expr, tempreg);
11104 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11105 tempreg, tempreg, BFD_RELOC_LO16);
11106 if (mips_relax.sequence)
11107 relax_end ();
11108 }
11109 }
11110 else if (!mips_big_got && !HAVE_NEWABI)
11111 {
11112 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11113
11114 /* If this is a reference to an external symbol, and there
11115 is no constant, we want
11116 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11117 or for lca or if tempreg is PIC_CALL_REG
11118 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11119 For a local symbol, we want
11120 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11121 nop
11122 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11123
11124 If we have a small constant, and this is a reference to
11125 an external symbol, we want
11126 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11127 nop
11128 addiu $tempreg,$tempreg,<constant>
11129 For a local symbol, we want the same instruction
11130 sequence, but we output a BFD_RELOC_LO16 reloc on the
11131 addiu instruction.
11132
11133 If we have a large constant, and this is a reference to
11134 an external symbol, we want
11135 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11136 lui $at,<hiconstant>
11137 addiu $at,$at,<loconstant>
11138 addu $tempreg,$tempreg,$at
11139 For a local symbol, we want the same instruction
11140 sequence, but we output a BFD_RELOC_LO16 reloc on the
11141 addiu instruction.
11142 */
11143
11144 if (offset_expr.X_add_number == 0)
11145 {
11146 if (mips_pic == SVR4_PIC
11147 && breg == 0
11148 && (call || tempreg == PIC_CALL_REG))
11149 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
11150
11151 relax_start (offset_expr.X_add_symbol);
11152 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11153 lw_reloc_type, mips_gp_register);
11154 if (breg != 0)
11155 {
11156 /* We're going to put in an addu instruction using
11157 tempreg, so we may as well insert the nop right
11158 now. */
11159 load_delay_nop ();
11160 }
11161 relax_switch ();
11162 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11163 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
11164 load_delay_nop ();
11165 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11166 tempreg, tempreg, BFD_RELOC_LO16);
11167 relax_end ();
11168 /* FIXME: If breg == 0, and the next instruction uses
11169 $tempreg, then if this variant case is used an extra
11170 nop will be generated. */
11171 }
11172 else if (offset_expr.X_add_number >= -0x8000
11173 && offset_expr.X_add_number < 0x8000)
11174 {
11175 load_got_offset (tempreg, &offset_expr);
11176 load_delay_nop ();
11177 add_got_offset (tempreg, &offset_expr);
11178 }
11179 else
11180 {
11181 expr1.X_add_number = offset_expr.X_add_number;
11182 offset_expr.X_add_number =
11183 SEXT_16BIT (offset_expr.X_add_number);
11184 load_got_offset (tempreg, &offset_expr);
11185 offset_expr.X_add_number = expr1.X_add_number;
11186 /* If we are going to add in a base register, and the
11187 target register and the base register are the same,
11188 then we are using AT as a temporary register. Since
11189 we want to load the constant into AT, we add our
11190 current AT (from the global offset table) and the
11191 register into the register now, and pretend we were
11192 not using a base register. */
11193 if (breg == op[0])
11194 {
11195 load_delay_nop ();
11196 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11197 op[0], AT, breg);
11198 breg = 0;
11199 tempreg = op[0];
11200 }
11201 add_got_offset_hilo (tempreg, &offset_expr, AT);
11202 used_at = 1;
11203 }
11204 }
11205 else if (!mips_big_got && HAVE_NEWABI)
11206 {
11207 int add_breg_early = 0;
11208
11209 /* If this is a reference to an external, and there is no
11210 constant, or local symbol (*), with or without a
11211 constant, we want
11212 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11213 or for lca or if tempreg is PIC_CALL_REG
11214 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11215
11216 If we have a small constant, and this is a reference to
11217 an external symbol, we want
11218 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11219 addiu $tempreg,$tempreg,<constant>
11220
11221 If we have a large constant, and this is a reference to
11222 an external symbol, we want
11223 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11224 lui $at,<hiconstant>
11225 addiu $at,$at,<loconstant>
11226 addu $tempreg,$tempreg,$at
11227
11228 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11229 local symbols, even though it introduces an additional
11230 instruction. */
11231
11232 if (offset_expr.X_add_number)
11233 {
11234 expr1.X_add_number = offset_expr.X_add_number;
11235 offset_expr.X_add_number = 0;
11236
11237 relax_start (offset_expr.X_add_symbol);
11238 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11239 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11240
11241 if (expr1.X_add_number >= -0x8000
11242 && expr1.X_add_number < 0x8000)
11243 {
11244 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11245 tempreg, tempreg, BFD_RELOC_LO16);
11246 }
11247 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11248 {
11249 unsigned int dreg;
11250
11251 /* If we are going to add in a base register, and the
11252 target register and the base register are the same,
11253 then we are using AT as a temporary register. Since
11254 we want to load the constant into AT, we add our
11255 current AT (from the global offset table) and the
11256 register into the register now, and pretend we were
11257 not using a base register. */
11258 if (breg != op[0])
11259 dreg = tempreg;
11260 else
11261 {
11262 gas_assert (tempreg == AT);
11263 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11264 op[0], AT, breg);
11265 dreg = op[0];
11266 add_breg_early = 1;
11267 }
11268
11269 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11270 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11271 dreg, dreg, AT);
11272
11273 used_at = 1;
11274 }
11275 else
11276 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11277
11278 relax_switch ();
11279 offset_expr.X_add_number = expr1.X_add_number;
11280
11281 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11282 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11283 if (add_breg_early)
11284 {
11285 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11286 op[0], tempreg, breg);
11287 breg = 0;
11288 tempreg = op[0];
11289 }
11290 relax_end ();
11291 }
11292 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
11293 {
11294 relax_start (offset_expr.X_add_symbol);
11295 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11296 BFD_RELOC_MIPS_CALL16, mips_gp_register);
11297 relax_switch ();
11298 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11299 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11300 relax_end ();
11301 }
11302 else
11303 {
11304 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11305 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11306 }
11307 }
11308 else if (mips_big_got && !HAVE_NEWABI)
11309 {
11310 int gpdelay;
11311 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11312 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11313 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11314
11315 /* This is the large GOT case. If this is a reference to an
11316 external symbol, and there is no constant, we want
11317 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11318 addu $tempreg,$tempreg,$gp
11319 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11320 or for lca or if tempreg is PIC_CALL_REG
11321 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11322 addu $tempreg,$tempreg,$gp
11323 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11324 For a local symbol, we want
11325 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11326 nop
11327 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11328
11329 If we have a small constant, and this is a reference to
11330 an external symbol, we want
11331 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11332 addu $tempreg,$tempreg,$gp
11333 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11334 nop
11335 addiu $tempreg,$tempreg,<constant>
11336 For a local symbol, we want
11337 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11338 nop
11339 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11340
11341 If we have a large constant, and this is a reference to
11342 an external symbol, we want
11343 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11344 addu $tempreg,$tempreg,$gp
11345 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11346 lui $at,<hiconstant>
11347 addiu $at,$at,<loconstant>
11348 addu $tempreg,$tempreg,$at
11349 For a local symbol, we want
11350 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11351 lui $at,<hiconstant>
11352 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11353 addu $tempreg,$tempreg,$at
11354 */
11355
11356 expr1.X_add_number = offset_expr.X_add_number;
11357 offset_expr.X_add_number = 0;
11358 relax_start (offset_expr.X_add_symbol);
11359 gpdelay = reg_needs_delay (mips_gp_register);
11360 if (expr1.X_add_number == 0 && breg == 0
11361 && (call || tempreg == PIC_CALL_REG))
11362 {
11363 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11364 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11365 }
11366 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11367 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11368 tempreg, tempreg, mips_gp_register);
11369 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11370 tempreg, lw_reloc_type, tempreg);
11371 if (expr1.X_add_number == 0)
11372 {
11373 if (breg != 0)
11374 {
11375 /* We're going to put in an addu instruction using
11376 tempreg, so we may as well insert the nop right
11377 now. */
11378 load_delay_nop ();
11379 }
11380 }
11381 else if (expr1.X_add_number >= -0x8000
11382 && expr1.X_add_number < 0x8000)
11383 {
11384 load_delay_nop ();
11385 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11386 tempreg, tempreg, BFD_RELOC_LO16);
11387 }
11388 else
11389 {
11390 unsigned int dreg;
11391
11392 /* If we are going to add in a base register, and the
11393 target register and the base register are the same,
11394 then we are using AT as a temporary register. Since
11395 we want to load the constant into AT, we add our
11396 current AT (from the global offset table) and the
11397 register into the register now, and pretend we were
11398 not using a base register. */
11399 if (breg != op[0])
11400 dreg = tempreg;
11401 else
11402 {
11403 gas_assert (tempreg == AT);
11404 load_delay_nop ();
11405 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11406 op[0], AT, breg);
11407 dreg = op[0];
11408 }
11409
11410 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11411 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11412
11413 used_at = 1;
11414 }
11415 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11416 relax_switch ();
11417
11418 if (gpdelay)
11419 {
11420 /* This is needed because this instruction uses $gp, but
11421 the first instruction on the main stream does not. */
11422 macro_build (NULL, "nop", "");
11423 }
11424
11425 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11426 local_reloc_type, mips_gp_register);
11427 if (expr1.X_add_number >= -0x8000
11428 && expr1.X_add_number < 0x8000)
11429 {
11430 load_delay_nop ();
11431 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11432 tempreg, tempreg, BFD_RELOC_LO16);
11433 /* FIXME: If add_number is 0, and there was no base
11434 register, the external symbol case ended with a load,
11435 so if the symbol turns out to not be external, and
11436 the next instruction uses tempreg, an unnecessary nop
11437 will be inserted. */
11438 }
11439 else
11440 {
11441 if (breg == op[0])
11442 {
11443 /* We must add in the base register now, as in the
11444 external symbol case. */
11445 gas_assert (tempreg == AT);
11446 load_delay_nop ();
11447 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11448 op[0], AT, breg);
11449 tempreg = op[0];
11450 /* We set breg to 0 because we have arranged to add
11451 it in in both cases. */
11452 breg = 0;
11453 }
11454
11455 macro_build_lui (&expr1, AT);
11456 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11457 AT, AT, BFD_RELOC_LO16);
11458 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11459 tempreg, tempreg, AT);
11460 used_at = 1;
11461 }
11462 relax_end ();
11463 }
11464 else if (mips_big_got && HAVE_NEWABI)
11465 {
11466 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11467 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11468 int add_breg_early = 0;
11469
11470 /* This is the large GOT case. If this is a reference to an
11471 external symbol, and there is no constant, we want
11472 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11473 add $tempreg,$tempreg,$gp
11474 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11475 or for lca or if tempreg is PIC_CALL_REG
11476 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11477 add $tempreg,$tempreg,$gp
11478 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11479
11480 If we have a small constant, and this is a reference to
11481 an external symbol, we want
11482 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11483 add $tempreg,$tempreg,$gp
11484 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11485 addi $tempreg,$tempreg,<constant>
11486
11487 If we have a large constant, and this is a reference to
11488 an external symbol, we want
11489 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11490 addu $tempreg,$tempreg,$gp
11491 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11492 lui $at,<hiconstant>
11493 addi $at,$at,<loconstant>
11494 add $tempreg,$tempreg,$at
11495
11496 If we have NewABI, and we know it's a local symbol, we want
11497 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11498 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11499 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11500
11501 relax_start (offset_expr.X_add_symbol);
11502
11503 expr1.X_add_number = offset_expr.X_add_number;
11504 offset_expr.X_add_number = 0;
11505
11506 if (expr1.X_add_number == 0 && breg == 0
11507 && (call || tempreg == PIC_CALL_REG))
11508 {
11509 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11510 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11511 }
11512 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11513 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11514 tempreg, tempreg, mips_gp_register);
11515 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11516 tempreg, lw_reloc_type, tempreg);
11517
11518 if (expr1.X_add_number == 0)
11519 ;
11520 else if (expr1.X_add_number >= -0x8000
11521 && expr1.X_add_number < 0x8000)
11522 {
11523 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11524 tempreg, tempreg, BFD_RELOC_LO16);
11525 }
11526 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11527 {
11528 unsigned int dreg;
11529
11530 /* If we are going to add in a base register, and the
11531 target register and the base register are the same,
11532 then we are using AT as a temporary register. Since
11533 we want to load the constant into AT, we add our
11534 current AT (from the global offset table) and the
11535 register into the register now, and pretend we were
11536 not using a base register. */
11537 if (breg != op[0])
11538 dreg = tempreg;
11539 else
11540 {
11541 gas_assert (tempreg == AT);
11542 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11543 op[0], AT, breg);
11544 dreg = op[0];
11545 add_breg_early = 1;
11546 }
11547
11548 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11549 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11550
11551 used_at = 1;
11552 }
11553 else
11554 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11555
11556 relax_switch ();
11557 offset_expr.X_add_number = expr1.X_add_number;
11558 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11559 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11560 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11561 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11562 if (add_breg_early)
11563 {
11564 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11565 op[0], tempreg, breg);
11566 breg = 0;
11567 tempreg = op[0];
11568 }
11569 relax_end ();
11570 }
11571 else
11572 abort ();
11573
11574 if (breg != 0)
11575 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11576 break;
11577
11578 case M_MSGSND:
11579 gas_assert (!mips_opts.micromips);
11580 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11581 break;
11582
11583 case M_MSGLD:
11584 gas_assert (!mips_opts.micromips);
11585 macro_build (NULL, "c2", "C", 0x02);
11586 break;
11587
11588 case M_MSGLD_T:
11589 gas_assert (!mips_opts.micromips);
11590 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11591 break;
11592
11593 case M_MSGWAIT:
11594 gas_assert (!mips_opts.micromips);
11595 macro_build (NULL, "c2", "C", 3);
11596 break;
11597
11598 case M_MSGWAIT_T:
11599 gas_assert (!mips_opts.micromips);
11600 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11601 break;
11602
11603 case M_J_A:
11604 /* The j instruction may not be used in PIC code, since it
11605 requires an absolute address. We convert it to a b
11606 instruction. */
11607 if (mips_pic == NO_PIC)
11608 macro_build (&offset_expr, "j", "a");
11609 else
11610 macro_build (&offset_expr, "b", "p");
11611 break;
11612
11613 /* The jal instructions must be handled as macros because when
11614 generating PIC code they expand to multi-instruction
11615 sequences. Normally they are simple instructions. */
11616 case M_JALS_1:
11617 op[1] = op[0];
11618 op[0] = RA;
11619 /* Fall through. */
11620 case M_JALS_2:
11621 gas_assert (mips_opts.micromips);
11622 if (mips_opts.insn32)
11623 {
11624 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11625 break;
11626 }
11627 jals = 1;
11628 goto jal;
11629 case M_JAL_1:
11630 op[1] = op[0];
11631 op[0] = RA;
11632 /* Fall through. */
11633 case M_JAL_2:
11634 jal:
11635 if (mips_pic == NO_PIC)
11636 {
11637 s = jals ? "jalrs" : "jalr";
11638 if (mips_opts.micromips
11639 && !mips_opts.insn32
11640 && op[0] == RA
11641 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11642 macro_build (NULL, s, "mj", op[1]);
11643 else
11644 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11645 }
11646 else
11647 {
11648 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11649 && mips_cprestore_offset >= 0);
11650
11651 if (op[1] != PIC_CALL_REG)
11652 as_warn (_("MIPS PIC call to register other than $25"));
11653
11654 s = ((mips_opts.micromips
11655 && !mips_opts.insn32
11656 && (!mips_opts.noreorder || cprestore))
11657 ? "jalrs" : "jalr");
11658 if (mips_opts.micromips
11659 && !mips_opts.insn32
11660 && op[0] == RA
11661 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11662 macro_build (NULL, s, "mj", op[1]);
11663 else
11664 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11665 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11666 {
11667 if (mips_cprestore_offset < 0)
11668 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11669 else
11670 {
11671 if (!mips_frame_reg_valid)
11672 {
11673 as_warn (_("no .frame pseudo-op used in PIC code"));
11674 /* Quiet this warning. */
11675 mips_frame_reg_valid = 1;
11676 }
11677 if (!mips_cprestore_valid)
11678 {
11679 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11680 /* Quiet this warning. */
11681 mips_cprestore_valid = 1;
11682 }
11683 if (mips_opts.noreorder)
11684 macro_build (NULL, "nop", "");
11685 expr1.X_add_number = mips_cprestore_offset;
11686 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11687 mips_gp_register,
11688 mips_frame_reg,
11689 HAVE_64BIT_ADDRESSES);
11690 }
11691 }
11692 }
11693
11694 break;
11695
11696 case M_JALS_A:
11697 gas_assert (mips_opts.micromips);
11698 if (mips_opts.insn32)
11699 {
11700 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11701 break;
11702 }
11703 jals = 1;
11704 /* Fall through. */
11705 case M_JAL_A:
11706 if (mips_pic == NO_PIC)
11707 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11708 else if (mips_pic == SVR4_PIC)
11709 {
11710 /* If this is a reference to an external symbol, and we are
11711 using a small GOT, we want
11712 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11713 nop
11714 jalr $ra,$25
11715 nop
11716 lw $gp,cprestore($sp)
11717 The cprestore value is set using the .cprestore
11718 pseudo-op. If we are using a big GOT, we want
11719 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11720 addu $25,$25,$gp
11721 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11722 nop
11723 jalr $ra,$25
11724 nop
11725 lw $gp,cprestore($sp)
11726 If the symbol is not external, we want
11727 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11728 nop
11729 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11730 jalr $ra,$25
11731 nop
11732 lw $gp,cprestore($sp)
11733
11734 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11735 sequences above, minus nops, unless the symbol is local,
11736 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11737 GOT_DISP. */
11738 if (HAVE_NEWABI)
11739 {
11740 if (!mips_big_got)
11741 {
11742 relax_start (offset_expr.X_add_symbol);
11743 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11744 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11745 mips_gp_register);
11746 relax_switch ();
11747 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11748 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11749 mips_gp_register);
11750 relax_end ();
11751 }
11752 else
11753 {
11754 relax_start (offset_expr.X_add_symbol);
11755 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11756 BFD_RELOC_MIPS_CALL_HI16);
11757 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11758 PIC_CALL_REG, mips_gp_register);
11759 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11760 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11761 PIC_CALL_REG);
11762 relax_switch ();
11763 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11764 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11765 mips_gp_register);
11766 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11767 PIC_CALL_REG, PIC_CALL_REG,
11768 BFD_RELOC_MIPS_GOT_OFST);
11769 relax_end ();
11770 }
11771
11772 macro_build_jalr (&offset_expr, 0);
11773 }
11774 else
11775 {
11776 relax_start (offset_expr.X_add_symbol);
11777 if (!mips_big_got)
11778 {
11779 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11780 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11781 mips_gp_register);
11782 load_delay_nop ();
11783 relax_switch ();
11784 }
11785 else
11786 {
11787 int gpdelay;
11788
11789 gpdelay = reg_needs_delay (mips_gp_register);
11790 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11791 BFD_RELOC_MIPS_CALL_HI16);
11792 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11793 PIC_CALL_REG, mips_gp_register);
11794 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11795 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11796 PIC_CALL_REG);
11797 load_delay_nop ();
11798 relax_switch ();
11799 if (gpdelay)
11800 macro_build (NULL, "nop", "");
11801 }
11802 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11803 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11804 mips_gp_register);
11805 load_delay_nop ();
11806 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11807 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11808 relax_end ();
11809 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11810
11811 if (mips_cprestore_offset < 0)
11812 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11813 else
11814 {
11815 if (!mips_frame_reg_valid)
11816 {
11817 as_warn (_("no .frame pseudo-op used in PIC code"));
11818 /* Quiet this warning. */
11819 mips_frame_reg_valid = 1;
11820 }
11821 if (!mips_cprestore_valid)
11822 {
11823 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11824 /* Quiet this warning. */
11825 mips_cprestore_valid = 1;
11826 }
11827 if (mips_opts.noreorder)
11828 macro_build (NULL, "nop", "");
11829 expr1.X_add_number = mips_cprestore_offset;
11830 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11831 mips_gp_register,
11832 mips_frame_reg,
11833 HAVE_64BIT_ADDRESSES);
11834 }
11835 }
11836 }
11837 else if (mips_pic == VXWORKS_PIC)
11838 as_bad (_("non-PIC jump used in PIC library"));
11839 else
11840 abort ();
11841
11842 break;
11843
11844 case M_LBUE_AB:
11845 s = "lbue";
11846 fmt = "t,+j(b)";
11847 offbits = 9;
11848 goto ld_st;
11849 case M_LHUE_AB:
11850 s = "lhue";
11851 fmt = "t,+j(b)";
11852 offbits = 9;
11853 goto ld_st;
11854 case M_LBE_AB:
11855 s = "lbe";
11856 fmt = "t,+j(b)";
11857 offbits = 9;
11858 goto ld_st;
11859 case M_LHE_AB:
11860 s = "lhe";
11861 fmt = "t,+j(b)";
11862 offbits = 9;
11863 goto ld_st;
11864 case M_LLE_AB:
11865 s = "lle";
11866 fmt = "t,+j(b)";
11867 offbits = 9;
11868 goto ld_st;
11869 case M_LWE_AB:
11870 s = "lwe";
11871 fmt = "t,+j(b)";
11872 offbits = 9;
11873 goto ld_st;
11874 case M_LWLE_AB:
11875 s = "lwle";
11876 fmt = "t,+j(b)";
11877 offbits = 9;
11878 goto ld_st;
11879 case M_LWRE_AB:
11880 s = "lwre";
11881 fmt = "t,+j(b)";
11882 offbits = 9;
11883 goto ld_st;
11884 case M_SBE_AB:
11885 s = "sbe";
11886 fmt = "t,+j(b)";
11887 offbits = 9;
11888 goto ld_st;
11889 case M_SCE_AB:
11890 s = "sce";
11891 fmt = "t,+j(b)";
11892 offbits = 9;
11893 goto ld_st;
11894 case M_SHE_AB:
11895 s = "she";
11896 fmt = "t,+j(b)";
11897 offbits = 9;
11898 goto ld_st;
11899 case M_SWE_AB:
11900 s = "swe";
11901 fmt = "t,+j(b)";
11902 offbits = 9;
11903 goto ld_st;
11904 case M_SWLE_AB:
11905 s = "swle";
11906 fmt = "t,+j(b)";
11907 offbits = 9;
11908 goto ld_st;
11909 case M_SWRE_AB:
11910 s = "swre";
11911 fmt = "t,+j(b)";
11912 offbits = 9;
11913 goto ld_st;
11914 case M_ACLR_AB:
11915 s = "aclr";
11916 fmt = "\\,~(b)";
11917 offbits = 12;
11918 goto ld_st;
11919 case M_ASET_AB:
11920 s = "aset";
11921 fmt = "\\,~(b)";
11922 offbits = 12;
11923 goto ld_st;
11924 case M_LB_AB:
11925 s = "lb";
11926 fmt = "t,o(b)";
11927 goto ld;
11928 case M_LBU_AB:
11929 s = "lbu";
11930 fmt = "t,o(b)";
11931 goto ld;
11932 case M_LH_AB:
11933 s = "lh";
11934 fmt = "t,o(b)";
11935 goto ld;
11936 case M_LHU_AB:
11937 s = "lhu";
11938 fmt = "t,o(b)";
11939 goto ld;
11940 case M_LW_AB:
11941 s = "lw";
11942 fmt = "t,o(b)";
11943 goto ld;
11944 case M_LWC0_AB:
11945 gas_assert (!mips_opts.micromips);
11946 s = "lwc0";
11947 fmt = "E,o(b)";
11948 /* Itbl support may require additional care here. */
11949 coproc = 1;
11950 goto ld_st;
11951 case M_LWC1_AB:
11952 s = "lwc1";
11953 fmt = "T,o(b)";
11954 /* Itbl support may require additional care here. */
11955 coproc = 1;
11956 goto ld_st;
11957 case M_LWC2_AB:
11958 s = "lwc2";
11959 fmt = COP12_FMT;
11960 offbits = (mips_opts.micromips ? 12
11961 : ISA_IS_R6 (mips_opts.isa) ? 11
11962 : 16);
11963 /* Itbl support may require additional care here. */
11964 coproc = 1;
11965 goto ld_st;
11966 case M_LWC3_AB:
11967 gas_assert (!mips_opts.micromips);
11968 s = "lwc3";
11969 fmt = "E,o(b)";
11970 /* Itbl support may require additional care here. */
11971 coproc = 1;
11972 goto ld_st;
11973 case M_LWL_AB:
11974 s = "lwl";
11975 fmt = MEM12_FMT;
11976 offbits = (mips_opts.micromips ? 12 : 16);
11977 goto ld_st;
11978 case M_LWR_AB:
11979 s = "lwr";
11980 fmt = MEM12_FMT;
11981 offbits = (mips_opts.micromips ? 12 : 16);
11982 goto ld_st;
11983 case M_LDC1_AB:
11984 s = "ldc1";
11985 fmt = "T,o(b)";
11986 /* Itbl support may require additional care here. */
11987 coproc = 1;
11988 goto ld_st;
11989 case M_LDC2_AB:
11990 s = "ldc2";
11991 fmt = COP12_FMT;
11992 offbits = (mips_opts.micromips ? 12
11993 : ISA_IS_R6 (mips_opts.isa) ? 11
11994 : 16);
11995 /* Itbl support may require additional care here. */
11996 coproc = 1;
11997 goto ld_st;
11998 case M_LQC2_AB:
11999 s = "lqc2";
12000 fmt = "+7,o(b)";
12001 /* Itbl support may require additional care here. */
12002 coproc = 1;
12003 goto ld_st;
12004 case M_LDC3_AB:
12005 s = "ldc3";
12006 fmt = "E,o(b)";
12007 /* Itbl support may require additional care here. */
12008 coproc = 1;
12009 goto ld_st;
12010 case M_LDL_AB:
12011 s = "ldl";
12012 fmt = MEM12_FMT;
12013 offbits = (mips_opts.micromips ? 12 : 16);
12014 goto ld_st;
12015 case M_LDR_AB:
12016 s = "ldr";
12017 fmt = MEM12_FMT;
12018 offbits = (mips_opts.micromips ? 12 : 16);
12019 goto ld_st;
12020 case M_LL_AB:
12021 s = "ll";
12022 fmt = LL_SC_FMT;
12023 offbits = (mips_opts.micromips ? 12
12024 : ISA_IS_R6 (mips_opts.isa) ? 9
12025 : 16);
12026 goto ld;
12027 case M_LLD_AB:
12028 s = "lld";
12029 fmt = LL_SC_FMT;
12030 offbits = (mips_opts.micromips ? 12
12031 : ISA_IS_R6 (mips_opts.isa) ? 9
12032 : 16);
12033 goto ld;
12034 case M_LWU_AB:
12035 s = "lwu";
12036 fmt = MEM12_FMT;
12037 offbits = (mips_opts.micromips ? 12 : 16);
12038 goto ld;
12039 case M_LWP_AB:
12040 gas_assert (mips_opts.micromips);
12041 s = "lwp";
12042 fmt = "t,~(b)";
12043 offbits = 12;
12044 lp = 1;
12045 goto ld;
12046 case M_LDP_AB:
12047 gas_assert (mips_opts.micromips);
12048 s = "ldp";
12049 fmt = "t,~(b)";
12050 offbits = 12;
12051 lp = 1;
12052 goto ld;
12053 case M_LLDP_AB:
12054 case M_LLWP_AB:
12055 case M_LLWPE_AB:
12056 s = ip->insn_mo->name;
12057 fmt = "t,d,s";
12058 ll_sc_paired = 1;
12059 offbits = 0;
12060 goto ld;
12061 case M_LWM_AB:
12062 gas_assert (mips_opts.micromips);
12063 s = "lwm";
12064 fmt = "n,~(b)";
12065 offbits = 12;
12066 goto ld_st;
12067 case M_LDM_AB:
12068 gas_assert (mips_opts.micromips);
12069 s = "ldm";
12070 fmt = "n,~(b)";
12071 offbits = 12;
12072 goto ld_st;
12073
12074 ld:
12075 /* Try to use one the the load registers to compute the base address.
12076 We don't want to use $0 as tempreg. */
12077 if (ll_sc_paired)
12078 {
12079 if ((op[0] == ZERO && op[3] == op[1])
12080 || (op[1] == ZERO && op[3] == op[0])
12081 || (op[0] == ZERO && op[1] == ZERO))
12082 goto ld_st;
12083 else if (op[0] != op[3] && op[0] != ZERO)
12084 tempreg = op[0];
12085 else
12086 tempreg = op[1];
12087 }
12088 else
12089 {
12090 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
12091 goto ld_st;
12092 else
12093 tempreg = op[0] + lp;
12094 }
12095 goto ld_noat;
12096
12097 case M_SB_AB:
12098 s = "sb";
12099 fmt = "t,o(b)";
12100 goto ld_st;
12101 case M_SH_AB:
12102 s = "sh";
12103 fmt = "t,o(b)";
12104 goto ld_st;
12105 case M_SW_AB:
12106 s = "sw";
12107 fmt = "t,o(b)";
12108 goto ld_st;
12109 case M_SWC0_AB:
12110 gas_assert (!mips_opts.micromips);
12111 s = "swc0";
12112 fmt = "E,o(b)";
12113 /* Itbl support may require additional care here. */
12114 coproc = 1;
12115 goto ld_st;
12116 case M_SWC1_AB:
12117 s = "swc1";
12118 fmt = "T,o(b)";
12119 /* Itbl support may require additional care here. */
12120 coproc = 1;
12121 goto ld_st;
12122 case M_SWC2_AB:
12123 s = "swc2";
12124 fmt = COP12_FMT;
12125 offbits = (mips_opts.micromips ? 12
12126 : ISA_IS_R6 (mips_opts.isa) ? 11
12127 : 16);
12128 /* Itbl support may require additional care here. */
12129 coproc = 1;
12130 goto ld_st;
12131 case M_SWC3_AB:
12132 gas_assert (!mips_opts.micromips);
12133 s = "swc3";
12134 fmt = "E,o(b)";
12135 /* Itbl support may require additional care here. */
12136 coproc = 1;
12137 goto ld_st;
12138 case M_SWL_AB:
12139 s = "swl";
12140 fmt = MEM12_FMT;
12141 offbits = (mips_opts.micromips ? 12 : 16);
12142 goto ld_st;
12143 case M_SWR_AB:
12144 s = "swr";
12145 fmt = MEM12_FMT;
12146 offbits = (mips_opts.micromips ? 12 : 16);
12147 goto ld_st;
12148 case M_SC_AB:
12149 s = "sc";
12150 fmt = LL_SC_FMT;
12151 offbits = (mips_opts.micromips ? 12
12152 : ISA_IS_R6 (mips_opts.isa) ? 9
12153 : 16);
12154 goto ld_st;
12155 case M_SCD_AB:
12156 s = "scd";
12157 fmt = LL_SC_FMT;
12158 offbits = (mips_opts.micromips ? 12
12159 : ISA_IS_R6 (mips_opts.isa) ? 9
12160 : 16);
12161 goto ld_st;
12162 case M_SCDP_AB:
12163 case M_SCWP_AB:
12164 case M_SCWPE_AB:
12165 s = ip->insn_mo->name;
12166 fmt = "t,d,s";
12167 ll_sc_paired = 1;
12168 offbits = 0;
12169 goto ld_st;
12170 case M_CACHE_AB:
12171 s = "cache";
12172 fmt = (mips_opts.micromips ? "k,~(b)"
12173 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
12174 : "k,o(b)");
12175 offbits = (mips_opts.micromips ? 12
12176 : ISA_IS_R6 (mips_opts.isa) ? 9
12177 : 16);
12178 goto ld_st;
12179 case M_CACHEE_AB:
12180 s = "cachee";
12181 fmt = "k,+j(b)";
12182 offbits = 9;
12183 goto ld_st;
12184 case M_PREF_AB:
12185 s = "pref";
12186 fmt = (mips_opts.micromips ? "k,~(b)"
12187 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
12188 : "k,o(b)");
12189 offbits = (mips_opts.micromips ? 12
12190 : ISA_IS_R6 (mips_opts.isa) ? 9
12191 : 16);
12192 goto ld_st;
12193 case M_PREFE_AB:
12194 s = "prefe";
12195 fmt = "k,+j(b)";
12196 offbits = 9;
12197 goto ld_st;
12198 case M_SDC1_AB:
12199 s = "sdc1";
12200 fmt = "T,o(b)";
12201 coproc = 1;
12202 /* Itbl support may require additional care here. */
12203 goto ld_st;
12204 case M_SDC2_AB:
12205 s = "sdc2";
12206 fmt = COP12_FMT;
12207 offbits = (mips_opts.micromips ? 12
12208 : ISA_IS_R6 (mips_opts.isa) ? 11
12209 : 16);
12210 /* Itbl support may require additional care here. */
12211 coproc = 1;
12212 goto ld_st;
12213 case M_SQC2_AB:
12214 s = "sqc2";
12215 fmt = "+7,o(b)";
12216 /* Itbl support may require additional care here. */
12217 coproc = 1;
12218 goto ld_st;
12219 case M_SDC3_AB:
12220 gas_assert (!mips_opts.micromips);
12221 s = "sdc3";
12222 fmt = "E,o(b)";
12223 /* Itbl support may require additional care here. */
12224 coproc = 1;
12225 goto ld_st;
12226 case M_SDL_AB:
12227 s = "sdl";
12228 fmt = MEM12_FMT;
12229 offbits = (mips_opts.micromips ? 12 : 16);
12230 goto ld_st;
12231 case M_SDR_AB:
12232 s = "sdr";
12233 fmt = MEM12_FMT;
12234 offbits = (mips_opts.micromips ? 12 : 16);
12235 goto ld_st;
12236 case M_SWP_AB:
12237 gas_assert (mips_opts.micromips);
12238 s = "swp";
12239 fmt = "t,~(b)";
12240 offbits = 12;
12241 goto ld_st;
12242 case M_SDP_AB:
12243 gas_assert (mips_opts.micromips);
12244 s = "sdp";
12245 fmt = "t,~(b)";
12246 offbits = 12;
12247 goto ld_st;
12248 case M_SWM_AB:
12249 gas_assert (mips_opts.micromips);
12250 s = "swm";
12251 fmt = "n,~(b)";
12252 offbits = 12;
12253 goto ld_st;
12254 case M_SDM_AB:
12255 gas_assert (mips_opts.micromips);
12256 s = "sdm";
12257 fmt = "n,~(b)";
12258 offbits = 12;
12259
12260 ld_st:
12261 tempreg = AT;
12262 ld_noat:
12263 breg = ll_sc_paired ? op[3] : op[2];
12264 if (small_offset_p (0, align, 16))
12265 {
12266 /* The first case exists for M_LD_AB and M_SD_AB, which are
12267 macros for o32 but which should act like normal instructions
12268 otherwise. */
12269 if (offbits == 16)
12270 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
12271 offset_reloc[1], offset_reloc[2], breg);
12272 else if (small_offset_p (0, align, offbits))
12273 {
12274 if (offbits == 0)
12275 {
12276 if (ll_sc_paired)
12277 macro_build (NULL, s, fmt, op[0], op[1], breg);
12278 else
12279 macro_build (NULL, s, fmt, op[0], breg);
12280 }
12281 else
12282 macro_build (NULL, s, fmt, op[0],
12283 (int) offset_expr.X_add_number, breg);
12284 }
12285 else
12286 {
12287 if (tempreg == AT)
12288 used_at = 1;
12289 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
12290 tempreg, breg, -1, offset_reloc[0],
12291 offset_reloc[1], offset_reloc[2]);
12292 if (offbits == 0)
12293 {
12294 if (ll_sc_paired)
12295 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12296 else
12297 macro_build (NULL, s, fmt, op[0], tempreg);
12298 }
12299 else
12300 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12301 }
12302 break;
12303 }
12304
12305 if (tempreg == AT)
12306 used_at = 1;
12307
12308 if (offset_expr.X_op != O_constant
12309 && offset_expr.X_op != O_symbol)
12310 {
12311 as_bad (_("expression too complex"));
12312 offset_expr.X_op = O_constant;
12313 }
12314
12315 if (HAVE_32BIT_ADDRESSES
12316 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12317 {
12318 as_bad (_("number (0x%" PRIx64 ") larger than 32 bits"),
12319 offset_expr.X_add_number);
12320 }
12321
12322 /* A constant expression in PIC code can be handled just as it
12323 is in non PIC code. */
12324 if (offset_expr.X_op == O_constant)
12325 {
12326 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12327 offbits == 0 ? 16 : offbits);
12328 offset_expr.X_add_number -= expr1.X_add_number;
12329
12330 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12331 if (breg != 0)
12332 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12333 tempreg, tempreg, breg);
12334 if (offbits == 0)
12335 {
12336 if (offset_expr.X_add_number != 0)
12337 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
12338 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
12339 if (ll_sc_paired)
12340 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12341 else
12342 macro_build (NULL, s, fmt, op[0], tempreg);
12343 }
12344 else if (offbits == 16)
12345 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12346 else
12347 macro_build (NULL, s, fmt, op[0],
12348 (int) offset_expr.X_add_number, tempreg);
12349 }
12350 else if (offbits != 16)
12351 {
12352 /* The offset field is too narrow to be used for a low-part
12353 relocation, so load the whole address into the auxiliary
12354 register. */
12355 load_address (tempreg, &offset_expr, &used_at);
12356 if (breg != 0)
12357 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12358 tempreg, tempreg, breg);
12359 if (offbits == 0)
12360 {
12361 if (ll_sc_paired)
12362 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12363 else
12364 macro_build (NULL, s, fmt, op[0], tempreg);
12365 }
12366 else
12367 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12368 }
12369 else if (mips_pic == NO_PIC)
12370 {
12371 /* If this is a reference to a GP relative symbol, and there
12372 is no base register, we want
12373 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12374 Otherwise, if there is no base register, we want
12375 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12376 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12377 If we have a constant, we need two instructions anyhow,
12378 so we always use the latter form.
12379
12380 If we have a base register, and this is a reference to a
12381 GP relative symbol, we want
12382 addu $tempreg,$breg,$gp
12383 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12384 Otherwise we want
12385 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12386 addu $tempreg,$tempreg,$breg
12387 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12388 With a constant we always use the latter case.
12389
12390 With 64bit address space and no base register and $at usable,
12391 we want
12392 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12393 lui $at,<sym> (BFD_RELOC_HI16_S)
12394 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12395 dsll32 $tempreg,0
12396 daddu $tempreg,$at
12397 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12398 If we have a base register, we want
12399 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12400 lui $at,<sym> (BFD_RELOC_HI16_S)
12401 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12402 daddu $at,$breg
12403 dsll32 $tempreg,0
12404 daddu $tempreg,$at
12405 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12406
12407 Without $at we can't generate the optimal path for superscalar
12408 processors here since this would require two temporary registers.
12409 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12410 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12411 dsll $tempreg,16
12412 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12413 dsll $tempreg,16
12414 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12415 If we have a base register, we want
12416 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12417 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12418 dsll $tempreg,16
12419 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12420 dsll $tempreg,16
12421 daddu $tempreg,$tempreg,$breg
12422 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12423
12424 For GP relative symbols in 64bit address space we can use
12425 the same sequence as in 32bit address space. */
12426 if (HAVE_64BIT_SYMBOLS)
12427 {
12428 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12429 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12430 {
12431 relax_start (offset_expr.X_add_symbol);
12432 if (breg == 0)
12433 {
12434 macro_build (&offset_expr, s, fmt, op[0],
12435 BFD_RELOC_GPREL16, mips_gp_register);
12436 }
12437 else
12438 {
12439 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12440 tempreg, breg, mips_gp_register);
12441 macro_build (&offset_expr, s, fmt, op[0],
12442 BFD_RELOC_GPREL16, tempreg);
12443 }
12444 relax_switch ();
12445 }
12446
12447 if (used_at == 0 && mips_opts.at)
12448 {
12449 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12450 BFD_RELOC_MIPS_HIGHEST);
12451 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12452 BFD_RELOC_HI16_S);
12453 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12454 tempreg, BFD_RELOC_MIPS_HIGHER);
12455 if (breg != 0)
12456 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12457 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12458 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12459 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12460 tempreg);
12461 used_at = 1;
12462 }
12463 else
12464 {
12465 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12466 BFD_RELOC_MIPS_HIGHEST);
12467 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12468 tempreg, BFD_RELOC_MIPS_HIGHER);
12469 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12470 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12471 tempreg, BFD_RELOC_HI16_S);
12472 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12473 if (breg != 0)
12474 macro_build (NULL, "daddu", "d,v,t",
12475 tempreg, tempreg, breg);
12476 macro_build (&offset_expr, s, fmt, op[0],
12477 BFD_RELOC_LO16, tempreg);
12478 }
12479
12480 if (mips_relax.sequence)
12481 relax_end ();
12482 break;
12483 }
12484
12485 if (breg == 0)
12486 {
12487 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12488 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12489 {
12490 relax_start (offset_expr.X_add_symbol);
12491 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12492 mips_gp_register);
12493 relax_switch ();
12494 }
12495 macro_build_lui (&offset_expr, tempreg);
12496 macro_build (&offset_expr, s, fmt, op[0],
12497 BFD_RELOC_LO16, tempreg);
12498 if (mips_relax.sequence)
12499 relax_end ();
12500 }
12501 else
12502 {
12503 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12504 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12505 {
12506 relax_start (offset_expr.X_add_symbol);
12507 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12508 tempreg, breg, mips_gp_register);
12509 macro_build (&offset_expr, s, fmt, op[0],
12510 BFD_RELOC_GPREL16, tempreg);
12511 relax_switch ();
12512 }
12513 macro_build_lui (&offset_expr, tempreg);
12514 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12515 tempreg, tempreg, breg);
12516 macro_build (&offset_expr, s, fmt, op[0],
12517 BFD_RELOC_LO16, tempreg);
12518 if (mips_relax.sequence)
12519 relax_end ();
12520 }
12521 }
12522 else if (!mips_big_got)
12523 {
12524 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12525
12526 /* If this is a reference to an external symbol, we want
12527 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12528 nop
12529 <op> op[0],0($tempreg)
12530 Otherwise we want
12531 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12532 nop
12533 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12534 <op> op[0],0($tempreg)
12535
12536 For NewABI, we want
12537 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12538 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12539
12540 If there is a base register, we add it to $tempreg before
12541 the <op>. If there is a constant, we stick it in the
12542 <op> instruction. We don't handle constants larger than
12543 16 bits, because we have no way to load the upper 16 bits
12544 (actually, we could handle them for the subset of cases
12545 in which we are not using $at). */
12546 gas_assert (offset_expr.X_op == O_symbol);
12547 if (HAVE_NEWABI)
12548 {
12549 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12550 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12551 if (breg != 0)
12552 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12553 tempreg, tempreg, breg);
12554 macro_build (&offset_expr, s, fmt, op[0],
12555 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12556 break;
12557 }
12558 expr1.X_add_number = offset_expr.X_add_number;
12559 offset_expr.X_add_number = 0;
12560 if (expr1.X_add_number < -0x8000
12561 || expr1.X_add_number >= 0x8000)
12562 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12563 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12564 lw_reloc_type, mips_gp_register);
12565 load_delay_nop ();
12566 relax_start (offset_expr.X_add_symbol);
12567 relax_switch ();
12568 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12569 tempreg, BFD_RELOC_LO16);
12570 relax_end ();
12571 if (breg != 0)
12572 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12573 tempreg, tempreg, breg);
12574 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12575 }
12576 else if (mips_big_got && !HAVE_NEWABI)
12577 {
12578 int gpdelay;
12579
12580 /* If this is a reference to an external symbol, we want
12581 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12582 addu $tempreg,$tempreg,$gp
12583 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12584 <op> op[0],0($tempreg)
12585 Otherwise we want
12586 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12587 nop
12588 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12589 <op> op[0],0($tempreg)
12590 If there is a base register, we add it to $tempreg before
12591 the <op>. If there is a constant, we stick it in the
12592 <op> instruction. We don't handle constants larger than
12593 16 bits, because we have no way to load the upper 16 bits
12594 (actually, we could handle them for the subset of cases
12595 in which we are not using $at). */
12596 gas_assert (offset_expr.X_op == O_symbol);
12597 expr1.X_add_number = offset_expr.X_add_number;
12598 offset_expr.X_add_number = 0;
12599 if (expr1.X_add_number < -0x8000
12600 || expr1.X_add_number >= 0x8000)
12601 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12602 gpdelay = reg_needs_delay (mips_gp_register);
12603 relax_start (offset_expr.X_add_symbol);
12604 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12605 BFD_RELOC_MIPS_GOT_HI16);
12606 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12607 mips_gp_register);
12608 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12609 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12610 relax_switch ();
12611 if (gpdelay)
12612 macro_build (NULL, "nop", "");
12613 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12614 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12615 load_delay_nop ();
12616 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12617 tempreg, BFD_RELOC_LO16);
12618 relax_end ();
12619
12620 if (breg != 0)
12621 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12622 tempreg, tempreg, breg);
12623 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12624 }
12625 else if (mips_big_got && HAVE_NEWABI)
12626 {
12627 /* If this is a reference to an external symbol, we want
12628 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12629 add $tempreg,$tempreg,$gp
12630 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12631 <op> op[0],<ofst>($tempreg)
12632 Otherwise, for local symbols, we want:
12633 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12634 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12635 gas_assert (offset_expr.X_op == O_symbol);
12636 expr1.X_add_number = offset_expr.X_add_number;
12637 offset_expr.X_add_number = 0;
12638 if (expr1.X_add_number < -0x8000
12639 || expr1.X_add_number >= 0x8000)
12640 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12641 relax_start (offset_expr.X_add_symbol);
12642 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12643 BFD_RELOC_MIPS_GOT_HI16);
12644 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12645 mips_gp_register);
12646 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12647 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12648 if (breg != 0)
12649 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12650 tempreg, tempreg, breg);
12651 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12652
12653 relax_switch ();
12654 offset_expr.X_add_number = expr1.X_add_number;
12655 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12656 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12657 if (breg != 0)
12658 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12659 tempreg, tempreg, breg);
12660 macro_build (&offset_expr, s, fmt, op[0],
12661 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12662 relax_end ();
12663 }
12664 else
12665 abort ();
12666
12667 break;
12668
12669 case M_JRADDIUSP:
12670 gas_assert (mips_opts.micromips);
12671 gas_assert (mips_opts.insn32);
12672 start_noreorder ();
12673 macro_build (NULL, "jr", "s", RA);
12674 expr1.X_add_number = op[0] << 2;
12675 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12676 end_noreorder ();
12677 break;
12678
12679 case M_JRC:
12680 gas_assert (mips_opts.micromips);
12681 gas_assert (mips_opts.insn32);
12682 macro_build (NULL, "jr", "s", op[0]);
12683 if (mips_opts.noreorder)
12684 macro_build (NULL, "nop", "");
12685 break;
12686
12687 case M_LI:
12688 case M_LI_S:
12689 load_register (op[0], &imm_expr, 0);
12690 break;
12691
12692 case M_DLI:
12693 load_register (op[0], &imm_expr, 1);
12694 break;
12695
12696 case M_LI_SS:
12697 if (imm_expr.X_op == O_constant)
12698 {
12699 used_at = 1;
12700 load_register (AT, &imm_expr, 0);
12701 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12702 break;
12703 }
12704 else
12705 {
12706 gas_assert (imm_expr.X_op == O_absent
12707 && offset_expr.X_op == O_symbol
12708 && strcmp (segment_name (S_GET_SEGMENT
12709 (offset_expr.X_add_symbol)),
12710 ".lit4") == 0
12711 && offset_expr.X_add_number == 0);
12712 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12713 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12714 break;
12715 }
12716
12717 case M_LI_D:
12718 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12719 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12720 order 32 bits of the value and the low order 32 bits are either
12721 zero or in OFFSET_EXPR. */
12722 if (imm_expr.X_op == O_constant)
12723 {
12724 if (GPR_SIZE == 64)
12725 load_register (op[0], &imm_expr, 1);
12726 else
12727 {
12728 int hreg, lreg;
12729
12730 if (target_big_endian)
12731 {
12732 hreg = op[0];
12733 lreg = op[0] + 1;
12734 }
12735 else
12736 {
12737 hreg = op[0] + 1;
12738 lreg = op[0];
12739 }
12740
12741 if (hreg <= 31)
12742 load_register (hreg, &imm_expr, 0);
12743 if (lreg <= 31)
12744 {
12745 if (offset_expr.X_op == O_absent)
12746 move_register (lreg, 0);
12747 else
12748 {
12749 gas_assert (offset_expr.X_op == O_constant);
12750 load_register (lreg, &offset_expr, 0);
12751 }
12752 }
12753 }
12754 break;
12755 }
12756 gas_assert (imm_expr.X_op == O_absent);
12757
12758 /* We know that sym is in the .rdata section. First we get the
12759 upper 16 bits of the address. */
12760 if (mips_pic == NO_PIC)
12761 {
12762 macro_build_lui (&offset_expr, AT);
12763 used_at = 1;
12764 }
12765 else
12766 {
12767 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12768 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12769 used_at = 1;
12770 }
12771
12772 /* Now we load the register(s). */
12773 if (GPR_SIZE == 64)
12774 {
12775 used_at = 1;
12776 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12777 BFD_RELOC_LO16, AT);
12778 }
12779 else
12780 {
12781 used_at = 1;
12782 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12783 BFD_RELOC_LO16, AT);
12784 if (op[0] != RA)
12785 {
12786 /* FIXME: How in the world do we deal with the possible
12787 overflow here? */
12788 offset_expr.X_add_number += 4;
12789 macro_build (&offset_expr, "lw", "t,o(b)",
12790 op[0] + 1, BFD_RELOC_LO16, AT);
12791 }
12792 }
12793 break;
12794
12795 case M_LI_DD:
12796 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12797 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12798 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12799 the value and the low order 32 bits are either zero or in
12800 OFFSET_EXPR. */
12801 if (imm_expr.X_op == O_constant)
12802 {
12803 tempreg = ZERO;
12804 if (((FPR_SIZE == 64 && GPR_SIZE == 64)
12805 || !ISA_HAS_MXHC1 (mips_opts.isa))
12806 && imm_expr.X_add_number != 0)
12807 {
12808 used_at = 1;
12809 tempreg = AT;
12810 load_register (AT, &imm_expr, FPR_SIZE == 64);
12811 }
12812 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12813 macro_build (NULL, "dmtc1", "t,S", tempreg, op[0]);
12814 else
12815 {
12816 if (!ISA_HAS_MXHC1 (mips_opts.isa))
12817 {
12818 if (FPR_SIZE != 32)
12819 as_bad (_("Unable to generate `%s' compliant code "
12820 "without mthc1"),
12821 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12822 else
12823 macro_build (NULL, "mtc1", "t,G", tempreg, op[0] + 1);
12824 }
12825 if (offset_expr.X_op == O_absent)
12826 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12827 else
12828 {
12829 gas_assert (offset_expr.X_op == O_constant);
12830 load_register (AT, &offset_expr, 0);
12831 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12832 }
12833 if (ISA_HAS_MXHC1 (mips_opts.isa))
12834 {
12835 if (imm_expr.X_add_number != 0)
12836 {
12837 used_at = 1;
12838 tempreg = AT;
12839 load_register (AT, &imm_expr, 0);
12840 }
12841 macro_build (NULL, "mthc1", "t,G", tempreg, op[0]);
12842 }
12843 }
12844 break;
12845 }
12846
12847 gas_assert (imm_expr.X_op == O_absent
12848 && offset_expr.X_op == O_symbol
12849 && offset_expr.X_add_number == 0);
12850 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12851 if (strcmp (s, ".lit8") == 0)
12852 {
12853 op[2] = mips_gp_register;
12854 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12855 offset_reloc[1] = BFD_RELOC_UNUSED;
12856 offset_reloc[2] = BFD_RELOC_UNUSED;
12857 }
12858 else
12859 {
12860 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12861 used_at = 1;
12862 if (mips_pic != NO_PIC)
12863 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12864 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12865 else
12866 {
12867 /* FIXME: This won't work for a 64 bit address. */
12868 macro_build_lui (&offset_expr, AT);
12869 }
12870
12871 op[2] = AT;
12872 offset_reloc[0] = BFD_RELOC_LO16;
12873 offset_reloc[1] = BFD_RELOC_UNUSED;
12874 offset_reloc[2] = BFD_RELOC_UNUSED;
12875 }
12876 align = 8;
12877 /* Fall through. */
12878
12879 case M_L_DAB:
12880 /* The MIPS assembler seems to check for X_add_number not
12881 being double aligned and generating:
12882 lui at,%hi(foo+1)
12883 addu at,at,v1
12884 addiu at,at,%lo(foo+1)
12885 lwc1 f2,0(at)
12886 lwc1 f3,4(at)
12887 But, the resulting address is the same after relocation so why
12888 generate the extra instruction? */
12889 /* Itbl support may require additional care here. */
12890 coproc = 1;
12891 fmt = "T,o(b)";
12892 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12893 {
12894 s = "ldc1";
12895 goto ld_st;
12896 }
12897 s = "lwc1";
12898 goto ldd_std;
12899
12900 case M_S_DAB:
12901 gas_assert (!mips_opts.micromips);
12902 /* Itbl support may require additional care here. */
12903 coproc = 1;
12904 fmt = "T,o(b)";
12905 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12906 {
12907 s = "sdc1";
12908 goto ld_st;
12909 }
12910 s = "swc1";
12911 goto ldd_std;
12912
12913 case M_LQ_AB:
12914 fmt = "t,o(b)";
12915 s = "lq";
12916 goto ld;
12917
12918 case M_SQ_AB:
12919 fmt = "t,o(b)";
12920 s = "sq";
12921 goto ld_st;
12922
12923 case M_LD_AB:
12924 fmt = "t,o(b)";
12925 if (GPR_SIZE == 64)
12926 {
12927 s = "ld";
12928 goto ld;
12929 }
12930 s = "lw";
12931 goto ldd_std;
12932
12933 case M_SD_AB:
12934 fmt = "t,o(b)";
12935 if (GPR_SIZE == 64)
12936 {
12937 s = "sd";
12938 goto ld_st;
12939 }
12940 s = "sw";
12941
12942 ldd_std:
12943 /* Even on a big endian machine $fn comes before $fn+1. We have
12944 to adjust when loading from memory. We set coproc if we must
12945 load $fn+1 first. */
12946 /* Itbl support may require additional care here. */
12947 if (!target_big_endian)
12948 coproc = 0;
12949
12950 breg = op[2];
12951 if (small_offset_p (0, align, 16))
12952 {
12953 ep = &offset_expr;
12954 if (!small_offset_p (4, align, 16))
12955 {
12956 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12957 -1, offset_reloc[0], offset_reloc[1],
12958 offset_reloc[2]);
12959 expr1.X_add_number = 0;
12960 ep = &expr1;
12961 breg = AT;
12962 used_at = 1;
12963 offset_reloc[0] = BFD_RELOC_LO16;
12964 offset_reloc[1] = BFD_RELOC_UNUSED;
12965 offset_reloc[2] = BFD_RELOC_UNUSED;
12966 }
12967 if (strcmp (s, "lw") == 0 && op[0] == breg)
12968 {
12969 ep->X_add_number += 4;
12970 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12971 offset_reloc[1], offset_reloc[2], breg);
12972 ep->X_add_number -= 4;
12973 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12974 offset_reloc[1], offset_reloc[2], breg);
12975 }
12976 else
12977 {
12978 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12979 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12980 breg);
12981 ep->X_add_number += 4;
12982 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12983 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12984 breg);
12985 }
12986 break;
12987 }
12988
12989 if (offset_expr.X_op != O_symbol
12990 && offset_expr.X_op != O_constant)
12991 {
12992 as_bad (_("expression too complex"));
12993 offset_expr.X_op = O_constant;
12994 }
12995
12996 if (HAVE_32BIT_ADDRESSES
12997 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12998 {
12999 as_bad (_("number (0x%" PRIx64 ") larger than 32 bits"),
13000 offset_expr.X_add_number);
13001 }
13002
13003 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
13004 {
13005 /* If this is a reference to a GP relative symbol, we want
13006 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
13007 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
13008 If we have a base register, we use this
13009 addu $at,$breg,$gp
13010 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
13011 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
13012 If this is not a GP relative symbol, we want
13013 lui $at,<sym> (BFD_RELOC_HI16_S)
13014 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13015 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
13016 If there is a base register, we add it to $at after the
13017 lui instruction. If there is a constant, we always use
13018 the last case. */
13019 if (offset_expr.X_op == O_symbol
13020 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
13021 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
13022 {
13023 relax_start (offset_expr.X_add_symbol);
13024 if (breg == 0)
13025 {
13026 tempreg = mips_gp_register;
13027 }
13028 else
13029 {
13030 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13031 AT, breg, mips_gp_register);
13032 tempreg = AT;
13033 used_at = 1;
13034 }
13035
13036 /* Itbl support may require additional care here. */
13037 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
13038 BFD_RELOC_GPREL16, tempreg);
13039 offset_expr.X_add_number += 4;
13040
13041 /* Set mips_optimize to 2 to avoid inserting an
13042 undesired nop. */
13043 hold_mips_optimize = mips_optimize;
13044 mips_optimize = 2;
13045 /* Itbl support may require additional care here. */
13046 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
13047 BFD_RELOC_GPREL16, tempreg);
13048 mips_optimize = hold_mips_optimize;
13049
13050 relax_switch ();
13051
13052 offset_expr.X_add_number -= 4;
13053 }
13054 used_at = 1;
13055 if (offset_high_part (offset_expr.X_add_number, 16)
13056 != offset_high_part (offset_expr.X_add_number + 4, 16))
13057 {
13058 load_address (AT, &offset_expr, &used_at);
13059 offset_expr.X_op = O_constant;
13060 offset_expr.X_add_number = 0;
13061 }
13062 else
13063 macro_build_lui (&offset_expr, AT);
13064 if (breg != 0)
13065 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
13066 /* Itbl support may require additional care here. */
13067 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
13068 BFD_RELOC_LO16, AT);
13069 /* FIXME: How do we handle overflow here? */
13070 offset_expr.X_add_number += 4;
13071 /* Itbl support may require additional care here. */
13072 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
13073 BFD_RELOC_LO16, AT);
13074 if (mips_relax.sequence)
13075 relax_end ();
13076 }
13077 else if (!mips_big_got)
13078 {
13079 /* If this is a reference to an external symbol, we want
13080 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13081 nop
13082 <op> op[0],0($at)
13083 <op> op[0]+1,4($at)
13084 Otherwise we want
13085 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13086 nop
13087 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13088 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
13089 If there is a base register we add it to $at before the
13090 lwc1 instructions. If there is a constant we include it
13091 in the lwc1 instructions. */
13092 used_at = 1;
13093 expr1.X_add_number = offset_expr.X_add_number;
13094 if (expr1.X_add_number < -0x8000
13095 || expr1.X_add_number >= 0x8000 - 4)
13096 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
13097 load_got_offset (AT, &offset_expr);
13098 load_delay_nop ();
13099 if (breg != 0)
13100 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
13101
13102 /* Set mips_optimize to 2 to avoid inserting an undesired
13103 nop. */
13104 hold_mips_optimize = mips_optimize;
13105 mips_optimize = 2;
13106
13107 /* Itbl support may require additional care here. */
13108 relax_start (offset_expr.X_add_symbol);
13109 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
13110 BFD_RELOC_LO16, AT);
13111 expr1.X_add_number += 4;
13112 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
13113 BFD_RELOC_LO16, AT);
13114 relax_switch ();
13115 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
13116 BFD_RELOC_LO16, AT);
13117 offset_expr.X_add_number += 4;
13118 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
13119 BFD_RELOC_LO16, AT);
13120 relax_end ();
13121
13122 mips_optimize = hold_mips_optimize;
13123 }
13124 else if (mips_big_got)
13125 {
13126 int gpdelay;
13127
13128 /* If this is a reference to an external symbol, we want
13129 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
13130 addu $at,$at,$gp
13131 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
13132 nop
13133 <op> op[0],0($at)
13134 <op> op[0]+1,4($at)
13135 Otherwise we want
13136 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13137 nop
13138 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13139 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
13140 If there is a base register we add it to $at before the
13141 lwc1 instructions. If there is a constant we include it
13142 in the lwc1 instructions. */
13143 used_at = 1;
13144 expr1.X_add_number = offset_expr.X_add_number;
13145 offset_expr.X_add_number = 0;
13146 if (expr1.X_add_number < -0x8000
13147 || expr1.X_add_number >= 0x8000 - 4)
13148 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
13149 gpdelay = reg_needs_delay (mips_gp_register);
13150 relax_start (offset_expr.X_add_symbol);
13151 macro_build (&offset_expr, "lui", LUI_FMT,
13152 AT, BFD_RELOC_MIPS_GOT_HI16);
13153 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13154 AT, AT, mips_gp_register);
13155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
13156 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
13157 load_delay_nop ();
13158 if (breg != 0)
13159 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
13160 /* Itbl support may require additional care here. */
13161 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
13162 BFD_RELOC_LO16, AT);
13163 expr1.X_add_number += 4;
13164
13165 /* Set mips_optimize to 2 to avoid inserting an undesired
13166 nop. */
13167 hold_mips_optimize = mips_optimize;
13168 mips_optimize = 2;
13169 /* Itbl support may require additional care here. */
13170 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
13171 BFD_RELOC_LO16, AT);
13172 mips_optimize = hold_mips_optimize;
13173 expr1.X_add_number -= 4;
13174
13175 relax_switch ();
13176 offset_expr.X_add_number = expr1.X_add_number;
13177 if (gpdelay)
13178 macro_build (NULL, "nop", "");
13179 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
13180 BFD_RELOC_MIPS_GOT16, mips_gp_register);
13181 load_delay_nop ();
13182 if (breg != 0)
13183 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
13184 /* Itbl support may require additional care here. */
13185 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
13186 BFD_RELOC_LO16, AT);
13187 offset_expr.X_add_number += 4;
13188
13189 /* Set mips_optimize to 2 to avoid inserting an undesired
13190 nop. */
13191 hold_mips_optimize = mips_optimize;
13192 mips_optimize = 2;
13193 /* Itbl support may require additional care here. */
13194 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
13195 BFD_RELOC_LO16, AT);
13196 mips_optimize = hold_mips_optimize;
13197 relax_end ();
13198 }
13199 else
13200 abort ();
13201
13202 break;
13203
13204 case M_SAA_AB:
13205 s = "saa";
13206 goto saa_saad;
13207 case M_SAAD_AB:
13208 s = "saad";
13209 saa_saad:
13210 gas_assert (!mips_opts.micromips);
13211 offbits = 0;
13212 fmt = "t,(b)";
13213 goto ld_st;
13214
13215 /* New code added to support COPZ instructions.
13216 This code builds table entries out of the macros in mip_opcodes.
13217 R4000 uses interlocks to handle coproc delays.
13218 Other chips (like the R3000) require nops to be inserted for delays.
13219
13220 FIXME: Currently, we require that the user handle delays.
13221 In order to fill delay slots for non-interlocked chips,
13222 we must have a way to specify delays based on the coprocessor.
13223 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
13224 What are the side-effects of the cop instruction?
13225 What cache support might we have and what are its effects?
13226 Both coprocessor & memory require delays. how long???
13227 What registers are read/set/modified?
13228
13229 If an itbl is provided to interpret cop instructions,
13230 this knowledge can be encoded in the itbl spec. */
13231
13232 case M_COP0:
13233 s = "c0";
13234 goto copz;
13235 case M_COP1:
13236 s = "c1";
13237 goto copz;
13238 case M_COP2:
13239 s = "c2";
13240 goto copz;
13241 case M_COP3:
13242 s = "c3";
13243 copz:
13244 gas_assert (!mips_opts.micromips);
13245 /* For now we just do C (same as Cz). The parameter will be
13246 stored in insn_opcode by mips_ip. */
13247 macro_build (NULL, s, "C", (int) ip->insn_opcode);
13248 break;
13249
13250 case M_MOVE:
13251 move_register (op[0], op[1]);
13252 break;
13253
13254 case M_MOVEP:
13255 gas_assert (mips_opts.micromips);
13256 gas_assert (mips_opts.insn32);
13257 move_register (micromips_to_32_reg_h_map1[op[0]],
13258 micromips_to_32_reg_m_map[op[1]]);
13259 move_register (micromips_to_32_reg_h_map2[op[0]],
13260 micromips_to_32_reg_n_map[op[2]]);
13261 break;
13262
13263 case M_DMUL:
13264 dbl = 1;
13265 /* Fall through. */
13266 case M_MUL:
13267 if (mips_opts.arch == CPU_R5900)
13268 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
13269 op[2]);
13270 else
13271 {
13272 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
13273 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13274 }
13275 break;
13276
13277 case M_DMUL_I:
13278 dbl = 1;
13279 /* Fall through. */
13280 case M_MUL_I:
13281 /* The MIPS assembler some times generates shifts and adds. I'm
13282 not trying to be that fancy. GCC should do this for us
13283 anyway. */
13284 used_at = 1;
13285 load_register (AT, &imm_expr, dbl);
13286 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
13287 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13288 break;
13289
13290 case M_DMULO_I:
13291 dbl = 1;
13292 /* Fall through. */
13293 case M_MULO_I:
13294 imm = 1;
13295 goto do_mulo;
13296
13297 case M_DMULO:
13298 dbl = 1;
13299 /* Fall through. */
13300 case M_MULO:
13301 do_mulo:
13302 start_noreorder ();
13303 used_at = 1;
13304 if (imm)
13305 load_register (AT, &imm_expr, dbl);
13306 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
13307 op[1], imm ? AT : op[2]);
13308 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13309 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
13310 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13311 if (mips_trap)
13312 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
13313 else
13314 {
13315 if (mips_opts.micromips)
13316 micromips_label_expr (&label_expr);
13317 else
13318 label_expr.X_add_number = 8;
13319 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
13320 macro_build (NULL, "nop", "");
13321 macro_build (NULL, "break", BRK_FMT, 6);
13322 if (mips_opts.micromips)
13323 micromips_add_label ();
13324 }
13325 end_noreorder ();
13326 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13327 break;
13328
13329 case M_DMULOU_I:
13330 dbl = 1;
13331 /* Fall through. */
13332 case M_MULOU_I:
13333 imm = 1;
13334 goto do_mulou;
13335
13336 case M_DMULOU:
13337 dbl = 1;
13338 /* Fall through. */
13339 case M_MULOU:
13340 do_mulou:
13341 start_noreorder ();
13342 used_at = 1;
13343 if (imm)
13344 load_register (AT, &imm_expr, dbl);
13345 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
13346 op[1], imm ? AT : op[2]);
13347 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13348 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13349 if (mips_trap)
13350 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
13351 else
13352 {
13353 if (mips_opts.micromips)
13354 micromips_label_expr (&label_expr);
13355 else
13356 label_expr.X_add_number = 8;
13357 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
13358 macro_build (NULL, "nop", "");
13359 macro_build (NULL, "break", BRK_FMT, 6);
13360 if (mips_opts.micromips)
13361 micromips_add_label ();
13362 }
13363 end_noreorder ();
13364 break;
13365
13366 case M_DROL:
13367 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13368 {
13369 if (op[0] == op[1])
13370 {
13371 tempreg = AT;
13372 used_at = 1;
13373 }
13374 else
13375 tempreg = op[0];
13376 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13377 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
13378 break;
13379 }
13380 used_at = 1;
13381 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13382 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13383 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13384 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13385 break;
13386
13387 case M_ROL:
13388 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13389 {
13390 if (op[0] == op[1])
13391 {
13392 tempreg = AT;
13393 used_at = 1;
13394 }
13395 else
13396 tempreg = op[0];
13397 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13398 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
13399 break;
13400 }
13401 used_at = 1;
13402 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13403 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13404 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13405 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13406 break;
13407
13408 case M_DROL_I:
13409 {
13410 unsigned int rot;
13411 const char *l;
13412 const char *rr;
13413
13414 rot = imm_expr.X_add_number & 0x3f;
13415 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13416 {
13417 rot = (64 - rot) & 0x3f;
13418 if (rot >= 32)
13419 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13420 else
13421 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13422 break;
13423 }
13424 if (rot == 0)
13425 {
13426 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13427 break;
13428 }
13429 l = (rot < 0x20) ? "dsll" : "dsll32";
13430 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
13431 rot &= 0x1f;
13432 used_at = 1;
13433 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13434 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13435 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13436 }
13437 break;
13438
13439 case M_ROL_I:
13440 {
13441 unsigned int rot;
13442
13443 rot = imm_expr.X_add_number & 0x1f;
13444 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13445 {
13446 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13447 (32 - rot) & 0x1f);
13448 break;
13449 }
13450 if (rot == 0)
13451 {
13452 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13453 break;
13454 }
13455 used_at = 1;
13456 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13457 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13458 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13459 }
13460 break;
13461
13462 case M_DROR:
13463 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13464 {
13465 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13466 break;
13467 }
13468 used_at = 1;
13469 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13470 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13471 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13472 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13473 break;
13474
13475 case M_ROR:
13476 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13477 {
13478 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13479 break;
13480 }
13481 used_at = 1;
13482 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13483 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13484 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13485 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13486 break;
13487
13488 case M_DROR_I:
13489 {
13490 unsigned int rot;
13491 const char *l;
13492 const char *rr;
13493
13494 rot = imm_expr.X_add_number & 0x3f;
13495 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13496 {
13497 if (rot >= 32)
13498 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13499 else
13500 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13501 break;
13502 }
13503 if (rot == 0)
13504 {
13505 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13506 break;
13507 }
13508 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13509 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13510 rot &= 0x1f;
13511 used_at = 1;
13512 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13513 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13514 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13515 }
13516 break;
13517
13518 case M_ROR_I:
13519 {
13520 unsigned int rot;
13521
13522 rot = imm_expr.X_add_number & 0x1f;
13523 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13524 {
13525 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13526 break;
13527 }
13528 if (rot == 0)
13529 {
13530 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13531 break;
13532 }
13533 used_at = 1;
13534 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13535 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13536 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13537 }
13538 break;
13539
13540 case M_SEQ:
13541 if (op[1] == 0)
13542 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13543 else if (op[2] == 0)
13544 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13545 else
13546 {
13547 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13548 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13549 }
13550 break;
13551
13552 case M_SEQ_I:
13553 if (imm_expr.X_add_number == 0)
13554 {
13555 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13556 break;
13557 }
13558 if (op[1] == 0)
13559 {
13560 as_warn (_("instruction %s: result is always false"),
13561 ip->insn_mo->name);
13562 move_register (op[0], 0);
13563 break;
13564 }
13565 if (CPU_HAS_SEQ (mips_opts.arch)
13566 && -512 <= imm_expr.X_add_number
13567 && imm_expr.X_add_number < 512)
13568 {
13569 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13570 (int) imm_expr.X_add_number);
13571 break;
13572 }
13573 if (imm_expr.X_add_number >= 0
13574 && imm_expr.X_add_number < 0x10000)
13575 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13576 else if (imm_expr.X_add_number > -0x8000
13577 && imm_expr.X_add_number < 0)
13578 {
13579 imm_expr.X_add_number = -imm_expr.X_add_number;
13580 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13581 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13582 }
13583 else if (CPU_HAS_SEQ (mips_opts.arch))
13584 {
13585 used_at = 1;
13586 load_register (AT, &imm_expr, GPR_SIZE == 64);
13587 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13588 break;
13589 }
13590 else
13591 {
13592 load_register (AT, &imm_expr, GPR_SIZE == 64);
13593 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13594 used_at = 1;
13595 }
13596 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13597 break;
13598
13599 case M_SGE: /* X >= Y <==> not (X < Y) */
13600 s = "slt";
13601 goto sge;
13602 case M_SGEU:
13603 s = "sltu";
13604 sge:
13605 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13606 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13607 break;
13608
13609 case M_SGE_I: /* X >= I <==> not (X < I). */
13610 case M_SGEU_I:
13611 if (imm_expr.X_add_number >= -0x8000
13612 && imm_expr.X_add_number < 0x8000)
13613 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13614 op[0], op[1], BFD_RELOC_LO16);
13615 else
13616 {
13617 load_register (AT, &imm_expr, GPR_SIZE == 64);
13618 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13619 op[0], op[1], AT);
13620 used_at = 1;
13621 }
13622 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13623 break;
13624
13625 case M_SGT: /* X > Y <==> Y < X. */
13626 s = "slt";
13627 goto sgt;
13628 case M_SGTU:
13629 s = "sltu";
13630 sgt:
13631 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13632 break;
13633
13634 case M_SGT_I: /* X > I <==> I < X. */
13635 s = "slt";
13636 goto sgti;
13637 case M_SGTU_I:
13638 s = "sltu";
13639 sgti:
13640 used_at = 1;
13641 load_register (AT, &imm_expr, GPR_SIZE == 64);
13642 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13643 break;
13644
13645 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X). */
13646 s = "slt";
13647 goto sle;
13648 case M_SLEU:
13649 s = "sltu";
13650 sle:
13651 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13652 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13653 break;
13654
13655 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13656 s = "slt";
13657 goto slei;
13658 case M_SLEU_I:
13659 s = "sltu";
13660 slei:
13661 used_at = 1;
13662 load_register (AT, &imm_expr, GPR_SIZE == 64);
13663 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13664 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13665 break;
13666
13667 case M_SLT_I:
13668 if (imm_expr.X_add_number >= -0x8000
13669 && imm_expr.X_add_number < 0x8000)
13670 {
13671 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13672 BFD_RELOC_LO16);
13673 break;
13674 }
13675 used_at = 1;
13676 load_register (AT, &imm_expr, GPR_SIZE == 64);
13677 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13678 break;
13679
13680 case M_SLTU_I:
13681 if (imm_expr.X_add_number >= -0x8000
13682 && imm_expr.X_add_number < 0x8000)
13683 {
13684 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13685 BFD_RELOC_LO16);
13686 break;
13687 }
13688 used_at = 1;
13689 load_register (AT, &imm_expr, GPR_SIZE == 64);
13690 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13691 break;
13692
13693 case M_SNE:
13694 if (op[1] == 0)
13695 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13696 else if (op[2] == 0)
13697 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13698 else
13699 {
13700 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13701 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13702 }
13703 break;
13704
13705 case M_SNE_I:
13706 if (imm_expr.X_add_number == 0)
13707 {
13708 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13709 break;
13710 }
13711 if (op[1] == 0)
13712 {
13713 as_warn (_("instruction %s: result is always true"),
13714 ip->insn_mo->name);
13715 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13716 op[0], 0, BFD_RELOC_LO16);
13717 break;
13718 }
13719 if (CPU_HAS_SEQ (mips_opts.arch)
13720 && -512 <= imm_expr.X_add_number
13721 && imm_expr.X_add_number < 512)
13722 {
13723 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13724 (int) imm_expr.X_add_number);
13725 break;
13726 }
13727 if (imm_expr.X_add_number >= 0
13728 && imm_expr.X_add_number < 0x10000)
13729 {
13730 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13731 BFD_RELOC_LO16);
13732 }
13733 else if (imm_expr.X_add_number > -0x8000
13734 && imm_expr.X_add_number < 0)
13735 {
13736 imm_expr.X_add_number = -imm_expr.X_add_number;
13737 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13738 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13739 }
13740 else if (CPU_HAS_SEQ (mips_opts.arch))
13741 {
13742 used_at = 1;
13743 load_register (AT, &imm_expr, GPR_SIZE == 64);
13744 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13745 break;
13746 }
13747 else
13748 {
13749 load_register (AT, &imm_expr, GPR_SIZE == 64);
13750 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13751 used_at = 1;
13752 }
13753 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13754 break;
13755
13756 case M_SUB_I:
13757 s = "addi";
13758 s2 = "sub";
13759 if (ISA_IS_R6 (mips_opts.isa))
13760 goto do_subi_i;
13761 else
13762 goto do_subi;
13763 case M_SUBU_I:
13764 s = "addiu";
13765 s2 = "subu";
13766 goto do_subi;
13767 case M_DSUB_I:
13768 dbl = 1;
13769 s = "daddi";
13770 s2 = "dsub";
13771 if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
13772 goto do_subi;
13773 if (imm_expr.X_add_number > -0x200
13774 && imm_expr.X_add_number <= 0x200
13775 && !ISA_IS_R6 (mips_opts.isa))
13776 {
13777 macro_build (NULL, s, "t,r,.", op[0], op[1],
13778 (int) -imm_expr.X_add_number);
13779 break;
13780 }
13781 goto do_subi_i;
13782 case M_DSUBU_I:
13783 dbl = 1;
13784 s = "daddiu";
13785 s2 = "dsubu";
13786 do_subi:
13787 if (imm_expr.X_add_number > -0x8000
13788 && imm_expr.X_add_number <= 0x8000)
13789 {
13790 imm_expr.X_add_number = -imm_expr.X_add_number;
13791 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13792 break;
13793 }
13794 do_subi_i:
13795 used_at = 1;
13796 load_register (AT, &imm_expr, dbl);
13797 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13798 break;
13799
13800 case M_TEQ_I:
13801 s = "teq";
13802 goto trap;
13803 case M_TGE_I:
13804 s = "tge";
13805 goto trap;
13806 case M_TGEU_I:
13807 s = "tgeu";
13808 goto trap;
13809 case M_TLT_I:
13810 s = "tlt";
13811 goto trap;
13812 case M_TLTU_I:
13813 s = "tltu";
13814 goto trap;
13815 case M_TNE_I:
13816 s = "tne";
13817 trap:
13818 used_at = 1;
13819 load_register (AT, &imm_expr, GPR_SIZE == 64);
13820 macro_build (NULL, s, "s,t", op[0], AT);
13821 break;
13822
13823 case M_TRUNCWS:
13824 case M_TRUNCWD:
13825 gas_assert (!mips_opts.micromips);
13826 gas_assert (mips_opts.isa == ISA_MIPS1);
13827 used_at = 1;
13828
13829 /*
13830 * Is the double cfc1 instruction a bug in the mips assembler;
13831 * or is there a reason for it?
13832 */
13833 start_noreorder ();
13834 macro_build (NULL, "cfc1", "t,g", op[2], FCSR);
13835 macro_build (NULL, "cfc1", "t,g", op[2], FCSR);
13836 macro_build (NULL, "nop", "");
13837 expr1.X_add_number = 3;
13838 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13839 expr1.X_add_number = 2;
13840 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13841 macro_build (NULL, "ctc1", "t,g", AT, FCSR);
13842 macro_build (NULL, "nop", "");
13843 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13844 op[0], op[1]);
13845 macro_build (NULL, "ctc1", "t,g", op[2], FCSR);
13846 macro_build (NULL, "nop", "");
13847 end_noreorder ();
13848 break;
13849
13850 case M_ULH_AB:
13851 s = "lb";
13852 s2 = "lbu";
13853 off = 1;
13854 goto uld_st;
13855 case M_ULHU_AB:
13856 s = "lbu";
13857 s2 = "lbu";
13858 off = 1;
13859 goto uld_st;
13860 case M_ULW_AB:
13861 s = "lwl";
13862 s2 = "lwr";
13863 offbits = (mips_opts.micromips ? 12 : 16);
13864 off = 3;
13865 goto uld_st;
13866 case M_ULD_AB:
13867 s = "ldl";
13868 s2 = "ldr";
13869 offbits = (mips_opts.micromips ? 12 : 16);
13870 off = 7;
13871 goto uld_st;
13872 case M_USH_AB:
13873 s = "sb";
13874 s2 = "sb";
13875 off = 1;
13876 ust = 1;
13877 goto uld_st;
13878 case M_USW_AB:
13879 s = "swl";
13880 s2 = "swr";
13881 offbits = (mips_opts.micromips ? 12 : 16);
13882 off = 3;
13883 ust = 1;
13884 goto uld_st;
13885 case M_USD_AB:
13886 s = "sdl";
13887 s2 = "sdr";
13888 offbits = (mips_opts.micromips ? 12 : 16);
13889 off = 7;
13890 ust = 1;
13891
13892 uld_st:
13893 breg = op[2];
13894 large_offset = !small_offset_p (off, align, offbits);
13895 ep = &offset_expr;
13896 expr1.X_add_number = 0;
13897 if (large_offset)
13898 {
13899 used_at = 1;
13900 tempreg = AT;
13901 if (small_offset_p (0, align, 16))
13902 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13903 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13904 else
13905 {
13906 load_address (tempreg, ep, &used_at);
13907 if (breg != 0)
13908 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13909 tempreg, tempreg, breg);
13910 }
13911 offset_reloc[0] = BFD_RELOC_LO16;
13912 offset_reloc[1] = BFD_RELOC_UNUSED;
13913 offset_reloc[2] = BFD_RELOC_UNUSED;
13914 breg = tempreg;
13915 tempreg = op[0];
13916 ep = &expr1;
13917 }
13918 else if (!ust && op[0] == breg)
13919 {
13920 used_at = 1;
13921 tempreg = AT;
13922 }
13923 else
13924 tempreg = op[0];
13925
13926 if (off == 1)
13927 goto ulh_sh;
13928
13929 if (!target_big_endian)
13930 ep->X_add_number += off;
13931 if (offbits == 12)
13932 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13933 else
13934 macro_build (ep, s, "t,o(b)", tempreg, -1,
13935 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13936
13937 if (!target_big_endian)
13938 ep->X_add_number -= off;
13939 else
13940 ep->X_add_number += off;
13941 if (offbits == 12)
13942 macro_build (NULL, s2, "t,~(b)",
13943 tempreg, (int) ep->X_add_number, breg);
13944 else
13945 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13946 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13947
13948 /* If necessary, move the result in tempreg to the final destination. */
13949 if (!ust && op[0] != tempreg)
13950 {
13951 /* Protect second load's delay slot. */
13952 load_delay_nop ();
13953 move_register (op[0], tempreg);
13954 }
13955 break;
13956
13957 ulh_sh:
13958 used_at = 1;
13959 if (target_big_endian == ust)
13960 ep->X_add_number += off;
13961 tempreg = ust || large_offset ? op[0] : AT;
13962 macro_build (ep, s, "t,o(b)", tempreg, -1,
13963 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13964
13965 /* For halfword transfers we need a temporary register to shuffle
13966 bytes. Unfortunately for M_USH_A we have none available before
13967 the next store as AT holds the base address. We deal with this
13968 case by clobbering TREG and then restoring it as with ULH. */
13969 tempreg = ust == large_offset ? op[0] : AT;
13970 if (ust)
13971 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13972
13973 if (target_big_endian == ust)
13974 ep->X_add_number -= off;
13975 else
13976 ep->X_add_number += off;
13977 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13978 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13979
13980 /* For M_USH_A re-retrieve the LSB. */
13981 if (ust && large_offset)
13982 {
13983 if (target_big_endian)
13984 ep->X_add_number += off;
13985 else
13986 ep->X_add_number -= off;
13987 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13988 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13989 }
13990 /* For ULH and M_USH_A OR the LSB in. */
13991 if (!ust || large_offset)
13992 {
13993 tempreg = !large_offset ? AT : op[0];
13994 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13995 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13996 }
13997 break;
13998
13999 default:
14000 /* FIXME: Check if this is one of the itbl macros, since they
14001 are added dynamically. */
14002 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
14003 break;
14004 }
14005 if (!mips_opts.at && used_at)
14006 as_bad (_("macro used $at after \".set noat\""));
14007 }
14008
14009 /* Implement macros in mips16 mode. */
14010
14011 static void
14012 mips16_macro (struct mips_cl_insn *ip)
14013 {
14014 const struct mips_operand_array *operands;
14015 int mask;
14016 int tmp;
14017 expressionS expr1;
14018 int dbl;
14019 const char *s, *s2, *s3;
14020 unsigned int op[MAX_OPERANDS];
14021 unsigned int i;
14022
14023 mask = ip->insn_mo->mask;
14024
14025 operands = insn_operands (ip);
14026 for (i = 0; i < MAX_OPERANDS; i++)
14027 if (operands->operand[i])
14028 op[i] = insn_extract_operand (ip, operands->operand[i]);
14029 else
14030 op[i] = -1;
14031
14032 expr1.X_op = O_constant;
14033 expr1.X_op_symbol = NULL;
14034 expr1.X_add_symbol = NULL;
14035 expr1.X_add_number = 1;
14036
14037 dbl = 0;
14038
14039 switch (mask)
14040 {
14041 default:
14042 abort ();
14043
14044 case M_DDIV_3:
14045 dbl = 1;
14046 /* Fall through. */
14047 case M_DIV_3:
14048 s = "mflo";
14049 goto do_div3;
14050 case M_DREM_3:
14051 dbl = 1;
14052 /* Fall through. */
14053 case M_REM_3:
14054 s = "mfhi";
14055 do_div3:
14056 start_noreorder ();
14057 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
14058 expr1.X_add_number = 2;
14059 macro_build (&expr1, "bnez", "x,p", op[2]);
14060 macro_build (NULL, "break", "6", 7);
14061
14062 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
14063 since that causes an overflow. We should do that as well,
14064 but I don't see how to do the comparisons without a temporary
14065 register. */
14066 end_noreorder ();
14067 macro_build (NULL, s, "x", op[0]);
14068 break;
14069
14070 case M_DIVU_3:
14071 s = "divu";
14072 s2 = "mflo";
14073 goto do_divu3;
14074 case M_REMU_3:
14075 s = "divu";
14076 s2 = "mfhi";
14077 goto do_divu3;
14078 case M_DDIVU_3:
14079 s = "ddivu";
14080 s2 = "mflo";
14081 goto do_divu3;
14082 case M_DREMU_3:
14083 s = "ddivu";
14084 s2 = "mfhi";
14085 do_divu3:
14086 start_noreorder ();
14087 macro_build (NULL, s, ".,x,y", op[1], op[2]);
14088 expr1.X_add_number = 2;
14089 macro_build (&expr1, "bnez", "x,p", op[2]);
14090 macro_build (NULL, "break", "6", 7);
14091 end_noreorder ();
14092 macro_build (NULL, s2, "x", op[0]);
14093 break;
14094
14095 case M_DMUL:
14096 dbl = 1;
14097 /* Fall through. */
14098 case M_MUL:
14099 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
14100 macro_build (NULL, "mflo", "x", op[0]);
14101 break;
14102
14103 case M_DSUBU_I:
14104 dbl = 1;
14105 goto do_subu;
14106 case M_SUBU_I:
14107 do_subu:
14108 imm_expr.X_add_number = -imm_expr.X_add_number;
14109 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
14110 break;
14111
14112 case M_SUBU_I_2:
14113 imm_expr.X_add_number = -imm_expr.X_add_number;
14114 macro_build (&imm_expr, "addiu", "x,k", op[0]);
14115 break;
14116
14117 case M_DSUBU_I_2:
14118 imm_expr.X_add_number = -imm_expr.X_add_number;
14119 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
14120 break;
14121
14122 case M_BEQ:
14123 s = "cmp";
14124 s2 = "bteqz";
14125 goto do_branch;
14126 case M_BNE:
14127 s = "cmp";
14128 s2 = "btnez";
14129 goto do_branch;
14130 case M_BLT:
14131 s = "slt";
14132 s2 = "btnez";
14133 goto do_branch;
14134 case M_BLTU:
14135 s = "sltu";
14136 s2 = "btnez";
14137 goto do_branch;
14138 case M_BLE:
14139 s = "slt";
14140 s2 = "bteqz";
14141 goto do_reverse_branch;
14142 case M_BLEU:
14143 s = "sltu";
14144 s2 = "bteqz";
14145 goto do_reverse_branch;
14146 case M_BGE:
14147 s = "slt";
14148 s2 = "bteqz";
14149 goto do_branch;
14150 case M_BGEU:
14151 s = "sltu";
14152 s2 = "bteqz";
14153 goto do_branch;
14154 case M_BGT:
14155 s = "slt";
14156 s2 = "btnez";
14157 goto do_reverse_branch;
14158 case M_BGTU:
14159 s = "sltu";
14160 s2 = "btnez";
14161
14162 do_reverse_branch:
14163 tmp = op[1];
14164 op[1] = op[0];
14165 op[0] = tmp;
14166
14167 do_branch:
14168 macro_build (NULL, s, "x,y", op[0], op[1]);
14169 macro_build (&offset_expr, s2, "p");
14170 break;
14171
14172 case M_BEQ_I:
14173 s = "cmpi";
14174 s2 = "bteqz";
14175 s3 = "x,U";
14176 goto do_branch_i;
14177 case M_BNE_I:
14178 s = "cmpi";
14179 s2 = "btnez";
14180 s3 = "x,U";
14181 goto do_branch_i;
14182 case M_BLT_I:
14183 s = "slti";
14184 s2 = "btnez";
14185 s3 = "x,8";
14186 goto do_branch_i;
14187 case M_BLTU_I:
14188 s = "sltiu";
14189 s2 = "btnez";
14190 s3 = "x,8";
14191 goto do_branch_i;
14192 case M_BLE_I:
14193 s = "slti";
14194 s2 = "btnez";
14195 s3 = "x,8";
14196 goto do_addone_branch_i;
14197 case M_BLEU_I:
14198 s = "sltiu";
14199 s2 = "btnez";
14200 s3 = "x,8";
14201 goto do_addone_branch_i;
14202 case M_BGE_I:
14203 s = "slti";
14204 s2 = "bteqz";
14205 s3 = "x,8";
14206 goto do_branch_i;
14207 case M_BGEU_I:
14208 s = "sltiu";
14209 s2 = "bteqz";
14210 s3 = "x,8";
14211 goto do_branch_i;
14212 case M_BGT_I:
14213 s = "slti";
14214 s2 = "bteqz";
14215 s3 = "x,8";
14216 goto do_addone_branch_i;
14217 case M_BGTU_I:
14218 s = "sltiu";
14219 s2 = "bteqz";
14220 s3 = "x,8";
14221
14222 do_addone_branch_i:
14223 ++imm_expr.X_add_number;
14224
14225 do_branch_i:
14226 macro_build (&imm_expr, s, s3, op[0]);
14227 macro_build (&offset_expr, s2, "p");
14228 break;
14229
14230 case M_ABS:
14231 expr1.X_add_number = 0;
14232 macro_build (&expr1, "slti", "x,8", op[1]);
14233 if (op[0] != op[1])
14234 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
14235 expr1.X_add_number = 2;
14236 macro_build (&expr1, "bteqz", "p");
14237 macro_build (NULL, "neg", "x,w", op[0], op[0]);
14238 break;
14239 }
14240 }
14241
14242 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
14243 opcode bits in *OPCODE_EXTRA. */
14244
14245 static struct mips_opcode *
14246 mips_lookup_insn (htab_t hash, const char *start,
14247 ssize_t length, unsigned int *opcode_extra)
14248 {
14249 char *name, *dot, *p;
14250 unsigned int mask, suffix;
14251 ssize_t opend;
14252 struct mips_opcode *insn;
14253
14254 /* Make a copy of the instruction so that we can fiddle with it. */
14255 name = xstrndup (start, length);
14256
14257 /* Look up the instruction as-is. */
14258 insn = (struct mips_opcode *) str_hash_find (hash, name);
14259 if (insn)
14260 goto end;
14261
14262 dot = strchr (name, '.');
14263 if (dot && dot[1])
14264 {
14265 /* Try to interpret the text after the dot as a VU0 channel suffix. */
14266 p = mips_parse_vu0_channels (dot + 1, &mask);
14267 if (*p == 0 && mask != 0)
14268 {
14269 *dot = 0;
14270 insn = (struct mips_opcode *) str_hash_find (hash, name);
14271 *dot = '.';
14272 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
14273 {
14274 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
14275 goto end;
14276 }
14277 }
14278 }
14279
14280 if (mips_opts.micromips)
14281 {
14282 /* See if there's an instruction size override suffix,
14283 either `16' or `32', at the end of the mnemonic proper,
14284 that defines the operation, i.e. before the first `.'
14285 character if any. Strip it and retry. */
14286 opend = dot != NULL ? dot - name : length;
14287 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
14288 suffix = 2;
14289 else if (opend >= 2 && name[opend - 2] == '3' && name[opend - 1] == '2')
14290 suffix = 4;
14291 else
14292 suffix = 0;
14293 if (suffix)
14294 {
14295 memmove (name + opend - 2, name + opend, length - opend + 1);
14296 insn = (struct mips_opcode *) str_hash_find (hash, name);
14297 if (insn)
14298 {
14299 forced_insn_length = suffix;
14300 goto end;
14301 }
14302 }
14303 }
14304
14305 insn = NULL;
14306 end:
14307 free (name);
14308 return insn;
14309 }
14310
14311 /* Assemble an instruction into its binary format. If the instruction
14312 is a macro, set imm_expr and offset_expr to the values associated
14313 with "I" and "A" operands respectively. Otherwise store the value
14314 of the relocatable field (if any) in offset_expr. In both cases
14315 set offset_reloc to the relocation operators applied to offset_expr. */
14316
14317 static void
14318 mips_ip (char *str, struct mips_cl_insn *insn)
14319 {
14320 const struct mips_opcode *first, *past;
14321 htab_t hash;
14322 char format;
14323 size_t end;
14324 struct mips_operand_token *tokens;
14325 unsigned int opcode_extra;
14326
14327 if (mips_opts.micromips)
14328 {
14329 hash = micromips_op_hash;
14330 past = &micromips_opcodes[bfd_micromips_num_opcodes];
14331 }
14332 else
14333 {
14334 hash = op_hash;
14335 past = &mips_opcodes[NUMOPCODES];
14336 }
14337 forced_insn_length = 0;
14338 opcode_extra = 0;
14339
14340 /* We first try to match an instruction up to a space or to the end. */
14341 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14342 continue;
14343
14344 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14345 if (first == NULL)
14346 {
14347 set_insn_error (0, _("unrecognized opcode"));
14348 return;
14349 }
14350
14351 if (strcmp (first->name, "li.s") == 0)
14352 format = 'f';
14353 else if (strcmp (first->name, "li.d") == 0)
14354 format = 'd';
14355 else
14356 format = 0;
14357 tokens = mips_parse_arguments (str + end, format);
14358 if (!tokens)
14359 return;
14360
14361 if (!match_insns (insn, first, past, tokens, opcode_extra, false)
14362 && !match_insns (insn, first, past, tokens, opcode_extra, true))
14363 set_insn_error (0, _("invalid operands"));
14364
14365 obstack_free (&mips_operand_tokens, tokens);
14366 }
14367
14368 /* As for mips_ip, but used when assembling MIPS16 code.
14369 Also set forced_insn_length to the resulting instruction size in
14370 bytes if the user explicitly requested a small or extended instruction. */
14371
14372 static void
14373 mips16_ip (char *str, struct mips_cl_insn *insn)
14374 {
14375 char *end, *s, c;
14376 struct mips_opcode *first;
14377 struct mips_operand_token *tokens;
14378 unsigned int l;
14379
14380 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
14381 ;
14382 end = s;
14383 c = *end;
14384
14385 l = 0;
14386 switch (c)
14387 {
14388 case '\0':
14389 break;
14390
14391 case ' ':
14392 s++;
14393 break;
14394
14395 case '.':
14396 s++;
14397 if (*s == 't')
14398 {
14399 l = 2;
14400 s++;
14401 }
14402 else if (*s == 'e')
14403 {
14404 l = 4;
14405 s++;
14406 }
14407 if (*s == '\0')
14408 break;
14409 else if (*s++ == ' ')
14410 break;
14411 set_insn_error (0, _("unrecognized opcode"));
14412 return;
14413 }
14414 forced_insn_length = l;
14415
14416 *end = 0;
14417 first = (struct mips_opcode *) str_hash_find (mips16_op_hash, str);
14418 *end = c;
14419
14420 if (!first)
14421 {
14422 set_insn_error (0, _("unrecognized opcode"));
14423 return;
14424 }
14425
14426 tokens = mips_parse_arguments (s, 0);
14427 if (!tokens)
14428 return;
14429
14430 if (!match_mips16_insns (insn, first, tokens))
14431 set_insn_error (0, _("invalid operands"));
14432
14433 obstack_free (&mips_operand_tokens, tokens);
14434 }
14435
14436 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14437 NBITS is the number of significant bits in VAL. */
14438
14439 static unsigned long
14440 mips16_immed_extend (offsetT val, unsigned int nbits)
14441 {
14442 int extval;
14443
14444 extval = 0;
14445 val &= (1U << nbits) - 1;
14446 if (nbits == 16 || nbits == 9)
14447 {
14448 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14449 val &= 0x1f;
14450 }
14451 else if (nbits == 15)
14452 {
14453 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14454 val &= 0xf;
14455 }
14456 else if (nbits == 6)
14457 {
14458 extval = ((val & 0x1f) << 6) | (val & 0x20);
14459 val = 0;
14460 }
14461 return (extval << 16) | val;
14462 }
14463
14464 /* Like decode_mips16_operand, but require the operand to be defined and
14465 require it to be an integer. */
14466
14467 static const struct mips_int_operand *
14468 mips16_immed_operand (int type, bool extended_p)
14469 {
14470 const struct mips_operand *operand;
14471
14472 operand = decode_mips16_operand (type, extended_p);
14473 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14474 abort ();
14475 return (const struct mips_int_operand *) operand;
14476 }
14477
14478 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14479
14480 static bool
14481 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14482 bfd_reloc_code_real_type reloc, offsetT sval)
14483 {
14484 int min_val, max_val;
14485
14486 min_val = mips_int_operand_min (operand);
14487 max_val = mips_int_operand_max (operand);
14488 if (reloc != BFD_RELOC_UNUSED)
14489 {
14490 if (min_val < 0)
14491 sval = SEXT_16BIT (sval);
14492 else
14493 sval &= 0xffff;
14494 }
14495
14496 return (sval >= min_val
14497 && sval <= max_val
14498 && (sval & ((1 << operand->shift) - 1)) == 0);
14499 }
14500
14501 /* Install immediate value VAL into MIPS16 instruction *INSN,
14502 extending it if necessary. The instruction in *INSN may
14503 already be extended.
14504
14505 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14506 if none. In the former case, VAL is a 16-bit number with no
14507 defined signedness.
14508
14509 TYPE is the type of the immediate field. USER_INSN_LENGTH
14510 is the length that the user requested, or 0 if none. */
14511
14512 static void
14513 mips16_immed (const char *file, unsigned int line, int type,
14514 bfd_reloc_code_real_type reloc, offsetT val,
14515 unsigned int user_insn_length, unsigned long *insn)
14516 {
14517 const struct mips_int_operand *operand;
14518 unsigned int uval, length;
14519
14520 operand = mips16_immed_operand (type, false);
14521 if (!mips16_immed_in_range_p (operand, reloc, val))
14522 {
14523 /* We need an extended instruction. */
14524 if (user_insn_length == 2)
14525 as_bad_where (file, line, _("invalid unextended operand value"));
14526 else
14527 *insn |= MIPS16_EXTEND;
14528 }
14529 else if (user_insn_length == 4)
14530 {
14531 /* The operand doesn't force an unextended instruction to be extended.
14532 Warn if the user wanted an extended instruction anyway. */
14533 *insn |= MIPS16_EXTEND;
14534 as_warn_where (file, line,
14535 _("extended operand requested but not required"));
14536 }
14537
14538 length = mips16_opcode_length (*insn);
14539 if (length == 4)
14540 {
14541 operand = mips16_immed_operand (type, true);
14542 if (!mips16_immed_in_range_p (operand, reloc, val))
14543 as_bad_where (file, line,
14544 _("operand value out of range for instruction"));
14545 }
14546 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14547 if (length == 2 || operand->root.lsb != 0)
14548 *insn = mips_insert_operand (&operand->root, *insn, uval);
14549 else
14550 *insn |= mips16_immed_extend (uval, operand->root.size);
14551 }
14552 \f
14553 struct percent_op_match
14554 {
14555 const char *str;
14556 bfd_reloc_code_real_type reloc;
14557 };
14558
14559 static const struct percent_op_match mips_percent_op[] =
14560 {
14561 {"%lo", BFD_RELOC_LO16},
14562 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14563 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14564 {"%call16", BFD_RELOC_MIPS_CALL16},
14565 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14566 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14567 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14568 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14569 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14570 {"%got", BFD_RELOC_MIPS_GOT16},
14571 {"%gp_rel", BFD_RELOC_GPREL16},
14572 {"%gprel", BFD_RELOC_GPREL16},
14573 {"%half", BFD_RELOC_MIPS_16},
14574 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14575 {"%higher", BFD_RELOC_MIPS_HIGHER},
14576 {"%neg", BFD_RELOC_MIPS_SUB},
14577 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14578 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14579 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14580 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14581 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14582 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14583 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14584 {"%hi", BFD_RELOC_HI16_S},
14585 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14586 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14587 };
14588
14589 static const struct percent_op_match mips16_percent_op[] =
14590 {
14591 {"%lo", BFD_RELOC_MIPS16_LO16},
14592 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14593 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14594 {"%got", BFD_RELOC_MIPS16_GOT16},
14595 {"%call16", BFD_RELOC_MIPS16_CALL16},
14596 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14597 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14598 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14599 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14600 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14601 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14602 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14603 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14604 };
14605
14606
14607 /* Return true if *STR points to a relocation operator. When returning true,
14608 move *STR over the operator and store its relocation code in *RELOC.
14609 Leave both *STR and *RELOC alone when returning false. */
14610
14611 static bool
14612 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14613 {
14614 const struct percent_op_match *percent_op;
14615 size_t limit, i;
14616
14617 if (mips_opts.mips16)
14618 {
14619 percent_op = mips16_percent_op;
14620 limit = ARRAY_SIZE (mips16_percent_op);
14621 }
14622 else
14623 {
14624 percent_op = mips_percent_op;
14625 limit = ARRAY_SIZE (mips_percent_op);
14626 }
14627
14628 for (i = 0; i < limit; i++)
14629 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14630 {
14631 int len = strlen (percent_op[i].str);
14632
14633 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14634 continue;
14635
14636 *str += strlen (percent_op[i].str);
14637 *reloc = percent_op[i].reloc;
14638
14639 /* Check whether the output BFD supports this relocation.
14640 If not, issue an error and fall back on something safe. */
14641 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14642 {
14643 as_bad (_("relocation %s isn't supported by the current ABI"),
14644 percent_op[i].str);
14645 *reloc = BFD_RELOC_UNUSED;
14646 }
14647 return true;
14648 }
14649 return false;
14650 }
14651
14652
14653 /* Parse string STR as a 16-bit relocatable operand. Store the
14654 expression in *EP and the relocations in the array starting
14655 at RELOC. Return the number of relocation operators used.
14656
14657 On exit, EXPR_PARSE_END points to the first character after the
14658 expression. */
14659
14660 static size_t
14661 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14662 char *str)
14663 {
14664 bfd_reloc_code_real_type reversed_reloc[3];
14665 size_t reloc_index, i;
14666 int crux_depth, str_depth;
14667 char *crux;
14668
14669 /* Search for the start of the main expression, recoding relocations
14670 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14671 of the main expression and with CRUX_DEPTH containing the number
14672 of open brackets at that point. */
14673 reloc_index = -1;
14674 str_depth = 0;
14675 do
14676 {
14677 reloc_index++;
14678 crux = str;
14679 crux_depth = str_depth;
14680
14681 /* Skip over whitespace and brackets, keeping count of the number
14682 of brackets. */
14683 while (*str == ' ' || *str == '\t' || *str == '(')
14684 if (*str++ == '(')
14685 str_depth++;
14686 }
14687 while (*str == '%'
14688 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14689 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14690
14691 my_getExpression (ep, crux);
14692 str = expr_parse_end;
14693
14694 /* Match every open bracket. */
14695 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14696 if (*str++ == ')')
14697 crux_depth--;
14698
14699 if (crux_depth > 0)
14700 as_bad (_("unclosed '('"));
14701
14702 expr_parse_end = str;
14703
14704 for (i = 0; i < reloc_index; i++)
14705 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14706
14707 return reloc_index;
14708 }
14709
14710 static void
14711 my_getExpression (expressionS *ep, char *str)
14712 {
14713 char *save_in;
14714
14715 save_in = input_line_pointer;
14716 input_line_pointer = str;
14717 expression (ep);
14718 expr_parse_end = input_line_pointer;
14719 input_line_pointer = save_in;
14720 }
14721
14722 const char *
14723 md_atof (int type, char *litP, int *sizeP)
14724 {
14725 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14726 }
14727
14728 void
14729 md_number_to_chars (char *buf, valueT val, int n)
14730 {
14731 if (target_big_endian)
14732 number_to_chars_bigendian (buf, val, n);
14733 else
14734 number_to_chars_littleendian (buf, val, n);
14735 }
14736 \f
14737 static int support_64bit_objects(void)
14738 {
14739 const char **list, **l;
14740 int yes;
14741
14742 list = bfd_target_list ();
14743 for (l = list; *l != NULL; l++)
14744 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14745 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14746 break;
14747 yes = (*l != NULL);
14748 free (list);
14749 return yes;
14750 }
14751
14752 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14753 NEW_VALUE. Warn if another value was already specified. Note:
14754 we have to defer parsing the -march and -mtune arguments in order
14755 to handle 'from-abi' correctly, since the ABI might be specified
14756 in a later argument. */
14757
14758 static void
14759 mips_set_option_string (const char **string_ptr, const char *new_value)
14760 {
14761 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14762 as_warn (_("a different %s was already specified, is now %s"),
14763 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14764 new_value);
14765
14766 *string_ptr = new_value;
14767 }
14768
14769 int
14770 md_parse_option (int c, const char *arg)
14771 {
14772 unsigned int i;
14773
14774 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14775 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14776 {
14777 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14778 c == mips_ases[i].option_on);
14779 return 1;
14780 }
14781
14782 switch (c)
14783 {
14784 case OPTION_CONSTRUCT_FLOATS:
14785 mips_disable_float_construction = 0;
14786 break;
14787
14788 case OPTION_NO_CONSTRUCT_FLOATS:
14789 mips_disable_float_construction = 1;
14790 break;
14791
14792 case OPTION_TRAP:
14793 mips_trap = 1;
14794 break;
14795
14796 case OPTION_BREAK:
14797 mips_trap = 0;
14798 break;
14799
14800 case OPTION_EB:
14801 target_big_endian = 1;
14802 break;
14803
14804 case OPTION_EL:
14805 target_big_endian = 0;
14806 break;
14807
14808 case 'O':
14809 if (arg == NULL)
14810 mips_optimize = 1;
14811 else if (arg[0] == '0')
14812 mips_optimize = 0;
14813 else if (arg[0] == '1')
14814 mips_optimize = 1;
14815 else
14816 mips_optimize = 2;
14817 break;
14818
14819 case 'g':
14820 if (arg == NULL)
14821 mips_debug = 2;
14822 else
14823 mips_debug = atoi (arg);
14824 break;
14825
14826 case OPTION_MIPS1:
14827 file_mips_opts.isa = ISA_MIPS1;
14828 break;
14829
14830 case OPTION_MIPS2:
14831 file_mips_opts.isa = ISA_MIPS2;
14832 break;
14833
14834 case OPTION_MIPS3:
14835 file_mips_opts.isa = ISA_MIPS3;
14836 break;
14837
14838 case OPTION_MIPS4:
14839 file_mips_opts.isa = ISA_MIPS4;
14840 break;
14841
14842 case OPTION_MIPS5:
14843 file_mips_opts.isa = ISA_MIPS5;
14844 break;
14845
14846 case OPTION_MIPS32:
14847 file_mips_opts.isa = ISA_MIPS32;
14848 break;
14849
14850 case OPTION_MIPS32R2:
14851 file_mips_opts.isa = ISA_MIPS32R2;
14852 break;
14853
14854 case OPTION_MIPS32R3:
14855 file_mips_opts.isa = ISA_MIPS32R3;
14856 break;
14857
14858 case OPTION_MIPS32R5:
14859 file_mips_opts.isa = ISA_MIPS32R5;
14860 break;
14861
14862 case OPTION_MIPS32R6:
14863 file_mips_opts.isa = ISA_MIPS32R6;
14864 break;
14865
14866 case OPTION_MIPS64R2:
14867 file_mips_opts.isa = ISA_MIPS64R2;
14868 break;
14869
14870 case OPTION_MIPS64R3:
14871 file_mips_opts.isa = ISA_MIPS64R3;
14872 break;
14873
14874 case OPTION_MIPS64R5:
14875 file_mips_opts.isa = ISA_MIPS64R5;
14876 break;
14877
14878 case OPTION_MIPS64R6:
14879 file_mips_opts.isa = ISA_MIPS64R6;
14880 break;
14881
14882 case OPTION_MIPS64:
14883 file_mips_opts.isa = ISA_MIPS64;
14884 break;
14885
14886 case OPTION_MTUNE:
14887 mips_set_option_string (&mips_tune_string, arg);
14888 break;
14889
14890 case OPTION_MARCH:
14891 mips_set_option_string (&mips_arch_string, arg);
14892 break;
14893
14894 case OPTION_M4650:
14895 mips_set_option_string (&mips_arch_string, "4650");
14896 mips_set_option_string (&mips_tune_string, "4650");
14897 break;
14898
14899 case OPTION_NO_M4650:
14900 break;
14901
14902 case OPTION_M4010:
14903 mips_set_option_string (&mips_arch_string, "4010");
14904 mips_set_option_string (&mips_tune_string, "4010");
14905 break;
14906
14907 case OPTION_NO_M4010:
14908 break;
14909
14910 case OPTION_M4100:
14911 mips_set_option_string (&mips_arch_string, "4100");
14912 mips_set_option_string (&mips_tune_string, "4100");
14913 break;
14914
14915 case OPTION_NO_M4100:
14916 break;
14917
14918 case OPTION_M3900:
14919 mips_set_option_string (&mips_arch_string, "3900");
14920 mips_set_option_string (&mips_tune_string, "3900");
14921 break;
14922
14923 case OPTION_NO_M3900:
14924 break;
14925
14926 case OPTION_MICROMIPS:
14927 if (file_mips_opts.mips16 == 1)
14928 {
14929 as_bad (_("-mmicromips cannot be used with -mips16"));
14930 return 0;
14931 }
14932 file_mips_opts.micromips = 1;
14933 mips_no_prev_insn ();
14934 break;
14935
14936 case OPTION_NO_MICROMIPS:
14937 file_mips_opts.micromips = 0;
14938 mips_no_prev_insn ();
14939 break;
14940
14941 case OPTION_MIPS16:
14942 if (file_mips_opts.micromips == 1)
14943 {
14944 as_bad (_("-mips16 cannot be used with -micromips"));
14945 return 0;
14946 }
14947 file_mips_opts.mips16 = 1;
14948 mips_no_prev_insn ();
14949 break;
14950
14951 case OPTION_NO_MIPS16:
14952 file_mips_opts.mips16 = 0;
14953 mips_no_prev_insn ();
14954 break;
14955
14956 case OPTION_FIX_24K:
14957 mips_fix_24k = 1;
14958 break;
14959
14960 case OPTION_NO_FIX_24K:
14961 mips_fix_24k = 0;
14962 break;
14963
14964 case OPTION_FIX_RM7000:
14965 mips_fix_rm7000 = 1;
14966 break;
14967
14968 case OPTION_NO_FIX_RM7000:
14969 mips_fix_rm7000 = 0;
14970 break;
14971
14972 case OPTION_FIX_LOONGSON3_LLSC:
14973 mips_fix_loongson3_llsc = true;
14974 break;
14975
14976 case OPTION_NO_FIX_LOONGSON3_LLSC:
14977 mips_fix_loongson3_llsc = false;
14978 break;
14979
14980 case OPTION_FIX_LOONGSON2F_JUMP:
14981 mips_fix_loongson2f_jump = true;
14982 break;
14983
14984 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14985 mips_fix_loongson2f_jump = false;
14986 break;
14987
14988 case OPTION_FIX_LOONGSON2F_NOP:
14989 mips_fix_loongson2f_nop = true;
14990 break;
14991
14992 case OPTION_NO_FIX_LOONGSON2F_NOP:
14993 mips_fix_loongson2f_nop = false;
14994 break;
14995
14996 case OPTION_FIX_VR4120:
14997 mips_fix_vr4120 = 1;
14998 break;
14999
15000 case OPTION_NO_FIX_VR4120:
15001 mips_fix_vr4120 = 0;
15002 break;
15003
15004 case OPTION_FIX_VR4130:
15005 mips_fix_vr4130 = 1;
15006 break;
15007
15008 case OPTION_NO_FIX_VR4130:
15009 mips_fix_vr4130 = 0;
15010 break;
15011
15012 case OPTION_FIX_CN63XXP1:
15013 mips_fix_cn63xxp1 = true;
15014 break;
15015
15016 case OPTION_NO_FIX_CN63XXP1:
15017 mips_fix_cn63xxp1 = false;
15018 break;
15019
15020 case OPTION_FIX_R5900:
15021 mips_fix_r5900 = true;
15022 mips_fix_r5900_explicit = true;
15023 break;
15024
15025 case OPTION_NO_FIX_R5900:
15026 mips_fix_r5900 = false;
15027 mips_fix_r5900_explicit = true;
15028 break;
15029
15030 case OPTION_RELAX_BRANCH:
15031 mips_relax_branch = 1;
15032 break;
15033
15034 case OPTION_NO_RELAX_BRANCH:
15035 mips_relax_branch = 0;
15036 break;
15037
15038 case OPTION_IGNORE_BRANCH_ISA:
15039 mips_ignore_branch_isa = true;
15040 break;
15041
15042 case OPTION_NO_IGNORE_BRANCH_ISA:
15043 mips_ignore_branch_isa = false;
15044 break;
15045
15046 case OPTION_INSN32:
15047 file_mips_opts.insn32 = true;
15048 break;
15049
15050 case OPTION_NO_INSN32:
15051 file_mips_opts.insn32 = false;
15052 break;
15053
15054 case OPTION_MSHARED:
15055 mips_in_shared = true;
15056 break;
15057
15058 case OPTION_MNO_SHARED:
15059 mips_in_shared = false;
15060 break;
15061
15062 case OPTION_MSYM32:
15063 file_mips_opts.sym32 = true;
15064 break;
15065
15066 case OPTION_MNO_SYM32:
15067 file_mips_opts.sym32 = false;
15068 break;
15069
15070 /* When generating ELF code, we permit -KPIC and -call_shared to
15071 select SVR4_PIC, and -non_shared to select no PIC. This is
15072 intended to be compatible with Irix 5. */
15073 case OPTION_CALL_SHARED:
15074 mips_pic = SVR4_PIC;
15075 mips_abicalls = true;
15076 break;
15077
15078 case OPTION_CALL_NONPIC:
15079 mips_pic = NO_PIC;
15080 mips_abicalls = true;
15081 break;
15082
15083 case OPTION_NON_SHARED:
15084 mips_pic = NO_PIC;
15085 mips_abicalls = false;
15086 break;
15087
15088 /* The -xgot option tells the assembler to use 32 bit offsets
15089 when accessing the got in SVR4_PIC mode. It is for Irix
15090 compatibility. */
15091 case OPTION_XGOT:
15092 mips_big_got = 1;
15093 break;
15094
15095 case 'G':
15096 g_switch_value = atoi (arg);
15097 g_switch_seen = 1;
15098 break;
15099
15100 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
15101 and -mabi=64. */
15102 case OPTION_32:
15103 mips_abi = O32_ABI;
15104 break;
15105
15106 case OPTION_N32:
15107 mips_abi = N32_ABI;
15108 break;
15109
15110 case OPTION_64:
15111 mips_abi = N64_ABI;
15112 if (!support_64bit_objects())
15113 as_fatal (_("no compiled in support for 64 bit object file format"));
15114 break;
15115
15116 case OPTION_GP32:
15117 file_mips_opts.gp = 32;
15118 break;
15119
15120 case OPTION_GP64:
15121 file_mips_opts.gp = 64;
15122 break;
15123
15124 case OPTION_FP32:
15125 file_mips_opts.fp = 32;
15126 break;
15127
15128 case OPTION_FPXX:
15129 file_mips_opts.fp = 0;
15130 break;
15131
15132 case OPTION_FP64:
15133 file_mips_opts.fp = 64;
15134 break;
15135
15136 case OPTION_ODD_SPREG:
15137 file_mips_opts.oddspreg = 1;
15138 break;
15139
15140 case OPTION_NO_ODD_SPREG:
15141 file_mips_opts.oddspreg = 0;
15142 break;
15143
15144 case OPTION_SINGLE_FLOAT:
15145 file_mips_opts.single_float = 1;
15146 break;
15147
15148 case OPTION_DOUBLE_FLOAT:
15149 file_mips_opts.single_float = 0;
15150 break;
15151
15152 case OPTION_SOFT_FLOAT:
15153 file_mips_opts.soft_float = 1;
15154 break;
15155
15156 case OPTION_HARD_FLOAT:
15157 file_mips_opts.soft_float = 0;
15158 break;
15159
15160 case OPTION_MABI:
15161 if (strcmp (arg, "32") == 0)
15162 mips_abi = O32_ABI;
15163 else if (strcmp (arg, "o64") == 0)
15164 mips_abi = O64_ABI;
15165 else if (strcmp (arg, "n32") == 0)
15166 mips_abi = N32_ABI;
15167 else if (strcmp (arg, "64") == 0)
15168 {
15169 mips_abi = N64_ABI;
15170 if (! support_64bit_objects())
15171 as_fatal (_("no compiled in support for 64 bit object file "
15172 "format"));
15173 }
15174 else if (strcmp (arg, "eabi") == 0)
15175 mips_abi = EABI_ABI;
15176 else
15177 {
15178 as_fatal (_("invalid abi -mabi=%s"), arg);
15179 return 0;
15180 }
15181 break;
15182
15183 case OPTION_M7000_HILO_FIX:
15184 mips_7000_hilo_fix = true;
15185 break;
15186
15187 case OPTION_MNO_7000_HILO_FIX:
15188 mips_7000_hilo_fix = false;
15189 break;
15190
15191 case OPTION_MDEBUG:
15192 mips_flag_mdebug = true;
15193 break;
15194
15195 case OPTION_NO_MDEBUG:
15196 mips_flag_mdebug = false;
15197 break;
15198
15199 case OPTION_PDR:
15200 mips_flag_pdr = true;
15201 break;
15202
15203 case OPTION_NO_PDR:
15204 mips_flag_pdr = false;
15205 break;
15206
15207 case OPTION_MVXWORKS_PIC:
15208 mips_pic = VXWORKS_PIC;
15209 break;
15210
15211 case OPTION_NAN:
15212 if (strcmp (arg, "2008") == 0)
15213 mips_nan2008 = 1;
15214 else if (strcmp (arg, "legacy") == 0)
15215 mips_nan2008 = 0;
15216 else
15217 {
15218 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
15219 return 0;
15220 }
15221 break;
15222
15223 default:
15224 return 0;
15225 }
15226
15227 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
15228
15229 return 1;
15230 }
15231 \f
15232 /* Set up globals to tune for the ISA or processor described by INFO. */
15233
15234 static void
15235 mips_set_tune (const struct mips_cpu_info *info)
15236 {
15237 if (info != 0)
15238 mips_tune = info->cpu;
15239 }
15240
15241
15242 void
15243 mips_after_parse_args (void)
15244 {
15245 const struct mips_cpu_info *arch_info = 0;
15246 const struct mips_cpu_info *tune_info = 0;
15247
15248 /* GP relative stuff not working for PE. */
15249 if (startswith (TARGET_OS, "pe"))
15250 {
15251 if (g_switch_seen && g_switch_value != 0)
15252 as_bad (_("-G not supported in this configuration"));
15253 g_switch_value = 0;
15254 }
15255
15256 if (mips_abi == NO_ABI)
15257 mips_abi = MIPS_DEFAULT_ABI;
15258
15259 /* The following code determines the architecture.
15260 Similar code was added to GCC 3.3 (see override_options() in
15261 config/mips/mips.c). The GAS and GCC code should be kept in sync
15262 as much as possible. */
15263
15264 if (mips_arch_string != 0)
15265 arch_info = mips_parse_cpu ("-march", mips_arch_string);
15266
15267 if (file_mips_opts.isa != ISA_UNKNOWN)
15268 {
15269 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
15270 ISA level specified by -mipsN, while arch_info->isa contains
15271 the -march selection (if any). */
15272 if (arch_info != 0)
15273 {
15274 /* -march takes precedence over -mipsN, since it is more descriptive.
15275 There's no harm in specifying both as long as the ISA levels
15276 are the same. */
15277 if (file_mips_opts.isa != arch_info->isa)
15278 as_bad (_("-%s conflicts with the other architecture options,"
15279 " which imply -%s"),
15280 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
15281 mips_cpu_info_from_isa (arch_info->isa)->name);
15282 }
15283 else
15284 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
15285 }
15286
15287 if (arch_info == 0)
15288 {
15289 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15290 gas_assert (arch_info);
15291 }
15292
15293 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15294 as_bad (_("-march=%s is not compatible with the selected ABI"),
15295 arch_info->name);
15296
15297 file_mips_opts.arch = arch_info->cpu;
15298 file_mips_opts.isa = arch_info->isa;
15299 file_mips_opts.init_ase = arch_info->ase;
15300
15301 /* The EVA Extension has instructions which are only valid when the R6 ISA
15302 is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
15303 present. */
15304 if (((file_mips_opts.ase & ASE_EVA) != 0) && ISA_IS_R6 (file_mips_opts.isa))
15305 file_mips_opts.ase |= ASE_EVA_R6;
15306
15307 /* Set up initial mips_opts state. */
15308 mips_opts = file_mips_opts;
15309
15310 /* For the R5900 default to `-mfix-r5900' unless the user told otherwise. */
15311 if (!mips_fix_r5900_explicit)
15312 mips_fix_r5900 = file_mips_opts.arch == CPU_R5900;
15313
15314 /* The register size inference code is now placed in
15315 file_mips_check_options. */
15316
15317 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15318 processor. */
15319 if (mips_tune_string != 0)
15320 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15321
15322 if (tune_info == 0)
15323 mips_set_tune (arch_info);
15324 else
15325 mips_set_tune (tune_info);
15326
15327 if (mips_flag_mdebug < 0)
15328 mips_flag_mdebug = 0;
15329 }
15330 \f
15331 void
15332 mips_init_after_args (void)
15333 {
15334 /* Initialize opcodes. */
15335 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15336 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15337 }
15338
15339 long
15340 md_pcrel_from (fixS *fixP)
15341 {
15342 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15343
15344 switch (fixP->fx_r_type)
15345 {
15346 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15347 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15348 /* Return the address of the delay slot. */
15349 return addr + 2;
15350
15351 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15352 case BFD_RELOC_MICROMIPS_JMP:
15353 case BFD_RELOC_MIPS16_16_PCREL_S1:
15354 case BFD_RELOC_16_PCREL_S2:
15355 case BFD_RELOC_MIPS_21_PCREL_S2:
15356 case BFD_RELOC_MIPS_26_PCREL_S2:
15357 case BFD_RELOC_MIPS_JMP:
15358 /* Return the address of the delay slot. */
15359 return addr + 4;
15360
15361 case BFD_RELOC_MIPS_18_PCREL_S3:
15362 /* Return the aligned address of the doubleword containing
15363 the instruction. */
15364 return addr & ~7;
15365
15366 default:
15367 return addr;
15368 }
15369 }
15370
15371 /* This is called before the symbol table is processed. In order to
15372 work with gcc when using mips-tfile, we must keep all local labels.
15373 However, in other cases, we want to discard them. If we were
15374 called with -g, but we didn't see any debugging information, it may
15375 mean that gcc is smuggling debugging information through to
15376 mips-tfile, in which case we must generate all local labels. */
15377
15378 void
15379 mips_frob_file_before_adjust (void)
15380 {
15381 #ifndef NO_ECOFF_DEBUGGING
15382 if (ECOFF_DEBUGGING
15383 && mips_debug != 0
15384 && ! ecoff_debugging_seen)
15385 flag_keep_locals = 1;
15386 #endif
15387 }
15388
15389 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15390 the corresponding LO16 reloc. This is called before md_apply_fix and
15391 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15392 relocation operators.
15393
15394 For our purposes, a %lo() expression matches a %got() or %hi()
15395 expression if:
15396
15397 (a) it refers to the same symbol; and
15398 (b) the offset applied in the %lo() expression is no lower than
15399 the offset applied in the %got() or %hi().
15400
15401 (b) allows us to cope with code like:
15402
15403 lui $4,%hi(foo)
15404 lh $4,%lo(foo+2)($4)
15405
15406 ...which is legal on RELA targets, and has a well-defined behaviour
15407 if the user knows that adding 2 to "foo" will not induce a carry to
15408 the high 16 bits.
15409
15410 When several %lo()s match a particular %got() or %hi(), we use the
15411 following rules to distinguish them:
15412
15413 (1) %lo()s with smaller offsets are a better match than %lo()s with
15414 higher offsets.
15415
15416 (2) %lo()s with no matching %got() or %hi() are better than those
15417 that already have a matching %got() or %hi().
15418
15419 (3) later %lo()s are better than earlier %lo()s.
15420
15421 These rules are applied in order.
15422
15423 (1) means, among other things, that %lo()s with identical offsets are
15424 chosen if they exist.
15425
15426 (2) means that we won't associate several high-part relocations with
15427 the same low-part relocation unless there's no alternative. Having
15428 several high parts for the same low part is a GNU extension; this rule
15429 allows careful users to avoid it.
15430
15431 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15432 with the last high-part relocation being at the front of the list.
15433 It therefore makes sense to choose the last matching low-part
15434 relocation, all other things being equal. It's also easier
15435 to code that way. */
15436
15437 void
15438 mips_frob_file (void)
15439 {
15440 struct mips_hi_fixup *l;
15441 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15442
15443 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15444 {
15445 segment_info_type *seginfo;
15446 bool matched_lo_p;
15447 fixS **hi_pos, **lo_pos, **pos;
15448
15449 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15450
15451 /* If a GOT16 relocation turns out to be against a global symbol,
15452 there isn't supposed to be a matching LO. Ignore %gots against
15453 constants; we'll report an error for those later. */
15454 if (got16_reloc_p (l->fixp->fx_r_type)
15455 && !pic_need_relax (l->fixp->fx_addsy))
15456 continue;
15457
15458 /* Check quickly whether the next fixup happens to be a matching %lo. */
15459 if (fixup_has_matching_lo_p (l->fixp))
15460 continue;
15461
15462 seginfo = seg_info (l->seg);
15463
15464 /* Set HI_POS to the position of this relocation in the chain.
15465 Set LO_POS to the position of the chosen low-part relocation.
15466 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15467 relocation that matches an immediately-preceding high-part
15468 relocation. */
15469 hi_pos = NULL;
15470 lo_pos = NULL;
15471 matched_lo_p = false;
15472 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15473
15474 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15475 {
15476 if (*pos == l->fixp)
15477 hi_pos = pos;
15478
15479 if ((*pos)->fx_r_type == looking_for_rtype
15480 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15481 && (*pos)->fx_offset >= l->fixp->fx_offset
15482 && (lo_pos == NULL
15483 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15484 || (!matched_lo_p
15485 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15486 lo_pos = pos;
15487
15488 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15489 && fixup_has_matching_lo_p (*pos));
15490 }
15491
15492 /* If we found a match, remove the high-part relocation from its
15493 current position and insert it before the low-part relocation.
15494 Make the offsets match so that fixup_has_matching_lo_p()
15495 will return true.
15496
15497 We don't warn about unmatched high-part relocations since some
15498 versions of gcc have been known to emit dead "lui ...%hi(...)"
15499 instructions. */
15500 if (lo_pos != NULL)
15501 {
15502 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15503 if (l->fixp->fx_next != *lo_pos)
15504 {
15505 *hi_pos = l->fixp->fx_next;
15506 l->fixp->fx_next = *lo_pos;
15507 *lo_pos = l->fixp;
15508 }
15509 }
15510 }
15511 }
15512
15513 int
15514 mips_force_relocation (fixS *fixp)
15515 {
15516 if (generic_force_reloc (fixp))
15517 return 1;
15518
15519 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15520 so that the linker relaxation can update targets. */
15521 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15522 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15523 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15524 return 1;
15525
15526 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15527 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15528 microMIPS symbols so that we can do cross-mode branch diagnostics
15529 and BAL to JALX conversion by the linker. */
15530 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15531 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15532 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15533 && fixp->fx_addsy
15534 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15535 return 1;
15536
15537 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15538 if (ISA_IS_R6 (file_mips_opts.isa)
15539 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15540 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15541 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15542 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15543 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15544 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15545 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15546 return 1;
15547
15548 return 0;
15549 }
15550
15551 /* Implement TC_FORCE_RELOCATION_ABS. */
15552
15553 bool
15554 mips_force_relocation_abs (fixS *fixp)
15555 {
15556 if (generic_force_reloc (fixp))
15557 return true;
15558
15559 /* These relocations do not have enough bits in the in-place addend
15560 to hold an arbitrary absolute section's offset. */
15561 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15562 return true;
15563
15564 return false;
15565 }
15566
15567 /* Read the instruction associated with RELOC from BUF. */
15568
15569 static unsigned int
15570 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15571 {
15572 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15573 return read_compressed_insn (buf, 4);
15574 else
15575 return read_insn (buf);
15576 }
15577
15578 /* Write instruction INSN to BUF, given that it has been relocated
15579 by RELOC. */
15580
15581 static void
15582 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15583 unsigned long insn)
15584 {
15585 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15586 write_compressed_insn (buf, insn, 4);
15587 else
15588 write_insn (buf, insn);
15589 }
15590
15591 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15592 to a symbol in another ISA mode, which cannot be converted to JALX. */
15593
15594 static bool
15595 fix_bad_cross_mode_jump_p (fixS *fixP)
15596 {
15597 unsigned long opcode;
15598 int other;
15599 char *buf;
15600
15601 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, true))
15602 return false;
15603
15604 other = S_GET_OTHER (fixP->fx_addsy);
15605 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15606 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15607 switch (fixP->fx_r_type)
15608 {
15609 case BFD_RELOC_MIPS_JMP:
15610 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15611 case BFD_RELOC_MICROMIPS_JMP:
15612 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15613 default:
15614 return false;
15615 }
15616 }
15617
15618 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15619 jump to a symbol in the same ISA mode. */
15620
15621 static bool
15622 fix_bad_same_mode_jalx_p (fixS *fixP)
15623 {
15624 unsigned long opcode;
15625 int other;
15626 char *buf;
15627
15628 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, true))
15629 return false;
15630
15631 other = S_GET_OTHER (fixP->fx_addsy);
15632 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15633 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15634 switch (fixP->fx_r_type)
15635 {
15636 case BFD_RELOC_MIPS_JMP:
15637 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15638 case BFD_RELOC_MIPS16_JMP:
15639 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15640 case BFD_RELOC_MICROMIPS_JMP:
15641 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15642 default:
15643 return false;
15644 }
15645 }
15646
15647 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15648 to a symbol whose value plus addend is not aligned according to the
15649 ultimate (after linker relaxation) jump instruction's immediate field
15650 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15651 regular MIPS code, to (1 << 2). */
15652
15653 static bool
15654 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15655 {
15656 bool micro_to_mips_p;
15657 valueT val;
15658 int other;
15659
15660 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, true))
15661 return false;
15662
15663 other = S_GET_OTHER (fixP->fx_addsy);
15664 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15665 val += fixP->fx_offset;
15666 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15667 && !ELF_ST_IS_MICROMIPS (other));
15668 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15669 != ELF_ST_IS_COMPRESSED (other));
15670 }
15671
15672 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15673 to a symbol whose annotation indicates another ISA mode. For absolute
15674 symbols check the ISA bit instead.
15675
15676 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15677 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15678 MIPS symbols and associated with BAL instructions as these instructions
15679 may be converted to JALX by the linker. */
15680
15681 static bool
15682 fix_bad_cross_mode_branch_p (fixS *fixP)
15683 {
15684 bool absolute_p;
15685 unsigned long opcode;
15686 asection *symsec;
15687 valueT val;
15688 int other;
15689 char *buf;
15690
15691 if (mips_ignore_branch_isa)
15692 return false;
15693
15694 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, true))
15695 return false;
15696
15697 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15698 absolute_p = bfd_is_abs_section (symsec);
15699
15700 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15701 other = S_GET_OTHER (fixP->fx_addsy);
15702
15703 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15704 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15705 switch (fixP->fx_r_type)
15706 {
15707 case BFD_RELOC_16_PCREL_S2:
15708 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15709 && opcode != 0x0411);
15710 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15711 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15712 && opcode != 0x4060);
15713 case BFD_RELOC_MIPS_21_PCREL_S2:
15714 case BFD_RELOC_MIPS_26_PCREL_S2:
15715 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15716 case BFD_RELOC_MIPS16_16_PCREL_S1:
15717 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15718 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15719 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15720 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15721 default:
15722 abort ();
15723 }
15724 }
15725
15726 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15727 branch instruction pointed to by FIXP is not aligned according to the
15728 branch instruction's immediate field requirement. We need the addend
15729 to preserve the ISA bit and also the sum must not have bit 2 set. We
15730 must explicitly OR in the ISA bit from symbol annotation as the bit
15731 won't be set in the symbol's value then. */
15732
15733 static bool
15734 fix_bad_misaligned_branch_p (fixS *fixP)
15735 {
15736 bool absolute_p;
15737 asection *symsec;
15738 valueT isa_bit;
15739 valueT val;
15740 valueT off;
15741 int other;
15742
15743 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, true))
15744 return false;
15745
15746 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15747 absolute_p = bfd_is_abs_section (symsec);
15748
15749 val = S_GET_VALUE (fixP->fx_addsy);
15750 other = S_GET_OTHER (fixP->fx_addsy);
15751 off = fixP->fx_offset;
15752
15753 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15754 val |= ELF_ST_IS_COMPRESSED (other);
15755 val += off;
15756 return (val & 0x3) != isa_bit;
15757 }
15758
15759 /* Calculate the relocation target by masking off ISA mode bit before
15760 combining symbol and addend. */
15761
15762 static valueT
15763 fix_bad_misaligned_address (fixS *fixP)
15764 {
15765 valueT val;
15766 valueT off;
15767 unsigned isa_mode;
15768 gas_assert (fixP != NULL && fixP->fx_addsy != NULL);
15769 val = S_GET_VALUE (fixP->fx_addsy);
15770 off = fixP->fx_offset;
15771 isa_mode = (ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixP->fx_addsy))
15772 ? 1 : 0);
15773
15774 return ((val & ~isa_mode) + off);
15775 }
15776
15777 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15778 and its calculated value VAL. */
15779
15780 static void
15781 fix_validate_branch (fixS *fixP, valueT val)
15782 {
15783 if (fixP->fx_done && (val & 0x3) != 0)
15784 as_bad_where (fixP->fx_file, fixP->fx_line,
15785 _("branch to misaligned address (0x%lx)"),
15786 (long) (val + md_pcrel_from (fixP)));
15787 else if (fix_bad_cross_mode_branch_p (fixP))
15788 as_bad_where (fixP->fx_file, fixP->fx_line,
15789 _("branch to a symbol in another ISA mode"));
15790 else if (fix_bad_misaligned_branch_p (fixP))
15791 as_bad_where (fixP->fx_file, fixP->fx_line,
15792 _("branch to misaligned address (0x%lx)"),
15793 (long) fix_bad_misaligned_address (fixP));
15794 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15795 as_bad_where (fixP->fx_file, fixP->fx_line,
15796 _("cannot encode misaligned addend "
15797 "in the relocatable field (0x%lx)"),
15798 (long) fixP->fx_offset);
15799 }
15800
15801 /* Apply a fixup to the object file. */
15802
15803 void
15804 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15805 {
15806 char *buf;
15807 unsigned long insn;
15808 reloc_howto_type *howto;
15809
15810 if (fixP->fx_pcrel)
15811 switch (fixP->fx_r_type)
15812 {
15813 case BFD_RELOC_16_PCREL_S2:
15814 case BFD_RELOC_MIPS16_16_PCREL_S1:
15815 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15816 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15817 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15818 case BFD_RELOC_32_PCREL:
15819 case BFD_RELOC_MIPS_21_PCREL_S2:
15820 case BFD_RELOC_MIPS_26_PCREL_S2:
15821 case BFD_RELOC_MIPS_18_PCREL_S3:
15822 case BFD_RELOC_MIPS_19_PCREL_S2:
15823 case BFD_RELOC_HI16_S_PCREL:
15824 case BFD_RELOC_LO16_PCREL:
15825 break;
15826
15827 case BFD_RELOC_32:
15828 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15829 break;
15830
15831 default:
15832 as_bad_where (fixP->fx_file, fixP->fx_line,
15833 _("PC-relative reference to a different section"));
15834 break;
15835 }
15836
15837 /* Handle BFD_RELOC_8 and BFD_RELOC_16. Punt on other bfd
15838 relocations that have no MIPS ELF equivalent. */
15839 if (fixP->fx_r_type != BFD_RELOC_8
15840 && fixP->fx_r_type != BFD_RELOC_16)
15841 {
15842 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15843 if (!howto)
15844 return;
15845 }
15846
15847 gas_assert (fixP->fx_size == 2
15848 || fixP->fx_size == 4
15849 || fixP->fx_r_type == BFD_RELOC_8
15850 || fixP->fx_r_type == BFD_RELOC_64
15851 || fixP->fx_r_type == BFD_RELOC_CTOR
15852 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15853 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15854 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15855 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15856 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15857 || fixP->fx_r_type == BFD_RELOC_NONE);
15858
15859 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15860
15861 /* Don't treat parts of a composite relocation as done. There are two
15862 reasons for this:
15863
15864 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15865 should nevertheless be emitted if the first part is.
15866
15867 (2) In normal usage, composite relocations are never assembly-time
15868 constants. The easiest way of dealing with the pathological
15869 exceptions is to generate a relocation against STN_UNDEF and
15870 leave everything up to the linker. */
15871 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15872 fixP->fx_done = 1;
15873
15874 switch (fixP->fx_r_type)
15875 {
15876 case BFD_RELOC_MIPS_TLS_GD:
15877 case BFD_RELOC_MIPS_TLS_LDM:
15878 case BFD_RELOC_MIPS_TLS_DTPREL32:
15879 case BFD_RELOC_MIPS_TLS_DTPREL64:
15880 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15881 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15882 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15883 case BFD_RELOC_MIPS_TLS_TPREL32:
15884 case BFD_RELOC_MIPS_TLS_TPREL64:
15885 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15886 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15887 case BFD_RELOC_MICROMIPS_TLS_GD:
15888 case BFD_RELOC_MICROMIPS_TLS_LDM:
15889 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15890 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15891 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15892 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15893 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15894 case BFD_RELOC_MIPS16_TLS_GD:
15895 case BFD_RELOC_MIPS16_TLS_LDM:
15896 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15897 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15898 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15899 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15900 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15901 if (fixP->fx_addsy)
15902 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15903 else
15904 as_bad_where (fixP->fx_file, fixP->fx_line,
15905 _("TLS relocation against a constant"));
15906 break;
15907
15908 case BFD_RELOC_MIPS_JMP:
15909 case BFD_RELOC_MIPS16_JMP:
15910 case BFD_RELOC_MICROMIPS_JMP:
15911 {
15912 int shift;
15913
15914 gas_assert (!fixP->fx_done);
15915
15916 /* Shift is 2, unusually, for microMIPS JALX. */
15917 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15918 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15919 shift = 1;
15920 else
15921 shift = 2;
15922
15923 if (fix_bad_cross_mode_jump_p (fixP))
15924 as_bad_where (fixP->fx_file, fixP->fx_line,
15925 _("jump to a symbol in another ISA mode"));
15926 else if (fix_bad_same_mode_jalx_p (fixP))
15927 as_bad_where (fixP->fx_file, fixP->fx_line,
15928 _("JALX to a symbol in the same ISA mode"));
15929 else if (fix_bad_misaligned_jump_p (fixP, shift))
15930 as_bad_where (fixP->fx_file, fixP->fx_line,
15931 _("jump to misaligned address (0x%lx)"),
15932 (long) fix_bad_misaligned_address (fixP));
15933 else if (HAVE_IN_PLACE_ADDENDS
15934 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15935 as_bad_where (fixP->fx_file, fixP->fx_line,
15936 _("cannot encode misaligned addend "
15937 "in the relocatable field (0x%lx)"),
15938 (long) fixP->fx_offset);
15939 }
15940 /* Fall through. */
15941
15942 case BFD_RELOC_MIPS_SHIFT5:
15943 case BFD_RELOC_MIPS_SHIFT6:
15944 case BFD_RELOC_MIPS_GOT_DISP:
15945 case BFD_RELOC_MIPS_GOT_PAGE:
15946 case BFD_RELOC_MIPS_GOT_OFST:
15947 case BFD_RELOC_MIPS_SUB:
15948 case BFD_RELOC_MIPS_INSERT_A:
15949 case BFD_RELOC_MIPS_INSERT_B:
15950 case BFD_RELOC_MIPS_DELETE:
15951 case BFD_RELOC_MIPS_HIGHEST:
15952 case BFD_RELOC_MIPS_HIGHER:
15953 case BFD_RELOC_MIPS_SCN_DISP:
15954 case BFD_RELOC_MIPS_RELGOT:
15955 case BFD_RELOC_MIPS_JALR:
15956 case BFD_RELOC_HI16:
15957 case BFD_RELOC_HI16_S:
15958 case BFD_RELOC_LO16:
15959 case BFD_RELOC_GPREL16:
15960 case BFD_RELOC_MIPS_LITERAL:
15961 case BFD_RELOC_MIPS_CALL16:
15962 case BFD_RELOC_MIPS_GOT16:
15963 case BFD_RELOC_GPREL32:
15964 case BFD_RELOC_MIPS_GOT_HI16:
15965 case BFD_RELOC_MIPS_GOT_LO16:
15966 case BFD_RELOC_MIPS_CALL_HI16:
15967 case BFD_RELOC_MIPS_CALL_LO16:
15968 case BFD_RELOC_HI16_S_PCREL:
15969 case BFD_RELOC_LO16_PCREL:
15970 case BFD_RELOC_MIPS16_GPREL:
15971 case BFD_RELOC_MIPS16_GOT16:
15972 case BFD_RELOC_MIPS16_CALL16:
15973 case BFD_RELOC_MIPS16_HI16:
15974 case BFD_RELOC_MIPS16_HI16_S:
15975 case BFD_RELOC_MIPS16_LO16:
15976 case BFD_RELOC_MICROMIPS_GOT_DISP:
15977 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15978 case BFD_RELOC_MICROMIPS_GOT_OFST:
15979 case BFD_RELOC_MICROMIPS_SUB:
15980 case BFD_RELOC_MICROMIPS_HIGHEST:
15981 case BFD_RELOC_MICROMIPS_HIGHER:
15982 case BFD_RELOC_MICROMIPS_SCN_DISP:
15983 case BFD_RELOC_MICROMIPS_JALR:
15984 case BFD_RELOC_MICROMIPS_HI16:
15985 case BFD_RELOC_MICROMIPS_HI16_S:
15986 case BFD_RELOC_MICROMIPS_LO16:
15987 case BFD_RELOC_MICROMIPS_GPREL16:
15988 case BFD_RELOC_MICROMIPS_LITERAL:
15989 case BFD_RELOC_MICROMIPS_CALL16:
15990 case BFD_RELOC_MICROMIPS_GOT16:
15991 case BFD_RELOC_MICROMIPS_GOT_HI16:
15992 case BFD_RELOC_MICROMIPS_GOT_LO16:
15993 case BFD_RELOC_MICROMIPS_CALL_HI16:
15994 case BFD_RELOC_MICROMIPS_CALL_LO16:
15995 case BFD_RELOC_MIPS_EH:
15996 if (fixP->fx_done)
15997 {
15998 offsetT value;
15999
16000 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
16001 {
16002 insn = read_reloc_insn (buf, fixP->fx_r_type);
16003 if (mips16_reloc_p (fixP->fx_r_type))
16004 insn |= mips16_immed_extend (value, 16);
16005 else
16006 insn |= (value & 0xffff);
16007 write_reloc_insn (buf, fixP->fx_r_type, insn);
16008 }
16009 else
16010 as_bad_where (fixP->fx_file, fixP->fx_line,
16011 _("unsupported constant in relocation"));
16012 }
16013 break;
16014
16015 case BFD_RELOC_64:
16016 /* This is handled like BFD_RELOC_32, but we output a sign
16017 extended value if we are only 32 bits. */
16018 if (fixP->fx_done)
16019 {
16020 if (8 <= sizeof (valueT))
16021 md_number_to_chars (buf, *valP, 8);
16022 else
16023 {
16024 valueT hiv;
16025
16026 if ((*valP & 0x80000000) != 0)
16027 hiv = 0xffffffff;
16028 else
16029 hiv = 0;
16030 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
16031 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
16032 }
16033 }
16034 break;
16035
16036 case BFD_RELOC_RVA:
16037 case BFD_RELOC_32:
16038 case BFD_RELOC_32_PCREL:
16039 case BFD_RELOC_MIPS_16:
16040 case BFD_RELOC_16:
16041 case BFD_RELOC_8:
16042 /* If we are deleting this reloc entry, we must fill in the
16043 value now. This can happen if we have a .word which is not
16044 resolved when it appears but is later defined. */
16045 if (fixP->fx_done)
16046 md_number_to_chars (buf, *valP, fixP->fx_size);
16047 break;
16048
16049 case BFD_RELOC_MIPS_21_PCREL_S2:
16050 fix_validate_branch (fixP, *valP);
16051 if (!fixP->fx_done)
16052 break;
16053
16054 if (*valP + 0x400000 <= 0x7fffff)
16055 {
16056 insn = read_insn (buf);
16057 insn |= (*valP >> 2) & 0x1fffff;
16058 write_insn (buf, insn);
16059 }
16060 else
16061 as_bad_where (fixP->fx_file, fixP->fx_line,
16062 _("branch out of range"));
16063 break;
16064
16065 case BFD_RELOC_MIPS_26_PCREL_S2:
16066 fix_validate_branch (fixP, *valP);
16067 if (!fixP->fx_done)
16068 break;
16069
16070 if (*valP + 0x8000000 <= 0xfffffff)
16071 {
16072 insn = read_insn (buf);
16073 insn |= (*valP >> 2) & 0x3ffffff;
16074 write_insn (buf, insn);
16075 }
16076 else
16077 as_bad_where (fixP->fx_file, fixP->fx_line,
16078 _("branch out of range"));
16079 break;
16080
16081 case BFD_RELOC_MIPS_18_PCREL_S3:
16082 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
16083 as_bad_where (fixP->fx_file, fixP->fx_line,
16084 _("PC-relative access using misaligned symbol (%lx)"),
16085 (long) S_GET_VALUE (fixP->fx_addsy));
16086 if ((fixP->fx_offset & 0x7) != 0)
16087 as_bad_where (fixP->fx_file, fixP->fx_line,
16088 _("PC-relative access using misaligned offset (%lx)"),
16089 (long) fixP->fx_offset);
16090 if (!fixP->fx_done)
16091 break;
16092
16093 if (*valP + 0x100000 <= 0x1fffff)
16094 {
16095 insn = read_insn (buf);
16096 insn |= (*valP >> 3) & 0x3ffff;
16097 write_insn (buf, insn);
16098 }
16099 else
16100 as_bad_where (fixP->fx_file, fixP->fx_line,
16101 _("PC-relative access out of range"));
16102 break;
16103
16104 case BFD_RELOC_MIPS_19_PCREL_S2:
16105 if ((*valP & 0x3) != 0)
16106 as_bad_where (fixP->fx_file, fixP->fx_line,
16107 _("PC-relative access to misaligned address (%lx)"),
16108 (long) *valP);
16109 if (!fixP->fx_done)
16110 break;
16111
16112 if (*valP + 0x100000 <= 0x1fffff)
16113 {
16114 insn = read_insn (buf);
16115 insn |= (*valP >> 2) & 0x7ffff;
16116 write_insn (buf, insn);
16117 }
16118 else
16119 as_bad_where (fixP->fx_file, fixP->fx_line,
16120 _("PC-relative access out of range"));
16121 break;
16122
16123 case BFD_RELOC_16_PCREL_S2:
16124 fix_validate_branch (fixP, *valP);
16125
16126 /* We need to save the bits in the instruction since fixup_segment()
16127 might be deleting the relocation entry (i.e., a branch within
16128 the current segment). */
16129 if (! fixP->fx_done)
16130 break;
16131
16132 /* Update old instruction data. */
16133 insn = read_insn (buf);
16134
16135 if (*valP + 0x20000 <= 0x3ffff)
16136 {
16137 insn |= (*valP >> 2) & 0xffff;
16138 write_insn (buf, insn);
16139 }
16140 else if (fixP->fx_tcbit2
16141 && fixP->fx_done
16142 && fixP->fx_frag->fr_address >= text_section->vma
16143 && (fixP->fx_frag->fr_address
16144 < text_section->vma + bfd_section_size (text_section))
16145 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
16146 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
16147 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
16148 {
16149 /* The branch offset is too large. If this is an
16150 unconditional branch, and we are not generating PIC code,
16151 we can convert it to an absolute jump instruction. */
16152 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
16153 insn = 0x0c000000; /* jal */
16154 else
16155 insn = 0x08000000; /* j */
16156 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
16157 fixP->fx_done = 0;
16158 fixP->fx_addsy = section_symbol (text_section);
16159 *valP += md_pcrel_from (fixP);
16160 write_insn (buf, insn);
16161 }
16162 else
16163 {
16164 /* If we got here, we have branch-relaxation disabled,
16165 and there's nothing we can do to fix this instruction
16166 without turning it into a longer sequence. */
16167 as_bad_where (fixP->fx_file, fixP->fx_line,
16168 _("branch out of range"));
16169 }
16170 break;
16171
16172 case BFD_RELOC_MIPS16_16_PCREL_S1:
16173 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
16174 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
16175 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
16176 gas_assert (!fixP->fx_done);
16177 if (fix_bad_cross_mode_branch_p (fixP))
16178 as_bad_where (fixP->fx_file, fixP->fx_line,
16179 _("branch to a symbol in another ISA mode"));
16180 else if (fixP->fx_addsy
16181 && !S_FORCE_RELOC (fixP->fx_addsy, true)
16182 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
16183 && (fixP->fx_offset & 0x1) != 0)
16184 as_bad_where (fixP->fx_file, fixP->fx_line,
16185 _("branch to misaligned address (0x%lx)"),
16186 (long) fix_bad_misaligned_address (fixP));
16187 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
16188 as_bad_where (fixP->fx_file, fixP->fx_line,
16189 _("cannot encode misaligned addend "
16190 "in the relocatable field (0x%lx)"),
16191 (long) fixP->fx_offset);
16192 break;
16193
16194 case BFD_RELOC_VTABLE_INHERIT:
16195 fixP->fx_done = 0;
16196 if (fixP->fx_addsy
16197 && !S_IS_DEFINED (fixP->fx_addsy)
16198 && !S_IS_WEAK (fixP->fx_addsy))
16199 S_SET_WEAK (fixP->fx_addsy);
16200 break;
16201
16202 case BFD_RELOC_NONE:
16203 case BFD_RELOC_VTABLE_ENTRY:
16204 fixP->fx_done = 0;
16205 break;
16206
16207 default:
16208 abort ();
16209 }
16210
16211 /* Remember value for tc_gen_reloc. */
16212 fixP->fx_addnumber = *valP;
16213 }
16214
16215 static symbolS *
16216 get_symbol (void)
16217 {
16218 int c;
16219 char *name;
16220 symbolS *p;
16221
16222 c = get_symbol_name (&name);
16223 p = (symbolS *) symbol_find_or_make (name);
16224 (void) restore_line_pointer (c);
16225 return p;
16226 }
16227
16228 /* Align the current frag to a given power of two. If a particular
16229 fill byte should be used, FILL points to an integer that contains
16230 that byte, otherwise FILL is null.
16231
16232 This function used to have the comment:
16233
16234 The MIPS assembler also automatically adjusts any preceding label.
16235
16236 The implementation therefore applied the adjustment to a maximum of
16237 one label. However, other label adjustments are applied to batches
16238 of labels, and adjusting just one caused problems when new labels
16239 were added for the sake of debugging or unwind information.
16240 We therefore adjust all preceding labels (given as LABELS) instead. */
16241
16242 static void
16243 mips_align (int to, int *fill, struct insn_label_list *labels)
16244 {
16245 mips_emit_delays ();
16246 mips_record_compressed_mode ();
16247 if (fill == NULL && subseg_text_p (now_seg))
16248 frag_align_code (to, 0);
16249 else
16250 frag_align (to, fill ? *fill : 0, 0);
16251 record_alignment (now_seg, to);
16252 mips_move_labels (labels, subseg_text_p (now_seg));
16253 }
16254
16255 /* Align to a given power of two. .align 0 turns off the automatic
16256 alignment used by the data creating pseudo-ops. */
16257
16258 static void
16259 s_align (int x ATTRIBUTE_UNUSED)
16260 {
16261 int temp, fill_value, *fill_ptr;
16262 long max_alignment = 28;
16263
16264 file_mips_check_options ();
16265
16266 /* o Note that the assembler pulls down any immediately preceding label
16267 to the aligned address.
16268 o It's not documented but auto alignment is reinstated by
16269 a .align pseudo instruction.
16270 o Note also that after auto alignment is turned off the mips assembler
16271 issues an error on attempt to assemble an improperly aligned data item.
16272 We don't. */
16273
16274 temp = get_absolute_expression ();
16275 if (temp > max_alignment)
16276 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
16277 else if (temp < 0)
16278 {
16279 as_warn (_("alignment negative, 0 assumed"));
16280 temp = 0;
16281 }
16282 if (*input_line_pointer == ',')
16283 {
16284 ++input_line_pointer;
16285 fill_value = get_absolute_expression ();
16286 fill_ptr = &fill_value;
16287 }
16288 else
16289 fill_ptr = 0;
16290
16291 mips_mark_labels ();
16292
16293 if (temp)
16294 {
16295 segment_info_type *si = seg_info (now_seg);
16296 struct insn_label_list *l = si->label_list;
16297 /* Auto alignment should be switched on by next section change. */
16298 auto_align = 1;
16299 mips_align (temp, fill_ptr, l);
16300 }
16301 else
16302 {
16303 auto_align = 0;
16304 }
16305
16306 demand_empty_rest_of_line ();
16307 }
16308
16309 static void
16310 s_change_sec (int sec)
16311 {
16312 segT seg;
16313
16314 /* The ELF backend needs to know that we are changing sections, so
16315 that .previous works correctly. We could do something like check
16316 for an obj_section_change_hook macro, but that might be confusing
16317 as it would not be appropriate to use it in the section changing
16318 functions in read.c, since obj-elf.c intercepts those. FIXME:
16319 This should be cleaner, somehow. */
16320 obj_elf_section_change_hook ();
16321
16322 mips_emit_delays ();
16323
16324 switch (sec)
16325 {
16326 case 't':
16327 s_text (0);
16328 break;
16329 case 'd':
16330 s_data (0);
16331 break;
16332 case 'b':
16333 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16334 demand_empty_rest_of_line ();
16335 break;
16336
16337 case 'r':
16338 seg = subseg_new (RDATA_SECTION_NAME,
16339 (subsegT) get_absolute_expression ());
16340 bfd_set_section_flags (seg, (SEC_ALLOC | SEC_LOAD | SEC_READONLY
16341 | SEC_RELOC | SEC_DATA));
16342 if (!startswith (TARGET_OS, "elf"))
16343 record_alignment (seg, 4);
16344 demand_empty_rest_of_line ();
16345 break;
16346
16347 case 's':
16348 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16349 bfd_set_section_flags (seg, (SEC_ALLOC | SEC_LOAD | SEC_RELOC
16350 | SEC_DATA | SEC_SMALL_DATA));
16351 if (!startswith (TARGET_OS, "elf"))
16352 record_alignment (seg, 4);
16353 demand_empty_rest_of_line ();
16354 break;
16355
16356 case 'B':
16357 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16358 bfd_set_section_flags (seg, SEC_ALLOC | SEC_SMALL_DATA);
16359 if (!startswith (TARGET_OS, "elf"))
16360 record_alignment (seg, 4);
16361 demand_empty_rest_of_line ();
16362 break;
16363 }
16364
16365 auto_align = 1;
16366 }
16367
16368 void
16369 s_change_section (int ignore ATTRIBUTE_UNUSED)
16370 {
16371 char *saved_ilp;
16372 const char *section_name;
16373 char c, next_c = 0;
16374 int section_type;
16375 int section_flag;
16376 int section_entry_size;
16377 int section_alignment;
16378
16379 saved_ilp = input_line_pointer;
16380 section_name = obj_elf_section_name ();
16381 if (section_name == NULL)
16382 return;
16383 c = input_line_pointer[0];
16384 if (c)
16385 next_c = input_line_pointer[1];
16386
16387 /* Do we have .section Name<,"flags">? */
16388 if (c != ',' || (c == ',' && next_c == '"'))
16389 {
16390 input_line_pointer = saved_ilp;
16391 obj_elf_section (ignore);
16392 return;
16393 }
16394
16395 input_line_pointer++;
16396
16397 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16398 if (c == ',')
16399 section_type = get_absolute_expression ();
16400 else
16401 section_type = 0;
16402
16403 if (*input_line_pointer++ == ',')
16404 section_flag = get_absolute_expression ();
16405 else
16406 section_flag = 0;
16407
16408 if (*input_line_pointer++ == ',')
16409 section_entry_size = get_absolute_expression ();
16410 else
16411 section_entry_size = 0;
16412
16413 if (*input_line_pointer++ == ',')
16414 section_alignment = get_absolute_expression ();
16415 else
16416 section_alignment = 0;
16417
16418 /* FIXME: really ignore? */
16419 (void) section_alignment;
16420
16421 /* When using the generic form of .section (as implemented by obj-elf.c),
16422 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16423 traditionally had to fall back on the more common @progbits instead.
16424
16425 There's nothing really harmful in this, since bfd will correct
16426 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16427 means that, for backwards compatibility, the special_section entries
16428 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16429
16430 Even so, we shouldn't force users of the MIPS .section syntax to
16431 incorrectly label the sections as SHT_PROGBITS. The best compromise
16432 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16433 generic type-checking code. */
16434 if (section_type == SHT_MIPS_DWARF)
16435 section_type = SHT_PROGBITS;
16436
16437 obj_elf_change_section (section_name, section_type, section_flag,
16438 section_entry_size, 0, 0, 0);
16439 }
16440
16441 void
16442 mips_enable_auto_align (void)
16443 {
16444 auto_align = 1;
16445 }
16446
16447 static void
16448 s_cons (int log_size)
16449 {
16450 segment_info_type *si = seg_info (now_seg);
16451 struct insn_label_list *l = si->label_list;
16452
16453 mips_emit_delays ();
16454 if (log_size > 0 && auto_align)
16455 mips_align (log_size, 0, l);
16456 cons (1 << log_size);
16457 mips_clear_insn_labels ();
16458 }
16459
16460 static void
16461 s_float_cons (int type)
16462 {
16463 segment_info_type *si = seg_info (now_seg);
16464 struct insn_label_list *l = si->label_list;
16465
16466 mips_emit_delays ();
16467
16468 if (auto_align)
16469 {
16470 if (type == 'd')
16471 mips_align (3, 0, l);
16472 else
16473 mips_align (2, 0, l);
16474 }
16475
16476 float_cons (type);
16477 mips_clear_insn_labels ();
16478 }
16479
16480 /* Handle .globl. We need to override it because on Irix 5 you are
16481 permitted to say
16482 .globl foo .text
16483 where foo is an undefined symbol, to mean that foo should be
16484 considered to be the address of a function. */
16485
16486 static void
16487 s_mips_globl (int x ATTRIBUTE_UNUSED)
16488 {
16489 char *name;
16490 int c;
16491 symbolS *symbolP;
16492
16493 do
16494 {
16495 c = get_symbol_name (&name);
16496 symbolP = symbol_find_or_make (name);
16497 S_SET_EXTERNAL (symbolP);
16498
16499 *input_line_pointer = c;
16500 SKIP_WHITESPACE_AFTER_NAME ();
16501
16502 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16503 && (*input_line_pointer != ','))
16504 {
16505 char *secname;
16506 asection *sec;
16507
16508 c = get_symbol_name (&secname);
16509 sec = bfd_get_section_by_name (stdoutput, secname);
16510 if (sec == NULL)
16511 as_bad (_("%s: no such section"), secname);
16512 (void) restore_line_pointer (c);
16513
16514 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16515 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
16516 }
16517
16518 c = *input_line_pointer;
16519 if (c == ',')
16520 {
16521 input_line_pointer++;
16522 SKIP_WHITESPACE ();
16523 if (is_end_of_line[(unsigned char) *input_line_pointer])
16524 c = '\n';
16525 }
16526 }
16527 while (c == ',');
16528
16529 demand_empty_rest_of_line ();
16530 }
16531
16532 #ifdef TE_IRIX
16533 /* The Irix 5 and 6 assemblers set the type of any common symbol and
16534 any undefined non-function symbol to STT_OBJECT. We try to be
16535 compatible, since newer Irix 5 and 6 linkers care. */
16536
16537 void
16538 mips_frob_symbol (symbolS *symp ATTRIBUTE_UNUSED)
16539 {
16540 /* This late in assembly we can set BSF_OBJECT indiscriminately
16541 and let elf.c:swap_out_syms sort out the symbol type. */
16542 flagword *flags = &symbol_get_bfdsym (symp)->flags;
16543 if ((*flags & (BSF_GLOBAL | BSF_WEAK)) != 0
16544 || !S_IS_DEFINED (symp))
16545 *flags |= BSF_OBJECT;
16546 }
16547 #endif
16548
16549 static void
16550 s_option (int x ATTRIBUTE_UNUSED)
16551 {
16552 char *opt;
16553 char c;
16554
16555 c = get_symbol_name (&opt);
16556
16557 if (*opt == 'O')
16558 {
16559 /* FIXME: What does this mean? */
16560 }
16561 else if (startswith (opt, "pic") && ISDIGIT (opt[3]) && opt[4] == '\0')
16562 {
16563 int i;
16564
16565 i = atoi (opt + 3);
16566 if (i != 0 && i != 2)
16567 as_bad (_(".option pic%d not supported"), i);
16568 else if (mips_pic == VXWORKS_PIC)
16569 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16570 else if (i == 0)
16571 mips_pic = NO_PIC;
16572 else if (i == 2)
16573 {
16574 mips_pic = SVR4_PIC;
16575 mips_abicalls = true;
16576 }
16577
16578 if (mips_pic == SVR4_PIC)
16579 {
16580 if (g_switch_seen && g_switch_value != 0)
16581 as_warn (_("-G may not be used with SVR4 PIC code"));
16582 g_switch_value = 0;
16583 bfd_set_gp_size (stdoutput, 0);
16584 }
16585 }
16586 else
16587 as_warn (_("unrecognized option \"%s\""), opt);
16588
16589 (void) restore_line_pointer (c);
16590 demand_empty_rest_of_line ();
16591 }
16592
16593 /* This structure is used to hold a stack of .set values. */
16594
16595 struct mips_option_stack
16596 {
16597 struct mips_option_stack *next;
16598 struct mips_set_options options;
16599 };
16600
16601 static struct mips_option_stack *mips_opts_stack;
16602
16603 /* Return status for .set/.module option handling. */
16604
16605 enum code_option_type
16606 {
16607 /* Unrecognized option. */
16608 OPTION_TYPE_BAD = -1,
16609
16610 /* Ordinary option. */
16611 OPTION_TYPE_NORMAL,
16612
16613 /* ISA changing option. */
16614 OPTION_TYPE_ISA
16615 };
16616
16617 /* Handle common .set/.module options. Return status indicating option
16618 type. */
16619
16620 static enum code_option_type
16621 parse_code_option (char * name)
16622 {
16623 bool isa_set = false;
16624 const struct mips_ase *ase;
16625
16626 if (startswith (name, "at="))
16627 {
16628 char *s = name + 3;
16629
16630 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16631 as_bad (_("unrecognized register name `%s'"), s);
16632 }
16633 else if (strcmp (name, "at") == 0)
16634 mips_opts.at = ATREG;
16635 else if (strcmp (name, "noat") == 0)
16636 mips_opts.at = ZERO;
16637 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16638 mips_opts.nomove = 0;
16639 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16640 mips_opts.nomove = 1;
16641 else if (strcmp (name, "bopt") == 0)
16642 mips_opts.nobopt = 0;
16643 else if (strcmp (name, "nobopt") == 0)
16644 mips_opts.nobopt = 1;
16645 else if (strcmp (name, "gp=32") == 0)
16646 mips_opts.gp = 32;
16647 else if (strcmp (name, "gp=64") == 0)
16648 mips_opts.gp = 64;
16649 else if (strcmp (name, "fp=32") == 0)
16650 mips_opts.fp = 32;
16651 else if (strcmp (name, "fp=xx") == 0)
16652 mips_opts.fp = 0;
16653 else if (strcmp (name, "fp=64") == 0)
16654 mips_opts.fp = 64;
16655 else if (strcmp (name, "softfloat") == 0)
16656 mips_opts.soft_float = 1;
16657 else if (strcmp (name, "hardfloat") == 0)
16658 mips_opts.soft_float = 0;
16659 else if (strcmp (name, "singlefloat") == 0)
16660 mips_opts.single_float = 1;
16661 else if (strcmp (name, "doublefloat") == 0)
16662 mips_opts.single_float = 0;
16663 else if (strcmp (name, "nooddspreg") == 0)
16664 mips_opts.oddspreg = 0;
16665 else if (strcmp (name, "oddspreg") == 0)
16666 mips_opts.oddspreg = 1;
16667 else if (strcmp (name, "mips16") == 0
16668 || strcmp (name, "MIPS-16") == 0)
16669 mips_opts.mips16 = 1;
16670 else if (strcmp (name, "nomips16") == 0
16671 || strcmp (name, "noMIPS-16") == 0)
16672 mips_opts.mips16 = 0;
16673 else if (strcmp (name, "micromips") == 0)
16674 mips_opts.micromips = 1;
16675 else if (strcmp (name, "nomicromips") == 0)
16676 mips_opts.micromips = 0;
16677 else if (name[0] == 'n'
16678 && name[1] == 'o'
16679 && (ase = mips_lookup_ase (name + 2)))
16680 mips_set_ase (ase, &mips_opts, false);
16681 else if ((ase = mips_lookup_ase (name)))
16682 mips_set_ase (ase, &mips_opts, true);
16683 else if (startswith (name, "mips") || startswith (name, "arch="))
16684 {
16685 /* Permit the user to change the ISA and architecture on the fly.
16686 Needless to say, misuse can cause serious problems. */
16687 if (startswith (name, "arch="))
16688 {
16689 const struct mips_cpu_info *p;
16690
16691 p = mips_parse_cpu ("internal use", name + 5);
16692 if (!p)
16693 as_bad (_("unknown architecture %s"), name + 5);
16694 else
16695 {
16696 mips_opts.arch = p->cpu;
16697 mips_opts.isa = p->isa;
16698 isa_set = true;
16699 mips_opts.init_ase = p->ase;
16700 }
16701 }
16702 else if (startswith (name, "mips"))
16703 {
16704 const struct mips_cpu_info *p;
16705
16706 p = mips_parse_cpu ("internal use", name);
16707 if (!p)
16708 as_bad (_("unknown ISA level %s"), name + 4);
16709 else
16710 {
16711 mips_opts.arch = p->cpu;
16712 mips_opts.isa = p->isa;
16713 isa_set = true;
16714 mips_opts.init_ase = p->ase;
16715 }
16716 }
16717 else
16718 as_bad (_("unknown ISA or architecture %s"), name);
16719 }
16720 else if (strcmp (name, "autoextend") == 0)
16721 mips_opts.noautoextend = 0;
16722 else if (strcmp (name, "noautoextend") == 0)
16723 mips_opts.noautoextend = 1;
16724 else if (strcmp (name, "insn32") == 0)
16725 mips_opts.insn32 = true;
16726 else if (strcmp (name, "noinsn32") == 0)
16727 mips_opts.insn32 = false;
16728 else if (strcmp (name, "sym32") == 0)
16729 mips_opts.sym32 = true;
16730 else if (strcmp (name, "nosym32") == 0)
16731 mips_opts.sym32 = false;
16732 else
16733 return OPTION_TYPE_BAD;
16734
16735 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16736 }
16737
16738 /* Handle the .set pseudo-op. */
16739
16740 static void
16741 s_mipsset (int x ATTRIBUTE_UNUSED)
16742 {
16743 enum code_option_type type = OPTION_TYPE_NORMAL;
16744 char *name = input_line_pointer, ch;
16745
16746 file_mips_check_options ();
16747
16748 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16749 ++input_line_pointer;
16750 ch = *input_line_pointer;
16751 *input_line_pointer = '\0';
16752
16753 if (strchr (name, ','))
16754 {
16755 /* Generic ".set" directive; use the generic handler. */
16756 *input_line_pointer = ch;
16757 input_line_pointer = name;
16758 s_set (0);
16759 return;
16760 }
16761
16762 if (strcmp (name, "reorder") == 0)
16763 {
16764 if (mips_opts.noreorder)
16765 end_noreorder ();
16766 }
16767 else if (strcmp (name, "noreorder") == 0)
16768 {
16769 if (!mips_opts.noreorder)
16770 start_noreorder ();
16771 }
16772 else if (strcmp (name, "macro") == 0)
16773 mips_opts.warn_about_macros = 0;
16774 else if (strcmp (name, "nomacro") == 0)
16775 {
16776 if (mips_opts.noreorder == 0)
16777 as_bad (_("`noreorder' must be set before `nomacro'"));
16778 mips_opts.warn_about_macros = 1;
16779 }
16780 else if (strcmp (name, "gp=default") == 0)
16781 mips_opts.gp = file_mips_opts.gp;
16782 else if (strcmp (name, "fp=default") == 0)
16783 mips_opts.fp = file_mips_opts.fp;
16784 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16785 {
16786 mips_opts.isa = file_mips_opts.isa;
16787 mips_opts.arch = file_mips_opts.arch;
16788 mips_opts.init_ase = file_mips_opts.init_ase;
16789 mips_opts.gp = file_mips_opts.gp;
16790 mips_opts.fp = file_mips_opts.fp;
16791 }
16792 else if (strcmp (name, "push") == 0)
16793 {
16794 struct mips_option_stack *s;
16795
16796 s = XNEW (struct mips_option_stack);
16797 s->next = mips_opts_stack;
16798 s->options = mips_opts;
16799 mips_opts_stack = s;
16800 }
16801 else if (strcmp (name, "pop") == 0)
16802 {
16803 struct mips_option_stack *s;
16804
16805 s = mips_opts_stack;
16806 if (s == NULL)
16807 as_bad (_(".set pop with no .set push"));
16808 else
16809 {
16810 /* If we're changing the reorder mode we need to handle
16811 delay slots correctly. */
16812 if (s->options.noreorder && ! mips_opts.noreorder)
16813 start_noreorder ();
16814 else if (! s->options.noreorder && mips_opts.noreorder)
16815 end_noreorder ();
16816
16817 mips_opts = s->options;
16818 mips_opts_stack = s->next;
16819 free (s);
16820 }
16821 }
16822 else
16823 {
16824 type = parse_code_option (name);
16825 if (type == OPTION_TYPE_BAD)
16826 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16827 }
16828
16829 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16830 registers based on what is supported by the arch/cpu. */
16831 if (type == OPTION_TYPE_ISA)
16832 {
16833 switch (mips_opts.isa)
16834 {
16835 case 0:
16836 break;
16837 case ISA_MIPS1:
16838 /* MIPS I cannot support FPXX. */
16839 mips_opts.fp = 32;
16840 /* fall-through. */
16841 case ISA_MIPS2:
16842 case ISA_MIPS32:
16843 case ISA_MIPS32R2:
16844 case ISA_MIPS32R3:
16845 case ISA_MIPS32R5:
16846 mips_opts.gp = 32;
16847 if (mips_opts.fp != 0)
16848 mips_opts.fp = 32;
16849 break;
16850 case ISA_MIPS32R6:
16851 mips_opts.gp = 32;
16852 mips_opts.fp = 64;
16853 break;
16854 case ISA_MIPS3:
16855 case ISA_MIPS4:
16856 case ISA_MIPS5:
16857 case ISA_MIPS64:
16858 case ISA_MIPS64R2:
16859 case ISA_MIPS64R3:
16860 case ISA_MIPS64R5:
16861 case ISA_MIPS64R6:
16862 mips_opts.gp = 64;
16863 if (mips_opts.fp != 0)
16864 {
16865 if (mips_opts.arch == CPU_R5900)
16866 mips_opts.fp = 32;
16867 else
16868 mips_opts.fp = 64;
16869 }
16870 break;
16871 default:
16872 as_bad (_("unknown ISA level %s"), name + 4);
16873 break;
16874 }
16875 }
16876
16877 mips_check_options (&mips_opts, false);
16878
16879 mips_check_isa_supports_ases ();
16880 *input_line_pointer = ch;
16881 demand_empty_rest_of_line ();
16882 }
16883
16884 /* Handle the .module pseudo-op. */
16885
16886 static void
16887 s_module (int ignore ATTRIBUTE_UNUSED)
16888 {
16889 char *name = input_line_pointer, ch;
16890
16891 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16892 ++input_line_pointer;
16893 ch = *input_line_pointer;
16894 *input_line_pointer = '\0';
16895
16896 if (!file_mips_opts_checked)
16897 {
16898 if (parse_code_option (name) == OPTION_TYPE_BAD)
16899 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16900
16901 /* Update module level settings from mips_opts. */
16902 file_mips_opts = mips_opts;
16903 }
16904 else
16905 as_bad (_(".module is not permitted after generating code"));
16906
16907 *input_line_pointer = ch;
16908 demand_empty_rest_of_line ();
16909 }
16910
16911 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16912 .option pic2. It means to generate SVR4 PIC calls. */
16913
16914 static void
16915 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16916 {
16917 mips_pic = SVR4_PIC;
16918 mips_abicalls = true;
16919
16920 if (g_switch_seen && g_switch_value != 0)
16921 as_warn (_("-G may not be used with SVR4 PIC code"));
16922 g_switch_value = 0;
16923
16924 bfd_set_gp_size (stdoutput, 0);
16925 demand_empty_rest_of_line ();
16926 }
16927
16928 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16929 PIC code. It sets the $gp register for the function based on the
16930 function address, which is in the register named in the argument.
16931 This uses a relocation against _gp_disp, which is handled specially
16932 by the linker. The result is:
16933 lui $gp,%hi(_gp_disp)
16934 addiu $gp,$gp,%lo(_gp_disp)
16935 addu $gp,$gp,.cpload argument
16936 The .cpload argument is normally $25 == $t9.
16937
16938 The -mno-shared option changes this to:
16939 lui $gp,%hi(__gnu_local_gp)
16940 addiu $gp,$gp,%lo(__gnu_local_gp)
16941 and the argument is ignored. This saves an instruction, but the
16942 resulting code is not position independent; it uses an absolute
16943 address for __gnu_local_gp. Thus code assembled with -mno-shared
16944 can go into an ordinary executable, but not into a shared library. */
16945
16946 static void
16947 s_cpload (int ignore ATTRIBUTE_UNUSED)
16948 {
16949 expressionS ex;
16950 int reg;
16951 int in_shared;
16952
16953 file_mips_check_options ();
16954
16955 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16956 .cpload is ignored. */
16957 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16958 {
16959 s_ignore (0);
16960 return;
16961 }
16962
16963 if (mips_opts.mips16)
16964 {
16965 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16966 ignore_rest_of_line ();
16967 return;
16968 }
16969
16970 /* .cpload should be in a .set noreorder section. */
16971 if (mips_opts.noreorder == 0)
16972 as_warn (_(".cpload not in noreorder section"));
16973
16974 reg = tc_get_register (0);
16975
16976 /* If we need to produce a 64-bit address, we are better off using
16977 the default instruction sequence. */
16978 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16979
16980 ex.X_op = O_symbol;
16981 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16982 "__gnu_local_gp");
16983 ex.X_op_symbol = NULL;
16984 ex.X_add_number = 0;
16985
16986 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16987 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16988
16989 mips_mark_labels ();
16990 mips_assembling_insn = true;
16991
16992 macro_start ();
16993 macro_build_lui (&ex, mips_gp_register);
16994 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16995 mips_gp_register, BFD_RELOC_LO16);
16996 if (in_shared)
16997 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16998 mips_gp_register, reg);
16999 macro_end ();
17000
17001 mips_assembling_insn = false;
17002 demand_empty_rest_of_line ();
17003 }
17004
17005 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
17006 .cpsetup $reg1, offset|$reg2, label
17007
17008 If offset is given, this results in:
17009 sd $gp, offset($sp)
17010 lui $gp, %hi(%neg(%gp_rel(label)))
17011 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
17012 daddu $gp, $gp, $reg1
17013
17014 If $reg2 is given, this results in:
17015 or $reg2, $gp, $0
17016 lui $gp, %hi(%neg(%gp_rel(label)))
17017 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
17018 daddu $gp, $gp, $reg1
17019 $reg1 is normally $25 == $t9.
17020
17021 The -mno-shared option replaces the last three instructions with
17022 lui $gp,%hi(_gp)
17023 addiu $gp,$gp,%lo(_gp) */
17024
17025 static void
17026 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
17027 {
17028 expressionS ex_off;
17029 expressionS ex_sym;
17030 int reg1;
17031
17032 file_mips_check_options ();
17033
17034 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
17035 We also need NewABI support. */
17036 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17037 {
17038 s_ignore (0);
17039 return;
17040 }
17041
17042 if (mips_opts.mips16)
17043 {
17044 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
17045 ignore_rest_of_line ();
17046 return;
17047 }
17048
17049 reg1 = tc_get_register (0);
17050 SKIP_WHITESPACE ();
17051 if (*input_line_pointer != ',')
17052 {
17053 as_bad (_("missing argument separator ',' for .cpsetup"));
17054 return;
17055 }
17056 else
17057 ++input_line_pointer;
17058 SKIP_WHITESPACE ();
17059 if (*input_line_pointer == '$')
17060 {
17061 mips_cpreturn_register = tc_get_register (0);
17062 mips_cpreturn_offset = -1;
17063 }
17064 else
17065 {
17066 mips_cpreturn_offset = get_absolute_expression ();
17067 mips_cpreturn_register = -1;
17068 }
17069 SKIP_WHITESPACE ();
17070 if (*input_line_pointer != ',')
17071 {
17072 as_bad (_("missing argument separator ',' for .cpsetup"));
17073 return;
17074 }
17075 else
17076 ++input_line_pointer;
17077 SKIP_WHITESPACE ();
17078 expression (&ex_sym);
17079
17080 mips_mark_labels ();
17081 mips_assembling_insn = true;
17082
17083 macro_start ();
17084 if (mips_cpreturn_register == -1)
17085 {
17086 ex_off.X_op = O_constant;
17087 ex_off.X_add_symbol = NULL;
17088 ex_off.X_op_symbol = NULL;
17089 ex_off.X_add_number = mips_cpreturn_offset;
17090
17091 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17092 BFD_RELOC_LO16, SP);
17093 }
17094 else
17095 move_register (mips_cpreturn_register, mips_gp_register);
17096
17097 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
17098 {
17099 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
17100 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
17101 BFD_RELOC_HI16_S);
17102
17103 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
17104 mips_gp_register, -1, BFD_RELOC_GPREL16,
17105 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
17106
17107 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
17108 mips_gp_register, reg1);
17109 }
17110 else
17111 {
17112 expressionS ex;
17113
17114 ex.X_op = O_symbol;
17115 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
17116 ex.X_op_symbol = NULL;
17117 ex.X_add_number = 0;
17118
17119 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
17120 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
17121
17122 macro_build_lui (&ex, mips_gp_register);
17123 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17124 mips_gp_register, BFD_RELOC_LO16);
17125 }
17126
17127 macro_end ();
17128
17129 mips_assembling_insn = false;
17130 demand_empty_rest_of_line ();
17131 }
17132
17133 static void
17134 s_cplocal (int ignore ATTRIBUTE_UNUSED)
17135 {
17136 file_mips_check_options ();
17137
17138 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
17139 .cplocal is ignored. */
17140 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17141 {
17142 s_ignore (0);
17143 return;
17144 }
17145
17146 if (mips_opts.mips16)
17147 {
17148 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
17149 ignore_rest_of_line ();
17150 return;
17151 }
17152
17153 mips_gp_register = tc_get_register (0);
17154 demand_empty_rest_of_line ();
17155 }
17156
17157 /* Handle the .cprestore pseudo-op. This stores $gp into a given
17158 offset from $sp. The offset is remembered, and after making a PIC
17159 call $gp is restored from that location. */
17160
17161 static void
17162 s_cprestore (int ignore ATTRIBUTE_UNUSED)
17163 {
17164 expressionS ex;
17165
17166 file_mips_check_options ();
17167
17168 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
17169 .cprestore is ignored. */
17170 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
17171 {
17172 s_ignore (0);
17173 return;
17174 }
17175
17176 if (mips_opts.mips16)
17177 {
17178 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
17179 ignore_rest_of_line ();
17180 return;
17181 }
17182
17183 mips_cprestore_offset = get_absolute_expression ();
17184 mips_cprestore_valid = 1;
17185
17186 ex.X_op = O_constant;
17187 ex.X_add_symbol = NULL;
17188 ex.X_op_symbol = NULL;
17189 ex.X_add_number = mips_cprestore_offset;
17190
17191 mips_mark_labels ();
17192 mips_assembling_insn = true;
17193
17194 macro_start ();
17195 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
17196 SP, HAVE_64BIT_ADDRESSES);
17197 macro_end ();
17198
17199 mips_assembling_insn = false;
17200 demand_empty_rest_of_line ();
17201 }
17202
17203 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
17204 was given in the preceding .cpsetup, it results in:
17205 ld $gp, offset($sp)
17206
17207 If a register $reg2 was given there, it results in:
17208 or $gp, $reg2, $0 */
17209
17210 static void
17211 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
17212 {
17213 expressionS ex;
17214
17215 file_mips_check_options ();
17216
17217 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
17218 We also need NewABI support. */
17219 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17220 {
17221 s_ignore (0);
17222 return;
17223 }
17224
17225 if (mips_opts.mips16)
17226 {
17227 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
17228 ignore_rest_of_line ();
17229 return;
17230 }
17231
17232 mips_mark_labels ();
17233 mips_assembling_insn = true;
17234
17235 macro_start ();
17236 if (mips_cpreturn_register == -1)
17237 {
17238 ex.X_op = O_constant;
17239 ex.X_add_symbol = NULL;
17240 ex.X_op_symbol = NULL;
17241 ex.X_add_number = mips_cpreturn_offset;
17242
17243 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
17244 }
17245 else
17246 move_register (mips_gp_register, mips_cpreturn_register);
17247
17248 macro_end ();
17249
17250 mips_assembling_insn = false;
17251 demand_empty_rest_of_line ();
17252 }
17253
17254 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
17255 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
17256 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
17257 debug information or MIPS16 TLS. */
17258
17259 static void
17260 s_tls_rel_directive (const size_t bytes, const char *dirstr,
17261 bfd_reloc_code_real_type rtype)
17262 {
17263 expressionS ex;
17264 char *p;
17265
17266 expression (&ex);
17267
17268 if (ex.X_op != O_symbol)
17269 {
17270 as_bad (_("unsupported use of %s"), dirstr);
17271 ignore_rest_of_line ();
17272 }
17273
17274 p = frag_more (bytes);
17275 md_number_to_chars (p, 0, bytes);
17276 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, false, rtype);
17277 demand_empty_rest_of_line ();
17278 mips_clear_insn_labels ();
17279 }
17280
17281 /* Handle .dtprelword. */
17282
17283 static void
17284 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
17285 {
17286 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
17287 }
17288
17289 /* Handle .dtpreldword. */
17290
17291 static void
17292 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
17293 {
17294 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
17295 }
17296
17297 /* Handle .tprelword. */
17298
17299 static void
17300 s_tprelword (int ignore ATTRIBUTE_UNUSED)
17301 {
17302 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
17303 }
17304
17305 /* Handle .tpreldword. */
17306
17307 static void
17308 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
17309 {
17310 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
17311 }
17312
17313 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17314 code. It sets the offset to use in gp_rel relocations. */
17315
17316 static void
17317 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
17318 {
17319 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17320 We also need NewABI support. */
17321 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17322 {
17323 s_ignore (0);
17324 return;
17325 }
17326
17327 mips_gprel_offset = get_absolute_expression ();
17328
17329 demand_empty_rest_of_line ();
17330 }
17331
17332 /* Handle the .gpword pseudo-op. This is used when generating PIC
17333 code. It generates a 32 bit GP relative reloc. */
17334
17335 static void
17336 s_gpword (int ignore ATTRIBUTE_UNUSED)
17337 {
17338 segment_info_type *si;
17339 struct insn_label_list *l;
17340 expressionS ex;
17341 char *p;
17342
17343 /* When not generating PIC code, this is treated as .word. */
17344 if (mips_pic != SVR4_PIC)
17345 {
17346 s_cons (2);
17347 return;
17348 }
17349
17350 si = seg_info (now_seg);
17351 l = si->label_list;
17352 mips_emit_delays ();
17353 if (auto_align)
17354 mips_align (2, 0, l);
17355
17356 expression (&ex);
17357 mips_clear_insn_labels ();
17358
17359 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17360 {
17361 as_bad (_("unsupported use of .gpword"));
17362 ignore_rest_of_line ();
17363 }
17364
17365 p = frag_more (4);
17366 md_number_to_chars (p, 0, 4);
17367 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, false,
17368 BFD_RELOC_GPREL32);
17369
17370 demand_empty_rest_of_line ();
17371 }
17372
17373 static void
17374 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17375 {
17376 segment_info_type *si;
17377 struct insn_label_list *l;
17378 expressionS ex;
17379 char *p;
17380
17381 /* When not generating PIC code, this is treated as .dword. */
17382 if (mips_pic != SVR4_PIC)
17383 {
17384 s_cons (3);
17385 return;
17386 }
17387
17388 si = seg_info (now_seg);
17389 l = si->label_list;
17390 mips_emit_delays ();
17391 if (auto_align)
17392 mips_align (3, 0, l);
17393
17394 expression (&ex);
17395 mips_clear_insn_labels ();
17396
17397 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17398 {
17399 as_bad (_("unsupported use of .gpdword"));
17400 ignore_rest_of_line ();
17401 }
17402
17403 p = frag_more (8);
17404 md_number_to_chars (p, 0, 8);
17405 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, false,
17406 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17407
17408 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17409 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17410 false, BFD_RELOC_64)->fx_tcbit = 1;
17411
17412 demand_empty_rest_of_line ();
17413 }
17414
17415 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17416 tables. It generates a R_MIPS_EH reloc. */
17417
17418 static void
17419 s_ehword (int ignore ATTRIBUTE_UNUSED)
17420 {
17421 expressionS ex;
17422 char *p;
17423
17424 mips_emit_delays ();
17425
17426 expression (&ex);
17427 mips_clear_insn_labels ();
17428
17429 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17430 {
17431 as_bad (_("unsupported use of .ehword"));
17432 ignore_rest_of_line ();
17433 }
17434
17435 p = frag_more (4);
17436 md_number_to_chars (p, 0, 4);
17437 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, false,
17438 BFD_RELOC_32_PCREL);
17439
17440 demand_empty_rest_of_line ();
17441 }
17442
17443 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17444 tables in SVR4 PIC code. */
17445
17446 static void
17447 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17448 {
17449 int reg;
17450
17451 file_mips_check_options ();
17452
17453 /* This is ignored when not generating SVR4 PIC code. */
17454 if (mips_pic != SVR4_PIC)
17455 {
17456 s_ignore (0);
17457 return;
17458 }
17459
17460 mips_mark_labels ();
17461 mips_assembling_insn = true;
17462
17463 /* Add $gp to the register named as an argument. */
17464 macro_start ();
17465 reg = tc_get_register (0);
17466 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17467 macro_end ();
17468
17469 mips_assembling_insn = false;
17470 demand_empty_rest_of_line ();
17471 }
17472
17473 /* Handle the .insn pseudo-op. This marks instruction labels in
17474 mips16/micromips mode. This permits the linker to handle them specially,
17475 such as generating jalx instructions when needed. We also make
17476 them odd for the duration of the assembly, in order to generate the
17477 right sort of code. We will make them even in the adjust_symtab
17478 routine, while leaving them marked. This is convenient for the
17479 debugger and the disassembler. The linker knows to make them odd
17480 again. */
17481
17482 static void
17483 s_insn (int ignore ATTRIBUTE_UNUSED)
17484 {
17485 file_mips_check_options ();
17486 file_ase_mips16 |= mips_opts.mips16;
17487 file_ase_micromips |= mips_opts.micromips;
17488
17489 mips_mark_labels ();
17490
17491 demand_empty_rest_of_line ();
17492 }
17493
17494 /* Handle the .nan pseudo-op. */
17495
17496 static void
17497 s_nan (int ignore ATTRIBUTE_UNUSED)
17498 {
17499 static const char str_legacy[] = "legacy";
17500 static const char str_2008[] = "2008";
17501 size_t i;
17502
17503 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17504
17505 if (i == sizeof (str_2008) - 1
17506 && memcmp (input_line_pointer, str_2008, i) == 0)
17507 mips_nan2008 = 1;
17508 else if (i == sizeof (str_legacy) - 1
17509 && memcmp (input_line_pointer, str_legacy, i) == 0)
17510 {
17511 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17512 mips_nan2008 = 0;
17513 else
17514 as_bad (_("`%s' does not support legacy NaN"),
17515 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17516 }
17517 else
17518 as_bad (_("bad .nan directive"));
17519
17520 input_line_pointer += i;
17521 demand_empty_rest_of_line ();
17522 }
17523
17524 /* Handle a .stab[snd] directive. Ideally these directives would be
17525 implemented in a transparent way, so that removing them would not
17526 have any effect on the generated instructions. However, s_stab
17527 internally changes the section, so in practice we need to decide
17528 now whether the preceding label marks compressed code. We do not
17529 support changing the compression mode of a label after a .stab*
17530 directive, such as in:
17531
17532 foo:
17533 .stabs ...
17534 .set mips16
17535
17536 so the current mode wins. */
17537
17538 static void
17539 s_mips_stab (int type)
17540 {
17541 file_mips_check_options ();
17542 mips_mark_labels ();
17543 s_stab (type);
17544 }
17545
17546 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17547
17548 static void
17549 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17550 {
17551 char *name;
17552 int c;
17553 symbolS *symbolP;
17554 expressionS exp;
17555
17556 c = get_symbol_name (&name);
17557 symbolP = symbol_find_or_make (name);
17558 S_SET_WEAK (symbolP);
17559 *input_line_pointer = c;
17560
17561 SKIP_WHITESPACE_AFTER_NAME ();
17562
17563 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17564 {
17565 if (S_IS_DEFINED (symbolP))
17566 {
17567 as_bad (_("ignoring attempt to redefine symbol %s"),
17568 S_GET_NAME (symbolP));
17569 ignore_rest_of_line ();
17570 return;
17571 }
17572
17573 if (*input_line_pointer == ',')
17574 {
17575 ++input_line_pointer;
17576 SKIP_WHITESPACE ();
17577 }
17578
17579 expression (&exp);
17580 if (exp.X_op != O_symbol)
17581 {
17582 as_bad (_("bad .weakext directive"));
17583 ignore_rest_of_line ();
17584 return;
17585 }
17586 symbol_set_value_expression (symbolP, &exp);
17587 }
17588
17589 demand_empty_rest_of_line ();
17590 }
17591
17592 /* Parse a register string into a number. Called from the ECOFF code
17593 to parse .frame. The argument is non-zero if this is the frame
17594 register, so that we can record it in mips_frame_reg. */
17595
17596 int
17597 tc_get_register (int frame)
17598 {
17599 unsigned int reg;
17600
17601 SKIP_WHITESPACE ();
17602 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17603 reg = 0;
17604 if (frame)
17605 {
17606 mips_frame_reg = reg != 0 ? reg : SP;
17607 mips_frame_reg_valid = 1;
17608 mips_cprestore_valid = 0;
17609 }
17610 return reg;
17611 }
17612
17613 valueT
17614 md_section_align (asection *seg, valueT addr)
17615 {
17616 int align = bfd_section_alignment (seg);
17617
17618 /* We don't need to align ELF sections to the full alignment.
17619 However, Irix 5 may prefer that we align them at least to a 16
17620 byte boundary. We don't bother to align the sections if we
17621 are targeted for an embedded system. */
17622 if (startswith (TARGET_OS, "elf"))
17623 return addr;
17624 if (align > 4)
17625 align = 4;
17626
17627 return ((addr + (1 << align) - 1) & -(1 << align));
17628 }
17629
17630 /* Utility routine, called from above as well. If called while the
17631 input file is still being read, it's only an approximation. (For
17632 example, a symbol may later become defined which appeared to be
17633 undefined earlier.) */
17634
17635 static int
17636 nopic_need_relax (symbolS *sym, int before_relaxing)
17637 {
17638 if (sym == 0)
17639 return 0;
17640
17641 if (g_switch_value > 0)
17642 {
17643 const char *symname;
17644 int change;
17645
17646 /* Find out whether this symbol can be referenced off the $gp
17647 register. It can be if it is smaller than the -G size or if
17648 it is in the .sdata or .sbss section. Certain symbols can
17649 not be referenced off the $gp, although it appears as though
17650 they can. */
17651 symname = S_GET_NAME (sym);
17652 if (symname != (const char *) NULL
17653 && (strcmp (symname, "eprol") == 0
17654 || strcmp (symname, "etext") == 0
17655 || strcmp (symname, "_gp") == 0
17656 || strcmp (symname, "edata") == 0
17657 || strcmp (symname, "_fbss") == 0
17658 || strcmp (symname, "_fdata") == 0
17659 || strcmp (symname, "_ftext") == 0
17660 || strcmp (symname, "end") == 0
17661 || strcmp (symname, "_gp_disp") == 0))
17662 change = 1;
17663 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17664 && (0
17665 #ifndef NO_ECOFF_DEBUGGING
17666 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17667 && (symbol_get_obj (sym)->ecoff_extern_size
17668 <= g_switch_value))
17669 #endif
17670 /* We must defer this decision until after the whole
17671 file has been read, since there might be a .extern
17672 after the first use of this symbol. */
17673 || (before_relaxing
17674 #ifndef NO_ECOFF_DEBUGGING
17675 && symbol_get_obj (sym)->ecoff_extern_size == 0
17676 #endif
17677 && S_GET_VALUE (sym) == 0)
17678 || (S_GET_VALUE (sym) != 0
17679 && S_GET_VALUE (sym) <= g_switch_value)))
17680 change = 0;
17681 else
17682 {
17683 const char *segname;
17684
17685 segname = segment_name (S_GET_SEGMENT (sym));
17686 gas_assert (strcmp (segname, ".lit8") != 0
17687 && strcmp (segname, ".lit4") != 0);
17688 change = (strcmp (segname, ".sdata") != 0
17689 && strcmp (segname, ".sbss") != 0
17690 && !startswith (segname, ".sdata.")
17691 && !startswith (segname, ".sbss.")
17692 && !startswith (segname, ".gnu.linkonce.sb.")
17693 && !startswith (segname, ".gnu.linkonce.s."));
17694 }
17695 return change;
17696 }
17697 else
17698 /* We are not optimizing for the $gp register. */
17699 return 1;
17700 }
17701
17702
17703 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17704
17705 static bool
17706 pic_need_relax (symbolS *sym)
17707 {
17708 asection *symsec;
17709
17710 if (!sym)
17711 return false;
17712
17713 /* Handle the case of a symbol equated to another symbol. */
17714 while (symbol_equated_reloc_p (sym))
17715 {
17716 symbolS *n;
17717
17718 /* It's possible to get a loop here in a badly written program. */
17719 n = symbol_get_value_expression (sym)->X_add_symbol;
17720 if (n == sym)
17721 break;
17722 sym = n;
17723 }
17724
17725 if (symbol_section_p (sym))
17726 return true;
17727
17728 symsec = S_GET_SEGMENT (sym);
17729
17730 /* This must duplicate the test in adjust_reloc_syms. */
17731 return (!bfd_is_und_section (symsec)
17732 && !bfd_is_abs_section (symsec)
17733 && !bfd_is_com_section (symsec)
17734 /* A global or weak symbol is treated as external. */
17735 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17736 }
17737 \f
17738 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17739 convert a section-relative value VAL to the equivalent PC-relative
17740 value. */
17741
17742 static offsetT
17743 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17744 offsetT val, long stretch)
17745 {
17746 fragS *sym_frag;
17747 addressT addr;
17748
17749 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17750
17751 sym_frag = symbol_get_frag (fragp->fr_symbol);
17752
17753 /* If the relax_marker of the symbol fragment differs from the
17754 relax_marker of this fragment, we have not yet adjusted the
17755 symbol fragment fr_address. We want to add in STRETCH in
17756 order to get a better estimate of the address. This
17757 particularly matters because of the shift bits. */
17758 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17759 {
17760 fragS *f;
17761
17762 /* Adjust stretch for any alignment frag. Note that if have
17763 been expanding the earlier code, the symbol may be
17764 defined in what appears to be an earlier frag. FIXME:
17765 This doesn't handle the fr_subtype field, which specifies
17766 a maximum number of bytes to skip when doing an
17767 alignment. */
17768 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17769 {
17770 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17771 {
17772 if (stretch < 0)
17773 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17774 else
17775 stretch &= ~((1 << (int) f->fr_offset) - 1);
17776 if (stretch == 0)
17777 break;
17778 }
17779 }
17780 if (f != NULL)
17781 val += stretch;
17782 }
17783
17784 addr = fragp->fr_address + fragp->fr_fix;
17785
17786 /* The base address rules are complicated. The base address of
17787 a branch is the following instruction. The base address of a
17788 PC relative load or add is the instruction itself, but if it
17789 is in a delay slot (in which case it can not be extended) use
17790 the address of the instruction whose delay slot it is in. */
17791 if (pcrel_op->include_isa_bit)
17792 {
17793 addr += 2;
17794
17795 /* If we are currently assuming that this frag should be
17796 extended, then the current address is two bytes higher. */
17797 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17798 addr += 2;
17799
17800 /* Ignore the low bit in the target, since it will be set
17801 for a text label. */
17802 val &= -2;
17803 }
17804 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17805 addr -= 4;
17806 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17807 addr -= 2;
17808
17809 val -= addr & -(1 << pcrel_op->align_log2);
17810
17811 return val;
17812 }
17813
17814 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17815 extended opcode. SEC is the section the frag is in. */
17816
17817 static int
17818 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17819 {
17820 const struct mips_int_operand *operand;
17821 offsetT val;
17822 segT symsec;
17823 int type;
17824
17825 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17826 return 0;
17827 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17828 return 1;
17829
17830 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17831 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17832 operand = mips16_immed_operand (type, false);
17833 if (S_FORCE_RELOC (fragp->fr_symbol, true)
17834 || (operand->root.type == OP_PCREL
17835 ? sec != symsec
17836 : !bfd_is_abs_section (symsec)))
17837 return 1;
17838
17839 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17840
17841 if (operand->root.type == OP_PCREL)
17842 {
17843 const struct mips_pcrel_operand *pcrel_op;
17844 offsetT maxtiny;
17845
17846 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17847 return 1;
17848
17849 pcrel_op = (const struct mips_pcrel_operand *) operand;
17850 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17851
17852 /* If any of the shifted bits are set, we must use an extended
17853 opcode. If the address depends on the size of this
17854 instruction, this can lead to a loop, so we arrange to always
17855 use an extended opcode. */
17856 if ((val & ((1 << operand->shift) - 1)) != 0)
17857 {
17858 fragp->fr_subtype =
17859 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17860 return 1;
17861 }
17862
17863 /* If we are about to mark a frag as extended because the value
17864 is precisely the next value above maxtiny, then there is a
17865 chance of an infinite loop as in the following code:
17866 la $4,foo
17867 .skip 1020
17868 .align 2
17869 foo:
17870 In this case when the la is extended, foo is 0x3fc bytes
17871 away, so the la can be shrunk, but then foo is 0x400 away, so
17872 the la must be extended. To avoid this loop, we mark the
17873 frag as extended if it was small, and is about to become
17874 extended with the next value above maxtiny. */
17875 maxtiny = mips_int_operand_max (operand);
17876 if (val == maxtiny + (1 << operand->shift)
17877 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17878 {
17879 fragp->fr_subtype =
17880 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17881 return 1;
17882 }
17883 }
17884
17885 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17886 }
17887
17888 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17889 macro expansion. SEC is the section the frag is in. We only
17890 support PC-relative instructions (LA, DLA, LW, LD) here, in
17891 non-PIC code using 32-bit addressing. */
17892
17893 static int
17894 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17895 {
17896 const struct mips_pcrel_operand *pcrel_op;
17897 const struct mips_int_operand *operand;
17898 offsetT val;
17899 segT symsec;
17900 int type;
17901
17902 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17903
17904 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17905 return 0;
17906 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17907 return 0;
17908
17909 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17910 switch (type)
17911 {
17912 case 'A':
17913 case 'B':
17914 case 'E':
17915 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17916 if (bfd_is_abs_section (symsec))
17917 return 1;
17918 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17919 return 0;
17920 if (S_FORCE_RELOC (fragp->fr_symbol, true) || sec != symsec)
17921 return 1;
17922
17923 operand = mips16_immed_operand (type, true);
17924 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17925 pcrel_op = (const struct mips_pcrel_operand *) operand;
17926 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17927
17928 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17929
17930 default:
17931 return 0;
17932 }
17933 }
17934
17935 /* Compute the length of a branch sequence, and adjust the
17936 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17937 worst-case length is computed, with UPDATE being used to indicate
17938 whether an unconditional (-1), branch-likely (+1) or regular (0)
17939 branch is to be computed. */
17940 static int
17941 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17942 {
17943 bool toofar;
17944 int length;
17945
17946 if (fragp
17947 && S_IS_DEFINED (fragp->fr_symbol)
17948 && !S_IS_WEAK (fragp->fr_symbol)
17949 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17950 {
17951 addressT addr;
17952 offsetT val;
17953
17954 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17955
17956 addr = fragp->fr_address + fragp->fr_fix + 4;
17957
17958 val -= addr;
17959
17960 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17961 }
17962 else
17963 /* If the symbol is not defined or it's in a different segment,
17964 we emit the long sequence. */
17965 toofar = true;
17966
17967 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17968 fragp->fr_subtype
17969 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17970 RELAX_BRANCH_PIC (fragp->fr_subtype),
17971 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17972 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17973 RELAX_BRANCH_LINK (fragp->fr_subtype),
17974 toofar);
17975
17976 length = 4;
17977 if (toofar)
17978 {
17979 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17980 length += 8;
17981
17982 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17983 {
17984 /* Additional space for PIC loading of target address. */
17985 length += 8;
17986 if (mips_opts.isa == ISA_MIPS1)
17987 /* Additional space for $at-stabilizing nop. */
17988 length += 4;
17989 }
17990
17991 /* If branch is conditional. */
17992 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17993 length += 8;
17994 }
17995
17996 return length;
17997 }
17998
17999 /* Get a FRAG's branch instruction delay slot size, either from the
18000 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
18001 or SHORT_INSN_SIZE otherwise. */
18002
18003 static int
18004 frag_branch_delay_slot_size (fragS *fragp, bool al, int short_insn_size)
18005 {
18006 char *buf = fragp->fr_literal + fragp->fr_fix;
18007
18008 if (al)
18009 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
18010 else
18011 return short_insn_size;
18012 }
18013
18014 /* Compute the length of a branch sequence, and adjust the
18015 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
18016 worst-case length is computed, with UPDATE being used to indicate
18017 whether an unconditional (-1), or regular (0) branch is to be
18018 computed. */
18019
18020 static int
18021 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
18022 {
18023 bool insn32 = true;
18024 bool nods = true;
18025 bool pic = true;
18026 bool al = true;
18027 int short_insn_size;
18028 bool toofar;
18029 int length;
18030
18031 if (fragp)
18032 {
18033 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18034 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18035 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18036 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18037 }
18038 short_insn_size = insn32 ? 4 : 2;
18039
18040 if (fragp
18041 && S_IS_DEFINED (fragp->fr_symbol)
18042 && !S_IS_WEAK (fragp->fr_symbol)
18043 && sec == S_GET_SEGMENT (fragp->fr_symbol))
18044 {
18045 addressT addr;
18046 offsetT val;
18047
18048 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
18049 /* Ignore the low bit in the target, since it will be set
18050 for a text label. */
18051 if ((val & 1) != 0)
18052 --val;
18053
18054 addr = fragp->fr_address + fragp->fr_fix + 4;
18055
18056 val -= addr;
18057
18058 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
18059 }
18060 else
18061 /* If the symbol is not defined or it's in a different segment,
18062 we emit the long sequence. */
18063 toofar = true;
18064
18065 if (fragp && update
18066 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18067 fragp->fr_subtype = (toofar
18068 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
18069 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
18070
18071 length = 4;
18072 if (toofar)
18073 {
18074 bool compact_known = fragp != NULL;
18075 bool compact = false;
18076 bool uncond;
18077
18078 if (fragp)
18079 {
18080 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18081 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
18082 }
18083 else
18084 uncond = update < 0;
18085
18086 /* If label is out of range, we turn branch <br>:
18087
18088 <br> label # 4 bytes
18089 0:
18090
18091 into:
18092
18093 j label # 4 bytes
18094 nop # 2/4 bytes if
18095 # compact && (!PIC || insn32)
18096 0:
18097 */
18098 if ((!pic || insn32) && (!compact_known || compact))
18099 length += short_insn_size;
18100
18101 /* If assembling PIC code, we further turn:
18102
18103 j label # 4 bytes
18104
18105 into:
18106
18107 lw/ld at, %got(label)(gp) # 4 bytes
18108 d/addiu at, %lo(label) # 4 bytes
18109 jr/c at # 2/4 bytes
18110 */
18111 if (pic)
18112 length += 4 + short_insn_size;
18113
18114 /* Add an extra nop if the jump has no compact form and we need
18115 to fill the delay slot. */
18116 if ((!pic || al) && nods)
18117 length += (fragp
18118 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
18119 : short_insn_size);
18120
18121 /* If branch <br> is conditional, we prepend negated branch <brneg>:
18122
18123 <brneg> 0f # 4 bytes
18124 nop # 2/4 bytes if !compact
18125 */
18126 if (!uncond)
18127 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
18128 }
18129 else if (nods)
18130 {
18131 /* Add an extra nop to fill the delay slot. */
18132 gas_assert (fragp);
18133 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
18134 }
18135
18136 return length;
18137 }
18138
18139 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
18140 bit accordingly. */
18141
18142 static int
18143 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
18144 {
18145 bool toofar;
18146
18147 if (fragp
18148 && S_IS_DEFINED (fragp->fr_symbol)
18149 && !S_IS_WEAK (fragp->fr_symbol)
18150 && sec == S_GET_SEGMENT (fragp->fr_symbol))
18151 {
18152 addressT addr;
18153 offsetT val;
18154 int type;
18155
18156 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
18157 /* Ignore the low bit in the target, since it will be set
18158 for a text label. */
18159 if ((val & 1) != 0)
18160 --val;
18161
18162 /* Assume this is a 2-byte branch. */
18163 addr = fragp->fr_address + fragp->fr_fix + 2;
18164
18165 /* We try to avoid the infinite loop by not adding 2 more bytes for
18166 long branches. */
18167
18168 val -= addr;
18169
18170 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18171 if (type == 'D')
18172 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
18173 else if (type == 'E')
18174 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
18175 else
18176 abort ();
18177 }
18178 else
18179 /* If the symbol is not defined or it's in a different segment,
18180 we emit a normal 32-bit branch. */
18181 toofar = true;
18182
18183 if (fragp && update
18184 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18185 fragp->fr_subtype
18186 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
18187 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
18188
18189 if (toofar)
18190 return 4;
18191
18192 return 2;
18193 }
18194
18195 /* Estimate the size of a frag before relaxing. Unless this is the
18196 mips16, we are not really relaxing here, and the final size is
18197 encoded in the subtype information. For the mips16, we have to
18198 decide whether we are using an extended opcode or not. */
18199
18200 int
18201 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
18202 {
18203 int change;
18204
18205 if (RELAX_BRANCH_P (fragp->fr_subtype))
18206 {
18207
18208 fragp->fr_var = relaxed_branch_length (fragp, segtype, false);
18209
18210 return fragp->fr_var;
18211 }
18212
18213 if (RELAX_MIPS16_P (fragp->fr_subtype))
18214 {
18215 /* We don't want to modify the EXTENDED bit here; it might get us
18216 into infinite loops. We change it only in mips_relax_frag(). */
18217 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18218 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
18219 else
18220 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
18221 }
18222
18223 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18224 {
18225 int length = 4;
18226
18227 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18228 length = relaxed_micromips_16bit_branch_length (fragp, segtype, false);
18229 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18230 length = relaxed_micromips_32bit_branch_length (fragp, segtype, false);
18231 fragp->fr_var = length;
18232
18233 return length;
18234 }
18235
18236 if (mips_pic == VXWORKS_PIC)
18237 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
18238 change = 0;
18239 else if (RELAX_PIC (fragp->fr_subtype))
18240 change = pic_need_relax (fragp->fr_symbol);
18241 else
18242 change = nopic_need_relax (fragp->fr_symbol, 0);
18243
18244 if (change)
18245 {
18246 fragp->fr_subtype |= RELAX_USE_SECOND;
18247 return -RELAX_FIRST (fragp->fr_subtype);
18248 }
18249 else
18250 return -RELAX_SECOND (fragp->fr_subtype);
18251 }
18252
18253 /* This is called to see whether a reloc against a defined symbol
18254 should be converted into a reloc against a section. */
18255
18256 int
18257 mips_fix_adjustable (fixS *fixp)
18258 {
18259 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
18260 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18261 return 0;
18262
18263 if (fixp->fx_addsy == NULL)
18264 return 1;
18265
18266 /* Allow relocs used for EH tables. */
18267 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
18268 return 1;
18269
18270 /* If symbol SYM is in a mergeable section, relocations of the form
18271 SYM + 0 can usually be made section-relative. The mergeable data
18272 is then identified by the section offset rather than by the symbol.
18273
18274 However, if we're generating REL LO16 relocations, the offset is split
18275 between the LO16 and partnering high part relocation. The linker will
18276 need to recalculate the complete offset in order to correctly identify
18277 the merge data.
18278
18279 The linker has traditionally not looked for the partnering high part
18280 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
18281 placed anywhere. Rather than break backwards compatibility by changing
18282 this, it seems better not to force the issue, and instead keep the
18283 original symbol. This will work with either linker behavior. */
18284 if ((lo16_reloc_p (fixp->fx_r_type)
18285 || reloc_needs_lo_p (fixp->fx_r_type))
18286 && HAVE_IN_PLACE_ADDENDS
18287 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
18288 return 0;
18289
18290 /* There is no place to store an in-place offset for JALR relocations. */
18291 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
18292 return 0;
18293
18294 /* Likewise an in-range offset of limited PC-relative relocations may
18295 overflow the in-place relocatable field if recalculated against the
18296 start address of the symbol's containing section.
18297
18298 Also, PC relative relocations for MIPS R6 need to be symbol rather than
18299 section relative to allow linker relaxations to be performed later on. */
18300 if (limited_pcrel_reloc_p (fixp->fx_r_type)
18301 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
18302 return 0;
18303
18304 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
18305 to a floating-point stub. The same is true for non-R_MIPS16_26
18306 relocations against MIPS16 functions; in this case, the stub becomes
18307 the function's canonical address.
18308
18309 Floating-point stubs are stored in unique .mips16.call.* or
18310 .mips16.fn.* sections. If a stub T for function F is in section S,
18311 the first relocation in section S must be against F; this is how the
18312 linker determines the target function. All relocations that might
18313 resolve to T must also be against F. We therefore have the following
18314 restrictions, which are given in an intentionally-redundant way:
18315
18316 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
18317 symbols.
18318
18319 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18320 if that stub might be used.
18321
18322 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18323 symbols.
18324
18325 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18326 that stub might be used.
18327
18328 There is a further restriction:
18329
18330 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
18331 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
18332 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18333 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18334 against MIPS16 or microMIPS symbols because we need to keep the
18335 MIPS16 or microMIPS symbol for the purpose of mode mismatch
18336 detection and JAL or BAL to JALX instruction conversion in the
18337 linker.
18338
18339 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
18340 against a MIPS16 symbol. We deal with (5) by additionally leaving
18341 alone any jump and branch relocations against a microMIPS symbol.
18342
18343 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18344 relocation against some symbol R, no relocation against R may be
18345 reduced. (Note that this deals with (2) as well as (1) because
18346 relocations against global symbols will never be reduced on ELF
18347 targets.) This approach is a little simpler than trying to detect
18348 stub sections, and gives the "all or nothing" per-symbol consistency
18349 that we have for MIPS16 symbols. */
18350 if (fixp->fx_subsy == NULL
18351 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
18352 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
18353 && (jmp_reloc_p (fixp->fx_r_type)
18354 || b_reloc_p (fixp->fx_r_type)))
18355 || *symbol_get_tc (fixp->fx_addsy)))
18356 return 0;
18357
18358 return 1;
18359 }
18360
18361 /* Translate internal representation of relocation info to BFD target
18362 format. */
18363
18364 arelent **
18365 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
18366 {
18367 static arelent *retval[4];
18368 arelent *reloc;
18369 bfd_reloc_code_real_type code;
18370
18371 memset (retval, 0, sizeof(retval));
18372 reloc = retval[0] = XCNEW (arelent);
18373 reloc->sym_ptr_ptr = XNEW (asymbol *);
18374 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18375 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18376
18377 if (fixp->fx_pcrel)
18378 {
18379 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
18380 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
18381 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18382 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
18383 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
18384 || fixp->fx_r_type == BFD_RELOC_32_PCREL
18385 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
18386 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
18387 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
18388 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
18389 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
18390 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
18391
18392 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18393 Relocations want only the symbol offset. */
18394 switch (fixp->fx_r_type)
18395 {
18396 case BFD_RELOC_MIPS_18_PCREL_S3:
18397 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18398 break;
18399 default:
18400 reloc->addend = fixp->fx_addnumber + reloc->address;
18401 break;
18402 }
18403 }
18404 else if (HAVE_IN_PLACE_ADDENDS
18405 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18406 && (read_compressed_insn (fixp->fx_frag->fr_literal
18407 + fixp->fx_where, 4) >> 26) == 0x3c)
18408 {
18409 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18410 addend accordingly. */
18411 reloc->addend = fixp->fx_addnumber >> 1;
18412 }
18413 else
18414 reloc->addend = fixp->fx_addnumber;
18415
18416 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18417 entry to be used in the relocation's section offset. */
18418 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18419 {
18420 reloc->address = reloc->addend;
18421 reloc->addend = 0;
18422 }
18423
18424 code = fixp->fx_r_type;
18425
18426 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18427 if (reloc->howto == NULL)
18428 {
18429 as_bad_where (fixp->fx_file, fixp->fx_line,
18430 _("cannot represent %s relocation in this object file"
18431 " format"),
18432 bfd_get_reloc_code_name (code));
18433 retval[0] = NULL;
18434 }
18435
18436 return retval;
18437 }
18438
18439 /* Relax a machine dependent frag. This returns the amount by which
18440 the current size of the frag should change. */
18441
18442 int
18443 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18444 {
18445 if (RELAX_BRANCH_P (fragp->fr_subtype))
18446 {
18447 offsetT old_var = fragp->fr_var;
18448
18449 fragp->fr_var = relaxed_branch_length (fragp, sec, true);
18450
18451 return fragp->fr_var - old_var;
18452 }
18453
18454 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18455 {
18456 offsetT old_var = fragp->fr_var;
18457 offsetT new_var = 4;
18458
18459 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18460 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, true);
18461 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18462 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, true);
18463 fragp->fr_var = new_var;
18464
18465 return new_var - old_var;
18466 }
18467
18468 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18469 return 0;
18470
18471 if (!mips16_extended_frag (fragp, sec, stretch))
18472 {
18473 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18474 {
18475 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18476 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
18477 }
18478 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18479 {
18480 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18481 return -2;
18482 }
18483 else
18484 return 0;
18485 }
18486 else if (!mips16_macro_frag (fragp, sec, stretch))
18487 {
18488 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18489 {
18490 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18491 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18492 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
18493 }
18494 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18495 {
18496 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18497 return 2;
18498 }
18499 else
18500 return 0;
18501 }
18502 else
18503 {
18504 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18505 return 0;
18506 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18507 {
18508 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18509 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18510 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
18511 }
18512 else
18513 {
18514 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18515 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
18516 }
18517 }
18518
18519 return 0;
18520 }
18521
18522 /* Convert a machine dependent frag. */
18523
18524 void
18525 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18526 {
18527 if (RELAX_BRANCH_P (fragp->fr_subtype))
18528 {
18529 char *buf;
18530 unsigned long insn;
18531 fixS *fixp;
18532
18533 buf = fragp->fr_literal + fragp->fr_fix;
18534 insn = read_insn (buf);
18535
18536 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18537 {
18538 /* We generate a fixup instead of applying it right now
18539 because, if there are linker relaxations, we're going to
18540 need the relocations. */
18541 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18542 fragp->fr_symbol, fragp->fr_offset,
18543 true, BFD_RELOC_16_PCREL_S2);
18544 fixp->fx_file = fragp->fr_file;
18545 fixp->fx_line = fragp->fr_line;
18546
18547 buf = write_insn (buf, insn);
18548 }
18549 else
18550 {
18551 int i;
18552
18553 as_warn_where (fragp->fr_file, fragp->fr_line,
18554 _("relaxed out-of-range branch into a jump"));
18555
18556 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18557 goto uncond;
18558
18559 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18560 {
18561 /* Reverse the branch. */
18562 switch ((insn >> 28) & 0xf)
18563 {
18564 case 4:
18565 if ((insn & 0xff000000) == 0x47000000
18566 || (insn & 0xff600000) == 0x45600000)
18567 {
18568 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18569 reversed by tweaking bit 23. */
18570 insn ^= 0x00800000;
18571 }
18572 else
18573 {
18574 /* bc[0-3][tf]l? instructions can have the condition
18575 reversed by tweaking a single TF bit, and their
18576 opcodes all have 0x4???????. */
18577 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18578 insn ^= 0x00010000;
18579 }
18580 break;
18581
18582 case 0:
18583 /* bltz 0x04000000 bgez 0x04010000
18584 bltzal 0x04100000 bgezal 0x04110000 */
18585 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18586 insn ^= 0x00010000;
18587 break;
18588
18589 case 1:
18590 /* beq 0x10000000 bne 0x14000000
18591 blez 0x18000000 bgtz 0x1c000000 */
18592 insn ^= 0x04000000;
18593 break;
18594
18595 default:
18596 abort ();
18597 }
18598 }
18599
18600 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18601 {
18602 /* Clear the and-link bit. */
18603 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18604
18605 /* bltzal 0x04100000 bgezal 0x04110000
18606 bltzall 0x04120000 bgezall 0x04130000 */
18607 insn &= ~0x00100000;
18608 }
18609
18610 /* Branch over the branch (if the branch was likely) or the
18611 full jump (not likely case). Compute the offset from the
18612 current instruction to branch to. */
18613 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18614 i = 16;
18615 else
18616 {
18617 /* How many bytes in instructions we've already emitted? */
18618 i = buf - fragp->fr_literal - fragp->fr_fix;
18619 /* How many bytes in instructions from here to the end? */
18620 i = fragp->fr_var - i;
18621 }
18622 /* Convert to instruction count. */
18623 i >>= 2;
18624 /* Branch counts from the next instruction. */
18625 i--;
18626 insn |= i;
18627 /* Branch over the jump. */
18628 buf = write_insn (buf, insn);
18629
18630 /* nop */
18631 buf = write_insn (buf, 0);
18632
18633 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18634 {
18635 /* beql $0, $0, 2f */
18636 insn = 0x50000000;
18637 /* Compute the PC offset from the current instruction to
18638 the end of the variable frag. */
18639 /* How many bytes in instructions we've already emitted? */
18640 i = buf - fragp->fr_literal - fragp->fr_fix;
18641 /* How many bytes in instructions from here to the end? */
18642 i = fragp->fr_var - i;
18643 /* Convert to instruction count. */
18644 i >>= 2;
18645 /* Don't decrement i, because we want to branch over the
18646 delay slot. */
18647 insn |= i;
18648
18649 buf = write_insn (buf, insn);
18650 buf = write_insn (buf, 0);
18651 }
18652
18653 uncond:
18654 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18655 {
18656 /* j or jal. */
18657 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18658 ? 0x0c000000 : 0x08000000);
18659
18660 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18661 fragp->fr_symbol, fragp->fr_offset,
18662 false, BFD_RELOC_MIPS_JMP);
18663 fixp->fx_file = fragp->fr_file;
18664 fixp->fx_line = fragp->fr_line;
18665
18666 buf = write_insn (buf, insn);
18667 }
18668 else
18669 {
18670 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18671
18672 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18673 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18674 insn |= at << OP_SH_RT;
18675
18676 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18677 fragp->fr_symbol, fragp->fr_offset,
18678 false, BFD_RELOC_MIPS_GOT16);
18679 fixp->fx_file = fragp->fr_file;
18680 fixp->fx_line = fragp->fr_line;
18681
18682 buf = write_insn (buf, insn);
18683
18684 if (mips_opts.isa == ISA_MIPS1)
18685 /* nop */
18686 buf = write_insn (buf, 0);
18687
18688 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18689 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18690 insn |= at << OP_SH_RS | at << OP_SH_RT;
18691
18692 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18693 fragp->fr_symbol, fragp->fr_offset,
18694 false, BFD_RELOC_LO16);
18695 fixp->fx_file = fragp->fr_file;
18696 fixp->fx_line = fragp->fr_line;
18697
18698 buf = write_insn (buf, insn);
18699
18700 /* j(al)r $at. */
18701 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18702 insn = 0x0000f809;
18703 else
18704 insn = 0x00000008;
18705 insn |= at << OP_SH_RS;
18706
18707 buf = write_insn (buf, insn);
18708 }
18709 }
18710
18711 fragp->fr_fix += fragp->fr_var;
18712 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18713 return;
18714 }
18715
18716 /* Relax microMIPS branches. */
18717 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18718 {
18719 char *buf = fragp->fr_literal + fragp->fr_fix;
18720 bool compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18721 bool insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18722 bool nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18723 bool pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18724 bool al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18725 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18726 bool short_ds;
18727 unsigned long insn;
18728 fixS *fixp;
18729
18730 fragp->fr_fix += fragp->fr_var;
18731
18732 /* Handle 16-bit branches that fit or are forced to fit. */
18733 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18734 {
18735 /* We generate a fixup instead of applying it right now,
18736 because if there is linker relaxation, we're going to
18737 need the relocations. */
18738 switch (type)
18739 {
18740 case 'D':
18741 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18742 fragp->fr_symbol, fragp->fr_offset,
18743 true, BFD_RELOC_MICROMIPS_10_PCREL_S1);
18744 break;
18745 case 'E':
18746 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18747 fragp->fr_symbol, fragp->fr_offset,
18748 true, BFD_RELOC_MICROMIPS_7_PCREL_S1);
18749 break;
18750 default:
18751 abort ();
18752 }
18753
18754 fixp->fx_file = fragp->fr_file;
18755 fixp->fx_line = fragp->fr_line;
18756
18757 /* These relocations can have an addend that won't fit in
18758 2 octets. */
18759 fixp->fx_no_overflow = 1;
18760
18761 return;
18762 }
18763
18764 /* Handle 32-bit branches that fit or are forced to fit. */
18765 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18766 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18767 {
18768 /* We generate a fixup instead of applying it right now,
18769 because if there is linker relaxation, we're going to
18770 need the relocations. */
18771 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18772 fragp->fr_symbol, fragp->fr_offset,
18773 true, BFD_RELOC_MICROMIPS_16_PCREL_S1);
18774 fixp->fx_file = fragp->fr_file;
18775 fixp->fx_line = fragp->fr_line;
18776
18777 if (type == 0)
18778 {
18779 insn = read_compressed_insn (buf, 4);
18780 buf += 4;
18781
18782 if (nods)
18783 {
18784 /* Check the short-delay-slot bit. */
18785 if (!al || (insn & 0x02000000) != 0)
18786 buf = write_compressed_insn (buf, 0x0c00, 2);
18787 else
18788 buf = write_compressed_insn (buf, 0x00000000, 4);
18789 }
18790
18791 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18792 return;
18793 }
18794 }
18795
18796 /* Relax 16-bit branches to 32-bit branches. */
18797 if (type != 0)
18798 {
18799 insn = read_compressed_insn (buf, 2);
18800
18801 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18802 insn = 0x94000000; /* beq */
18803 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18804 {
18805 unsigned long regno;
18806
18807 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18808 regno = micromips_to_32_reg_d_map [regno];
18809 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18810 insn |= regno << MICROMIPSOP_SH_RS;
18811 }
18812 else
18813 abort ();
18814
18815 /* Nothing else to do, just write it out. */
18816 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18817 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18818 {
18819 buf = write_compressed_insn (buf, insn, 4);
18820 if (nods)
18821 buf = write_compressed_insn (buf, 0x0c00, 2);
18822 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18823 return;
18824 }
18825 }
18826 else
18827 insn = read_compressed_insn (buf, 4);
18828
18829 /* Relax 32-bit branches to a sequence of instructions. */
18830 as_warn_where (fragp->fr_file, fragp->fr_line,
18831 _("relaxed out-of-range branch into a jump"));
18832
18833 /* Set the short-delay-slot bit. */
18834 short_ds = !al || (insn & 0x02000000) != 0;
18835
18836 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18837 {
18838 symbolS *l;
18839
18840 /* Reverse the branch. */
18841 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18842 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18843 insn ^= 0x20000000;
18844 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18845 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18846 || (insn & 0xffe00000) == 0x40800000 /* blez */
18847 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18848 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18849 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18850 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18851 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18852 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18853 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18854 insn ^= 0x00400000;
18855 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18856 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18857 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18858 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18859 insn ^= 0x00200000;
18860 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18861 BNZ.df */
18862 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18863 BNZ.V */
18864 insn ^= 0x00800000;
18865 else
18866 abort ();
18867
18868 if (al)
18869 {
18870 /* Clear the and-link and short-delay-slot bits. */
18871 gas_assert ((insn & 0xfda00000) == 0x40200000);
18872
18873 /* bltzal 0x40200000 bgezal 0x40600000 */
18874 /* bltzals 0x42200000 bgezals 0x42600000 */
18875 insn &= ~0x02200000;
18876 }
18877
18878 /* Make a label at the end for use with the branch. */
18879 l = symbol_new (micromips_label_name (), asec, fragp, fragp->fr_fix);
18880 micromips_label_inc ();
18881 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18882
18883 /* Refer to it. */
18884 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, true,
18885 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18886 fixp->fx_file = fragp->fr_file;
18887 fixp->fx_line = fragp->fr_line;
18888
18889 /* Branch over the jump. */
18890 buf = write_compressed_insn (buf, insn, 4);
18891
18892 if (!compact)
18893 {
18894 /* nop */
18895 if (insn32)
18896 buf = write_compressed_insn (buf, 0x00000000, 4);
18897 else
18898 buf = write_compressed_insn (buf, 0x0c00, 2);
18899 }
18900 }
18901
18902 if (!pic)
18903 {
18904 unsigned long jal = (short_ds || nods
18905 ? 0x74000000 : 0xf4000000); /* jal/s */
18906
18907 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18908 insn = al ? jal : 0xd4000000;
18909
18910 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18911 fragp->fr_symbol, fragp->fr_offset,
18912 false, BFD_RELOC_MICROMIPS_JMP);
18913 fixp->fx_file = fragp->fr_file;
18914 fixp->fx_line = fragp->fr_line;
18915
18916 buf = write_compressed_insn (buf, insn, 4);
18917
18918 if (compact || nods)
18919 {
18920 /* nop */
18921 if (insn32)
18922 buf = write_compressed_insn (buf, 0x00000000, 4);
18923 else
18924 buf = write_compressed_insn (buf, 0x0c00, 2);
18925 }
18926 }
18927 else
18928 {
18929 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18930
18931 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18932 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18933 insn |= at << MICROMIPSOP_SH_RT;
18934
18935 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18936 fragp->fr_symbol, fragp->fr_offset,
18937 false, BFD_RELOC_MICROMIPS_GOT16);
18938 fixp->fx_file = fragp->fr_file;
18939 fixp->fx_line = fragp->fr_line;
18940
18941 buf = write_compressed_insn (buf, insn, 4);
18942
18943 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18944 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18945 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18946
18947 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18948 fragp->fr_symbol, fragp->fr_offset,
18949 false, BFD_RELOC_MICROMIPS_LO16);
18950 fixp->fx_file = fragp->fr_file;
18951 fixp->fx_line = fragp->fr_line;
18952
18953 buf = write_compressed_insn (buf, insn, 4);
18954
18955 if (insn32)
18956 {
18957 /* jr/jalr $at */
18958 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18959 insn |= at << MICROMIPSOP_SH_RS;
18960
18961 buf = write_compressed_insn (buf, insn, 4);
18962
18963 if (compact || nods)
18964 /* nop */
18965 buf = write_compressed_insn (buf, 0x00000000, 4);
18966 }
18967 else
18968 {
18969 /* jr/jrc/jalr/jalrs $at */
18970 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18971 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18972
18973 insn = al ? jalr : jr;
18974 insn |= at << MICROMIPSOP_SH_MJ;
18975
18976 buf = write_compressed_insn (buf, insn, 2);
18977 if (al && nods)
18978 {
18979 /* nop */
18980 if (short_ds)
18981 buf = write_compressed_insn (buf, 0x0c00, 2);
18982 else
18983 buf = write_compressed_insn (buf, 0x00000000, 4);
18984 }
18985 }
18986 }
18987
18988 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18989 return;
18990 }
18991
18992 if (RELAX_MIPS16_P (fragp->fr_subtype))
18993 {
18994 int type;
18995 const struct mips_int_operand *operand;
18996 offsetT val;
18997 char *buf;
18998 unsigned int user_length;
18999 bool need_reloc;
19000 unsigned long insn;
19001 bool mac;
19002 bool ext;
19003 segT symsec;
19004
19005 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
19006 operand = mips16_immed_operand (type, false);
19007
19008 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
19009 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
19010 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
19011
19012 symsec = S_GET_SEGMENT (fragp->fr_symbol);
19013 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, true)
19014 || (operand->root.type == OP_PCREL && !mac
19015 ? asec != symsec
19016 : !bfd_is_abs_section (symsec)));
19017
19018 if (operand->root.type == OP_PCREL && !mac)
19019 {
19020 const struct mips_pcrel_operand *pcrel_op;
19021
19022 pcrel_op = (const struct mips_pcrel_operand *) operand;
19023
19024 if (pcrel_op->include_isa_bit && !need_reloc)
19025 {
19026 if (!mips_ignore_branch_isa
19027 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
19028 as_bad_where (fragp->fr_file, fragp->fr_line,
19029 _("branch to a symbol in another ISA mode"));
19030 else if ((fragp->fr_offset & 0x1) != 0)
19031 as_bad_where (fragp->fr_file, fragp->fr_line,
19032 _("branch to misaligned address (0x%lx)"),
19033 (long) (resolve_symbol_value (fragp->fr_symbol)
19034 + (fragp->fr_offset & ~1)));
19035 }
19036
19037 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
19038
19039 /* Make sure the section winds up with the alignment we have
19040 assumed. */
19041 if (operand->shift > 0)
19042 record_alignment (asec, operand->shift);
19043 }
19044
19045 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
19046 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
19047 {
19048 if (mac)
19049 as_warn_where (fragp->fr_file, fragp->fr_line,
19050 _("macro instruction expanded into multiple "
19051 "instructions in a branch delay slot"));
19052 else if (ext)
19053 as_warn_where (fragp->fr_file, fragp->fr_line,
19054 _("extended instruction in a branch delay slot"));
19055 }
19056 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
19057 as_warn_where (fragp->fr_file, fragp->fr_line,
19058 _("macro instruction expanded into multiple "
19059 "instructions"));
19060
19061 buf = fragp->fr_literal + fragp->fr_fix;
19062
19063 insn = read_compressed_insn (buf, 2);
19064 if (ext)
19065 insn |= MIPS16_EXTEND;
19066
19067 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
19068 user_length = 4;
19069 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
19070 user_length = 2;
19071 else
19072 user_length = 0;
19073
19074 if (mac)
19075 {
19076 unsigned long reg;
19077 unsigned long new;
19078 unsigned long op;
19079 bool e2;
19080
19081 gas_assert (type == 'A' || type == 'B' || type == 'E');
19082 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
19083
19084 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
19085
19086 if (need_reloc)
19087 {
19088 fixS *fixp;
19089
19090 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
19091
19092 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
19093 fragp->fr_symbol, fragp->fr_offset,
19094 false, BFD_RELOC_MIPS16_HI16_S);
19095 fixp->fx_file = fragp->fr_file;
19096 fixp->fx_line = fragp->fr_line;
19097
19098 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
19099 fragp->fr_symbol, fragp->fr_offset,
19100 false, BFD_RELOC_MIPS16_LO16);
19101 fixp->fx_file = fragp->fr_file;
19102 fixp->fx_line = fragp->fr_line;
19103
19104 val = 0;
19105 }
19106
19107 switch (insn & 0xf800)
19108 {
19109 case 0x0800: /* ADDIU */
19110 reg = (insn >> 8) & 0x7;
19111 op = 0xf0004800 | (reg << 8);
19112 break;
19113 case 0xb000: /* LW */
19114 reg = (insn >> 8) & 0x7;
19115 op = 0xf0009800 | (reg << 8) | (reg << 5);
19116 break;
19117 case 0xf800: /* I64 */
19118 reg = (insn >> 5) & 0x7;
19119 switch (insn & 0x0700)
19120 {
19121 case 0x0400: /* LD */
19122 op = 0xf0003800 | (reg << 8) | (reg << 5);
19123 break;
19124 case 0x0600: /* DADDIU */
19125 op = 0xf000fd00 | (reg << 5);
19126 break;
19127 default:
19128 abort ();
19129 }
19130 break;
19131 default:
19132 abort ();
19133 }
19134
19135 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
19136 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
19137 buf = write_compressed_insn (buf, new, 4);
19138 if (!e2)
19139 {
19140 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
19141 buf = write_compressed_insn (buf, new, 4);
19142 }
19143 op |= mips16_immed_extend (val, 16);
19144 buf = write_compressed_insn (buf, op, 4);
19145
19146 fragp->fr_fix += e2 ? 8 : 12;
19147 }
19148 else
19149 {
19150 unsigned int length = ext ? 4 : 2;
19151
19152 if (need_reloc)
19153 {
19154 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
19155 fixS *fixp;
19156
19157 switch (type)
19158 {
19159 case 'p':
19160 case 'q':
19161 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
19162 break;
19163 default:
19164 break;
19165 }
19166 if (mac || reloc == BFD_RELOC_NONE)
19167 as_bad_where (fragp->fr_file, fragp->fr_line,
19168 _("unsupported relocation"));
19169 else if (ext)
19170 {
19171 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
19172 fragp->fr_symbol, fragp->fr_offset,
19173 true, reloc);
19174 fixp->fx_file = fragp->fr_file;
19175 fixp->fx_line = fragp->fr_line;
19176 }
19177 else
19178 as_bad_where (fragp->fr_file, fragp->fr_line,
19179 _("invalid unextended operand value"));
19180 }
19181 else
19182 mips16_immed (fragp->fr_file, fragp->fr_line, type,
19183 BFD_RELOC_UNUSED, val, user_length, &insn);
19184
19185 gas_assert (mips16_opcode_length (insn) == length);
19186 write_compressed_insn (buf, insn, length);
19187 fragp->fr_fix += length;
19188 }
19189 }
19190 else
19191 {
19192 relax_substateT subtype = fragp->fr_subtype;
19193 bool second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
19194 bool use_second = (subtype & RELAX_USE_SECOND) != 0;
19195 unsigned int first, second;
19196 fixS *fixp;
19197
19198 first = RELAX_FIRST (subtype);
19199 second = RELAX_SECOND (subtype);
19200 fixp = (fixS *) fragp->fr_opcode;
19201
19202 /* If the delay slot chosen does not match the size of the instruction,
19203 then emit a warning. */
19204 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
19205 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
19206 {
19207 relax_substateT s;
19208 const char *msg;
19209
19210 s = subtype & (RELAX_DELAY_SLOT_16BIT
19211 | RELAX_DELAY_SLOT_SIZE_FIRST
19212 | RELAX_DELAY_SLOT_SIZE_SECOND);
19213 msg = macro_warning (s);
19214 if (msg != NULL)
19215 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
19216 subtype &= ~s;
19217 }
19218
19219 /* Possibly emit a warning if we've chosen the longer option. */
19220 if (use_second == second_longer)
19221 {
19222 relax_substateT s;
19223 const char *msg;
19224
19225 s = (subtype
19226 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
19227 msg = macro_warning (s);
19228 if (msg != NULL)
19229 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
19230 subtype &= ~s;
19231 }
19232
19233 /* Go through all the fixups for the first sequence. Disable them
19234 (by marking them as done) if we're going to use the second
19235 sequence instead. */
19236 while (fixp
19237 && fixp->fx_frag == fragp
19238 && fixp->fx_where + second < fragp->fr_fix)
19239 {
19240 if (subtype & RELAX_USE_SECOND)
19241 fixp->fx_done = 1;
19242 fixp = fixp->fx_next;
19243 }
19244
19245 /* Go through the fixups for the second sequence. Disable them if
19246 we're going to use the first sequence, otherwise adjust their
19247 addresses to account for the relaxation. */
19248 while (fixp && fixp->fx_frag == fragp)
19249 {
19250 if (subtype & RELAX_USE_SECOND)
19251 fixp->fx_where -= first;
19252 else
19253 fixp->fx_done = 1;
19254 fixp = fixp->fx_next;
19255 }
19256
19257 /* Now modify the frag contents. */
19258 if (subtype & RELAX_USE_SECOND)
19259 {
19260 char *start;
19261
19262 start = fragp->fr_literal + fragp->fr_fix - first - second;
19263 memmove (start, start + first, second);
19264 fragp->fr_fix -= first;
19265 }
19266 else
19267 fragp->fr_fix -= second;
19268 }
19269 }
19270
19271 /* This function is called after the relocs have been generated.
19272 We've been storing mips16 text labels as odd. Here we convert them
19273 back to even for the convenience of the debugger. */
19274
19275 void
19276 mips_frob_file_after_relocs (void)
19277 {
19278 asymbol **syms;
19279 unsigned int count, i;
19280
19281 syms = bfd_get_outsymbols (stdoutput);
19282 count = bfd_get_symcount (stdoutput);
19283 for (i = 0; i < count; i++, syms++)
19284 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
19285 && ((*syms)->value & 1) != 0)
19286 {
19287 (*syms)->value &= ~1;
19288 /* If the symbol has an odd size, it was probably computed
19289 incorrectly, so adjust that as well. */
19290 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
19291 ++elf_symbol (*syms)->internal_elf_sym.st_size;
19292 }
19293 }
19294
19295 /* This function is called whenever a label is defined, including fake
19296 labels instantiated off the dot special symbol. It is used when
19297 handling branch delays; if a branch has a label, we assume we cannot
19298 move it. This also bumps the value of the symbol by 1 in compressed
19299 code. */
19300
19301 static void
19302 mips_record_label (symbolS *sym)
19303 {
19304 segment_info_type *si = seg_info (now_seg);
19305 struct insn_label_list *l;
19306
19307 if (free_insn_labels == NULL)
19308 l = XNEW (struct insn_label_list);
19309 else
19310 {
19311 l = free_insn_labels;
19312 free_insn_labels = l->next;
19313 }
19314
19315 l->label = sym;
19316 l->next = si->label_list;
19317 si->label_list = l;
19318 }
19319
19320 /* This function is called as tc_frob_label() whenever a label is defined
19321 and adds a DWARF-2 record we only want for true labels. */
19322
19323 void
19324 mips_define_label (symbolS *sym)
19325 {
19326 mips_record_label (sym);
19327 dwarf2_emit_label (sym);
19328 }
19329
19330 /* This function is called by tc_new_dot_label whenever a new dot symbol
19331 is defined. */
19332
19333 void
19334 mips_add_dot_label (symbolS *sym)
19335 {
19336 mips_record_label (sym);
19337 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
19338 mips_compressed_mark_label (sym);
19339 }
19340 \f
19341 /* Converting ASE flags from internal to .MIPS.abiflags values. */
19342 static unsigned int
19343 mips_convert_ase_flags (int ase)
19344 {
19345 unsigned int ext_ases = 0;
19346
19347 if (ase & ASE_DSP)
19348 ext_ases |= AFL_ASE_DSP;
19349 if (ase & ASE_DSPR2)
19350 ext_ases |= AFL_ASE_DSPR2;
19351 if (ase & ASE_DSPR3)
19352 ext_ases |= AFL_ASE_DSPR3;
19353 if (ase & ASE_EVA)
19354 ext_ases |= AFL_ASE_EVA;
19355 if (ase & ASE_MCU)
19356 ext_ases |= AFL_ASE_MCU;
19357 if (ase & ASE_MDMX)
19358 ext_ases |= AFL_ASE_MDMX;
19359 if (ase & ASE_MIPS3D)
19360 ext_ases |= AFL_ASE_MIPS3D;
19361 if (ase & ASE_MT)
19362 ext_ases |= AFL_ASE_MT;
19363 if (ase & ASE_SMARTMIPS)
19364 ext_ases |= AFL_ASE_SMARTMIPS;
19365 if (ase & ASE_VIRT)
19366 ext_ases |= AFL_ASE_VIRT;
19367 if (ase & ASE_MSA)
19368 ext_ases |= AFL_ASE_MSA;
19369 if (ase & ASE_XPA)
19370 ext_ases |= AFL_ASE_XPA;
19371 if (ase & ASE_MIPS16E2)
19372 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
19373 if (ase & ASE_CRC)
19374 ext_ases |= AFL_ASE_CRC;
19375 if (ase & ASE_GINV)
19376 ext_ases |= AFL_ASE_GINV;
19377 if (ase & ASE_LOONGSON_MMI)
19378 ext_ases |= AFL_ASE_LOONGSON_MMI;
19379 if (ase & ASE_LOONGSON_CAM)
19380 ext_ases |= AFL_ASE_LOONGSON_CAM;
19381 if (ase & ASE_LOONGSON_EXT)
19382 ext_ases |= AFL_ASE_LOONGSON_EXT;
19383 if (ase & ASE_LOONGSON_EXT2)
19384 ext_ases |= AFL_ASE_LOONGSON_EXT2;
19385
19386 return ext_ases;
19387 }
19388 /* Some special processing for a MIPS ELF file. */
19389
19390 void
19391 mips_elf_final_processing (void)
19392 {
19393 int fpabi;
19394 Elf_Internal_ABIFlags_v0 flags;
19395
19396 flags.version = 0;
19397 flags.isa_rev = 0;
19398 switch (file_mips_opts.isa)
19399 {
19400 case INSN_ISA1:
19401 flags.isa_level = 1;
19402 break;
19403 case INSN_ISA2:
19404 flags.isa_level = 2;
19405 break;
19406 case INSN_ISA3:
19407 flags.isa_level = 3;
19408 break;
19409 case INSN_ISA4:
19410 flags.isa_level = 4;
19411 break;
19412 case INSN_ISA5:
19413 flags.isa_level = 5;
19414 break;
19415 case INSN_ISA32:
19416 flags.isa_level = 32;
19417 flags.isa_rev = 1;
19418 break;
19419 case INSN_ISA32R2:
19420 flags.isa_level = 32;
19421 flags.isa_rev = 2;
19422 break;
19423 case INSN_ISA32R3:
19424 flags.isa_level = 32;
19425 flags.isa_rev = 3;
19426 break;
19427 case INSN_ISA32R5:
19428 flags.isa_level = 32;
19429 flags.isa_rev = 5;
19430 break;
19431 case INSN_ISA32R6:
19432 flags.isa_level = 32;
19433 flags.isa_rev = 6;
19434 break;
19435 case INSN_ISA64:
19436 flags.isa_level = 64;
19437 flags.isa_rev = 1;
19438 break;
19439 case INSN_ISA64R2:
19440 flags.isa_level = 64;
19441 flags.isa_rev = 2;
19442 break;
19443 case INSN_ISA64R3:
19444 flags.isa_level = 64;
19445 flags.isa_rev = 3;
19446 break;
19447 case INSN_ISA64R5:
19448 flags.isa_level = 64;
19449 flags.isa_rev = 5;
19450 break;
19451 case INSN_ISA64R6:
19452 flags.isa_level = 64;
19453 flags.isa_rev = 6;
19454 break;
19455 }
19456
19457 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19458 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19459 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19460 : (file_mips_opts.fp == 64) ? AFL_REG_64
19461 : AFL_REG_32;
19462 flags.cpr2_size = AFL_REG_NONE;
19463 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19464 Tag_GNU_MIPS_ABI_FP);
19465 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19466 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19467 if (file_ase_mips16)
19468 flags.ases |= AFL_ASE_MIPS16;
19469 if (file_ase_micromips)
19470 flags.ases |= AFL_ASE_MICROMIPS;
19471 flags.flags1 = 0;
19472 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19473 || file_mips_opts.fp == 64)
19474 && file_mips_opts.oddspreg)
19475 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19476 flags.flags2 = 0;
19477
19478 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19479 ((Elf_External_ABIFlags_v0 *)
19480 mips_flags_frag));
19481
19482 /* Write out the register information. */
19483 if (mips_abi != N64_ABI)
19484 {
19485 Elf32_RegInfo s;
19486
19487 s.ri_gprmask = mips_gprmask;
19488 s.ri_cprmask[0] = mips_cprmask[0];
19489 s.ri_cprmask[1] = mips_cprmask[1];
19490 s.ri_cprmask[2] = mips_cprmask[2];
19491 s.ri_cprmask[3] = mips_cprmask[3];
19492 /* The gp_value field is set by the MIPS ELF backend. */
19493
19494 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19495 ((Elf32_External_RegInfo *)
19496 mips_regmask_frag));
19497 }
19498 else
19499 {
19500 Elf64_Internal_RegInfo s;
19501
19502 s.ri_gprmask = mips_gprmask;
19503 s.ri_pad = 0;
19504 s.ri_cprmask[0] = mips_cprmask[0];
19505 s.ri_cprmask[1] = mips_cprmask[1];
19506 s.ri_cprmask[2] = mips_cprmask[2];
19507 s.ri_cprmask[3] = mips_cprmask[3];
19508 /* The gp_value field is set by the MIPS ELF backend. */
19509
19510 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19511 ((Elf64_External_RegInfo *)
19512 mips_regmask_frag));
19513 }
19514
19515 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19516 sort of BFD interface for this. */
19517 if (mips_any_noreorder)
19518 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19519 if (mips_pic != NO_PIC)
19520 {
19521 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19522 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19523 }
19524 if (mips_abicalls)
19525 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19526
19527 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19528 defined at present; this might need to change in future. */
19529 if (file_ase_mips16)
19530 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19531 if (file_ase_micromips)
19532 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19533 if (file_mips_opts.ase & ASE_MDMX)
19534 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19535
19536 /* Set the MIPS ELF ABI flags. */
19537 if (mips_abi == O32_ABI && USE_EF_MIPS_ABI_O32)
19538 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI_O32;
19539 else if (mips_abi == O64_ABI)
19540 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI_O64;
19541 else if (mips_abi == EABI_ABI)
19542 {
19543 if (file_mips_opts.gp == 64)
19544 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI_EABI64;
19545 else
19546 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI_EABI32;
19547 }
19548
19549 /* Nothing to do for N32_ABI or N64_ABI. */
19550
19551 if (mips_32bitmode)
19552 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19553
19554 if (mips_nan2008 == 1)
19555 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19556
19557 /* 32 bit code with 64 bit FP registers. */
19558 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19559 Tag_GNU_MIPS_ABI_FP);
19560 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19561 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19562 }
19563 \f
19564 typedef struct proc {
19565 symbolS *func_sym;
19566 symbolS *func_end_sym;
19567 unsigned long reg_mask;
19568 unsigned long reg_offset;
19569 unsigned long fpreg_mask;
19570 unsigned long fpreg_offset;
19571 unsigned long frame_offset;
19572 unsigned long frame_reg;
19573 unsigned long pc_reg;
19574 } procS;
19575
19576 static procS cur_proc;
19577 static procS *cur_proc_ptr;
19578 static int numprocs;
19579
19580 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19581 as "2", and a normal nop as "0". */
19582
19583 #define NOP_OPCODE_MIPS 0
19584 #define NOP_OPCODE_MIPS16 1
19585 #define NOP_OPCODE_MICROMIPS 2
19586
19587 char
19588 mips_nop_opcode (void)
19589 {
19590 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19591 return NOP_OPCODE_MICROMIPS;
19592 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19593 return NOP_OPCODE_MIPS16;
19594 else
19595 return NOP_OPCODE_MIPS;
19596 }
19597
19598 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19599 32-bit microMIPS NOPs here (if applicable). */
19600
19601 void
19602 mips_handle_align (fragS *fragp)
19603 {
19604 char nop_opcode;
19605 char *p;
19606 int bytes, size, excess;
19607 valueT opcode;
19608
19609 if (fragp->fr_type != rs_align_code)
19610 return;
19611
19612 p = fragp->fr_literal + fragp->fr_fix;
19613 nop_opcode = *p;
19614 switch (nop_opcode)
19615 {
19616 case NOP_OPCODE_MICROMIPS:
19617 opcode = micromips_nop32_insn.insn_opcode;
19618 size = 4;
19619 break;
19620 case NOP_OPCODE_MIPS16:
19621 opcode = mips16_nop_insn.insn_opcode;
19622 size = 2;
19623 break;
19624 case NOP_OPCODE_MIPS:
19625 default:
19626 opcode = nop_insn.insn_opcode;
19627 size = 4;
19628 break;
19629 }
19630
19631 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19632 excess = bytes % size;
19633
19634 /* Handle the leading part if we're not inserting a whole number of
19635 instructions, and make it the end of the fixed part of the frag.
19636 Try to fit in a short microMIPS NOP if applicable and possible,
19637 and use zeroes otherwise. */
19638 gas_assert (excess < 4);
19639 fragp->fr_fix += excess;
19640 switch (excess)
19641 {
19642 case 3:
19643 *p++ = '\0';
19644 /* Fall through. */
19645 case 2:
19646 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19647 {
19648 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19649 break;
19650 }
19651 *p++ = '\0';
19652 /* Fall through. */
19653 case 1:
19654 *p++ = '\0';
19655 /* Fall through. */
19656 case 0:
19657 break;
19658 }
19659
19660 md_number_to_chars (p, opcode, size);
19661 fragp->fr_var = size;
19662 }
19663
19664 static long
19665 get_number (void)
19666 {
19667 int negative = 0;
19668 long val = 0;
19669
19670 if (*input_line_pointer == '-')
19671 {
19672 ++input_line_pointer;
19673 negative = 1;
19674 }
19675 if (!ISDIGIT (*input_line_pointer))
19676 as_bad (_("expected simple number"));
19677 if (input_line_pointer[0] == '0')
19678 {
19679 if (input_line_pointer[1] == 'x')
19680 {
19681 input_line_pointer += 2;
19682 while (ISXDIGIT (*input_line_pointer))
19683 {
19684 val <<= 4;
19685 val |= hex_value (*input_line_pointer++);
19686 }
19687 return negative ? -val : val;
19688 }
19689 else
19690 {
19691 ++input_line_pointer;
19692 while (ISDIGIT (*input_line_pointer))
19693 {
19694 val <<= 3;
19695 val |= *input_line_pointer++ - '0';
19696 }
19697 return negative ? -val : val;
19698 }
19699 }
19700 if (!ISDIGIT (*input_line_pointer))
19701 {
19702 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19703 *input_line_pointer, *input_line_pointer);
19704 as_warn (_("invalid number"));
19705 return -1;
19706 }
19707 while (ISDIGIT (*input_line_pointer))
19708 {
19709 val *= 10;
19710 val += *input_line_pointer++ - '0';
19711 }
19712 return negative ? -val : val;
19713 }
19714
19715 /* The .file directive; just like the usual .file directive, but there
19716 is an initial number which is the ECOFF file index. In the non-ECOFF
19717 case .file implies DWARF-2. */
19718
19719 static void
19720 s_mips_file (int x ATTRIBUTE_UNUSED)
19721 {
19722 static int first_file_directive = 0;
19723
19724 if (ECOFF_DEBUGGING)
19725 {
19726 get_number ();
19727 s_file (0);
19728 }
19729 else
19730 {
19731 char *filename;
19732
19733 filename = dwarf2_directive_filename ();
19734
19735 /* Versions of GCC up to 3.1 start files with a ".file"
19736 directive even for stabs output. Make sure that this
19737 ".file" is handled. Note that you need a version of GCC
19738 after 3.1 in order to support DWARF-2 on MIPS. */
19739 if (filename != NULL && ! first_file_directive)
19740 {
19741 new_logical_line (filename, -1);
19742 s_file_string (filename);
19743 }
19744 first_file_directive = 1;
19745 }
19746 }
19747
19748 /* The .loc directive, implying DWARF-2. */
19749
19750 static void
19751 s_mips_loc (int x ATTRIBUTE_UNUSED)
19752 {
19753 if (!ECOFF_DEBUGGING)
19754 dwarf2_directive_loc (0);
19755 }
19756
19757 /* The .end directive. */
19758
19759 static void
19760 s_mips_end (int x ATTRIBUTE_UNUSED)
19761 {
19762 symbolS *p;
19763
19764 /* Following functions need their own .frame and .cprestore directives. */
19765 mips_frame_reg_valid = 0;
19766 mips_cprestore_valid = 0;
19767
19768 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19769 {
19770 p = get_symbol ();
19771 demand_empty_rest_of_line ();
19772 }
19773 else
19774 p = NULL;
19775
19776 if ((bfd_section_flags (now_seg) & SEC_CODE) == 0)
19777 as_warn (_(".end not in text section"));
19778
19779 if (!cur_proc_ptr)
19780 {
19781 as_warn (_(".end directive without a preceding .ent directive"));
19782 demand_empty_rest_of_line ();
19783 return;
19784 }
19785
19786 if (p != NULL)
19787 {
19788 gas_assert (S_GET_NAME (p));
19789 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19790 as_warn (_(".end symbol does not match .ent symbol"));
19791
19792 if (debug_type == DEBUG_STABS)
19793 stabs_generate_asm_endfunc (S_GET_NAME (p),
19794 S_GET_NAME (p));
19795 }
19796 else
19797 as_warn (_(".end directive missing or unknown symbol"));
19798
19799 /* Create an expression to calculate the size of the function. */
19800 if (p && cur_proc_ptr)
19801 {
19802 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19803 expressionS *exp = XNEW (expressionS);
19804
19805 obj->size = exp;
19806 exp->X_op = O_subtract;
19807 exp->X_add_symbol = symbol_temp_new_now ();
19808 exp->X_op_symbol = p;
19809 exp->X_add_number = 0;
19810
19811 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19812 }
19813
19814 #ifdef md_flush_pending_output
19815 md_flush_pending_output ();
19816 #endif
19817
19818 /* Generate a .pdr section. */
19819 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19820 {
19821 segT saved_seg = now_seg;
19822 subsegT saved_subseg = now_subseg;
19823 expressionS exp;
19824 char *fragp;
19825
19826 gas_assert (pdr_seg);
19827 subseg_set (pdr_seg, 0);
19828
19829 /* Write the symbol. */
19830 exp.X_op = O_symbol;
19831 exp.X_add_symbol = p;
19832 exp.X_add_number = 0;
19833 emit_expr (&exp, 4);
19834
19835 fragp = frag_more (7 * 4);
19836
19837 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19838 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19839 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19840 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19841 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19842 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19843 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19844
19845 subseg_set (saved_seg, saved_subseg);
19846 }
19847
19848 cur_proc_ptr = NULL;
19849 }
19850
19851 /* The .aent and .ent directives. */
19852
19853 static void
19854 s_mips_ent (int aent)
19855 {
19856 symbolS *symbolP;
19857
19858 symbolP = get_symbol ();
19859 if (*input_line_pointer == ',')
19860 ++input_line_pointer;
19861 SKIP_WHITESPACE ();
19862 if (ISDIGIT (*input_line_pointer)
19863 || *input_line_pointer == '-')
19864 get_number ();
19865
19866 if ((bfd_section_flags (now_seg) & SEC_CODE) == 0)
19867 as_warn (_(".ent or .aent not in text section"));
19868
19869 if (!aent && cur_proc_ptr)
19870 as_warn (_("missing .end"));
19871
19872 if (!aent)
19873 {
19874 /* This function needs its own .frame and .cprestore directives. */
19875 mips_frame_reg_valid = 0;
19876 mips_cprestore_valid = 0;
19877
19878 cur_proc_ptr = &cur_proc;
19879 memset (cur_proc_ptr, '\0', sizeof (procS));
19880
19881 cur_proc_ptr->func_sym = symbolP;
19882
19883 ++numprocs;
19884
19885 if (debug_type == DEBUG_STABS)
19886 stabs_generate_asm_func (S_GET_NAME (symbolP),
19887 S_GET_NAME (symbolP));
19888 }
19889
19890 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19891
19892 demand_empty_rest_of_line ();
19893 }
19894
19895 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19896 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19897 s_mips_frame is used so that we can set the PDR information correctly.
19898 We can't use the ecoff routines because they make reference to the ecoff
19899 symbol table (in the mdebug section). */
19900
19901 static void
19902 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19903 {
19904 if (ECOFF_DEBUGGING)
19905 s_ignore (ignore);
19906 else
19907 {
19908 long val;
19909
19910 if (cur_proc_ptr == (procS *) NULL)
19911 {
19912 as_warn (_(".frame outside of .ent"));
19913 demand_empty_rest_of_line ();
19914 return;
19915 }
19916
19917 cur_proc_ptr->frame_reg = tc_get_register (1);
19918
19919 SKIP_WHITESPACE ();
19920 if (*input_line_pointer++ != ','
19921 || get_absolute_expression_and_terminator (&val) != ',')
19922 {
19923 as_warn (_("bad .frame directive"));
19924 --input_line_pointer;
19925 demand_empty_rest_of_line ();
19926 return;
19927 }
19928
19929 cur_proc_ptr->frame_offset = val;
19930 cur_proc_ptr->pc_reg = tc_get_register (0);
19931
19932 demand_empty_rest_of_line ();
19933 }
19934 }
19935
19936 /* The .fmask and .mask directives. If the mdebug section is present
19937 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19938 embedded targets, s_mips_mask is used so that we can set the PDR
19939 information correctly. We can't use the ecoff routines because they
19940 make reference to the ecoff symbol table (in the mdebug section). */
19941
19942 static void
19943 s_mips_mask (int reg_type)
19944 {
19945 if (ECOFF_DEBUGGING)
19946 s_ignore (reg_type);
19947 else
19948 {
19949 long mask, off;
19950
19951 if (cur_proc_ptr == (procS *) NULL)
19952 {
19953 as_warn (_(".mask/.fmask outside of .ent"));
19954 demand_empty_rest_of_line ();
19955 return;
19956 }
19957
19958 if (get_absolute_expression_and_terminator (&mask) != ',')
19959 {
19960 as_warn (_("bad .mask/.fmask directive"));
19961 --input_line_pointer;
19962 demand_empty_rest_of_line ();
19963 return;
19964 }
19965
19966 off = get_absolute_expression ();
19967
19968 if (reg_type == 'F')
19969 {
19970 cur_proc_ptr->fpreg_mask = mask;
19971 cur_proc_ptr->fpreg_offset = off;
19972 }
19973 else
19974 {
19975 cur_proc_ptr->reg_mask = mask;
19976 cur_proc_ptr->reg_offset = off;
19977 }
19978
19979 demand_empty_rest_of_line ();
19980 }
19981 }
19982
19983 /* A table describing all the processors gas knows about. Names are
19984 matched in the order listed.
19985
19986 To ease comparison, please keep this table in the same order as
19987 gcc's mips_cpu_info_table[]. */
19988 static const struct mips_cpu_info mips_cpu_info_table[] =
19989 {
19990 /* Entries for generic ISAs. */
19991 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19992 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19993 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19994 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19995 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19996 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19997 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19998 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19999 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
20000 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
20001 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
20002 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
20003 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
20004 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
20005 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
20006
20007 /* MIPS I */
20008 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
20009 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
20010 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
20011
20012 /* MIPS II */
20013 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
20014 { "allegrex", 0, 0, ISA_MIPS2, CPU_ALLEGREX },
20015
20016 /* MIPS III */
20017 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
20018 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
20019 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
20020 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
20021 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
20022 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
20023 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
20024 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
20025 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
20026 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
20027 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
20028 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
20029 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
20030 /* ST Microelectronics Loongson 2E and 2F cores. */
20031 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
20032 { "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
20033
20034 /* MIPS IV */
20035 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
20036 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
20037 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
20038 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
20039 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
20040 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
20041 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
20042 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
20043 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
20044 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
20045 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
20046 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
20047 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
20048 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
20049 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
20050
20051 /* MIPS 32 */
20052 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
20053 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
20054 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
20055 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
20056
20057 /* MIPS 32 Release 2 */
20058 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20059 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20060 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20061 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
20062 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20063 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20064 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
20065 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
20066 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
20067 ISA_MIPS32R2, CPU_MIPS32R2 },
20068 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
20069 ISA_MIPS32R2, CPU_MIPS32R2 },
20070 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20071 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20072 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20073 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20074 /* Deprecated forms of the above. */
20075 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20076 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20077 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
20078 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20079 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20080 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20081 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20082 /* Deprecated forms of the above. */
20083 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20084 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20085 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
20086 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20087 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20088 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20089 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20090 /* Deprecated forms of the above. */
20091 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20092 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20093 /* 34Kn is a 34kc without DSP. */
20094 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20095 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
20096 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20097 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20098 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20099 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20100 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20101 /* Deprecated forms of the above. */
20102 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20103 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20104 /* 1004K cores are multiprocessor versions of the 34K. */
20105 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20106 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20107 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20108 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20109 /* interaptiv is the new name for 1004kf. */
20110 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20111 { "interaptiv-mr2", 0,
20112 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
20113 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
20114 /* M5100 family. */
20115 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
20116 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
20117 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
20118 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
20119
20120 /* MIPS 64 */
20121 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
20122 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
20123 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
20124 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
20125
20126 /* Broadcom SB-1 CPU core. */
20127 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
20128 /* Broadcom SB-1A CPU core. */
20129 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
20130
20131 /* MIPS 64 Release 2. */
20132 /* Loongson CPU core. */
20133 /* -march=loongson3a is an alias of -march=gs464 for compatibility. */
20134 { "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
20135 ISA_MIPS64R2, CPU_GS464 },
20136 { "gs464", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
20137 ISA_MIPS64R2, CPU_GS464 },
20138 { "gs464e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
20139 | ASE_LOONGSON_EXT2, ISA_MIPS64R2, CPU_GS464E },
20140 { "gs264e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
20141 | ASE_LOONGSON_EXT2 | ASE_MSA | ASE_MSA64, ISA_MIPS64R2, CPU_GS264E },
20142
20143 /* Cavium Networks Octeon CPU core. */
20144 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
20145 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
20146 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
20147 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
20148
20149 /* RMI Xlr */
20150 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
20151
20152 /* Broadcom XLP.
20153 XLP is mostly like XLR, with the prominent exception that it is
20154 MIPS64R2 rather than MIPS64. */
20155 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
20156
20157 /* MIPS 64 Release 6. */
20158 { "i6400", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
20159 { "i6500", 0, ASE_VIRT | ASE_MSA | ASE_CRC | ASE_GINV,
20160 ISA_MIPS64R6, CPU_MIPS64R6},
20161 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
20162
20163 /* End marker. */
20164 { NULL, 0, 0, 0, 0 }
20165 };
20166
20167
20168 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
20169 with a final "000" replaced by "k". Ignore case.
20170
20171 Note: this function is shared between GCC and GAS. */
20172
20173 static bool
20174 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
20175 {
20176 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
20177 given++, canonical++;
20178
20179 return ((*given == 0 && *canonical == 0)
20180 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
20181 }
20182
20183
20184 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
20185 CPU name. We've traditionally allowed a lot of variation here.
20186
20187 Note: this function is shared between GCC and GAS. */
20188
20189 static bool
20190 mips_matching_cpu_name_p (const char *canonical, const char *given)
20191 {
20192 /* First see if the name matches exactly, or with a final "000"
20193 turned into "k". */
20194 if (mips_strict_matching_cpu_name_p (canonical, given))
20195 return true;
20196
20197 /* If not, try comparing based on numerical designation alone.
20198 See if GIVEN is an unadorned number, or 'r' followed by a number. */
20199 if (TOLOWER (*given) == 'r')
20200 given++;
20201 if (!ISDIGIT (*given))
20202 return false;
20203
20204 /* Skip over some well-known prefixes in the canonical name,
20205 hoping to find a number there too. */
20206 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
20207 canonical += 2;
20208 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
20209 canonical += 2;
20210 else if (TOLOWER (canonical[0]) == 'r')
20211 canonical += 1;
20212
20213 return mips_strict_matching_cpu_name_p (canonical, given);
20214 }
20215
20216
20217 /* Parse an option that takes the name of a processor as its argument.
20218 OPTION is the name of the option and CPU_STRING is the argument.
20219 Return the corresponding processor enumeration if the CPU_STRING is
20220 recognized, otherwise report an error and return null.
20221
20222 A similar function exists in GCC. */
20223
20224 static const struct mips_cpu_info *
20225 mips_parse_cpu (const char *option, const char *cpu_string)
20226 {
20227 const struct mips_cpu_info *p;
20228
20229 /* 'from-abi' selects the most compatible architecture for the given
20230 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
20231 EABIs, we have to decide whether we're using the 32-bit or 64-bit
20232 version. Look first at the -mgp options, if given, otherwise base
20233 the choice on MIPS_DEFAULT_64BIT.
20234
20235 Treat NO_ABI like the EABIs. One reason to do this is that the
20236 plain 'mips' and 'mips64' configs have 'from-abi' as their default
20237 architecture. This code picks MIPS I for 'mips' and MIPS III for
20238 'mips64', just as we did in the days before 'from-abi'. */
20239 if (strcasecmp (cpu_string, "from-abi") == 0)
20240 {
20241 if (ABI_NEEDS_32BIT_REGS (mips_abi))
20242 return mips_cpu_info_from_isa (ISA_MIPS1);
20243
20244 if (ABI_NEEDS_64BIT_REGS (mips_abi))
20245 return mips_cpu_info_from_isa (ISA_MIPS3);
20246
20247 if (file_mips_opts.gp >= 0)
20248 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
20249 ? ISA_MIPS1 : ISA_MIPS3);
20250
20251 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
20252 ? ISA_MIPS3
20253 : ISA_MIPS1);
20254 }
20255
20256 /* 'default' has traditionally been a no-op. Probably not very useful. */
20257 if (strcasecmp (cpu_string, "default") == 0)
20258 return 0;
20259
20260 for (p = mips_cpu_info_table; p->name != 0; p++)
20261 if (mips_matching_cpu_name_p (p->name, cpu_string))
20262 return p;
20263
20264 as_bad (_("bad value (%s) for %s"), cpu_string, option);
20265 return 0;
20266 }
20267
20268 /* Return the canonical processor information for ISA (a member of the
20269 ISA_MIPS* enumeration). */
20270
20271 static const struct mips_cpu_info *
20272 mips_cpu_info_from_isa (int isa)
20273 {
20274 int i;
20275
20276 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20277 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
20278 && isa == mips_cpu_info_table[i].isa)
20279 return (&mips_cpu_info_table[i]);
20280
20281 return NULL;
20282 }
20283
20284 static const struct mips_cpu_info *
20285 mips_cpu_info_from_arch (int arch)
20286 {
20287 int i;
20288
20289 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20290 if (arch == mips_cpu_info_table[i].cpu)
20291 return (&mips_cpu_info_table[i]);
20292
20293 return NULL;
20294 }
20295 \f
20296 static void
20297 show (FILE *stream, const char *string, int *col_p, int *first_p)
20298 {
20299 if (*first_p)
20300 {
20301 fprintf (stream, "%24s", "");
20302 *col_p = 24;
20303 }
20304 else
20305 {
20306 fprintf (stream, ", ");
20307 *col_p += 2;
20308 }
20309
20310 if (*col_p + strlen (string) > 72)
20311 {
20312 fprintf (stream, "\n%24s", "");
20313 *col_p = 24;
20314 }
20315
20316 fprintf (stream, "%s", string);
20317 *col_p += strlen (string);
20318
20319 *first_p = 0;
20320 }
20321
20322 void
20323 md_show_usage (FILE *stream)
20324 {
20325 int column, first;
20326 size_t i;
20327
20328 fprintf (stream, _("\
20329 MIPS options:\n\
20330 -EB generate big endian output\n\
20331 -EL generate little endian output\n\
20332 -g, -g2 do not remove unneeded NOPs or swap branches\n\
20333 -G NUM allow referencing objects up to NUM bytes\n\
20334 implicitly with the gp register [default 8]\n"));
20335 fprintf (stream, _("\
20336 -mips1 generate MIPS ISA I instructions\n\
20337 -mips2 generate MIPS ISA II instructions\n\
20338 -mips3 generate MIPS ISA III instructions\n\
20339 -mips4 generate MIPS ISA IV instructions\n\
20340 -mips5 generate MIPS ISA V instructions\n\
20341 -mips32 generate MIPS32 ISA instructions\n\
20342 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
20343 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
20344 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
20345 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
20346 -mips64 generate MIPS64 ISA instructions\n\
20347 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
20348 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
20349 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
20350 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
20351 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20352
20353 first = 1;
20354
20355 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20356 show (stream, mips_cpu_info_table[i].name, &column, &first);
20357 show (stream, "from-abi", &column, &first);
20358 fputc ('\n', stream);
20359
20360 fprintf (stream, _("\
20361 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20362 -no-mCPU don't generate code specific to CPU.\n\
20363 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20364
20365 first = 1;
20366
20367 show (stream, "3900", &column, &first);
20368 show (stream, "4010", &column, &first);
20369 show (stream, "4100", &column, &first);
20370 show (stream, "4650", &column, &first);
20371 fputc ('\n', stream);
20372
20373 fprintf (stream, _("\
20374 -mips16 generate mips16 instructions\n\
20375 -no-mips16 do not generate mips16 instructions\n"));
20376 fprintf (stream, _("\
20377 -mmips16e2 generate MIPS16e2 instructions\n\
20378 -mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20379 fprintf (stream, _("\
20380 -mmicromips generate microMIPS instructions\n\
20381 -mno-micromips do not generate microMIPS instructions\n"));
20382 fprintf (stream, _("\
20383 -msmartmips generate smartmips instructions\n\
20384 -mno-smartmips do not generate smartmips instructions\n"));
20385 fprintf (stream, _("\
20386 -mdsp generate DSP instructions\n\
20387 -mno-dsp do not generate DSP instructions\n"));
20388 fprintf (stream, _("\
20389 -mdspr2 generate DSP R2 instructions\n\
20390 -mno-dspr2 do not generate DSP R2 instructions\n"));
20391 fprintf (stream, _("\
20392 -mdspr3 generate DSP R3 instructions\n\
20393 -mno-dspr3 do not generate DSP R3 instructions\n"));
20394 fprintf (stream, _("\
20395 -mmt generate MT instructions\n\
20396 -mno-mt do not generate MT instructions\n"));
20397 fprintf (stream, _("\
20398 -mmcu generate MCU instructions\n\
20399 -mno-mcu do not generate MCU instructions\n"));
20400 fprintf (stream, _("\
20401 -mmsa generate MSA instructions\n\
20402 -mno-msa do not generate MSA instructions\n"));
20403 fprintf (stream, _("\
20404 -mxpa generate eXtended Physical Address (XPA) instructions\n\
20405 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20406 fprintf (stream, _("\
20407 -mvirt generate Virtualization instructions\n\
20408 -mno-virt do not generate Virtualization instructions\n"));
20409 fprintf (stream, _("\
20410 -mcrc generate CRC instructions\n\
20411 -mno-crc do not generate CRC instructions\n"));
20412 fprintf (stream, _("\
20413 -mginv generate Global INValidate (GINV) instructions\n\
20414 -mno-ginv do not generate Global INValidate instructions\n"));
20415 fprintf (stream, _("\
20416 -mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20417 -mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20418 fprintf (stream, _("\
20419 -mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20420 -mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20421 fprintf (stream, _("\
20422 -mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20423 -mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20424 fprintf (stream, _("\
20425 -mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
20426 -mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
20427 fprintf (stream, _("\
20428 -minsn32 only generate 32-bit microMIPS instructions\n\
20429 -mno-insn32 generate all microMIPS instructions\n"));
20430 #if DEFAULT_MIPS_FIX_LOONGSON3_LLSC
20431 fprintf (stream, _("\
20432 -mfix-loongson3-llsc work around Loongson3 LL/SC errata, default\n\
20433 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n"));
20434 #else
20435 fprintf (stream, _("\
20436 -mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20437 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata, default\n"));
20438 #endif
20439 fprintf (stream, _("\
20440 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20441 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
20442 -mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20443 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n\
20444 -mfix-vr4120 work around certain VR4120 errata\n\
20445 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
20446 -mfix-24k insert a nop after ERET and DERET instructions\n\
20447 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
20448 -mfix-r5900 work around R5900 short loop errata\n\
20449 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20450 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
20451 -msym32 assume all symbols have 32-bit values\n\
20452 -O0 do not remove unneeded NOPs, do not swap branches\n\
20453 -O, -O1 remove unneeded NOPs, do not swap branches\n\
20454 -O2 remove unneeded NOPs and swap branches\n\
20455 --trap, --no-break trap exception on div by 0 and mult overflow\n\
20456 --break, --no-trap break exception on div by 0 and mult overflow\n"));
20457 fprintf (stream, _("\
20458 -mhard-float allow floating-point instructions\n\
20459 -msoft-float do not allow floating-point instructions\n\
20460 -msingle-float only allow 32-bit floating-point operations\n\
20461 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
20462 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
20463 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
20464 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20465 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
20466 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20467
20468 first = 1;
20469
20470 show (stream, "legacy", &column, &first);
20471 show (stream, "2008", &column, &first);
20472
20473 fputc ('\n', stream);
20474
20475 fprintf (stream, _("\
20476 -KPIC, -call_shared generate SVR4 position independent code\n\
20477 -call_nonpic generate non-PIC code that can operate with DSOs\n\
20478 -mvxworks-pic generate VxWorks position independent code\n\
20479 -non_shared do not generate code that can operate with DSOs\n\
20480 -xgot assume a 32 bit GOT\n\
20481 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
20482 -mshared, -mno-shared disable/enable .cpload optimization for\n\
20483 position dependent (non shared) code\n\
20484 -mabi=ABI create ABI conformant object file for:\n"));
20485
20486 first = 1;
20487
20488 show (stream, "32", &column, &first);
20489 show (stream, "o64", &column, &first);
20490 show (stream, "n32", &column, &first);
20491 show (stream, "64", &column, &first);
20492 show (stream, "eabi", &column, &first);
20493
20494 fputc ('\n', stream);
20495
20496 fprintf (stream, _("\
20497 -32 create o32 ABI object file%s\n"),
20498 MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
20499 fprintf (stream, _("\
20500 -n32 create n32 ABI object file%s\n"),
20501 MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
20502 fprintf (stream, _("\
20503 -64 create 64 ABI object file%s\n"),
20504 MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
20505 }
20506
20507 #ifdef TE_IRIX
20508 enum dwarf2_format
20509 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
20510 {
20511 if (HAVE_64BIT_SYMBOLS)
20512 return dwarf2_format_64bit_irix;
20513 else
20514 return dwarf2_format_32bit;
20515 }
20516 #endif
20517
20518 int
20519 mips_dwarf2_addr_size (void)
20520 {
20521 if (HAVE_64BIT_OBJECTS)
20522 return 8;
20523 else
20524 return 4;
20525 }
20526
20527 /* Standard calling conventions leave the CFA at SP on entry. */
20528 void
20529 mips_cfi_frame_initial_instructions (void)
20530 {
20531 cfi_add_CFA_def_cfa_register (SP);
20532 }
20533
20534 int
20535 tc_mips_regname_to_dw2regnum (char *regname)
20536 {
20537 unsigned int regnum = -1;
20538 unsigned int reg;
20539
20540 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20541 regnum = reg;
20542
20543 return regnum;
20544 }
20545
20546 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20547 Given a symbolic attribute NAME, return the proper integer value.
20548 Returns -1 if the attribute is not known. */
20549
20550 int
20551 mips_convert_symbolic_attribute (const char *name)
20552 {
20553 static const struct
20554 {
20555 const char * name;
20556 const int tag;
20557 }
20558 attribute_table[] =
20559 {
20560 #define T(tag) {#tag, tag}
20561 T (Tag_GNU_MIPS_ABI_FP),
20562 T (Tag_GNU_MIPS_ABI_MSA),
20563 #undef T
20564 };
20565 unsigned int i;
20566
20567 if (name == NULL)
20568 return -1;
20569
20570 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20571 if (streq (name, attribute_table[i].name))
20572 return attribute_table[i].tag;
20573
20574 return -1;
20575 }
20576
20577 void
20578 mips_md_finish (void)
20579 {
20580 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20581
20582 mips_emit_delays ();
20583 if (cur_proc_ptr)
20584 as_warn (_("missing .end at end of assembly"));
20585
20586 /* Just in case no code was emitted, do the consistency check. */
20587 file_mips_check_options ();
20588
20589 /* Set a floating-point ABI if the user did not. */
20590 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20591 {
20592 /* Perform consistency checks on the floating-point ABI. */
20593 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20594 Tag_GNU_MIPS_ABI_FP);
20595 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20596 check_fpabi (fpabi);
20597 }
20598 else
20599 {
20600 /* Soft-float gets precedence over single-float, the two options should
20601 not be used together so this should not matter. */
20602 if (file_mips_opts.soft_float == 1)
20603 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20604 /* Single-float gets precedence over all double_float cases. */
20605 else if (file_mips_opts.single_float == 1)
20606 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20607 else
20608 {
20609 switch (file_mips_opts.fp)
20610 {
20611 case 32:
20612 if (file_mips_opts.gp == 32)
20613 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20614 break;
20615 case 0:
20616 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20617 break;
20618 case 64:
20619 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20620 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20621 else if (file_mips_opts.gp == 32)
20622 fpabi = Val_GNU_MIPS_ABI_FP_64;
20623 else
20624 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20625 break;
20626 }
20627 }
20628
20629 if (!bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20630 Tag_GNU_MIPS_ABI_FP, fpabi))
20631 as_fatal (_("error adding attribute: %s"),
20632 bfd_errmsg (bfd_get_error ()));
20633 }
20634 }
20635
20636 /* Returns the relocation type required for a particular CFI encoding. */
20637
20638 bfd_reloc_code_real_type
20639 mips_cfi_reloc_for_encoding (int encoding)
20640 {
20641 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20642 return BFD_RELOC_32_PCREL;
20643 else return BFD_RELOC_NONE;
20644 }