e6de2e10dc3fedd34d336e6996d464ba081a3db4
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "asan.h"
36 #include "stor-layout.h"
37 #include "builtins.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static void perform_member_init (tree, tree);
45 static int member_init_ok_or_else (tree, tree, tree);
46 static void expand_virtual_init (tree, tree);
47 static tree sort_mem_initializers (tree, tree);
48 static tree initializing_context (tree);
49 static void expand_cleanup_for_base (tree, tree);
50 static tree dfs_initialize_vtbl_ptrs (tree, void *);
51 static tree build_field_list (tree, tree, int *);
52 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
53
54 static GTY(()) tree fn;
55
56 /* We are about to generate some complex initialization code.
57 Conceptually, it is all a single expression. However, we may want
58 to include conditionals, loops, and other such statement-level
59 constructs. Therefore, we build the initialization code inside a
60 statement-expression. This function starts such an expression.
61 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
62 pass them back to finish_init_stmts when the expression is
63 complete. */
64
65 static bool
66 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
67 {
68 bool is_global = !building_stmt_list_p ();
69
70 *stmt_expr_p = begin_stmt_expr ();
71 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
72
73 return is_global;
74 }
75
76 /* Finish out the statement-expression begun by the previous call to
77 begin_init_stmts. Returns the statement-expression itself. */
78
79 static tree
80 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
81 {
82 finish_compound_stmt (compound_stmt);
83
84 stmt_expr = finish_stmt_expr (stmt_expr, true);
85
86 gcc_assert (!building_stmt_list_p () == is_global);
87
88 return stmt_expr;
89 }
90
91 /* Constructors */
92
93 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
94 which we want to initialize the vtable pointer for, DATA is
95 TREE_LIST whose TREE_VALUE is the this ptr expression. */
96
97 static tree
98 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
99 {
100 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
101 return dfs_skip_bases;
102
103 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
104 {
105 tree base_ptr = TREE_VALUE ((tree) data);
106
107 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
108 tf_warning_or_error);
109
110 expand_virtual_init (binfo, base_ptr);
111 }
112
113 return NULL_TREE;
114 }
115
116 /* Initialize all the vtable pointers in the object pointed to by
117 ADDR. */
118
119 void
120 initialize_vtbl_ptrs (tree addr)
121 {
122 tree list;
123 tree type;
124
125 type = TREE_TYPE (TREE_TYPE (addr));
126 list = build_tree_list (type, addr);
127
128 /* Walk through the hierarchy, initializing the vptr in each base
129 class. We do these in pre-order because we can't find the virtual
130 bases for a class until we've initialized the vtbl for that
131 class. */
132 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
133 }
134
135 /* Return an expression for the zero-initialization of an object with
136 type T. This expression will either be a constant (in the case
137 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
138 aggregate), or NULL (in the case that T does not require
139 initialization). In either case, the value can be used as
140 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
141 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
142 is the number of elements in the array. If STATIC_STORAGE_P is
143 TRUE, initializers are only generated for entities for which
144 zero-initialization does not simply mean filling the storage with
145 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
146 subfields with bit positions at or above that bit size shouldn't
147 be added. Note that this only works when the result is assigned
148 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
149 expand_assignment will end up clearing the full size of TYPE. */
150
151 static tree
152 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
153 tree field_size)
154 {
155 tree init = NULL_TREE;
156
157 /* [dcl.init]
158
159 To zero-initialize an object of type T means:
160
161 -- if T is a scalar type, the storage is set to the value of zero
162 converted to T.
163
164 -- if T is a non-union class type, the storage for each non-static
165 data member and each base-class subobject is zero-initialized.
166
167 -- if T is a union type, the storage for its first data member is
168 zero-initialized.
169
170 -- if T is an array type, the storage for each element is
171 zero-initialized.
172
173 -- if T is a reference type, no initialization is performed. */
174
175 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
176
177 if (type == error_mark_node)
178 ;
179 else if (static_storage_p && zero_init_p (type))
180 /* In order to save space, we do not explicitly build initializers
181 for items that do not need them. GCC's semantics are that
182 items with static storage duration that are not otherwise
183 initialized are initialized to zero. */
184 ;
185 else if (TYPE_PTR_OR_PTRMEM_P (type))
186 init = fold (convert (type, nullptr_node));
187 else if (NULLPTR_TYPE_P (type))
188 init = build_int_cst (type, 0);
189 else if (SCALAR_TYPE_P (type))
190 init = build_zero_cst (type);
191 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
192 {
193 tree field;
194 vec<constructor_elt, va_gc> *v = NULL;
195
196 /* Iterate over the fields, building initializations. */
197 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
198 {
199 if (TREE_CODE (field) != FIELD_DECL)
200 continue;
201
202 if (TREE_TYPE (field) == error_mark_node)
203 continue;
204
205 /* Don't add virtual bases for base classes if they are beyond
206 the size of the current field, that means it is present
207 somewhere else in the object. */
208 if (field_size)
209 {
210 tree bitpos = bit_position (field);
211 if (TREE_CODE (bitpos) == INTEGER_CST
212 && !tree_int_cst_lt (bitpos, field_size))
213 continue;
214 }
215
216 /* Note that for class types there will be FIELD_DECLs
217 corresponding to base classes as well. Thus, iterating
218 over TYPE_FIELDs will result in correct initialization of
219 all of the subobjects. */
220 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
221 {
222 tree new_field_size
223 = (DECL_FIELD_IS_BASE (field)
224 && DECL_SIZE (field)
225 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
226 ? DECL_SIZE (field) : NULL_TREE;
227 tree value = build_zero_init_1 (TREE_TYPE (field),
228 /*nelts=*/NULL_TREE,
229 static_storage_p,
230 new_field_size);
231 if (value)
232 CONSTRUCTOR_APPEND_ELT(v, field, value);
233 }
234
235 /* For unions, only the first field is initialized. */
236 if (TREE_CODE (type) == UNION_TYPE)
237 break;
238 }
239
240 /* Build a constructor to contain the initializations. */
241 init = build_constructor (type, v);
242 }
243 else if (TREE_CODE (type) == ARRAY_TYPE)
244 {
245 tree max_index;
246 vec<constructor_elt, va_gc> *v = NULL;
247
248 /* Iterate over the array elements, building initializations. */
249 if (nelts)
250 max_index = fold_build2_loc (input_location,
251 MINUS_EXPR, TREE_TYPE (nelts),
252 nelts, integer_one_node);
253 else
254 max_index = array_type_nelts (type);
255
256 /* If we have an error_mark here, we should just return error mark
257 as we don't know the size of the array yet. */
258 if (max_index == error_mark_node)
259 return error_mark_node;
260 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
261
262 /* A zero-sized array, which is accepted as an extension, will
263 have an upper bound of -1. */
264 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
265 {
266 constructor_elt ce;
267
268 /* If this is a one element array, we just use a regular init. */
269 if (tree_int_cst_equal (size_zero_node, max_index))
270 ce.index = size_zero_node;
271 else
272 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
273 max_index);
274
275 ce.value = build_zero_init_1 (TREE_TYPE (type),
276 /*nelts=*/NULL_TREE,
277 static_storage_p, NULL_TREE);
278 if (ce.value)
279 {
280 vec_alloc (v, 1);
281 v->quick_push (ce);
282 }
283 }
284
285 /* Build a constructor to contain the initializations. */
286 init = build_constructor (type, v);
287 }
288 else if (VECTOR_TYPE_P (type))
289 init = build_zero_cst (type);
290 else
291 {
292 gcc_assert (TYPE_REF_P (type));
293 init = build_zero_cst (type);
294 }
295
296 /* In all cases, the initializer is a constant. */
297 if (init)
298 TREE_CONSTANT (init) = 1;
299
300 return init;
301 }
302
303 /* Return an expression for the zero-initialization of an object with
304 type T. This expression will either be a constant (in the case
305 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
306 aggregate), or NULL (in the case that T does not require
307 initialization). In either case, the value can be used as
308 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
309 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
310 is the number of elements in the array. If STATIC_STORAGE_P is
311 TRUE, initializers are only generated for entities for which
312 zero-initialization does not simply mean filling the storage with
313 zero bytes. */
314
315 tree
316 build_zero_init (tree type, tree nelts, bool static_storage_p)
317 {
318 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
319 }
320
321 /* Return a suitable initializer for value-initializing an object of type
322 TYPE, as described in [dcl.init]. */
323
324 tree
325 build_value_init (tree type, tsubst_flags_t complain)
326 {
327 /* [dcl.init]
328
329 To value-initialize an object of type T means:
330
331 - if T is a class type (clause 9) with either no default constructor
332 (12.1) or a default constructor that is user-provided or deleted,
333 then the object is default-initialized;
334
335 - if T is a (possibly cv-qualified) class type without a user-provided
336 or deleted default constructor, then the object is zero-initialized
337 and the semantic constraints for default-initialization are checked,
338 and if T has a non-trivial default constructor, the object is
339 default-initialized;
340
341 - if T is an array type, then each element is value-initialized;
342
343 - otherwise, the object is zero-initialized.
344
345 A program that calls for default-initialization or
346 value-initialization of an entity of reference type is ill-formed. */
347
348 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
349 gcc_assert (!processing_template_decl
350 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
351
352 if (CLASS_TYPE_P (type) && type_build_ctor_call (type))
353 {
354 tree ctor
355 = build_special_member_call (NULL_TREE, complete_ctor_identifier,
356 NULL, type, LOOKUP_NORMAL, complain);
357 if (ctor == error_mark_node || TREE_CONSTANT (ctor))
358 return ctor;
359 tree fn = NULL_TREE;
360 if (TREE_CODE (ctor) == CALL_EXPR)
361 fn = get_callee_fndecl (ctor);
362 ctor = build_aggr_init_expr (type, ctor);
363 if (fn && user_provided_p (fn))
364 return ctor;
365 else if (TYPE_HAS_COMPLEX_DFLT (type))
366 {
367 /* This is a class that needs constructing, but doesn't have
368 a user-provided constructor. So we need to zero-initialize
369 the object and then call the implicitly defined ctor.
370 This will be handled in simplify_aggr_init_expr. */
371 AGGR_INIT_ZERO_FIRST (ctor) = 1;
372 return ctor;
373 }
374 }
375
376 /* Discard any access checking during subobject initialization;
377 the checks are implied by the call to the ctor which we have
378 verified is OK (cpp0x/defaulted46.C). */
379 push_deferring_access_checks (dk_deferred);
380 tree r = build_value_init_noctor (type, complain);
381 pop_deferring_access_checks ();
382 return r;
383 }
384
385 /* Like build_value_init, but don't call the constructor for TYPE. Used
386 for base initializers. */
387
388 tree
389 build_value_init_noctor (tree type, tsubst_flags_t complain)
390 {
391 if (!COMPLETE_TYPE_P (type))
392 {
393 if (complain & tf_error)
394 error ("value-initialization of incomplete type %qT", type);
395 return error_mark_node;
396 }
397 /* FIXME the class and array cases should just use digest_init once it is
398 SFINAE-enabled. */
399 if (CLASS_TYPE_P (type))
400 {
401 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
402 || errorcount != 0);
403
404 if (TREE_CODE (type) != UNION_TYPE)
405 {
406 tree field;
407 vec<constructor_elt, va_gc> *v = NULL;
408
409 /* Iterate over the fields, building initializations. */
410 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
411 {
412 tree ftype, value;
413
414 if (TREE_CODE (field) != FIELD_DECL)
415 continue;
416
417 ftype = TREE_TYPE (field);
418
419 if (ftype == error_mark_node)
420 continue;
421
422 /* Ignore flexible array members for value initialization. */
423 if (TREE_CODE (ftype) == ARRAY_TYPE
424 && !COMPLETE_TYPE_P (ftype)
425 && !TYPE_DOMAIN (ftype)
426 && COMPLETE_TYPE_P (TREE_TYPE (ftype))
427 && (next_initializable_field (DECL_CHAIN (field))
428 == NULL_TREE))
429 continue;
430
431 /* We could skip vfields and fields of types with
432 user-defined constructors, but I think that won't improve
433 performance at all; it should be simpler in general just
434 to zero out the entire object than try to only zero the
435 bits that actually need it. */
436
437 /* Note that for class types there will be FIELD_DECLs
438 corresponding to base classes as well. Thus, iterating
439 over TYPE_FIELDs will result in correct initialization of
440 all of the subobjects. */
441 value = build_value_init (ftype, complain);
442 value = maybe_constant_init (value);
443
444 if (value == error_mark_node)
445 return error_mark_node;
446
447 CONSTRUCTOR_APPEND_ELT(v, field, value);
448
449 /* We shouldn't have gotten here for anything that would need
450 non-trivial initialization, and gimplify_init_ctor_preeval
451 would need to be fixed to allow it. */
452 gcc_assert (TREE_CODE (value) != TARGET_EXPR
453 && TREE_CODE (value) != AGGR_INIT_EXPR);
454 }
455
456 /* Build a constructor to contain the zero- initializations. */
457 return build_constructor (type, v);
458 }
459 }
460 else if (TREE_CODE (type) == ARRAY_TYPE)
461 {
462 vec<constructor_elt, va_gc> *v = NULL;
463
464 /* Iterate over the array elements, building initializations. */
465 tree max_index = array_type_nelts (type);
466
467 /* If we have an error_mark here, we should just return error mark
468 as we don't know the size of the array yet. */
469 if (max_index == error_mark_node)
470 {
471 if (complain & tf_error)
472 error ("cannot value-initialize array of unknown bound %qT",
473 type);
474 return error_mark_node;
475 }
476 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
477
478 /* A zero-sized array, which is accepted as an extension, will
479 have an upper bound of -1. */
480 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
481 {
482 constructor_elt ce;
483
484 /* If this is a one element array, we just use a regular init. */
485 if (tree_int_cst_equal (size_zero_node, max_index))
486 ce.index = size_zero_node;
487 else
488 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
489
490 ce.value = build_value_init (TREE_TYPE (type), complain);
491 ce.value = maybe_constant_init (ce.value);
492 if (ce.value == error_mark_node)
493 return error_mark_node;
494
495 vec_alloc (v, 1);
496 v->quick_push (ce);
497
498 /* We shouldn't have gotten here for anything that would need
499 non-trivial initialization, and gimplify_init_ctor_preeval
500 would need to be fixed to allow it. */
501 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
502 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
503 }
504
505 /* Build a constructor to contain the initializations. */
506 return build_constructor (type, v);
507 }
508 else if (TREE_CODE (type) == FUNCTION_TYPE)
509 {
510 if (complain & tf_error)
511 error ("value-initialization of function type %qT", type);
512 return error_mark_node;
513 }
514 else if (TYPE_REF_P (type))
515 {
516 if (complain & tf_error)
517 error ("value-initialization of reference type %qT", type);
518 return error_mark_node;
519 }
520
521 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
522 }
523
524 /* Initialize current class with INIT, a TREE_LIST of
525 arguments for a target constructor. If TREE_LIST is void_type_node,
526 an empty initializer list was given. */
527
528 static void
529 perform_target_ctor (tree init)
530 {
531 tree decl = current_class_ref;
532 tree type = current_class_type;
533
534 finish_expr_stmt (build_aggr_init (decl, init,
535 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
536 tf_warning_or_error));
537 if (type_build_dtor_call (type))
538 {
539 tree expr = build_delete (input_location,
540 type, decl, sfk_complete_destructor,
541 LOOKUP_NORMAL
542 |LOOKUP_NONVIRTUAL
543 |LOOKUP_DESTRUCTOR,
544 0, tf_warning_or_error);
545 if (expr != error_mark_node
546 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
547 finish_eh_cleanup (expr);
548 }
549 }
550
551 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
552
553 static GTY((cache)) decl_tree_cache_map *nsdmi_inst;
554
555 tree
556 get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain)
557 {
558 tree init;
559 tree save_ccp = current_class_ptr;
560 tree save_ccr = current_class_ref;
561
562 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
563 {
564 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
565 location_t expr_loc
566 = cp_expr_loc_or_loc (init, DECL_SOURCE_LOCATION (member));
567 if (TREE_CODE (init) == DEFERRED_PARSE)
568 /* Unparsed. */;
569 else if (tree *slot = hash_map_safe_get (nsdmi_inst, member))
570 init = *slot;
571 /* Check recursive instantiation. */
572 else if (DECL_INSTANTIATING_NSDMI_P (member))
573 {
574 if (complain & tf_error)
575 error_at (expr_loc, "recursive instantiation of default member "
576 "initializer for %qD", member);
577 init = error_mark_node;
578 }
579 else
580 {
581 cp_evaluated ev;
582
583 location_t sloc = input_location;
584 input_location = expr_loc;
585
586 DECL_INSTANTIATING_NSDMI_P (member) = 1;
587
588 bool pushed = false;
589 tree ctx = DECL_CONTEXT (member);
590 if (!currently_open_class (ctx)
591 && !LOCAL_CLASS_P (ctx))
592 {
593 push_to_top_level ();
594 push_nested_class (ctx);
595 pushed = true;
596 }
597
598 gcc_checking_assert (!processing_template_decl);
599
600 inject_this_parameter (ctx, TYPE_UNQUALIFIED);
601
602 start_lambda_scope (member);
603
604 /* Do deferred instantiation of the NSDMI. */
605 init = (tsubst_copy_and_build
606 (init, DECL_TI_ARGS (member),
607 complain, member, /*function_p=*/false,
608 /*integral_constant_expression_p=*/false));
609 init = digest_nsdmi_init (member, init, complain);
610
611 finish_lambda_scope ();
612
613 DECL_INSTANTIATING_NSDMI_P (member) = 0;
614
615 if (init != error_mark_node)
616 hash_map_safe_put<hm_ggc> (nsdmi_inst, member, init);
617
618 if (pushed)
619 {
620 pop_nested_class ();
621 pop_from_top_level ();
622 }
623
624 input_location = sloc;
625 }
626 }
627 else
628 init = DECL_INITIAL (member);
629
630 if (init && TREE_CODE (init) == DEFERRED_PARSE)
631 {
632 if (complain & tf_error)
633 {
634 error ("default member initializer for %qD required before the end "
635 "of its enclosing class", member);
636 inform (location_of (init), "defined here");
637 DECL_INITIAL (member) = error_mark_node;
638 }
639 init = error_mark_node;
640 }
641
642 if (in_ctor)
643 {
644 current_class_ptr = save_ccp;
645 current_class_ref = save_ccr;
646 }
647 else
648 {
649 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
650 refer to; constexpr evaluation knows what to do with it. */
651 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
652 current_class_ptr = build_address (current_class_ref);
653 }
654
655 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
656 so the aggregate init code below will see a CONSTRUCTOR. */
657 bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
658 if (simple_target)
659 init = TARGET_EXPR_INITIAL (init);
660 init = break_out_target_exprs (init, /*loc*/true);
661 if (in_ctor && init && TREE_CODE (init) == TARGET_EXPR)
662 /* This expresses the full initialization, prevent perform_member_init from
663 calling another constructor (58162). */
664 TARGET_EXPR_DIRECT_INIT_P (init) = true;
665 if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
666 /* Now put it back so C++17 copy elision works. */
667 init = get_target_expr (init);
668
669 current_class_ptr = save_ccp;
670 current_class_ref = save_ccr;
671 return init;
672 }
673
674 /* Diagnose the flexible array MEMBER if its INITializer is non-null
675 and return true if so. Otherwise return false. */
676
677 bool
678 maybe_reject_flexarray_init (tree member, tree init)
679 {
680 tree type = TREE_TYPE (member);
681
682 if (!init
683 || TREE_CODE (type) != ARRAY_TYPE
684 || TYPE_DOMAIN (type))
685 return false;
686
687 /* Point at the flexible array member declaration if it's initialized
688 in-class, and at the ctor if it's initialized in a ctor member
689 initializer list. */
690 location_t loc;
691 if (DECL_INITIAL (member) == init
692 || !current_function_decl
693 || DECL_DEFAULTED_FN (current_function_decl))
694 loc = DECL_SOURCE_LOCATION (member);
695 else
696 loc = DECL_SOURCE_LOCATION (current_function_decl);
697
698 error_at (loc, "initializer for flexible array member %q#D", member);
699 return true;
700 }
701
702 /* If INIT's value can come from a call to std::initializer_list<T>::begin,
703 return that function. Otherwise, NULL_TREE. */
704
705 static tree
706 find_list_begin (tree init)
707 {
708 STRIP_NOPS (init);
709 while (TREE_CODE (init) == COMPOUND_EXPR)
710 init = TREE_OPERAND (init, 1);
711 STRIP_NOPS (init);
712 if (TREE_CODE (init) == COND_EXPR)
713 {
714 tree left = TREE_OPERAND (init, 1);
715 if (!left)
716 left = TREE_OPERAND (init, 0);
717 left = find_list_begin (left);
718 if (left)
719 return left;
720 return find_list_begin (TREE_OPERAND (init, 2));
721 }
722 if (TREE_CODE (init) == CALL_EXPR)
723 if (tree fn = get_callee_fndecl (init))
724 if (id_equal (DECL_NAME (fn), "begin")
725 && is_std_init_list (DECL_CONTEXT (fn)))
726 return fn;
727 return NULL_TREE;
728 }
729
730 /* If INIT initializing MEMBER is copying the address of the underlying array
731 of an initializer_list, warn. */
732
733 static void
734 maybe_warn_list_ctor (tree member, tree init)
735 {
736 tree memtype = TREE_TYPE (member);
737 if (!init || !TYPE_PTR_P (memtype)
738 || !is_list_ctor (current_function_decl))
739 return;
740
741 tree parms = FUNCTION_FIRST_USER_PARMTYPE (current_function_decl);
742 tree initlist = non_reference (TREE_VALUE (parms));
743 tree targs = CLASSTYPE_TI_ARGS (initlist);
744 tree elttype = TREE_VEC_ELT (targs, 0);
745
746 if (!same_type_ignoring_top_level_qualifiers_p
747 (TREE_TYPE (memtype), elttype))
748 return;
749
750 tree begin = find_list_begin (init);
751 if (!begin)
752 return;
753
754 location_t loc = cp_expr_loc_or_input_loc (init);
755 warning_at (loc, OPT_Winit_list_lifetime,
756 "initializing %qD from %qE does not extend the lifetime "
757 "of the underlying array", member, begin);
758 }
759
760 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
761 arguments. If TREE_LIST is void_type_node, an empty initializer
762 list was given; if NULL_TREE no initializer was given. */
763
764 static void
765 perform_member_init (tree member, tree init)
766 {
767 tree decl;
768 tree type = TREE_TYPE (member);
769
770 /* Use the non-static data member initializer if there was no
771 mem-initializer for this field. */
772 if (init == NULL_TREE)
773 init = get_nsdmi (member, /*ctor*/true, tf_warning_or_error);
774
775 if (init == error_mark_node)
776 return;
777
778 /* Effective C++ rule 12 requires that all data members be
779 initialized. */
780 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
781 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
782 "%qD should be initialized in the member initialization list",
783 member);
784
785 /* Get an lvalue for the data member. */
786 decl = build_class_member_access_expr (current_class_ref, member,
787 /*access_path=*/NULL_TREE,
788 /*preserve_reference=*/true,
789 tf_warning_or_error);
790 if (decl == error_mark_node)
791 return;
792
793 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
794 && TREE_CHAIN (init) == NULL_TREE)
795 {
796 tree val = TREE_VALUE (init);
797 /* Handle references. */
798 if (REFERENCE_REF_P (val))
799 val = TREE_OPERAND (val, 0);
800 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
801 && TREE_OPERAND (val, 0) == current_class_ref)
802 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
803 OPT_Winit_self, "%qD is initialized with itself",
804 member);
805 }
806
807 if (array_of_unknown_bound_p (type))
808 {
809 maybe_reject_flexarray_init (member, init);
810 return;
811 }
812
813 if (init && TREE_CODE (init) == TREE_LIST)
814 {
815 /* A(): a{e} */
816 if (DIRECT_LIST_INIT_P (TREE_VALUE (init)))
817 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
818 tf_warning_or_error);
819 /* We are trying to initialize an array from a ()-list. If we
820 should attempt to do so, conjure up a CONSTRUCTOR. */
821 else if (TREE_CODE (type) == ARRAY_TYPE
822 /* P0960 is a C++20 feature. */
823 && cxx_dialect >= cxx20)
824 init = do_aggregate_paren_init (init, type);
825 else if (!CLASS_TYPE_P (type))
826 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
827 tf_warning_or_error);
828 /* If we're initializing a class from a ()-list, leave the TREE_LIST
829 alone: we might call an appropriate constructor, or (in C++20)
830 do aggregate-initialization. */
831 }
832
833 if (init == void_type_node)
834 {
835 /* mem() means value-initialization. */
836 if (TREE_CODE (type) == ARRAY_TYPE)
837 {
838 init = build_vec_init_expr (type, init, tf_warning_or_error);
839 init = build2 (INIT_EXPR, type, decl, init);
840 finish_expr_stmt (init);
841 }
842 else
843 {
844 tree value = build_value_init (type, tf_warning_or_error);
845 if (value == error_mark_node)
846 return;
847 init = build2 (INIT_EXPR, type, decl, value);
848 finish_expr_stmt (init);
849 }
850 }
851 /* Deal with this here, as we will get confused if we try to call the
852 assignment op for an anonymous union. This can happen in a
853 synthesized copy constructor. */
854 else if (ANON_AGGR_TYPE_P (type))
855 {
856 if (init)
857 {
858 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
859 finish_expr_stmt (init);
860 }
861 }
862 else if (init
863 && (TYPE_REF_P (type)
864 || (TREE_CODE (init) == CONSTRUCTOR
865 && (CP_AGGREGATE_TYPE_P (type)
866 || is_std_init_list (type)))))
867 {
868 /* With references and list-initialization, we need to deal with
869 extending temporary lifetimes. 12.2p5: "A temporary bound to a
870 reference member in a constructor’s ctor-initializer (12.6.2)
871 persists until the constructor exits." */
872 unsigned i; tree t;
873 releasing_vec cleanups;
874 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
875 {
876 if (BRACE_ENCLOSED_INITIALIZER_P (init)
877 && CP_AGGREGATE_TYPE_P (type))
878 init = reshape_init (type, init, tf_warning_or_error);
879 init = digest_init (type, init, tf_warning_or_error);
880 }
881 if (init == error_mark_node)
882 return;
883 if (DECL_SIZE (member) && integer_zerop (DECL_SIZE (member))
884 && !TREE_SIDE_EFFECTS (init))
885 /* Don't add trivial initialization of an empty base/field, as they
886 might not be ordered the way the back-end expects. */
887 return;
888 /* A FIELD_DECL doesn't really have a suitable lifetime, but
889 make_temporary_var_for_ref_to_temp will treat it as automatic and
890 set_up_extended_ref_temp wants to use the decl in a warning. */
891 init = extend_ref_init_temps (member, init, &cleanups);
892 if (TREE_CODE (type) == ARRAY_TYPE
893 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
894 init = build_vec_init_expr (type, init, tf_warning_or_error);
895 init = build2 (INIT_EXPR, type, decl, init);
896 finish_expr_stmt (init);
897 FOR_EACH_VEC_ELT (*cleanups, i, t)
898 push_cleanup (decl, t, false);
899 }
900 else if (type_build_ctor_call (type)
901 || (init && CLASS_TYPE_P (strip_array_types (type))))
902 {
903 if (TREE_CODE (type) == ARRAY_TYPE)
904 {
905 if (init == NULL_TREE
906 || same_type_ignoring_top_level_qualifiers_p (type,
907 TREE_TYPE (init)))
908 {
909 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
910 {
911 /* Initialize the array only if it's not a flexible
912 array member (i.e., if it has an upper bound). */
913 init = build_vec_init_expr (type, init, tf_warning_or_error);
914 init = build2 (INIT_EXPR, type, decl, init);
915 finish_expr_stmt (init);
916 }
917 }
918 else
919 error ("invalid initializer for array member %q#D", member);
920 }
921 else
922 {
923 int flags = LOOKUP_NORMAL;
924 if (DECL_DEFAULTED_FN (current_function_decl))
925 flags |= LOOKUP_DEFAULTED;
926 if (CP_TYPE_CONST_P (type)
927 && init == NULL_TREE
928 && default_init_uninitialized_part (type))
929 {
930 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
931 vtable; still give this diagnostic. */
932 auto_diagnostic_group d;
933 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
934 "uninitialized const member in %q#T", type))
935 inform (DECL_SOURCE_LOCATION (member),
936 "%q#D should be initialized", member );
937 }
938 finish_expr_stmt (build_aggr_init (decl, init, flags,
939 tf_warning_or_error));
940 }
941 }
942 else
943 {
944 if (init == NULL_TREE)
945 {
946 tree core_type;
947 /* member traversal: note it leaves init NULL */
948 if (TYPE_REF_P (type))
949 {
950 auto_diagnostic_group d;
951 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
952 "uninitialized reference member in %q#T", type))
953 inform (DECL_SOURCE_LOCATION (member),
954 "%q#D should be initialized", member);
955 }
956 else if (CP_TYPE_CONST_P (type))
957 {
958 auto_diagnostic_group d;
959 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
960 "uninitialized const member in %q#T", type))
961 inform (DECL_SOURCE_LOCATION (member),
962 "%q#D should be initialized", member );
963 }
964
965 core_type = strip_array_types (type);
966
967 if (CLASS_TYPE_P (core_type)
968 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
969 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
970 diagnose_uninitialized_cst_or_ref_member (core_type,
971 /*using_new=*/false,
972 /*complain=*/true);
973 }
974
975 maybe_warn_list_ctor (member, init);
976
977 if (init)
978 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
979 INIT_EXPR, init,
980 tf_warning_or_error));
981 }
982
983 if (type_build_dtor_call (type))
984 {
985 tree expr;
986
987 expr = build_class_member_access_expr (current_class_ref, member,
988 /*access_path=*/NULL_TREE,
989 /*preserve_reference=*/false,
990 tf_warning_or_error);
991 expr = build_delete (input_location,
992 type, expr, sfk_complete_destructor,
993 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
994 tf_warning_or_error);
995
996 if (expr != error_mark_node
997 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
998 finish_eh_cleanup (expr);
999 }
1000 }
1001
1002 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
1003 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
1004
1005 static tree
1006 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
1007 {
1008 tree fields;
1009
1010 /* Note whether or not T is a union. */
1011 if (TREE_CODE (t) == UNION_TYPE)
1012 *uses_unions_or_anon_p = 1;
1013
1014 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
1015 {
1016 tree fieldtype;
1017
1018 /* Skip CONST_DECLs for enumeration constants and so forth. */
1019 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
1020 continue;
1021
1022 fieldtype = TREE_TYPE (fields);
1023
1024 /* For an anonymous struct or union, we must recursively
1025 consider the fields of the anonymous type. They can be
1026 directly initialized from the constructor. */
1027 if (ANON_AGGR_TYPE_P (fieldtype))
1028 {
1029 /* Add this field itself. Synthesized copy constructors
1030 initialize the entire aggregate. */
1031 list = tree_cons (fields, NULL_TREE, list);
1032 /* And now add the fields in the anonymous aggregate. */
1033 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
1034 *uses_unions_or_anon_p = 1;
1035 }
1036 /* Add this field. */
1037 else if (DECL_NAME (fields))
1038 list = tree_cons (fields, NULL_TREE, list);
1039 }
1040
1041 return list;
1042 }
1043
1044 /* Return the innermost aggregate scope for FIELD, whether that is
1045 the enclosing class or an anonymous aggregate within it. */
1046
1047 static tree
1048 innermost_aggr_scope (tree field)
1049 {
1050 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1051 return TREE_TYPE (field);
1052 else
1053 return DECL_CONTEXT (field);
1054 }
1055
1056 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
1057 a FIELD_DECL or BINFO in T that needs initialization. The
1058 TREE_VALUE gives the initializer, or list of initializer arguments.
1059
1060 Return a TREE_LIST containing all of the initializations required
1061 for T, in the order in which they should be performed. The output
1062 list has the same format as the input. */
1063
1064 static tree
1065 sort_mem_initializers (tree t, tree mem_inits)
1066 {
1067 tree init;
1068 tree base, binfo, base_binfo;
1069 tree sorted_inits;
1070 tree next_subobject;
1071 vec<tree, va_gc> *vbases;
1072 int i;
1073 int uses_unions_or_anon_p = 0;
1074
1075 /* Build up a list of initializations. The TREE_PURPOSE of entry
1076 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
1077 TREE_VALUE will be the constructor arguments, or NULL if no
1078 explicit initialization was provided. */
1079 sorted_inits = NULL_TREE;
1080
1081 /* Process the virtual bases. */
1082 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
1083 vec_safe_iterate (vbases, i, &base); i++)
1084 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
1085
1086 /* Process the direct bases. */
1087 for (binfo = TYPE_BINFO (t), i = 0;
1088 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
1089 if (!BINFO_VIRTUAL_P (base_binfo))
1090 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
1091
1092 /* Process the non-static data members. */
1093 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
1094 /* Reverse the entire list of initializations, so that they are in
1095 the order that they will actually be performed. */
1096 sorted_inits = nreverse (sorted_inits);
1097
1098 /* If the user presented the initializers in an order different from
1099 that in which they will actually occur, we issue a warning. Keep
1100 track of the next subobject which can be explicitly initialized
1101 without issuing a warning. */
1102 next_subobject = sorted_inits;
1103
1104 /* Go through the explicit initializers, filling in TREE_PURPOSE in
1105 the SORTED_INITS. */
1106 for (init = mem_inits; init; init = TREE_CHAIN (init))
1107 {
1108 tree subobject;
1109 tree subobject_init;
1110
1111 subobject = TREE_PURPOSE (init);
1112
1113 /* If the explicit initializers are in sorted order, then
1114 SUBOBJECT will be NEXT_SUBOBJECT, or something following
1115 it. */
1116 for (subobject_init = next_subobject;
1117 subobject_init;
1118 subobject_init = TREE_CHAIN (subobject_init))
1119 if (TREE_PURPOSE (subobject_init) == subobject)
1120 break;
1121
1122 /* Issue a warning if the explicit initializer order does not
1123 match that which will actually occur.
1124 ??? Are all these on the correct lines? */
1125 if (warn_reorder && !subobject_init)
1126 {
1127 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
1128 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
1129 OPT_Wreorder, "%qD will be initialized after",
1130 TREE_PURPOSE (next_subobject));
1131 else
1132 warning (OPT_Wreorder, "base %qT will be initialized after",
1133 TREE_PURPOSE (next_subobject));
1134 if (TREE_CODE (subobject) == FIELD_DECL)
1135 warning_at (DECL_SOURCE_LOCATION (subobject),
1136 OPT_Wreorder, " %q#D", subobject);
1137 else
1138 warning (OPT_Wreorder, " base %qT", subobject);
1139 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1140 OPT_Wreorder, " when initialized here");
1141 }
1142
1143 /* Look again, from the beginning of the list. */
1144 if (!subobject_init)
1145 {
1146 subobject_init = sorted_inits;
1147 while (TREE_PURPOSE (subobject_init) != subobject)
1148 subobject_init = TREE_CHAIN (subobject_init);
1149 }
1150
1151 /* It is invalid to initialize the same subobject more than
1152 once. */
1153 if (TREE_VALUE (subobject_init))
1154 {
1155 if (TREE_CODE (subobject) == FIELD_DECL)
1156 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1157 "multiple initializations given for %qD",
1158 subobject);
1159 else
1160 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1161 "multiple initializations given for base %qT",
1162 subobject);
1163 }
1164
1165 /* Record the initialization. */
1166 TREE_VALUE (subobject_init) = TREE_VALUE (init);
1167 /* Carry over the dummy TREE_TYPE node containing the source location. */
1168 TREE_TYPE (subobject_init) = TREE_TYPE (init);
1169 next_subobject = subobject_init;
1170 }
1171
1172 /* [class.base.init]
1173
1174 If a ctor-initializer specifies more than one mem-initializer for
1175 multiple members of the same union (including members of
1176 anonymous unions), the ctor-initializer is ill-formed.
1177
1178 Here we also splice out uninitialized union members. */
1179 if (uses_unions_or_anon_p)
1180 {
1181 tree *last_p = NULL;
1182 tree *p;
1183 for (p = &sorted_inits; *p; )
1184 {
1185 tree field;
1186 tree ctx;
1187
1188 init = *p;
1189
1190 field = TREE_PURPOSE (init);
1191
1192 /* Skip base classes. */
1193 if (TREE_CODE (field) != FIELD_DECL)
1194 goto next;
1195
1196 /* If this is an anonymous aggregate with no explicit initializer,
1197 splice it out. */
1198 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1199 goto splice;
1200
1201 /* See if this field is a member of a union, or a member of a
1202 structure contained in a union, etc. */
1203 ctx = innermost_aggr_scope (field);
1204
1205 /* If this field is not a member of a union, skip it. */
1206 if (TREE_CODE (ctx) != UNION_TYPE
1207 && !ANON_AGGR_TYPE_P (ctx))
1208 goto next;
1209
1210 /* If this union member has no explicit initializer and no NSDMI,
1211 splice it out. */
1212 if (TREE_VALUE (init) || DECL_INITIAL (field))
1213 /* OK. */;
1214 else
1215 goto splice;
1216
1217 /* It's only an error if we have two initializers for the same
1218 union type. */
1219 if (!last_p)
1220 {
1221 last_p = p;
1222 goto next;
1223 }
1224
1225 /* See if LAST_FIELD and the field initialized by INIT are
1226 members of the same union (or the union itself). If so, there's
1227 a problem, unless they're actually members of the same structure
1228 which is itself a member of a union. For example, given:
1229
1230 union { struct { int i; int j; }; };
1231
1232 initializing both `i' and `j' makes sense. */
1233 ctx = common_enclosing_class
1234 (innermost_aggr_scope (field),
1235 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1236
1237 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1238 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1239 {
1240 /* A mem-initializer hides an NSDMI. */
1241 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1242 *last_p = TREE_CHAIN (*last_p);
1243 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1244 goto splice;
1245 else
1246 {
1247 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1248 "initializations for multiple members of %qT",
1249 ctx);
1250 goto splice;
1251 }
1252 }
1253
1254 last_p = p;
1255
1256 next:
1257 p = &TREE_CHAIN (*p);
1258 continue;
1259 splice:
1260 *p = TREE_CHAIN (*p);
1261 continue;
1262 }
1263 }
1264
1265 return sorted_inits;
1266 }
1267
1268 /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */
1269
1270 static tree
1271 mark_exp_read_r (tree *tp, int *, void *)
1272 {
1273 tree t = *tp;
1274 if (TREE_CODE (t) == PARM_DECL)
1275 mark_exp_read (t);
1276 return NULL_TREE;
1277 }
1278
1279 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1280 is a TREE_LIST giving the explicit mem-initializer-list for the
1281 constructor. The TREE_PURPOSE of each entry is a subobject (a
1282 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1283 is a TREE_LIST giving the arguments to the constructor or
1284 void_type_node for an empty list of arguments. */
1285
1286 void
1287 emit_mem_initializers (tree mem_inits)
1288 {
1289 int flags = LOOKUP_NORMAL;
1290
1291 /* We will already have issued an error message about the fact that
1292 the type is incomplete. */
1293 if (!COMPLETE_TYPE_P (current_class_type))
1294 return;
1295
1296 if (mem_inits
1297 && TYPE_P (TREE_PURPOSE (mem_inits))
1298 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1299 {
1300 /* Delegating constructor. */
1301 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1302 perform_target_ctor (TREE_VALUE (mem_inits));
1303 return;
1304 }
1305
1306 if (DECL_DEFAULTED_FN (current_function_decl)
1307 && ! DECL_INHERITED_CTOR (current_function_decl))
1308 flags |= LOOKUP_DEFAULTED;
1309
1310 /* Sort the mem-initializers into the order in which the
1311 initializations should be performed. */
1312 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1313
1314 in_base_initializer = 1;
1315
1316 /* Initialize base classes. */
1317 for (; (mem_inits
1318 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1319 mem_inits = TREE_CHAIN (mem_inits))
1320 {
1321 tree subobject = TREE_PURPOSE (mem_inits);
1322 tree arguments = TREE_VALUE (mem_inits);
1323
1324 /* We already have issued an error message. */
1325 if (arguments == error_mark_node)
1326 continue;
1327
1328 /* Suppress access control when calling the inherited ctor. */
1329 bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1330 && flag_new_inheriting_ctors
1331 && arguments);
1332 if (inherited_base)
1333 push_deferring_access_checks (dk_deferred);
1334
1335 if (arguments == NULL_TREE)
1336 {
1337 /* If these initializations are taking place in a copy constructor,
1338 the base class should probably be explicitly initialized if there
1339 is a user-defined constructor in the base class (other than the
1340 default constructor, which will be called anyway). */
1341 if (extra_warnings
1342 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1343 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1344 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1345 OPT_Wextra, "base class %q#T should be explicitly "
1346 "initialized in the copy constructor",
1347 BINFO_TYPE (subobject));
1348 }
1349
1350 /* Initialize the base. */
1351 if (!BINFO_VIRTUAL_P (subobject))
1352 {
1353 tree base_addr;
1354
1355 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1356 subobject, 1, tf_warning_or_error);
1357 expand_aggr_init_1 (subobject, NULL_TREE,
1358 cp_build_fold_indirect_ref (base_addr),
1359 arguments,
1360 flags,
1361 tf_warning_or_error);
1362 expand_cleanup_for_base (subobject, NULL_TREE);
1363 }
1364 else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1365 /* C++14 DR1658 Means we do not have to construct vbases of
1366 abstract classes. */
1367 construct_virtual_base (subobject, arguments);
1368 else
1369 /* When not constructing vbases of abstract classes, at least mark
1370 the arguments expressions as read to avoid
1371 -Wunused-but-set-parameter false positives. */
1372 cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL);
1373
1374 if (inherited_base)
1375 pop_deferring_access_checks ();
1376 }
1377 in_base_initializer = 0;
1378
1379 /* Initialize the vptrs. */
1380 initialize_vtbl_ptrs (current_class_ptr);
1381
1382 /* Initialize the data members. */
1383 while (mem_inits)
1384 {
1385 /* If this initializer was explicitly provided, then the dummy TREE_TYPE
1386 node contains the source location. */
1387 iloc_sentinel ils (EXPR_LOCATION (TREE_TYPE (mem_inits)));
1388
1389 perform_member_init (TREE_PURPOSE (mem_inits),
1390 TREE_VALUE (mem_inits));
1391 mem_inits = TREE_CHAIN (mem_inits);
1392 }
1393 }
1394
1395 /* Returns the address of the vtable (i.e., the value that should be
1396 assigned to the vptr) for BINFO. */
1397
1398 tree
1399 build_vtbl_address (tree binfo)
1400 {
1401 tree binfo_for = binfo;
1402 tree vtbl;
1403
1404 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1405 /* If this is a virtual primary base, then the vtable we want to store
1406 is that for the base this is being used as the primary base of. We
1407 can't simply skip the initialization, because we may be expanding the
1408 inits of a subobject constructor where the virtual base layout
1409 can be different. */
1410 while (BINFO_PRIMARY_P (binfo_for))
1411 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1412
1413 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1414 used. */
1415 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1416 TREE_USED (vtbl) = true;
1417
1418 /* Now compute the address to use when initializing the vptr. */
1419 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1420 if (VAR_P (vtbl))
1421 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1422
1423 return vtbl;
1424 }
1425
1426 /* This code sets up the virtual function tables appropriate for
1427 the pointer DECL. It is a one-ply initialization.
1428
1429 BINFO is the exact type that DECL is supposed to be. In
1430 multiple inheritance, this might mean "C's A" if C : A, B. */
1431
1432 static void
1433 expand_virtual_init (tree binfo, tree decl)
1434 {
1435 tree vtbl, vtbl_ptr;
1436 tree vtt_index;
1437
1438 /* Compute the initializer for vptr. */
1439 vtbl = build_vtbl_address (binfo);
1440
1441 /* We may get this vptr from a VTT, if this is a subobject
1442 constructor or subobject destructor. */
1443 vtt_index = BINFO_VPTR_INDEX (binfo);
1444 if (vtt_index)
1445 {
1446 tree vtbl2;
1447 tree vtt_parm;
1448
1449 /* Compute the value to use, when there's a VTT. */
1450 vtt_parm = current_vtt_parm;
1451 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1452 vtbl2 = cp_build_fold_indirect_ref (vtbl2);
1453 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1454
1455 /* The actual initializer is the VTT value only in the subobject
1456 constructor. In maybe_clone_body we'll substitute NULL for
1457 the vtt_parm in the case of the non-subobject constructor. */
1458 vtbl = build_if_in_charge (vtbl, vtbl2);
1459 }
1460
1461 /* Compute the location of the vtpr. */
1462 vtbl_ptr = build_vfield_ref (cp_build_fold_indirect_ref (decl),
1463 TREE_TYPE (binfo));
1464 gcc_assert (vtbl_ptr != error_mark_node);
1465
1466 /* Assign the vtable to the vptr. */
1467 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1468 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1469 vtbl, tf_warning_or_error));
1470 }
1471
1472 /* If an exception is thrown in a constructor, those base classes already
1473 constructed must be destroyed. This function creates the cleanup
1474 for BINFO, which has just been constructed. If FLAG is non-NULL,
1475 it is a DECL which is nonzero when this base needs to be
1476 destroyed. */
1477
1478 static void
1479 expand_cleanup_for_base (tree binfo, tree flag)
1480 {
1481 tree expr;
1482
1483 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1484 return;
1485
1486 /* Call the destructor. */
1487 expr = build_special_member_call (current_class_ref,
1488 base_dtor_identifier,
1489 NULL,
1490 binfo,
1491 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1492 tf_warning_or_error);
1493
1494 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1495 return;
1496
1497 if (flag)
1498 expr = fold_build3_loc (input_location,
1499 COND_EXPR, void_type_node,
1500 c_common_truthvalue_conversion (input_location, flag),
1501 expr, integer_zero_node);
1502
1503 finish_eh_cleanup (expr);
1504 }
1505
1506 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1507 constructor. */
1508
1509 static void
1510 construct_virtual_base (tree vbase, tree arguments)
1511 {
1512 tree inner_if_stmt;
1513 tree exp;
1514 tree flag;
1515
1516 /* If there are virtual base classes with destructors, we need to
1517 emit cleanups to destroy them if an exception is thrown during
1518 the construction process. These exception regions (i.e., the
1519 period during which the cleanups must occur) begin from the time
1520 the construction is complete to the end of the function. If we
1521 create a conditional block in which to initialize the
1522 base-classes, then the cleanup region for the virtual base begins
1523 inside a block, and ends outside of that block. This situation
1524 confuses the sjlj exception-handling code. Therefore, we do not
1525 create a single conditional block, but one for each
1526 initialization. (That way the cleanup regions always begin
1527 in the outer block.) We trust the back end to figure out
1528 that the FLAG will not change across initializations, and
1529 avoid doing multiple tests. */
1530 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1531 inner_if_stmt = begin_if_stmt ();
1532 finish_if_stmt_cond (flag, inner_if_stmt);
1533
1534 /* Compute the location of the virtual base. If we're
1535 constructing virtual bases, then we must be the most derived
1536 class. Therefore, we don't have to look up the virtual base;
1537 we already know where it is. */
1538 exp = convert_to_base_statically (current_class_ref, vbase);
1539
1540 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1541 0, tf_warning_or_error);
1542 finish_then_clause (inner_if_stmt);
1543 finish_if_stmt (inner_if_stmt);
1544
1545 expand_cleanup_for_base (vbase, flag);
1546 }
1547
1548 /* Find the context in which this FIELD can be initialized. */
1549
1550 static tree
1551 initializing_context (tree field)
1552 {
1553 tree t = DECL_CONTEXT (field);
1554
1555 /* Anonymous union members can be initialized in the first enclosing
1556 non-anonymous union context. */
1557 while (t && ANON_AGGR_TYPE_P (t))
1558 t = TYPE_CONTEXT (t);
1559 return t;
1560 }
1561
1562 /* Function to give error message if member initialization specification
1563 is erroneous. FIELD is the member we decided to initialize.
1564 TYPE is the type for which the initialization is being performed.
1565 FIELD must be a member of TYPE.
1566
1567 MEMBER_NAME is the name of the member. */
1568
1569 static int
1570 member_init_ok_or_else (tree field, tree type, tree member_name)
1571 {
1572 if (field == error_mark_node)
1573 return 0;
1574 if (!field)
1575 {
1576 error ("class %qT does not have any field named %qD", type,
1577 member_name);
1578 return 0;
1579 }
1580 if (VAR_P (field))
1581 {
1582 error ("%q#D is a static data member; it can only be "
1583 "initialized at its definition",
1584 field);
1585 return 0;
1586 }
1587 if (TREE_CODE (field) != FIELD_DECL)
1588 {
1589 error ("%q#D is not a non-static data member of %qT",
1590 field, type);
1591 return 0;
1592 }
1593 if (initializing_context (field) != type)
1594 {
1595 error ("class %qT does not have any field named %qD", type,
1596 member_name);
1597 return 0;
1598 }
1599
1600 return 1;
1601 }
1602
1603 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1604 is a _TYPE node or TYPE_DECL which names a base for that type.
1605 Check the validity of NAME, and return either the base _TYPE, base
1606 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1607 NULL_TREE and issue a diagnostic.
1608
1609 An old style unnamed direct single base construction is permitted,
1610 where NAME is NULL. */
1611
1612 tree
1613 expand_member_init (tree name)
1614 {
1615 tree basetype;
1616 tree field;
1617
1618 if (!current_class_ref)
1619 return NULL_TREE;
1620
1621 if (!name)
1622 {
1623 /* This is an obsolete unnamed base class initializer. The
1624 parser will already have warned about its use. */
1625 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1626 {
1627 case 0:
1628 error ("unnamed initializer for %qT, which has no base classes",
1629 current_class_type);
1630 return NULL_TREE;
1631 case 1:
1632 basetype = BINFO_TYPE
1633 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1634 break;
1635 default:
1636 error ("unnamed initializer for %qT, which uses multiple inheritance",
1637 current_class_type);
1638 return NULL_TREE;
1639 }
1640 }
1641 else if (TYPE_P (name))
1642 {
1643 basetype = TYPE_MAIN_VARIANT (name);
1644 name = TYPE_NAME (name);
1645 }
1646 else if (TREE_CODE (name) == TYPE_DECL)
1647 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1648 else
1649 basetype = NULL_TREE;
1650
1651 if (basetype)
1652 {
1653 tree class_binfo;
1654 tree direct_binfo;
1655 tree virtual_binfo;
1656 int i;
1657
1658 if (current_template_parms
1659 || same_type_p (basetype, current_class_type))
1660 return basetype;
1661
1662 class_binfo = TYPE_BINFO (current_class_type);
1663 direct_binfo = NULL_TREE;
1664 virtual_binfo = NULL_TREE;
1665
1666 /* Look for a direct base. */
1667 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1668 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1669 break;
1670
1671 /* Look for a virtual base -- unless the direct base is itself
1672 virtual. */
1673 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1674 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1675
1676 /* [class.base.init]
1677
1678 If a mem-initializer-id is ambiguous because it designates
1679 both a direct non-virtual base class and an inherited virtual
1680 base class, the mem-initializer is ill-formed. */
1681 if (direct_binfo && virtual_binfo)
1682 {
1683 error ("%qD is both a direct base and an indirect virtual base",
1684 basetype);
1685 return NULL_TREE;
1686 }
1687
1688 if (!direct_binfo && !virtual_binfo)
1689 {
1690 if (CLASSTYPE_VBASECLASSES (current_class_type))
1691 error ("type %qT is not a direct or virtual base of %qT",
1692 basetype, current_class_type);
1693 else
1694 error ("type %qT is not a direct base of %qT",
1695 basetype, current_class_type);
1696 return NULL_TREE;
1697 }
1698
1699 return direct_binfo ? direct_binfo : virtual_binfo;
1700 }
1701 else
1702 {
1703 if (identifier_p (name))
1704 field = lookup_field (current_class_type, name, 1, false);
1705 else
1706 field = name;
1707
1708 if (member_init_ok_or_else (field, current_class_type, name))
1709 return field;
1710 }
1711
1712 return NULL_TREE;
1713 }
1714
1715 /* This is like `expand_member_init', only it stores one aggregate
1716 value into another.
1717
1718 INIT comes in two flavors: it is either a value which
1719 is to be stored in EXP, or it is a parameter list
1720 to go to a constructor, which will operate on EXP.
1721 If INIT is not a parameter list for a constructor, then set
1722 LOOKUP_ONLYCONVERTING.
1723 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1724 the initializer, if FLAGS is 0, then it is the (init) form.
1725 If `init' is a CONSTRUCTOR, then we emit a warning message,
1726 explaining that such initializations are invalid.
1727
1728 If INIT resolves to a CALL_EXPR which happens to return
1729 something of the type we are looking for, then we know
1730 that we can safely use that call to perform the
1731 initialization.
1732
1733 The virtual function table pointer cannot be set up here, because
1734 we do not really know its type.
1735
1736 This never calls operator=().
1737
1738 When initializing, nothing is CONST.
1739
1740 A default copy constructor may have to be used to perform the
1741 initialization.
1742
1743 A constructor or a conversion operator may have to be used to
1744 perform the initialization, but not both, as it would be ambiguous. */
1745
1746 tree
1747 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1748 {
1749 tree stmt_expr;
1750 tree compound_stmt;
1751 int destroy_temps;
1752 tree type = TREE_TYPE (exp);
1753 int was_const = TREE_READONLY (exp);
1754 int was_volatile = TREE_THIS_VOLATILE (exp);
1755 int is_global;
1756
1757 if (init == error_mark_node)
1758 return error_mark_node;
1759
1760 location_t init_loc = (init
1761 ? cp_expr_loc_or_input_loc (init)
1762 : location_of (exp));
1763
1764 TREE_READONLY (exp) = 0;
1765 TREE_THIS_VOLATILE (exp) = 0;
1766
1767 if (TREE_CODE (type) == ARRAY_TYPE)
1768 {
1769 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1770 int from_array = 0;
1771
1772 if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1773 {
1774 from_array = 1;
1775 init = mark_rvalue_use (init);
1776 if (init
1777 && DECL_P (tree_strip_any_location_wrapper (init))
1778 && !(flags & LOOKUP_ONLYCONVERTING))
1779 {
1780 /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
1781 recognizes it as direct-initialization. */
1782 init = build_constructor_single (init_list_type_node,
1783 NULL_TREE, init);
1784 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
1785 }
1786 }
1787 else
1788 {
1789 /* Must arrange to initialize each element of EXP
1790 from elements of INIT. */
1791 if (cv_qualified_p (type))
1792 TREE_TYPE (exp) = cv_unqualified (type);
1793 if (itype && cv_qualified_p (itype))
1794 TREE_TYPE (init) = cv_unqualified (itype);
1795 from_array = (itype && same_type_p (TREE_TYPE (init),
1796 TREE_TYPE (exp)));
1797
1798 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init)
1799 && (!from_array
1800 || (TREE_CODE (init) != CONSTRUCTOR
1801 /* Can happen, eg, handling the compound-literals
1802 extension (ext/complit12.C). */
1803 && TREE_CODE (init) != TARGET_EXPR)))
1804 {
1805 if (complain & tf_error)
1806 error_at (init_loc, "array must be initialized "
1807 "with a brace-enclosed initializer");
1808 return error_mark_node;
1809 }
1810 }
1811
1812 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1813 /*explicit_value_init_p=*/false,
1814 from_array,
1815 complain);
1816 TREE_READONLY (exp) = was_const;
1817 TREE_THIS_VOLATILE (exp) = was_volatile;
1818 TREE_TYPE (exp) = type;
1819 /* Restore the type of init unless it was used directly. */
1820 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1821 TREE_TYPE (init) = itype;
1822 return stmt_expr;
1823 }
1824
1825 if (init && init != void_type_node
1826 && TREE_CODE (init) != TREE_LIST
1827 && !(TREE_CODE (init) == TARGET_EXPR
1828 && TARGET_EXPR_DIRECT_INIT_P (init))
1829 && !DIRECT_LIST_INIT_P (init))
1830 flags |= LOOKUP_ONLYCONVERTING;
1831
1832 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1833 destroy_temps = stmts_are_full_exprs_p ();
1834 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1835 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1836 init, LOOKUP_NORMAL|flags, complain);
1837 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1838 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1839 TREE_READONLY (exp) = was_const;
1840 TREE_THIS_VOLATILE (exp) = was_volatile;
1841
1842 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1843 && TREE_SIDE_EFFECTS (stmt_expr)
1844 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1845 /* Just know that we've seen something for this node. */
1846 TREE_USED (exp) = 1;
1847
1848 return stmt_expr;
1849 }
1850
1851 static void
1852 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1853 tsubst_flags_t complain)
1854 {
1855 tree type = TREE_TYPE (exp);
1856
1857 /* It fails because there may not be a constructor which takes
1858 its own type as the first (or only parameter), but which does
1859 take other types via a conversion. So, if the thing initializing
1860 the expression is a unit element of type X, first try X(X&),
1861 followed by initialization by X. If neither of these work
1862 out, then look hard. */
1863 tree rval;
1864 vec<tree, va_gc> *parms;
1865
1866 /* If we have direct-initialization from an initializer list, pull
1867 it out of the TREE_LIST so the code below can see it. */
1868 if (init && TREE_CODE (init) == TREE_LIST
1869 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1870 {
1871 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1872 && TREE_CHAIN (init) == NULL_TREE);
1873 init = TREE_VALUE (init);
1874 /* Only call reshape_init if it has not been called earlier
1875 by the callers. */
1876 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1877 init = reshape_init (type, init, complain);
1878 }
1879
1880 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1881 && CP_AGGREGATE_TYPE_P (type))
1882 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1883 happen for direct-initialization, too. */
1884 init = digest_init (type, init, complain);
1885
1886 /* A CONSTRUCTOR of the target's type is a previously digested
1887 initializer, whether that happened just above or in
1888 cp_parser_late_parsing_nsdmi.
1889
1890 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1891 set represents the whole initialization, so we shouldn't build up
1892 another ctor call. */
1893 if (init
1894 && (TREE_CODE (init) == CONSTRUCTOR
1895 || (TREE_CODE (init) == TARGET_EXPR
1896 && (TARGET_EXPR_DIRECT_INIT_P (init)
1897 || TARGET_EXPR_LIST_INIT_P (init))))
1898 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1899 {
1900 /* Early initialization via a TARGET_EXPR only works for
1901 complete objects. */
1902 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1903
1904 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1905 TREE_SIDE_EFFECTS (init) = 1;
1906 finish_expr_stmt (init);
1907 return;
1908 }
1909
1910 if (init && TREE_CODE (init) != TREE_LIST
1911 && (flags & LOOKUP_ONLYCONVERTING)
1912 && !unsafe_return_slot_p (exp))
1913 {
1914 /* Base subobjects should only get direct-initialization. */
1915 gcc_assert (true_exp == exp);
1916
1917 if (flags & DIRECT_BIND)
1918 /* Do nothing. We hit this in two cases: Reference initialization,
1919 where we aren't initializing a real variable, so we don't want
1920 to run a new constructor; and catching an exception, where we
1921 have already built up the constructor call so we could wrap it
1922 in an exception region. */;
1923 else
1924 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1925 flags, complain | tf_no_cleanup);
1926
1927 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1928 /* We need to protect the initialization of a catch parm with a
1929 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1930 around the TARGET_EXPR for the copy constructor. See
1931 initialize_handler_parm. */
1932 {
1933 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1934 TREE_OPERAND (init, 0));
1935 TREE_TYPE (init) = void_type_node;
1936 }
1937 else
1938 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1939 TREE_SIDE_EFFECTS (init) = 1;
1940 finish_expr_stmt (init);
1941 return;
1942 }
1943
1944 if (init == NULL_TREE)
1945 parms = NULL;
1946 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1947 {
1948 parms = make_tree_vector ();
1949 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1950 vec_safe_push (parms, TREE_VALUE (init));
1951 }
1952 else
1953 parms = make_tree_vector_single (init);
1954
1955 if (exp == current_class_ref && current_function_decl
1956 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1957 {
1958 /* Delegating constructor. */
1959 tree complete;
1960 tree base;
1961 tree elt; unsigned i;
1962
1963 /* Unshare the arguments for the second call. */
1964 releasing_vec parms2;
1965 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1966 {
1967 elt = break_out_target_exprs (elt);
1968 vec_safe_push (parms2, elt);
1969 }
1970 complete = build_special_member_call (exp, complete_ctor_identifier,
1971 &parms2, binfo, flags,
1972 complain);
1973 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1974
1975 base = build_special_member_call (exp, base_ctor_identifier,
1976 &parms, binfo, flags,
1977 complain);
1978 base = fold_build_cleanup_point_expr (void_type_node, base);
1979 rval = build_if_in_charge (complete, base);
1980 }
1981 else
1982 {
1983 tree ctor_name = (true_exp == exp
1984 ? complete_ctor_identifier : base_ctor_identifier);
1985
1986 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1987 complain);
1988 }
1989
1990 if (parms != NULL)
1991 release_tree_vector (parms);
1992
1993 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1994 {
1995 tree fn = get_callee_fndecl (rval);
1996 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1997 {
1998 tree e = maybe_constant_init (rval, exp);
1999 if (TREE_CONSTANT (e))
2000 rval = build2 (INIT_EXPR, type, exp, e);
2001 }
2002 }
2003
2004 /* FIXME put back convert_to_void? */
2005 if (TREE_SIDE_EFFECTS (rval))
2006 finish_expr_stmt (rval);
2007 }
2008
2009 /* This function is responsible for initializing EXP with INIT
2010 (if any).
2011
2012 BINFO is the binfo of the type for who we are performing the
2013 initialization. For example, if W is a virtual base class of A and B,
2014 and C : A, B.
2015 If we are initializing B, then W must contain B's W vtable, whereas
2016 were we initializing C, W must contain C's W vtable.
2017
2018 TRUE_EXP is nonzero if it is the true expression being initialized.
2019 In this case, it may be EXP, or may just contain EXP. The reason we
2020 need this is because if EXP is a base element of TRUE_EXP, we
2021 don't necessarily know by looking at EXP where its virtual
2022 baseclass fields should really be pointing. But we do know
2023 from TRUE_EXP. In constructors, we don't know anything about
2024 the value being initialized.
2025
2026 FLAGS is just passed to `build_new_method_call'. See that function
2027 for its description. */
2028
2029 static void
2030 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
2031 tsubst_flags_t complain)
2032 {
2033 tree type = TREE_TYPE (exp);
2034
2035 gcc_assert (init != error_mark_node && type != error_mark_node);
2036 gcc_assert (building_stmt_list_p ());
2037
2038 /* Use a function returning the desired type to initialize EXP for us.
2039 If the function is a constructor, and its first argument is
2040 NULL_TREE, know that it was meant for us--just slide exp on
2041 in and expand the constructor. Constructors now come
2042 as TARGET_EXPRs. */
2043
2044 if (init && VAR_P (exp)
2045 && COMPOUND_LITERAL_P (init))
2046 {
2047 vec<tree, va_gc> *cleanups = NULL;
2048 /* If store_init_value returns NULL_TREE, the INIT has been
2049 recorded as the DECL_INITIAL for EXP. That means there's
2050 nothing more we have to do. */
2051 init = store_init_value (exp, init, &cleanups, flags);
2052 if (init)
2053 finish_expr_stmt (init);
2054 gcc_assert (!cleanups);
2055 return;
2056 }
2057
2058 /* List-initialization from {} becomes value-initialization for non-aggregate
2059 classes with default constructors. Handle this here when we're
2060 initializing a base, so protected access works. */
2061 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
2062 {
2063 tree elt = TREE_VALUE (init);
2064 if (DIRECT_LIST_INIT_P (elt)
2065 && CONSTRUCTOR_ELTS (elt) == 0
2066 && CLASSTYPE_NON_AGGREGATE (type)
2067 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2068 init = void_type_node;
2069 }
2070
2071 /* If an explicit -- but empty -- initializer list was present,
2072 that's value-initialization. */
2073 if (init == void_type_node)
2074 {
2075 /* If the type has data but no user-provided ctor, we need to zero
2076 out the object. */
2077 if (!type_has_user_provided_constructor (type)
2078 && !is_really_empty_class (type, /*ignore_vptr*/true))
2079 {
2080 tree field_size = NULL_TREE;
2081 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
2082 /* Don't clobber already initialized virtual bases. */
2083 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
2084 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
2085 field_size);
2086 init = build2 (INIT_EXPR, type, exp, init);
2087 finish_expr_stmt (init);
2088 }
2089
2090 /* If we don't need to mess with the constructor at all,
2091 then we're done. */
2092 if (! type_build_ctor_call (type))
2093 return;
2094
2095 /* Otherwise fall through and call the constructor. */
2096 init = NULL_TREE;
2097 }
2098
2099 /* We know that expand_default_init can handle everything we want
2100 at this point. */
2101 expand_default_init (binfo, true_exp, exp, init, flags, complain);
2102 }
2103
2104 /* Report an error if TYPE is not a user-defined, class type. If
2105 OR_ELSE is nonzero, give an error message. */
2106
2107 int
2108 is_class_type (tree type, int or_else)
2109 {
2110 if (type == error_mark_node)
2111 return 0;
2112
2113 if (! CLASS_TYPE_P (type))
2114 {
2115 if (or_else)
2116 error ("%qT is not a class type", type);
2117 return 0;
2118 }
2119 return 1;
2120 }
2121
2122 tree
2123 get_type_value (tree name)
2124 {
2125 if (name == error_mark_node)
2126 return NULL_TREE;
2127
2128 if (IDENTIFIER_HAS_TYPE_VALUE (name))
2129 return IDENTIFIER_TYPE_VALUE (name);
2130 else
2131 return NULL_TREE;
2132 }
2133
2134 /* Build a reference to a member of an aggregate. This is not a C++
2135 `&', but really something which can have its address taken, and
2136 then act as a pointer to member, for example TYPE :: FIELD can have
2137 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
2138 this expression is the operand of "&".
2139
2140 @@ Prints out lousy diagnostics for operator <typename>
2141 @@ fields.
2142
2143 @@ This function should be rewritten and placed in search.c. */
2144
2145 tree
2146 build_offset_ref (tree type, tree member, bool address_p,
2147 tsubst_flags_t complain)
2148 {
2149 tree decl;
2150 tree basebinfo = NULL_TREE;
2151
2152 /* class templates can come in as TEMPLATE_DECLs here. */
2153 if (TREE_CODE (member) == TEMPLATE_DECL)
2154 return member;
2155
2156 if (dependent_scope_p (type) || type_dependent_expression_p (member))
2157 return build_qualified_name (NULL_TREE, type, member,
2158 /*template_p=*/false);
2159
2160 gcc_assert (TYPE_P (type));
2161 if (! is_class_type (type, 1))
2162 return error_mark_node;
2163
2164 gcc_assert (DECL_P (member) || BASELINK_P (member));
2165 /* Callers should call mark_used before this point. */
2166 gcc_assert (!DECL_P (member) || TREE_USED (member));
2167
2168 type = TYPE_MAIN_VARIANT (type);
2169 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2170 {
2171 if (complain & tf_error)
2172 error ("incomplete type %qT does not have member %qD", type, member);
2173 return error_mark_node;
2174 }
2175
2176 /* Entities other than non-static members need no further
2177 processing. */
2178 if (TREE_CODE (member) == TYPE_DECL)
2179 return member;
2180 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2181 return convert_from_reference (member);
2182
2183 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2184 {
2185 if (complain & tf_error)
2186 error ("invalid pointer to bit-field %qD", member);
2187 return error_mark_node;
2188 }
2189
2190 /* Set up BASEBINFO for member lookup. */
2191 decl = maybe_dummy_object (type, &basebinfo);
2192
2193 /* A lot of this logic is now handled in lookup_member. */
2194 if (BASELINK_P (member))
2195 {
2196 /* Go from the TREE_BASELINK to the member function info. */
2197 tree t = BASELINK_FUNCTIONS (member);
2198
2199 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2200 {
2201 /* Get rid of a potential OVERLOAD around it. */
2202 t = OVL_FIRST (t);
2203
2204 /* Unique functions are handled easily. */
2205
2206 /* For non-static member of base class, we need a special rule
2207 for access checking [class.protected]:
2208
2209 If the access is to form a pointer to member, the
2210 nested-name-specifier shall name the derived class
2211 (or any class derived from that class). */
2212 bool ok;
2213 if (address_p && DECL_P (t)
2214 && DECL_NONSTATIC_MEMBER_P (t))
2215 ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2216 complain);
2217 else
2218 ok = perform_or_defer_access_check (basebinfo, t, t,
2219 complain);
2220 if (!ok)
2221 return error_mark_node;
2222 if (DECL_STATIC_FUNCTION_P (t))
2223 return t;
2224 member = t;
2225 }
2226 else
2227 TREE_TYPE (member) = unknown_type_node;
2228 }
2229 else if (address_p && TREE_CODE (member) == FIELD_DECL)
2230 {
2231 /* We need additional test besides the one in
2232 check_accessibility_of_qualified_id in case it is
2233 a pointer to non-static member. */
2234 if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2235 complain))
2236 return error_mark_node;
2237 }
2238
2239 if (!address_p)
2240 {
2241 /* If MEMBER is non-static, then the program has fallen afoul of
2242 [expr.prim]:
2243
2244 An id-expression that denotes a non-static data member or
2245 non-static member function of a class can only be used:
2246
2247 -- as part of a class member access (_expr.ref_) in which the
2248 object-expression refers to the member's class or a class
2249 derived from that class, or
2250
2251 -- to form a pointer to member (_expr.unary.op_), or
2252
2253 -- in the body of a non-static member function of that class or
2254 of a class derived from that class (_class.mfct.non-static_), or
2255
2256 -- in a mem-initializer for a constructor for that class or for
2257 a class derived from that class (_class.base.init_). */
2258 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2259 {
2260 /* Build a representation of the qualified name suitable
2261 for use as the operand to "&" -- even though the "&" is
2262 not actually present. */
2263 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2264 /* In Microsoft mode, treat a non-static member function as if
2265 it were a pointer-to-member. */
2266 if (flag_ms_extensions)
2267 {
2268 PTRMEM_OK_P (member) = 1;
2269 return cp_build_addr_expr (member, complain);
2270 }
2271 if (complain & tf_error)
2272 error ("invalid use of non-static member function %qD",
2273 TREE_OPERAND (member, 1));
2274 return error_mark_node;
2275 }
2276 else if (TREE_CODE (member) == FIELD_DECL)
2277 {
2278 if (complain & tf_error)
2279 error ("invalid use of non-static data member %qD", member);
2280 return error_mark_node;
2281 }
2282 return member;
2283 }
2284
2285 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2286 PTRMEM_OK_P (member) = 1;
2287 return member;
2288 }
2289
2290 /* If DECL is a scalar enumeration constant or variable with a
2291 constant initializer, return the initializer (or, its initializers,
2292 recursively); otherwise, return DECL. If STRICT_P, the
2293 initializer is only returned if DECL is a
2294 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2295 return an aggregate constant. If UNSHARE_P, return an unshared
2296 copy of the initializer. */
2297
2298 static tree
2299 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p,
2300 bool unshare_p)
2301 {
2302 while (TREE_CODE (decl) == CONST_DECL
2303 || decl_constant_var_p (decl)
2304 || (!strict_p && VAR_P (decl)
2305 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2306 {
2307 tree init;
2308 /* If DECL is a static data member in a template
2309 specialization, we must instantiate it here. The
2310 initializer for the static data member is not processed
2311 until needed; we need it now. */
2312 mark_used (decl, tf_none);
2313 init = DECL_INITIAL (decl);
2314 if (init == error_mark_node)
2315 {
2316 if (TREE_CODE (decl) == CONST_DECL
2317 || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2318 /* Treat the error as a constant to avoid cascading errors on
2319 excessively recursive template instantiation (c++/9335). */
2320 return init;
2321 else
2322 return decl;
2323 }
2324 /* Initializers in templates are generally expanded during
2325 instantiation, so before that for const int i(2)
2326 INIT is a TREE_LIST with the actual initializer as
2327 TREE_VALUE. */
2328 if (processing_template_decl
2329 && init
2330 && TREE_CODE (init) == TREE_LIST
2331 && TREE_CHAIN (init) == NULL_TREE)
2332 init = TREE_VALUE (init);
2333 /* Instantiate a non-dependent initializer for user variables. We
2334 mustn't do this for the temporary for an array compound literal;
2335 trying to instatiate the initializer will keep creating new
2336 temporaries until we crash. Probably it's not useful to do it for
2337 other artificial variables, either. */
2338 if (!DECL_ARTIFICIAL (decl))
2339 init = instantiate_non_dependent_or_null (init);
2340 if (!init
2341 || !TREE_TYPE (init)
2342 || !TREE_CONSTANT (init)
2343 || (!return_aggregate_cst_ok_p
2344 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2345 return an aggregate constant (of which string
2346 literals are a special case), as we do not want
2347 to make inadvertent copies of such entities, and
2348 we must be sure that their addresses are the
2349 same everywhere. */
2350 && (TREE_CODE (init) == CONSTRUCTOR
2351 || TREE_CODE (init) == STRING_CST)))
2352 break;
2353 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2354 initialization, since it doesn't represent the entire value.
2355 Similarly for VECTOR_CSTs created by cp_folding those
2356 CONSTRUCTORs. */
2357 if ((TREE_CODE (init) == CONSTRUCTOR
2358 || TREE_CODE (init) == VECTOR_CST)
2359 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2360 break;
2361 /* If the variable has a dynamic initializer, don't use its
2362 DECL_INITIAL which doesn't reflect the real value. */
2363 if (VAR_P (decl)
2364 && TREE_STATIC (decl)
2365 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
2366 && DECL_NONTRIVIALLY_INITIALIZED_P (decl))
2367 break;
2368 decl = init;
2369 }
2370 return unshare_p ? unshare_expr (decl) : decl;
2371 }
2372
2373 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2374 of integral or enumeration type, or a constexpr variable of scalar type,
2375 then return that value. These are those variables permitted in constant
2376 expressions by [5.19/1]. */
2377
2378 tree
2379 scalar_constant_value (tree decl)
2380 {
2381 return constant_value_1 (decl, /*strict_p=*/true,
2382 /*return_aggregate_cst_ok_p=*/false,
2383 /*unshare_p=*/true);
2384 }
2385
2386 /* Like scalar_constant_value, but can also return aggregate initializers.
2387 If UNSHARE_P, return an unshared copy of the initializer. */
2388
2389 tree
2390 decl_really_constant_value (tree decl, bool unshare_p /*= true*/)
2391 {
2392 return constant_value_1 (decl, /*strict_p=*/true,
2393 /*return_aggregate_cst_ok_p=*/true,
2394 /*unshare_p=*/unshare_p);
2395 }
2396
2397 /* A more relaxed version of decl_really_constant_value, used by the
2398 common C/C++ code. */
2399
2400 tree
2401 decl_constant_value (tree decl, bool unshare_p)
2402 {
2403 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2404 /*return_aggregate_cst_ok_p=*/true,
2405 /*unshare_p=*/unshare_p);
2406 }
2407
2408 tree
2409 decl_constant_value (tree decl)
2410 {
2411 return decl_constant_value (decl, /*unshare_p=*/true);
2412 }
2413 \f
2414 /* Common subroutines of build_new and build_vec_delete. */
2415 \f
2416 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2417 the type of the object being allocated; otherwise, it's just TYPE.
2418 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2419 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2420 a vector of arguments to be provided as arguments to a placement
2421 new operator. This routine performs no semantic checks; it just
2422 creates and returns a NEW_EXPR. */
2423
2424 static tree
2425 build_raw_new_expr (location_t loc, vec<tree, va_gc> *placement, tree type,
2426 tree nelts, vec<tree, va_gc> *init, int use_global_new)
2427 {
2428 tree init_list;
2429 tree new_expr;
2430
2431 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2432 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2433 permits us to distinguish the case of a missing initializer "new
2434 int" from an empty initializer "new int()". */
2435 if (init == NULL)
2436 init_list = NULL_TREE;
2437 else if (init->is_empty ())
2438 init_list = void_node;
2439 else
2440 init_list = build_tree_list_vec (init);
2441
2442 new_expr = build4_loc (loc, NEW_EXPR, build_pointer_type (type),
2443 build_tree_list_vec (placement), type, nelts,
2444 init_list);
2445 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2446 TREE_SIDE_EFFECTS (new_expr) = 1;
2447
2448 return new_expr;
2449 }
2450
2451 /* Diagnose uninitialized const members or reference members of type
2452 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2453 new expression without a new-initializer and a declaration. Returns
2454 the error count. */
2455
2456 static int
2457 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2458 bool using_new, bool complain)
2459 {
2460 tree field;
2461 int error_count = 0;
2462
2463 if (type_has_user_provided_constructor (type))
2464 return 0;
2465
2466 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2467 {
2468 tree field_type;
2469
2470 if (TREE_CODE (field) != FIELD_DECL)
2471 continue;
2472
2473 field_type = strip_array_types (TREE_TYPE (field));
2474
2475 if (type_has_user_provided_constructor (field_type))
2476 continue;
2477
2478 if (TYPE_REF_P (field_type))
2479 {
2480 ++ error_count;
2481 if (complain)
2482 {
2483 if (DECL_CONTEXT (field) == origin)
2484 {
2485 if (using_new)
2486 error ("uninitialized reference member in %q#T "
2487 "using %<new%> without new-initializer", origin);
2488 else
2489 error ("uninitialized reference member in %q#T", origin);
2490 }
2491 else
2492 {
2493 if (using_new)
2494 error ("uninitialized reference member in base %q#T "
2495 "of %q#T using %<new%> without new-initializer",
2496 DECL_CONTEXT (field), origin);
2497 else
2498 error ("uninitialized reference member in base %q#T "
2499 "of %q#T", DECL_CONTEXT (field), origin);
2500 }
2501 inform (DECL_SOURCE_LOCATION (field),
2502 "%q#D should be initialized", field);
2503 }
2504 }
2505
2506 if (CP_TYPE_CONST_P (field_type))
2507 {
2508 ++ error_count;
2509 if (complain)
2510 {
2511 if (DECL_CONTEXT (field) == origin)
2512 {
2513 if (using_new)
2514 error ("uninitialized const member in %q#T "
2515 "using %<new%> without new-initializer", origin);
2516 else
2517 error ("uninitialized const member in %q#T", origin);
2518 }
2519 else
2520 {
2521 if (using_new)
2522 error ("uninitialized const member in base %q#T "
2523 "of %q#T using %<new%> without new-initializer",
2524 DECL_CONTEXT (field), origin);
2525 else
2526 error ("uninitialized const member in base %q#T "
2527 "of %q#T", DECL_CONTEXT (field), origin);
2528 }
2529 inform (DECL_SOURCE_LOCATION (field),
2530 "%q#D should be initialized", field);
2531 }
2532 }
2533
2534 if (CLASS_TYPE_P (field_type))
2535 error_count
2536 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2537 using_new, complain);
2538 }
2539 return error_count;
2540 }
2541
2542 int
2543 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2544 {
2545 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2546 }
2547
2548 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2549 overflowed. Pretend it returns sizetype so that it plays nicely in the
2550 COND_EXPR. */
2551
2552 tree
2553 throw_bad_array_new_length (void)
2554 {
2555 if (!fn)
2556 {
2557 tree name = get_identifier ("__cxa_throw_bad_array_new_length");
2558
2559 fn = get_global_binding (name);
2560 if (!fn)
2561 fn = push_throw_library_fn
2562 (name, build_function_type_list (sizetype, NULL_TREE));
2563 }
2564
2565 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2566 }
2567
2568 /* Attempt to verify that the argument, OPER, of a placement new expression
2569 refers to an object sufficiently large for an object of TYPE or an array
2570 of NELTS of such objects when NELTS is non-null, and issue a warning when
2571 it does not. SIZE specifies the size needed to construct the object or
2572 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2573 greater when the array under construction requires a cookie to store
2574 NELTS. GCC's placement new expression stores the cookie when invoking
2575 a user-defined placement new operator function but not the default one.
2576 Placement new expressions with user-defined placement new operator are
2577 not diagnosed since we don't know how they use the buffer (this could
2578 be a future extension). */
2579 static void
2580 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2581 {
2582 location_t loc = cp_expr_loc_or_input_loc (oper);
2583
2584 STRIP_NOPS (oper);
2585
2586 /* Using a function argument or a (non-array) variable as an argument
2587 to placement new is not checked since it's unknown what it might
2588 point to. */
2589 if (TREE_CODE (oper) == PARM_DECL
2590 || VAR_P (oper)
2591 || TREE_CODE (oper) == COMPONENT_REF)
2592 return;
2593
2594 /* Evaluate any constant expressions. */
2595 size = fold_non_dependent_expr (size);
2596
2597 access_ref ref;
2598 ref.eval = [](tree x){ return fold_non_dependent_expr (x); };
2599 ref.trail1special = warn_placement_new < 2;
2600 tree objsize = compute_objsize (oper, 1, &ref);
2601 if (!objsize)
2602 return;
2603
2604 offset_int bytes_avail = wi::to_offset (objsize);
2605 offset_int bytes_need;
2606
2607 if (CONSTANT_CLASS_P (size))
2608 bytes_need = wi::to_offset (size);
2609 else if (nelts && CONSTANT_CLASS_P (nelts))
2610 bytes_need = (wi::to_offset (nelts)
2611 * wi::to_offset (TYPE_SIZE_UNIT (type)));
2612 else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2613 bytes_need = wi::to_offset (TYPE_SIZE_UNIT (type));
2614 else
2615 {
2616 /* The type is a VLA. */
2617 return;
2618 }
2619
2620 if (bytes_avail >= bytes_need)
2621 return;
2622
2623 /* True when the size to mention in the warning is exact as opposed
2624 to "at least N". */
2625 const bool exact_size = (ref.offrng[0] == ref.offrng[1]
2626 || ref.sizrng[1] - ref.offrng[0] == 0);
2627
2628 tree opertype = ref.ref ? TREE_TYPE (ref.ref) : TREE_TYPE (oper);
2629 bool warned = false;
2630 if (nelts)
2631 nelts = fold_for_warn (nelts);
2632 if (nelts)
2633 if (CONSTANT_CLASS_P (nelts))
2634 warned = warning_at (loc, OPT_Wplacement_new_,
2635 (exact_size
2636 ? G_("placement new constructing an object "
2637 "of type %<%T [%wu]%> and size %qwu "
2638 "in a region of type %qT and size %qwi")
2639 : G_("placement new constructing an object "
2640 "of type %<%T [%wu]%> and size %qwu "
2641 "in a region of type %qT and size "
2642 "at most %qwu")),
2643 type, tree_to_uhwi (nelts),
2644 bytes_need.to_uhwi (),
2645 opertype, bytes_avail.to_uhwi ());
2646 else
2647 warned = warning_at (loc, OPT_Wplacement_new_,
2648 (exact_size
2649 ? G_("placement new constructing an array "
2650 "of objects of type %qT and size %qwu "
2651 "in a region of type %qT and size %qwi")
2652 : G_("placement new constructing an array "
2653 "of objects of type %qT and size %qwu "
2654 "in a region of type %qT and size "
2655 "at most %qwu")),
2656 type, bytes_need.to_uhwi (), opertype,
2657 bytes_avail.to_uhwi ());
2658 else
2659 warned = warning_at (loc, OPT_Wplacement_new_,
2660 (exact_size
2661 ? G_("placement new constructing an object "
2662 "of type %qT and size %qwu in a region "
2663 "of type %qT and size %qwi")
2664 : G_("placement new constructing an object "
2665 "of type %qT "
2666 "and size %qwu in a region of type %qT "
2667 "and size at most %qwu")),
2668 type, bytes_need.to_uhwi (), opertype,
2669 bytes_avail.to_uhwi ());
2670
2671 if (!warned || !ref.ref)
2672 return;
2673
2674 if (ref.offrng[0] == 0 || !ref.offset_bounded ())
2675 /* Avoid mentioning the offset when its lower bound is zero
2676 or when it's impossibly large. */
2677 inform (DECL_SOURCE_LOCATION (ref.ref),
2678 "%qD declared here", ref.ref);
2679 else if (ref.offrng[0] == ref.offrng[1])
2680 inform (DECL_SOURCE_LOCATION (ref.ref),
2681 "at offset %wi from %qD declared here",
2682 ref.offrng[0].to_shwi (), ref.ref);
2683 else
2684 inform (DECL_SOURCE_LOCATION (ref.ref),
2685 "at offset [%wi, %wi] from %qD declared here",
2686 ref.offrng[0].to_shwi (), ref.offrng[1].to_shwi (), ref.ref);
2687 }
2688
2689 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */
2690
2691 bool
2692 type_has_new_extended_alignment (tree t)
2693 {
2694 return (aligned_new_threshold
2695 && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2696 }
2697
2698 /* Return the alignment we expect malloc to guarantee. This should just be
2699 MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2700 reason, so don't let the threshold be smaller than max_align_t_align. */
2701
2702 unsigned
2703 malloc_alignment ()
2704 {
2705 return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2706 }
2707
2708 /* Determine whether an allocation function is a namespace-scope
2709 non-replaceable placement new function. See DR 1748. */
2710 static bool
2711 std_placement_new_fn_p (tree alloc_fn)
2712 {
2713 if (DECL_NAMESPACE_SCOPE_P (alloc_fn))
2714 {
2715 tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
2716 if ((TREE_VALUE (first_arg) == ptr_type_node)
2717 && TREE_CHAIN (first_arg) == void_list_node)
2718 return true;
2719 }
2720 return false;
2721 }
2722
2723 /* For element type ELT_TYPE, return the appropriate type of the heap object
2724 containing such element(s). COOKIE_SIZE is NULL or the size of cookie
2725 in bytes. FULL_SIZE is NULL if it is unknown how big the heap allocation
2726 will be, otherwise size of the heap object. If COOKIE_SIZE is NULL,
2727 return array type ELT_TYPE[FULL_SIZE / sizeof(ELT_TYPE)], otherwise return
2728 struct { size_t[COOKIE_SIZE/sizeof(size_t)]; ELT_TYPE[N]; }
2729 where N is nothing (flexible array member) if FULL_SIZE is NULL, otherwise
2730 it is computed such that the size of the struct fits into FULL_SIZE. */
2731
2732 tree
2733 build_new_constexpr_heap_type (tree elt_type, tree cookie_size, tree full_size)
2734 {
2735 gcc_assert (cookie_size == NULL_TREE || tree_fits_uhwi_p (cookie_size));
2736 gcc_assert (full_size == NULL_TREE || tree_fits_uhwi_p (full_size));
2737 unsigned HOST_WIDE_INT csz = cookie_size ? tree_to_uhwi (cookie_size) : 0;
2738 tree itype2 = NULL_TREE;
2739 if (full_size)
2740 {
2741 unsigned HOST_WIDE_INT fsz = tree_to_uhwi (full_size);
2742 gcc_assert (fsz >= csz);
2743 fsz -= csz;
2744 fsz /= int_size_in_bytes (elt_type);
2745 itype2 = build_index_type (size_int (fsz - 1));
2746 if (!cookie_size)
2747 return build_cplus_array_type (elt_type, itype2);
2748 }
2749 else
2750 gcc_assert (cookie_size);
2751 csz /= int_size_in_bytes (sizetype);
2752 tree itype1 = build_index_type (size_int (csz - 1));
2753 tree atype1 = build_cplus_array_type (sizetype, itype1);
2754 tree atype2 = build_cplus_array_type (elt_type, itype2);
2755 tree rtype = cxx_make_type (RECORD_TYPE);
2756 TYPE_NAME (rtype) = heap_identifier;
2757 tree fld1 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype1);
2758 tree fld2 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype2);
2759 DECL_FIELD_CONTEXT (fld1) = rtype;
2760 DECL_FIELD_CONTEXT (fld2) = rtype;
2761 DECL_ARTIFICIAL (fld1) = true;
2762 DECL_ARTIFICIAL (fld2) = true;
2763 TYPE_FIELDS (rtype) = fld1;
2764 DECL_CHAIN (fld1) = fld2;
2765 layout_type (rtype);
2766 return rtype;
2767 }
2768
2769 /* Help the constexpr code to find the right type for the heap variable
2770 by adding a NOP_EXPR around ALLOC_CALL if needed for cookie_size.
2771 Return ALLOC_CALL or ALLOC_CALL cast to a pointer to
2772 struct { size_t[cookie_size/sizeof(size_t)]; elt_type[]; }. */
2773
2774 static tree
2775 maybe_wrap_new_for_constexpr (tree alloc_call, tree elt_type, tree cookie_size)
2776 {
2777 if (cxx_dialect < cxx20)
2778 return alloc_call;
2779
2780 if (current_function_decl != NULL_TREE
2781 && !DECL_DECLARED_CONSTEXPR_P (current_function_decl))
2782 return alloc_call;
2783
2784 tree call_expr = extract_call_expr (alloc_call);
2785 if (call_expr == error_mark_node)
2786 return alloc_call;
2787
2788 tree alloc_call_fndecl = cp_get_callee_fndecl_nofold (call_expr);
2789 if (alloc_call_fndecl == NULL_TREE
2790 || !IDENTIFIER_NEW_OP_P (DECL_NAME (alloc_call_fndecl))
2791 || CP_DECL_CONTEXT (alloc_call_fndecl) != global_namespace)
2792 return alloc_call;
2793
2794 tree rtype = build_new_constexpr_heap_type (elt_type, cookie_size,
2795 NULL_TREE);
2796 return build_nop (build_pointer_type (rtype), alloc_call);
2797 }
2798
2799 /* Generate code for a new-expression, including calling the "operator
2800 new" function, initializing the object, and, if an exception occurs
2801 during construction, cleaning up. The arguments are as for
2802 build_raw_new_expr. This may change PLACEMENT and INIT.
2803 TYPE is the type of the object being constructed, possibly an array
2804 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2805 be an array of the form U[inner], with the whole expression being
2806 "new U[NELTS][inner]"). */
2807
2808 static tree
2809 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2810 vec<tree, va_gc> **init, bool globally_qualified_p,
2811 tsubst_flags_t complain)
2812 {
2813 tree size, rval;
2814 /* True iff this is a call to "operator new[]" instead of just
2815 "operator new". */
2816 bool array_p = false;
2817 /* If ARRAY_P is true, the element type of the array. This is never
2818 an ARRAY_TYPE; for something like "new int[3][4]", the
2819 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2820 TYPE. */
2821 tree elt_type;
2822 /* The type of the new-expression. (This type is always a pointer
2823 type.) */
2824 tree pointer_type;
2825 tree non_const_pointer_type;
2826 /* The most significant array bound in int[OUTER_NELTS][inner]. */
2827 tree outer_nelts = NULL_TREE;
2828 /* For arrays with a non-constant number of elements, a bounds checks
2829 on the NELTS parameter to avoid integer overflow at runtime. */
2830 tree outer_nelts_check = NULL_TREE;
2831 bool outer_nelts_from_type = false;
2832 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
2833 offset_int inner_nelts_count = 1;
2834 tree alloc_call, alloc_expr;
2835 /* Size of the inner array elements (those with constant dimensions). */
2836 offset_int inner_size;
2837 /* The address returned by the call to "operator new". This node is
2838 a VAR_DECL and is therefore reusable. */
2839 tree alloc_node;
2840 tree alloc_fn;
2841 tree cookie_expr, init_expr;
2842 int nothrow, check_new;
2843 /* If non-NULL, the number of extra bytes to allocate at the
2844 beginning of the storage allocated for an array-new expression in
2845 order to store the number of elements. */
2846 tree cookie_size = NULL_TREE;
2847 tree placement_first;
2848 tree placement_expr = NULL_TREE;
2849 /* True if the function we are calling is a placement allocation
2850 function. */
2851 bool placement_allocation_fn_p;
2852 /* True if the storage must be initialized, either by a constructor
2853 or due to an explicit new-initializer. */
2854 bool is_initialized;
2855 /* The address of the thing allocated, not including any cookie. In
2856 particular, if an array cookie is in use, DATA_ADDR is the
2857 address of the first array element. This node is a VAR_DECL, and
2858 is therefore reusable. */
2859 tree data_addr;
2860 tree init_preeval_expr = NULL_TREE;
2861 tree orig_type = type;
2862
2863 if (nelts)
2864 {
2865 outer_nelts = nelts;
2866 array_p = true;
2867 }
2868 else if (TREE_CODE (type) == ARRAY_TYPE)
2869 {
2870 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2871 extension for variable N. (This also covers new T where T is
2872 a VLA typedef.) */
2873 array_p = true;
2874 nelts = array_type_nelts_top (type);
2875 outer_nelts = nelts;
2876 type = TREE_TYPE (type);
2877 outer_nelts_from_type = true;
2878 }
2879
2880 /* Lots of logic below depends on whether we have a constant number of
2881 elements, so go ahead and fold it now. */
2882 const_tree cst_outer_nelts = fold_non_dependent_expr (outer_nelts, complain);
2883
2884 /* If our base type is an array, then make sure we know how many elements
2885 it has. */
2886 for (elt_type = type;
2887 TREE_CODE (elt_type) == ARRAY_TYPE;
2888 elt_type = TREE_TYPE (elt_type))
2889 {
2890 tree inner_nelts = array_type_nelts_top (elt_type);
2891 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2892 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2893 {
2894 wi::overflow_type overflow;
2895 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2896 inner_nelts_count, SIGNED, &overflow);
2897 if (overflow)
2898 {
2899 if (complain & tf_error)
2900 error ("integer overflow in array size");
2901 nelts = error_mark_node;
2902 }
2903 inner_nelts_count = result;
2904 }
2905 else
2906 {
2907 if (complain & tf_error)
2908 {
2909 error_at (cp_expr_loc_or_input_loc (inner_nelts),
2910 "array size in new-expression must be constant");
2911 cxx_constant_value(inner_nelts);
2912 }
2913 nelts = error_mark_node;
2914 }
2915 if (nelts != error_mark_node)
2916 nelts = cp_build_binary_op (input_location,
2917 MULT_EXPR, nelts,
2918 inner_nelts_cst,
2919 complain);
2920 }
2921
2922 if (!verify_type_context (input_location, TCTX_ALLOCATION, elt_type,
2923 !(complain & tf_error)))
2924 return error_mark_node;
2925
2926 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2927 {
2928 error ("variably modified type not allowed in new-expression");
2929 return error_mark_node;
2930 }
2931
2932 if (nelts == error_mark_node)
2933 return error_mark_node;
2934
2935 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2936 variable. */
2937 if (outer_nelts_from_type
2938 && !TREE_CONSTANT (cst_outer_nelts))
2939 {
2940 if (complain & tf_warning_or_error)
2941 {
2942 pedwarn (cp_expr_loc_or_input_loc (outer_nelts), OPT_Wvla,
2943 typedef_variant_p (orig_type)
2944 ? G_("non-constant array new length must be specified "
2945 "directly, not by %<typedef%>")
2946 : G_("non-constant array new length must be specified "
2947 "without parentheses around the type-id"));
2948 }
2949 else
2950 return error_mark_node;
2951 }
2952
2953 if (VOID_TYPE_P (elt_type))
2954 {
2955 if (complain & tf_error)
2956 error ("invalid type %<void%> for %<new%>");
2957 return error_mark_node;
2958 }
2959
2960 if (is_std_init_list (elt_type) && !cp_unevaluated_operand)
2961 warning (OPT_Winit_list_lifetime,
2962 "%<new%> of %<initializer_list%> does not "
2963 "extend the lifetime of the underlying array");
2964
2965 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2966 return error_mark_node;
2967
2968 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2969
2970 if (*init == NULL && cxx_dialect < cxx11)
2971 {
2972 bool maybe_uninitialized_error = false;
2973 /* A program that calls for default-initialization [...] of an
2974 entity of reference type is ill-formed. */
2975 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2976 maybe_uninitialized_error = true;
2977
2978 /* A new-expression that creates an object of type T initializes
2979 that object as follows:
2980 - If the new-initializer is omitted:
2981 -- If T is a (possibly cv-qualified) non-POD class type
2982 (or array thereof), the object is default-initialized (8.5).
2983 [...]
2984 -- Otherwise, the object created has indeterminate
2985 value. If T is a const-qualified type, or a (possibly
2986 cv-qualified) POD class type (or array thereof)
2987 containing (directly or indirectly) a member of
2988 const-qualified type, the program is ill-formed; */
2989
2990 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2991 maybe_uninitialized_error = true;
2992
2993 if (maybe_uninitialized_error
2994 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2995 /*using_new=*/true,
2996 complain & tf_error))
2997 return error_mark_node;
2998 }
2999
3000 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
3001 && default_init_uninitialized_part (elt_type))
3002 {
3003 if (complain & tf_error)
3004 error ("uninitialized const in %<new%> of %q#T", elt_type);
3005 return error_mark_node;
3006 }
3007
3008 size = size_in_bytes (elt_type);
3009 if (array_p)
3010 {
3011 /* Maximum available size in bytes. Half of the address space
3012 minus the cookie size. */
3013 offset_int max_size
3014 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
3015 /* Maximum number of outer elements which can be allocated. */
3016 offset_int max_outer_nelts;
3017 tree max_outer_nelts_tree;
3018
3019 gcc_assert (TREE_CODE (size) == INTEGER_CST);
3020 cookie_size = targetm.cxx.get_cookie_size (elt_type);
3021 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
3022 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
3023 /* Unconditionally subtract the cookie size. This decreases the
3024 maximum object size and is safe even if we choose not to use
3025 a cookie after all. */
3026 max_size -= wi::to_offset (cookie_size);
3027 wi::overflow_type overflow;
3028 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
3029 &overflow);
3030 if (overflow || wi::gtu_p (inner_size, max_size))
3031 {
3032 if (complain & tf_error)
3033 {
3034 cst_size_error error;
3035 if (overflow)
3036 error = cst_size_overflow;
3037 else
3038 {
3039 error = cst_size_too_big;
3040 size = size_binop (MULT_EXPR, size,
3041 wide_int_to_tree (sizetype,
3042 inner_nelts_count));
3043 size = cp_fully_fold (size);
3044 }
3045 invalid_array_size_error (input_location, error, size,
3046 /*name=*/NULL_TREE);
3047 }
3048 return error_mark_node;
3049 }
3050
3051 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
3052 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
3053
3054 size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
3055
3056 if (TREE_CODE (cst_outer_nelts) == INTEGER_CST)
3057 {
3058 if (tree_int_cst_lt (max_outer_nelts_tree, cst_outer_nelts))
3059 {
3060 /* When the array size is constant, check it at compile time
3061 to make sure it doesn't exceed the implementation-defined
3062 maximum, as required by C++ 14 (in C++ 11 this requirement
3063 isn't explicitly stated but it's enforced anyway -- see
3064 grokdeclarator in cp/decl.c). */
3065 if (complain & tf_error)
3066 {
3067 size = cp_fully_fold (size);
3068 invalid_array_size_error (input_location, cst_size_too_big,
3069 size, NULL_TREE);
3070 }
3071 return error_mark_node;
3072 }
3073 }
3074 else
3075 {
3076 /* When a runtime check is necessary because the array size
3077 isn't constant, keep only the top-most seven bits (starting
3078 with the most significant non-zero bit) of the maximum size
3079 to compare the array size against, to simplify encoding the
3080 constant maximum size in the instruction stream. */
3081
3082 unsigned shift = (max_outer_nelts.get_precision ()) - 7
3083 - wi::clz (max_outer_nelts);
3084 max_outer_nelts = (max_outer_nelts >> shift) << shift;
3085
3086 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
3087 outer_nelts,
3088 max_outer_nelts_tree);
3089 }
3090 }
3091
3092 tree align_arg = NULL_TREE;
3093 if (type_has_new_extended_alignment (elt_type))
3094 align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type));
3095
3096 alloc_fn = NULL_TREE;
3097
3098 /* If PLACEMENT is a single simple pointer type not passed by
3099 reference, prepare to capture it in a temporary variable. Do
3100 this now, since PLACEMENT will change in the calls below. */
3101 placement_first = NULL_TREE;
3102 if (vec_safe_length (*placement) == 1
3103 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
3104 placement_first = (**placement)[0];
3105
3106 bool member_new_p = false;
3107
3108 /* Allocate the object. */
3109 tree fnname;
3110 tree fns;
3111
3112 fnname = ovl_op_identifier (false, array_p ? VEC_NEW_EXPR : NEW_EXPR);
3113
3114 member_new_p = !globally_qualified_p
3115 && CLASS_TYPE_P (elt_type)
3116 && (array_p
3117 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
3118 : TYPE_HAS_NEW_OPERATOR (elt_type));
3119
3120 if (member_new_p)
3121 {
3122 /* Use a class-specific operator new. */
3123 /* If a cookie is required, add some extra space. */
3124 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3125 size = size_binop (PLUS_EXPR, size, cookie_size);
3126 else
3127 {
3128 cookie_size = NULL_TREE;
3129 /* No size arithmetic necessary, so the size check is
3130 not needed. */
3131 if (outer_nelts_check != NULL && inner_size == 1)
3132 outer_nelts_check = NULL_TREE;
3133 }
3134 /* Perform the overflow check. */
3135 tree errval = TYPE_MAX_VALUE (sizetype);
3136 if (cxx_dialect >= cxx11 && flag_exceptions)
3137 errval = throw_bad_array_new_length ();
3138 if (outer_nelts_check != NULL_TREE)
3139 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
3140 size, errval);
3141 /* Create the argument list. */
3142 vec_safe_insert (*placement, 0, size);
3143 /* Do name-lookup to find the appropriate operator. */
3144 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2, complain);
3145 if (fns == NULL_TREE)
3146 {
3147 if (complain & tf_error)
3148 error ("no suitable %qD found in class %qT", fnname, elt_type);
3149 return error_mark_node;
3150 }
3151 if (TREE_CODE (fns) == TREE_LIST)
3152 {
3153 if (complain & tf_error)
3154 {
3155 error ("request for member %qD is ambiguous", fnname);
3156 print_candidates (fns);
3157 }
3158 return error_mark_node;
3159 }
3160 tree dummy = build_dummy_object (elt_type);
3161 alloc_call = NULL_TREE;
3162 if (align_arg)
3163 {
3164 vec<tree, va_gc> *align_args
3165 = vec_copy_and_insert (*placement, align_arg, 1);
3166 alloc_call
3167 = build_new_method_call (dummy, fns, &align_args,
3168 /*conversion_path=*/NULL_TREE,
3169 LOOKUP_NORMAL, &alloc_fn, tf_none);
3170 /* If no matching function is found and the allocated object type
3171 has new-extended alignment, the alignment argument is removed
3172 from the argument list, and overload resolution is performed
3173 again. */
3174 if (alloc_call == error_mark_node)
3175 alloc_call = NULL_TREE;
3176 }
3177 if (!alloc_call)
3178 alloc_call = build_new_method_call (dummy, fns, placement,
3179 /*conversion_path=*/NULL_TREE,
3180 LOOKUP_NORMAL,
3181 &alloc_fn, complain);
3182 }
3183 else
3184 {
3185 /* Use a global operator new. */
3186 /* See if a cookie might be required. */
3187 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3188 {
3189 cookie_size = NULL_TREE;
3190 /* No size arithmetic necessary, so the size check is
3191 not needed. */
3192 if (outer_nelts_check != NULL && inner_size == 1)
3193 outer_nelts_check = NULL_TREE;
3194 }
3195
3196 alloc_call = build_operator_new_call (fnname, placement,
3197 &size, &cookie_size,
3198 align_arg, outer_nelts_check,
3199 &alloc_fn, complain);
3200 }
3201
3202 if (alloc_call == error_mark_node)
3203 return error_mark_node;
3204
3205 gcc_assert (alloc_fn != NULL_TREE);
3206
3207 /* Now, check to see if this function is actually a placement
3208 allocation function. This can happen even when PLACEMENT is NULL
3209 because we might have something like:
3210
3211 struct S { void* operator new (size_t, int i = 0); };
3212
3213 A call to `new S' will get this allocation function, even though
3214 there is no explicit placement argument. If there is more than
3215 one argument, or there are variable arguments, then this is a
3216 placement allocation function. */
3217 placement_allocation_fn_p
3218 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3219 || varargs_function_p (alloc_fn));
3220
3221 if (warn_aligned_new
3222 && !placement_allocation_fn_p
3223 && TYPE_ALIGN (elt_type) > malloc_alignment ()
3224 && (warn_aligned_new > 1
3225 || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3226 && !aligned_allocation_fn_p (alloc_fn))
3227 {
3228 auto_diagnostic_group d;
3229 if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3230 "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type)))
3231 {
3232 inform (input_location, "uses %qD, which does not have an alignment "
3233 "parameter", alloc_fn);
3234 if (!aligned_new_threshold)
3235 inform (input_location, "use %<-faligned-new%> to enable C++17 "
3236 "over-aligned new support");
3237 }
3238 }
3239
3240 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3241 into a temporary variable. */
3242 if (!processing_template_decl
3243 && TREE_CODE (alloc_call) == CALL_EXPR
3244 && call_expr_nargs (alloc_call) == 2
3245 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3246 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3247 {
3248 tree placement = CALL_EXPR_ARG (alloc_call, 1);
3249
3250 if (placement_first != NULL_TREE
3251 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3252 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3253 {
3254 placement_expr = get_target_expr (placement_first);
3255 CALL_EXPR_ARG (alloc_call, 1)
3256 = fold_convert (TREE_TYPE (placement), placement_expr);
3257 }
3258
3259 if (!member_new_p
3260 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3261 {
3262 /* Attempt to make the warning point at the operator new argument. */
3263 if (placement_first)
3264 placement = placement_first;
3265
3266 warn_placement_new_too_small (orig_type, nelts, size, placement);
3267 }
3268 }
3269
3270 if (cookie_size)
3271 alloc_call = maybe_wrap_new_for_constexpr (alloc_call, elt_type,
3272 cookie_size);
3273
3274 /* In the simple case, we can stop now. */
3275 pointer_type = build_pointer_type (type);
3276 if (!cookie_size && !is_initialized)
3277 return build_nop (pointer_type, alloc_call);
3278
3279 /* Store the result of the allocation call in a variable so that we can
3280 use it more than once. */
3281 alloc_expr = get_target_expr (alloc_call);
3282 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3283
3284 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3285 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3286 alloc_call = TREE_OPERAND (alloc_call, 1);
3287
3288 /* Preevaluate the placement args so that we don't reevaluate them for a
3289 placement delete. */
3290 if (placement_allocation_fn_p)
3291 {
3292 tree inits;
3293 stabilize_call (alloc_call, &inits);
3294 if (inits)
3295 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3296 alloc_expr);
3297 }
3298
3299 /* unless an allocation function is declared with an empty excep-
3300 tion-specification (_except.spec_), throw(), it indicates failure to
3301 allocate storage by throwing a bad_alloc exception (clause _except_,
3302 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3303 cation function is declared with an empty exception-specification,
3304 throw(), it returns null to indicate failure to allocate storage and a
3305 non-null pointer otherwise.
3306
3307 So check for a null exception spec on the op new we just called. */
3308
3309 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3310 check_new
3311 = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn));
3312
3313 if (cookie_size)
3314 {
3315 tree cookie;
3316 tree cookie_ptr;
3317 tree size_ptr_type;
3318
3319 /* Adjust so we're pointing to the start of the object. */
3320 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3321
3322 /* Store the number of bytes allocated so that we can know how
3323 many elements to destroy later. We use the last sizeof
3324 (size_t) bytes to store the number of elements. */
3325 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3326 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3327 alloc_node, cookie_ptr);
3328 size_ptr_type = build_pointer_type (sizetype);
3329 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3330 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3331
3332 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3333
3334 if (targetm.cxx.cookie_has_size ())
3335 {
3336 /* Also store the element size. */
3337 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3338 fold_build1_loc (input_location,
3339 NEGATE_EXPR, sizetype,
3340 size_in_bytes (sizetype)));
3341
3342 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3343 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3344 size_in_bytes (elt_type));
3345 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3346 cookie, cookie_expr);
3347 }
3348 }
3349 else
3350 {
3351 cookie_expr = NULL_TREE;
3352 data_addr = alloc_node;
3353 }
3354
3355 /* Now use a pointer to the type we've actually allocated. */
3356
3357 /* But we want to operate on a non-const version to start with,
3358 since we'll be modifying the elements. */
3359 non_const_pointer_type = build_pointer_type
3360 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3361
3362 data_addr = fold_convert (non_const_pointer_type, data_addr);
3363 /* Any further uses of alloc_node will want this type, too. */
3364 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3365
3366 /* Now initialize the allocated object. Note that we preevaluate the
3367 initialization expression, apart from the actual constructor call or
3368 assignment--we do this because we want to delay the allocation as long
3369 as possible in order to minimize the size of the exception region for
3370 placement delete. */
3371 if (is_initialized)
3372 {
3373 bool stable;
3374 bool explicit_value_init_p = false;
3375
3376 if (*init != NULL && (*init)->is_empty ())
3377 {
3378 *init = NULL;
3379 explicit_value_init_p = true;
3380 }
3381
3382 if (processing_template_decl)
3383 {
3384 /* Avoid an ICE when converting to a base in build_simple_base_path.
3385 We'll throw this all away anyway, and build_new will create
3386 a NEW_EXPR. */
3387 tree t = fold_convert (build_pointer_type (elt_type), data_addr);
3388 /* build_value_init doesn't work in templates, and we don't need
3389 the initializer anyway since we're going to throw it away and
3390 rebuild it at instantiation time, so just build up a single
3391 constructor call to get any appropriate diagnostics. */
3392 init_expr = cp_build_fold_indirect_ref (t);
3393 if (type_build_ctor_call (elt_type))
3394 init_expr = build_special_member_call (init_expr,
3395 complete_ctor_identifier,
3396 init, elt_type,
3397 LOOKUP_NORMAL,
3398 complain);
3399 stable = stabilize_init (init_expr, &init_preeval_expr);
3400 }
3401 else if (array_p)
3402 {
3403 tree vecinit = NULL_TREE;
3404 const size_t len = vec_safe_length (*init);
3405 if (len == 1 && DIRECT_LIST_INIT_P ((**init)[0]))
3406 {
3407 vecinit = (**init)[0];
3408 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3409 /* List-value-initialization, leave it alone. */;
3410 else
3411 {
3412 tree arraytype, domain;
3413 if (TREE_CONSTANT (nelts))
3414 domain = compute_array_index_type (NULL_TREE, nelts,
3415 complain);
3416 else
3417 /* We'll check the length at runtime. */
3418 domain = NULL_TREE;
3419 arraytype = build_cplus_array_type (type, domain);
3420 /* If we have new char[4]{"foo"}, we have to reshape
3421 so that the STRING_CST isn't wrapped in { }. */
3422 vecinit = reshape_init (arraytype, vecinit, complain);
3423 /* The middle end doesn't cope with the location wrapper
3424 around a STRING_CST. */
3425 STRIP_ANY_LOCATION_WRAPPER (vecinit);
3426 vecinit = digest_init (arraytype, vecinit, complain);
3427 }
3428 }
3429 else if (*init)
3430 {
3431 if (complain & tf_error)
3432 error ("parenthesized initializer in array new");
3433 return error_mark_node;
3434 }
3435 init_expr
3436 = build_vec_init (data_addr,
3437 cp_build_binary_op (input_location,
3438 MINUS_EXPR, outer_nelts,
3439 integer_one_node,
3440 complain),
3441 vecinit,
3442 explicit_value_init_p,
3443 /*from_array=*/0,
3444 complain);
3445
3446 /* An array initialization is stable because the initialization
3447 of each element is a full-expression, so the temporaries don't
3448 leak out. */
3449 stable = true;
3450 }
3451 else
3452 {
3453 init_expr = cp_build_fold_indirect_ref (data_addr);
3454
3455 if (type_build_ctor_call (type) && !explicit_value_init_p)
3456 {
3457 init_expr = build_special_member_call (init_expr,
3458 complete_ctor_identifier,
3459 init, elt_type,
3460 LOOKUP_NORMAL,
3461 complain|tf_no_cleanup);
3462 }
3463 else if (explicit_value_init_p)
3464 {
3465 /* Something like `new int()'. NO_CLEANUP is needed so
3466 we don't try and build a (possibly ill-formed)
3467 destructor. */
3468 tree val = build_value_init (type, complain | tf_no_cleanup);
3469 if (val == error_mark_node)
3470 return error_mark_node;
3471 init_expr = build2 (INIT_EXPR, type, init_expr, val);
3472 }
3473 else
3474 {
3475 tree ie;
3476
3477 /* We are processing something like `new int (10)', which
3478 means allocate an int, and initialize it with 10.
3479
3480 In C++20, also handle `new A(1, 2)'. */
3481 if (cxx_dialect >= cxx20
3482 && AGGREGATE_TYPE_P (type)
3483 && (*init)->length () > 1)
3484 {
3485 ie = build_constructor_from_vec (init_list_type_node, *init);
3486 CONSTRUCTOR_IS_DIRECT_INIT (ie) = true;
3487 CONSTRUCTOR_IS_PAREN_INIT (ie) = true;
3488 ie = digest_init (type, ie, complain);
3489 }
3490 else
3491 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3492 complain);
3493 init_expr = cp_build_modify_expr (input_location, init_expr,
3494 INIT_EXPR, ie, complain);
3495 }
3496 /* If the initializer uses C++14 aggregate NSDMI that refer to the
3497 object being initialized, replace them now and don't try to
3498 preevaluate. */
3499 bool had_placeholder = false;
3500 if (!processing_template_decl
3501 && TREE_CODE (init_expr) == INIT_EXPR)
3502 TREE_OPERAND (init_expr, 1)
3503 = replace_placeholders (TREE_OPERAND (init_expr, 1),
3504 TREE_OPERAND (init_expr, 0),
3505 &had_placeholder);
3506 stable = (!had_placeholder
3507 && stabilize_init (init_expr, &init_preeval_expr));
3508 }
3509
3510 if (init_expr == error_mark_node)
3511 return error_mark_node;
3512
3513 /* If any part of the object initialization terminates by throwing an
3514 exception and a suitable deallocation function can be found, the
3515 deallocation function is called to free the memory in which the
3516 object was being constructed, after which the exception continues
3517 to propagate in the context of the new-expression. If no
3518 unambiguous matching deallocation function can be found,
3519 propagating the exception does not cause the object's memory to be
3520 freed. */
3521 if (flag_exceptions)
3522 {
3523 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3524 tree cleanup;
3525
3526 /* The Standard is unclear here, but the right thing to do
3527 is to use the same method for finding deallocation
3528 functions that we use for finding allocation functions. */
3529 cleanup = (build_op_delete_call
3530 (dcode,
3531 alloc_node,
3532 size,
3533 globally_qualified_p,
3534 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3535 alloc_fn,
3536 complain));
3537
3538 if (!cleanup)
3539 /* We're done. */;
3540 else if (stable)
3541 /* This is much simpler if we were able to preevaluate all of
3542 the arguments to the constructor call. */
3543 {
3544 /* CLEANUP is compiler-generated, so no diagnostics. */
3545 TREE_NO_WARNING (cleanup) = true;
3546 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3547 init_expr, cleanup);
3548 /* Likewise, this try-catch is compiler-generated. */
3549 TREE_NO_WARNING (init_expr) = true;
3550 }
3551 else
3552 /* Ack! First we allocate the memory. Then we set our sentry
3553 variable to true, and expand a cleanup that deletes the
3554 memory if sentry is true. Then we run the constructor, and
3555 finally clear the sentry.
3556
3557 We need to do this because we allocate the space first, so
3558 if there are any temporaries with cleanups in the
3559 constructor args and we weren't able to preevaluate them, we
3560 need this EH region to extend until end of full-expression
3561 to preserve nesting. */
3562 {
3563 tree end, sentry, begin;
3564
3565 begin = get_target_expr (boolean_true_node);
3566 CLEANUP_EH_ONLY (begin) = 1;
3567
3568 sentry = TARGET_EXPR_SLOT (begin);
3569
3570 /* CLEANUP is compiler-generated, so no diagnostics. */
3571 TREE_NO_WARNING (cleanup) = true;
3572
3573 TARGET_EXPR_CLEANUP (begin)
3574 = build3 (COND_EXPR, void_type_node, sentry,
3575 cleanup, void_node);
3576
3577 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3578 sentry, boolean_false_node);
3579
3580 init_expr
3581 = build2 (COMPOUND_EXPR, void_type_node, begin,
3582 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3583 end));
3584 /* Likewise, this is compiler-generated. */
3585 TREE_NO_WARNING (init_expr) = true;
3586 }
3587 }
3588 }
3589 else
3590 init_expr = NULL_TREE;
3591
3592 /* Now build up the return value in reverse order. */
3593
3594 rval = data_addr;
3595
3596 if (init_expr)
3597 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3598 if (cookie_expr)
3599 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3600
3601 if (rval == data_addr)
3602 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3603 and return the call (which doesn't need to be adjusted). */
3604 rval = TARGET_EXPR_INITIAL (alloc_expr);
3605 else
3606 {
3607 if (check_new)
3608 {
3609 tree ifexp = cp_build_binary_op (input_location,
3610 NE_EXPR, alloc_node,
3611 nullptr_node,
3612 complain);
3613 rval = build_conditional_expr (input_location, ifexp, rval,
3614 alloc_node, complain);
3615 }
3616
3617 /* Perform the allocation before anything else, so that ALLOC_NODE
3618 has been initialized before we start using it. */
3619 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3620 }
3621
3622 if (init_preeval_expr)
3623 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3624
3625 /* A new-expression is never an lvalue. */
3626 gcc_assert (!obvalue_p (rval));
3627
3628 return convert (pointer_type, rval);
3629 }
3630
3631 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3632 is a vector of placement-new arguments (or NULL if none). If NELTS
3633 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3634 is not NULL, then this is an array-new allocation; TYPE is the type
3635 of the elements in the array and NELTS is the number of elements in
3636 the array. *INIT, if non-NULL, is the initializer for the new
3637 object, or an empty vector to indicate an initializer of "()". If
3638 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3639 rather than just "new". This may change PLACEMENT and INIT. */
3640
3641 tree
3642 build_new (location_t loc, vec<tree, va_gc> **placement, tree type,
3643 tree nelts, vec<tree, va_gc> **init, int use_global_new,
3644 tsubst_flags_t complain)
3645 {
3646 tree rval;
3647 vec<tree, va_gc> *orig_placement = NULL;
3648 tree orig_nelts = NULL_TREE;
3649 vec<tree, va_gc> *orig_init = NULL;
3650
3651 if (type == error_mark_node)
3652 return error_mark_node;
3653
3654 if (nelts == NULL_TREE
3655 /* Don't do auto deduction where it might affect mangling. */
3656 && (!processing_template_decl || at_function_scope_p ()))
3657 {
3658 tree auto_node = type_uses_auto (type);
3659 if (auto_node)
3660 {
3661 tree d_init = NULL_TREE;
3662 const size_t len = vec_safe_length (*init);
3663 /* E.g. new auto(x) must have exactly one element, or
3664 a {} initializer will have one element. */
3665 if (len == 1)
3666 {
3667 d_init = (**init)[0];
3668 d_init = resolve_nondeduced_context (d_init, complain);
3669 }
3670 /* For the rest, e.g. new A(1, 2, 3), create a list. */
3671 else if (len > 1)
3672 {
3673 unsigned int n;
3674 tree t;
3675 tree *pp = &d_init;
3676 FOR_EACH_VEC_ELT (**init, n, t)
3677 {
3678 t = resolve_nondeduced_context (t, complain);
3679 *pp = build_tree_list (NULL_TREE, t);
3680 pp = &TREE_CHAIN (*pp);
3681 }
3682 }
3683 type = do_auto_deduction (type, d_init, auto_node, complain);
3684 }
3685 }
3686
3687 if (processing_template_decl)
3688 {
3689 if (dependent_type_p (type)
3690 || any_type_dependent_arguments_p (*placement)
3691 || (nelts && type_dependent_expression_p (nelts))
3692 || (nelts && *init)
3693 || any_type_dependent_arguments_p (*init))
3694 return build_raw_new_expr (loc, *placement, type, nelts, *init,
3695 use_global_new);
3696
3697 orig_placement = make_tree_vector_copy (*placement);
3698 orig_nelts = nelts;
3699 if (*init)
3700 {
3701 orig_init = make_tree_vector_copy (*init);
3702 /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3703 digest_init clobber them in place. */
3704 for (unsigned i = 0; i < orig_init->length(); ++i)
3705 {
3706 tree e = (**init)[i];
3707 if (TREE_CODE (e) == CONSTRUCTOR)
3708 (**init)[i] = copy_node (e);
3709 }
3710 }
3711
3712 make_args_non_dependent (*placement);
3713 if (nelts)
3714 nelts = build_non_dependent_expr (nelts);
3715 make_args_non_dependent (*init);
3716 }
3717
3718 if (nelts)
3719 {
3720 location_t nelts_loc = cp_expr_loc_or_loc (nelts, loc);
3721 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3722 {
3723 if (complain & tf_error)
3724 permerror (nelts_loc,
3725 "size in array new must have integral type");
3726 else
3727 return error_mark_node;
3728 }
3729
3730 /* Try to determine the constant value only for the purposes
3731 of the diagnostic below but continue to use the original
3732 value and handle const folding later. */
3733 const_tree cst_nelts = fold_non_dependent_expr (nelts, complain);
3734
3735 /* The expression in a noptr-new-declarator is erroneous if it's of
3736 non-class type and its value before converting to std::size_t is
3737 less than zero. ... If the expression is a constant expression,
3738 the program is ill-fomed. */
3739 if (TREE_CODE (cst_nelts) == INTEGER_CST
3740 && !valid_array_size_p (nelts_loc, cst_nelts, NULL_TREE,
3741 complain & tf_error))
3742 return error_mark_node;
3743
3744 nelts = mark_rvalue_use (nelts);
3745 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3746 }
3747
3748 /* ``A reference cannot be created by the new operator. A reference
3749 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3750 returned by new.'' ARM 5.3.3 */
3751 if (TYPE_REF_P (type))
3752 {
3753 if (complain & tf_error)
3754 error_at (loc, "new cannot be applied to a reference type");
3755 else
3756 return error_mark_node;
3757 type = TREE_TYPE (type);
3758 }
3759
3760 if (TREE_CODE (type) == FUNCTION_TYPE)
3761 {
3762 if (complain & tf_error)
3763 error_at (loc, "new cannot be applied to a function type");
3764 return error_mark_node;
3765 }
3766
3767 /* P1009: Array size deduction in new-expressions. */
3768 const bool array_p = TREE_CODE (type) == ARRAY_TYPE;
3769 if (*init
3770 /* If ARRAY_P, we have to deduce the array bound. For C++20 paren-init,
3771 we have to process the parenthesized-list. But don't do it for (),
3772 which is value-initialization, and INIT should stay empty. */
3773 && (array_p || (cxx_dialect >= cxx20 && nelts && !(*init)->is_empty ())))
3774 {
3775 /* This means we have 'new T[]()'. */
3776 if ((*init)->is_empty ())
3777 {
3778 tree ctor = build_constructor (init_list_type_node, NULL);
3779 CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true;
3780 vec_safe_push (*init, ctor);
3781 }
3782 tree &elt = (**init)[0];
3783 /* The C++20 'new T[](e_0, ..., e_k)' case allowed by P0960. */
3784 if (!DIRECT_LIST_INIT_P (elt) && cxx_dialect >= cxx20)
3785 {
3786 tree ctor = build_constructor_from_vec (init_list_type_node, *init);
3787 CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true;
3788 CONSTRUCTOR_IS_PAREN_INIT (ctor) = true;
3789 elt = ctor;
3790 /* We've squashed all the vector elements into the first one;
3791 truncate the rest. */
3792 (*init)->truncate (1);
3793 }
3794 /* Otherwise we should have 'new T[]{e_0, ..., e_k}'. */
3795 if (array_p && !TYPE_DOMAIN (type))
3796 {
3797 /* We need to reshape before deducing the bounds to handle code like
3798
3799 struct S { int x, y; };
3800 new S[]{1, 2, 3, 4};
3801
3802 which should deduce S[2]. But don't change ELT itself: we want to
3803 pass a list-initializer to build_new_1, even for STRING_CSTs. */
3804 tree e = elt;
3805 if (BRACE_ENCLOSED_INITIALIZER_P (e))
3806 e = reshape_init (type, e, complain);
3807 cp_complete_array_type (&type, e, /*do_default*/false);
3808 }
3809 }
3810
3811 /* The type allocated must be complete. If the new-type-id was
3812 "T[N]" then we are just checking that "T" is complete here, but
3813 that is equivalent, since the value of "N" doesn't matter. */
3814 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3815 return error_mark_node;
3816
3817 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3818 if (rval == error_mark_node)
3819 return error_mark_node;
3820
3821 if (processing_template_decl)
3822 {
3823 tree ret = build_raw_new_expr (loc, orig_placement, type, orig_nelts,
3824 orig_init, use_global_new);
3825 release_tree_vector (orig_placement);
3826 release_tree_vector (orig_init);
3827 return ret;
3828 }
3829
3830 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3831 rval = build1_loc (loc, NOP_EXPR, TREE_TYPE (rval), rval);
3832 TREE_NO_WARNING (rval) = 1;
3833
3834 return rval;
3835 }
3836 \f
3837 static tree
3838 build_vec_delete_1 (location_t loc, tree base, tree maxindex, tree type,
3839 special_function_kind auto_delete_vec,
3840 int use_global_delete, tsubst_flags_t complain)
3841 {
3842 tree virtual_size;
3843 tree ptype = build_pointer_type (type = complete_type (type));
3844 tree size_exp;
3845
3846 /* Temporary variables used by the loop. */
3847 tree tbase, tbase_init;
3848
3849 /* This is the body of the loop that implements the deletion of a
3850 single element, and moves temp variables to next elements. */
3851 tree body;
3852
3853 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3854 tree loop = 0;
3855
3856 /* This is the thing that governs what to do after the loop has run. */
3857 tree deallocate_expr = 0;
3858
3859 /* This is the BIND_EXPR which holds the outermost iterator of the
3860 loop. It is convenient to set this variable up and test it before
3861 executing any other code in the loop.
3862 This is also the containing expression returned by this function. */
3863 tree controller = NULL_TREE;
3864 tree tmp;
3865
3866 /* We should only have 1-D arrays here. */
3867 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3868
3869 if (base == error_mark_node || maxindex == error_mark_node)
3870 return error_mark_node;
3871
3872 if (!verify_type_context (loc, TCTX_DEALLOCATION, type,
3873 !(complain & tf_error)))
3874 return error_mark_node;
3875
3876 if (!COMPLETE_TYPE_P (type))
3877 {
3878 if (complain & tf_warning)
3879 {
3880 auto_diagnostic_group d;
3881 if (warning_at (loc, OPT_Wdelete_incomplete,
3882 "possible problem detected in invocation of "
3883 "operator %<delete []%>"))
3884 {
3885 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3886 inform (loc, "neither the destructor nor the "
3887 "class-specific operator %<delete []%> will be called, "
3888 "even if they are declared when the class is defined");
3889 }
3890 }
3891 /* This size won't actually be used. */
3892 size_exp = size_one_node;
3893 goto no_destructor;
3894 }
3895
3896 size_exp = size_in_bytes (type);
3897
3898 if (! MAYBE_CLASS_TYPE_P (type))
3899 goto no_destructor;
3900 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3901 {
3902 /* Make sure the destructor is callable. */
3903 if (type_build_dtor_call (type))
3904 {
3905 tmp = build_delete (loc, ptype, base, sfk_complete_destructor,
3906 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3907 complain);
3908 if (tmp == error_mark_node)
3909 return error_mark_node;
3910 }
3911 goto no_destructor;
3912 }
3913
3914 /* The below is short by the cookie size. */
3915 virtual_size = size_binop (MULT_EXPR, size_exp,
3916 fold_convert (sizetype, maxindex));
3917
3918 tbase = create_temporary_var (ptype);
3919 DECL_INITIAL (tbase)
3920 = fold_build_pointer_plus_loc (loc, fold_convert (ptype, base),
3921 virtual_size);
3922 tbase_init = build_stmt (loc, DECL_EXPR, tbase);
3923 controller = build3 (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
3924 TREE_SIDE_EFFECTS (controller) = 1;
3925
3926 body = build1 (EXIT_EXPR, void_type_node,
3927 build2 (EQ_EXPR, boolean_type_node, tbase,
3928 fold_convert (ptype, base)));
3929 tmp = fold_build1_loc (loc, NEGATE_EXPR, sizetype, size_exp);
3930 tmp = fold_build_pointer_plus (tbase, tmp);
3931 tmp = cp_build_modify_expr (loc, tbase, NOP_EXPR, tmp, complain);
3932 if (tmp == error_mark_node)
3933 return error_mark_node;
3934 body = build_compound_expr (loc, body, tmp);
3935 tmp = build_delete (loc, ptype, tbase, sfk_complete_destructor,
3936 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3937 complain);
3938 if (tmp == error_mark_node)
3939 return error_mark_node;
3940 body = build_compound_expr (loc, body, tmp);
3941
3942 loop = build1 (LOOP_EXPR, void_type_node, body);
3943 loop = build_compound_expr (loc, tbase_init, loop);
3944
3945 no_destructor:
3946 /* Delete the storage if appropriate. */
3947 if (auto_delete_vec == sfk_deleting_destructor)
3948 {
3949 tree base_tbd;
3950
3951 /* The below is short by the cookie size. */
3952 virtual_size = size_binop (MULT_EXPR, size_exp,
3953 fold_convert (sizetype, maxindex));
3954
3955 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3956 /* no header */
3957 base_tbd = base;
3958 else
3959 {
3960 tree cookie_size;
3961
3962 cookie_size = targetm.cxx.get_cookie_size (type);
3963 base_tbd = cp_build_binary_op (loc,
3964 MINUS_EXPR,
3965 cp_convert (string_type_node,
3966 base, complain),
3967 cookie_size,
3968 complain);
3969 if (base_tbd == error_mark_node)
3970 return error_mark_node;
3971 base_tbd = cp_convert (ptype, base_tbd, complain);
3972 /* True size with header. */
3973 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3974 }
3975
3976 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3977 base_tbd, virtual_size,
3978 use_global_delete & 1,
3979 /*placement=*/NULL_TREE,
3980 /*alloc_fn=*/NULL_TREE,
3981 complain);
3982 }
3983
3984 body = loop;
3985 if (deallocate_expr == error_mark_node)
3986 return error_mark_node;
3987 else if (!deallocate_expr)
3988 ;
3989 else if (!body)
3990 body = deallocate_expr;
3991 else
3992 /* The delete operator must be called, even if a destructor
3993 throws. */
3994 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
3995
3996 if (!body)
3997 body = integer_zero_node;
3998
3999 /* Outermost wrapper: If pointer is null, punt. */
4000 tree cond = build2_loc (loc, NE_EXPR, boolean_type_node, base,
4001 fold_convert (TREE_TYPE (base), nullptr_node));
4002 /* This is a compiler generated comparison, don't emit
4003 e.g. -Wnonnull-compare warning for it. */
4004 TREE_NO_WARNING (cond) = 1;
4005 body = build3_loc (loc, COND_EXPR, void_type_node,
4006 cond, body, integer_zero_node);
4007 COND_EXPR_IS_VEC_DELETE (body) = true;
4008 body = build1 (NOP_EXPR, void_type_node, body);
4009
4010 if (controller)
4011 {
4012 TREE_OPERAND (controller, 1) = body;
4013 body = controller;
4014 }
4015
4016 if (TREE_CODE (base) == SAVE_EXPR)
4017 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
4018 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
4019
4020 return convert_to_void (body, ICV_CAST, complain);
4021 }
4022
4023 /* Create an unnamed variable of the indicated TYPE. */
4024
4025 tree
4026 create_temporary_var (tree type)
4027 {
4028 tree decl;
4029
4030 decl = build_decl (input_location,
4031 VAR_DECL, NULL_TREE, type);
4032 TREE_USED (decl) = 1;
4033 DECL_ARTIFICIAL (decl) = 1;
4034 DECL_IGNORED_P (decl) = 1;
4035 DECL_CONTEXT (decl) = current_function_decl;
4036
4037 return decl;
4038 }
4039
4040 /* Create a new temporary variable of the indicated TYPE, initialized
4041 to INIT.
4042
4043 It is not entered into current_binding_level, because that breaks
4044 things when it comes time to do final cleanups (which take place
4045 "outside" the binding contour of the function). */
4046
4047 tree
4048 get_temp_regvar (tree type, tree init)
4049 {
4050 tree decl;
4051
4052 decl = create_temporary_var (type);
4053 add_decl_expr (decl);
4054
4055 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
4056 init, tf_warning_or_error));
4057
4058 return decl;
4059 }
4060
4061 /* Subroutine of build_vec_init. Returns true if assigning to an array of
4062 INNER_ELT_TYPE from INIT is trivial. */
4063
4064 static bool
4065 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
4066 {
4067 tree fromtype = inner_elt_type;
4068 if (lvalue_p (init))
4069 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
4070 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
4071 }
4072
4073 /* Subroutine of build_vec_init: Check that the array has at least N
4074 elements. Other parameters are local variables in build_vec_init. */
4075
4076 void
4077 finish_length_check (tree atype, tree iterator, tree obase, unsigned n)
4078 {
4079 tree nelts = build_int_cst (ptrdiff_type_node, n - 1);
4080 if (TREE_CODE (atype) != ARRAY_TYPE)
4081 {
4082 if (flag_exceptions)
4083 {
4084 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
4085 nelts);
4086 c = build3 (COND_EXPR, void_type_node, c,
4087 throw_bad_array_new_length (), void_node);
4088 finish_expr_stmt (c);
4089 }
4090 /* Don't check an array new when -fno-exceptions. */
4091 }
4092 else if (sanitize_flags_p (SANITIZE_BOUNDS)
4093 && current_function_decl != NULL_TREE)
4094 {
4095 /* Make sure the last element of the initializer is in bounds. */
4096 finish_expr_stmt
4097 (ubsan_instrument_bounds
4098 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
4099 }
4100 }
4101
4102 /* `build_vec_init' returns tree structure that performs
4103 initialization of a vector of aggregate types.
4104
4105 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
4106 to the first element, of POINTER_TYPE.
4107 MAXINDEX is the maximum index of the array (one less than the
4108 number of elements). It is only used if BASE is a pointer or
4109 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
4110
4111 INIT is the (possibly NULL) initializer.
4112
4113 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
4114 elements in the array are value-initialized.
4115
4116 FROM_ARRAY is 0 if we should init everything with INIT
4117 (i.e., every element initialized from INIT).
4118 FROM_ARRAY is 1 if we should index into INIT in parallel
4119 with initialization of DECL.
4120 FROM_ARRAY is 2 if we should index into INIT in parallel,
4121 but use assignment instead of initialization. */
4122
4123 tree
4124 build_vec_init (tree base, tree maxindex, tree init,
4125 bool explicit_value_init_p,
4126 int from_array, tsubst_flags_t complain)
4127 {
4128 tree rval;
4129 tree base2 = NULL_TREE;
4130 tree itype = NULL_TREE;
4131 tree iterator;
4132 /* The type of BASE. */
4133 tree atype = TREE_TYPE (base);
4134 /* The type of an element in the array. */
4135 tree type = TREE_TYPE (atype);
4136 /* The element type reached after removing all outer array
4137 types. */
4138 tree inner_elt_type;
4139 /* The type of a pointer to an element in the array. */
4140 tree ptype;
4141 tree stmt_expr;
4142 tree compound_stmt;
4143 int destroy_temps;
4144 tree try_block = NULL_TREE;
4145 HOST_WIDE_INT num_initialized_elts = 0;
4146 bool is_global;
4147 tree obase = base;
4148 bool xvalue = false;
4149 bool errors = false;
4150 location_t loc = (init ? cp_expr_loc_or_input_loc (init)
4151 : location_of (base));
4152
4153 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
4154 maxindex = array_type_nelts (atype);
4155
4156 if (maxindex == NULL_TREE || maxindex == error_mark_node)
4157 return error_mark_node;
4158
4159 maxindex = maybe_constant_value (maxindex);
4160 if (explicit_value_init_p)
4161 gcc_assert (!init);
4162
4163 inner_elt_type = strip_array_types (type);
4164
4165 /* Look through the TARGET_EXPR around a compound literal. */
4166 if (init && TREE_CODE (init) == TARGET_EXPR
4167 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
4168 && from_array != 2)
4169 init = TARGET_EXPR_INITIAL (init);
4170
4171 bool direct_init = false;
4172 if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
4173 && CONSTRUCTOR_NELTS (init) == 1)
4174 {
4175 tree elt = CONSTRUCTOR_ELT (init, 0)->value;
4176 if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE)
4177 {
4178 direct_init = DIRECT_LIST_INIT_P (init);
4179 init = elt;
4180 }
4181 }
4182
4183 /* If we have a braced-init-list or string constant, make sure that the array
4184 is big enough for all the initializers. */
4185 bool length_check = (init
4186 && (TREE_CODE (init) == STRING_CST
4187 || (TREE_CODE (init) == CONSTRUCTOR
4188 && CONSTRUCTOR_NELTS (init) > 0))
4189 && !TREE_CONSTANT (maxindex));
4190
4191 if (init
4192 && TREE_CODE (atype) == ARRAY_TYPE
4193 && TREE_CONSTANT (maxindex)
4194 && (from_array == 2
4195 ? vec_copy_assign_is_trivial (inner_elt_type, init)
4196 : !TYPE_NEEDS_CONSTRUCTING (type))
4197 && ((TREE_CODE (init) == CONSTRUCTOR
4198 && (BRACE_ENCLOSED_INITIALIZER_P (init)
4199 || (same_type_ignoring_top_level_qualifiers_p
4200 (atype, TREE_TYPE (init))))
4201 /* Don't do this if the CONSTRUCTOR might contain something
4202 that might throw and require us to clean up. */
4203 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
4204 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
4205 || from_array))
4206 {
4207 /* Do non-default initialization of trivial arrays resulting from
4208 brace-enclosed initializers. In this case, digest_init and
4209 store_constructor will handle the semantics for us. */
4210
4211 if (BRACE_ENCLOSED_INITIALIZER_P (init))
4212 init = digest_init (atype, init, complain);
4213 stmt_expr = build2 (INIT_EXPR, atype, base, init);
4214 return stmt_expr;
4215 }
4216
4217 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
4218 maxindex = fold_simple (maxindex);
4219
4220 if (TREE_CODE (atype) == ARRAY_TYPE)
4221 {
4222 ptype = build_pointer_type (type);
4223 base = decay_conversion (base, complain);
4224 if (base == error_mark_node)
4225 return error_mark_node;
4226 base = cp_convert (ptype, base, complain);
4227 }
4228 else
4229 ptype = atype;
4230
4231 /* The code we are generating looks like:
4232 ({
4233 T* t1 = (T*) base;
4234 T* rval = t1;
4235 ptrdiff_t iterator = maxindex;
4236 try {
4237 for (; iterator != -1; --iterator) {
4238 ... initialize *t1 ...
4239 ++t1;
4240 }
4241 } catch (...) {
4242 ... destroy elements that were constructed ...
4243 }
4244 rval;
4245 })
4246
4247 We can omit the try and catch blocks if we know that the
4248 initialization will never throw an exception, or if the array
4249 elements do not have destructors. We can omit the loop completely if
4250 the elements of the array do not have constructors.
4251
4252 We actually wrap the entire body of the above in a STMT_EXPR, for
4253 tidiness.
4254
4255 When copying from array to another, when the array elements have
4256 only trivial copy constructors, we should use __builtin_memcpy
4257 rather than generating a loop. That way, we could take advantage
4258 of whatever cleverness the back end has for dealing with copies
4259 of blocks of memory. */
4260
4261 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
4262 destroy_temps = stmts_are_full_exprs_p ();
4263 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4264 rval = get_temp_regvar (ptype, base);
4265 base = get_temp_regvar (ptype, rval);
4266 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
4267
4268 /* If initializing one array from another, initialize element by
4269 element. We rely upon the below calls to do the argument
4270 checking. Evaluate the initializer before entering the try block. */
4271 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
4272 {
4273 if (lvalue_kind (init) & clk_rvalueref)
4274 xvalue = true;
4275 base2 = decay_conversion (init, complain);
4276 if (base2 == error_mark_node)
4277 return error_mark_node;
4278 itype = TREE_TYPE (base2);
4279 base2 = get_temp_regvar (itype, base2);
4280 itype = TREE_TYPE (itype);
4281 }
4282
4283 /* Protect the entire array initialization so that we can destroy
4284 the partially constructed array if an exception is thrown.
4285 But don't do this if we're assigning. */
4286 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4287 && from_array != 2)
4288 {
4289 try_block = begin_try_block ();
4290 }
4291
4292 /* Should we try to create a constant initializer? */
4293 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4294 && TREE_CONSTANT (maxindex)
4295 && (init ? TREE_CODE (init) == CONSTRUCTOR
4296 : (type_has_constexpr_default_constructor
4297 (inner_elt_type)))
4298 && (literal_type_p (inner_elt_type)
4299 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4300 vec<constructor_elt, va_gc> *const_vec = NULL;
4301 bool saw_non_const = false;
4302 /* If we're initializing a static array, we want to do static
4303 initialization of any elements with constant initializers even if
4304 some are non-constant. */
4305 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4306
4307 bool empty_list = false;
4308 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4309 && CONSTRUCTOR_NELTS (init) == 0)
4310 /* Skip over the handling of non-empty init lists. */
4311 empty_list = true;
4312
4313 /* Maybe pull out constant value when from_array? */
4314
4315 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4316 {
4317 /* Do non-default initialization of non-trivial arrays resulting from
4318 brace-enclosed initializers. */
4319 unsigned HOST_WIDE_INT idx;
4320 tree field, elt;
4321 /* If the constructor already has the array type, it's been through
4322 digest_init, so we shouldn't try to do anything more. */
4323 bool digested = same_type_p (atype, TREE_TYPE (init));
4324 from_array = 0;
4325
4326 if (length_check)
4327 finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init));
4328
4329 if (try_const)
4330 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4331
4332 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4333 {
4334 tree baseref = build1 (INDIRECT_REF, type, base);
4335 tree one_init;
4336
4337 num_initialized_elts++;
4338
4339 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4340 if (digested)
4341 one_init = build2 (INIT_EXPR, type, baseref, elt);
4342 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4343 one_init = build_aggr_init (baseref, elt, 0, complain);
4344 else
4345 one_init = cp_build_modify_expr (input_location, baseref,
4346 NOP_EXPR, elt, complain);
4347 if (one_init == error_mark_node)
4348 errors = true;
4349 if (try_const)
4350 {
4351 if (!field)
4352 field = size_int (idx);
4353 tree e = maybe_constant_init (one_init);
4354 if (reduced_constant_expression_p (e))
4355 {
4356 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4357 if (do_static_init)
4358 one_init = NULL_TREE;
4359 else
4360 one_init = build2 (INIT_EXPR, type, baseref, e);
4361 }
4362 else
4363 {
4364 if (do_static_init)
4365 {
4366 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4367 true);
4368 if (value)
4369 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4370 }
4371 saw_non_const = true;
4372 }
4373 }
4374
4375 if (one_init)
4376 finish_expr_stmt (one_init);
4377 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4378
4379 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4380 complain);
4381 if (one_init == error_mark_node)
4382 errors = true;
4383 else
4384 finish_expr_stmt (one_init);
4385
4386 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4387 complain);
4388 if (one_init == error_mark_node)
4389 errors = true;
4390 else
4391 finish_expr_stmt (one_init);
4392 }
4393
4394 /* Any elements without explicit initializers get T{}. */
4395 empty_list = true;
4396 }
4397 else if (init && TREE_CODE (init) == STRING_CST)
4398 {
4399 /* Check that the array is at least as long as the string. */
4400 if (length_check)
4401 finish_length_check (atype, iterator, obase,
4402 TREE_STRING_LENGTH (init));
4403 tree length = build_int_cst (ptrdiff_type_node,
4404 TREE_STRING_LENGTH (init));
4405
4406 /* Copy the string to the first part of the array. */
4407 tree alias_set = build_int_cst (build_pointer_type (type), 0);
4408 tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set);
4409 tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init);
4410 finish_expr_stmt (stmt);
4411
4412 /* Adjust the counter and pointer. */
4413 stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain);
4414 stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt);
4415 finish_expr_stmt (stmt);
4416
4417 stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain);
4418 stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt);
4419 finish_expr_stmt (stmt);
4420
4421 /* And set the rest of the array to NUL. */
4422 from_array = 0;
4423 explicit_value_init_p = true;
4424 }
4425 else if (from_array)
4426 {
4427 if (init)
4428 /* OK, we set base2 above. */;
4429 else if (CLASS_TYPE_P (type)
4430 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4431 {
4432 if (complain & tf_error)
4433 error ("initializer ends prematurely");
4434 errors = true;
4435 }
4436 }
4437
4438 /* Now, default-initialize any remaining elements. We don't need to
4439 do that if a) the type does not need constructing, or b) we've
4440 already initialized all the elements.
4441
4442 We do need to keep going if we're copying an array. */
4443
4444 if (try_const && !init)
4445 /* With a constexpr default constructor, which we checked for when
4446 setting try_const above, default-initialization is equivalent to
4447 value-initialization, and build_value_init gives us something more
4448 friendly to maybe_constant_init. */
4449 explicit_value_init_p = true;
4450 if (from_array
4451 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4452 && ! (tree_fits_shwi_p (maxindex)
4453 && (num_initialized_elts
4454 == tree_to_shwi (maxindex) + 1))))
4455 {
4456 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4457 we've already initialized all the elements. */
4458 tree for_stmt;
4459 tree elt_init;
4460 tree to;
4461
4462 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4463 finish_init_stmt (for_stmt);
4464 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4465 build_int_cst (TREE_TYPE (iterator), -1)),
4466 for_stmt, false, 0);
4467 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4468 complain);
4469 if (elt_init == error_mark_node)
4470 errors = true;
4471 finish_for_expr (elt_init, for_stmt);
4472
4473 to = build1 (INDIRECT_REF, type, base);
4474
4475 /* If the initializer is {}, then all elements are initialized from T{}.
4476 But for non-classes, that's the same as value-initialization. */
4477 if (empty_list)
4478 {
4479 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4480 {
4481 init = build_constructor (init_list_type_node, NULL);
4482 }
4483 else
4484 {
4485 init = NULL_TREE;
4486 explicit_value_init_p = true;
4487 }
4488 }
4489
4490 if (from_array)
4491 {
4492 tree from;
4493
4494 if (base2)
4495 {
4496 from = build1 (INDIRECT_REF, itype, base2);
4497 if (xvalue)
4498 from = move (from);
4499 if (direct_init)
4500 from = build_tree_list (NULL_TREE, from);
4501 }
4502 else
4503 from = NULL_TREE;
4504
4505 if (TREE_CODE (type) == ARRAY_TYPE)
4506 elt_init = build_vec_init (to, NULL_TREE, from, /*val_init*/false,
4507 from_array, complain);
4508 else if (from_array == 2)
4509 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4510 from, complain);
4511 else if (type_build_ctor_call (type))
4512 elt_init = build_aggr_init (to, from, 0, complain);
4513 else if (from)
4514 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4515 complain);
4516 else
4517 gcc_unreachable ();
4518 }
4519 else if (TREE_CODE (type) == ARRAY_TYPE)
4520 {
4521 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4522 {
4523 if ((complain & tf_error))
4524 error_at (loc, "array must be initialized "
4525 "with a brace-enclosed initializer");
4526 elt_init = error_mark_node;
4527 }
4528 else
4529 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4530 0, init,
4531 explicit_value_init_p,
4532 0, complain);
4533 }
4534 else if (explicit_value_init_p)
4535 {
4536 elt_init = build_value_init (type, complain);
4537 if (elt_init != error_mark_node)
4538 elt_init = build2 (INIT_EXPR, type, to, elt_init);
4539 }
4540 else
4541 {
4542 gcc_assert (type_build_ctor_call (type) || init);
4543 if (CLASS_TYPE_P (type))
4544 elt_init = build_aggr_init (to, init, 0, complain);
4545 else
4546 {
4547 if (TREE_CODE (init) == TREE_LIST)
4548 init = build_x_compound_expr_from_list (init, ELK_INIT,
4549 complain);
4550 elt_init = (init == error_mark_node
4551 ? error_mark_node
4552 : build2 (INIT_EXPR, type, to, init));
4553 }
4554 }
4555
4556 if (elt_init == error_mark_node)
4557 errors = true;
4558
4559 if (try_const)
4560 {
4561 /* FIXME refs to earlier elts */
4562 tree e = maybe_constant_init (elt_init);
4563 if (reduced_constant_expression_p (e))
4564 {
4565 if (initializer_zerop (e))
4566 /* Don't fill the CONSTRUCTOR with zeros. */
4567 e = NULL_TREE;
4568 if (do_static_init)
4569 elt_init = NULL_TREE;
4570 }
4571 else
4572 {
4573 saw_non_const = true;
4574 if (do_static_init)
4575 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4576 else
4577 e = NULL_TREE;
4578 }
4579
4580 if (e)
4581 {
4582 HOST_WIDE_INT last = tree_to_shwi (maxindex);
4583 if (num_initialized_elts <= last)
4584 {
4585 tree field = size_int (num_initialized_elts);
4586 if (num_initialized_elts != last)
4587 field = build2 (RANGE_EXPR, sizetype, field,
4588 size_int (last));
4589 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4590 }
4591 }
4592 }
4593
4594 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4595 if (elt_init && !errors)
4596 finish_expr_stmt (elt_init);
4597 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4598
4599 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4600 complain));
4601 if (base2)
4602 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4603 complain));
4604
4605 finish_for_stmt (for_stmt);
4606 }
4607
4608 /* Make sure to cleanup any partially constructed elements. */
4609 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4610 && from_array != 2)
4611 {
4612 tree e;
4613 tree m = cp_build_binary_op (input_location,
4614 MINUS_EXPR, maxindex, iterator,
4615 complain);
4616
4617 /* Flatten multi-dimensional array since build_vec_delete only
4618 expects one-dimensional array. */
4619 if (TREE_CODE (type) == ARRAY_TYPE)
4620 m = cp_build_binary_op (input_location,
4621 MULT_EXPR, m,
4622 /* Avoid mixing signed and unsigned. */
4623 convert (TREE_TYPE (m),
4624 array_type_nelts_total (type)),
4625 complain);
4626
4627 finish_cleanup_try_block (try_block);
4628 e = build_vec_delete_1 (input_location, rval, m,
4629 inner_elt_type, sfk_complete_destructor,
4630 /*use_global_delete=*/0, complain);
4631 if (e == error_mark_node)
4632 errors = true;
4633 finish_cleanup (e, try_block);
4634 }
4635
4636 /* The value of the array initialization is the array itself, RVAL
4637 is a pointer to the first element. */
4638 finish_stmt_expr_expr (rval, stmt_expr);
4639
4640 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4641
4642 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4643
4644 if (errors)
4645 return error_mark_node;
4646
4647 if (try_const)
4648 {
4649 if (!saw_non_const)
4650 {
4651 tree const_init = build_constructor (atype, const_vec);
4652 return build2 (INIT_EXPR, atype, obase, const_init);
4653 }
4654 else if (do_static_init && !vec_safe_is_empty (const_vec))
4655 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4656 else
4657 vec_free (const_vec);
4658 }
4659
4660 /* Now make the result have the correct type. */
4661 if (TREE_CODE (atype) == ARRAY_TYPE)
4662 {
4663 atype = build_pointer_type (atype);
4664 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4665 stmt_expr = cp_build_fold_indirect_ref (stmt_expr);
4666 TREE_NO_WARNING (stmt_expr) = 1;
4667 }
4668
4669 return stmt_expr;
4670 }
4671
4672 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
4673 build_delete. */
4674
4675 static tree
4676 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4677 tsubst_flags_t complain)
4678 {
4679 tree name;
4680 switch (dtor_kind)
4681 {
4682 case sfk_complete_destructor:
4683 name = complete_dtor_identifier;
4684 break;
4685
4686 case sfk_base_destructor:
4687 name = base_dtor_identifier;
4688 break;
4689
4690 case sfk_deleting_destructor:
4691 name = deleting_dtor_identifier;
4692 break;
4693
4694 default:
4695 gcc_unreachable ();
4696 }
4697
4698 return build_special_member_call (exp, name,
4699 /*args=*/NULL,
4700 /*binfo=*/TREE_TYPE (exp),
4701 flags,
4702 complain);
4703 }
4704
4705 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4706 ADDR is an expression which yields the store to be destroyed.
4707 AUTO_DELETE is the name of the destructor to call, i.e., either
4708 sfk_complete_destructor, sfk_base_destructor, or
4709 sfk_deleting_destructor.
4710
4711 FLAGS is the logical disjunction of zero or more LOOKUP_
4712 flags. See cp-tree.h for more info. */
4713
4714 tree
4715 build_delete (location_t loc, tree otype, tree addr,
4716 special_function_kind auto_delete,
4717 int flags, int use_global_delete, tsubst_flags_t complain)
4718 {
4719 tree expr;
4720
4721 if (addr == error_mark_node)
4722 return error_mark_node;
4723
4724 tree type = TYPE_MAIN_VARIANT (otype);
4725
4726 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4727 set to `error_mark_node' before it gets properly cleaned up. */
4728 if (type == error_mark_node)
4729 return error_mark_node;
4730
4731 if (TYPE_PTR_P (type))
4732 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4733
4734 if (TREE_CODE (type) == ARRAY_TYPE)
4735 {
4736 if (TYPE_DOMAIN (type) == NULL_TREE)
4737 {
4738 if (complain & tf_error)
4739 error_at (loc, "unknown array size in delete");
4740 return error_mark_node;
4741 }
4742 return build_vec_delete (loc, addr, array_type_nelts (type),
4743 auto_delete, use_global_delete, complain);
4744 }
4745
4746 bool deleting = (auto_delete == sfk_deleting_destructor);
4747 gcc_assert (deleting == !(flags & LOOKUP_DESTRUCTOR));
4748
4749 if (TYPE_PTR_P (otype))
4750 {
4751 addr = mark_rvalue_use (addr);
4752
4753 /* We don't want to warn about delete of void*, only other
4754 incomplete types. Deleting other incomplete types
4755 invokes undefined behavior, but it is not ill-formed, so
4756 compile to something that would even do The Right Thing
4757 (TM) should the type have a trivial dtor and no delete
4758 operator. */
4759 if (!VOID_TYPE_P (type))
4760 {
4761 complete_type (type);
4762 if (deleting
4763 && !verify_type_context (loc, TCTX_DEALLOCATION, type,
4764 !(complain & tf_error)))
4765 return error_mark_node;
4766
4767 if (!COMPLETE_TYPE_P (type))
4768 {
4769 if (complain & tf_warning)
4770 {
4771 auto_diagnostic_group d;
4772 if (warning_at (loc, OPT_Wdelete_incomplete,
4773 "possible problem detected in invocation of "
4774 "%<operator delete%>"))
4775 {
4776 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4777 inform (loc,
4778 "neither the destructor nor the class-specific "
4779 "%<operator delete%> will be called, even if "
4780 "they are declared when the class is defined");
4781 }
4782 }
4783 }
4784 else if (deleting && warn_delnonvdtor
4785 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4786 && TYPE_POLYMORPHIC_P (type))
4787 {
4788 tree dtor = CLASSTYPE_DESTRUCTOR (type);
4789 if (!dtor || !DECL_VINDEX (dtor))
4790 {
4791 if (CLASSTYPE_PURE_VIRTUALS (type))
4792 warning_at (loc, OPT_Wdelete_non_virtual_dtor,
4793 "deleting object of abstract class type %qT"
4794 " which has non-virtual destructor"
4795 " will cause undefined behavior", type);
4796 else
4797 warning_at (loc, OPT_Wdelete_non_virtual_dtor,
4798 "deleting object of polymorphic class type %qT"
4799 " which has non-virtual destructor"
4800 " might cause undefined behavior", type);
4801 }
4802 }
4803 }
4804
4805 /* Throw away const and volatile on target type of addr. */
4806 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4807 }
4808 else
4809 {
4810 /* Don't check PROTECT here; leave that decision to the
4811 destructor. If the destructor is accessible, call it,
4812 else report error. */
4813 addr = cp_build_addr_expr (addr, complain);
4814 if (addr == error_mark_node)
4815 return error_mark_node;
4816
4817 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4818 }
4819
4820 if (deleting)
4821 /* We will use ADDR multiple times so we must save it. */
4822 addr = save_expr (addr);
4823
4824 bool virtual_p = false;
4825 if (type_build_dtor_call (type))
4826 {
4827 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4828 lazily_declare_fn (sfk_destructor, type);
4829 virtual_p = DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTOR (type));
4830 }
4831
4832 tree head = NULL_TREE;
4833 tree do_delete = NULL_TREE;
4834 bool destroying_delete = false;
4835
4836 if (!deleting)
4837 {
4838 /* Leave do_delete null. */
4839 }
4840 /* For `::delete x', we must not use the deleting destructor
4841 since then we would not be sure to get the global `operator
4842 delete'. */
4843 else if (use_global_delete)
4844 {
4845 head = get_target_expr (build_headof (addr));
4846 /* Delete the object. */
4847 do_delete = build_op_delete_call (DELETE_EXPR,
4848 head,
4849 cxx_sizeof_nowarn (type),
4850 /*global_p=*/true,
4851 /*placement=*/NULL_TREE,
4852 /*alloc_fn=*/NULL_TREE,
4853 complain);
4854 /* Otherwise, treat this like a complete object destructor
4855 call. */
4856 auto_delete = sfk_complete_destructor;
4857 }
4858 /* If the destructor is non-virtual, there is no deleting
4859 variant. Instead, we must explicitly call the appropriate
4860 `operator delete' here. */
4861 else if (!virtual_p)
4862 {
4863 /* Build the call. */
4864 do_delete = build_op_delete_call (DELETE_EXPR,
4865 addr,
4866 cxx_sizeof_nowarn (type),
4867 /*global_p=*/false,
4868 /*placement=*/NULL_TREE,
4869 /*alloc_fn=*/NULL_TREE,
4870 complain);
4871 /* Call the complete object destructor. */
4872 auto_delete = sfk_complete_destructor;
4873 if (do_delete != error_mark_node)
4874 {
4875 tree fn = get_callee_fndecl (do_delete);
4876 destroying_delete = destroying_delete_p (fn);
4877 }
4878 }
4879 else if (TYPE_GETS_REG_DELETE (type))
4880 {
4881 /* Make sure we have access to the member op delete, even though
4882 we'll actually be calling it from the destructor. */
4883 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4884 /*global_p=*/false,
4885 /*placement=*/NULL_TREE,
4886 /*alloc_fn=*/NULL_TREE,
4887 complain);
4888 }
4889
4890 if (!destroying_delete && type_build_dtor_call (type))
4891 expr = build_dtor_call (cp_build_fold_indirect_ref (addr),
4892 auto_delete, flags, complain);
4893 else
4894 expr = build_trivial_dtor_call (addr);
4895 if (expr == error_mark_node)
4896 return error_mark_node;
4897
4898 if (!deleting)
4899 {
4900 protected_set_expr_location (expr, loc);
4901 return expr;
4902 }
4903
4904 if (do_delete == error_mark_node)
4905 return error_mark_node;
4906
4907 if (do_delete && !TREE_SIDE_EFFECTS (expr))
4908 expr = do_delete;
4909 else if (do_delete)
4910 /* The delete operator must be called, regardless of whether
4911 the destructor throws.
4912
4913 [expr.delete]/7 The deallocation function is called
4914 regardless of whether the destructor for the object or some
4915 element of the array throws an exception. */
4916 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
4917
4918 /* We need to calculate this before the dtor changes the vptr. */
4919 if (head)
4920 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4921
4922 /* Handle deleting a null pointer. */
4923 warning_sentinel s (warn_address);
4924 tree ifexp = cp_build_binary_op (loc, NE_EXPR, addr,
4925 nullptr_node, complain);
4926 ifexp = cp_fully_fold (ifexp);
4927
4928 if (ifexp == error_mark_node)
4929 return error_mark_node;
4930 /* This is a compiler generated comparison, don't emit
4931 e.g. -Wnonnull-compare warning for it. */
4932 else if (TREE_CODE (ifexp) == NE_EXPR)
4933 TREE_NO_WARNING (ifexp) = 1;
4934
4935 if (!integer_nonzerop (ifexp))
4936 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4937
4938 protected_set_expr_location (expr, loc);
4939 return expr;
4940 }
4941
4942 /* At the beginning of a destructor, push cleanups that will call the
4943 destructors for our base classes and members.
4944
4945 Called from begin_destructor_body. */
4946
4947 void
4948 push_base_cleanups (void)
4949 {
4950 tree binfo, base_binfo;
4951 int i;
4952 tree member;
4953 tree expr;
4954 vec<tree, va_gc> *vbases;
4955
4956 /* Run destructors for all virtual baseclasses. */
4957 if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
4958 && CLASSTYPE_VBASECLASSES (current_class_type))
4959 {
4960 tree cond = (condition_conversion
4961 (build2 (BIT_AND_EXPR, integer_type_node,
4962 current_in_charge_parm,
4963 integer_two_node)));
4964
4965 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4966 order, which is also the right order for pushing cleanups. */
4967 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4968 vec_safe_iterate (vbases, i, &base_binfo); i++)
4969 {
4970 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4971 {
4972 expr = build_special_member_call (current_class_ref,
4973 base_dtor_identifier,
4974 NULL,
4975 base_binfo,
4976 (LOOKUP_NORMAL
4977 | LOOKUP_NONVIRTUAL),
4978 tf_warning_or_error);
4979 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4980 {
4981 expr = build3 (COND_EXPR, void_type_node, cond,
4982 expr, void_node);
4983 finish_decl_cleanup (NULL_TREE, expr);
4984 }
4985 }
4986 }
4987 }
4988
4989 /* Take care of the remaining baseclasses. */
4990 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4991 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4992 {
4993 if (BINFO_VIRTUAL_P (base_binfo)
4994 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4995 continue;
4996
4997 expr = build_special_member_call (current_class_ref,
4998 base_dtor_identifier,
4999 NULL, base_binfo,
5000 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
5001 tf_warning_or_error);
5002 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
5003 finish_decl_cleanup (NULL_TREE, expr);
5004 }
5005
5006 /* Don't automatically destroy union members. */
5007 if (TREE_CODE (current_class_type) == UNION_TYPE)
5008 return;
5009
5010 for (member = TYPE_FIELDS (current_class_type); member;
5011 member = DECL_CHAIN (member))
5012 {
5013 tree this_type = TREE_TYPE (member);
5014 if (this_type == error_mark_node
5015 || TREE_CODE (member) != FIELD_DECL
5016 || DECL_ARTIFICIAL (member))
5017 continue;
5018 if (ANON_AGGR_TYPE_P (this_type))
5019 continue;
5020 if (type_build_dtor_call (this_type))
5021 {
5022 tree this_member = (build_class_member_access_expr
5023 (current_class_ref, member,
5024 /*access_path=*/NULL_TREE,
5025 /*preserve_reference=*/false,
5026 tf_warning_or_error));
5027 expr = build_delete (input_location, this_type, this_member,
5028 sfk_complete_destructor,
5029 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
5030 0, tf_warning_or_error);
5031 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
5032 finish_decl_cleanup (NULL_TREE, expr);
5033 }
5034 }
5035 }
5036
5037 /* Build a C++ vector delete expression.
5038 MAXINDEX is the number of elements to be deleted.
5039 ELT_SIZE is the nominal size of each element in the vector.
5040 BASE is the expression that should yield the store to be deleted.
5041 This function expands (or synthesizes) these calls itself.
5042 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
5043
5044 This also calls delete for virtual baseclasses of elements of the vector.
5045
5046 Update: MAXINDEX is no longer needed. The size can be extracted from the
5047 start of the vector for pointers, and from the type for arrays. We still
5048 use MAXINDEX for arrays because it happens to already have one of the
5049 values we'd have to extract. (We could use MAXINDEX with pointers to
5050 confirm the size, and trap if the numbers differ; not clear that it'd
5051 be worth bothering.) */
5052
5053 tree
5054 build_vec_delete (location_t loc, tree base, tree maxindex,
5055 special_function_kind auto_delete_vec,
5056 int use_global_delete, tsubst_flags_t complain)
5057 {
5058 tree type;
5059 tree rval;
5060 tree base_init = NULL_TREE;
5061
5062 type = TREE_TYPE (base);
5063
5064 if (TYPE_PTR_P (type))
5065 {
5066 /* Step back one from start of vector, and read dimension. */
5067 tree cookie_addr;
5068 tree size_ptr_type = build_pointer_type (sizetype);
5069
5070 base = mark_rvalue_use (base);
5071 if (TREE_SIDE_EFFECTS (base))
5072 {
5073 base_init = get_target_expr (base);
5074 base = TARGET_EXPR_SLOT (base_init);
5075 }
5076 type = strip_array_types (TREE_TYPE (type));
5077 cookie_addr = fold_build1_loc (loc, NEGATE_EXPR,
5078 sizetype, TYPE_SIZE_UNIT (sizetype));
5079 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
5080 cookie_addr);
5081 maxindex = cp_build_fold_indirect_ref (cookie_addr);
5082 }
5083 else if (TREE_CODE (type) == ARRAY_TYPE)
5084 {
5085 /* Get the total number of things in the array, maxindex is a
5086 bad name. */
5087 maxindex = array_type_nelts_total (type);
5088 type = strip_array_types (type);
5089 base = decay_conversion (base, complain);
5090 if (base == error_mark_node)
5091 return error_mark_node;
5092 if (TREE_SIDE_EFFECTS (base))
5093 {
5094 base_init = get_target_expr (base);
5095 base = TARGET_EXPR_SLOT (base_init);
5096 }
5097 }
5098 else
5099 {
5100 if (base != error_mark_node && !(complain & tf_error))
5101 error_at (loc,
5102 "type to vector delete is neither pointer or array type");
5103 return error_mark_node;
5104 }
5105
5106 rval = build_vec_delete_1 (loc, base, maxindex, type, auto_delete_vec,
5107 use_global_delete, complain);
5108 if (base_init && rval != error_mark_node)
5109 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
5110
5111 protected_set_expr_location (rval, loc);
5112 return rval;
5113 }
5114
5115 #include "gt-cp-init.h"