Remove path name from test case
[binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2023 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "observable.h"
20 #include "gdbcmd.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28 #include "cli/cli-style.h"
29
30 static int ada_build_task_list ();
31
32 /* The name of the array in the GNAT runtime where the Ada Task Control
33 Block of each task is stored. */
34 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
35
36 /* The maximum number of tasks known to the Ada runtime. */
37 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
38
39 /* The name of the variable in the GNAT runtime where the head of a task
40 chain is saved. This is an alternate mechanism to find the list of known
41 tasks. */
42 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
43
44 enum task_states
45 {
46 Unactivated,
47 Runnable,
48 Terminated,
49 Activator_Sleep,
50 Acceptor_Sleep,
51 Entry_Caller_Sleep,
52 Async_Select_Sleep,
53 Delay_Sleep,
54 Master_Completion_Sleep,
55 Master_Phase_2_Sleep,
56 Interrupt_Server_Idle_Sleep,
57 Interrupt_Server_Blocked_Interrupt_Sleep,
58 Timer_Server_Sleep,
59 AST_Server_Sleep,
60 Asynchronous_Hold,
61 Interrupt_Server_Blocked_On_Event_Flag,
62 Activating,
63 Acceptor_Delay_Sleep
64 };
65
66 /* A short description corresponding to each possible task state. */
67 static const char * const task_states[] = {
68 N_("Unactivated"),
69 N_("Runnable"),
70 N_("Terminated"),
71 N_("Child Activation Wait"),
72 N_("Accept or Select Term"),
73 N_("Waiting on entry call"),
74 N_("Async Select Wait"),
75 N_("Delay Sleep"),
76 N_("Child Termination Wait"),
77 N_("Wait Child in Term Alt"),
78 "",
79 "",
80 "",
81 "",
82 N_("Asynchronous Hold"),
83 "",
84 N_("Activating"),
85 N_("Selective Wait")
86 };
87
88 /* Return a string representing the task state. */
89 static const char *
90 get_state (unsigned value)
91 {
92 if (value >= 0
93 && value <= ARRAY_SIZE (task_states)
94 && task_states[value][0] != '\0')
95 return _(task_states[value]);
96
97 static char buffer[100];
98 xsnprintf (buffer, sizeof (buffer), _("Unknown task state: %d"), value);
99 return buffer;
100 }
101
102 /* A longer description corresponding to each possible task state. */
103 static const char * const long_task_states[] = {
104 N_("Unactivated"),
105 N_("Runnable"),
106 N_("Terminated"),
107 N_("Waiting for child activation"),
108 N_("Blocked in accept or select with terminate"),
109 N_("Waiting on entry call"),
110 N_("Asynchronous Selective Wait"),
111 N_("Delay Sleep"),
112 N_("Waiting for children termination"),
113 N_("Waiting for children in terminate alternative"),
114 "",
115 "",
116 "",
117 "",
118 N_("Asynchronous Hold"),
119 "",
120 N_("Activating"),
121 N_("Blocked in selective wait statement")
122 };
123
124 /* Return a string representing the task state. This uses the long
125 descriptions. */
126 static const char *
127 get_long_state (unsigned value)
128 {
129 if (value >= 0
130 && value <= ARRAY_SIZE (long_task_states)
131 && long_task_states[value][0] != '\0')
132 return _(long_task_states[value]);
133
134 static char buffer[100];
135 xsnprintf (buffer, sizeof (buffer), _("Unknown task state: %d"), value);
136 return buffer;
137 }
138
139 /* The index of certain important fields in the Ada Task Control Block
140 record and sub-records. */
141
142 struct atcb_fieldnos
143 {
144 /* Fields in record Ada_Task_Control_Block. */
145 int common;
146 int entry_calls;
147 int atc_nesting_level;
148
149 /* Fields in record Common_ATCB. */
150 int state;
151 int parent;
152 int priority;
153 int image;
154 int image_len; /* This field may be missing. */
155 int activation_link;
156 int call;
157 int ll;
158 int base_cpu;
159
160 /* Fields in Task_Primitives.Private_Data. */
161 int ll_thread;
162 int ll_lwp; /* This field may be missing. */
163
164 /* Fields in Common_ATCB.Call.all. */
165 int call_self;
166 };
167
168 /* This module's per-program-space data. */
169
170 struct ada_tasks_pspace_data
171 {
172 /* Nonzero if the data has been initialized. If set to zero,
173 it means that the data has either not been initialized, or
174 has potentially become stale. */
175 int initialized_p = 0;
176
177 /* The ATCB record type. */
178 struct type *atcb_type = nullptr;
179
180 /* The ATCB "Common" component type. */
181 struct type *atcb_common_type = nullptr;
182
183 /* The type of the "ll" field, from the atcb_common_type. */
184 struct type *atcb_ll_type = nullptr;
185
186 /* The type of the "call" field, from the atcb_common_type. */
187 struct type *atcb_call_type = nullptr;
188
189 /* The index of various fields in the ATCB record and sub-records. */
190 struct atcb_fieldnos atcb_fieldno {};
191
192 /* On some systems, gdbserver applies an offset to the CPU that is
193 reported. */
194 unsigned int cpu_id_offset = 0;
195 };
196
197 /* Key to our per-program-space data. */
198 static const registry<program_space>::key<ada_tasks_pspace_data>
199 ada_tasks_pspace_data_handle;
200
201 /* The kind of data structure used by the runtime to store the list
202 of Ada tasks. */
203
204 enum ada_known_tasks_kind
205 {
206 /* Use this value when we haven't determined which kind of structure
207 is being used, or when we need to recompute it.
208
209 We set the value of this enumerate to zero on purpose: This allows
210 us to use this enumerate in a structure where setting all fields
211 to zero will result in this kind being set to unknown. */
212 ADA_TASKS_UNKNOWN = 0,
213
214 /* This value means that we did not find any task list. Unless
215 there is a bug somewhere, this means that the inferior does not
216 use tasking. */
217 ADA_TASKS_NOT_FOUND,
218
219 /* This value means that the task list is stored as an array.
220 This is the usual method, as it causes very little overhead.
221 But this method is not always used, as it does use a certain
222 amount of memory, which might be scarse in certain environments. */
223 ADA_TASKS_ARRAY,
224
225 /* This value means that the task list is stored as a linked list.
226 This has more runtime overhead than the array approach, but
227 also require less memory when the number of tasks is small. */
228 ADA_TASKS_LIST,
229 };
230
231 /* This module's per-inferior data. */
232
233 struct ada_tasks_inferior_data
234 {
235 /* The type of data structure used by the runtime to store
236 the list of Ada tasks. The value of this field influences
237 the interpretation of the known_tasks_addr field below:
238 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
239 been determined yet;
240 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
241 and the known_tasks_addr is irrelevant;
242 - ADA_TASKS_ARRAY: The known_tasks is an array;
243 - ADA_TASKS_LIST: The known_tasks is a list. */
244 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN;
245
246 /* The address of the known_tasks structure. This is where
247 the runtime stores the information for all Ada tasks.
248 The interpretation of this field depends on KNOWN_TASKS_KIND
249 above. */
250 CORE_ADDR known_tasks_addr = 0;
251
252 /* Type of elements of the known task. Usually a pointer. */
253 struct type *known_tasks_element = nullptr;
254
255 /* Number of elements in the known tasks array. */
256 unsigned int known_tasks_length = 0;
257
258 /* When nonzero, this flag indicates that the task_list field
259 below is up to date. When set to zero, the list has either
260 not been initialized, or has potentially become stale. */
261 bool task_list_valid_p = false;
262
263 /* The list of Ada tasks.
264
265 Note: To each task we associate a number that the user can use to
266 reference it - this number is printed beside each task in the tasks
267 info listing displayed by "info tasks". This number is equal to
268 its index in the vector + 1. Reciprocally, to compute the index
269 of a task in the vector, we need to substract 1 from its number. */
270 std::vector<ada_task_info> task_list;
271 };
272
273 /* Key to our per-inferior data. */
274 static const registry<inferior>::key<ada_tasks_inferior_data>
275 ada_tasks_inferior_data_handle;
276
277 /* Return a string with TASKNO followed by the task name if TASK_INFO
278 contains a name. */
279
280 static std::string
281 task_to_str (int taskno, const ada_task_info *task_info)
282 {
283 if (task_info->name[0] == '\0')
284 return string_printf ("%d", taskno);
285 else
286 return string_printf ("%d \"%s\"", taskno, task_info->name);
287 }
288
289 /* Return the ada-tasks module's data for the given program space (PSPACE).
290 If none is found, add a zero'ed one now.
291
292 This function always returns a valid object. */
293
294 static struct ada_tasks_pspace_data *
295 get_ada_tasks_pspace_data (struct program_space *pspace)
296 {
297 struct ada_tasks_pspace_data *data;
298
299 data = ada_tasks_pspace_data_handle.get (pspace);
300 if (data == NULL)
301 data = ada_tasks_pspace_data_handle.emplace (pspace);
302
303 return data;
304 }
305
306 /* Return the ada-tasks module's data for the given inferior (INF).
307 If none is found, add a zero'ed one now.
308
309 This function always returns a valid object.
310
311 Note that we could use an observer of the inferior-created event
312 to make sure that the ada-tasks per-inferior data always exists.
313 But we preferred this approach, as it avoids this entirely as long
314 as the user does not use any of the tasking features. This is
315 quite possible, particularly in the case where the inferior does
316 not use tasking. */
317
318 static struct ada_tasks_inferior_data *
319 get_ada_tasks_inferior_data (struct inferior *inf)
320 {
321 struct ada_tasks_inferior_data *data;
322
323 data = ada_tasks_inferior_data_handle.get (inf);
324 if (data == NULL)
325 data = ada_tasks_inferior_data_handle.emplace (inf);
326
327 return data;
328 }
329
330 /* Return the task number of the task whose thread is THREAD, or zero
331 if the task could not be found. */
332
333 int
334 ada_get_task_number (thread_info *thread)
335 {
336 struct inferior *inf = thread->inf;
337 struct ada_tasks_inferior_data *data;
338
339 gdb_assert (inf != NULL);
340 data = get_ada_tasks_inferior_data (inf);
341
342 for (int i = 0; i < data->task_list.size (); i++)
343 if (data->task_list[i].ptid == thread->ptid)
344 return i + 1;
345
346 return 0; /* No matching task found. */
347 }
348
349 /* Return the task number of the task running in inferior INF which
350 matches TASK_ID , or zero if the task could not be found. */
351
352 static int
353 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
354 {
355 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
356
357 for (int i = 0; i < data->task_list.size (); i++)
358 {
359 if (data->task_list[i].task_id == task_id)
360 return i + 1;
361 }
362
363 /* Task not found. Return 0. */
364 return 0;
365 }
366
367 /* Return non-zero if TASK_NUM is a valid task number. */
368
369 int
370 valid_task_id (int task_num)
371 {
372 struct ada_tasks_inferior_data *data;
373
374 ada_build_task_list ();
375 data = get_ada_tasks_inferior_data (current_inferior ());
376 return task_num > 0 && task_num <= data->task_list.size ();
377 }
378
379 /* Return non-zero iff the task STATE corresponds to a non-terminated
380 task state. */
381
382 static int
383 ada_task_is_alive (const struct ada_task_info *task_info)
384 {
385 return (task_info->state != Terminated);
386 }
387
388 /* Search through the list of known tasks for the one whose ptid is
389 PTID, and return it. Return NULL if the task was not found. */
390
391 struct ada_task_info *
392 ada_get_task_info_from_ptid (ptid_t ptid)
393 {
394 struct ada_tasks_inferior_data *data;
395
396 ada_build_task_list ();
397 data = get_ada_tasks_inferior_data (current_inferior ());
398
399 for (ada_task_info &task : data->task_list)
400 {
401 if (task.ptid == ptid)
402 return &task;
403 }
404
405 return NULL;
406 }
407
408 /* Call the ITERATOR function once for each Ada task that hasn't been
409 terminated yet. */
410
411 void
412 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype iterator)
413 {
414 struct ada_tasks_inferior_data *data;
415
416 ada_build_task_list ();
417 data = get_ada_tasks_inferior_data (current_inferior ());
418
419 for (ada_task_info &task : data->task_list)
420 {
421 if (!ada_task_is_alive (&task))
422 continue;
423 iterator (&task);
424 }
425 }
426
427 /* Extract the contents of the value as a string whose length is LENGTH,
428 and store the result in DEST. */
429
430 static void
431 value_as_string (char *dest, struct value *val, int length)
432 {
433 memcpy (dest, val->contents ().data (), length);
434 dest[length] = '\0';
435 }
436
437 /* Extract the string image from the fat string corresponding to VAL,
438 and store it in DEST. If the string length is greater than MAX_LEN,
439 then truncate the result to the first MAX_LEN characters of the fat
440 string. */
441
442 static void
443 read_fat_string_value (char *dest, struct value *val, int max_len)
444 {
445 struct value *array_val;
446 struct value *bounds_val;
447 int len;
448
449 /* The following variables are made static to avoid recomputing them
450 each time this function is called. */
451 static int initialize_fieldnos = 1;
452 static int array_fieldno;
453 static int bounds_fieldno;
454 static int upper_bound_fieldno;
455
456 /* Get the index of the fields that we will need to read in order
457 to extract the string from the fat string. */
458 if (initialize_fieldnos)
459 {
460 struct type *type = val->type ();
461 struct type *bounds_type;
462
463 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
464 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
465
466 bounds_type = type->field (bounds_fieldno).type ();
467 if (bounds_type->code () == TYPE_CODE_PTR)
468 bounds_type = bounds_type->target_type ();
469 if (bounds_type->code () != TYPE_CODE_STRUCT)
470 error (_("Unknown task name format. Aborting"));
471 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
472
473 initialize_fieldnos = 0;
474 }
475
476 /* Get the size of the task image by checking the value of the bounds.
477 The lower bound is always 1, so we only need to read the upper bound. */
478 bounds_val = value_ind (value_field (val, bounds_fieldno));
479 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
480
481 /* Make sure that we do not read more than max_len characters... */
482 if (len > max_len)
483 len = max_len;
484
485 /* Extract LEN characters from the fat string. */
486 array_val = value_ind (value_field (val, array_fieldno));
487 read_memory (array_val->address (), (gdb_byte *) dest, len);
488
489 /* Add the NUL character to close the string. */
490 dest[len] = '\0';
491 }
492
493 /* Get, from the debugging information, the type description of all types
494 related to the Ada Task Control Block that are needed in order to
495 read the list of known tasks in the Ada runtime. If all of the info
496 needed to do so is found, then save that info in the module's per-
497 program-space data, and return NULL. Otherwise, if any information
498 cannot be found, leave the per-program-space data untouched, and
499 return an error message explaining what was missing (that error
500 message does NOT need to be deallocated). */
501
502 const char *
503 ada_get_tcb_types_info (void)
504 {
505 struct type *type;
506 struct type *common_type;
507 struct type *ll_type;
508 struct type *call_type;
509 struct atcb_fieldnos fieldnos;
510 struct ada_tasks_pspace_data *pspace_data;
511
512 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
513 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
514 const char *common_atcb_name = "system__tasking__common_atcb";
515 const char *private_data_name = "system__task_primitives__private_data";
516 const char *entry_call_record_name = "system__tasking__entry_call_record";
517
518 /* ATCB symbols may be found in several compilation units. As we
519 are only interested in one instance, use standard (literal,
520 C-like) lookups to get the first match. */
521
522 struct symbol *atcb_sym =
523 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
524 language_c, NULL).symbol;
525 const struct symbol *common_atcb_sym =
526 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
527 language_c, NULL).symbol;
528 const struct symbol *private_data_sym =
529 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
530 language_c, NULL).symbol;
531 const struct symbol *entry_call_record_sym =
532 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
533 language_c, NULL).symbol;
534
535 if (atcb_sym == NULL || atcb_sym->type () == NULL)
536 {
537 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
538 size, so the symbol name differs. */
539 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
540 STRUCT_DOMAIN, language_c,
541 NULL).symbol;
542
543 if (atcb_sym == NULL || atcb_sym->type () == NULL)
544 return _("Cannot find Ada_Task_Control_Block type");
545
546 type = atcb_sym->type ();
547 }
548 else
549 {
550 /* Get a static representation of the type record
551 Ada_Task_Control_Block. */
552 type = atcb_sym->type ();
553 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
554 }
555
556 if (common_atcb_sym == NULL || common_atcb_sym->type () == NULL)
557 return _("Cannot find Common_ATCB type");
558 if (private_data_sym == NULL || private_data_sym->type ()== NULL)
559 return _("Cannot find Private_Data type");
560 if (entry_call_record_sym == NULL || entry_call_record_sym->type () == NULL)
561 return _("Cannot find Entry_Call_Record type");
562
563 /* Get the type for Ada_Task_Control_Block.Common. */
564 common_type = common_atcb_sym->type ();
565
566 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
567 ll_type = private_data_sym->type ();
568
569 /* Get the type for Common_ATCB.Call.all. */
570 call_type = entry_call_record_sym->type ();
571
572 /* Get the field indices. */
573 fieldnos.common = ada_get_field_index (type, "common", 0);
574 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
575 fieldnos.atc_nesting_level =
576 ada_get_field_index (type, "atc_nesting_level", 1);
577 fieldnos.state = ada_get_field_index (common_type, "state", 0);
578 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
579 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
580 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
581 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
582 fieldnos.activation_link = ada_get_field_index (common_type,
583 "activation_link", 1);
584 fieldnos.call = ada_get_field_index (common_type, "call", 1);
585 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
586 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
587 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
588 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
589 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
590
591 /* On certain platforms such as x86-windows, the "lwp" field has been
592 named "thread_id". This field will likely be renamed in the future,
593 but we need to support both possibilities to avoid an unnecessary
594 dependency on a recent compiler. We therefore try locating the
595 "thread_id" field in place of the "lwp" field if we did not find
596 the latter. */
597 if (fieldnos.ll_lwp < 0)
598 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
599
600 /* Check for the CPU offset. */
601 bound_minimal_symbol first_id_sym
602 = lookup_bound_minimal_symbol ("__gnat_gdb_cpu_first_id");
603 unsigned int first_id = 0;
604 if (first_id_sym.minsym != nullptr)
605 {
606 CORE_ADDR addr = first_id_sym.value_address ();
607 gdbarch *arch = current_inferior ()->arch ();
608 /* This symbol always has type uint32_t. */
609 struct type *u32type = builtin_type (arch)->builtin_uint32;
610 first_id = value_as_long (value_at (u32type, addr));
611 }
612
613 /* Set all the out parameters all at once, now that we are certain
614 that there are no potential error() anymore. */
615 pspace_data = get_ada_tasks_pspace_data (current_program_space);
616 pspace_data->initialized_p = 1;
617 pspace_data->atcb_type = type;
618 pspace_data->atcb_common_type = common_type;
619 pspace_data->atcb_ll_type = ll_type;
620 pspace_data->atcb_call_type = call_type;
621 pspace_data->atcb_fieldno = fieldnos;
622 pspace_data->cpu_id_offset = first_id;
623 return NULL;
624 }
625
626 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
627 component of its ATCB record. This PTID needs to match the PTID used
628 by the thread layer. */
629
630 static ptid_t
631 ptid_from_atcb_common (struct value *common_value)
632 {
633 ULONGEST thread;
634 CORE_ADDR lwp = 0;
635 struct value *ll_value;
636 ptid_t ptid;
637 const struct ada_tasks_pspace_data *pspace_data
638 = get_ada_tasks_pspace_data (current_program_space);
639
640 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
641
642 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
643 lwp = value_as_address (value_field (ll_value,
644 pspace_data->atcb_fieldno.ll_lwp));
645 thread = value_as_long (value_field (ll_value,
646 pspace_data->atcb_fieldno.ll_thread));
647
648 ptid = target_get_ada_task_ptid (lwp, thread);
649
650 return ptid;
651 }
652
653 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
654 the address of its associated ATCB record), and store the result inside
655 TASK_INFO. */
656
657 static void
658 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
659 {
660 struct value *tcb_value;
661 struct value *common_value;
662 struct value *atc_nesting_level_value;
663 struct value *entry_calls_value;
664 struct value *entry_calls_value_element;
665 int called_task_fieldno = -1;
666 static const char ravenscar_task_name[] = "Ravenscar task";
667 const struct ada_tasks_pspace_data *pspace_data
668 = get_ada_tasks_pspace_data (current_program_space);
669
670 /* Clear the whole structure to start with, so that everything
671 is always initialized the same. */
672 memset (task_info, 0, sizeof (struct ada_task_info));
673
674 if (!pspace_data->initialized_p)
675 {
676 const char *err_msg = ada_get_tcb_types_info ();
677
678 if (err_msg != NULL)
679 error (_("%s. Aborting"), err_msg);
680 }
681
682 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
683 NULL, task_id);
684 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
685
686 /* Fill in the task_id. */
687
688 task_info->task_id = task_id;
689
690 /* Compute the name of the task.
691
692 Depending on the GNAT version used, the task image is either a fat
693 string, or a thin array of characters. Older versions of GNAT used
694 to use fat strings, and therefore did not need an extra field in
695 the ATCB to store the string length. For efficiency reasons, newer
696 versions of GNAT replaced the fat string by a static buffer, but this
697 also required the addition of a new field named "Image_Len" containing
698 the length of the task name. The method used to extract the task name
699 is selected depending on the existence of this field.
700
701 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
702 we may want to get it from the first user frame of the stack. For now,
703 we just give a dummy name. */
704
705 if (pspace_data->atcb_fieldno.image_len == -1)
706 {
707 if (pspace_data->atcb_fieldno.image >= 0)
708 read_fat_string_value (task_info->name,
709 value_field (common_value,
710 pspace_data->atcb_fieldno.image),
711 sizeof (task_info->name) - 1);
712 else
713 {
714 struct bound_minimal_symbol msym;
715
716 msym = lookup_minimal_symbol_by_pc (task_id);
717 if (msym.minsym)
718 {
719 const char *full_name = msym.minsym->linkage_name ();
720 const char *task_name = full_name;
721 const char *p;
722
723 /* Strip the prefix. */
724 for (p = full_name; *p; p++)
725 if (p[0] == '_' && p[1] == '_')
726 task_name = p + 2;
727
728 /* Copy the task name. */
729 strncpy (task_info->name, task_name,
730 sizeof (task_info->name) - 1);
731 task_info->name[sizeof (task_info->name) - 1] = 0;
732 }
733 else
734 {
735 /* No symbol found. Use a default name. */
736 strcpy (task_info->name, ravenscar_task_name);
737 }
738 }
739 }
740 else
741 {
742 int len = value_as_long
743 (value_field (common_value,
744 pspace_data->atcb_fieldno.image_len));
745
746 value_as_string (task_info->name,
747 value_field (common_value,
748 pspace_data->atcb_fieldno.image),
749 len);
750 }
751
752 /* Compute the task state and priority. */
753
754 task_info->state =
755 value_as_long (value_field (common_value,
756 pspace_data->atcb_fieldno.state));
757 task_info->priority =
758 value_as_long (value_field (common_value,
759 pspace_data->atcb_fieldno.priority));
760
761 /* If the ATCB contains some information about the parent task,
762 then compute it as well. Otherwise, zero. */
763
764 if (pspace_data->atcb_fieldno.parent >= 0)
765 task_info->parent =
766 value_as_address (value_field (common_value,
767 pspace_data->atcb_fieldno.parent));
768
769 /* If the task is in an entry call waiting for another task,
770 then determine which task it is. */
771
772 if (task_info->state == Entry_Caller_Sleep
773 && pspace_data->atcb_fieldno.atc_nesting_level > 0
774 && pspace_data->atcb_fieldno.entry_calls > 0)
775 {
776 /* Let My_ATCB be the Ada task control block of a task calling the
777 entry of another task; then the Task_Id of the called task is
778 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
779 atc_nesting_level_value =
780 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
781 entry_calls_value =
782 ada_coerce_to_simple_array_ptr
783 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
784 entry_calls_value_element =
785 value_subscript (entry_calls_value,
786 value_as_long (atc_nesting_level_value));
787 called_task_fieldno =
788 ada_get_field_index (entry_calls_value_element->type (),
789 "called_task", 0);
790 task_info->called_task =
791 value_as_address (value_field (entry_calls_value_element,
792 called_task_fieldno));
793 }
794
795 /* If the ATCB contains some information about RV callers, then
796 compute the "caller_task". Otherwise, leave it as zero. */
797
798 if (pspace_data->atcb_fieldno.call >= 0)
799 {
800 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
801 If Common_ATCB.Call is null, then there is no caller. */
802 const CORE_ADDR call =
803 value_as_address (value_field (common_value,
804 pspace_data->atcb_fieldno.call));
805 struct value *call_val;
806
807 if (call != 0)
808 {
809 call_val =
810 value_from_contents_and_address (pspace_data->atcb_call_type,
811 NULL, call);
812 task_info->caller_task =
813 value_as_address
814 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
815 }
816 }
817
818 task_info->base_cpu
819 = (pspace_data->cpu_id_offset
820 + value_as_long (value_field (common_value,
821 pspace_data->atcb_fieldno.base_cpu)));
822
823 /* And finally, compute the task ptid. Note that there is not point
824 in computing it if the task is no longer alive, in which case
825 it is good enough to set its ptid to the null_ptid. */
826 if (ada_task_is_alive (task_info))
827 task_info->ptid = ptid_from_atcb_common (common_value);
828 else
829 task_info->ptid = null_ptid;
830 }
831
832 /* Read the ATCB info of the given task (identified by TASK_ID), and
833 add the result to the given inferior's TASK_LIST. */
834
835 static void
836 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
837 {
838 struct ada_task_info task_info;
839 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
840
841 read_atcb (task_id, &task_info);
842 data->task_list.push_back (task_info);
843 }
844
845 /* Read the Known_Tasks array from the inferior memory, and store
846 it in the current inferior's TASK_LIST. Return true upon success. */
847
848 static bool
849 read_known_tasks_array (struct ada_tasks_inferior_data *data)
850 {
851 const int target_ptr_byte = data->known_tasks_element->length ();
852 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
853 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
854 int i;
855
856 /* Build a new list by reading the ATCBs from the Known_Tasks array
857 in the Ada runtime. */
858 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
859 for (i = 0; i < data->known_tasks_length; i++)
860 {
861 CORE_ADDR task_id =
862 extract_typed_address (known_tasks + i * target_ptr_byte,
863 data->known_tasks_element);
864
865 if (task_id != 0)
866 add_ada_task (task_id, current_inferior ());
867 }
868
869 return true;
870 }
871
872 /* Read the known tasks from the inferior memory, and store it in
873 the current inferior's TASK_LIST. Return true upon success. */
874
875 static bool
876 read_known_tasks_list (struct ada_tasks_inferior_data *data)
877 {
878 const int target_ptr_byte = data->known_tasks_element->length ();
879 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
880 CORE_ADDR task_id;
881 const struct ada_tasks_pspace_data *pspace_data
882 = get_ada_tasks_pspace_data (current_program_space);
883
884 /* Sanity check. */
885 if (pspace_data->atcb_fieldno.activation_link < 0)
886 return false;
887
888 /* Build a new list by reading the ATCBs. Read head of the list. */
889 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
890 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
891 while (task_id != 0)
892 {
893 struct value *tcb_value;
894 struct value *common_value;
895
896 add_ada_task (task_id, current_inferior ());
897
898 /* Read the chain. */
899 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
900 NULL, task_id);
901 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
902 task_id = value_as_address
903 (value_field (common_value,
904 pspace_data->atcb_fieldno.activation_link));
905 }
906
907 return true;
908 }
909
910 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
911 Do nothing if those fields are already set and still up to date. */
912
913 static void
914 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
915 {
916 struct bound_minimal_symbol msym;
917 struct symbol *sym;
918
919 /* Return now if already set. */
920 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
921 return;
922
923 /* Try array. */
924
925 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
926 if (msym.minsym != NULL)
927 {
928 data->known_tasks_kind = ADA_TASKS_ARRAY;
929 data->known_tasks_addr = msym.value_address ();
930
931 /* Try to get pointer type and array length from the symtab. */
932 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
933 language_c, NULL).symbol;
934 if (sym != NULL)
935 {
936 /* Validate. */
937 struct type *type = check_typedef (sym->type ());
938 struct type *eltype = NULL;
939 struct type *idxtype = NULL;
940
941 if (type->code () == TYPE_CODE_ARRAY)
942 eltype = check_typedef (type->target_type ());
943 if (eltype != NULL
944 && eltype->code () == TYPE_CODE_PTR)
945 idxtype = check_typedef (type->index_type ());
946 if (idxtype != NULL
947 && idxtype->bounds ()->low.is_constant ()
948 && idxtype->bounds ()->high.is_constant ())
949 {
950 data->known_tasks_element = eltype;
951 data->known_tasks_length =
952 (idxtype->bounds ()->high.const_val ()
953 - idxtype->bounds ()->low.const_val () + 1);
954 return;
955 }
956 }
957
958 /* Fallback to default values. The runtime may have been stripped (as
959 in some distributions), but it is likely that the executable still
960 contains debug information on the task type (due to implicit with of
961 Ada.Tasking). */
962 data->known_tasks_element =
963 builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
964 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
965 return;
966 }
967
968
969 /* Try list. */
970
971 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
972 if (msym.minsym != NULL)
973 {
974 data->known_tasks_kind = ADA_TASKS_LIST;
975 data->known_tasks_addr = msym.value_address ();
976 data->known_tasks_length = 1;
977
978 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
979 language_c, NULL).symbol;
980 if (sym != NULL && sym->value_address () != 0)
981 {
982 /* Validate. */
983 struct type *type = check_typedef (sym->type ());
984
985 if (type->code () == TYPE_CODE_PTR)
986 {
987 data->known_tasks_element = type;
988 return;
989 }
990 }
991
992 /* Fallback to default values. */
993 data->known_tasks_element =
994 builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
995 data->known_tasks_length = 1;
996 return;
997 }
998
999 /* Can't find tasks. */
1000
1001 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
1002 data->known_tasks_addr = 0;
1003 }
1004
1005 /* Read the known tasks from the current inferior's memory, and store it
1006 in the current inferior's data TASK_LIST. */
1007
1008 static void
1009 read_known_tasks ()
1010 {
1011 struct ada_tasks_inferior_data *data =
1012 get_ada_tasks_inferior_data (current_inferior ());
1013
1014 /* Step 1: Clear the current list, if necessary. */
1015 data->task_list.clear ();
1016
1017 /* Step 2: do the real work.
1018 If the application does not use task, then no more needs to be done.
1019 It is important to have the task list cleared (see above) before we
1020 return, as we don't want a stale task list to be used... This can
1021 happen for instance when debugging a non-multitasking program after
1022 having debugged a multitasking one. */
1023 ada_tasks_inferior_data_sniffer (data);
1024 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
1025
1026 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
1027 array unless needed. */
1028 switch (data->known_tasks_kind)
1029 {
1030 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
1031 break;
1032 case ADA_TASKS_ARRAY:
1033 data->task_list_valid_p = read_known_tasks_array (data);
1034 break;
1035 case ADA_TASKS_LIST:
1036 data->task_list_valid_p = read_known_tasks_list (data);
1037 break;
1038 }
1039 }
1040
1041 /* Build the task_list by reading the Known_Tasks array from
1042 the inferior, and return the number of tasks in that list
1043 (zero means that the program is not using tasking at all). */
1044
1045 static int
1046 ada_build_task_list ()
1047 {
1048 struct ada_tasks_inferior_data *data;
1049
1050 if (!target_has_stack ())
1051 error (_("Cannot inspect Ada tasks when program is not running"));
1052
1053 data = get_ada_tasks_inferior_data (current_inferior ());
1054 if (!data->task_list_valid_p)
1055 read_known_tasks ();
1056
1057 return data->task_list.size ();
1058 }
1059
1060 /* Print a table providing a short description of all Ada tasks
1061 running inside inferior INF. If ARG_STR is set, it will be
1062 interpreted as a task number, and the table will be limited to
1063 that task only. */
1064
1065 void
1066 print_ada_task_info (struct ui_out *uiout,
1067 const char *arg_str,
1068 struct inferior *inf)
1069 {
1070 struct ada_tasks_inferior_data *data;
1071 int taskno, nb_tasks;
1072 int taskno_arg = 0;
1073 int nb_columns;
1074
1075 if (ada_build_task_list () == 0)
1076 {
1077 uiout->message (_("Your application does not use any Ada tasks.\n"));
1078 return;
1079 }
1080
1081 if (arg_str != NULL && arg_str[0] != '\0')
1082 taskno_arg = value_as_long (parse_and_eval (arg_str));
1083
1084 if (uiout->is_mi_like_p ())
1085 /* In GDB/MI mode, we want to provide the thread ID corresponding
1086 to each task. This allows clients to quickly find the thread
1087 associated to any task, which is helpful for commands that
1088 take a --thread argument. However, in order to be able to
1089 provide that thread ID, the thread list must be up to date
1090 first. */
1091 target_update_thread_list ();
1092
1093 data = get_ada_tasks_inferior_data (inf);
1094
1095 /* Compute the number of tasks that are going to be displayed
1096 in the output. If an argument was given, there will be
1097 at most 1 entry. Otherwise, there will be as many entries
1098 as we have tasks. */
1099 if (taskno_arg)
1100 {
1101 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ())
1102 nb_tasks = 1;
1103 else
1104 nb_tasks = 0;
1105 }
1106 else
1107 nb_tasks = data->task_list.size ();
1108
1109 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1110 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1111 uiout->table_header (1, ui_left, "current", "");
1112 uiout->table_header (3, ui_right, "id", "ID");
1113 {
1114 size_t tid_width = 9;
1115 /* Grown below in case the largest entry is bigger. */
1116
1117 if (!uiout->is_mi_like_p ())
1118 {
1119 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1120 {
1121 const struct ada_task_info *const task_info
1122 = &data->task_list[taskno - 1];
1123
1124 gdb_assert (task_info != NULL);
1125
1126 tid_width = std::max (tid_width,
1127 1 + strlen (phex_nz (task_info->task_id,
1128 sizeof (CORE_ADDR))));
1129 }
1130 }
1131 uiout->table_header (tid_width, ui_right, "task-id", "TID");
1132 }
1133 /* The following column is provided in GDB/MI mode only because
1134 it is only really useful in that mode, and also because it
1135 allows us to keep the CLI output shorter and more compact. */
1136 if (uiout->is_mi_like_p ())
1137 uiout->table_header (4, ui_right, "thread-id", "");
1138 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1139 uiout->table_header (3, ui_right, "priority", "Pri");
1140 uiout->table_header (22, ui_left, "state", "State");
1141 /* Use ui_noalign for the last column, to prevent the CLI uiout
1142 from printing an extra space at the end of each row. This
1143 is a bit of a hack, but does get the job done. */
1144 uiout->table_header (1, ui_noalign, "name", "Name");
1145 uiout->table_body ();
1146
1147 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1148 {
1149 const struct ada_task_info *const task_info =
1150 &data->task_list[taskno - 1];
1151 int parent_id;
1152
1153 gdb_assert (task_info != NULL);
1154
1155 /* If the user asked for the output to be restricted
1156 to one task only, and this is not the task, skip
1157 to the next one. */
1158 if (taskno_arg && taskno != taskno_arg)
1159 continue;
1160
1161 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1162
1163 /* Print a star if this task is the current task (or the task
1164 currently selected). */
1165 if (task_info->ptid == inferior_ptid)
1166 uiout->field_string ("current", "*");
1167 else
1168 uiout->field_skip ("current");
1169
1170 /* Print the task number. */
1171 uiout->field_signed ("id", taskno);
1172
1173 /* Print the Task ID. */
1174 uiout->field_string ("task-id", phex_nz (task_info->task_id,
1175 sizeof (CORE_ADDR)));
1176
1177 /* Print the associated Thread ID. */
1178 if (uiout->is_mi_like_p ())
1179 {
1180 thread_info *thread = (ada_task_is_alive (task_info)
1181 ? inf->find_thread (task_info->ptid)
1182 : nullptr);
1183
1184 if (thread != NULL)
1185 uiout->field_signed ("thread-id", thread->global_num);
1186 else
1187 {
1188 /* This can happen if the thread is no longer alive. */
1189 uiout->field_skip ("thread-id");
1190 }
1191 }
1192
1193 /* Print the ID of the parent task. */
1194 parent_id = get_task_number_from_id (task_info->parent, inf);
1195 if (parent_id)
1196 uiout->field_signed ("parent-id", parent_id);
1197 else
1198 uiout->field_skip ("parent-id");
1199
1200 /* Print the base priority of the task. */
1201 uiout->field_signed ("priority", task_info->priority);
1202
1203 /* Print the task current state. */
1204 if (task_info->caller_task)
1205 uiout->field_fmt ("state",
1206 _("Accepting RV with %-4d"),
1207 get_task_number_from_id (task_info->caller_task,
1208 inf));
1209 else if (task_info->called_task)
1210 uiout->field_fmt ("state",
1211 _("Waiting on RV with %-3d"),
1212 get_task_number_from_id (task_info->called_task,
1213 inf));
1214 else
1215 uiout->field_string ("state", get_state (task_info->state));
1216
1217 /* Finally, print the task name, without quotes around it, as mi like
1218 is not expecting quotes, and in non mi-like no need for quotes
1219 as there is a specific column for the name. */
1220 uiout->field_fmt ("name",
1221 (task_info->name[0] != '\0'
1222 ? ui_file_style ()
1223 : metadata_style.style ()),
1224 "%s",
1225 (task_info->name[0] != '\0'
1226 ? task_info->name
1227 : _("<no name>")));
1228
1229 uiout->text ("\n");
1230 }
1231 }
1232
1233 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1234 for the given inferior (INF). */
1235
1236 static void
1237 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1238 {
1239 const int taskno = value_as_long (parse_and_eval (taskno_str));
1240 struct ada_task_info *task_info;
1241 int parent_taskno = 0;
1242 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1243
1244 if (ada_build_task_list () == 0)
1245 {
1246 uiout->message (_("Your application does not use any Ada tasks.\n"));
1247 return;
1248 }
1249
1250 if (taskno <= 0 || taskno > data->task_list.size ())
1251 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1252 "see the IDs of currently known tasks"), taskno);
1253 task_info = &data->task_list[taskno - 1];
1254
1255 /* Print the Ada task ID. */
1256 gdb_printf (_("Ada Task: %s\n"),
1257 paddress (current_inferior ()->arch (), task_info->task_id));
1258
1259 /* Print the name of the task. */
1260 if (task_info->name[0] != '\0')
1261 gdb_printf (_("Name: %s\n"), task_info->name);
1262 else
1263 fprintf_styled (gdb_stdout, metadata_style.style (), _("<no name>\n"));
1264
1265 /* Print the TID and LWP. */
1266 gdb_printf (_("Thread: 0x%s\n"), phex_nz (task_info->ptid.tid (),
1267 sizeof (ULONGEST)));
1268 gdb_printf (_("LWP: %#lx\n"), task_info->ptid.lwp ());
1269
1270 /* If set, print the base CPU. */
1271 if (task_info->base_cpu != 0)
1272 gdb_printf (_("Base CPU: %d\n"), task_info->base_cpu);
1273
1274 /* Print who is the parent (if any). */
1275 if (task_info->parent != 0)
1276 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1277 if (parent_taskno)
1278 {
1279 struct ada_task_info *parent = &data->task_list[parent_taskno - 1];
1280
1281 gdb_printf (_("Parent: %d"), parent_taskno);
1282 if (parent->name[0] != '\0')
1283 gdb_printf (" (%s)", parent->name);
1284 gdb_printf ("\n");
1285 }
1286 else
1287 gdb_printf (_("No parent\n"));
1288
1289 /* Print the base priority. */
1290 gdb_printf (_("Base Priority: %d\n"), task_info->priority);
1291
1292 /* print the task current state. */
1293 {
1294 int target_taskno = 0;
1295
1296 if (task_info->caller_task)
1297 {
1298 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1299 gdb_printf (_("State: Accepting rendezvous with %d"),
1300 target_taskno);
1301 }
1302 else if (task_info->called_task)
1303 {
1304 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1305 gdb_printf (_("State: Waiting on task %d's entry"),
1306 target_taskno);
1307 }
1308 else
1309 gdb_printf (_("State: %s"), get_long_state (task_info->state));
1310
1311 if (target_taskno)
1312 {
1313 ada_task_info *target_task_info = &data->task_list[target_taskno - 1];
1314
1315 if (target_task_info->name[0] != '\0')
1316 gdb_printf (" (%s)", target_task_info->name);
1317 }
1318
1319 gdb_printf ("\n");
1320 }
1321 }
1322
1323 /* If ARG is empty or null, then print a list of all Ada tasks.
1324 Otherwise, print detailed information about the task whose ID
1325 is ARG.
1326
1327 Does nothing if the program doesn't use Ada tasking. */
1328
1329 static void
1330 info_tasks_command (const char *arg, int from_tty)
1331 {
1332 struct ui_out *uiout = current_uiout;
1333
1334 if (arg == NULL || *arg == '\0')
1335 print_ada_task_info (uiout, NULL, current_inferior ());
1336 else
1337 info_task (uiout, arg, current_inferior ());
1338 }
1339
1340 /* Print a message telling the user id of the current task.
1341 This function assumes that tasking is in use in the inferior. */
1342
1343 static void
1344 display_current_task_id (void)
1345 {
1346 const int current_task = ada_get_task_number (inferior_thread ());
1347
1348 if (current_task == 0)
1349 gdb_printf (_("[Current task is unknown]\n"));
1350 else
1351 {
1352 struct ada_tasks_inferior_data *data
1353 = get_ada_tasks_inferior_data (current_inferior ());
1354 struct ada_task_info *task_info = &data->task_list[current_task - 1];
1355
1356 gdb_printf (_("[Current task is %s]\n"),
1357 task_to_str (current_task, task_info).c_str ());
1358 }
1359 }
1360
1361 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1362 that task. Print an error message if the task switch failed. */
1363
1364 static void
1365 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1366 {
1367 const int taskno = value_as_long (parse_and_eval (taskno_str));
1368 struct ada_task_info *task_info;
1369 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1370
1371 if (taskno <= 0 || taskno > data->task_list.size ())
1372 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1373 "see the IDs of currently known tasks"), taskno);
1374 task_info = &data->task_list[taskno - 1];
1375
1376 if (!ada_task_is_alive (task_info))
1377 error (_("Cannot switch to task %s: Task is no longer running"),
1378 task_to_str (taskno, task_info).c_str ());
1379
1380 /* On some platforms, the thread list is not updated until the user
1381 performs a thread-related operation (by using the "info threads"
1382 command, for instance). So this thread list may not be up to date
1383 when the user attempts this task switch. Since we cannot switch
1384 to the thread associated to our task if GDB does not know about
1385 that thread, we need to make sure that any new threads gets added
1386 to the thread list. */
1387 target_update_thread_list ();
1388
1389 /* Verify that the ptid of the task we want to switch to is valid
1390 (in other words, a ptid that GDB knows about). Otherwise, we will
1391 cause an assertion failure later on, when we try to determine
1392 the ptid associated thread_info data. We should normally never
1393 encounter such an error, but the wrong ptid can actually easily be
1394 computed if target_get_ada_task_ptid has not been implemented for
1395 our target (yet). Rather than cause an assertion error in that case,
1396 it's nicer for the user to just refuse to perform the task switch. */
1397 thread_info *tp = inf->find_thread (task_info->ptid);
1398 if (tp == NULL)
1399 error (_("Unable to compute thread ID for task %s.\n"
1400 "Cannot switch to this task."),
1401 task_to_str (taskno, task_info).c_str ());
1402
1403 switch_to_thread (tp);
1404 ada_find_printable_frame (get_selected_frame (NULL));
1405 gdb_printf (_("[Switching to task %s]\n"),
1406 task_to_str (taskno, task_info).c_str ());
1407 print_stack_frame (get_selected_frame (NULL),
1408 frame_relative_level (get_selected_frame (NULL)),
1409 SRC_AND_LOC, 1);
1410 }
1411
1412
1413 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1414 Otherwise, switch to the task indicated by TASKNO_STR. */
1415
1416 static void
1417 task_command (const char *taskno_str, int from_tty)
1418 {
1419 struct ui_out *uiout = current_uiout;
1420
1421 if (ada_build_task_list () == 0)
1422 {
1423 uiout->message (_("Your application does not use any Ada tasks.\n"));
1424 return;
1425 }
1426
1427 if (taskno_str == NULL || taskno_str[0] == '\0')
1428 display_current_task_id ();
1429 else
1430 task_command_1 (taskno_str, from_tty, current_inferior ());
1431 }
1432
1433 /* Indicate that the given inferior's task list may have changed,
1434 so invalidate the cache. */
1435
1436 static void
1437 ada_task_list_changed (struct inferior *inf)
1438 {
1439 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1440
1441 data->task_list_valid_p = false;
1442 }
1443
1444 /* Invalidate the per-program-space data. */
1445
1446 static void
1447 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1448 {
1449 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1450 }
1451
1452 /* Invalidate the per-inferior data. */
1453
1454 static void
1455 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1456 {
1457 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1458
1459 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1460 data->task_list_valid_p = false;
1461 }
1462
1463 /* The 'normal_stop' observer notification callback. */
1464
1465 static void
1466 ada_tasks_normal_stop_observer (struct bpstat *unused_args, int unused_args2)
1467 {
1468 /* The inferior has been resumed, and just stopped. This means that
1469 our task_list needs to be recomputed before it can be used again. */
1470 ada_task_list_changed (current_inferior ());
1471 }
1472
1473 /* Clear data associated to PSPACE and all inferiors using that program
1474 space. */
1475
1476 static void
1477 ada_tasks_clear_pspace_data (program_space *pspace)
1478 {
1479 /* The associated program-space data might have changed after
1480 this objfile was added. Invalidate all cached data. */
1481 ada_tasks_invalidate_pspace_data (pspace);
1482
1483 /* Invalidate the per-inferior cache for all inferiors using
1484 this program space. */
1485 for (inferior *inf : all_inferiors ())
1486 if (inf->pspace == pspace)
1487 ada_tasks_invalidate_inferior_data (inf);
1488 }
1489
1490 /* Called when a new objfile was added. */
1491
1492 static void
1493 ada_tasks_new_objfile_observer (objfile *objfile)
1494 {
1495 ada_tasks_clear_pspace_data (objfile->pspace);
1496 }
1497
1498 /* The qcs command line flags for the "task apply" commands. Keep
1499 this in sync with the "frame apply" commands. */
1500
1501 using qcs_flag_option_def
1502 = gdb::option::flag_option_def<qcs_flags>;
1503
1504 static const gdb::option::option_def task_qcs_flags_option_defs[] = {
1505 qcs_flag_option_def {
1506 "q", [] (qcs_flags *opt) { return &opt->quiet; },
1507 N_("Disables printing the task information."),
1508 },
1509
1510 qcs_flag_option_def {
1511 "c", [] (qcs_flags *opt) { return &opt->cont; },
1512 N_("Print any error raised by COMMAND and continue."),
1513 },
1514
1515 qcs_flag_option_def {
1516 "s", [] (qcs_flags *opt) { return &opt->silent; },
1517 N_("Silently ignore any errors or empty output produced by COMMAND."),
1518 },
1519 };
1520
1521 /* Create an option_def_group for the "task apply all" options, with
1522 FLAGS as context. */
1523
1524 static inline std::array<gdb::option::option_def_group, 1>
1525 make_task_apply_all_options_def_group (qcs_flags *flags)
1526 {
1527 return {{
1528 { {task_qcs_flags_option_defs}, flags },
1529 }};
1530 }
1531
1532 /* Create an option_def_group for the "task apply" options, with
1533 FLAGS as context. */
1534
1535 static inline gdb::option::option_def_group
1536 make_task_apply_options_def_group (qcs_flags *flags)
1537 {
1538 return {{task_qcs_flags_option_defs}, flags};
1539 }
1540
1541 /* Implementation of 'task apply all'. */
1542
1543 static void
1544 task_apply_all_command (const char *cmd, int from_tty)
1545 {
1546 qcs_flags flags;
1547
1548 auto group = make_task_apply_all_options_def_group (&flags);
1549 gdb::option::process_options
1550 (&cmd, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group);
1551
1552 validate_flags_qcs ("task apply all", &flags);
1553
1554 if (cmd == nullptr || *cmd == '\0')
1555 error (_("Please specify a command at the end of 'task apply all'"));
1556
1557 update_thread_list ();
1558 ada_build_task_list ();
1559
1560 inferior *inf = current_inferior ();
1561 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1562
1563 /* Save a copy of the thread list and increment each thread's
1564 refcount while executing the command in the context of each
1565 thread, in case the command affects this. */
1566 std::vector<std::pair<int, thread_info_ref>> thr_list_cpy;
1567
1568 for (int i = 1; i <= data->task_list.size (); ++i)
1569 {
1570 ada_task_info &task = data->task_list[i - 1];
1571 if (!ada_task_is_alive (&task))
1572 continue;
1573
1574 thread_info *tp = inf->find_thread (task.ptid);
1575 if (tp == nullptr)
1576 warning (_("Unable to compute thread ID for task %s.\n"
1577 "Cannot switch to this task."),
1578 task_to_str (i, &task).c_str ());
1579 else
1580 thr_list_cpy.emplace_back (i, thread_info_ref::new_reference (tp));
1581 }
1582
1583 scoped_restore_current_thread restore_thread;
1584
1585 for (const auto &info : thr_list_cpy)
1586 if (switch_to_thread_if_alive (info.second.get ()))
1587 thread_try_catch_cmd (info.second.get (), info.first, cmd,
1588 from_tty, flags);
1589 }
1590
1591 /* Implementation of 'task apply'. */
1592
1593 static void
1594 task_apply_command (const char *tidlist, int from_tty)
1595 {
1596
1597 if (tidlist == nullptr || *tidlist == '\0')
1598 error (_("Please specify a task ID list"));
1599
1600 update_thread_list ();
1601 ada_build_task_list ();
1602
1603 inferior *inf = current_inferior ();
1604 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1605
1606 /* Save a copy of the thread list and increment each thread's
1607 refcount while executing the command in the context of each
1608 thread, in case the command affects this. */
1609 std::vector<std::pair<int, thread_info_ref>> thr_list_cpy;
1610
1611 number_or_range_parser parser (tidlist);
1612 while (!parser.finished ())
1613 {
1614 int num = parser.get_number ();
1615
1616 if (num < 1 || num - 1 >= data->task_list.size ())
1617 warning (_("no Ada Task with number %d"), num);
1618 else
1619 {
1620 ada_task_info &task = data->task_list[num - 1];
1621 if (!ada_task_is_alive (&task))
1622 continue;
1623
1624 thread_info *tp = inf->find_thread (task.ptid);
1625 if (tp == nullptr)
1626 warning (_("Unable to compute thread ID for task %s.\n"
1627 "Cannot switch to this task."),
1628 task_to_str (num, &task).c_str ());
1629 else
1630 thr_list_cpy.emplace_back (num,
1631 thread_info_ref::new_reference (tp));
1632 }
1633 }
1634
1635 qcs_flags flags;
1636 const char *cmd = parser.cur_tok ();
1637
1638 auto group = make_task_apply_options_def_group (&flags);
1639 gdb::option::process_options
1640 (&cmd, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group);
1641
1642 validate_flags_qcs ("task apply", &flags);
1643
1644 if (*cmd == '\0')
1645 error (_("Please specify a command following the task ID list"));
1646
1647 scoped_restore_current_thread restore_thread;
1648
1649 for (const auto &info : thr_list_cpy)
1650 if (switch_to_thread_if_alive (info.second.get ()))
1651 thread_try_catch_cmd (info.second.get (), info.first, cmd,
1652 from_tty, flags);
1653 }
1654
1655 void _initialize_tasks ();
1656 void
1657 _initialize_tasks ()
1658 {
1659 /* Attach various observers. */
1660 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer,
1661 "ada-tasks");
1662 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer,
1663 "ada-tasks");
1664 gdb::observers::all_objfiles_removed.attach (ada_tasks_clear_pspace_data,
1665 "ada-tasks");
1666
1667 static struct cmd_list_element *task_cmd_list;
1668 static struct cmd_list_element *task_apply_list;
1669
1670
1671 /* Some new commands provided by this module. */
1672 add_info ("tasks", info_tasks_command,
1673 _("Provide information about all known Ada tasks."));
1674
1675 add_prefix_cmd ("task", class_run, task_command,
1676 _("Use this command to switch between Ada tasks.\n\
1677 Without argument, this command simply prints the current task ID."),
1678 &task_cmd_list, 1, &cmdlist);
1679
1680 #define TASK_APPLY_OPTION_HELP "\
1681 Prints per-inferior task number followed by COMMAND output.\n\
1682 \n\
1683 By default, an error raised during the execution of COMMAND\n\
1684 aborts \"task apply\".\n\
1685 \n\
1686 Options:\n\
1687 %OPTIONS%"
1688
1689 static const auto task_apply_opts
1690 = make_task_apply_options_def_group (nullptr);
1691
1692 static std::string task_apply_help = gdb::option::build_help (_("\
1693 Apply a command to a list of tasks.\n\
1694 Usage: task apply ID... [OPTION]... COMMAND\n\
1695 ID is a space-separated list of IDs of tasks to apply COMMAND on.\n"
1696 TASK_APPLY_OPTION_HELP), task_apply_opts);
1697
1698 add_prefix_cmd ("apply", class_run,
1699 task_apply_command,
1700 task_apply_help.c_str (),
1701 &task_apply_list, 1,
1702 &task_cmd_list);
1703
1704 static const auto task_apply_all_opts
1705 = make_task_apply_all_options_def_group (nullptr);
1706
1707 static std::string task_apply_all_help = gdb::option::build_help (_("\
1708 Apply a command to all tasks in the current inferior.\n\
1709 \n\
1710 Usage: task apply all [OPTION]... COMMAND\n"
1711 TASK_APPLY_OPTION_HELP), task_apply_all_opts);
1712
1713 add_cmd ("all", class_run, task_apply_all_command,
1714 task_apply_all_help.c_str (), &task_apply_list);
1715 }