97d80053c6f639ea3548fd7f4e761dedbc4abfec
[binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h>
43 #include "elf-bfd.h"
44 #include "gregset.h"
45 #include "gdbcore.h"
46 #include <ctype.h>
47 #include <sys/stat.h>
48 #include <fcntl.h>
49 #include "inf-loop.h"
50 #include "gdbsupport/event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "target-descriptions.h"
64 #include "gdbsupport/filestuff.h"
65 #include "objfiles.h"
66 #include "nat/linux-namespaces.h"
67 #include "gdbsupport/block-signals.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/gdb-sigmask.h"
71 #include "gdbsupport/common-debug.h"
72 #include <unordered_map>
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, an event pipe is used
115 --- the pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler marks the
118 event pipe to raise an event. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 struct linux_nat_target *linux_target;
190
191 /* Does the current host support PTRACE_GETREGSET? */
192 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
193
194 /* When true, print debug messages relating to the linux native target. */
195
196 static bool debug_linux_nat;
197
198 /* Implement 'show debug linux-nat'. */
199
200 static void
201 show_debug_linux_nat (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 gdb_printf (file, _("Debugging of GNU/Linux native targets is %s.\n"),
205 value);
206 }
207
208 /* Print a linux-nat debug statement. */
209
210 #define linux_nat_debug_printf(fmt, ...) \
211 debug_prefixed_printf_cond (debug_linux_nat, "linux-nat", fmt, ##__VA_ARGS__)
212
213 /* Print "linux-nat" enter/exit debug statements. */
214
215 #define LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT \
216 scoped_debug_enter_exit (debug_linux_nat, "linux-nat")
217
218 struct simple_pid_list
219 {
220 int pid;
221 int status;
222 struct simple_pid_list *next;
223 };
224 static struct simple_pid_list *stopped_pids;
225
226 /* Whether target_thread_events is in effect. */
227 static int report_thread_events;
228
229 static int kill_lwp (int lwpid, int signo);
230
231 static int stop_callback (struct lwp_info *lp);
232
233 static void block_child_signals (sigset_t *prev_mask);
234 static void restore_child_signals_mask (sigset_t *prev_mask);
235
236 struct lwp_info;
237 static struct lwp_info *add_lwp (ptid_t ptid);
238 static void purge_lwp_list (int pid);
239 static void delete_lwp (ptid_t ptid);
240 static struct lwp_info *find_lwp_pid (ptid_t ptid);
241
242 static int lwp_status_pending_p (struct lwp_info *lp);
243
244 static void save_stop_reason (struct lwp_info *lp);
245
246 static bool proc_mem_file_is_writable ();
247 static void close_proc_mem_file (pid_t pid);
248 static void open_proc_mem_file (ptid_t ptid);
249
250 /* Return TRUE if LWP is the leader thread of the process. */
251
252 static bool
253 is_leader (lwp_info *lp)
254 {
255 return lp->ptid.pid () == lp->ptid.lwp ();
256 }
257
258 /* Convert an LWP's pending status to a std::string. */
259
260 static std::string
261 pending_status_str (lwp_info *lp)
262 {
263 gdb_assert (lwp_status_pending_p (lp));
264
265 if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE)
266 return lp->waitstatus.to_string ();
267 else
268 return status_to_str (lp->status);
269 }
270
271 \f
272 /* LWP accessors. */
273
274 /* See nat/linux-nat.h. */
275
276 ptid_t
277 ptid_of_lwp (struct lwp_info *lwp)
278 {
279 return lwp->ptid;
280 }
281
282 /* See nat/linux-nat.h. */
283
284 void
285 lwp_set_arch_private_info (struct lwp_info *lwp,
286 struct arch_lwp_info *info)
287 {
288 lwp->arch_private = info;
289 }
290
291 /* See nat/linux-nat.h. */
292
293 struct arch_lwp_info *
294 lwp_arch_private_info (struct lwp_info *lwp)
295 {
296 return lwp->arch_private;
297 }
298
299 /* See nat/linux-nat.h. */
300
301 int
302 lwp_is_stopped (struct lwp_info *lwp)
303 {
304 return lwp->stopped;
305 }
306
307 /* See nat/linux-nat.h. */
308
309 enum target_stop_reason
310 lwp_stop_reason (struct lwp_info *lwp)
311 {
312 return lwp->stop_reason;
313 }
314
315 /* See nat/linux-nat.h. */
316
317 int
318 lwp_is_stepping (struct lwp_info *lwp)
319 {
320 return lwp->step;
321 }
322
323 \f
324 /* Trivial list manipulation functions to keep track of a list of
325 new stopped processes. */
326 static void
327 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
328 {
329 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
330
331 new_pid->pid = pid;
332 new_pid->status = status;
333 new_pid->next = *listp;
334 *listp = new_pid;
335 }
336
337 static int
338 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
339 {
340 struct simple_pid_list **p;
341
342 for (p = listp; *p != NULL; p = &(*p)->next)
343 if ((*p)->pid == pid)
344 {
345 struct simple_pid_list *next = (*p)->next;
346
347 *statusp = (*p)->status;
348 xfree (*p);
349 *p = next;
350 return 1;
351 }
352 return 0;
353 }
354
355 /* Return the ptrace options that we want to try to enable. */
356
357 static int
358 linux_nat_ptrace_options (int attached)
359 {
360 int options = 0;
361
362 if (!attached)
363 options |= PTRACE_O_EXITKILL;
364
365 options |= (PTRACE_O_TRACESYSGOOD
366 | PTRACE_O_TRACEVFORKDONE
367 | PTRACE_O_TRACEVFORK
368 | PTRACE_O_TRACEFORK
369 | PTRACE_O_TRACEEXEC);
370
371 return options;
372 }
373
374 /* Initialize ptrace and procfs warnings and check for supported
375 ptrace features given PID.
376
377 ATTACHED should be nonzero iff we attached to the inferior. */
378
379 static void
380 linux_init_ptrace_procfs (pid_t pid, int attached)
381 {
382 int options = linux_nat_ptrace_options (attached);
383
384 linux_enable_event_reporting (pid, options);
385 linux_ptrace_init_warnings ();
386 linux_proc_init_warnings ();
387 proc_mem_file_is_writable ();
388 }
389
390 linux_nat_target::~linux_nat_target ()
391 {}
392
393 void
394 linux_nat_target::post_attach (int pid)
395 {
396 linux_init_ptrace_procfs (pid, 1);
397 }
398
399 /* Implement the virtual inf_ptrace_target::post_startup_inferior method. */
400
401 void
402 linux_nat_target::post_startup_inferior (ptid_t ptid)
403 {
404 linux_init_ptrace_procfs (ptid.pid (), 0);
405 }
406
407 /* Return the number of known LWPs in the tgid given by PID. */
408
409 static int
410 num_lwps (int pid)
411 {
412 int count = 0;
413
414 for (const lwp_info *lp ATTRIBUTE_UNUSED : all_lwps ())
415 if (lp->ptid.pid () == pid)
416 count++;
417
418 return count;
419 }
420
421 /* Deleter for lwp_info unique_ptr specialisation. */
422
423 struct lwp_deleter
424 {
425 void operator() (struct lwp_info *lwp) const
426 {
427 delete_lwp (lwp->ptid);
428 }
429 };
430
431 /* A unique_ptr specialisation for lwp_info. */
432
433 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
434
435 /* Target hook for follow_fork. */
436
437 void
438 linux_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
439 target_waitkind fork_kind, bool follow_child,
440 bool detach_fork)
441 {
442 inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind,
443 follow_child, detach_fork);
444
445 if (!follow_child)
446 {
447 bool has_vforked = fork_kind == TARGET_WAITKIND_VFORKED;
448 ptid_t parent_ptid = inferior_ptid;
449 int parent_pid = parent_ptid.lwp ();
450 int child_pid = child_ptid.lwp ();
451
452 /* We're already attached to the parent, by default. */
453 lwp_info *child_lp = add_lwp (child_ptid);
454 child_lp->stopped = 1;
455 child_lp->last_resume_kind = resume_stop;
456
457 /* Detach new forked process? */
458 if (detach_fork)
459 {
460 int child_stop_signal = 0;
461 bool detach_child = true;
462
463 /* Move CHILD_LP into a unique_ptr and clear the source pointer
464 to prevent us doing anything stupid with it. */
465 lwp_info_up child_lp_ptr (child_lp);
466 child_lp = nullptr;
467
468 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
469
470 /* When debugging an inferior in an architecture that supports
471 hardware single stepping on a kernel without commit
472 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
473 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
474 set if the parent process had them set.
475 To work around this, single step the child process
476 once before detaching to clear the flags. */
477
478 /* Note that we consult the parent's architecture instead of
479 the child's because there's no inferior for the child at
480 this point. */
481 if (!gdbarch_software_single_step_p (target_thread_architecture
482 (parent_ptid)))
483 {
484 int status;
485
486 linux_disable_event_reporting (child_pid);
487 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
488 perror_with_name (_("Couldn't do single step"));
489 if (my_waitpid (child_pid, &status, 0) < 0)
490 perror_with_name (_("Couldn't wait vfork process"));
491 else
492 {
493 detach_child = WIFSTOPPED (status);
494 child_stop_signal = WSTOPSIG (status);
495 }
496 }
497
498 if (detach_child)
499 {
500 int signo = child_stop_signal;
501
502 if (signo != 0
503 && !signal_pass_state (gdb_signal_from_host (signo)))
504 signo = 0;
505 ptrace (PTRACE_DETACH, child_pid, 0, signo);
506
507 close_proc_mem_file (child_pid);
508 }
509 }
510
511 if (has_vforked)
512 {
513 lwp_info *parent_lp = find_lwp_pid (parent_ptid);
514 linux_nat_debug_printf ("waiting for VFORK_DONE on %d", parent_pid);
515 parent_lp->stopped = 1;
516
517 /* We'll handle the VFORK_DONE event like any other
518 event, in target_wait. */
519 }
520 }
521 else
522 {
523 struct lwp_info *child_lp;
524
525 child_lp = add_lwp (child_ptid);
526 child_lp->stopped = 1;
527 child_lp->last_resume_kind = resume_stop;
528 }
529 }
530
531 \f
532 int
533 linux_nat_target::insert_fork_catchpoint (int pid)
534 {
535 return 0;
536 }
537
538 int
539 linux_nat_target::remove_fork_catchpoint (int pid)
540 {
541 return 0;
542 }
543
544 int
545 linux_nat_target::insert_vfork_catchpoint (int pid)
546 {
547 return 0;
548 }
549
550 int
551 linux_nat_target::remove_vfork_catchpoint (int pid)
552 {
553 return 0;
554 }
555
556 int
557 linux_nat_target::insert_exec_catchpoint (int pid)
558 {
559 return 0;
560 }
561
562 int
563 linux_nat_target::remove_exec_catchpoint (int pid)
564 {
565 return 0;
566 }
567
568 int
569 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
570 gdb::array_view<const int> syscall_counts)
571 {
572 /* On GNU/Linux, we ignore the arguments. It means that we only
573 enable the syscall catchpoints, but do not disable them.
574
575 Also, we do not use the `syscall_counts' information because we do not
576 filter system calls here. We let GDB do the logic for us. */
577 return 0;
578 }
579
580 /* List of known LWPs, keyed by LWP PID. This speeds up the common
581 case of mapping a PID returned from the kernel to our corresponding
582 lwp_info data structure. */
583 static htab_t lwp_lwpid_htab;
584
585 /* Calculate a hash from a lwp_info's LWP PID. */
586
587 static hashval_t
588 lwp_info_hash (const void *ap)
589 {
590 const struct lwp_info *lp = (struct lwp_info *) ap;
591 pid_t pid = lp->ptid.lwp ();
592
593 return iterative_hash_object (pid, 0);
594 }
595
596 /* Equality function for the lwp_info hash table. Compares the LWP's
597 PID. */
598
599 static int
600 lwp_lwpid_htab_eq (const void *a, const void *b)
601 {
602 const struct lwp_info *entry = (const struct lwp_info *) a;
603 const struct lwp_info *element = (const struct lwp_info *) b;
604
605 return entry->ptid.lwp () == element->ptid.lwp ();
606 }
607
608 /* Create the lwp_lwpid_htab hash table. */
609
610 static void
611 lwp_lwpid_htab_create (void)
612 {
613 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
614 }
615
616 /* Add LP to the hash table. */
617
618 static void
619 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
620 {
621 void **slot;
622
623 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
624 gdb_assert (slot != NULL && *slot == NULL);
625 *slot = lp;
626 }
627
628 /* Head of doubly-linked list of known LWPs. Sorted by reverse
629 creation order. This order is assumed in some cases. E.g.,
630 reaping status after killing alls lwps of a process: the leader LWP
631 must be reaped last. */
632
633 static intrusive_list<lwp_info> lwp_list;
634
635 /* See linux-nat.h. */
636
637 lwp_info_range
638 all_lwps ()
639 {
640 return lwp_info_range (lwp_list.begin ());
641 }
642
643 /* See linux-nat.h. */
644
645 lwp_info_safe_range
646 all_lwps_safe ()
647 {
648 return lwp_info_safe_range (lwp_list.begin ());
649 }
650
651 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
652
653 static void
654 lwp_list_add (struct lwp_info *lp)
655 {
656 lwp_list.push_front (*lp);
657 }
658
659 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
660 list. */
661
662 static void
663 lwp_list_remove (struct lwp_info *lp)
664 {
665 /* Remove from sorted-by-creation-order list. */
666 lwp_list.erase (lwp_list.iterator_to (*lp));
667 }
668
669 \f
670
671 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
672 _initialize_linux_nat. */
673 static sigset_t suspend_mask;
674
675 /* Signals to block to make that sigsuspend work. */
676 static sigset_t blocked_mask;
677
678 /* SIGCHLD action. */
679 static struct sigaction sigchld_action;
680
681 /* Block child signals (SIGCHLD and linux threads signals), and store
682 the previous mask in PREV_MASK. */
683
684 static void
685 block_child_signals (sigset_t *prev_mask)
686 {
687 /* Make sure SIGCHLD is blocked. */
688 if (!sigismember (&blocked_mask, SIGCHLD))
689 sigaddset (&blocked_mask, SIGCHLD);
690
691 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
692 }
693
694 /* Restore child signals mask, previously returned by
695 block_child_signals. */
696
697 static void
698 restore_child_signals_mask (sigset_t *prev_mask)
699 {
700 gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
701 }
702
703 /* Mask of signals to pass directly to the inferior. */
704 static sigset_t pass_mask;
705
706 /* Update signals to pass to the inferior. */
707 void
708 linux_nat_target::pass_signals
709 (gdb::array_view<const unsigned char> pass_signals)
710 {
711 int signo;
712
713 sigemptyset (&pass_mask);
714
715 for (signo = 1; signo < NSIG; signo++)
716 {
717 int target_signo = gdb_signal_from_host (signo);
718 if (target_signo < pass_signals.size () && pass_signals[target_signo])
719 sigaddset (&pass_mask, signo);
720 }
721 }
722
723 \f
724
725 /* Prototypes for local functions. */
726 static int stop_wait_callback (struct lwp_info *lp);
727 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
728 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
729
730 \f
731
732 /* Destroy and free LP. */
733
734 lwp_info::~lwp_info ()
735 {
736 /* Let the arch specific bits release arch_lwp_info. */
737 linux_target->low_delete_thread (this->arch_private);
738 }
739
740 /* Traversal function for purge_lwp_list. */
741
742 static int
743 lwp_lwpid_htab_remove_pid (void **slot, void *info)
744 {
745 struct lwp_info *lp = (struct lwp_info *) *slot;
746 int pid = *(int *) info;
747
748 if (lp->ptid.pid () == pid)
749 {
750 htab_clear_slot (lwp_lwpid_htab, slot);
751 lwp_list_remove (lp);
752 delete lp;
753 }
754
755 return 1;
756 }
757
758 /* Remove all LWPs belong to PID from the lwp list. */
759
760 static void
761 purge_lwp_list (int pid)
762 {
763 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
764 }
765
766 /* Add the LWP specified by PTID to the list. PTID is the first LWP
767 in the process. Return a pointer to the structure describing the
768 new LWP.
769
770 This differs from add_lwp in that we don't let the arch specific
771 bits know about this new thread. Current clients of this callback
772 take the opportunity to install watchpoints in the new thread, and
773 we shouldn't do that for the first thread. If we're spawning a
774 child ("run"), the thread executes the shell wrapper first, and we
775 shouldn't touch it until it execs the program we want to debug.
776 For "attach", it'd be okay to call the callback, but it's not
777 necessary, because watchpoints can't yet have been inserted into
778 the inferior. */
779
780 static struct lwp_info *
781 add_initial_lwp (ptid_t ptid)
782 {
783 gdb_assert (ptid.lwp_p ());
784
785 lwp_info *lp = new lwp_info (ptid);
786
787
788 /* Add to sorted-by-reverse-creation-order list. */
789 lwp_list_add (lp);
790
791 /* Add to keyed-by-pid htab. */
792 lwp_lwpid_htab_add_lwp (lp);
793
794 return lp;
795 }
796
797 /* Add the LWP specified by PID to the list. Return a pointer to the
798 structure describing the new LWP. The LWP should already be
799 stopped. */
800
801 static struct lwp_info *
802 add_lwp (ptid_t ptid)
803 {
804 struct lwp_info *lp;
805
806 lp = add_initial_lwp (ptid);
807
808 /* Let the arch specific bits know about this new thread. Current
809 clients of this callback take the opportunity to install
810 watchpoints in the new thread. We don't do this for the first
811 thread though. See add_initial_lwp. */
812 linux_target->low_new_thread (lp);
813
814 return lp;
815 }
816
817 /* Remove the LWP specified by PID from the list. */
818
819 static void
820 delete_lwp (ptid_t ptid)
821 {
822 lwp_info dummy (ptid);
823
824 void **slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
825 if (slot == NULL)
826 return;
827
828 lwp_info *lp = *(struct lwp_info **) slot;
829 gdb_assert (lp != NULL);
830
831 htab_clear_slot (lwp_lwpid_htab, slot);
832
833 /* Remove from sorted-by-creation-order list. */
834 lwp_list_remove (lp);
835
836 /* Release. */
837 delete lp;
838 }
839
840 /* Return a pointer to the structure describing the LWP corresponding
841 to PID. If no corresponding LWP could be found, return NULL. */
842
843 static struct lwp_info *
844 find_lwp_pid (ptid_t ptid)
845 {
846 int lwp;
847
848 if (ptid.lwp_p ())
849 lwp = ptid.lwp ();
850 else
851 lwp = ptid.pid ();
852
853 lwp_info dummy (ptid_t (0, lwp));
854 return (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
855 }
856
857 /* See nat/linux-nat.h. */
858
859 struct lwp_info *
860 iterate_over_lwps (ptid_t filter,
861 gdb::function_view<iterate_over_lwps_ftype> callback)
862 {
863 for (lwp_info *lp : all_lwps_safe ())
864 {
865 if (lp->ptid.matches (filter))
866 {
867 if (callback (lp) != 0)
868 return lp;
869 }
870 }
871
872 return NULL;
873 }
874
875 /* Update our internal state when changing from one checkpoint to
876 another indicated by NEW_PTID. We can only switch single-threaded
877 applications, so we only create one new LWP, and the previous list
878 is discarded. */
879
880 void
881 linux_nat_switch_fork (ptid_t new_ptid)
882 {
883 struct lwp_info *lp;
884
885 purge_lwp_list (inferior_ptid.pid ());
886
887 lp = add_lwp (new_ptid);
888 lp->stopped = 1;
889
890 /* This changes the thread's ptid while preserving the gdb thread
891 num. Also changes the inferior pid, while preserving the
892 inferior num. */
893 thread_change_ptid (linux_target, inferior_ptid, new_ptid);
894
895 /* We've just told GDB core that the thread changed target id, but,
896 in fact, it really is a different thread, with different register
897 contents. */
898 registers_changed ();
899 }
900
901 /* Handle the exit of a single thread LP. */
902
903 static void
904 exit_lwp (struct lwp_info *lp)
905 {
906 struct thread_info *th = linux_target->find_thread (lp->ptid);
907
908 if (th)
909 delete_thread (th);
910
911 delete_lwp (lp->ptid);
912 }
913
914 /* Wait for the LWP specified by LP, which we have just attached to.
915 Returns a wait status for that LWP, to cache. */
916
917 static int
918 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
919 {
920 pid_t new_pid, pid = ptid.lwp ();
921 int status;
922
923 if (linux_proc_pid_is_stopped (pid))
924 {
925 linux_nat_debug_printf ("Attaching to a stopped process");
926
927 /* The process is definitely stopped. It is in a job control
928 stop, unless the kernel predates the TASK_STOPPED /
929 TASK_TRACED distinction, in which case it might be in a
930 ptrace stop. Make sure it is in a ptrace stop; from there we
931 can kill it, signal it, et cetera.
932
933 First make sure there is a pending SIGSTOP. Since we are
934 already attached, the process can not transition from stopped
935 to running without a PTRACE_CONT; so we know this signal will
936 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
937 probably already in the queue (unless this kernel is old
938 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
939 is not an RT signal, it can only be queued once. */
940 kill_lwp (pid, SIGSTOP);
941
942 /* Finally, resume the stopped process. This will deliver the SIGSTOP
943 (or a higher priority signal, just like normal PTRACE_ATTACH). */
944 ptrace (PTRACE_CONT, pid, 0, 0);
945 }
946
947 /* Make sure the initial process is stopped. The user-level threads
948 layer might want to poke around in the inferior, and that won't
949 work if things haven't stabilized yet. */
950 new_pid = my_waitpid (pid, &status, __WALL);
951 gdb_assert (pid == new_pid);
952
953 if (!WIFSTOPPED (status))
954 {
955 /* The pid we tried to attach has apparently just exited. */
956 linux_nat_debug_printf ("Failed to stop %d: %s", pid,
957 status_to_str (status).c_str ());
958 return status;
959 }
960
961 if (WSTOPSIG (status) != SIGSTOP)
962 {
963 *signalled = 1;
964 linux_nat_debug_printf ("Received %s after attaching",
965 status_to_str (status).c_str ());
966 }
967
968 return status;
969 }
970
971 void
972 linux_nat_target::create_inferior (const char *exec_file,
973 const std::string &allargs,
974 char **env, int from_tty)
975 {
976 maybe_disable_address_space_randomization restore_personality
977 (disable_randomization);
978
979 /* The fork_child mechanism is synchronous and calls target_wait, so
980 we have to mask the async mode. */
981
982 /* Make sure we report all signals during startup. */
983 pass_signals ({});
984
985 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
986
987 open_proc_mem_file (inferior_ptid);
988 }
989
990 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
991 already attached. Returns true if a new LWP is found, false
992 otherwise. */
993
994 static int
995 attach_proc_task_lwp_callback (ptid_t ptid)
996 {
997 struct lwp_info *lp;
998
999 /* Ignore LWPs we're already attached to. */
1000 lp = find_lwp_pid (ptid);
1001 if (lp == NULL)
1002 {
1003 int lwpid = ptid.lwp ();
1004
1005 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1006 {
1007 int err = errno;
1008
1009 /* Be quiet if we simply raced with the thread exiting.
1010 EPERM is returned if the thread's task still exists, and
1011 is marked as exited or zombie, as well as other
1012 conditions, so in that case, confirm the status in
1013 /proc/PID/status. */
1014 if (err == ESRCH
1015 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1016 {
1017 linux_nat_debug_printf
1018 ("Cannot attach to lwp %d: thread is gone (%d: %s)",
1019 lwpid, err, safe_strerror (err));
1020
1021 }
1022 else
1023 {
1024 std::string reason
1025 = linux_ptrace_attach_fail_reason_string (ptid, err);
1026
1027 warning (_("Cannot attach to lwp %d: %s"),
1028 lwpid, reason.c_str ());
1029 }
1030 }
1031 else
1032 {
1033 linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)",
1034 ptid.to_string ().c_str ());
1035
1036 lp = add_lwp (ptid);
1037
1038 /* The next time we wait for this LWP we'll see a SIGSTOP as
1039 PTRACE_ATTACH brings it to a halt. */
1040 lp->signalled = 1;
1041
1042 /* We need to wait for a stop before being able to make the
1043 next ptrace call on this LWP. */
1044 lp->must_set_ptrace_flags = 1;
1045
1046 /* So that wait collects the SIGSTOP. */
1047 lp->resumed = 1;
1048
1049 /* Also add the LWP to gdb's thread list, in case a
1050 matching libthread_db is not found (or the process uses
1051 raw clone). */
1052 add_thread (linux_target, lp->ptid);
1053 set_running (linux_target, lp->ptid, true);
1054 set_executing (linux_target, lp->ptid, true);
1055 }
1056
1057 return 1;
1058 }
1059 return 0;
1060 }
1061
1062 void
1063 linux_nat_target::attach (const char *args, int from_tty)
1064 {
1065 struct lwp_info *lp;
1066 int status;
1067 ptid_t ptid;
1068
1069 /* Make sure we report all signals during attach. */
1070 pass_signals ({});
1071
1072 try
1073 {
1074 inf_ptrace_target::attach (args, from_tty);
1075 }
1076 catch (const gdb_exception_error &ex)
1077 {
1078 pid_t pid = parse_pid_to_attach (args);
1079 std::string reason = linux_ptrace_attach_fail_reason (pid);
1080
1081 if (!reason.empty ())
1082 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1083 ex.what ());
1084 else
1085 throw_error (ex.error, "%s", ex.what ());
1086 }
1087
1088 /* The ptrace base target adds the main thread with (pid,0,0)
1089 format. Decorate it with lwp info. */
1090 ptid = ptid_t (inferior_ptid.pid (),
1091 inferior_ptid.pid ());
1092 thread_change_ptid (linux_target, inferior_ptid, ptid);
1093
1094 /* Add the initial process as the first LWP to the list. */
1095 lp = add_initial_lwp (ptid);
1096
1097 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1098 if (!WIFSTOPPED (status))
1099 {
1100 if (WIFEXITED (status))
1101 {
1102 int exit_code = WEXITSTATUS (status);
1103
1104 target_terminal::ours ();
1105 target_mourn_inferior (inferior_ptid);
1106 if (exit_code == 0)
1107 error (_("Unable to attach: program exited normally."));
1108 else
1109 error (_("Unable to attach: program exited with code %d."),
1110 exit_code);
1111 }
1112 else if (WIFSIGNALED (status))
1113 {
1114 enum gdb_signal signo;
1115
1116 target_terminal::ours ();
1117 target_mourn_inferior (inferior_ptid);
1118
1119 signo = gdb_signal_from_host (WTERMSIG (status));
1120 error (_("Unable to attach: program terminated with signal "
1121 "%s, %s."),
1122 gdb_signal_to_name (signo),
1123 gdb_signal_to_string (signo));
1124 }
1125
1126 internal_error (_("unexpected status %d for PID %ld"),
1127 status, (long) ptid.lwp ());
1128 }
1129
1130 lp->stopped = 1;
1131
1132 open_proc_mem_file (lp->ptid);
1133
1134 /* Save the wait status to report later. */
1135 lp->resumed = 1;
1136 linux_nat_debug_printf ("waitpid %ld, saving status %s",
1137 (long) lp->ptid.pid (),
1138 status_to_str (status).c_str ());
1139
1140 lp->status = status;
1141
1142 /* We must attach to every LWP. If /proc is mounted, use that to
1143 find them now. The inferior may be using raw clone instead of
1144 using pthreads. But even if it is using pthreads, thread_db
1145 walks structures in the inferior's address space to find the list
1146 of threads/LWPs, and those structures may well be corrupted.
1147 Note that once thread_db is loaded, we'll still use it to list
1148 threads and associate pthread info with each LWP. */
1149 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1150 attach_proc_task_lwp_callback);
1151 }
1152
1153 /* Ptrace-detach the thread with pid PID. */
1154
1155 static void
1156 detach_one_pid (int pid, int signo)
1157 {
1158 if (ptrace (PTRACE_DETACH, pid, 0, signo) < 0)
1159 {
1160 int save_errno = errno;
1161
1162 /* We know the thread exists, so ESRCH must mean the lwp is
1163 zombie. This can happen if one of the already-detached
1164 threads exits the whole thread group. In that case we're
1165 still attached, and must reap the lwp. */
1166 if (save_errno == ESRCH)
1167 {
1168 int ret, status;
1169
1170 ret = my_waitpid (pid, &status, __WALL);
1171 if (ret == -1)
1172 {
1173 warning (_("Couldn't reap LWP %d while detaching: %s"),
1174 pid, safe_strerror (errno));
1175 }
1176 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1177 {
1178 warning (_("Reaping LWP %d while detaching "
1179 "returned unexpected status 0x%x"),
1180 pid, status);
1181 }
1182 }
1183 else
1184 error (_("Can't detach %d: %s"),
1185 pid, safe_strerror (save_errno));
1186 }
1187 else
1188 linux_nat_debug_printf ("PTRACE_DETACH (%d, %s, 0) (OK)",
1189 pid, strsignal (signo));
1190 }
1191
1192 /* Get pending signal of THREAD as a host signal number, for detaching
1193 purposes. This is the signal the thread last stopped for, which we
1194 need to deliver to the thread when detaching, otherwise, it'd be
1195 suppressed/lost. */
1196
1197 static int
1198 get_detach_signal (struct lwp_info *lp)
1199 {
1200 enum gdb_signal signo = GDB_SIGNAL_0;
1201
1202 /* If we paused threads momentarily, we may have stored pending
1203 events in lp->status or lp->waitstatus (see stop_wait_callback),
1204 and GDB core hasn't seen any signal for those threads.
1205 Otherwise, the last signal reported to the core is found in the
1206 thread object's stop_signal.
1207
1208 There's a corner case that isn't handled here at present. Only
1209 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1210 stop_signal make sense as a real signal to pass to the inferior.
1211 Some catchpoint related events, like
1212 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1213 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1214 those traps are debug API (ptrace in our case) related and
1215 induced; the inferior wouldn't see them if it wasn't being
1216 traced. Hence, we should never pass them to the inferior, even
1217 when set to pass state. Since this corner case isn't handled by
1218 infrun.c when proceeding with a signal, for consistency, neither
1219 do we handle it here (or elsewhere in the file we check for
1220 signal pass state). Normally SIGTRAP isn't set to pass state, so
1221 this is really a corner case. */
1222
1223 if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE)
1224 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1225 else if (lp->status)
1226 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1227 else
1228 {
1229 thread_info *tp = linux_target->find_thread (lp->ptid);
1230
1231 if (target_is_non_stop_p () && !tp->executing ())
1232 {
1233 if (tp->has_pending_waitstatus ())
1234 {
1235 /* If the thread has a pending event, and it was stopped with a
1236 signal, use that signal to resume it. If it has a pending
1237 event of another kind, it was not stopped with a signal, so
1238 resume it without a signal. */
1239 if (tp->pending_waitstatus ().kind () == TARGET_WAITKIND_STOPPED)
1240 signo = tp->pending_waitstatus ().sig ();
1241 else
1242 signo = GDB_SIGNAL_0;
1243 }
1244 else
1245 signo = tp->stop_signal ();
1246 }
1247 else if (!target_is_non_stop_p ())
1248 {
1249 ptid_t last_ptid;
1250 process_stratum_target *last_target;
1251
1252 get_last_target_status (&last_target, &last_ptid, nullptr);
1253
1254 if (last_target == linux_target
1255 && lp->ptid.lwp () == last_ptid.lwp ())
1256 signo = tp->stop_signal ();
1257 }
1258 }
1259
1260 if (signo == GDB_SIGNAL_0)
1261 {
1262 linux_nat_debug_printf ("lwp %s has no pending signal",
1263 lp->ptid.to_string ().c_str ());
1264 }
1265 else if (!signal_pass_state (signo))
1266 {
1267 linux_nat_debug_printf
1268 ("lwp %s had signal %s but it is in no pass state",
1269 lp->ptid.to_string ().c_str (), gdb_signal_to_string (signo));
1270 }
1271 else
1272 {
1273 linux_nat_debug_printf ("lwp %s has pending signal %s",
1274 lp->ptid.to_string ().c_str (),
1275 gdb_signal_to_string (signo));
1276
1277 return gdb_signal_to_host (signo);
1278 }
1279
1280 return 0;
1281 }
1282
1283 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1284 signal number that should be passed to the LWP when detaching.
1285 Otherwise pass any pending signal the LWP may have, if any. */
1286
1287 static void
1288 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1289 {
1290 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
1291
1292 linux_nat_debug_printf ("lwp %s (stopped = %d)",
1293 lp->ptid.to_string ().c_str (), lp->stopped);
1294
1295 int lwpid = lp->ptid.lwp ();
1296 int signo;
1297
1298 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1299
1300 /* If the lwp/thread we are about to detach has a pending fork event,
1301 there is a process GDB is attached to that the core of GDB doesn't know
1302 about. Detach from it. */
1303
1304 /* Check in lwp_info::status. */
1305 if (WIFSTOPPED (lp->status) && linux_is_extended_waitstatus (lp->status))
1306 {
1307 int event = linux_ptrace_get_extended_event (lp->status);
1308
1309 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1310 {
1311 unsigned long child_pid;
1312 int ret = ptrace (PTRACE_GETEVENTMSG, lp->ptid.lwp (), 0, &child_pid);
1313 if (ret == 0)
1314 detach_one_pid (child_pid, 0);
1315 else
1316 perror_warning_with_name (_("Failed to detach fork child"));
1317 }
1318 }
1319
1320 /* Check in lwp_info::waitstatus. */
1321 if (lp->waitstatus.kind () == TARGET_WAITKIND_VFORKED
1322 || lp->waitstatus.kind () == TARGET_WAITKIND_FORKED)
1323 detach_one_pid (lp->waitstatus.child_ptid ().pid (), 0);
1324
1325
1326 /* Check in thread_info::pending_waitstatus. */
1327 thread_info *tp = linux_target->find_thread (lp->ptid);
1328 if (tp->has_pending_waitstatus ())
1329 {
1330 const target_waitstatus &ws = tp->pending_waitstatus ();
1331
1332 if (ws.kind () == TARGET_WAITKIND_VFORKED
1333 || ws.kind () == TARGET_WAITKIND_FORKED)
1334 detach_one_pid (ws.child_ptid ().pid (), 0);
1335 }
1336
1337 /* Check in thread_info::pending_follow. */
1338 if (tp->pending_follow.kind () == TARGET_WAITKIND_VFORKED
1339 || tp->pending_follow.kind () == TARGET_WAITKIND_FORKED)
1340 detach_one_pid (tp->pending_follow.child_ptid ().pid (), 0);
1341
1342 if (lp->status != 0)
1343 linux_nat_debug_printf ("Pending %s for %s on detach.",
1344 strsignal (WSTOPSIG (lp->status)),
1345 lp->ptid.to_string ().c_str ());
1346
1347 /* If there is a pending SIGSTOP, get rid of it. */
1348 if (lp->signalled)
1349 {
1350 linux_nat_debug_printf ("Sending SIGCONT to %s",
1351 lp->ptid.to_string ().c_str ());
1352
1353 kill_lwp (lwpid, SIGCONT);
1354 lp->signalled = 0;
1355 }
1356
1357 if (signo_p == NULL)
1358 {
1359 /* Pass on any pending signal for this LWP. */
1360 signo = get_detach_signal (lp);
1361 }
1362 else
1363 signo = *signo_p;
1364
1365 linux_nat_debug_printf ("preparing to resume lwp %s (stopped = %d)",
1366 lp->ptid.to_string ().c_str (),
1367 lp->stopped);
1368
1369 /* Preparing to resume may try to write registers, and fail if the
1370 lwp is zombie. If that happens, ignore the error. We'll handle
1371 it below, when detach fails with ESRCH. */
1372 try
1373 {
1374 linux_target->low_prepare_to_resume (lp);
1375 }
1376 catch (const gdb_exception_error &ex)
1377 {
1378 if (!check_ptrace_stopped_lwp_gone (lp))
1379 throw;
1380 }
1381
1382 detach_one_pid (lwpid, signo);
1383
1384 delete_lwp (lp->ptid);
1385 }
1386
1387 static int
1388 detach_callback (struct lwp_info *lp)
1389 {
1390 /* We don't actually detach from the thread group leader just yet.
1391 If the thread group exits, we must reap the zombie clone lwps
1392 before we're able to reap the leader. */
1393 if (lp->ptid.lwp () != lp->ptid.pid ())
1394 detach_one_lwp (lp, NULL);
1395 return 0;
1396 }
1397
1398 void
1399 linux_nat_target::detach (inferior *inf, int from_tty)
1400 {
1401 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
1402
1403 struct lwp_info *main_lwp;
1404 int pid = inf->pid;
1405
1406 /* Don't unregister from the event loop, as there may be other
1407 inferiors running. */
1408
1409 /* Stop all threads before detaching. ptrace requires that the
1410 thread is stopped to successfully detach. */
1411 iterate_over_lwps (ptid_t (pid), stop_callback);
1412 /* ... and wait until all of them have reported back that
1413 they're no longer running. */
1414 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1415
1416 /* We can now safely remove breakpoints. We don't this in earlier
1417 in common code because this target doesn't currently support
1418 writing memory while the inferior is running. */
1419 remove_breakpoints_inf (current_inferior ());
1420
1421 iterate_over_lwps (ptid_t (pid), detach_callback);
1422
1423 /* We have detached from everything except the main thread now, so
1424 should only have one thread left. However, in non-stop mode the
1425 main thread might have exited, in which case we'll have no threads
1426 left. */
1427 gdb_assert (num_lwps (pid) == 1
1428 || (target_is_non_stop_p () && num_lwps (pid) == 0));
1429
1430 if (forks_exist_p ())
1431 {
1432 /* Multi-fork case. The current inferior_ptid is being detached
1433 from, but there are other viable forks to debug. Detach from
1434 the current fork, and context-switch to the first
1435 available. */
1436 linux_fork_detach (from_tty);
1437 }
1438 else
1439 {
1440 target_announce_detach (from_tty);
1441
1442 /* In non-stop mode it is possible that the main thread has exited,
1443 in which case we don't try to detach. */
1444 main_lwp = find_lwp_pid (ptid_t (pid));
1445 if (main_lwp != nullptr)
1446 {
1447 /* Pass on any pending signal for the last LWP. */
1448 int signo = get_detach_signal (main_lwp);
1449
1450 detach_one_lwp (main_lwp, &signo);
1451 }
1452 else
1453 gdb_assert (target_is_non_stop_p ());
1454
1455 detach_success (inf);
1456 }
1457
1458 close_proc_mem_file (pid);
1459 }
1460
1461 /* Resume execution of the inferior process. If STEP is nonzero,
1462 single-step it. If SIGNAL is nonzero, give it that signal. */
1463
1464 static void
1465 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1466 enum gdb_signal signo)
1467 {
1468 lp->step = step;
1469
1470 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1471 We only presently need that if the LWP is stepped though (to
1472 handle the case of stepping a breakpoint instruction). */
1473 if (step)
1474 {
1475 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
1476
1477 lp->stop_pc = regcache_read_pc (regcache);
1478 }
1479 else
1480 lp->stop_pc = 0;
1481
1482 linux_target->low_prepare_to_resume (lp);
1483 linux_target->low_resume (lp->ptid, step, signo);
1484
1485 /* Successfully resumed. Clear state that no longer makes sense,
1486 and mark the LWP as running. Must not do this before resuming
1487 otherwise if that fails other code will be confused. E.g., we'd
1488 later try to stop the LWP and hang forever waiting for a stop
1489 status. Note that we must not throw after this is cleared,
1490 otherwise handle_zombie_lwp_error would get confused. */
1491 lp->stopped = 0;
1492 lp->core = -1;
1493 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1494 registers_changed_ptid (linux_target, lp->ptid);
1495 }
1496
1497 /* Called when we try to resume a stopped LWP and that errors out. If
1498 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1499 or about to become), discard the error, clear any pending status
1500 the LWP may have, and return true (we'll collect the exit status
1501 soon enough). Otherwise, return false. */
1502
1503 static int
1504 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1505 {
1506 /* If we get an error after resuming the LWP successfully, we'd
1507 confuse !T state for the LWP being gone. */
1508 gdb_assert (lp->stopped);
1509
1510 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1511 because even if ptrace failed with ESRCH, the tracee may be "not
1512 yet fully dead", but already refusing ptrace requests. In that
1513 case the tracee has 'R (Running)' state for a little bit
1514 (observed in Linux 3.18). See also the note on ESRCH in the
1515 ptrace(2) man page. Instead, check whether the LWP has any state
1516 other than ptrace-stopped. */
1517
1518 /* Don't assume anything if /proc/PID/status can't be read. */
1519 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1520 {
1521 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1522 lp->status = 0;
1523 lp->waitstatus.set_ignore ();
1524 return 1;
1525 }
1526 return 0;
1527 }
1528
1529 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1530 disappears while we try to resume it. */
1531
1532 static void
1533 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1534 {
1535 try
1536 {
1537 linux_resume_one_lwp_throw (lp, step, signo);
1538 }
1539 catch (const gdb_exception_error &ex)
1540 {
1541 if (!check_ptrace_stopped_lwp_gone (lp))
1542 throw;
1543 }
1544 }
1545
1546 /* Resume LP. */
1547
1548 static void
1549 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1550 {
1551 if (lp->stopped)
1552 {
1553 struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
1554
1555 if (inf->vfork_child != NULL)
1556 {
1557 linux_nat_debug_printf ("Not resuming sibling %s (vfork parent)",
1558 lp->ptid.to_string ().c_str ());
1559 }
1560 else if (!lwp_status_pending_p (lp))
1561 {
1562 linux_nat_debug_printf ("Resuming sibling %s, %s, %s",
1563 lp->ptid.to_string ().c_str (),
1564 (signo != GDB_SIGNAL_0
1565 ? strsignal (gdb_signal_to_host (signo))
1566 : "0"),
1567 step ? "step" : "resume");
1568
1569 linux_resume_one_lwp (lp, step, signo);
1570 }
1571 else
1572 {
1573 linux_nat_debug_printf ("Not resuming sibling %s (has pending)",
1574 lp->ptid.to_string ().c_str ());
1575 }
1576 }
1577 else
1578 linux_nat_debug_printf ("Not resuming sibling %s (not stopped)",
1579 lp->ptid.to_string ().c_str ());
1580 }
1581
1582 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1583 Resume LWP with the last stop signal, if it is in pass state. */
1584
1585 static int
1586 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1587 {
1588 enum gdb_signal signo = GDB_SIGNAL_0;
1589
1590 if (lp == except)
1591 return 0;
1592
1593 if (lp->stopped)
1594 {
1595 struct thread_info *thread;
1596
1597 thread = linux_target->find_thread (lp->ptid);
1598 if (thread != NULL)
1599 {
1600 signo = thread->stop_signal ();
1601 thread->set_stop_signal (GDB_SIGNAL_0);
1602 }
1603 }
1604
1605 resume_lwp (lp, 0, signo);
1606 return 0;
1607 }
1608
1609 static int
1610 resume_clear_callback (struct lwp_info *lp)
1611 {
1612 lp->resumed = 0;
1613 lp->last_resume_kind = resume_stop;
1614 return 0;
1615 }
1616
1617 static int
1618 resume_set_callback (struct lwp_info *lp)
1619 {
1620 lp->resumed = 1;
1621 lp->last_resume_kind = resume_continue;
1622 return 0;
1623 }
1624
1625 void
1626 linux_nat_target::resume (ptid_t scope_ptid, int step, enum gdb_signal signo)
1627 {
1628 struct lwp_info *lp;
1629
1630 linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s",
1631 step ? "step" : "resume",
1632 scope_ptid.to_string ().c_str (),
1633 (signo != GDB_SIGNAL_0
1634 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1635 inferior_ptid.to_string ().c_str ());
1636
1637 /* Mark the lwps we're resuming as resumed and update their
1638 last_resume_kind to resume_continue. */
1639 iterate_over_lwps (scope_ptid, resume_set_callback);
1640
1641 lp = find_lwp_pid (inferior_ptid);
1642 gdb_assert (lp != NULL);
1643
1644 /* Remember if we're stepping. */
1645 lp->last_resume_kind = step ? resume_step : resume_continue;
1646
1647 /* If we have a pending wait status for this thread, there is no
1648 point in resuming the process. But first make sure that
1649 linux_nat_wait won't preemptively handle the event - we
1650 should never take this short-circuit if we are going to
1651 leave LP running, since we have skipped resuming all the
1652 other threads. This bit of code needs to be synchronized
1653 with linux_nat_wait. */
1654
1655 if (lp->status && WIFSTOPPED (lp->status))
1656 {
1657 if (!lp->step
1658 && WSTOPSIG (lp->status)
1659 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1660 {
1661 linux_nat_debug_printf
1662 ("Not short circuiting for ignored status 0x%x", lp->status);
1663
1664 /* FIXME: What should we do if we are supposed to continue
1665 this thread with a signal? */
1666 gdb_assert (signo == GDB_SIGNAL_0);
1667 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1668 lp->status = 0;
1669 }
1670 }
1671
1672 if (lwp_status_pending_p (lp))
1673 {
1674 /* FIXME: What should we do if we are supposed to continue
1675 this thread with a signal? */
1676 gdb_assert (signo == GDB_SIGNAL_0);
1677
1678 linux_nat_debug_printf ("Short circuiting for status %s",
1679 pending_status_str (lp).c_str ());
1680
1681 if (target_can_async_p ())
1682 {
1683 target_async (true);
1684 /* Tell the event loop we have something to process. */
1685 async_file_mark ();
1686 }
1687 return;
1688 }
1689
1690 /* No use iterating unless we're resuming other threads. */
1691 if (scope_ptid != lp->ptid)
1692 iterate_over_lwps (scope_ptid, [=] (struct lwp_info *info)
1693 {
1694 return linux_nat_resume_callback (info, lp);
1695 });
1696
1697 linux_nat_debug_printf ("%s %s, %s (resume event thread)",
1698 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1699 lp->ptid.to_string ().c_str (),
1700 (signo != GDB_SIGNAL_0
1701 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1702
1703 linux_resume_one_lwp (lp, step, signo);
1704 }
1705
1706 /* Send a signal to an LWP. */
1707
1708 static int
1709 kill_lwp (int lwpid, int signo)
1710 {
1711 int ret;
1712
1713 errno = 0;
1714 ret = syscall (__NR_tkill, lwpid, signo);
1715 if (errno == ENOSYS)
1716 {
1717 /* If tkill fails, then we are not using nptl threads, a
1718 configuration we no longer support. */
1719 perror_with_name (("tkill"));
1720 }
1721 return ret;
1722 }
1723
1724 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1725 event, check if the core is interested in it: if not, ignore the
1726 event, and keep waiting; otherwise, we need to toggle the LWP's
1727 syscall entry/exit status, since the ptrace event itself doesn't
1728 indicate it, and report the trap to higher layers. */
1729
1730 static int
1731 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1732 {
1733 struct target_waitstatus *ourstatus = &lp->waitstatus;
1734 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1735 thread_info *thread = linux_target->find_thread (lp->ptid);
1736 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1737
1738 if (stopping)
1739 {
1740 /* If we're stopping threads, there's a SIGSTOP pending, which
1741 makes it so that the LWP reports an immediate syscall return,
1742 followed by the SIGSTOP. Skip seeing that "return" using
1743 PTRACE_CONT directly, and let stop_wait_callback collect the
1744 SIGSTOP. Later when the thread is resumed, a new syscall
1745 entry event. If we didn't do this (and returned 0), we'd
1746 leave a syscall entry pending, and our caller, by using
1747 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1748 itself. Later, when the user re-resumes this LWP, we'd see
1749 another syscall entry event and we'd mistake it for a return.
1750
1751 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1752 (leaving immediately with LWP->signalled set, without issuing
1753 a PTRACE_CONT), it would still be problematic to leave this
1754 syscall enter pending, as later when the thread is resumed,
1755 it would then see the same syscall exit mentioned above,
1756 followed by the delayed SIGSTOP, while the syscall didn't
1757 actually get to execute. It seems it would be even more
1758 confusing to the user. */
1759
1760 linux_nat_debug_printf
1761 ("ignoring syscall %d for LWP %ld (stopping threads), resuming with "
1762 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ());
1763
1764 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1765 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1766 lp->stopped = 0;
1767 return 1;
1768 }
1769
1770 /* Always update the entry/return state, even if this particular
1771 syscall isn't interesting to the core now. In async mode,
1772 the user could install a new catchpoint for this syscall
1773 between syscall enter/return, and we'll need to know to
1774 report a syscall return if that happens. */
1775 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1776 ? TARGET_WAITKIND_SYSCALL_RETURN
1777 : TARGET_WAITKIND_SYSCALL_ENTRY);
1778
1779 if (catch_syscall_enabled ())
1780 {
1781 if (catching_syscall_number (syscall_number))
1782 {
1783 /* Alright, an event to report. */
1784 if (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY)
1785 ourstatus->set_syscall_entry (syscall_number);
1786 else if (lp->syscall_state == TARGET_WAITKIND_SYSCALL_RETURN)
1787 ourstatus->set_syscall_return (syscall_number);
1788 else
1789 gdb_assert_not_reached ("unexpected syscall state");
1790
1791 linux_nat_debug_printf
1792 ("stopping for %s of syscall %d for LWP %ld",
1793 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1794 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1795
1796 return 0;
1797 }
1798
1799 linux_nat_debug_printf
1800 ("ignoring %s of syscall %d for LWP %ld",
1801 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1802 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1803 }
1804 else
1805 {
1806 /* If we had been syscall tracing, and hence used PT_SYSCALL
1807 before on this LWP, it could happen that the user removes all
1808 syscall catchpoints before we get to process this event.
1809 There are two noteworthy issues here:
1810
1811 - When stopped at a syscall entry event, resuming with
1812 PT_STEP still resumes executing the syscall and reports a
1813 syscall return.
1814
1815 - Only PT_SYSCALL catches syscall enters. If we last
1816 single-stepped this thread, then this event can't be a
1817 syscall enter. If we last single-stepped this thread, this
1818 has to be a syscall exit.
1819
1820 The points above mean that the next resume, be it PT_STEP or
1821 PT_CONTINUE, can not trigger a syscall trace event. */
1822 linux_nat_debug_printf
1823 ("caught syscall event with no syscall catchpoints. %d for LWP %ld, "
1824 "ignoring", syscall_number, lp->ptid.lwp ());
1825 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1826 }
1827
1828 /* The core isn't interested in this event. For efficiency, avoid
1829 stopping all threads only to have the core resume them all again.
1830 Since we're not stopping threads, if we're still syscall tracing
1831 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1832 subsequent syscall. Simply resume using the inf-ptrace layer,
1833 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1834
1835 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1836 return 1;
1837 }
1838
1839 /* Handle a GNU/Linux extended wait response. If we see a clone
1840 event, we need to add the new LWP to our list (and not report the
1841 trap to higher layers). This function returns non-zero if the
1842 event should be ignored and we should wait again. If STOPPING is
1843 true, the new LWP remains stopped, otherwise it is continued. */
1844
1845 static int
1846 linux_handle_extended_wait (struct lwp_info *lp, int status)
1847 {
1848 int pid = lp->ptid.lwp ();
1849 struct target_waitstatus *ourstatus = &lp->waitstatus;
1850 int event = linux_ptrace_get_extended_event (status);
1851
1852 /* All extended events we currently use are mid-syscall. Only
1853 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1854 you have to be using PTRACE_SEIZE to get that. */
1855 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1856
1857 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1858 || event == PTRACE_EVENT_CLONE)
1859 {
1860 unsigned long new_pid;
1861 int ret;
1862
1863 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1864
1865 /* If we haven't already seen the new PID stop, wait for it now. */
1866 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1867 {
1868 /* The new child has a pending SIGSTOP. We can't affect it until it
1869 hits the SIGSTOP, but we're already attached. */
1870 ret = my_waitpid (new_pid, &status, __WALL);
1871 if (ret == -1)
1872 perror_with_name (_("waiting for new child"));
1873 else if (ret != new_pid)
1874 internal_error (_("wait returned unexpected PID %d"), ret);
1875 else if (!WIFSTOPPED (status))
1876 internal_error (_("wait returned unexpected status 0x%x"), status);
1877 }
1878
1879 ptid_t child_ptid (new_pid, new_pid);
1880
1881 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1882 {
1883 open_proc_mem_file (child_ptid);
1884
1885 /* The arch-specific native code may need to know about new
1886 forks even if those end up never mapped to an
1887 inferior. */
1888 linux_target->low_new_fork (lp, new_pid);
1889 }
1890 else if (event == PTRACE_EVENT_CLONE)
1891 {
1892 linux_target->low_new_clone (lp, new_pid);
1893 }
1894
1895 if (event == PTRACE_EVENT_FORK
1896 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1897 {
1898 /* Handle checkpointing by linux-fork.c here as a special
1899 case. We don't want the follow-fork-mode or 'catch fork'
1900 to interfere with this. */
1901
1902 /* This won't actually modify the breakpoint list, but will
1903 physically remove the breakpoints from the child. */
1904 detach_breakpoints (ptid_t (new_pid, new_pid));
1905
1906 /* Retain child fork in ptrace (stopped) state. */
1907 if (!find_fork_pid (new_pid))
1908 add_fork (new_pid);
1909
1910 /* Report as spurious, so that infrun doesn't want to follow
1911 this fork. We're actually doing an infcall in
1912 linux-fork.c. */
1913 ourstatus->set_spurious ();
1914
1915 /* Report the stop to the core. */
1916 return 0;
1917 }
1918
1919 if (event == PTRACE_EVENT_FORK)
1920 ourstatus->set_forked (child_ptid);
1921 else if (event == PTRACE_EVENT_VFORK)
1922 ourstatus->set_vforked (child_ptid);
1923 else if (event == PTRACE_EVENT_CLONE)
1924 {
1925 struct lwp_info *new_lp;
1926
1927 ourstatus->set_ignore ();
1928
1929 linux_nat_debug_printf
1930 ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid);
1931
1932 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid));
1933 new_lp->stopped = 1;
1934 new_lp->resumed = 1;
1935
1936 /* If the thread_db layer is active, let it record the user
1937 level thread id and status, and add the thread to GDB's
1938 list. */
1939 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
1940 {
1941 /* The process is not using thread_db. Add the LWP to
1942 GDB's list. */
1943 add_thread (linux_target, new_lp->ptid);
1944 }
1945
1946 /* Even if we're stopping the thread for some reason
1947 internal to this module, from the perspective of infrun
1948 and the user/frontend, this new thread is running until
1949 it next reports a stop. */
1950 set_running (linux_target, new_lp->ptid, true);
1951 set_executing (linux_target, new_lp->ptid, true);
1952
1953 if (WSTOPSIG (status) != SIGSTOP)
1954 {
1955 /* This can happen if someone starts sending signals to
1956 the new thread before it gets a chance to run, which
1957 have a lower number than SIGSTOP (e.g. SIGUSR1).
1958 This is an unlikely case, and harder to handle for
1959 fork / vfork than for clone, so we do not try - but
1960 we handle it for clone events here. */
1961
1962 new_lp->signalled = 1;
1963
1964 /* We created NEW_LP so it cannot yet contain STATUS. */
1965 gdb_assert (new_lp->status == 0);
1966
1967 /* Save the wait status to report later. */
1968 linux_nat_debug_printf
1969 ("waitpid of new LWP %ld, saving status %s",
1970 (long) new_lp->ptid.lwp (), status_to_str (status).c_str ());
1971 new_lp->status = status;
1972 }
1973 else if (report_thread_events)
1974 {
1975 new_lp->waitstatus.set_thread_created ();
1976 new_lp->status = status;
1977 }
1978
1979 return 1;
1980 }
1981
1982 return 0;
1983 }
1984
1985 if (event == PTRACE_EVENT_EXEC)
1986 {
1987 linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ());
1988
1989 /* Close the previous /proc/PID/mem file for this inferior,
1990 which was using the address space which is now gone.
1991 Reading/writing from this file would return 0/EOF. */
1992 close_proc_mem_file (lp->ptid.pid ());
1993
1994 /* Open a new file for the new address space. */
1995 open_proc_mem_file (lp->ptid);
1996
1997 ourstatus->set_execd
1998 (make_unique_xstrdup (linux_proc_pid_to_exec_file (pid)));
1999
2000 /* The thread that execed must have been resumed, but, when a
2001 thread execs, it changes its tid to the tgid, and the old
2002 tgid thread might have not been resumed. */
2003 lp->resumed = 1;
2004
2005 /* All other LWPs are gone now. We'll have received a thread
2006 exit notification for all threads other the execing one.
2007 That one, if it wasn't the leader, just silently changes its
2008 tid to the tgid, and the previous leader vanishes. Since
2009 Linux 3.0, the former thread ID can be retrieved with
2010 PTRACE_GETEVENTMSG, but since we support older kernels, don't
2011 bother with it, and just walk the LWP list. Even with
2012 PTRACE_GETEVENTMSG, we'd still need to lookup the
2013 corresponding LWP object, and it would be an extra ptrace
2014 syscall, so this way may even be more efficient. */
2015 for (lwp_info *other_lp : all_lwps_safe ())
2016 if (other_lp != lp && other_lp->ptid.pid () == lp->ptid.pid ())
2017 exit_lwp (other_lp);
2018
2019 return 0;
2020 }
2021
2022 if (event == PTRACE_EVENT_VFORK_DONE)
2023 {
2024 linux_nat_debug_printf
2025 ("Got PTRACE_EVENT_VFORK_DONE from LWP %ld",
2026 lp->ptid.lwp ());
2027 ourstatus->set_vfork_done ();
2028 return 0;
2029 }
2030
2031 internal_error (_("unknown ptrace event %d"), event);
2032 }
2033
2034 /* Suspend waiting for a signal. We're mostly interested in
2035 SIGCHLD/SIGINT. */
2036
2037 static void
2038 wait_for_signal ()
2039 {
2040 linux_nat_debug_printf ("about to sigsuspend");
2041 sigsuspend (&suspend_mask);
2042
2043 /* If the quit flag is set, it means that the user pressed Ctrl-C
2044 and we're debugging a process that is running on a separate
2045 terminal, so we must forward the Ctrl-C to the inferior. (If the
2046 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2047 inferior directly.) We must do this here because functions that
2048 need to block waiting for a signal loop forever until there's an
2049 event to report before returning back to the event loop. */
2050 if (!target_terminal::is_ours ())
2051 {
2052 if (check_quit_flag ())
2053 target_pass_ctrlc ();
2054 }
2055 }
2056
2057 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2058 exited. */
2059
2060 static int
2061 wait_lwp (struct lwp_info *lp)
2062 {
2063 pid_t pid;
2064 int status = 0;
2065 int thread_dead = 0;
2066 sigset_t prev_mask;
2067
2068 gdb_assert (!lp->stopped);
2069 gdb_assert (lp->status == 0);
2070
2071 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2072 block_child_signals (&prev_mask);
2073
2074 for (;;)
2075 {
2076 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2077 if (pid == -1 && errno == ECHILD)
2078 {
2079 /* The thread has previously exited. We need to delete it
2080 now because if this was a non-leader thread execing, we
2081 won't get an exit event. See comments on exec events at
2082 the top of the file. */
2083 thread_dead = 1;
2084 linux_nat_debug_printf ("%s vanished.",
2085 lp->ptid.to_string ().c_str ());
2086 }
2087 if (pid != 0)
2088 break;
2089
2090 /* Bugs 10970, 12702.
2091 Thread group leader may have exited in which case we'll lock up in
2092 waitpid if there are other threads, even if they are all zombies too.
2093 Basically, we're not supposed to use waitpid this way.
2094 tkill(pid,0) cannot be used here as it gets ESRCH for both
2095 for zombie and running processes.
2096
2097 As a workaround, check if we're waiting for the thread group leader and
2098 if it's a zombie, and avoid calling waitpid if it is.
2099
2100 This is racy, what if the tgl becomes a zombie right after we check?
2101 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2102 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2103
2104 if (lp->ptid.pid () == lp->ptid.lwp ()
2105 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2106 {
2107 thread_dead = 1;
2108 linux_nat_debug_printf ("Thread group leader %s vanished.",
2109 lp->ptid.to_string ().c_str ());
2110 break;
2111 }
2112
2113 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2114 get invoked despite our caller had them intentionally blocked by
2115 block_child_signals. This is sensitive only to the loop of
2116 linux_nat_wait_1 and there if we get called my_waitpid gets called
2117 again before it gets to sigsuspend so we can safely let the handlers
2118 get executed here. */
2119 wait_for_signal ();
2120 }
2121
2122 restore_child_signals_mask (&prev_mask);
2123
2124 if (!thread_dead)
2125 {
2126 gdb_assert (pid == lp->ptid.lwp ());
2127
2128 linux_nat_debug_printf ("waitpid %s received %s",
2129 lp->ptid.to_string ().c_str (),
2130 status_to_str (status).c_str ());
2131
2132 /* Check if the thread has exited. */
2133 if (WIFEXITED (status) || WIFSIGNALED (status))
2134 {
2135 if (report_thread_events
2136 || lp->ptid.pid () == lp->ptid.lwp ())
2137 {
2138 linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ());
2139
2140 /* If this is the leader exiting, it means the whole
2141 process is gone. Store the status to report to the
2142 core. Store it in lp->waitstatus, because lp->status
2143 would be ambiguous (W_EXITCODE(0,0) == 0). */
2144 lp->waitstatus = host_status_to_waitstatus (status);
2145 return 0;
2146 }
2147
2148 thread_dead = 1;
2149 linux_nat_debug_printf ("%s exited.",
2150 lp->ptid.to_string ().c_str ());
2151 }
2152 }
2153
2154 if (thread_dead)
2155 {
2156 exit_lwp (lp);
2157 return 0;
2158 }
2159
2160 gdb_assert (WIFSTOPPED (status));
2161 lp->stopped = 1;
2162
2163 if (lp->must_set_ptrace_flags)
2164 {
2165 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2166 int options = linux_nat_ptrace_options (inf->attach_flag);
2167
2168 linux_enable_event_reporting (lp->ptid.lwp (), options);
2169 lp->must_set_ptrace_flags = 0;
2170 }
2171
2172 /* Handle GNU/Linux's syscall SIGTRAPs. */
2173 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2174 {
2175 /* No longer need the sysgood bit. The ptrace event ends up
2176 recorded in lp->waitstatus if we care for it. We can carry
2177 on handling the event like a regular SIGTRAP from here
2178 on. */
2179 status = W_STOPCODE (SIGTRAP);
2180 if (linux_handle_syscall_trap (lp, 1))
2181 return wait_lwp (lp);
2182 }
2183 else
2184 {
2185 /* Almost all other ptrace-stops are known to be outside of system
2186 calls, with further exceptions in linux_handle_extended_wait. */
2187 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2188 }
2189
2190 /* Handle GNU/Linux's extended waitstatus for trace events. */
2191 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2192 && linux_is_extended_waitstatus (status))
2193 {
2194 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2195 linux_handle_extended_wait (lp, status);
2196 return 0;
2197 }
2198
2199 return status;
2200 }
2201
2202 /* Send a SIGSTOP to LP. */
2203
2204 static int
2205 stop_callback (struct lwp_info *lp)
2206 {
2207 if (!lp->stopped && !lp->signalled)
2208 {
2209 int ret;
2210
2211 linux_nat_debug_printf ("kill %s **<SIGSTOP>**",
2212 lp->ptid.to_string ().c_str ());
2213
2214 errno = 0;
2215 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2216 linux_nat_debug_printf ("lwp kill %d %s", ret,
2217 errno ? safe_strerror (errno) : "ERRNO-OK");
2218
2219 lp->signalled = 1;
2220 gdb_assert (lp->status == 0);
2221 }
2222
2223 return 0;
2224 }
2225
2226 /* Request a stop on LWP. */
2227
2228 void
2229 linux_stop_lwp (struct lwp_info *lwp)
2230 {
2231 stop_callback (lwp);
2232 }
2233
2234 /* See linux-nat.h */
2235
2236 void
2237 linux_stop_and_wait_all_lwps (void)
2238 {
2239 /* Stop all LWP's ... */
2240 iterate_over_lwps (minus_one_ptid, stop_callback);
2241
2242 /* ... and wait until all of them have reported back that
2243 they're no longer running. */
2244 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2245 }
2246
2247 /* See linux-nat.h */
2248
2249 void
2250 linux_unstop_all_lwps (void)
2251 {
2252 iterate_over_lwps (minus_one_ptid,
2253 [] (struct lwp_info *info)
2254 {
2255 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2256 });
2257 }
2258
2259 /* Return non-zero if LWP PID has a pending SIGINT. */
2260
2261 static int
2262 linux_nat_has_pending_sigint (int pid)
2263 {
2264 sigset_t pending, blocked, ignored;
2265
2266 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2267
2268 if (sigismember (&pending, SIGINT)
2269 && !sigismember (&ignored, SIGINT))
2270 return 1;
2271
2272 return 0;
2273 }
2274
2275 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2276
2277 static int
2278 set_ignore_sigint (struct lwp_info *lp)
2279 {
2280 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2281 flag to consume the next one. */
2282 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2283 && WSTOPSIG (lp->status) == SIGINT)
2284 lp->status = 0;
2285 else
2286 lp->ignore_sigint = 1;
2287
2288 return 0;
2289 }
2290
2291 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2292 This function is called after we know the LWP has stopped; if the LWP
2293 stopped before the expected SIGINT was delivered, then it will never have
2294 arrived. Also, if the signal was delivered to a shared queue and consumed
2295 by a different thread, it will never be delivered to this LWP. */
2296
2297 static void
2298 maybe_clear_ignore_sigint (struct lwp_info *lp)
2299 {
2300 if (!lp->ignore_sigint)
2301 return;
2302
2303 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2304 {
2305 linux_nat_debug_printf ("Clearing bogus flag for %s",
2306 lp->ptid.to_string ().c_str ());
2307 lp->ignore_sigint = 0;
2308 }
2309 }
2310
2311 /* Fetch the possible triggered data watchpoint info and store it in
2312 LP.
2313
2314 On some archs, like x86, that use debug registers to set
2315 watchpoints, it's possible that the way to know which watched
2316 address trapped, is to check the register that is used to select
2317 which address to watch. Problem is, between setting the watchpoint
2318 and reading back which data address trapped, the user may change
2319 the set of watchpoints, and, as a consequence, GDB changes the
2320 debug registers in the inferior. To avoid reading back a stale
2321 stopped-data-address when that happens, we cache in LP the fact
2322 that a watchpoint trapped, and the corresponding data address, as
2323 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2324 registers meanwhile, we have the cached data we can rely on. */
2325
2326 static int
2327 check_stopped_by_watchpoint (struct lwp_info *lp)
2328 {
2329 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2330 inferior_ptid = lp->ptid;
2331
2332 if (linux_target->low_stopped_by_watchpoint ())
2333 {
2334 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2335 lp->stopped_data_address_p
2336 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2337 }
2338
2339 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2340 }
2341
2342 /* Returns true if the LWP had stopped for a watchpoint. */
2343
2344 bool
2345 linux_nat_target::stopped_by_watchpoint ()
2346 {
2347 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2348
2349 gdb_assert (lp != NULL);
2350
2351 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2352 }
2353
2354 bool
2355 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2356 {
2357 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2358
2359 gdb_assert (lp != NULL);
2360
2361 *addr_p = lp->stopped_data_address;
2362
2363 return lp->stopped_data_address_p;
2364 }
2365
2366 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2367
2368 bool
2369 linux_nat_target::low_status_is_event (int status)
2370 {
2371 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2372 }
2373
2374 /* Wait until LP is stopped. */
2375
2376 static int
2377 stop_wait_callback (struct lwp_info *lp)
2378 {
2379 inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2380
2381 /* If this is a vfork parent, bail out, it is not going to report
2382 any SIGSTOP until the vfork is done with. */
2383 if (inf->vfork_child != NULL)
2384 return 0;
2385
2386 if (!lp->stopped)
2387 {
2388 int status;
2389
2390 status = wait_lwp (lp);
2391 if (status == 0)
2392 return 0;
2393
2394 if (lp->ignore_sigint && WIFSTOPPED (status)
2395 && WSTOPSIG (status) == SIGINT)
2396 {
2397 lp->ignore_sigint = 0;
2398
2399 errno = 0;
2400 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2401 lp->stopped = 0;
2402 linux_nat_debug_printf
2403 ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)",
2404 lp->ptid.to_string ().c_str (),
2405 errno ? safe_strerror (errno) : "OK");
2406
2407 return stop_wait_callback (lp);
2408 }
2409
2410 maybe_clear_ignore_sigint (lp);
2411
2412 if (WSTOPSIG (status) != SIGSTOP)
2413 {
2414 /* The thread was stopped with a signal other than SIGSTOP. */
2415
2416 linux_nat_debug_printf ("Pending event %s in %s",
2417 status_to_str ((int) status).c_str (),
2418 lp->ptid.to_string ().c_str ());
2419
2420 /* Save the sigtrap event. */
2421 lp->status = status;
2422 gdb_assert (lp->signalled);
2423 save_stop_reason (lp);
2424 }
2425 else
2426 {
2427 /* We caught the SIGSTOP that we intended to catch. */
2428
2429 linux_nat_debug_printf ("Expected SIGSTOP caught for %s.",
2430 lp->ptid.to_string ().c_str ());
2431
2432 lp->signalled = 0;
2433
2434 /* If we are waiting for this stop so we can report the thread
2435 stopped then we need to record this status. Otherwise, we can
2436 now discard this stop event. */
2437 if (lp->last_resume_kind == resume_stop)
2438 {
2439 lp->status = status;
2440 save_stop_reason (lp);
2441 }
2442 }
2443 }
2444
2445 return 0;
2446 }
2447
2448 /* Return non-zero if LP has a wait status pending. Discard the
2449 pending event and resume the LWP if the event that originally
2450 caused the stop became uninteresting. */
2451
2452 static int
2453 status_callback (struct lwp_info *lp)
2454 {
2455 /* Only report a pending wait status if we pretend that this has
2456 indeed been resumed. */
2457 if (!lp->resumed)
2458 return 0;
2459
2460 if (!lwp_status_pending_p (lp))
2461 return 0;
2462
2463 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2464 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2465 {
2466 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
2467 CORE_ADDR pc;
2468 int discard = 0;
2469
2470 pc = regcache_read_pc (regcache);
2471
2472 if (pc != lp->stop_pc)
2473 {
2474 linux_nat_debug_printf ("PC of %s changed. was=%s, now=%s",
2475 lp->ptid.to_string ().c_str (),
2476 paddress (current_inferior ()->arch (),
2477 lp->stop_pc),
2478 paddress (current_inferior ()->arch (), pc));
2479 discard = 1;
2480 }
2481
2482 #if !USE_SIGTRAP_SIGINFO
2483 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2484 {
2485 linux_nat_debug_printf ("previous breakpoint of %s, at %s gone",
2486 lp->ptid.to_string ().c_str (),
2487 paddress (current_inferior ()->arch (),
2488 lp->stop_pc));
2489
2490 discard = 1;
2491 }
2492 #endif
2493
2494 if (discard)
2495 {
2496 linux_nat_debug_printf ("pending event of %s cancelled.",
2497 lp->ptid.to_string ().c_str ());
2498
2499 lp->status = 0;
2500 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2501 return 0;
2502 }
2503 }
2504
2505 return 1;
2506 }
2507
2508 /* Count the LWP's that have had events. */
2509
2510 static int
2511 count_events_callback (struct lwp_info *lp, int *count)
2512 {
2513 gdb_assert (count != NULL);
2514
2515 /* Select only resumed LWPs that have an event pending. */
2516 if (lp->resumed && lwp_status_pending_p (lp))
2517 (*count)++;
2518
2519 return 0;
2520 }
2521
2522 /* Select the LWP (if any) that is currently being single-stepped. */
2523
2524 static int
2525 select_singlestep_lwp_callback (struct lwp_info *lp)
2526 {
2527 if (lp->last_resume_kind == resume_step
2528 && lp->status != 0)
2529 return 1;
2530 else
2531 return 0;
2532 }
2533
2534 /* Returns true if LP has a status pending. */
2535
2536 static int
2537 lwp_status_pending_p (struct lwp_info *lp)
2538 {
2539 /* We check for lp->waitstatus in addition to lp->status, because we
2540 can have pending process exits recorded in lp->status and
2541 W_EXITCODE(0,0) happens to be 0. */
2542 return lp->status != 0 || lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE;
2543 }
2544
2545 /* Select the Nth LWP that has had an event. */
2546
2547 static int
2548 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2549 {
2550 gdb_assert (selector != NULL);
2551
2552 /* Select only resumed LWPs that have an event pending. */
2553 if (lp->resumed && lwp_status_pending_p (lp))
2554 if ((*selector)-- == 0)
2555 return 1;
2556
2557 return 0;
2558 }
2559
2560 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2561 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2562 and save the result in the LWP's stop_reason field. If it stopped
2563 for a breakpoint, decrement the PC if necessary on the lwp's
2564 architecture. */
2565
2566 static void
2567 save_stop_reason (struct lwp_info *lp)
2568 {
2569 struct regcache *regcache;
2570 struct gdbarch *gdbarch;
2571 CORE_ADDR pc;
2572 CORE_ADDR sw_bp_pc;
2573 #if USE_SIGTRAP_SIGINFO
2574 siginfo_t siginfo;
2575 #endif
2576
2577 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2578 gdb_assert (lp->status != 0);
2579
2580 if (!linux_target->low_status_is_event (lp->status))
2581 return;
2582
2583 inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2584 if (inf->starting_up)
2585 return;
2586
2587 regcache = get_thread_regcache (linux_target, lp->ptid);
2588 gdbarch = regcache->arch ();
2589
2590 pc = regcache_read_pc (regcache);
2591 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2592
2593 #if USE_SIGTRAP_SIGINFO
2594 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2595 {
2596 if (siginfo.si_signo == SIGTRAP)
2597 {
2598 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2599 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2600 {
2601 /* The si_code is ambiguous on this arch -- check debug
2602 registers. */
2603 if (!check_stopped_by_watchpoint (lp))
2604 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2605 }
2606 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2607 {
2608 /* If we determine the LWP stopped for a SW breakpoint,
2609 trust it. Particularly don't check watchpoint
2610 registers, because, at least on s390, we'd find
2611 stopped-by-watchpoint as long as there's a watchpoint
2612 set. */
2613 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2614 }
2615 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2616 {
2617 /* This can indicate either a hardware breakpoint or
2618 hardware watchpoint. Check debug registers. */
2619 if (!check_stopped_by_watchpoint (lp))
2620 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2621 }
2622 else if (siginfo.si_code == TRAP_TRACE)
2623 {
2624 linux_nat_debug_printf ("%s stopped by trace",
2625 lp->ptid.to_string ().c_str ());
2626
2627 /* We may have single stepped an instruction that
2628 triggered a watchpoint. In that case, on some
2629 architectures (such as x86), instead of TRAP_HWBKPT,
2630 si_code indicates TRAP_TRACE, and we need to check
2631 the debug registers separately. */
2632 check_stopped_by_watchpoint (lp);
2633 }
2634 }
2635 }
2636 #else
2637 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2638 && software_breakpoint_inserted_here_p (regcache->aspace (),
2639 sw_bp_pc))
2640 {
2641 /* The LWP was either continued, or stepped a software
2642 breakpoint instruction. */
2643 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2644 }
2645
2646 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2647 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2648
2649 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2650 check_stopped_by_watchpoint (lp);
2651 #endif
2652
2653 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2654 {
2655 linux_nat_debug_printf ("%s stopped by software breakpoint",
2656 lp->ptid.to_string ().c_str ());
2657
2658 /* Back up the PC if necessary. */
2659 if (pc != sw_bp_pc)
2660 regcache_write_pc (regcache, sw_bp_pc);
2661
2662 /* Update this so we record the correct stop PC below. */
2663 pc = sw_bp_pc;
2664 }
2665 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2666 {
2667 linux_nat_debug_printf ("%s stopped by hardware breakpoint",
2668 lp->ptid.to_string ().c_str ());
2669 }
2670 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2671 {
2672 linux_nat_debug_printf ("%s stopped by hardware watchpoint",
2673 lp->ptid.to_string ().c_str ());
2674 }
2675
2676 lp->stop_pc = pc;
2677 }
2678
2679
2680 /* Returns true if the LWP had stopped for a software breakpoint. */
2681
2682 bool
2683 linux_nat_target::stopped_by_sw_breakpoint ()
2684 {
2685 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2686
2687 gdb_assert (lp != NULL);
2688
2689 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2690 }
2691
2692 /* Implement the supports_stopped_by_sw_breakpoint method. */
2693
2694 bool
2695 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2696 {
2697 return USE_SIGTRAP_SIGINFO;
2698 }
2699
2700 /* Returns true if the LWP had stopped for a hardware
2701 breakpoint/watchpoint. */
2702
2703 bool
2704 linux_nat_target::stopped_by_hw_breakpoint ()
2705 {
2706 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2707
2708 gdb_assert (lp != NULL);
2709
2710 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2711 }
2712
2713 /* Implement the supports_stopped_by_hw_breakpoint method. */
2714
2715 bool
2716 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2717 {
2718 return USE_SIGTRAP_SIGINFO;
2719 }
2720
2721 /* Select one LWP out of those that have events pending. */
2722
2723 static void
2724 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2725 {
2726 int num_events = 0;
2727 int random_selector;
2728 struct lwp_info *event_lp = NULL;
2729
2730 /* Record the wait status for the original LWP. */
2731 (*orig_lp)->status = *status;
2732
2733 /* In all-stop, give preference to the LWP that is being
2734 single-stepped. There will be at most one, and it will be the
2735 LWP that the core is most interested in. If we didn't do this,
2736 then we'd have to handle pending step SIGTRAPs somehow in case
2737 the core later continues the previously-stepped thread, as
2738 otherwise we'd report the pending SIGTRAP then, and the core, not
2739 having stepped the thread, wouldn't understand what the trap was
2740 for, and therefore would report it to the user as a random
2741 signal. */
2742 if (!target_is_non_stop_p ())
2743 {
2744 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2745 if (event_lp != NULL)
2746 {
2747 linux_nat_debug_printf ("Select single-step %s",
2748 event_lp->ptid.to_string ().c_str ());
2749 }
2750 }
2751
2752 if (event_lp == NULL)
2753 {
2754 /* Pick one at random, out of those which have had events. */
2755
2756 /* First see how many events we have. */
2757 iterate_over_lwps (filter,
2758 [&] (struct lwp_info *info)
2759 {
2760 return count_events_callback (info, &num_events);
2761 });
2762 gdb_assert (num_events > 0);
2763
2764 /* Now randomly pick a LWP out of those that have had
2765 events. */
2766 random_selector = (int)
2767 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2768
2769 if (num_events > 1)
2770 linux_nat_debug_printf ("Found %d events, selecting #%d",
2771 num_events, random_selector);
2772
2773 event_lp
2774 = (iterate_over_lwps
2775 (filter,
2776 [&] (struct lwp_info *info)
2777 {
2778 return select_event_lwp_callback (info,
2779 &random_selector);
2780 }));
2781 }
2782
2783 if (event_lp != NULL)
2784 {
2785 /* Switch the event LWP. */
2786 *orig_lp = event_lp;
2787 *status = event_lp->status;
2788 }
2789
2790 /* Flush the wait status for the event LWP. */
2791 (*orig_lp)->status = 0;
2792 }
2793
2794 /* Return non-zero if LP has been resumed. */
2795
2796 static int
2797 resumed_callback (struct lwp_info *lp)
2798 {
2799 return lp->resumed;
2800 }
2801
2802 /* Check if we should go on and pass this event to common code.
2803
2804 If so, save the status to the lwp_info structure associated to LWPID. */
2805
2806 static void
2807 linux_nat_filter_event (int lwpid, int status)
2808 {
2809 struct lwp_info *lp;
2810 int event = linux_ptrace_get_extended_event (status);
2811
2812 lp = find_lwp_pid (ptid_t (lwpid));
2813
2814 /* Check for events reported by anything not in our LWP list. */
2815 if (lp == nullptr)
2816 {
2817 if (WIFSTOPPED (status))
2818 {
2819 if (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC)
2820 {
2821 /* A non-leader thread exec'ed after we've seen the
2822 leader zombie, and removed it from our lists (in
2823 check_zombie_leaders). The non-leader thread changes
2824 its tid to the tgid. */
2825 linux_nat_debug_printf
2826 ("Re-adding thread group leader LWP %d after exec.",
2827 lwpid);
2828
2829 lp = add_lwp (ptid_t (lwpid, lwpid));
2830 lp->stopped = 1;
2831 lp->resumed = 1;
2832 add_thread (linux_target, lp->ptid);
2833 }
2834 else
2835 {
2836 /* A process we are controlling has forked and the new
2837 child's stop was reported to us by the kernel. Save
2838 its PID and go back to waiting for the fork event to
2839 be reported - the stopped process might be returned
2840 from waitpid before or after the fork event is. */
2841 linux_nat_debug_printf
2842 ("Saving LWP %d status %s in stopped_pids list",
2843 lwpid, status_to_str (status).c_str ());
2844 add_to_pid_list (&stopped_pids, lwpid, status);
2845 }
2846 }
2847 else
2848 {
2849 /* Don't report an event for the exit of an LWP not in our
2850 list, i.e. not part of any inferior we're debugging.
2851 This can happen if we detach from a program we originally
2852 forked and then it exits. However, note that we may have
2853 earlier deleted a leader of an inferior we're debugging,
2854 in check_zombie_leaders. Re-add it back here if so. */
2855 for (inferior *inf : all_inferiors (linux_target))
2856 {
2857 if (inf->pid == lwpid)
2858 {
2859 linux_nat_debug_printf
2860 ("Re-adding thread group leader LWP %d after exit.",
2861 lwpid);
2862
2863 lp = add_lwp (ptid_t (lwpid, lwpid));
2864 lp->resumed = 1;
2865 add_thread (linux_target, lp->ptid);
2866 break;
2867 }
2868 }
2869 }
2870
2871 if (lp == nullptr)
2872 return;
2873 }
2874
2875 /* This LWP is stopped now. (And if dead, this prevents it from
2876 ever being continued.) */
2877 lp->stopped = 1;
2878
2879 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2880 {
2881 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2882 int options = linux_nat_ptrace_options (inf->attach_flag);
2883
2884 linux_enable_event_reporting (lp->ptid.lwp (), options);
2885 lp->must_set_ptrace_flags = 0;
2886 }
2887
2888 /* Handle GNU/Linux's syscall SIGTRAPs. */
2889 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2890 {
2891 /* No longer need the sysgood bit. The ptrace event ends up
2892 recorded in lp->waitstatus if we care for it. We can carry
2893 on handling the event like a regular SIGTRAP from here
2894 on. */
2895 status = W_STOPCODE (SIGTRAP);
2896 if (linux_handle_syscall_trap (lp, 0))
2897 return;
2898 }
2899 else
2900 {
2901 /* Almost all other ptrace-stops are known to be outside of system
2902 calls, with further exceptions in linux_handle_extended_wait. */
2903 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2904 }
2905
2906 /* Handle GNU/Linux's extended waitstatus for trace events. */
2907 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2908 && linux_is_extended_waitstatus (status))
2909 {
2910 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2911
2912 if (linux_handle_extended_wait (lp, status))
2913 return;
2914 }
2915
2916 /* Check if the thread has exited. */
2917 if (WIFEXITED (status) || WIFSIGNALED (status))
2918 {
2919 if (!report_thread_events && !is_leader (lp))
2920 {
2921 linux_nat_debug_printf ("%s exited.",
2922 lp->ptid.to_string ().c_str ());
2923
2924 /* If this was not the leader exiting, then the exit signal
2925 was not the end of the debugged application and should be
2926 ignored. */
2927 exit_lwp (lp);
2928 return;
2929 }
2930
2931 /* Note that even if the leader was ptrace-stopped, it can still
2932 exit, if e.g., some other thread brings down the whole
2933 process (calls `exit'). So don't assert that the lwp is
2934 resumed. */
2935 linux_nat_debug_printf ("LWP %ld exited (resumed=%d)",
2936 lp->ptid.lwp (), lp->resumed);
2937
2938 /* Dead LWP's aren't expected to reported a pending sigstop. */
2939 lp->signalled = 0;
2940
2941 /* Store the pending event in the waitstatus, because
2942 W_EXITCODE(0,0) == 0. */
2943 lp->waitstatus = host_status_to_waitstatus (status);
2944 return;
2945 }
2946
2947 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2948 an attempt to stop an LWP. */
2949 if (lp->signalled
2950 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2951 {
2952 lp->signalled = 0;
2953
2954 if (lp->last_resume_kind == resume_stop)
2955 {
2956 linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.",
2957 lp->ptid.to_string ().c_str ());
2958 }
2959 else
2960 {
2961 /* This is a delayed SIGSTOP. Filter out the event. */
2962
2963 linux_nat_debug_printf
2964 ("%s %s, 0, 0 (discard delayed SIGSTOP)",
2965 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2966 lp->ptid.to_string ().c_str ());
2967
2968 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2969 gdb_assert (lp->resumed);
2970 return;
2971 }
2972 }
2973
2974 /* Make sure we don't report a SIGINT that we have already displayed
2975 for another thread. */
2976 if (lp->ignore_sigint
2977 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2978 {
2979 linux_nat_debug_printf ("Delayed SIGINT caught for %s.",
2980 lp->ptid.to_string ().c_str ());
2981
2982 /* This is a delayed SIGINT. */
2983 lp->ignore_sigint = 0;
2984
2985 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2986 linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)",
2987 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2988 lp->ptid.to_string ().c_str ());
2989 gdb_assert (lp->resumed);
2990
2991 /* Discard the event. */
2992 return;
2993 }
2994
2995 /* Don't report signals that GDB isn't interested in, such as
2996 signals that are neither printed nor stopped upon. Stopping all
2997 threads can be a bit time-consuming, so if we want decent
2998 performance with heavily multi-threaded programs, especially when
2999 they're using a high frequency timer, we'd better avoid it if we
3000 can. */
3001 if (WIFSTOPPED (status))
3002 {
3003 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3004
3005 if (!target_is_non_stop_p ())
3006 {
3007 /* Only do the below in all-stop, as we currently use SIGSTOP
3008 to implement target_stop (see linux_nat_stop) in
3009 non-stop. */
3010 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3011 {
3012 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3013 forwarded to the entire process group, that is, all LWPs
3014 will receive it - unless they're using CLONE_THREAD to
3015 share signals. Since we only want to report it once, we
3016 mark it as ignored for all LWPs except this one. */
3017 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3018 lp->ignore_sigint = 0;
3019 }
3020 else
3021 maybe_clear_ignore_sigint (lp);
3022 }
3023
3024 /* When using hardware single-step, we need to report every signal.
3025 Otherwise, signals in pass_mask may be short-circuited
3026 except signals that might be caused by a breakpoint, or SIGSTOP
3027 if we sent the SIGSTOP and are waiting for it to arrive. */
3028 if (!lp->step
3029 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3030 && (WSTOPSIG (status) != SIGSTOP
3031 || !linux_target->find_thread (lp->ptid)->stop_requested)
3032 && !linux_wstatus_maybe_breakpoint (status))
3033 {
3034 linux_resume_one_lwp (lp, lp->step, signo);
3035 linux_nat_debug_printf
3036 ("%s %s, %s (preempt 'handle')",
3037 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3038 lp->ptid.to_string ().c_str (),
3039 (signo != GDB_SIGNAL_0
3040 ? strsignal (gdb_signal_to_host (signo)) : "0"));
3041 return;
3042 }
3043 }
3044
3045 /* An interesting event. */
3046 gdb_assert (lp);
3047 lp->status = status;
3048 save_stop_reason (lp);
3049 }
3050
3051 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3052 their exits until all other threads in the group have exited. */
3053
3054 static void
3055 check_zombie_leaders (void)
3056 {
3057 for (inferior *inf : all_inferiors ())
3058 {
3059 struct lwp_info *leader_lp;
3060
3061 if (inf->pid == 0)
3062 continue;
3063
3064 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3065 if (leader_lp != NULL
3066 /* Check if there are other threads in the group, as we may
3067 have raced with the inferior simply exiting. Note this
3068 isn't a watertight check. If the inferior is
3069 multi-threaded and is exiting, it may be we see the
3070 leader as zombie before we reap all the non-leader
3071 threads. See comments below. */
3072 && num_lwps (inf->pid) > 1
3073 && linux_proc_pid_is_zombie (inf->pid))
3074 {
3075 /* A zombie leader in a multi-threaded program can mean one
3076 of three things:
3077
3078 #1 - Only the leader exited, not the whole program, e.g.,
3079 with pthread_exit. Since we can't reap the leader's exit
3080 status until all other threads are gone and reaped too,
3081 we want to delete the zombie leader right away, as it
3082 can't be debugged, we can't read its registers, etc.
3083 This is the main reason we check for zombie leaders
3084 disappearing.
3085
3086 #2 - The whole thread-group/process exited (a group exit,
3087 via e.g. exit(3), and there is (or will be shortly) an
3088 exit reported for each thread in the process, and then
3089 finally an exit for the leader once the non-leaders are
3090 reaped.
3091
3092 #3 - There are 3 or more threads in the group, and a
3093 thread other than the leader exec'd. See comments on
3094 exec events at the top of the file.
3095
3096 Ideally we would never delete the leader for case #2.
3097 Instead, we want to collect the exit status of each
3098 non-leader thread, and then finally collect the exit
3099 status of the leader as normal and use its exit code as
3100 whole-process exit code. Unfortunately, there's no
3101 race-free way to distinguish cases #1 and #2. We can't
3102 assume the exit events for the non-leaders threads are
3103 already pending in the kernel, nor can we assume the
3104 non-leader threads are in zombie state already. Between
3105 the leader becoming zombie and the non-leaders exiting
3106 and becoming zombie themselves, there's a small time
3107 window, so such a check would be racy. Temporarily
3108 pausing all threads and checking to see if all threads
3109 exit or not before re-resuming them would work in the
3110 case that all threads are running right now, but it
3111 wouldn't work if some thread is currently already
3112 ptrace-stopped, e.g., due to scheduler-locking.
3113
3114 So what we do is we delete the leader anyhow, and then
3115 later on when we see its exit status, we re-add it back.
3116 We also make sure that we only report a whole-process
3117 exit when we see the leader exiting, as opposed to when
3118 the last LWP in the LWP list exits, which can be a
3119 non-leader if we deleted the leader here. */
3120 linux_nat_debug_printf ("Thread group leader %d zombie "
3121 "(it exited, or another thread execd), "
3122 "deleting it.",
3123 inf->pid);
3124 exit_lwp (leader_lp);
3125 }
3126 }
3127 }
3128
3129 /* Convenience function that is called when the kernel reports an exit
3130 event. This decides whether to report the event to GDB as a
3131 process exit event, a thread exit event, or to suppress the
3132 event. */
3133
3134 static ptid_t
3135 filter_exit_event (struct lwp_info *event_child,
3136 struct target_waitstatus *ourstatus)
3137 {
3138 ptid_t ptid = event_child->ptid;
3139
3140 if (!is_leader (event_child))
3141 {
3142 if (report_thread_events)
3143 ourstatus->set_thread_exited (0);
3144 else
3145 ourstatus->set_ignore ();
3146
3147 exit_lwp (event_child);
3148 }
3149
3150 return ptid;
3151 }
3152
3153 static ptid_t
3154 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3155 target_wait_flags target_options)
3156 {
3157 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
3158
3159 sigset_t prev_mask;
3160 enum resume_kind last_resume_kind;
3161 struct lwp_info *lp;
3162 int status;
3163
3164 /* The first time we get here after starting a new inferior, we may
3165 not have added it to the LWP list yet - this is the earliest
3166 moment at which we know its PID. */
3167 if (ptid.is_pid () && find_lwp_pid (ptid) == nullptr)
3168 {
3169 ptid_t lwp_ptid (ptid.pid (), ptid.pid ());
3170
3171 /* Upgrade the main thread's ptid. */
3172 thread_change_ptid (linux_target, ptid, lwp_ptid);
3173 lp = add_initial_lwp (lwp_ptid);
3174 lp->resumed = 1;
3175 }
3176
3177 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3178 block_child_signals (&prev_mask);
3179
3180 /* First check if there is a LWP with a wait status pending. */
3181 lp = iterate_over_lwps (ptid, status_callback);
3182 if (lp != NULL)
3183 {
3184 linux_nat_debug_printf ("Using pending wait status %s for %s.",
3185 pending_status_str (lp).c_str (),
3186 lp->ptid.to_string ().c_str ());
3187 }
3188
3189 /* But if we don't find a pending event, we'll have to wait. Always
3190 pull all events out of the kernel. We'll randomly select an
3191 event LWP out of all that have events, to prevent starvation. */
3192
3193 while (lp == NULL)
3194 {
3195 pid_t lwpid;
3196
3197 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3198 quirks:
3199
3200 - If the thread group leader exits while other threads in the
3201 thread group still exist, waitpid(TGID, ...) hangs. That
3202 waitpid won't return an exit status until the other threads
3203 in the group are reaped.
3204
3205 - When a non-leader thread execs, that thread just vanishes
3206 without reporting an exit (so we'd hang if we waited for it
3207 explicitly in that case). The exec event is reported to
3208 the TGID pid. */
3209
3210 errno = 0;
3211 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3212
3213 linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s",
3214 lwpid,
3215 errno ? safe_strerror (errno) : "ERRNO-OK");
3216
3217 if (lwpid > 0)
3218 {
3219 linux_nat_debug_printf ("waitpid %ld received %s",
3220 (long) lwpid,
3221 status_to_str (status).c_str ());
3222
3223 linux_nat_filter_event (lwpid, status);
3224 /* Retry until nothing comes out of waitpid. A single
3225 SIGCHLD can indicate more than one child stopped. */
3226 continue;
3227 }
3228
3229 /* Now that we've pulled all events out of the kernel, resume
3230 LWPs that don't have an interesting event to report. */
3231 iterate_over_lwps (minus_one_ptid,
3232 [] (struct lwp_info *info)
3233 {
3234 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3235 });
3236
3237 /* ... and find an LWP with a status to report to the core, if
3238 any. */
3239 lp = iterate_over_lwps (ptid, status_callback);
3240 if (lp != NULL)
3241 break;
3242
3243 /* Check for zombie thread group leaders. Those can't be reaped
3244 until all other threads in the thread group are. */
3245 check_zombie_leaders ();
3246
3247 /* If there are no resumed children left, bail. We'd be stuck
3248 forever in the sigsuspend call below otherwise. */
3249 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3250 {
3251 linux_nat_debug_printf ("exit (no resumed LWP)");
3252
3253 ourstatus->set_no_resumed ();
3254
3255 restore_child_signals_mask (&prev_mask);
3256 return minus_one_ptid;
3257 }
3258
3259 /* No interesting event to report to the core. */
3260
3261 if (target_options & TARGET_WNOHANG)
3262 {
3263 linux_nat_debug_printf ("no interesting events found");
3264
3265 ourstatus->set_ignore ();
3266 restore_child_signals_mask (&prev_mask);
3267 return minus_one_ptid;
3268 }
3269
3270 /* We shouldn't end up here unless we want to try again. */
3271 gdb_assert (lp == NULL);
3272
3273 /* Block until we get an event reported with SIGCHLD. */
3274 wait_for_signal ();
3275 }
3276
3277 gdb_assert (lp);
3278
3279 status = lp->status;
3280 lp->status = 0;
3281
3282 if (!target_is_non_stop_p ())
3283 {
3284 /* Now stop all other LWP's ... */
3285 iterate_over_lwps (minus_one_ptid, stop_callback);
3286
3287 /* ... and wait until all of them have reported back that
3288 they're no longer running. */
3289 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3290 }
3291
3292 /* If we're not waiting for a specific LWP, choose an event LWP from
3293 among those that have had events. Giving equal priority to all
3294 LWPs that have had events helps prevent starvation. */
3295 if (ptid == minus_one_ptid || ptid.is_pid ())
3296 select_event_lwp (ptid, &lp, &status);
3297
3298 gdb_assert (lp != NULL);
3299
3300 /* Now that we've selected our final event LWP, un-adjust its PC if
3301 it was a software breakpoint, and we can't reliably support the
3302 "stopped by software breakpoint" stop reason. */
3303 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3304 && !USE_SIGTRAP_SIGINFO)
3305 {
3306 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3307 struct gdbarch *gdbarch = regcache->arch ();
3308 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3309
3310 if (decr_pc != 0)
3311 {
3312 CORE_ADDR pc;
3313
3314 pc = regcache_read_pc (regcache);
3315 regcache_write_pc (regcache, pc + decr_pc);
3316 }
3317 }
3318
3319 /* We'll need this to determine whether to report a SIGSTOP as
3320 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3321 clears it. */
3322 last_resume_kind = lp->last_resume_kind;
3323
3324 if (!target_is_non_stop_p ())
3325 {
3326 /* In all-stop, from the core's perspective, all LWPs are now
3327 stopped until a new resume action is sent over. */
3328 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3329 }
3330 else
3331 {
3332 resume_clear_callback (lp);
3333 }
3334
3335 if (linux_target->low_status_is_event (status))
3336 {
3337 linux_nat_debug_printf ("trap ptid is %s.",
3338 lp->ptid.to_string ().c_str ());
3339 }
3340
3341 if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE)
3342 {
3343 *ourstatus = lp->waitstatus;
3344 lp->waitstatus.set_ignore ();
3345 }
3346 else
3347 *ourstatus = host_status_to_waitstatus (status);
3348
3349 linux_nat_debug_printf ("event found");
3350
3351 restore_child_signals_mask (&prev_mask);
3352
3353 if (last_resume_kind == resume_stop
3354 && ourstatus->kind () == TARGET_WAITKIND_STOPPED
3355 && WSTOPSIG (status) == SIGSTOP)
3356 {
3357 /* A thread that has been requested to stop by GDB with
3358 target_stop, and it stopped cleanly, so report as SIG0. The
3359 use of SIGSTOP is an implementation detail. */
3360 ourstatus->set_stopped (GDB_SIGNAL_0);
3361 }
3362
3363 if (ourstatus->kind () == TARGET_WAITKIND_EXITED
3364 || ourstatus->kind () == TARGET_WAITKIND_SIGNALLED)
3365 lp->core = -1;
3366 else
3367 lp->core = linux_common_core_of_thread (lp->ptid);
3368
3369 if (ourstatus->kind () == TARGET_WAITKIND_EXITED)
3370 return filter_exit_event (lp, ourstatus);
3371
3372 return lp->ptid;
3373 }
3374
3375 /* Resume LWPs that are currently stopped without any pending status
3376 to report, but are resumed from the core's perspective. */
3377
3378 static int
3379 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3380 {
3381 inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
3382
3383 if (!lp->stopped)
3384 {
3385 linux_nat_debug_printf ("NOT resuming LWP %s, not stopped",
3386 lp->ptid.to_string ().c_str ());
3387 }
3388 else if (!lp->resumed)
3389 {
3390 linux_nat_debug_printf ("NOT resuming LWP %s, not resumed",
3391 lp->ptid.to_string ().c_str ());
3392 }
3393 else if (lwp_status_pending_p (lp))
3394 {
3395 linux_nat_debug_printf ("NOT resuming LWP %s, has pending status",
3396 lp->ptid.to_string ().c_str ());
3397 }
3398 else if (inf->vfork_child != nullptr)
3399 {
3400 linux_nat_debug_printf ("NOT resuming LWP %s (vfork parent)",
3401 lp->ptid.to_string ().c_str ());
3402 }
3403 else
3404 {
3405 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3406 struct gdbarch *gdbarch = regcache->arch ();
3407
3408 try
3409 {
3410 CORE_ADDR pc = regcache_read_pc (regcache);
3411 int leave_stopped = 0;
3412
3413 /* Don't bother if there's a breakpoint at PC that we'd hit
3414 immediately, and we're not waiting for this LWP. */
3415 if (!lp->ptid.matches (wait_ptid))
3416 {
3417 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3418 leave_stopped = 1;
3419 }
3420
3421 if (!leave_stopped)
3422 {
3423 linux_nat_debug_printf
3424 ("resuming stopped-resumed LWP %s at %s: step=%d",
3425 lp->ptid.to_string ().c_str (), paddress (gdbarch, pc),
3426 lp->step);
3427
3428 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3429 }
3430 }
3431 catch (const gdb_exception_error &ex)
3432 {
3433 if (!check_ptrace_stopped_lwp_gone (lp))
3434 throw;
3435 }
3436 }
3437
3438 return 0;
3439 }
3440
3441 ptid_t
3442 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3443 target_wait_flags target_options)
3444 {
3445 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
3446
3447 ptid_t event_ptid;
3448
3449 linux_nat_debug_printf ("[%s], [%s]", ptid.to_string ().c_str (),
3450 target_options_to_string (target_options).c_str ());
3451
3452 /* Flush the async file first. */
3453 if (target_is_async_p ())
3454 async_file_flush ();
3455
3456 /* Resume LWPs that are currently stopped without any pending status
3457 to report, but are resumed from the core's perspective. LWPs get
3458 in this state if we find them stopping at a time we're not
3459 interested in reporting the event (target_wait on a
3460 specific_process, for example, see linux_nat_wait_1), and
3461 meanwhile the event became uninteresting. Don't bother resuming
3462 LWPs we're not going to wait for if they'd stop immediately. */
3463 if (target_is_non_stop_p ())
3464 iterate_over_lwps (minus_one_ptid,
3465 [=] (struct lwp_info *info)
3466 {
3467 return resume_stopped_resumed_lwps (info, ptid);
3468 });
3469
3470 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3471
3472 /* If we requested any event, and something came out, assume there
3473 may be more. If we requested a specific lwp or process, also
3474 assume there may be more. */
3475 if (target_is_async_p ()
3476 && ((ourstatus->kind () != TARGET_WAITKIND_IGNORE
3477 && ourstatus->kind () != TARGET_WAITKIND_NO_RESUMED)
3478 || ptid != minus_one_ptid))
3479 async_file_mark ();
3480
3481 return event_ptid;
3482 }
3483
3484 /* Kill one LWP. */
3485
3486 static void
3487 kill_one_lwp (pid_t pid)
3488 {
3489 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3490
3491 errno = 0;
3492 kill_lwp (pid, SIGKILL);
3493
3494 if (debug_linux_nat)
3495 {
3496 int save_errno = errno;
3497
3498 linux_nat_debug_printf
3499 ("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid,
3500 save_errno != 0 ? safe_strerror (save_errno) : "OK");
3501 }
3502
3503 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3504
3505 errno = 0;
3506 ptrace (PTRACE_KILL, pid, 0, 0);
3507 if (debug_linux_nat)
3508 {
3509 int save_errno = errno;
3510
3511 linux_nat_debug_printf
3512 ("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid,
3513 save_errno ? safe_strerror (save_errno) : "OK");
3514 }
3515 }
3516
3517 /* Wait for an LWP to die. */
3518
3519 static void
3520 kill_wait_one_lwp (pid_t pid)
3521 {
3522 pid_t res;
3523
3524 /* We must make sure that there are no pending events (delayed
3525 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3526 program doesn't interfere with any following debugging session. */
3527
3528 do
3529 {
3530 res = my_waitpid (pid, NULL, __WALL);
3531 if (res != (pid_t) -1)
3532 {
3533 linux_nat_debug_printf ("wait %ld received unknown.", (long) pid);
3534
3535 /* The Linux kernel sometimes fails to kill a thread
3536 completely after PTRACE_KILL; that goes from the stop
3537 point in do_fork out to the one in get_signal_to_deliver
3538 and waits again. So kill it again. */
3539 kill_one_lwp (pid);
3540 }
3541 }
3542 while (res == pid);
3543
3544 gdb_assert (res == -1 && errno == ECHILD);
3545 }
3546
3547 /* Callback for iterate_over_lwps. */
3548
3549 static int
3550 kill_callback (struct lwp_info *lp)
3551 {
3552 kill_one_lwp (lp->ptid.lwp ());
3553 return 0;
3554 }
3555
3556 /* Callback for iterate_over_lwps. */
3557
3558 static int
3559 kill_wait_callback (struct lwp_info *lp)
3560 {
3561 kill_wait_one_lwp (lp->ptid.lwp ());
3562 return 0;
3563 }
3564
3565 /* Kill the fork children of any threads of inferior INF that are
3566 stopped at a fork event. */
3567
3568 static void
3569 kill_unfollowed_fork_children (struct inferior *inf)
3570 {
3571 for (thread_info *thread : inf->non_exited_threads ())
3572 {
3573 struct target_waitstatus *ws = &thread->pending_follow;
3574
3575 if (ws->kind () == TARGET_WAITKIND_FORKED
3576 || ws->kind () == TARGET_WAITKIND_VFORKED)
3577 {
3578 ptid_t child_ptid = ws->child_ptid ();
3579 int child_pid = child_ptid.pid ();
3580 int child_lwp = child_ptid.lwp ();
3581
3582 kill_one_lwp (child_lwp);
3583 kill_wait_one_lwp (child_lwp);
3584
3585 /* Let the arch-specific native code know this process is
3586 gone. */
3587 linux_target->low_forget_process (child_pid);
3588 }
3589 }
3590 }
3591
3592 void
3593 linux_nat_target::kill ()
3594 {
3595 /* If we're stopped while forking and we haven't followed yet,
3596 kill the other task. We need to do this first because the
3597 parent will be sleeping if this is a vfork. */
3598 kill_unfollowed_fork_children (current_inferior ());
3599
3600 if (forks_exist_p ())
3601 linux_fork_killall ();
3602 else
3603 {
3604 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3605
3606 /* Stop all threads before killing them, since ptrace requires
3607 that the thread is stopped to successfully PTRACE_KILL. */
3608 iterate_over_lwps (ptid, stop_callback);
3609 /* ... and wait until all of them have reported back that
3610 they're no longer running. */
3611 iterate_over_lwps (ptid, stop_wait_callback);
3612
3613 /* Kill all LWP's ... */
3614 iterate_over_lwps (ptid, kill_callback);
3615
3616 /* ... and wait until we've flushed all events. */
3617 iterate_over_lwps (ptid, kill_wait_callback);
3618 }
3619
3620 target_mourn_inferior (inferior_ptid);
3621 }
3622
3623 void
3624 linux_nat_target::mourn_inferior ()
3625 {
3626 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
3627
3628 int pid = inferior_ptid.pid ();
3629
3630 purge_lwp_list (pid);
3631
3632 close_proc_mem_file (pid);
3633
3634 if (! forks_exist_p ())
3635 /* Normal case, no other forks available. */
3636 inf_ptrace_target::mourn_inferior ();
3637 else
3638 /* Multi-fork case. The current inferior_ptid has exited, but
3639 there are other viable forks to debug. Delete the exiting
3640 one and context-switch to the first available. */
3641 linux_fork_mourn_inferior ();
3642
3643 /* Let the arch-specific native code know this process is gone. */
3644 linux_target->low_forget_process (pid);
3645 }
3646
3647 /* Convert a native/host siginfo object, into/from the siginfo in the
3648 layout of the inferiors' architecture. */
3649
3650 static void
3651 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3652 {
3653 /* If the low target didn't do anything, then just do a straight
3654 memcpy. */
3655 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3656 {
3657 if (direction == 1)
3658 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3659 else
3660 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3661 }
3662 }
3663
3664 static enum target_xfer_status
3665 linux_xfer_siginfo (ptid_t ptid, enum target_object object,
3666 const char *annex, gdb_byte *readbuf,
3667 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3668 ULONGEST *xfered_len)
3669 {
3670 siginfo_t siginfo;
3671 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3672
3673 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3674 gdb_assert (readbuf || writebuf);
3675
3676 if (offset > sizeof (siginfo))
3677 return TARGET_XFER_E_IO;
3678
3679 if (!linux_nat_get_siginfo (ptid, &siginfo))
3680 return TARGET_XFER_E_IO;
3681
3682 /* When GDB is built as a 64-bit application, ptrace writes into
3683 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3684 inferior with a 64-bit GDB should look the same as debugging it
3685 with a 32-bit GDB, we need to convert it. GDB core always sees
3686 the converted layout, so any read/write will have to be done
3687 post-conversion. */
3688 siginfo_fixup (&siginfo, inf_siginfo, 0);
3689
3690 if (offset + len > sizeof (siginfo))
3691 len = sizeof (siginfo) - offset;
3692
3693 if (readbuf != NULL)
3694 memcpy (readbuf, inf_siginfo + offset, len);
3695 else
3696 {
3697 memcpy (inf_siginfo + offset, writebuf, len);
3698
3699 /* Convert back to ptrace layout before flushing it out. */
3700 siginfo_fixup (&siginfo, inf_siginfo, 1);
3701
3702 int pid = get_ptrace_pid (ptid);
3703 errno = 0;
3704 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3705 if (errno != 0)
3706 return TARGET_XFER_E_IO;
3707 }
3708
3709 *xfered_len = len;
3710 return TARGET_XFER_OK;
3711 }
3712
3713 static enum target_xfer_status
3714 linux_nat_xfer_osdata (enum target_object object,
3715 const char *annex, gdb_byte *readbuf,
3716 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3717 ULONGEST *xfered_len);
3718
3719 static enum target_xfer_status
3720 linux_proc_xfer_memory_partial (int pid, gdb_byte *readbuf,
3721 const gdb_byte *writebuf, ULONGEST offset,
3722 LONGEST len, ULONGEST *xfered_len);
3723
3724 enum target_xfer_status
3725 linux_nat_target::xfer_partial (enum target_object object,
3726 const char *annex, gdb_byte *readbuf,
3727 const gdb_byte *writebuf,
3728 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3729 {
3730 if (object == TARGET_OBJECT_SIGNAL_INFO)
3731 return linux_xfer_siginfo (inferior_ptid, object, annex, readbuf, writebuf,
3732 offset, len, xfered_len);
3733
3734 /* The target is connected but no live inferior is selected. Pass
3735 this request down to a lower stratum (e.g., the executable
3736 file). */
3737 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3738 return TARGET_XFER_EOF;
3739
3740 if (object == TARGET_OBJECT_AUXV)
3741 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3742 offset, len, xfered_len);
3743
3744 if (object == TARGET_OBJECT_OSDATA)
3745 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3746 offset, len, xfered_len);
3747
3748 if (object == TARGET_OBJECT_MEMORY)
3749 {
3750 /* GDB calculates all addresses in the largest possible address
3751 width. The address width must be masked before its final use
3752 by linux_proc_xfer_partial.
3753
3754 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3755 int addr_bit = gdbarch_addr_bit (current_inferior ()->arch ());
3756
3757 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3758 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3759
3760 /* If /proc/pid/mem is writable, don't fallback to ptrace. If
3761 the write via /proc/pid/mem fails because the inferior execed
3762 (and we haven't seen the exec event yet), a subsequent ptrace
3763 poke would incorrectly write memory to the post-exec address
3764 space, while the core was trying to write to the pre-exec
3765 address space. */
3766 if (proc_mem_file_is_writable ())
3767 return linux_proc_xfer_memory_partial (inferior_ptid.pid (), readbuf,
3768 writebuf, offset, len,
3769 xfered_len);
3770 }
3771
3772 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3773 offset, len, xfered_len);
3774 }
3775
3776 bool
3777 linux_nat_target::thread_alive (ptid_t ptid)
3778 {
3779 /* As long as a PTID is in lwp list, consider it alive. */
3780 return find_lwp_pid (ptid) != NULL;
3781 }
3782
3783 /* Implement the to_update_thread_list target method for this
3784 target. */
3785
3786 void
3787 linux_nat_target::update_thread_list ()
3788 {
3789 /* We add/delete threads from the list as clone/exit events are
3790 processed, so just try deleting exited threads still in the
3791 thread list. */
3792 delete_exited_threads ();
3793
3794 /* Update the processor core that each lwp/thread was last seen
3795 running on. */
3796 for (lwp_info *lwp : all_lwps ())
3797 {
3798 /* Avoid accessing /proc if the thread hasn't run since we last
3799 time we fetched the thread's core. Accessing /proc becomes
3800 noticeably expensive when we have thousands of LWPs. */
3801 if (lwp->core == -1)
3802 lwp->core = linux_common_core_of_thread (lwp->ptid);
3803 }
3804 }
3805
3806 std::string
3807 linux_nat_target::pid_to_str (ptid_t ptid)
3808 {
3809 if (ptid.lwp_p ()
3810 && (ptid.pid () != ptid.lwp ()
3811 || num_lwps (ptid.pid ()) > 1))
3812 return string_printf ("LWP %ld", ptid.lwp ());
3813
3814 return normal_pid_to_str (ptid);
3815 }
3816
3817 const char *
3818 linux_nat_target::thread_name (struct thread_info *thr)
3819 {
3820 return linux_proc_tid_get_name (thr->ptid);
3821 }
3822
3823 /* Accepts an integer PID; Returns a string representing a file that
3824 can be opened to get the symbols for the child process. */
3825
3826 const char *
3827 linux_nat_target::pid_to_exec_file (int pid)
3828 {
3829 return linux_proc_pid_to_exec_file (pid);
3830 }
3831
3832 /* Object representing an /proc/PID/mem open file. We keep one such
3833 file open per inferior.
3834
3835 It might be tempting to think about only ever opening one file at
3836 most for all inferiors, closing/reopening the file as we access
3837 memory of different inferiors, to minimize number of file
3838 descriptors open, which can otherwise run into resource limits.
3839 However, that does not work correctly -- if the inferior execs and
3840 we haven't processed the exec event yet, and, we opened a
3841 /proc/PID/mem file, we will get a mem file accessing the post-exec
3842 address space, thinking we're opening it for the pre-exec address
3843 space. That is dangerous as we can poke memory (e.g. clearing
3844 breakpoints) in the post-exec memory by mistake, corrupting the
3845 inferior. For that reason, we open the mem file as early as
3846 possible, right after spawning, forking or attaching to the
3847 inferior, when the inferior is stopped and thus before it has a
3848 chance of execing.
3849
3850 Note that after opening the file, even if the thread we opened it
3851 for subsequently exits, the open file is still usable for accessing
3852 memory. It's only when the whole process exits or execs that the
3853 file becomes invalid, at which point reads/writes return EOF. */
3854
3855 class proc_mem_file
3856 {
3857 public:
3858 proc_mem_file (ptid_t ptid, int fd)
3859 : m_ptid (ptid), m_fd (fd)
3860 {
3861 gdb_assert (m_fd != -1);
3862 }
3863
3864 ~proc_mem_file ()
3865 {
3866 linux_nat_debug_printf ("closing fd %d for /proc/%d/task/%ld/mem",
3867 m_fd, m_ptid.pid (), m_ptid.lwp ());
3868 close (m_fd);
3869 }
3870
3871 DISABLE_COPY_AND_ASSIGN (proc_mem_file);
3872
3873 int fd ()
3874 {
3875 return m_fd;
3876 }
3877
3878 private:
3879 /* The LWP this file was opened for. Just for debugging
3880 purposes. */
3881 ptid_t m_ptid;
3882
3883 /* The file descriptor. */
3884 int m_fd = -1;
3885 };
3886
3887 /* The map between an inferior process id, and the open /proc/PID/mem
3888 file. This is stored in a map instead of in a per-inferior
3889 structure because we need to be able to access memory of processes
3890 which don't have a corresponding struct inferior object. E.g.,
3891 with "detach-on-fork on" (the default), and "follow-fork parent"
3892 (also default), we don't create an inferior for the fork child, but
3893 we still need to remove breakpoints from the fork child's
3894 memory. */
3895 static std::unordered_map<int, proc_mem_file> proc_mem_file_map;
3896
3897 /* Close the /proc/PID/mem file for PID. */
3898
3899 static void
3900 close_proc_mem_file (pid_t pid)
3901 {
3902 proc_mem_file_map.erase (pid);
3903 }
3904
3905 /* Open the /proc/PID/mem file for the process (thread group) of PTID.
3906 We actually open /proc/PID/task/LWP/mem, as that's the LWP we know
3907 exists and is stopped right now. We prefer the
3908 /proc/PID/task/LWP/mem form over /proc/LWP/mem to avoid tid-reuse
3909 races, just in case this is ever called on an already-waited
3910 LWP. */
3911
3912 static void
3913 open_proc_mem_file (ptid_t ptid)
3914 {
3915 auto iter = proc_mem_file_map.find (ptid.pid ());
3916 gdb_assert (iter == proc_mem_file_map.end ());
3917
3918 char filename[64];
3919 xsnprintf (filename, sizeof filename,
3920 "/proc/%d/task/%ld/mem", ptid.pid (), ptid.lwp ());
3921
3922 int fd = gdb_open_cloexec (filename, O_RDWR | O_LARGEFILE, 0).release ();
3923
3924 if (fd == -1)
3925 {
3926 warning (_("opening /proc/PID/mem file for lwp %d.%ld failed: %s (%d)"),
3927 ptid.pid (), ptid.lwp (),
3928 safe_strerror (errno), errno);
3929 return;
3930 }
3931
3932 proc_mem_file_map.emplace (std::piecewise_construct,
3933 std::forward_as_tuple (ptid.pid ()),
3934 std::forward_as_tuple (ptid, fd));
3935
3936 linux_nat_debug_printf ("opened fd %d for lwp %d.%ld",
3937 fd, ptid.pid (), ptid.lwp ());
3938 }
3939
3940 /* Helper for linux_proc_xfer_memory_partial and
3941 proc_mem_file_is_writable. FD is the already opened /proc/pid/mem
3942 file, and PID is the pid of the corresponding process. The rest of
3943 the arguments are like linux_proc_xfer_memory_partial's. */
3944
3945 static enum target_xfer_status
3946 linux_proc_xfer_memory_partial_fd (int fd, int pid,
3947 gdb_byte *readbuf, const gdb_byte *writebuf,
3948 ULONGEST offset, LONGEST len,
3949 ULONGEST *xfered_len)
3950 {
3951 ssize_t ret;
3952
3953 gdb_assert (fd != -1);
3954
3955 /* Use pread64/pwrite64 if available, since they save a syscall and
3956 can handle 64-bit offsets even on 32-bit platforms (for instance,
3957 SPARC debugging a SPARC64 application). But only use them if the
3958 offset isn't so high that when cast to off_t it'd be negative, as
3959 seen on SPARC64. pread64/pwrite64 outright reject such offsets.
3960 lseek does not. */
3961 #ifdef HAVE_PREAD64
3962 if ((off_t) offset >= 0)
3963 ret = (readbuf != nullptr
3964 ? pread64 (fd, readbuf, len, offset)
3965 : pwrite64 (fd, writebuf, len, offset));
3966 else
3967 #endif
3968 {
3969 ret = lseek (fd, offset, SEEK_SET);
3970 if (ret != -1)
3971 ret = (readbuf != nullptr
3972 ? read (fd, readbuf, len)
3973 : write (fd, writebuf, len));
3974 }
3975
3976 if (ret == -1)
3977 {
3978 linux_nat_debug_printf ("accessing fd %d for pid %d failed: %s (%d)",
3979 fd, pid, safe_strerror (errno), errno);
3980 return TARGET_XFER_E_IO;
3981 }
3982 else if (ret == 0)
3983 {
3984 /* EOF means the address space is gone, the whole process exited
3985 or execed. */
3986 linux_nat_debug_printf ("accessing fd %d for pid %d got EOF",
3987 fd, pid);
3988 return TARGET_XFER_EOF;
3989 }
3990 else
3991 {
3992 *xfered_len = ret;
3993 return TARGET_XFER_OK;
3994 }
3995 }
3996
3997 /* Implement the to_xfer_partial target method using /proc/PID/mem.
3998 Because we can use a single read/write call, this can be much more
3999 efficient than banging away at PTRACE_PEEKTEXT. Also, unlike
4000 PTRACE_PEEKTEXT/PTRACE_POKETEXT, this works with running
4001 threads. */
4002
4003 static enum target_xfer_status
4004 linux_proc_xfer_memory_partial (int pid, gdb_byte *readbuf,
4005 const gdb_byte *writebuf, ULONGEST offset,
4006 LONGEST len, ULONGEST *xfered_len)
4007 {
4008 auto iter = proc_mem_file_map.find (pid);
4009 if (iter == proc_mem_file_map.end ())
4010 return TARGET_XFER_EOF;
4011
4012 int fd = iter->second.fd ();
4013
4014 return linux_proc_xfer_memory_partial_fd (fd, pid, readbuf, writebuf, offset,
4015 len, xfered_len);
4016 }
4017
4018 /* Check whether /proc/pid/mem is writable in the current kernel, and
4019 return true if so. It wasn't writable before Linux 2.6.39, but
4020 there's no way to know whether the feature was backported to older
4021 kernels. So we check to see if it works. The result is cached,
4022 and this is guaranteed to be called once early during inferior
4023 startup, so that any warning is printed out consistently between
4024 GDB invocations. Note we don't call it during GDB startup instead
4025 though, because then we might warn with e.g. just "gdb --version"
4026 on sandboxed systems. See PR gdb/29907. */
4027
4028 static bool
4029 proc_mem_file_is_writable ()
4030 {
4031 static gdb::optional<bool> writable;
4032
4033 if (writable.has_value ())
4034 return *writable;
4035
4036 writable.emplace (false);
4037
4038 /* We check whether /proc/pid/mem is writable by trying to write to
4039 one of our variables via /proc/self/mem. */
4040
4041 int fd = gdb_open_cloexec ("/proc/self/mem", O_RDWR | O_LARGEFILE, 0).release ();
4042
4043 if (fd == -1)
4044 {
4045 warning (_("opening /proc/self/mem file failed: %s (%d)"),
4046 safe_strerror (errno), errno);
4047 return *writable;
4048 }
4049
4050 SCOPE_EXIT { close (fd); };
4051
4052 /* This is the variable we try to write to. Note OFFSET below. */
4053 volatile gdb_byte test_var = 0;
4054
4055 gdb_byte writebuf[] = {0x55};
4056 ULONGEST offset = (uintptr_t) &test_var;
4057 ULONGEST xfered_len;
4058
4059 enum target_xfer_status res
4060 = linux_proc_xfer_memory_partial_fd (fd, getpid (), nullptr, writebuf,
4061 offset, 1, &xfered_len);
4062
4063 if (res == TARGET_XFER_OK)
4064 {
4065 gdb_assert (xfered_len == 1);
4066 gdb_assert (test_var == 0x55);
4067 /* Success. */
4068 *writable = true;
4069 }
4070
4071 return *writable;
4072 }
4073
4074 /* Parse LINE as a signal set and add its set bits to SIGS. */
4075
4076 static void
4077 add_line_to_sigset (const char *line, sigset_t *sigs)
4078 {
4079 int len = strlen (line) - 1;
4080 const char *p;
4081 int signum;
4082
4083 if (line[len] != '\n')
4084 error (_("Could not parse signal set: %s"), line);
4085
4086 p = line;
4087 signum = len * 4;
4088 while (len-- > 0)
4089 {
4090 int digit;
4091
4092 if (*p >= '0' && *p <= '9')
4093 digit = *p - '0';
4094 else if (*p >= 'a' && *p <= 'f')
4095 digit = *p - 'a' + 10;
4096 else
4097 error (_("Could not parse signal set: %s"), line);
4098
4099 signum -= 4;
4100
4101 if (digit & 1)
4102 sigaddset (sigs, signum + 1);
4103 if (digit & 2)
4104 sigaddset (sigs, signum + 2);
4105 if (digit & 4)
4106 sigaddset (sigs, signum + 3);
4107 if (digit & 8)
4108 sigaddset (sigs, signum + 4);
4109
4110 p++;
4111 }
4112 }
4113
4114 /* Find process PID's pending signals from /proc/pid/status and set
4115 SIGS to match. */
4116
4117 void
4118 linux_proc_pending_signals (int pid, sigset_t *pending,
4119 sigset_t *blocked, sigset_t *ignored)
4120 {
4121 char buffer[PATH_MAX], fname[PATH_MAX];
4122
4123 sigemptyset (pending);
4124 sigemptyset (blocked);
4125 sigemptyset (ignored);
4126 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4127 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4128 if (procfile == NULL)
4129 error (_("Could not open %s"), fname);
4130
4131 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4132 {
4133 /* Normal queued signals are on the SigPnd line in the status
4134 file. However, 2.6 kernels also have a "shared" pending
4135 queue for delivering signals to a thread group, so check for
4136 a ShdPnd line also.
4137
4138 Unfortunately some Red Hat kernels include the shared pending
4139 queue but not the ShdPnd status field. */
4140
4141 if (startswith (buffer, "SigPnd:\t"))
4142 add_line_to_sigset (buffer + 8, pending);
4143 else if (startswith (buffer, "ShdPnd:\t"))
4144 add_line_to_sigset (buffer + 8, pending);
4145 else if (startswith (buffer, "SigBlk:\t"))
4146 add_line_to_sigset (buffer + 8, blocked);
4147 else if (startswith (buffer, "SigIgn:\t"))
4148 add_line_to_sigset (buffer + 8, ignored);
4149 }
4150 }
4151
4152 static enum target_xfer_status
4153 linux_nat_xfer_osdata (enum target_object object,
4154 const char *annex, gdb_byte *readbuf,
4155 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4156 ULONGEST *xfered_len)
4157 {
4158 gdb_assert (object == TARGET_OBJECT_OSDATA);
4159
4160 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4161 if (*xfered_len == 0)
4162 return TARGET_XFER_EOF;
4163 else
4164 return TARGET_XFER_OK;
4165 }
4166
4167 std::vector<static_tracepoint_marker>
4168 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4169 {
4170 char s[IPA_CMD_BUF_SIZE];
4171 int pid = inferior_ptid.pid ();
4172 std::vector<static_tracepoint_marker> markers;
4173 const char *p = s;
4174 ptid_t ptid = ptid_t (pid, 0);
4175 static_tracepoint_marker marker;
4176
4177 /* Pause all */
4178 target_stop (ptid);
4179
4180 strcpy (s, "qTfSTM");
4181 agent_run_command (pid, s, strlen (s) + 1);
4182
4183 /* Unpause all. */
4184 SCOPE_EXIT { target_continue_no_signal (ptid); };
4185
4186 while (*p++ == 'm')
4187 {
4188 do
4189 {
4190 parse_static_tracepoint_marker_definition (p, &p, &marker);
4191
4192 if (strid == NULL || marker.str_id == strid)
4193 markers.push_back (std::move (marker));
4194 }
4195 while (*p++ == ','); /* comma-separated list */
4196
4197 strcpy (s, "qTsSTM");
4198 agent_run_command (pid, s, strlen (s) + 1);
4199 p = s;
4200 }
4201
4202 return markers;
4203 }
4204
4205 /* target_can_async_p implementation. */
4206
4207 bool
4208 linux_nat_target::can_async_p ()
4209 {
4210 /* This flag should be checked in the common target.c code. */
4211 gdb_assert (target_async_permitted);
4212
4213 /* Otherwise, this targets is always able to support async mode. */
4214 return true;
4215 }
4216
4217 bool
4218 linux_nat_target::supports_non_stop ()
4219 {
4220 return true;
4221 }
4222
4223 /* to_always_non_stop_p implementation. */
4224
4225 bool
4226 linux_nat_target::always_non_stop_p ()
4227 {
4228 return true;
4229 }
4230
4231 bool
4232 linux_nat_target::supports_multi_process ()
4233 {
4234 return true;
4235 }
4236
4237 bool
4238 linux_nat_target::supports_disable_randomization ()
4239 {
4240 return true;
4241 }
4242
4243 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4244 so we notice when any child changes state, and notify the
4245 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4246 above to wait for the arrival of a SIGCHLD. */
4247
4248 static void
4249 sigchld_handler (int signo)
4250 {
4251 int old_errno = errno;
4252
4253 if (debug_linux_nat)
4254 gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1);
4255
4256 if (signo == SIGCHLD)
4257 {
4258 /* Let the event loop know that there are events to handle. */
4259 linux_nat_target::async_file_mark_if_open ();
4260 }
4261
4262 errno = old_errno;
4263 }
4264
4265 /* Callback registered with the target events file descriptor. */
4266
4267 static void
4268 handle_target_event (int error, gdb_client_data client_data)
4269 {
4270 inferior_event_handler (INF_REG_EVENT);
4271 }
4272
4273 /* target_async implementation. */
4274
4275 void
4276 linux_nat_target::async (bool enable)
4277 {
4278 if (enable == is_async_p ())
4279 return;
4280
4281 /* Block child signals while we create/destroy the pipe, as their
4282 handler writes to it. */
4283 gdb::block_signals blocker;
4284
4285 if (enable)
4286 {
4287 if (!async_file_open ())
4288 internal_error ("creating event pipe failed.");
4289
4290 add_file_handler (async_wait_fd (), handle_target_event, NULL,
4291 "linux-nat");
4292
4293 /* There may be pending events to handle. Tell the event loop
4294 to poll them. */
4295 async_file_mark ();
4296 }
4297 else
4298 {
4299 delete_file_handler (async_wait_fd ());
4300 async_file_close ();
4301 }
4302 }
4303
4304 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4305 event came out. */
4306
4307 static int
4308 linux_nat_stop_lwp (struct lwp_info *lwp)
4309 {
4310 if (!lwp->stopped)
4311 {
4312 linux_nat_debug_printf ("running -> suspending %s",
4313 lwp->ptid.to_string ().c_str ());
4314
4315
4316 if (lwp->last_resume_kind == resume_stop)
4317 {
4318 linux_nat_debug_printf ("already stopping LWP %ld at GDB's request",
4319 lwp->ptid.lwp ());
4320 return 0;
4321 }
4322
4323 stop_callback (lwp);
4324 lwp->last_resume_kind = resume_stop;
4325 }
4326 else
4327 {
4328 /* Already known to be stopped; do nothing. */
4329
4330 if (debug_linux_nat)
4331 {
4332 if (linux_target->find_thread (lwp->ptid)->stop_requested)
4333 linux_nat_debug_printf ("already stopped/stop_requested %s",
4334 lwp->ptid.to_string ().c_str ());
4335 else
4336 linux_nat_debug_printf ("already stopped/no stop_requested yet %s",
4337 lwp->ptid.to_string ().c_str ());
4338 }
4339 }
4340 return 0;
4341 }
4342
4343 void
4344 linux_nat_target::stop (ptid_t ptid)
4345 {
4346 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
4347 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4348 }
4349
4350 /* When requests are passed down from the linux-nat layer to the
4351 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4352 used. The address space pointer is stored in the inferior object,
4353 but the common code that is passed such ptid can't tell whether
4354 lwpid is a "main" process id or not (it assumes so). We reverse
4355 look up the "main" process id from the lwp here. */
4356
4357 struct address_space *
4358 linux_nat_target::thread_address_space (ptid_t ptid)
4359 {
4360 struct lwp_info *lwp;
4361 struct inferior *inf;
4362 int pid;
4363
4364 if (ptid.lwp () == 0)
4365 {
4366 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4367 tgid. */
4368 lwp = find_lwp_pid (ptid);
4369 pid = lwp->ptid.pid ();
4370 }
4371 else
4372 {
4373 /* A (pid,lwpid,0) ptid. */
4374 pid = ptid.pid ();
4375 }
4376
4377 inf = find_inferior_pid (this, pid);
4378 gdb_assert (inf != NULL);
4379 return inf->aspace;
4380 }
4381
4382 /* Return the cached value of the processor core for thread PTID. */
4383
4384 int
4385 linux_nat_target::core_of_thread (ptid_t ptid)
4386 {
4387 struct lwp_info *info = find_lwp_pid (ptid);
4388
4389 if (info)
4390 return info->core;
4391 return -1;
4392 }
4393
4394 /* Implementation of to_filesystem_is_local. */
4395
4396 bool
4397 linux_nat_target::filesystem_is_local ()
4398 {
4399 struct inferior *inf = current_inferior ();
4400
4401 if (inf->fake_pid_p || inf->pid == 0)
4402 return true;
4403
4404 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4405 }
4406
4407 /* Convert the INF argument passed to a to_fileio_* method
4408 to a process ID suitable for passing to its corresponding
4409 linux_mntns_* function. If INF is non-NULL then the
4410 caller is requesting the filesystem seen by INF. If INF
4411 is NULL then the caller is requesting the filesystem seen
4412 by the GDB. We fall back to GDB's filesystem in the case
4413 that INF is non-NULL but its PID is unknown. */
4414
4415 static pid_t
4416 linux_nat_fileio_pid_of (struct inferior *inf)
4417 {
4418 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4419 return getpid ();
4420 else
4421 return inf->pid;
4422 }
4423
4424 /* Implementation of to_fileio_open. */
4425
4426 int
4427 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4428 int flags, int mode, int warn_if_slow,
4429 fileio_error *target_errno)
4430 {
4431 int nat_flags;
4432 mode_t nat_mode;
4433 int fd;
4434
4435 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4436 || fileio_to_host_mode (mode, &nat_mode) == -1)
4437 {
4438 *target_errno = FILEIO_EINVAL;
4439 return -1;
4440 }
4441
4442 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4443 filename, nat_flags, nat_mode);
4444 if (fd == -1)
4445 *target_errno = host_to_fileio_error (errno);
4446
4447 return fd;
4448 }
4449
4450 /* Implementation of to_fileio_readlink. */
4451
4452 gdb::optional<std::string>
4453 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4454 fileio_error *target_errno)
4455 {
4456 char buf[PATH_MAX];
4457 int len;
4458
4459 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4460 filename, buf, sizeof (buf));
4461 if (len < 0)
4462 {
4463 *target_errno = host_to_fileio_error (errno);
4464 return {};
4465 }
4466
4467 return std::string (buf, len);
4468 }
4469
4470 /* Implementation of to_fileio_unlink. */
4471
4472 int
4473 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4474 fileio_error *target_errno)
4475 {
4476 int ret;
4477
4478 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4479 filename);
4480 if (ret == -1)
4481 *target_errno = host_to_fileio_error (errno);
4482
4483 return ret;
4484 }
4485
4486 /* Implementation of the to_thread_events method. */
4487
4488 void
4489 linux_nat_target::thread_events (int enable)
4490 {
4491 report_thread_events = enable;
4492 }
4493
4494 linux_nat_target::linux_nat_target ()
4495 {
4496 /* We don't change the stratum; this target will sit at
4497 process_stratum and thread_db will set at thread_stratum. This
4498 is a little strange, since this is a multi-threaded-capable
4499 target, but we want to be on the stack below thread_db, and we
4500 also want to be used for single-threaded processes. */
4501 }
4502
4503 /* See linux-nat.h. */
4504
4505 bool
4506 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4507 {
4508 int pid = get_ptrace_pid (ptid);
4509 return ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo) == 0;
4510 }
4511
4512 /* See nat/linux-nat.h. */
4513
4514 ptid_t
4515 current_lwp_ptid (void)
4516 {
4517 gdb_assert (inferior_ptid.lwp_p ());
4518 return inferior_ptid;
4519 }
4520
4521 /* Implement 'maintenance info linux-lwps'. Displays some basic
4522 information about all the current lwp_info objects. */
4523
4524 static void
4525 maintenance_info_lwps (const char *arg, int from_tty)
4526 {
4527 if (all_lwps ().size () == 0)
4528 {
4529 gdb_printf ("No Linux LWPs\n");
4530 return;
4531 }
4532
4533 /* Start the width at 8 to match the column heading below, then
4534 figure out the widest ptid string. We'll use this to build our
4535 output table below. */
4536 size_t ptid_width = 8;
4537 for (lwp_info *lp : all_lwps ())
4538 ptid_width = std::max (ptid_width, lp->ptid.to_string ().size ());
4539
4540 /* Setup the table headers. */
4541 struct ui_out *uiout = current_uiout;
4542 ui_out_emit_table table_emitter (uiout, 2, -1, "linux-lwps");
4543 uiout->table_header (ptid_width, ui_left, "lwp-ptid", _("LWP Ptid"));
4544 uiout->table_header (9, ui_left, "thread-info", _("Thread ID"));
4545 uiout->table_body ();
4546
4547 /* Display one table row for each lwp_info. */
4548 for (lwp_info *lp : all_lwps ())
4549 {
4550 ui_out_emit_tuple tuple_emitter (uiout, "lwp-entry");
4551
4552 thread_info *th = linux_target->find_thread (lp->ptid);
4553
4554 uiout->field_string ("lwp-ptid", lp->ptid.to_string ().c_str ());
4555 if (th == nullptr)
4556 uiout->field_string ("thread-info", "None");
4557 else
4558 uiout->field_string ("thread-info", print_full_thread_id (th));
4559
4560 uiout->message ("\n");
4561 }
4562 }
4563
4564 void _initialize_linux_nat ();
4565 void
4566 _initialize_linux_nat ()
4567 {
4568 add_setshow_boolean_cmd ("linux-nat", class_maintenance,
4569 &debug_linux_nat, _("\
4570 Set debugging of GNU/Linux native target."), _(" \
4571 Show debugging of GNU/Linux native target."), _(" \
4572 When on, print debug messages relating to the GNU/Linux native target."),
4573 nullptr,
4574 show_debug_linux_nat,
4575 &setdebuglist, &showdebuglist);
4576
4577 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4578 &debug_linux_namespaces, _("\
4579 Set debugging of GNU/Linux namespaces module."), _("\
4580 Show debugging of GNU/Linux namespaces module."), _("\
4581 Enables printf debugging output."),
4582 NULL,
4583 NULL,
4584 &setdebuglist, &showdebuglist);
4585
4586 /* Install a SIGCHLD handler. */
4587 sigchld_action.sa_handler = sigchld_handler;
4588 sigemptyset (&sigchld_action.sa_mask);
4589 sigchld_action.sa_flags = SA_RESTART;
4590
4591 /* Make it the default. */
4592 sigaction (SIGCHLD, &sigchld_action, NULL);
4593
4594 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4595 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4596 sigdelset (&suspend_mask, SIGCHLD);
4597
4598 sigemptyset (&blocked_mask);
4599
4600 lwp_lwpid_htab_create ();
4601
4602 add_cmd ("linux-lwps", class_maintenance, maintenance_info_lwps,
4603 _("List the Linux LWPS."), &maintenanceinfolist);
4604 }
4605 \f
4606
4607 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4608 the GNU/Linux Threads library and therefore doesn't really belong
4609 here. */
4610
4611 /* NPTL reserves the first two RT signals, but does not provide any
4612 way for the debugger to query the signal numbers - fortunately
4613 they don't change. */
4614 static int lin_thread_signals[] = { __SIGRTMIN, __SIGRTMIN + 1 };
4615
4616 /* See linux-nat.h. */
4617
4618 unsigned int
4619 lin_thread_get_thread_signal_num (void)
4620 {
4621 return sizeof (lin_thread_signals) / sizeof (lin_thread_signals[0]);
4622 }
4623
4624 /* See linux-nat.h. */
4625
4626 int
4627 lin_thread_get_thread_signal (unsigned int i)
4628 {
4629 gdb_assert (i < lin_thread_get_thread_signal_num ());
4630 return lin_thread_signals[i];
4631 }