gdb/
[binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include "gdb_assert.h"
37 #include <sys/types.h>
38 #include "gdb_stat.h"
39 #include <fcntl.h>
40 #include "gdb_obstack.h"
41 #include "gdb_string.h"
42 #include "hashtab.h"
43
44 #include "breakpoint.h"
45 #include "block.h"
46 #include "dictionary.h"
47 #include "source.h"
48 #include "addrmap.h"
49 #include "arch-utils.h"
50 #include "exec.h"
51 #include "observer.h"
52 #include "complaints.h"
53 #include "psymtab.h"
54 #include "solist.h"
55 #include "gdb_bfd.h"
56
57 /* Keep a registry of per-objfile data-pointers required by other GDB
58 modules. */
59
60 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
61
62 /* Externally visible variables that are owned by this module.
63 See declarations in objfile.h for more info. */
64
65 struct objfile *rt_common_objfile; /* For runtime common symbols */
66
67 struct objfile_pspace_info
68 {
69 int objfiles_changed_p;
70 struct obj_section **sections;
71 int num_sections;
72 };
73
74 /* Per-program-space data key. */
75 static const struct program_space_data *objfiles_pspace_data;
76
77 static void
78 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
79 {
80 struct objfile_pspace_info *info;
81
82 info = program_space_data (pspace, objfiles_pspace_data);
83 if (info != NULL)
84 {
85 xfree (info->sections);
86 xfree (info);
87 }
88 }
89
90 /* Get the current svr4 data. If none is found yet, add it now. This
91 function always returns a valid object. */
92
93 static struct objfile_pspace_info *
94 get_objfile_pspace_data (struct program_space *pspace)
95 {
96 struct objfile_pspace_info *info;
97
98 info = program_space_data (pspace, objfiles_pspace_data);
99 if (info == NULL)
100 {
101 info = XZALLOC (struct objfile_pspace_info);
102 set_program_space_data (pspace, objfiles_pspace_data, info);
103 }
104
105 return info;
106 }
107
108 \f
109
110 /* Per-BFD data key. */
111
112 static const struct bfd_data *objfiles_bfd_data;
113
114 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
115 NULL, and it already has a per-BFD storage object, use that.
116 Otherwise, allocate a new per-BFD storage object. If ABFD is not
117 NULL, the object is allocated on the BFD; otherwise it is allocated
118 on OBJFILE's obstack. Note that it is not safe to call this
119 multiple times for a given OBJFILE -- it can only be called when
120 allocating or re-initializing OBJFILE. */
121
122 static struct objfile_per_bfd_storage *
123 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
124 {
125 struct objfile_per_bfd_storage *storage = NULL;
126
127 if (abfd != NULL)
128 storage = bfd_data (abfd, objfiles_bfd_data);
129
130 if (storage == NULL)
131 {
132 if (abfd != NULL)
133 {
134 storage = bfd_zalloc (abfd, sizeof (struct objfile_per_bfd_storage));
135 set_bfd_data (abfd, objfiles_bfd_data, storage);
136 }
137 else
138 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
139 struct objfile_per_bfd_storage);
140
141 obstack_init (&storage->storage_obstack);
142 storage->filename_cache = bcache_xmalloc (NULL, NULL);
143 storage->macro_cache = bcache_xmalloc (NULL, NULL);
144 }
145
146 return storage;
147 }
148
149 /* Free STORAGE. */
150
151 static void
152 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
153 {
154 bcache_xfree (storage->filename_cache);
155 bcache_xfree (storage->macro_cache);
156 obstack_free (&storage->storage_obstack, 0);
157 }
158
159 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
160 cleanup function to the BFD registry. */
161
162 static void
163 objfile_bfd_data_free (struct bfd *unused, void *d)
164 {
165 free_objfile_per_bfd_storage (d);
166 }
167
168 /* See objfiles.h. */
169
170 void
171 set_objfile_per_bfd (struct objfile *objfile)
172 {
173 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
174 }
175
176 \f
177
178 /* Called via bfd_map_over_sections to build up the section table that
179 the objfile references. The objfile contains pointers to the start
180 of the table (objfile->sections) and to the first location after
181 the end of the table (objfile->sections_end). */
182
183 static void
184 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
185 void *objfilep)
186 {
187 struct objfile *objfile = (struct objfile *) objfilep;
188 struct obj_section section;
189 flagword aflag;
190
191 aflag = bfd_get_section_flags (abfd, asect);
192 if (!(aflag & SEC_ALLOC))
193 return;
194 if (bfd_section_size (abfd, asect) == 0)
195 return;
196
197 section.objfile = objfile;
198 section.the_bfd_section = asect;
199 section.ovly_mapped = 0;
200 obstack_grow (&objfile->objfile_obstack,
201 (char *) &section, sizeof (section));
202 objfile->sections_end
203 = (struct obj_section *) (((size_t) objfile->sections_end) + 1);
204 }
205
206 /* Builds a section table for OBJFILE.
207
208 Note that while we are building the table, which goes into the
209 objfile obstack, we hijack the sections_end pointer to instead hold
210 a count of the number of sections. When bfd_map_over_sections
211 returns, this count is used to compute the pointer to the end of
212 the sections table, which then overwrites the count.
213
214 Also note that the OFFSET and OVLY_MAPPED in each table entry
215 are initialized to zero.
216
217 Also note that if anything else writes to the objfile obstack while
218 we are building the table, we're pretty much hosed. */
219
220 void
221 build_objfile_section_table (struct objfile *objfile)
222 {
223 objfile->sections_end = 0;
224 bfd_map_over_sections (objfile->obfd,
225 add_to_objfile_sections, (void *) objfile);
226 objfile->sections = obstack_finish (&objfile->objfile_obstack);
227 objfile->sections_end = objfile->sections + (size_t) objfile->sections_end;
228 }
229
230 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
231 allocate a new objfile struct, fill it in as best we can, link it
232 into the list of all known objfiles, and return a pointer to the
233 new objfile struct.
234
235 The FLAGS word contains various bits (OBJF_*) that can be taken as
236 requests for specific operations. Other bits like OBJF_SHARED are
237 simply copied through to the new objfile flags member. */
238
239 /* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
240 by jv-lang.c, to create an artificial objfile used to hold
241 information about dynamically-loaded Java classes. Unfortunately,
242 that branch of this function doesn't get tested very frequently, so
243 it's prone to breakage. (E.g. at one time the name was set to NULL
244 in that situation, which broke a loop over all names in the dynamic
245 library loader.) If you change this function, please try to leave
246 things in a consistent state even if abfd is NULL. */
247
248 struct objfile *
249 allocate_objfile (bfd *abfd, int flags)
250 {
251 struct objfile *objfile;
252
253 objfile = (struct objfile *) xzalloc (sizeof (struct objfile));
254 objfile->psymbol_cache = psymbol_bcache_init ();
255 /* We could use obstack_specify_allocation here instead, but
256 gdb_obstack.h specifies the alloc/dealloc functions. */
257 obstack_init (&objfile->objfile_obstack);
258 terminate_minimal_symbol_table (objfile);
259
260 objfile_alloc_data (objfile);
261
262 /* Update the per-objfile information that comes from the bfd, ensuring
263 that any data that is reference is saved in the per-objfile data
264 region. */
265
266 objfile->obfd = abfd;
267 gdb_bfd_ref (abfd);
268 if (abfd != NULL)
269 {
270 /* Look up the gdbarch associated with the BFD. */
271 objfile->gdbarch = gdbarch_from_bfd (abfd);
272
273 objfile->name = bfd_get_filename (abfd);
274 objfile->mtime = bfd_get_mtime (abfd);
275
276 /* Build section table. */
277 build_objfile_section_table (objfile);
278 }
279 else
280 {
281 objfile->name = "<<anonymous objfile>>";
282 }
283
284 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
285 objfile->pspace = current_program_space;
286
287 /* Initialize the section indexes for this objfile, so that we can
288 later detect if they are used w/o being properly assigned to. */
289
290 objfile->sect_index_text = -1;
291 objfile->sect_index_data = -1;
292 objfile->sect_index_bss = -1;
293 objfile->sect_index_rodata = -1;
294
295 /* Add this file onto the tail of the linked list of other such files. */
296
297 objfile->next = NULL;
298 if (object_files == NULL)
299 object_files = objfile;
300 else
301 {
302 struct objfile *last_one;
303
304 for (last_one = object_files;
305 last_one->next;
306 last_one = last_one->next);
307 last_one->next = objfile;
308 }
309
310 /* Save passed in flag bits. */
311 objfile->flags |= flags;
312
313 /* Rebuild section map next time we need it. */
314 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
315
316 return objfile;
317 }
318
319 /* Retrieve the gdbarch associated with OBJFILE. */
320 struct gdbarch *
321 get_objfile_arch (struct objfile *objfile)
322 {
323 return objfile->gdbarch;
324 }
325
326 /* If there is a valid and known entry point, function fills *ENTRY_P with it
327 and returns non-zero; otherwise it returns zero. */
328
329 int
330 entry_point_address_query (CORE_ADDR *entry_p)
331 {
332 if (symfile_objfile == NULL || !symfile_objfile->ei.entry_point_p)
333 return 0;
334
335 *entry_p = symfile_objfile->ei.entry_point;
336
337 return 1;
338 }
339
340 /* Get current entry point address. Call error if it is not known. */
341
342 CORE_ADDR
343 entry_point_address (void)
344 {
345 CORE_ADDR retval;
346
347 if (!entry_point_address_query (&retval))
348 error (_("Entry point address is not known."));
349
350 return retval;
351 }
352
353 /* Iterator on PARENT and every separate debug objfile of PARENT.
354 The usage pattern is:
355 for (objfile = parent;
356 objfile;
357 objfile = objfile_separate_debug_iterate (parent, objfile))
358 ...
359 */
360
361 struct objfile *
362 objfile_separate_debug_iterate (const struct objfile *parent,
363 const struct objfile *objfile)
364 {
365 struct objfile *res;
366
367 /* If any, return the first child. */
368 res = objfile->separate_debug_objfile;
369 if (res)
370 return res;
371
372 /* Common case where there is no separate debug objfile. */
373 if (objfile == parent)
374 return NULL;
375
376 /* Return the brother if any. Note that we don't iterate on brothers of
377 the parents. */
378 res = objfile->separate_debug_objfile_link;
379 if (res)
380 return res;
381
382 for (res = objfile->separate_debug_objfile_backlink;
383 res != parent;
384 res = res->separate_debug_objfile_backlink)
385 {
386 gdb_assert (res != NULL);
387 if (res->separate_debug_objfile_link)
388 return res->separate_debug_objfile_link;
389 }
390 return NULL;
391 }
392
393 /* Put one object file before a specified on in the global list.
394 This can be used to make sure an object file is destroyed before
395 another when using ALL_OBJFILES_SAFE to free all objfiles. */
396 void
397 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
398 {
399 struct objfile **objp;
400
401 unlink_objfile (objfile);
402
403 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
404 {
405 if (*objp == before_this)
406 {
407 objfile->next = *objp;
408 *objp = objfile;
409 return;
410 }
411 }
412
413 internal_error (__FILE__, __LINE__,
414 _("put_objfile_before: before objfile not in list"));
415 }
416
417 /* Put OBJFILE at the front of the list. */
418
419 void
420 objfile_to_front (struct objfile *objfile)
421 {
422 struct objfile **objp;
423 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
424 {
425 if (*objp == objfile)
426 {
427 /* Unhook it from where it is. */
428 *objp = objfile->next;
429 /* Put it in the front. */
430 objfile->next = object_files;
431 object_files = objfile;
432 break;
433 }
434 }
435 }
436
437 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
438 list.
439
440 It is not a bug, or error, to call this function if OBJFILE is not known
441 to be in the current list. This is done in the case of mapped objfiles,
442 for example, just to ensure that the mapped objfile doesn't appear twice
443 in the list. Since the list is threaded, linking in a mapped objfile
444 twice would create a circular list.
445
446 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
447 unlinking it, just to ensure that we have completely severed any linkages
448 between the OBJFILE and the list. */
449
450 void
451 unlink_objfile (struct objfile *objfile)
452 {
453 struct objfile **objpp;
454
455 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
456 {
457 if (*objpp == objfile)
458 {
459 *objpp = (*objpp)->next;
460 objfile->next = NULL;
461 return;
462 }
463 }
464
465 internal_error (__FILE__, __LINE__,
466 _("unlink_objfile: objfile already unlinked"));
467 }
468
469 /* Add OBJFILE as a separate debug objfile of PARENT. */
470
471 void
472 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
473 {
474 gdb_assert (objfile && parent);
475
476 /* Must not be already in a list. */
477 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
478 gdb_assert (objfile->separate_debug_objfile_link == NULL);
479 gdb_assert (objfile->separate_debug_objfile == NULL);
480 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
481 gdb_assert (parent->separate_debug_objfile_link == NULL);
482
483 objfile->separate_debug_objfile_backlink = parent;
484 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
485 parent->separate_debug_objfile = objfile;
486
487 /* Put the separate debug object before the normal one, this is so that
488 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
489 put_objfile_before (objfile, parent);
490 }
491
492 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
493 itself. */
494
495 void
496 free_objfile_separate_debug (struct objfile *objfile)
497 {
498 struct objfile *child;
499
500 for (child = objfile->separate_debug_objfile; child;)
501 {
502 struct objfile *next_child = child->separate_debug_objfile_link;
503 free_objfile (child);
504 child = next_child;
505 }
506 }
507
508 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
509 that as much as possible is allocated on the objfile_obstack
510 so that the memory can be efficiently freed.
511
512 Things which we do NOT free because they are not in malloc'd memory
513 or not in memory specific to the objfile include:
514
515 objfile -> sf
516
517 FIXME: If the objfile is using reusable symbol information (via mmalloc),
518 then we need to take into account the fact that more than one process
519 may be using the symbol information at the same time (when mmalloc is
520 extended to support cooperative locking). When more than one process
521 is using the mapped symbol info, we need to be more careful about when
522 we free objects in the reusable area. */
523
524 void
525 free_objfile (struct objfile *objfile)
526 {
527 /* Free all separate debug objfiles. */
528 free_objfile_separate_debug (objfile);
529
530 if (objfile->separate_debug_objfile_backlink)
531 {
532 /* We freed the separate debug file, make sure the base objfile
533 doesn't reference it. */
534 struct objfile *child;
535
536 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
537
538 if (child == objfile)
539 {
540 /* OBJFILE is the first child. */
541 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
542 objfile->separate_debug_objfile_link;
543 }
544 else
545 {
546 /* Find OBJFILE in the list. */
547 while (1)
548 {
549 if (child->separate_debug_objfile_link == objfile)
550 {
551 child->separate_debug_objfile_link =
552 objfile->separate_debug_objfile_link;
553 break;
554 }
555 child = child->separate_debug_objfile_link;
556 gdb_assert (child);
557 }
558 }
559 }
560
561 /* Remove any references to this objfile in the global value
562 lists. */
563 preserve_values (objfile);
564
565 /* It still may reference data modules have associated with the objfile and
566 the symbol file data. */
567 forget_cached_source_info_for_objfile (objfile);
568
569 /* First do any symbol file specific actions required when we are
570 finished with a particular symbol file. Note that if the objfile
571 is using reusable symbol information (via mmalloc) then each of
572 these routines is responsible for doing the correct thing, either
573 freeing things which are valid only during this particular gdb
574 execution, or leaving them to be reused during the next one. */
575
576 if (objfile->sf != NULL)
577 {
578 (*objfile->sf->sym_finish) (objfile);
579 }
580
581 /* Discard any data modules have associated with the objfile. The function
582 still may reference objfile->obfd. */
583 objfile_free_data (objfile);
584
585 if (objfile->obfd)
586 gdb_bfd_unref (objfile->obfd);
587 else
588 free_objfile_per_bfd_storage (objfile->per_bfd);
589
590 /* Remove it from the chain of all objfiles. */
591
592 unlink_objfile (objfile);
593
594 if (objfile == symfile_objfile)
595 symfile_objfile = NULL;
596
597 if (objfile == rt_common_objfile)
598 rt_common_objfile = NULL;
599
600 /* Before the symbol table code was redone to make it easier to
601 selectively load and remove information particular to a specific
602 linkage unit, gdb used to do these things whenever the monolithic
603 symbol table was blown away. How much still needs to be done
604 is unknown, but we play it safe for now and keep each action until
605 it is shown to be no longer needed. */
606
607 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
608 for example), so we need to call this here. */
609 clear_pc_function_cache ();
610
611 /* Clear globals which might have pointed into a removed objfile.
612 FIXME: It's not clear which of these are supposed to persist
613 between expressions and which ought to be reset each time. */
614 expression_context_block = NULL;
615 innermost_block = NULL;
616
617 /* Check to see if the current_source_symtab belongs to this objfile,
618 and if so, call clear_current_source_symtab_and_line. */
619
620 {
621 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
622
623 if (cursal.symtab && cursal.symtab->objfile == objfile)
624 clear_current_source_symtab_and_line ();
625 }
626
627 /* The last thing we do is free the objfile struct itself. */
628
629 if (objfile->global_psymbols.list)
630 xfree (objfile->global_psymbols.list);
631 if (objfile->static_psymbols.list)
632 xfree (objfile->static_psymbols.list);
633 /* Free the obstacks for non-reusable objfiles. */
634 psymbol_bcache_free (objfile->psymbol_cache);
635 if (objfile->demangled_names_hash)
636 htab_delete (objfile->demangled_names_hash);
637 obstack_free (&objfile->objfile_obstack, 0);
638
639 /* Rebuild section map next time we need it. */
640 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
641
642 xfree (objfile);
643 }
644
645 static void
646 do_free_objfile_cleanup (void *obj)
647 {
648 free_objfile (obj);
649 }
650
651 struct cleanup *
652 make_cleanup_free_objfile (struct objfile *obj)
653 {
654 return make_cleanup (do_free_objfile_cleanup, obj);
655 }
656
657 /* Free all the object files at once and clean up their users. */
658
659 void
660 free_all_objfiles (void)
661 {
662 struct objfile *objfile, *temp;
663 struct so_list *so;
664
665 /* Any objfile referencewould become stale. */
666 for (so = master_so_list (); so; so = so->next)
667 gdb_assert (so->objfile == NULL);
668
669 ALL_OBJFILES_SAFE (objfile, temp)
670 {
671 free_objfile (objfile);
672 }
673 clear_symtab_users (0);
674 }
675 \f
676 /* A helper function for objfile_relocate1 that relocates a single
677 symbol. */
678
679 static void
680 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
681 struct section_offsets *delta)
682 {
683 fixup_symbol_section (sym, objfile);
684
685 /* The RS6000 code from which this was taken skipped
686 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
687 But I'm leaving out that test, on the theory that
688 they can't possibly pass the tests below. */
689 if ((SYMBOL_CLASS (sym) == LOC_LABEL
690 || SYMBOL_CLASS (sym) == LOC_STATIC)
691 && SYMBOL_SECTION (sym) >= 0)
692 {
693 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
694 }
695 }
696
697 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
698 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
699 Return non-zero iff any change happened. */
700
701 static int
702 objfile_relocate1 (struct objfile *objfile,
703 struct section_offsets *new_offsets)
704 {
705 struct obj_section *s;
706 struct section_offsets *delta =
707 ((struct section_offsets *)
708 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
709
710 int i;
711 int something_changed = 0;
712
713 for (i = 0; i < objfile->num_sections; ++i)
714 {
715 delta->offsets[i] =
716 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
717 if (ANOFFSET (delta, i) != 0)
718 something_changed = 1;
719 }
720 if (!something_changed)
721 return 0;
722
723 /* OK, get all the symtabs. */
724 {
725 struct symtab *s;
726
727 ALL_OBJFILE_SYMTABS (objfile, s)
728 {
729 struct linetable *l;
730 struct blockvector *bv;
731 int i;
732
733 /* First the line table. */
734 l = LINETABLE (s);
735 if (l)
736 {
737 for (i = 0; i < l->nitems; ++i)
738 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
739 }
740
741 /* Don't relocate a shared blockvector more than once. */
742 if (!s->primary)
743 continue;
744
745 bv = BLOCKVECTOR (s);
746 if (BLOCKVECTOR_MAP (bv))
747 addrmap_relocate (BLOCKVECTOR_MAP (bv),
748 ANOFFSET (delta, s->block_line_section));
749
750 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
751 {
752 struct block *b;
753 struct symbol *sym;
754 struct dict_iterator iter;
755
756 b = BLOCKVECTOR_BLOCK (bv, i);
757 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
758 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
759
760 /* We only want to iterate over the local symbols, not any
761 symbols in included symtabs. */
762 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
763 {
764 relocate_one_symbol (sym, objfile, delta);
765 }
766 }
767 }
768 }
769
770 /* Relocate isolated symbols. */
771 {
772 struct symbol *iter;
773
774 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
775 relocate_one_symbol (iter, objfile, delta);
776 }
777
778 if (objfile->psymtabs_addrmap)
779 addrmap_relocate (objfile->psymtabs_addrmap,
780 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
781
782 if (objfile->sf)
783 objfile->sf->qf->relocate (objfile, new_offsets, delta);
784
785 {
786 struct minimal_symbol *msym;
787
788 ALL_OBJFILE_MSYMBOLS (objfile, msym)
789 if (SYMBOL_SECTION (msym) >= 0)
790 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
791 }
792 /* Relocating different sections by different amounts may cause the symbols
793 to be out of order. */
794 msymbols_sort (objfile);
795
796 if (objfile->ei.entry_point_p)
797 {
798 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
799 only as a fallback. */
800 struct obj_section *s;
801 s = find_pc_section (objfile->ei.entry_point);
802 if (s)
803 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
804 else
805 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
806 }
807
808 {
809 int i;
810
811 for (i = 0; i < objfile->num_sections; ++i)
812 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
813 }
814
815 /* Rebuild section map next time we need it. */
816 get_objfile_pspace_data (objfile->pspace)->objfiles_changed_p = 1;
817
818 /* Update the table in exec_ops, used to read memory. */
819 ALL_OBJFILE_OSECTIONS (objfile, s)
820 {
821 int idx = s->the_bfd_section->index;
822
823 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
824 obj_section_addr (s));
825 }
826
827 /* Relocating probes. */
828 if (objfile->sf && objfile->sf->sym_probe_fns)
829 objfile->sf->sym_probe_fns->sym_relocate_probe (objfile,
830 new_offsets, delta);
831
832 /* Data changed. */
833 return 1;
834 }
835
836 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
837 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
838
839 The number and ordering of sections does differ between the two objfiles.
840 Only their names match. Also the file offsets will differ (objfile being
841 possibly prelinked but separate_debug_objfile is probably not prelinked) but
842 the in-memory absolute address as specified by NEW_OFFSETS must match both
843 files. */
844
845 void
846 objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
847 {
848 struct objfile *debug_objfile;
849 int changed = 0;
850
851 changed |= objfile_relocate1 (objfile, new_offsets);
852
853 for (debug_objfile = objfile->separate_debug_objfile;
854 debug_objfile;
855 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
856 {
857 struct section_addr_info *objfile_addrs;
858 struct section_offsets *new_debug_offsets;
859 struct cleanup *my_cleanups;
860
861 objfile_addrs = build_section_addr_info_from_objfile (objfile);
862 my_cleanups = make_cleanup (xfree, objfile_addrs);
863
864 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
865 relative ones must be already created according to debug_objfile. */
866
867 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
868
869 gdb_assert (debug_objfile->num_sections
870 == bfd_count_sections (debug_objfile->obfd));
871 new_debug_offsets =
872 xmalloc (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
873 make_cleanup (xfree, new_debug_offsets);
874 relative_addr_info_to_section_offsets (new_debug_offsets,
875 debug_objfile->num_sections,
876 objfile_addrs);
877
878 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
879
880 do_cleanups (my_cleanups);
881 }
882
883 /* Relocate breakpoints as necessary, after things are relocated. */
884 if (changed)
885 breakpoint_re_set ();
886 }
887
888 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
889 not touched here.
890 Return non-zero iff any change happened. */
891
892 static int
893 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
894 {
895 struct section_offsets *new_offsets =
896 ((struct section_offsets *)
897 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
898 int i;
899
900 for (i = 0; i < objfile->num_sections; ++i)
901 new_offsets->offsets[i] = slide;
902
903 return objfile_relocate1 (objfile, new_offsets);
904 }
905
906 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
907 SEPARATE_DEBUG_OBJFILEs. */
908
909 void
910 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
911 {
912 struct objfile *debug_objfile;
913 int changed = 0;
914
915 changed |= objfile_rebase1 (objfile, slide);
916
917 for (debug_objfile = objfile->separate_debug_objfile;
918 debug_objfile;
919 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
920 changed |= objfile_rebase1 (debug_objfile, slide);
921
922 /* Relocate breakpoints as necessary, after things are relocated. */
923 if (changed)
924 breakpoint_re_set ();
925 }
926 \f
927 /* Return non-zero if OBJFILE has partial symbols. */
928
929 int
930 objfile_has_partial_symbols (struct objfile *objfile)
931 {
932 if (!objfile->sf)
933 return 0;
934
935 /* If we have not read psymbols, but we have a function capable of reading
936 them, then that is an indication that they are in fact available. Without
937 this function the symbols may have been already read in but they also may
938 not be present in this objfile. */
939 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
940 && objfile->sf->sym_read_psymbols != NULL)
941 return 1;
942
943 return objfile->sf->qf->has_symbols (objfile);
944 }
945
946 /* Return non-zero if OBJFILE has full symbols. */
947
948 int
949 objfile_has_full_symbols (struct objfile *objfile)
950 {
951 return objfile->symtabs != NULL;
952 }
953
954 /* Return non-zero if OBJFILE has full or partial symbols, either directly
955 or through a separate debug file. */
956
957 int
958 objfile_has_symbols (struct objfile *objfile)
959 {
960 struct objfile *o;
961
962 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
963 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
964 return 1;
965 return 0;
966 }
967
968
969 /* Many places in gdb want to test just to see if we have any partial
970 symbols available. This function returns zero if none are currently
971 available, nonzero otherwise. */
972
973 int
974 have_partial_symbols (void)
975 {
976 struct objfile *ofp;
977
978 ALL_OBJFILES (ofp)
979 {
980 if (objfile_has_partial_symbols (ofp))
981 return 1;
982 }
983 return 0;
984 }
985
986 /* Many places in gdb want to test just to see if we have any full
987 symbols available. This function returns zero if none are currently
988 available, nonzero otherwise. */
989
990 int
991 have_full_symbols (void)
992 {
993 struct objfile *ofp;
994
995 ALL_OBJFILES (ofp)
996 {
997 if (objfile_has_full_symbols (ofp))
998 return 1;
999 }
1000 return 0;
1001 }
1002
1003
1004 /* This operations deletes all objfile entries that represent solibs that
1005 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1006 command. */
1007
1008 void
1009 objfile_purge_solibs (void)
1010 {
1011 struct objfile *objf;
1012 struct objfile *temp;
1013
1014 ALL_OBJFILES_SAFE (objf, temp)
1015 {
1016 /* We assume that the solib package has been purged already, or will
1017 be soon. */
1018
1019 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1020 free_objfile (objf);
1021 }
1022 }
1023
1024
1025 /* Many places in gdb want to test just to see if we have any minimal
1026 symbols available. This function returns zero if none are currently
1027 available, nonzero otherwise. */
1028
1029 int
1030 have_minimal_symbols (void)
1031 {
1032 struct objfile *ofp;
1033
1034 ALL_OBJFILES (ofp)
1035 {
1036 if (ofp->minimal_symbol_count > 0)
1037 {
1038 return 1;
1039 }
1040 }
1041 return 0;
1042 }
1043
1044 /* Qsort comparison function. */
1045
1046 static int
1047 qsort_cmp (const void *a, const void *b)
1048 {
1049 const struct obj_section *sect1 = *(const struct obj_section **) a;
1050 const struct obj_section *sect2 = *(const struct obj_section **) b;
1051 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1052 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1053
1054 if (sect1_addr < sect2_addr)
1055 return -1;
1056 else if (sect1_addr > sect2_addr)
1057 return 1;
1058 else
1059 {
1060 /* Sections are at the same address. This could happen if
1061 A) we have an objfile and a separate debuginfo.
1062 B) we are confused, and have added sections without proper relocation,
1063 or something like that. */
1064
1065 const struct objfile *const objfile1 = sect1->objfile;
1066 const struct objfile *const objfile2 = sect2->objfile;
1067
1068 if (objfile1->separate_debug_objfile == objfile2
1069 || objfile2->separate_debug_objfile == objfile1)
1070 {
1071 /* Case A. The ordering doesn't matter: separate debuginfo files
1072 will be filtered out later. */
1073
1074 return 0;
1075 }
1076
1077 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1078 triage. This section could be slow (since we iterate over all
1079 objfiles in each call to qsort_cmp), but this shouldn't happen
1080 very often (GDB is already in a confused state; one hopes this
1081 doesn't happen at all). If you discover that significant time is
1082 spent in the loops below, do 'set complaints 100' and examine the
1083 resulting complaints. */
1084
1085 if (objfile1 == objfile2)
1086 {
1087 /* Both sections came from the same objfile. We are really confused.
1088 Sort on sequence order of sections within the objfile. */
1089
1090 const struct obj_section *osect;
1091
1092 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1093 if (osect == sect1)
1094 return -1;
1095 else if (osect == sect2)
1096 return 1;
1097
1098 /* We should have found one of the sections before getting here. */
1099 gdb_assert_not_reached ("section not found");
1100 }
1101 else
1102 {
1103 /* Sort on sequence number of the objfile in the chain. */
1104
1105 const struct objfile *objfile;
1106
1107 ALL_OBJFILES (objfile)
1108 if (objfile == objfile1)
1109 return -1;
1110 else if (objfile == objfile2)
1111 return 1;
1112
1113 /* We should have found one of the objfiles before getting here. */
1114 gdb_assert_not_reached ("objfile not found");
1115 }
1116 }
1117
1118 /* Unreachable. */
1119 gdb_assert_not_reached ("unexpected code path");
1120 return 0;
1121 }
1122
1123 /* Select "better" obj_section to keep. We prefer the one that came from
1124 the real object, rather than the one from separate debuginfo.
1125 Most of the time the two sections are exactly identical, but with
1126 prelinking the .rel.dyn section in the real object may have different
1127 size. */
1128
1129 static struct obj_section *
1130 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1131 {
1132 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1133 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1134 || (b->objfile->separate_debug_objfile == a->objfile));
1135 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1136 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1137
1138 if (a->objfile->separate_debug_objfile != NULL)
1139 return a;
1140 return b;
1141 }
1142
1143 /* Return 1 if SECTION should be inserted into the section map.
1144 We want to insert only non-overlay and non-TLS section. */
1145
1146 static int
1147 insert_section_p (const struct bfd *abfd,
1148 const struct bfd_section *section)
1149 {
1150 const bfd_vma lma = bfd_section_lma (abfd, section);
1151
1152 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1153 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1154 /* This is an overlay section. IN_MEMORY check is needed to avoid
1155 discarding sections from the "system supplied DSO" (aka vdso)
1156 on some Linux systems (e.g. Fedora 11). */
1157 return 0;
1158 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1159 /* This is a TLS section. */
1160 return 0;
1161
1162 return 1;
1163 }
1164
1165 /* Filter out overlapping sections where one section came from the real
1166 objfile, and the other from a separate debuginfo file.
1167 Return the size of table after redundant sections have been eliminated. */
1168
1169 static int
1170 filter_debuginfo_sections (struct obj_section **map, int map_size)
1171 {
1172 int i, j;
1173
1174 for (i = 0, j = 0; i < map_size - 1; i++)
1175 {
1176 struct obj_section *const sect1 = map[i];
1177 struct obj_section *const sect2 = map[i + 1];
1178 const struct objfile *const objfile1 = sect1->objfile;
1179 const struct objfile *const objfile2 = sect2->objfile;
1180 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1181 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1182
1183 if (sect1_addr == sect2_addr
1184 && (objfile1->separate_debug_objfile == objfile2
1185 || objfile2->separate_debug_objfile == objfile1))
1186 {
1187 map[j++] = preferred_obj_section (sect1, sect2);
1188 ++i;
1189 }
1190 else
1191 map[j++] = sect1;
1192 }
1193
1194 if (i < map_size)
1195 {
1196 gdb_assert (i == map_size - 1);
1197 map[j++] = map[i];
1198 }
1199
1200 /* The map should not have shrunk to less than half the original size. */
1201 gdb_assert (map_size / 2 <= j);
1202
1203 return j;
1204 }
1205
1206 /* Filter out overlapping sections, issuing a warning if any are found.
1207 Overlapping sections could really be overlay sections which we didn't
1208 classify as such in insert_section_p, or we could be dealing with a
1209 corrupt binary. */
1210
1211 static int
1212 filter_overlapping_sections (struct obj_section **map, int map_size)
1213 {
1214 int i, j;
1215
1216 for (i = 0, j = 0; i < map_size - 1; )
1217 {
1218 int k;
1219
1220 map[j++] = map[i];
1221 for (k = i + 1; k < map_size; k++)
1222 {
1223 struct obj_section *const sect1 = map[i];
1224 struct obj_section *const sect2 = map[k];
1225 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1226 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1227 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1228
1229 gdb_assert (sect1_addr <= sect2_addr);
1230
1231 if (sect1_endaddr <= sect2_addr)
1232 break;
1233 else
1234 {
1235 /* We have an overlap. Report it. */
1236
1237 struct objfile *const objf1 = sect1->objfile;
1238 struct objfile *const objf2 = sect2->objfile;
1239
1240 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1241 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1242
1243 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1244
1245 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1246
1247 complaint (&symfile_complaints,
1248 _("unexpected overlap between:\n"
1249 " (A) section `%s' from `%s' [%s, %s)\n"
1250 " (B) section `%s' from `%s' [%s, %s).\n"
1251 "Will ignore section B"),
1252 bfd_section_name (abfd1, bfds1), objf1->name,
1253 paddress (gdbarch, sect1_addr),
1254 paddress (gdbarch, sect1_endaddr),
1255 bfd_section_name (abfd2, bfds2), objf2->name,
1256 paddress (gdbarch, sect2_addr),
1257 paddress (gdbarch, sect2_endaddr));
1258 }
1259 }
1260 i = k;
1261 }
1262
1263 if (i < map_size)
1264 {
1265 gdb_assert (i == map_size - 1);
1266 map[j++] = map[i];
1267 }
1268
1269 return j;
1270 }
1271
1272
1273 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1274 TLS, overlay and overlapping sections. */
1275
1276 static void
1277 update_section_map (struct program_space *pspace,
1278 struct obj_section ***pmap, int *pmap_size)
1279 {
1280 int alloc_size, map_size, i;
1281 struct obj_section *s, **map;
1282 struct objfile *objfile;
1283
1284 gdb_assert (get_objfile_pspace_data (pspace)->objfiles_changed_p != 0);
1285
1286 map = *pmap;
1287 xfree (map);
1288
1289 alloc_size = 0;
1290 ALL_PSPACE_OBJFILES (pspace, objfile)
1291 ALL_OBJFILE_OSECTIONS (objfile, s)
1292 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1293 alloc_size += 1;
1294
1295 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1296 if (alloc_size == 0)
1297 {
1298 *pmap = NULL;
1299 *pmap_size = 0;
1300 return;
1301 }
1302
1303 map = xmalloc (alloc_size * sizeof (*map));
1304
1305 i = 0;
1306 ALL_PSPACE_OBJFILES (pspace, objfile)
1307 ALL_OBJFILE_OSECTIONS (objfile, s)
1308 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1309 map[i++] = s;
1310
1311 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1312 map_size = filter_debuginfo_sections(map, alloc_size);
1313 map_size = filter_overlapping_sections(map, map_size);
1314
1315 if (map_size < alloc_size)
1316 /* Some sections were eliminated. Trim excess space. */
1317 map = xrealloc (map, map_size * sizeof (*map));
1318 else
1319 gdb_assert (alloc_size == map_size);
1320
1321 *pmap = map;
1322 *pmap_size = map_size;
1323 }
1324
1325 /* Bsearch comparison function. */
1326
1327 static int
1328 bsearch_cmp (const void *key, const void *elt)
1329 {
1330 const CORE_ADDR pc = *(CORE_ADDR *) key;
1331 const struct obj_section *section = *(const struct obj_section **) elt;
1332
1333 if (pc < obj_section_addr (section))
1334 return -1;
1335 if (pc < obj_section_endaddr (section))
1336 return 0;
1337 return 1;
1338 }
1339
1340 /* Returns a section whose range includes PC or NULL if none found. */
1341
1342 struct obj_section *
1343 find_pc_section (CORE_ADDR pc)
1344 {
1345 struct objfile_pspace_info *pspace_info;
1346 struct obj_section *s, **sp;
1347
1348 /* Check for mapped overlay section first. */
1349 s = find_pc_mapped_section (pc);
1350 if (s)
1351 return s;
1352
1353 pspace_info = get_objfile_pspace_data (current_program_space);
1354 if (pspace_info->objfiles_changed_p != 0)
1355 {
1356 update_section_map (current_program_space,
1357 &pspace_info->sections,
1358 &pspace_info->num_sections);
1359
1360 /* Don't need updates to section map until objfiles are added,
1361 removed or relocated. */
1362 pspace_info->objfiles_changed_p = 0;
1363 }
1364
1365 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1366 bsearch be non-NULL. */
1367 if (pspace_info->sections == NULL)
1368 {
1369 gdb_assert (pspace_info->num_sections == 0);
1370 return NULL;
1371 }
1372
1373 sp = (struct obj_section **) bsearch (&pc,
1374 pspace_info->sections,
1375 pspace_info->num_sections,
1376 sizeof (*pspace_info->sections),
1377 bsearch_cmp);
1378 if (sp != NULL)
1379 return *sp;
1380 return NULL;
1381 }
1382
1383
1384 /* In SVR4, we recognize a trampoline by it's section name.
1385 That is, if the pc is in a section named ".plt" then we are in
1386 a trampoline. */
1387
1388 int
1389 in_plt_section (CORE_ADDR pc, char *name)
1390 {
1391 struct obj_section *s;
1392 int retval = 0;
1393
1394 s = find_pc_section (pc);
1395
1396 retval = (s != NULL
1397 && s->the_bfd_section->name != NULL
1398 && strcmp (s->the_bfd_section->name, ".plt") == 0);
1399 return (retval);
1400 }
1401 \f
1402
1403 /* Set objfiles_changed_p so section map will be rebuilt next time it
1404 is used. Called by reread_symbols. */
1405
1406 void
1407 objfiles_changed (void)
1408 {
1409 /* Rebuild section map next time we need it. */
1410 get_objfile_pspace_data (current_program_space)->objfiles_changed_p = 1;
1411 }
1412
1413 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1414 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1415 searching the objfiles in the order they are stored internally,
1416 ignoring CURRENT_OBJFILE.
1417
1418 On most platorms, it should be close enough to doing the best
1419 we can without some knowledge specific to the architecture. */
1420
1421 void
1422 default_iterate_over_objfiles_in_search_order
1423 (struct gdbarch *gdbarch,
1424 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1425 void *cb_data, struct objfile *current_objfile)
1426 {
1427 int stop = 0;
1428 struct objfile *objfile;
1429
1430 ALL_OBJFILES (objfile)
1431 {
1432 stop = cb (objfile, cb_data);
1433 if (stop)
1434 return;
1435 }
1436 }
1437
1438 /* Provide a prototype to silence -Wmissing-prototypes. */
1439 extern initialize_file_ftype _initialize_objfiles;
1440
1441 void
1442 _initialize_objfiles (void)
1443 {
1444 objfiles_pspace_data
1445 = register_program_space_data_with_cleanup (NULL,
1446 objfiles_pspace_data_cleanup);
1447
1448 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1449 objfile_bfd_data_free);
1450 }