Remove path name from test case
[binutils-gdb.git] / gdb / stap-probe.c
1 /* SystemTap probe support for GDB.
2
3 Copyright (C) 2012-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "stap-probe.h"
22 #include "probe.h"
23 #include "ui-out.h"
24 #include "objfiles.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "filenames.h"
29 #include "value.h"
30 #include "ax.h"
31 #include "ax-gdb.h"
32 #include "complaints.h"
33 #include "cli/cli-utils.h"
34 #include "linespec.h"
35 #include "user-regs.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "elf-bfd.h"
39 #include "expop.h"
40 #include <unordered_map>
41 #include "gdbsupport/hash_enum.h"
42
43 #include <ctype.h>
44
45 /* The name of the SystemTap section where we will find information about
46 the probes. */
47
48 #define STAP_BASE_SECTION_NAME ".stapsdt.base"
49
50 /* Should we display debug information for the probe's argument expression
51 parsing? */
52
53 static unsigned int stap_expression_debug = 0;
54
55 /* The various possibilities of bitness defined for a probe's argument.
56
57 The relationship is:
58
59 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
60 - STAP_ARG_BITNESS_8BIT_UNSIGNED: argument string starts with `1@'.
61 - STAP_ARG_BITNESS_8BIT_SIGNED: argument string starts with `-1@'.
62 - STAP_ARG_BITNESS_16BIT_UNSIGNED: argument string starts with `2@'.
63 - STAP_ARG_BITNESS_16BIT_SIGNED: argument string starts with `-2@'.
64 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
65 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
66 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
67 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
68
69 enum stap_arg_bitness
70 {
71 STAP_ARG_BITNESS_UNDEFINED,
72 STAP_ARG_BITNESS_8BIT_UNSIGNED,
73 STAP_ARG_BITNESS_8BIT_SIGNED,
74 STAP_ARG_BITNESS_16BIT_UNSIGNED,
75 STAP_ARG_BITNESS_16BIT_SIGNED,
76 STAP_ARG_BITNESS_32BIT_UNSIGNED,
77 STAP_ARG_BITNESS_32BIT_SIGNED,
78 STAP_ARG_BITNESS_64BIT_UNSIGNED,
79 STAP_ARG_BITNESS_64BIT_SIGNED,
80 };
81
82 /* The following structure represents a single argument for the probe. */
83
84 struct stap_probe_arg
85 {
86 /* Constructor for stap_probe_arg. */
87 stap_probe_arg (enum stap_arg_bitness bitness_, struct type *atype_,
88 expression_up &&aexpr_)
89 : bitness (bitness_), atype (atype_), aexpr (std::move (aexpr_))
90 {}
91
92 /* The bitness of this argument. */
93 enum stap_arg_bitness bitness;
94
95 /* The corresponding `struct type *' to the bitness. */
96 struct type *atype;
97
98 /* The argument converted to an internal GDB expression. */
99 expression_up aexpr;
100 };
101
102 /* Class that implements the static probe methods for "stap" probes. */
103
104 class stap_static_probe_ops : public static_probe_ops
105 {
106 public:
107 /* We need a user-provided constructor to placate some compilers.
108 See PR build/24937. */
109 stap_static_probe_ops ()
110 {
111 }
112
113 /* See probe.h. */
114 bool is_linespec (const char **linespecp) const override;
115
116 /* See probe.h. */
117 void get_probes (std::vector<std::unique_ptr<probe>> *probesp,
118 struct objfile *objfile) const override;
119
120 /* See probe.h. */
121 const char *type_name () const override;
122
123 /* See probe.h. */
124 std::vector<struct info_probe_column> gen_info_probes_table_header
125 () const override;
126 };
127
128 /* SystemTap static_probe_ops. */
129
130 const stap_static_probe_ops stap_static_probe_ops {};
131
132 class stap_probe : public probe
133 {
134 public:
135 /* Constructor for stap_probe. */
136 stap_probe (std::string &&name_, std::string &&provider_, CORE_ADDR address_,
137 struct gdbarch *arch_, CORE_ADDR sem_addr, const char *args_text)
138 : probe (std::move (name_), std::move (provider_), address_, arch_),
139 m_sem_addr (sem_addr),
140 m_have_parsed_args (false), m_unparsed_args_text (args_text)
141 {}
142
143 /* See probe.h. */
144 CORE_ADDR get_relocated_address (struct objfile *objfile) override;
145
146 /* See probe.h. */
147 unsigned get_argument_count (struct gdbarch *gdbarch) override;
148
149 /* See probe.h. */
150 bool can_evaluate_arguments () const override;
151
152 /* See probe.h. */
153 struct value *evaluate_argument (unsigned n,
154 frame_info_ptr frame) override;
155
156 /* See probe.h. */
157 void compile_to_ax (struct agent_expr *aexpr,
158 struct axs_value *axs_value,
159 unsigned n) override;
160
161 /* See probe.h. */
162 void set_semaphore (struct objfile *objfile,
163 struct gdbarch *gdbarch) override;
164
165 /* See probe.h. */
166 void clear_semaphore (struct objfile *objfile,
167 struct gdbarch *gdbarch) override;
168
169 /* See probe.h. */
170 const static_probe_ops *get_static_ops () const override;
171
172 /* See probe.h. */
173 std::vector<const char *> gen_info_probes_table_values () const override;
174
175 /* Return argument N of probe.
176
177 If the probe's arguments have not been parsed yet, parse them. If
178 there are no arguments, throw an exception (error). Otherwise,
179 return the requested argument. */
180 struct stap_probe_arg *get_arg_by_number (unsigned n,
181 struct gdbarch *gdbarch)
182 {
183 if (!m_have_parsed_args)
184 this->parse_arguments (gdbarch);
185
186 gdb_assert (m_have_parsed_args);
187 if (m_parsed_args.empty ())
188 internal_error (_("Probe '%s' apparently does not have arguments, but \n"
189 "GDB is requesting its argument number %u anyway. "
190 "This should not happen. Please report this bug."),
191 this->get_name ().c_str (), n);
192
193 if (n > m_parsed_args.size ())
194 internal_error (_("Probe '%s' has %d arguments, but GDB is requesting\n"
195 "argument %u. This should not happen. Please\n"
196 "report this bug."),
197 this->get_name ().c_str (),
198 (int) m_parsed_args.size (), n);
199
200 return &m_parsed_args[n];
201 }
202
203 /* Function which parses an argument string from the probe,
204 correctly splitting the arguments and storing their information
205 in properly ways.
206
207 Consider the following argument string (x86 syntax):
208
209 `4@%eax 4@$10'
210
211 We have two arguments, `%eax' and `$10', both with 32-bit
212 unsigned bitness. This function basically handles them, properly
213 filling some structures with this information. */
214 void parse_arguments (struct gdbarch *gdbarch);
215
216 private:
217 /* If the probe has a semaphore associated, then this is the value of
218 it, relative to SECT_OFF_DATA. */
219 CORE_ADDR m_sem_addr;
220
221 /* True if the arguments have been parsed. */
222 bool m_have_parsed_args;
223
224 /* The text version of the probe's arguments, unparsed. */
225 const char *m_unparsed_args_text;
226
227 /* Information about each argument. This is an array of `stap_probe_arg',
228 with each entry representing one argument. This is only valid if
229 M_ARGS_PARSED is true. */
230 std::vector<struct stap_probe_arg> m_parsed_args;
231 };
232
233 /* When parsing the arguments, we have to establish different precedences
234 for the various kinds of asm operators. This enumeration represents those
235 precedences.
236
237 This logic behind this is available at
238 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
239 the command "info '(as)Infix Ops'". */
240
241 enum stap_operand_prec
242 {
243 /* Lowest precedence, used for non-recognized operands or for the beginning
244 of the parsing process. */
245 STAP_OPERAND_PREC_NONE = 0,
246
247 /* Precedence of logical OR. */
248 STAP_OPERAND_PREC_LOGICAL_OR,
249
250 /* Precedence of logical AND. */
251 STAP_OPERAND_PREC_LOGICAL_AND,
252
253 /* Precedence of additive (plus, minus) and comparative (equal, less,
254 greater-than, etc) operands. */
255 STAP_OPERAND_PREC_ADD_CMP,
256
257 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
258 logical NOT). */
259 STAP_OPERAND_PREC_BITWISE,
260
261 /* Precedence of multiplicative operands (multiplication, division,
262 remainder, left shift and right shift). */
263 STAP_OPERAND_PREC_MUL
264 };
265
266 static expr::operation_up stap_parse_argument_1 (struct stap_parse_info *p,
267 expr::operation_up &&lhs,
268 enum stap_operand_prec prec)
269 ATTRIBUTE_UNUSED_RESULT;
270
271 static expr::operation_up stap_parse_argument_conditionally
272 (struct stap_parse_info *p) ATTRIBUTE_UNUSED_RESULT;
273
274 /* Returns true if *S is an operator, false otherwise. */
275
276 static bool stap_is_operator (const char *op);
277
278 static void
279 show_stapexpressiondebug (struct ui_file *file, int from_tty,
280 struct cmd_list_element *c, const char *value)
281 {
282 gdb_printf (file, _("SystemTap Probe expression debugging is %s.\n"),
283 value);
284 }
285
286 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
287 if the operator code was not recognized. */
288
289 static enum stap_operand_prec
290 stap_get_operator_prec (enum exp_opcode op)
291 {
292 switch (op)
293 {
294 case BINOP_LOGICAL_OR:
295 return STAP_OPERAND_PREC_LOGICAL_OR;
296
297 case BINOP_LOGICAL_AND:
298 return STAP_OPERAND_PREC_LOGICAL_AND;
299
300 case BINOP_ADD:
301 case BINOP_SUB:
302 case BINOP_EQUAL:
303 case BINOP_NOTEQUAL:
304 case BINOP_LESS:
305 case BINOP_LEQ:
306 case BINOP_GTR:
307 case BINOP_GEQ:
308 return STAP_OPERAND_PREC_ADD_CMP;
309
310 case BINOP_BITWISE_IOR:
311 case BINOP_BITWISE_AND:
312 case BINOP_BITWISE_XOR:
313 case UNOP_LOGICAL_NOT:
314 return STAP_OPERAND_PREC_BITWISE;
315
316 case BINOP_MUL:
317 case BINOP_DIV:
318 case BINOP_REM:
319 case BINOP_LSH:
320 case BINOP_RSH:
321 return STAP_OPERAND_PREC_MUL;
322
323 default:
324 return STAP_OPERAND_PREC_NONE;
325 }
326 }
327
328 /* Given S, read the operator in it. Return the EXP_OPCODE which
329 represents the operator detected, or throw an error if no operator
330 was found. */
331
332 static enum exp_opcode
333 stap_get_opcode (const char **s)
334 {
335 const char c = **s;
336 enum exp_opcode op;
337
338 *s += 1;
339
340 switch (c)
341 {
342 case '*':
343 op = BINOP_MUL;
344 break;
345
346 case '/':
347 op = BINOP_DIV;
348 break;
349
350 case '%':
351 op = BINOP_REM;
352 break;
353
354 case '<':
355 op = BINOP_LESS;
356 if (**s == '<')
357 {
358 *s += 1;
359 op = BINOP_LSH;
360 }
361 else if (**s == '=')
362 {
363 *s += 1;
364 op = BINOP_LEQ;
365 }
366 else if (**s == '>')
367 {
368 *s += 1;
369 op = BINOP_NOTEQUAL;
370 }
371 break;
372
373 case '>':
374 op = BINOP_GTR;
375 if (**s == '>')
376 {
377 *s += 1;
378 op = BINOP_RSH;
379 }
380 else if (**s == '=')
381 {
382 *s += 1;
383 op = BINOP_GEQ;
384 }
385 break;
386
387 case '|':
388 op = BINOP_BITWISE_IOR;
389 if (**s == '|')
390 {
391 *s += 1;
392 op = BINOP_LOGICAL_OR;
393 }
394 break;
395
396 case '&':
397 op = BINOP_BITWISE_AND;
398 if (**s == '&')
399 {
400 *s += 1;
401 op = BINOP_LOGICAL_AND;
402 }
403 break;
404
405 case '^':
406 op = BINOP_BITWISE_XOR;
407 break;
408
409 case '!':
410 op = UNOP_LOGICAL_NOT;
411 break;
412
413 case '+':
414 op = BINOP_ADD;
415 break;
416
417 case '-':
418 op = BINOP_SUB;
419 break;
420
421 case '=':
422 gdb_assert (**s == '=');
423 op = BINOP_EQUAL;
424 break;
425
426 default:
427 error (_("Invalid opcode in expression `%s' for SystemTap"
428 "probe"), *s);
429 }
430
431 return op;
432 }
433
434 typedef expr::operation_up binop_maker_ftype (expr::operation_up &&,
435 expr::operation_up &&);
436 /* Map from an expression opcode to a function that can create a
437 binary operation of that type. */
438 static std::unordered_map<exp_opcode, binop_maker_ftype *,
439 gdb::hash_enum<exp_opcode>> stap_maker_map;
440
441 /* Helper function to create a binary operation. */
442 static expr::operation_up
443 stap_make_binop (enum exp_opcode opcode, expr::operation_up &&lhs,
444 expr::operation_up &&rhs)
445 {
446 auto iter = stap_maker_map.find (opcode);
447 gdb_assert (iter != stap_maker_map.end ());
448 return iter->second (std::move (lhs), std::move (rhs));
449 }
450
451 /* Given the bitness of the argument, represented by B, return the
452 corresponding `struct type *', or throw an error if B is
453 unknown. */
454
455 static struct type *
456 stap_get_expected_argument_type (struct gdbarch *gdbarch,
457 enum stap_arg_bitness b,
458 const char *probe_name)
459 {
460 switch (b)
461 {
462 case STAP_ARG_BITNESS_UNDEFINED:
463 if (gdbarch_addr_bit (gdbarch) == 32)
464 return builtin_type (gdbarch)->builtin_uint32;
465 else
466 return builtin_type (gdbarch)->builtin_uint64;
467
468 case STAP_ARG_BITNESS_8BIT_UNSIGNED:
469 return builtin_type (gdbarch)->builtin_uint8;
470
471 case STAP_ARG_BITNESS_8BIT_SIGNED:
472 return builtin_type (gdbarch)->builtin_int8;
473
474 case STAP_ARG_BITNESS_16BIT_UNSIGNED:
475 return builtin_type (gdbarch)->builtin_uint16;
476
477 case STAP_ARG_BITNESS_16BIT_SIGNED:
478 return builtin_type (gdbarch)->builtin_int16;
479
480 case STAP_ARG_BITNESS_32BIT_SIGNED:
481 return builtin_type (gdbarch)->builtin_int32;
482
483 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
484 return builtin_type (gdbarch)->builtin_uint32;
485
486 case STAP_ARG_BITNESS_64BIT_SIGNED:
487 return builtin_type (gdbarch)->builtin_int64;
488
489 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
490 return builtin_type (gdbarch)->builtin_uint64;
491
492 default:
493 error (_("Undefined bitness for probe '%s'."), probe_name);
494 break;
495 }
496 }
497
498 /* Helper function to check for a generic list of prefixes. GDBARCH
499 is the current gdbarch being used. S is the expression being
500 analyzed. If R is not NULL, it will be used to return the found
501 prefix. PREFIXES is the list of expected prefixes.
502
503 This function does a case-insensitive match.
504
505 Return true if any prefix has been found, false otherwise. */
506
507 static bool
508 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
509 const char **r, const char *const *prefixes)
510 {
511 const char *const *p;
512
513 if (prefixes == NULL)
514 {
515 if (r != NULL)
516 *r = "";
517
518 return true;
519 }
520
521 for (p = prefixes; *p != NULL; ++p)
522 if (strncasecmp (s, *p, strlen (*p)) == 0)
523 {
524 if (r != NULL)
525 *r = *p;
526
527 return true;
528 }
529
530 return false;
531 }
532
533 /* Return true if S points to a register prefix, false otherwise. For
534 a description of the arguments, look at stap_is_generic_prefix. */
535
536 static bool
537 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
538 const char **r)
539 {
540 const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
541
542 return stap_is_generic_prefix (gdbarch, s, r, t);
543 }
544
545 /* Return true if S points to a register indirection prefix, false
546 otherwise. For a description of the arguments, look at
547 stap_is_generic_prefix. */
548
549 static bool
550 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
551 const char **r)
552 {
553 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
554
555 return stap_is_generic_prefix (gdbarch, s, r, t);
556 }
557
558 /* Return true if S points to an integer prefix, false otherwise. For
559 a description of the arguments, look at stap_is_generic_prefix.
560
561 This function takes care of analyzing whether we are dealing with
562 an expected integer prefix, or, if there is no integer prefix to be
563 expected, whether we are dealing with a digit. It does a
564 case-insensitive match. */
565
566 static bool
567 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
568 const char **r)
569 {
570 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
571 const char *const *p;
572
573 if (t == NULL)
574 {
575 /* A NULL value here means that integers do not have a prefix.
576 We just check for a digit then. */
577 if (r != NULL)
578 *r = "";
579
580 return isdigit (*s) > 0;
581 }
582
583 for (p = t; *p != NULL; ++p)
584 {
585 size_t len = strlen (*p);
586
587 if ((len == 0 && isdigit (*s))
588 || (len > 0 && strncasecmp (s, *p, len) == 0))
589 {
590 /* Integers may or may not have a prefix. The "len == 0"
591 check covers the case when integers do not have a prefix
592 (therefore, we just check if we have a digit). The call
593 to "strncasecmp" covers the case when they have a
594 prefix. */
595 if (r != NULL)
596 *r = *p;
597
598 return true;
599 }
600 }
601
602 return false;
603 }
604
605 /* Helper function to check for a generic list of suffixes. If we are
606 not expecting any suffixes, then it just returns 1. If we are
607 expecting at least one suffix, then it returns true if a suffix has
608 been found, false otherwise. GDBARCH is the current gdbarch being
609 used. S is the expression being analyzed. If R is not NULL, it
610 will be used to return the found suffix. SUFFIXES is the list of
611 expected suffixes. This function does a case-insensitive
612 match. */
613
614 static bool
615 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
616 const char **r, const char *const *suffixes)
617 {
618 const char *const *p;
619 bool found = false;
620
621 if (suffixes == NULL)
622 {
623 if (r != NULL)
624 *r = "";
625
626 return true;
627 }
628
629 for (p = suffixes; *p != NULL; ++p)
630 if (strncasecmp (s, *p, strlen (*p)) == 0)
631 {
632 if (r != NULL)
633 *r = *p;
634
635 found = true;
636 break;
637 }
638
639 return found;
640 }
641
642 /* Return true if S points to an integer suffix, false otherwise. For
643 a description of the arguments, look at
644 stap_generic_check_suffix. */
645
646 static bool
647 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
648 const char **r)
649 {
650 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
651
652 return stap_generic_check_suffix (gdbarch, s, r, p);
653 }
654
655 /* Return true if S points to a register suffix, false otherwise. For
656 a description of the arguments, look at
657 stap_generic_check_suffix. */
658
659 static bool
660 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
661 const char **r)
662 {
663 const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
664
665 return stap_generic_check_suffix (gdbarch, s, r, p);
666 }
667
668 /* Return true if S points to a register indirection suffix, false
669 otherwise. For a description of the arguments, look at
670 stap_generic_check_suffix. */
671
672 static bool
673 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
674 const char **r)
675 {
676 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
677
678 return stap_generic_check_suffix (gdbarch, s, r, p);
679 }
680
681 /* Function responsible for parsing a register operand according to
682 SystemTap parlance. Assuming:
683
684 RP = register prefix
685 RS = register suffix
686 RIP = register indirection prefix
687 RIS = register indirection suffix
688
689 Then a register operand can be:
690
691 [RIP] [RP] REGISTER [RS] [RIS]
692
693 This function takes care of a register's indirection, displacement and
694 direct access. It also takes into consideration the fact that some
695 registers are named differently inside and outside GDB, e.g., PPC's
696 general-purpose registers are represented by integers in the assembly
697 language (e.g., `15' is the 15th general-purpose register), but inside
698 GDB they have a prefix (the letter `r') appended. */
699
700 static expr::operation_up
701 stap_parse_register_operand (struct stap_parse_info *p)
702 {
703 /* Simple flag to indicate whether we have seen a minus signal before
704 certain number. */
705 bool got_minus = false;
706 /* Flag to indicate whether this register access is being
707 indirected. */
708 bool indirect_p = false;
709 struct gdbarch *gdbarch = p->gdbarch;
710 /* Variables used to extract the register name from the probe's
711 argument. */
712 const char *start;
713 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
714 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
715 const char *reg_prefix;
716 const char *reg_ind_prefix;
717 const char *reg_suffix;
718 const char *reg_ind_suffix;
719
720 using namespace expr;
721
722 /* Checking for a displacement argument. */
723 if (*p->arg == '+')
724 {
725 /* If it's a plus sign, we don't need to do anything, just advance the
726 pointer. */
727 ++p->arg;
728 }
729 else if (*p->arg == '-')
730 {
731 got_minus = true;
732 ++p->arg;
733 }
734
735 struct type *long_type = builtin_type (gdbarch)->builtin_long;
736 operation_up disp_op;
737 if (isdigit (*p->arg))
738 {
739 /* The value of the displacement. */
740 long displacement;
741 char *endp;
742
743 displacement = strtol (p->arg, &endp, 10);
744 p->arg = endp;
745
746 /* Generating the expression for the displacement. */
747 if (got_minus)
748 displacement = -displacement;
749 disp_op = make_operation<long_const_operation> (long_type, displacement);
750 }
751
752 /* Getting rid of register indirection prefix. */
753 if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
754 {
755 indirect_p = true;
756 p->arg += strlen (reg_ind_prefix);
757 }
758
759 if (disp_op != nullptr && !indirect_p)
760 error (_("Invalid register displacement syntax on expression `%s'."),
761 p->saved_arg);
762
763 /* Getting rid of register prefix. */
764 if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
765 p->arg += strlen (reg_prefix);
766
767 /* Now we should have only the register name. Let's extract it and get
768 the associated number. */
769 start = p->arg;
770
771 /* We assume the register name is composed by letters and numbers. */
772 while (isalnum (*p->arg))
773 ++p->arg;
774
775 std::string regname (start, p->arg - start);
776
777 /* We only add the GDB's register prefix/suffix if we are dealing with
778 a numeric register. */
779 if (isdigit (*start))
780 {
781 if (gdb_reg_prefix != NULL)
782 regname = gdb_reg_prefix + regname;
783
784 if (gdb_reg_suffix != NULL)
785 regname += gdb_reg_suffix;
786 }
787
788 int regnum = user_reg_map_name_to_regnum (gdbarch, regname.c_str (),
789 regname.size ());
790
791 /* Is this a valid register name? */
792 if (regnum == -1)
793 error (_("Invalid register name `%s' on expression `%s'."),
794 regname.c_str (), p->saved_arg);
795
796 /* Check if there's any special treatment that the arch-specific
797 code would like to perform on the register name. */
798 if (gdbarch_stap_adjust_register_p (gdbarch))
799 {
800 std::string newregname
801 = gdbarch_stap_adjust_register (gdbarch, p, regname, regnum);
802
803 if (regname != newregname)
804 {
805 /* This is just a check we perform to make sure that the
806 arch-dependent code has provided us with a valid
807 register name. */
808 regnum = user_reg_map_name_to_regnum (gdbarch, newregname.c_str (),
809 newregname.size ());
810
811 if (regnum == -1)
812 internal_error (_("Invalid register name '%s' after replacing it"
813 " (previous name was '%s')"),
814 newregname.c_str (), regname.c_str ());
815
816 regname = std::move (newregname);
817 }
818 }
819
820 operation_up reg = make_operation<register_operation> (std::move (regname));
821
822 /* If the argument has been placed into a vector register then (for most
823 architectures), the type of this register will be a union of arrays.
824 As a result, attempting to cast from the register type to the scalar
825 argument type will not be possible (GDB will throw an error during
826 expression evaluation).
827
828 The solution is to extract the scalar type from the value contents of
829 the entire register value. */
830 if (!is_scalar_type (gdbarch_register_type (gdbarch, regnum)))
831 {
832 gdb_assert (is_scalar_type (p->arg_type));
833 reg = make_operation<unop_extract_operation> (std::move (reg),
834 p->arg_type);
835 }
836
837 if (indirect_p)
838 {
839 if (disp_op != nullptr)
840 reg = make_operation<add_operation> (std::move (disp_op),
841 std::move (reg));
842
843 /* Casting to the expected type. */
844 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
845 reg = make_operation<unop_cast_operation> (std::move (reg),
846 arg_ptr_type);
847 reg = make_operation<unop_ind_operation> (std::move (reg));
848 }
849
850 /* Getting rid of the register name suffix. */
851 if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
852 p->arg += strlen (reg_suffix);
853 else
854 error (_("Missing register name suffix on expression `%s'."),
855 p->saved_arg);
856
857 /* Getting rid of the register indirection suffix. */
858 if (indirect_p)
859 {
860 if (stap_check_register_indirection_suffix (gdbarch, p->arg,
861 &reg_ind_suffix))
862 p->arg += strlen (reg_ind_suffix);
863 else
864 error (_("Missing indirection suffix on expression `%s'."),
865 p->saved_arg);
866 }
867
868 return reg;
869 }
870
871 /* This function is responsible for parsing a single operand.
872
873 A single operand can be:
874
875 - an unary operation (e.g., `-5', `~2', or even with subexpressions
876 like `-(2 + 1)')
877 - a register displacement, which will be treated as a register
878 operand (e.g., `-4(%eax)' on x86)
879 - a numeric constant, or
880 - a register operand (see function `stap_parse_register_operand')
881
882 The function also calls special-handling functions to deal with
883 unrecognized operands, allowing arch-specific parsers to be
884 created. */
885
886 static expr::operation_up
887 stap_parse_single_operand (struct stap_parse_info *p)
888 {
889 struct gdbarch *gdbarch = p->gdbarch;
890 const char *int_prefix = NULL;
891
892 using namespace expr;
893
894 /* We first try to parse this token as a "special token". */
895 if (gdbarch_stap_parse_special_token_p (gdbarch))
896 {
897 operation_up token = gdbarch_stap_parse_special_token (gdbarch, p);
898 if (token != nullptr)
899 return token;
900 }
901
902 struct type *long_type = builtin_type (gdbarch)->builtin_long;
903 operation_up result;
904 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' || *p->arg == '!')
905 {
906 char c = *p->arg;
907 /* We use this variable to do a lookahead. */
908 const char *tmp = p->arg;
909 bool has_digit = false;
910
911 /* Skipping signal. */
912 ++tmp;
913
914 /* This is an unary operation. Here is a list of allowed tokens
915 here:
916
917 - numeric literal;
918 - number (from register displacement)
919 - subexpression (beginning with `(')
920
921 We handle the register displacement here, and the other cases
922 recursively. */
923 if (p->inside_paren_p)
924 tmp = skip_spaces (tmp);
925
926 while (isdigit (*tmp))
927 {
928 /* We skip the digit here because we are only interested in
929 knowing what kind of unary operation this is. The digit
930 will be handled by one of the functions that will be
931 called below ('stap_parse_argument_conditionally' or
932 'stap_parse_register_operand'). */
933 ++tmp;
934 has_digit = true;
935 }
936
937 if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp,
938 NULL))
939 {
940 /* If we are here, it means it is a displacement. The only
941 operations allowed here are `-' and `+'. */
942 if (c != '-' && c != '+')
943 error (_("Invalid operator `%c' for register displacement "
944 "on expression `%s'."), c, p->saved_arg);
945
946 result = stap_parse_register_operand (p);
947 }
948 else
949 {
950 /* This is not a displacement. We skip the operator, and
951 deal with it when the recursion returns. */
952 ++p->arg;
953 result = stap_parse_argument_conditionally (p);
954 if (c == '-')
955 result = make_operation<unary_neg_operation> (std::move (result));
956 else if (c == '~')
957 result = (make_operation<unary_complement_operation>
958 (std::move (result)));
959 else if (c == '!')
960 result = (make_operation<unary_logical_not_operation>
961 (std::move (result)));
962 }
963 }
964 else if (isdigit (*p->arg))
965 {
966 /* A temporary variable, needed for lookahead. */
967 const char *tmp = p->arg;
968 char *endp;
969 long number;
970
971 /* We can be dealing with a numeric constant, or with a register
972 displacement. */
973 number = strtol (tmp, &endp, 10);
974 tmp = endp;
975
976 if (p->inside_paren_p)
977 tmp = skip_spaces (tmp);
978
979 /* If "stap_is_integer_prefix" returns true, it means we can
980 accept integers without a prefix here. But we also need to
981 check whether the next token (i.e., "tmp") is not a register
982 indirection prefix. */
983 if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
984 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
985 {
986 const char *int_suffix;
987
988 /* We are dealing with a numeric constant. */
989 result = make_operation<long_const_operation> (long_type, number);
990
991 p->arg = tmp;
992
993 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
994 p->arg += strlen (int_suffix);
995 else
996 error (_("Invalid constant suffix on expression `%s'."),
997 p->saved_arg);
998 }
999 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
1000 result = stap_parse_register_operand (p);
1001 else
1002 error (_("Unknown numeric token on expression `%s'."),
1003 p->saved_arg);
1004 }
1005 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
1006 {
1007 /* We are dealing with a numeric constant. */
1008 long number;
1009 char *endp;
1010 const char *int_suffix;
1011
1012 p->arg += strlen (int_prefix);
1013 number = strtol (p->arg, &endp, 10);
1014 p->arg = endp;
1015
1016 result = make_operation<long_const_operation> (long_type, number);
1017
1018 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
1019 p->arg += strlen (int_suffix);
1020 else
1021 error (_("Invalid constant suffix on expression `%s'."),
1022 p->saved_arg);
1023 }
1024 else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
1025 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
1026 result = stap_parse_register_operand (p);
1027 else
1028 error (_("Operator `%c' not recognized on expression `%s'."),
1029 *p->arg, p->saved_arg);
1030
1031 return result;
1032 }
1033
1034 /* This function parses an argument conditionally, based on single or
1035 non-single operands. A non-single operand would be a parenthesized
1036 expression (e.g., `(2 + 1)'), and a single operand is anything that
1037 starts with `-', `~', `+' (i.e., unary operators), a digit, or
1038 something recognized by `gdbarch_stap_is_single_operand'. */
1039
1040 static expr::operation_up
1041 stap_parse_argument_conditionally (struct stap_parse_info *p)
1042 {
1043 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
1044
1045 expr::operation_up result;
1046 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' || *p->arg == '!'
1047 || isdigit (*p->arg)
1048 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
1049 result = stap_parse_single_operand (p);
1050 else if (*p->arg == '(')
1051 {
1052 /* We are dealing with a parenthesized operand. It means we
1053 have to parse it as it was a separate expression, without
1054 left-side or precedence. */
1055 ++p->arg;
1056 p->arg = skip_spaces (p->arg);
1057 ++p->inside_paren_p;
1058
1059 result = stap_parse_argument_1 (p, {}, STAP_OPERAND_PREC_NONE);
1060
1061 p->arg = skip_spaces (p->arg);
1062 if (*p->arg != ')')
1063 error (_("Missing close-parenthesis on expression `%s'."),
1064 p->saved_arg);
1065
1066 --p->inside_paren_p;
1067 ++p->arg;
1068 if (p->inside_paren_p)
1069 p->arg = skip_spaces (p->arg);
1070 }
1071 else
1072 error (_("Cannot parse expression `%s'."), p->saved_arg);
1073
1074 return result;
1075 }
1076
1077 /* Helper function for `stap_parse_argument'. Please, see its comments to
1078 better understand what this function does. */
1079
1080 static expr::operation_up ATTRIBUTE_UNUSED_RESULT
1081 stap_parse_argument_1 (struct stap_parse_info *p,
1082 expr::operation_up &&lhs_in,
1083 enum stap_operand_prec prec)
1084 {
1085 /* This is an operator-precedence parser.
1086
1087 We work with left- and right-sides of expressions, and
1088 parse them depending on the precedence of the operators
1089 we find. */
1090
1091 gdb_assert (p->arg != NULL);
1092
1093 if (p->inside_paren_p)
1094 p->arg = skip_spaces (p->arg);
1095
1096 using namespace expr;
1097 operation_up lhs = std::move (lhs_in);
1098 if (lhs == nullptr)
1099 {
1100 /* We were called without a left-side, either because this is the
1101 first call, or because we were called to parse a parenthesized
1102 expression. It doesn't really matter; we have to parse the
1103 left-side in order to continue the process. */
1104 lhs = stap_parse_argument_conditionally (p);
1105 }
1106
1107 if (p->inside_paren_p)
1108 p->arg = skip_spaces (p->arg);
1109
1110 /* Start to parse the right-side, and to "join" left and right sides
1111 depending on the operation specified.
1112
1113 This loop shall continue until we run out of characters in the input,
1114 or until we find a close-parenthesis, which means that we've reached
1115 the end of a sub-expression. */
1116 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
1117 {
1118 const char *tmp_exp_buf;
1119 enum exp_opcode opcode;
1120 enum stap_operand_prec cur_prec;
1121
1122 if (!stap_is_operator (p->arg))
1123 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
1124 p->saved_arg);
1125
1126 /* We have to save the current value of the expression buffer because
1127 the `stap_get_opcode' modifies it in order to get the current
1128 operator. If this operator's precedence is lower than PREC, we
1129 should return and not advance the expression buffer pointer. */
1130 tmp_exp_buf = p->arg;
1131 opcode = stap_get_opcode (&tmp_exp_buf);
1132
1133 cur_prec = stap_get_operator_prec (opcode);
1134 if (cur_prec < prec)
1135 {
1136 /* If the precedence of the operator that we are seeing now is
1137 lower than the precedence of the first operator seen before
1138 this parsing process began, it means we should stop parsing
1139 and return. */
1140 break;
1141 }
1142
1143 p->arg = tmp_exp_buf;
1144 if (p->inside_paren_p)
1145 p->arg = skip_spaces (p->arg);
1146
1147 /* Parse the right-side of the expression.
1148
1149 We save whether the right-side is a parenthesized
1150 subexpression because, if it is, we will have to finish
1151 processing this part of the expression before continuing. */
1152 bool paren_subexp = *p->arg == '(';
1153
1154 operation_up rhs = stap_parse_argument_conditionally (p);
1155 if (p->inside_paren_p)
1156 p->arg = skip_spaces (p->arg);
1157 if (paren_subexp)
1158 {
1159 lhs = stap_make_binop (opcode, std::move (lhs), std::move (rhs));
1160 continue;
1161 }
1162
1163 /* While we still have operators, try to parse another
1164 right-side, but using the current right-side as a left-side. */
1165 while (*p->arg != '\0' && stap_is_operator (p->arg))
1166 {
1167 enum exp_opcode lookahead_opcode;
1168 enum stap_operand_prec lookahead_prec;
1169
1170 /* Saving the current expression buffer position. The explanation
1171 is the same as above. */
1172 tmp_exp_buf = p->arg;
1173 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
1174 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
1175
1176 if (lookahead_prec <= prec)
1177 {
1178 /* If we are dealing with an operator whose precedence is lower
1179 than the first one, just abandon the attempt. */
1180 break;
1181 }
1182
1183 /* Parse the right-side of the expression, using the current
1184 right-hand-side as the left-hand-side of the new
1185 subexpression. */
1186 rhs = stap_parse_argument_1 (p, std::move (rhs), lookahead_prec);
1187 if (p->inside_paren_p)
1188 p->arg = skip_spaces (p->arg);
1189 }
1190
1191 lhs = stap_make_binop (opcode, std::move (lhs), std::move (rhs));
1192 }
1193
1194 return lhs;
1195 }
1196
1197 /* Parse a probe's argument.
1198
1199 Assuming that:
1200
1201 LP = literal integer prefix
1202 LS = literal integer suffix
1203
1204 RP = register prefix
1205 RS = register suffix
1206
1207 RIP = register indirection prefix
1208 RIS = register indirection suffix
1209
1210 This routine assumes that arguments' tokens are of the form:
1211
1212 - [LP] NUMBER [LS]
1213 - [RP] REGISTER [RS]
1214 - [RIP] [RP] REGISTER [RS] [RIS]
1215 - If we find a number without LP, we try to parse it as a literal integer
1216 constant (if LP == NULL), or as a register displacement.
1217 - We count parenthesis, and only skip whitespaces if we are inside them.
1218 - If we find an operator, we skip it.
1219
1220 This function can also call a special function that will try to match
1221 unknown tokens. It will return the expression_up generated from
1222 parsing the argument. */
1223
1224 static expression_up
1225 stap_parse_argument (const char **arg, struct type *atype,
1226 struct gdbarch *gdbarch)
1227 {
1228 /* We need to initialize the expression buffer, in order to begin
1229 our parsing efforts. We use language_c here because we may need
1230 to do pointer arithmetics. */
1231 struct stap_parse_info p (*arg, atype, language_def (language_c),
1232 gdbarch);
1233
1234 using namespace expr;
1235 operation_up result = stap_parse_argument_1 (&p, {}, STAP_OPERAND_PREC_NONE);
1236
1237 gdb_assert (p.inside_paren_p == 0);
1238
1239 /* Casting the final expression to the appropriate type. */
1240 result = make_operation<unop_cast_operation> (std::move (result), atype);
1241 p.pstate.set_operation (std::move (result));
1242
1243 p.arg = skip_spaces (p.arg);
1244 *arg = p.arg;
1245
1246 return p.pstate.release ();
1247 }
1248
1249 /* Implementation of 'parse_arguments' method. */
1250
1251 void
1252 stap_probe::parse_arguments (struct gdbarch *gdbarch)
1253 {
1254 const char *cur;
1255
1256 gdb_assert (!m_have_parsed_args);
1257 cur = m_unparsed_args_text;
1258 m_have_parsed_args = true;
1259
1260 if (cur == NULL || *cur == '\0' || *cur == ':')
1261 return;
1262
1263 while (*cur != '\0')
1264 {
1265 enum stap_arg_bitness bitness;
1266 bool got_minus = false;
1267
1268 /* We expect to find something like:
1269
1270 N@OP
1271
1272 Where `N' can be [+,-][1,2,4,8]. This is not mandatory, so
1273 we check it here. If we don't find it, go to the next
1274 state. */
1275 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1276 || (isdigit (cur[0]) && cur[1] == '@'))
1277 {
1278 if (*cur == '-')
1279 {
1280 /* Discard the `-'. */
1281 ++cur;
1282 got_minus = true;
1283 }
1284
1285 /* Defining the bitness. */
1286 switch (*cur)
1287 {
1288 case '1':
1289 bitness = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED
1290 : STAP_ARG_BITNESS_8BIT_UNSIGNED);
1291 break;
1292
1293 case '2':
1294 bitness = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED
1295 : STAP_ARG_BITNESS_16BIT_UNSIGNED);
1296 break;
1297
1298 case '4':
1299 bitness = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1300 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1301 break;
1302
1303 case '8':
1304 bitness = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1305 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1306 break;
1307
1308 default:
1309 {
1310 /* We have an error, because we don't expect anything
1311 except 1, 2, 4 and 8. */
1312 warning (_("unrecognized bitness %s%c' for probe `%s'"),
1313 got_minus ? "`-" : "`", *cur,
1314 this->get_name ().c_str ());
1315 return;
1316 }
1317 }
1318 /* Discard the number and the `@' sign. */
1319 cur += 2;
1320 }
1321 else
1322 bitness = STAP_ARG_BITNESS_UNDEFINED;
1323
1324 struct type *atype
1325 = stap_get_expected_argument_type (gdbarch, bitness,
1326 this->get_name ().c_str ());
1327
1328 expression_up expr = stap_parse_argument (&cur, atype, gdbarch);
1329
1330 if (stap_expression_debug)
1331 expr->dump (gdb_stdlog);
1332
1333 m_parsed_args.emplace_back (bitness, atype, std::move (expr));
1334
1335 /* Start it over again. */
1336 cur = skip_spaces (cur);
1337 }
1338 }
1339
1340 /* Helper function to relocate an address. */
1341
1342 static CORE_ADDR
1343 relocate_address (CORE_ADDR address, struct objfile *objfile)
1344 {
1345 return address + objfile->text_section_offset ();
1346 }
1347
1348 /* Implementation of the get_relocated_address method. */
1349
1350 CORE_ADDR
1351 stap_probe::get_relocated_address (struct objfile *objfile)
1352 {
1353 return relocate_address (this->get_address (), objfile);
1354 }
1355
1356 /* Given PROBE, returns the number of arguments present in that probe's
1357 argument string. */
1358
1359 unsigned
1360 stap_probe::get_argument_count (struct gdbarch *gdbarch)
1361 {
1362 if (!m_have_parsed_args)
1363 {
1364 if (this->can_evaluate_arguments ())
1365 this->parse_arguments (gdbarch);
1366 else
1367 {
1368 static bool have_warned_stap_incomplete = false;
1369
1370 if (!have_warned_stap_incomplete)
1371 {
1372 warning (_(
1373 "The SystemTap SDT probe support is not fully implemented on this target;\n"
1374 "you will not be able to inspect the arguments of the probes.\n"
1375 "Please report a bug against GDB requesting a port to this target."));
1376 have_warned_stap_incomplete = true;
1377 }
1378
1379 /* Marking the arguments as "already parsed". */
1380 m_have_parsed_args = true;
1381 }
1382 }
1383
1384 gdb_assert (m_have_parsed_args);
1385 return m_parsed_args.size ();
1386 }
1387
1388 /* Return true if OP is a valid operator inside a probe argument, or
1389 false otherwise. */
1390
1391 static bool
1392 stap_is_operator (const char *op)
1393 {
1394 bool ret = true;
1395
1396 switch (*op)
1397 {
1398 case '*':
1399 case '/':
1400 case '%':
1401 case '^':
1402 case '!':
1403 case '+':
1404 case '-':
1405 case '<':
1406 case '>':
1407 case '|':
1408 case '&':
1409 break;
1410
1411 case '=':
1412 if (op[1] != '=')
1413 ret = false;
1414 break;
1415
1416 default:
1417 /* We didn't find any operator. */
1418 ret = false;
1419 }
1420
1421 return ret;
1422 }
1423
1424 /* Implement the `can_evaluate_arguments' method. */
1425
1426 bool
1427 stap_probe::can_evaluate_arguments () const
1428 {
1429 struct gdbarch *gdbarch = this->get_gdbarch ();
1430
1431 /* For SystemTap probes, we have to guarantee that the method
1432 stap_is_single_operand is defined on gdbarch. If it is not, then it
1433 means that argument evaluation is not implemented on this target. */
1434 return gdbarch_stap_is_single_operand_p (gdbarch);
1435 }
1436
1437 /* Evaluate the probe's argument N (indexed from 0), returning a value
1438 corresponding to it. Assertion is thrown if N does not exist. */
1439
1440 struct value *
1441 stap_probe::evaluate_argument (unsigned n, frame_info_ptr frame)
1442 {
1443 struct stap_probe_arg *arg;
1444 struct gdbarch *gdbarch = get_frame_arch (frame);
1445
1446 arg = this->get_arg_by_number (n, gdbarch);
1447 return arg->aexpr->evaluate (arg->atype);
1448 }
1449
1450 /* Compile the probe's argument N (indexed from 0) to agent expression.
1451 Assertion is thrown if N does not exist. */
1452
1453 void
1454 stap_probe::compile_to_ax (struct agent_expr *expr, struct axs_value *value,
1455 unsigned n)
1456 {
1457 struct stap_probe_arg *arg;
1458
1459 arg = this->get_arg_by_number (n, expr->gdbarch);
1460
1461 arg->aexpr->op->generate_ax (arg->aexpr.get (), expr, value);
1462
1463 require_rvalue (expr, value);
1464 value->type = arg->atype;
1465 }
1466 \f
1467
1468 /* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1469 address. SET is zero if the semaphore should be cleared, or one if
1470 it should be set. This is a helper function for
1471 'stap_probe::set_semaphore' and 'stap_probe::clear_semaphore'. */
1472
1473 static void
1474 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1475 {
1476 gdb_byte bytes[sizeof (LONGEST)];
1477 /* The ABI specifies "unsigned short". */
1478 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1479 ULONGEST value;
1480
1481 /* Swallow errors. */
1482 if (target_read_memory (address, bytes, type->length ()) != 0)
1483 {
1484 warning (_("Could not read the value of a SystemTap semaphore."));
1485 return;
1486 }
1487
1488 enum bfd_endian byte_order = type_byte_order (type);
1489 value = extract_unsigned_integer (bytes, type->length (), byte_order);
1490 /* Note that we explicitly don't worry about overflow or
1491 underflow. */
1492 if (set)
1493 ++value;
1494 else
1495 --value;
1496
1497 store_unsigned_integer (bytes, type->length (), byte_order, value);
1498
1499 if (target_write_memory (address, bytes, type->length ()) != 0)
1500 warning (_("Could not write the value of a SystemTap semaphore."));
1501 }
1502
1503 /* Implementation of the 'set_semaphore' method.
1504
1505 SystemTap semaphores act as reference counters, so calls to this
1506 function must be paired with calls to 'clear_semaphore'.
1507
1508 This function and 'clear_semaphore' race with another tool
1509 changing the probes, but that is too rare to care. */
1510
1511 void
1512 stap_probe::set_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1513 {
1514 if (m_sem_addr == 0)
1515 return;
1516 stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 1, gdbarch);
1517 }
1518
1519 /* Implementation of the 'clear_semaphore' method. */
1520
1521 void
1522 stap_probe::clear_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1523 {
1524 if (m_sem_addr == 0)
1525 return;
1526 stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 0, gdbarch);
1527 }
1528
1529 /* Implementation of the 'get_static_ops' method. */
1530
1531 const static_probe_ops *
1532 stap_probe::get_static_ops () const
1533 {
1534 return &stap_static_probe_ops;
1535 }
1536
1537 /* Implementation of the 'gen_info_probes_table_values' method. */
1538
1539 std::vector<const char *>
1540 stap_probe::gen_info_probes_table_values () const
1541 {
1542 const char *val = NULL;
1543
1544 if (m_sem_addr != 0)
1545 val = print_core_address (this->get_gdbarch (), m_sem_addr);
1546
1547 return std::vector<const char *> { val };
1548 }
1549
1550 /* Helper function that parses the information contained in a
1551 SystemTap's probe. Basically, the information consists in:
1552
1553 - Probe's PC address;
1554 - Link-time section address of `.stapsdt.base' section;
1555 - Link-time address of the semaphore variable, or ZERO if the
1556 probe doesn't have an associated semaphore;
1557 - Probe's provider name;
1558 - Probe's name;
1559 - Probe's argument format. */
1560
1561 static void
1562 handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1563 std::vector<std::unique_ptr<probe>> *probesp,
1564 CORE_ADDR base)
1565 {
1566 bfd *abfd = objfile->obfd.get ();
1567 int size = bfd_get_arch_size (abfd) / 8;
1568 struct gdbarch *gdbarch = objfile->arch ();
1569 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1570
1571 /* Provider and the name of the probe. */
1572 const char *provider = (const char *) &el->data[3 * size];
1573 const char *name = ((const char *)
1574 memchr (provider, '\0',
1575 (char *) el->data + el->size - provider));
1576 /* Making sure there is a name. */
1577 if (name == NULL)
1578 {
1579 complaint (_("corrupt probe name when reading `%s'"),
1580 objfile_name (objfile));
1581
1582 /* There is no way to use a probe without a name or a provider, so
1583 returning here makes sense. */
1584 return;
1585 }
1586 else
1587 ++name;
1588
1589 /* Retrieving the probe's address. */
1590 CORE_ADDR address = extract_typed_address (&el->data[0], ptr_type);
1591
1592 /* Link-time sh_addr of `.stapsdt.base' section. */
1593 CORE_ADDR base_ref = extract_typed_address (&el->data[size], ptr_type);
1594
1595 /* Semaphore address. */
1596 CORE_ADDR sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1597
1598 address += base - base_ref;
1599 if (sem_addr != 0)
1600 sem_addr += base - base_ref;
1601
1602 /* Arguments. We can only extract the argument format if there is a valid
1603 name for this probe. */
1604 const char *probe_args = ((const char*)
1605 memchr (name, '\0',
1606 (char *) el->data + el->size - name));
1607
1608 if (probe_args != NULL)
1609 ++probe_args;
1610
1611 if (probe_args == NULL
1612 || (memchr (probe_args, '\0', (char *) el->data + el->size - name)
1613 != el->data + el->size - 1))
1614 {
1615 complaint (_("corrupt probe argument when reading `%s'"),
1616 objfile_name (objfile));
1617 /* If the argument string is NULL, it means some problem happened with
1618 it. So we return. */
1619 return;
1620 }
1621
1622 if (ignore_probe_p (provider, name, objfile_name (objfile), "SystemTap"))
1623 return;
1624
1625 stap_probe *ret = new stap_probe (std::string (name), std::string (provider),
1626 address, gdbarch, sem_addr, probe_args);
1627
1628 /* Successfully created probe. */
1629 probesp->emplace_back (ret);
1630 }
1631
1632 /* Helper function which iterates over every section in the BFD file,
1633 trying to find the base address of the SystemTap base section.
1634 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1635
1636 static int
1637 get_stap_base_address (bfd *obfd, bfd_vma *base)
1638 {
1639 asection *ret = NULL;
1640
1641 for (asection *sect : gdb_bfd_sections (obfd))
1642 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1643 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1644 ret = sect;
1645
1646 if (ret == NULL)
1647 {
1648 complaint (_("could not obtain base address for "
1649 "SystemTap section on objfile `%s'."),
1650 bfd_get_filename (obfd));
1651 return 0;
1652 }
1653
1654 if (base != NULL)
1655 *base = ret->vma;
1656
1657 return 1;
1658 }
1659
1660 /* Implementation of the 'is_linespec' method. */
1661
1662 bool
1663 stap_static_probe_ops::is_linespec (const char **linespecp) const
1664 {
1665 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1666
1667 return probe_is_linespec_by_keyword (linespecp, keywords);
1668 }
1669
1670 /* Implementation of the 'get_probes' method. */
1671
1672 void
1673 stap_static_probe_ops::get_probes
1674 (std::vector<std::unique_ptr<probe>> *probesp,
1675 struct objfile *objfile) const
1676 {
1677 /* If we are here, then this is the first time we are parsing the
1678 SystemTap probe's information. We basically have to count how many
1679 probes the objfile has, and then fill in the necessary information
1680 for each one. */
1681 bfd *obfd = objfile->obfd.get ();
1682 bfd_vma base;
1683 struct sdt_note *iter;
1684 unsigned save_probesp_len = probesp->size ();
1685
1686 if (objfile->separate_debug_objfile_backlink != NULL)
1687 {
1688 /* This is a .debug file, not the objfile itself. */
1689 return;
1690 }
1691
1692 if (elf_tdata (obfd)->sdt_note_head == NULL)
1693 {
1694 /* There isn't any probe here. */
1695 return;
1696 }
1697
1698 if (!get_stap_base_address (obfd, &base))
1699 {
1700 /* There was an error finding the base address for the section.
1701 Just return NULL. */
1702 return;
1703 }
1704
1705 /* Parsing each probe's information. */
1706 for (iter = elf_tdata (obfd)->sdt_note_head;
1707 iter != NULL;
1708 iter = iter->next)
1709 {
1710 /* We first have to handle all the information about the
1711 probe which is present in the section. */
1712 handle_stap_probe (objfile, iter, probesp, base);
1713 }
1714
1715 if (save_probesp_len == probesp->size ())
1716 {
1717 /* If we are here, it means we have failed to parse every known
1718 probe. */
1719 complaint (_("could not parse SystemTap probe(s) from inferior"));
1720 return;
1721 }
1722 }
1723
1724 /* Implementation of the type_name method. */
1725
1726 const char *
1727 stap_static_probe_ops::type_name () const
1728 {
1729 return "stap";
1730 }
1731
1732 /* Implementation of the 'gen_info_probes_table_header' method. */
1733
1734 std::vector<struct info_probe_column>
1735 stap_static_probe_ops::gen_info_probes_table_header () const
1736 {
1737 struct info_probe_column stap_probe_column;
1738
1739 stap_probe_column.field_name = "semaphore";
1740 stap_probe_column.print_name = _("Semaphore");
1741
1742 return std::vector<struct info_probe_column> { stap_probe_column };
1743 }
1744
1745 /* Implementation of the `info probes stap' command. */
1746
1747 static void
1748 info_probes_stap_command (const char *arg, int from_tty)
1749 {
1750 info_probes_for_spops (arg, from_tty, &stap_static_probe_ops);
1751 }
1752
1753 void _initialize_stap_probe ();
1754 void
1755 _initialize_stap_probe ()
1756 {
1757 all_static_probe_ops.push_back (&stap_static_probe_ops);
1758
1759 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1760 &stap_expression_debug,
1761 _("Set SystemTap expression debugging."),
1762 _("Show SystemTap expression debugging."),
1763 _("When non-zero, the internal representation "
1764 "of SystemTap expressions will be printed."),
1765 NULL,
1766 show_stapexpressiondebug,
1767 &setdebuglist, &showdebuglist);
1768
1769 add_cmd ("stap", class_info, info_probes_stap_command,
1770 _("\
1771 Show information about SystemTap static probes.\n\
1772 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1773 Each argument is a regular expression, used to select probes.\n\
1774 PROVIDER matches probe provider names.\n\
1775 NAME matches the probe names.\n\
1776 OBJECT matches the executable or shared library name."),
1777 info_probes_cmdlist_get ());
1778
1779
1780 using namespace expr;
1781 stap_maker_map[BINOP_ADD] = make_operation<add_operation>;
1782 stap_maker_map[BINOP_BITWISE_AND] = make_operation<bitwise_and_operation>;
1783 stap_maker_map[BINOP_BITWISE_IOR] = make_operation<bitwise_ior_operation>;
1784 stap_maker_map[BINOP_BITWISE_XOR] = make_operation<bitwise_xor_operation>;
1785 stap_maker_map[BINOP_DIV] = make_operation<div_operation>;
1786 stap_maker_map[BINOP_EQUAL] = make_operation<equal_operation>;
1787 stap_maker_map[BINOP_GEQ] = make_operation<geq_operation>;
1788 stap_maker_map[BINOP_GTR] = make_operation<gtr_operation>;
1789 stap_maker_map[BINOP_LEQ] = make_operation<leq_operation>;
1790 stap_maker_map[BINOP_LESS] = make_operation<less_operation>;
1791 stap_maker_map[BINOP_LOGICAL_AND] = make_operation<logical_and_operation>;
1792 stap_maker_map[BINOP_LOGICAL_OR] = make_operation<logical_or_operation>;
1793 stap_maker_map[BINOP_LSH] = make_operation<lsh_operation>;
1794 stap_maker_map[BINOP_MUL] = make_operation<mul_operation>;
1795 stap_maker_map[BINOP_NOTEQUAL] = make_operation<notequal_operation>;
1796 stap_maker_map[BINOP_REM] = make_operation<rem_operation>;
1797 stap_maker_map[BINOP_RSH] = make_operation<rsh_operation>;
1798 stap_maker_map[BINOP_SUB] = make_operation<sub_operation>;
1799 }