08e5817ebfb89aa031422ea877614da1524f5795
[libreriscv.git] / openpower / sv / rfc / ls013.mdwn
1 # RFC ls013 Min/Max GPR/FPR
2
3 **URLs**:
4
5 * <https://libre-soc.org/openpower/sv/rfc/ls013/>
6 * <https://git.openpower.foundation/isa/PowerISA/issues/TODO>
7 * <https://bugs.libre-soc.org/show_bug.cgi?id=1057>
8
9 **Severity**: Major
10
11 **Status**: New
12
13 **Date**: 14 Apr 2023
14
15 **Target**: v3.2B
16
17 **Source**: v3.1B
18
19 **Books and Section affected**:
20
21 ```
22 Book I Fixed-Point and Floating-Point Instructions
23 Appendix E Power ISA sorted by opcode
24 Appendix F Power ISA sorted by version
25 Appendix G Power ISA sorted by Compliancy Subset
26 Appendix H Power ISA sorted by mnemonic
27 ```
28
29 **Summary**
30
31 ```
32 Instructions added
33 ```
34
35 **Submitter**: Luke Leighton (Libre-SOC)
36
37 **Requester**: Libre-SOC
38
39 **Impact on processor**:
40
41 ```
42 Addition of new GPR-based and FPR-based instructions
43 ```
44
45 **Impact on software**:
46
47 ```
48 Requires support for new instructions in assembler, debuggers,
49 and related tools.
50 ```
51
52 **Keywords**:
53
54 ```
55 GPR, FPR, min, max, fmin, fmax
56 ```
57
58 **Motivation**
59
60 Minimum/Maximum are common operations that can take an astounding number of
61 operations to implement in software. Additionally, Vector Reduce-Min/Max are
62 common vector operations, and SVP64 Parallel Reduction needs a single Scalar
63 instruction in order to effectively implement Reduce-Min/Max.
64
65 **Notes and Observations**:
66
67 1. SVP64 REMAP Parallel Reduction needs a single Scalar instruction to
68 work with, for best effectiveness. With no SFFS minimum/maximum
69 instructions Simple-V min/max Parallel Reduction is severely compromised.
70 2. Once one FP min/max mode is implemented the rest are not much more hardware.
71 3. There exists similar instructions in VSX (not IEEE754-2019 though).
72 This is frequently used to justify not adding them. However SVP64/VSX may
73 have different meaning from SVP64/SFFS, so it is *really* crucial to have
74 SFFS ops even if "equivalent" to VSX in order for SVP64 to not be
75 compromised (non-orthogonal).
76 4. FP min/max are rather complex to implement in software, the most commonly
77 used FP max function `fmax` from glibc compiled for SFFS is an astounding
78 32 instructions.
79
80 **Changes**
81
82 Add the following entries to:
83
84 * the Appendices of Book I
85 * Book I 3.3.9 Fixed-Point Arithmetic Instructions
86 * Book I 4.6.6.1 Floating-Point Elementary Arithmetic Instructions
87 * Book I 1.6.1 and 1.6.2
88
89 ----------------
90
91 \newpage{}
92
93 # Floating-Point Instructions
94
95 This group is to provide Floating-Point min/max however with IEEE754 having advanced
96 to 2019 there are now subtle differences. These are selectable with a Mode Field, `FMM`.
97
98 ## `FMM` -- Floating Min/Max Mode
99
100 <a id="fmm-floating-min-max-mode"></a>
101
102 <!-- hyphens in table determine width of columns for pandoc --
103 please don't change just to make markdown source look better -->
104 | `FMM` | Extended Mnemonic | Origin | Semantics |
105 | --- |---------------------------------| ------------------- |---------------------------------------------------|
106 | 0000 | fminnum08[s] FRT, FRA, FRB | IEEE 754-2008 | FRT = minNum(FRA, FRB) (1) |
107 | 0001 | fmin19[s] FRT, FRA, FRB | IEEE 754-2019 | FRT = minimum(FRA, FRB) |
108 | 0010 | fminnum19[s] FRT, FRA, FRB | IEEE 754-2019 | FRT = minimumNumber(FRA, FRB) |
109 | 0011 | fminc[s] FRT, FRA, FRB | x86 minss or<br>Win32's min macro | FRT = FRA \< FRB ? FRA : FRB |
110 | 0100 | fminmagnum08[s] FRT, FRA, FRB | IEEE 754-2008<br>(TODO: (3)) | FRT = minmaxmag(FRA, FRB, False, fminnum08) (2) |
111 | 0101 | fminmag19[s] FRT, FRA, FRB | IEEE 754-2019 | FRT = minmaxmag(FRA, FRB, False, fmin19) (2) |
112 | 0110 | fminmagnum19[s] FRT, FRA, FRB | IEEE 754-2019 | FRT = minmaxmag(FRA, FRB, False, fminnum19) (2) |
113 | 0111 | fminmagc[s] FRT, FRA, FRB | - | FRT = minmaxmag(FRA, FRB, False, fminc) (2) |
114 | 1000 | fmaxnum08[s] FRT, FRA, FRB | IEEE 754-2008 | FRT = maxNum(FRA, FRB) (1) |
115 | 1001 | fmax19[s] FRT, FRA, FRB | IEEE 754-2019 | FRT = maximum(FRA, FRB) |
116 | 1010 | fmaxnum19[s] FRT, FRA, FRB | IEEE 754-2019 | FRT = maximumNumber(FRA, FRB) |
117 | 1011 | fmaxc[s] FRT, FRA, FRB | x86 maxss or<br>Win32's max macro | FRT = FRA > FRB ? FRA : FRB |
118 | 1100 | fmaxmagnum08[s] FRT, FRA, FRB | IEEE 754-2008<br>(TODO: (3)) | FRT = minmaxmag(FRA, FRB, True, fmaxnum08) (2) |
119 | 1101 | fmaxmag19[s] FRT, FRA, FRB | IEEE 754-2019 | FRT = minmaxmag(FRA, FRB, True, fmax19) (2) |
120 | 1110 | fmaxmagnum19[s] FRT, FRA, FRB | IEEE 754-2019 | FRT = minmaxmag(FRA, FRB, True, fmaxnum19) (2) |
121 | 1111 | fmaxmagc[s] FRT, FRA, FRB | - | FRT = minmaxmag(FRA, FRB, True, fmaxc) (2) |
122
123 Note (1): for the purposes of minNum/maxNum, -0.0 is defined to be less than
124 +0.0. This is left unspecified in IEEE 754-2008.
125
126 Note (2): minmaxmag(x, y, cmp, fallback) is defined as:
127
128 ```python
129 def minmaxmag(x, y, is_max, fallback):
130 a = abs(x) < abs(y)
131 b = abs(x) > abs(y)
132 if is_max:
133 a, b = b, a # swap
134 if a:
135 return x
136 if b:
137 return y
138 # equal magnitudes, or NaN input(s)
139 return fallback(x, y)
140 ```
141
142 Note (3): TODO: icr if IEEE 754-2008 has min/maxMagNum like IEEE 754-2019's
143 minimum/maximumMagnitudeNumber
144
145 ----------------
146
147 \newpage{}
148
149 ## Floating Minimum/Maximum MM-form
150
151 * fminmax FRT, FRA, FRB, FMM
152 * fminmax. FRT, FRA, FRB, FMM
153
154 ```
155 |0 |6 |11 |16 |21 |25 |31 |
156 | PO | FRT | FRA | FRB | FMM | XO | Rc |
157 ```
158
159 Compute the minimum/maximum of FRA and FRB, according to FMM, and store the
160 result in FRT.
161
162 Special Registers altered:
163
164 ```
165 FX VXSNAN
166 CR1 (if Rc=1)
167 ```
168
169 Extended Mnemonics:
170
171 see [`FMM` -- Floating Min/Max Mode](#fmm-floating-min-max-mode)
172
173 ----------
174
175 ## Floating Minimum/Maximum Single MM-form
176
177 * fminmaxs FRT, FRA, FRB, FMM
178 * fminmaxs. FRT, FRA, FRB, FMM
179
180 ```
181 |0 |6 |11 |16 |21 |25 |31 |
182 | PO | FRT | FRA | FRB | FMM | XO | Rc |
183 ```
184
185 Compute the minimum/maximum of FRA and FRB, according to FMM, and store the
186 result in FRT.
187
188 Special Registers altered:
189
190 ```
191 FX VXSNAN
192 CR1 (if Rc=1)
193 ```
194
195 Extended Mnemonics:
196
197 see [`FMM` -- Floating Min/Max Mode](#fmm-floating-min-max-mode)
198
199 ----------
200
201 \newpage{}
202
203 # Fixed-Point Instructions
204
205 These are signed and unsigned, min or max. SVP64 Prefixing defines Saturation
206 semantics therefore Saturated variants of these instructions need not be proposed.
207
208 ## `MMM` -- Integer Min/Max Mode
209
210 <a id="mmm-integer-min-max-mode"></a>
211
212 * bit 0: set if word variant else dword
213 * bit 1: set if signed else unsigned
214 * bit 2: set if max else min
215
216 | `MMM` | Extended Mnemonic | Semantics |
217 |-------|-------------------|----------------------------------------------|
218 | 000 | `minu RT,RA,RB` | `RT = (uint64_t)RA < (uint64_t)RB ? RA : RB` |
219 | 001 | `maxu RT,RA,RB` | `RT = (uint64_t)RA > (uint64_t)RB ? RA : RB` |
220 | 010 | `mins RT,RA,RB` | `RT = (int64_t)RA < (int64_t)RB ? RA : RB` |
221 | 011 | `maxs RT,RA,RB` | `RT = (int64_t)RA > (int64_t)RB ? RA : RB` |
222 | 100 | `minuw RT,RA,RB` | `RT = (uint32_t)RA < (uint32_t)RB ? RA : RB` |
223 | 101 | `maxuw RT,RA,RB` | `RT = (uint32_t)RA > (uint32_t)RB ? RA : RB` |
224 | 110 | `minsw RT,RA,RB` | `RT = (int32_t)RA < (int32_t)RB ? RA : RB` |
225 | 111 | `maxsw RT,RA,RB` | `RT = (int32_t)RA > (int32_t)RB ? RA : RB` |
226
227 ## Minimum/Maximum MM-Form
228
229 * minmax RT, RA, RB, MMM
230 * minmax. RT, RA, RB, MMM
231
232 ```
233 |0 |6 |11 |16 |21 |24 |25 |31 |
234 | PO | RT | RA | RB | MMM | / | XO | Rc |
235 ```
236
237 ```
238 a <- (RA|0)
239 b <- (RB)
240 if MMM[0] then # word mode
241 # shift left by XLEN/2 to make the dword comparison
242 # do word comparison of the original inputs
243 a <- a[XLEN/2:XLEN-1] || [0] * XLEN/2
244 b <- b[XLEN/2:XLEN-1] || [0] * XLEN/2
245 if MMM[1] then # signed mode
246 # invert sign bits to make the unsigned comparison
247 # do signed comparison of the original inputs
248 a[0] <- ¬a[0]
249 b[0] <- ¬b[0]
250 # if Rc = 1 then store the result of comparing a and b to CR0
251 if Rc = 1 then
252 if a <u b then
253 CR0 <- 0b100 || XER.SO
254 if a = b then
255 CR0 <- 0b001 || XER.SO
256 if a >u b then
257 CR0 <- 0b010 || XER.SO
258 if MMM[2] then # max mode
259 # swap a and b to make the less than comparison do
260 # greater than comparison of the original inputs
261 t <- a
262 a <- b
263 b <- t
264 # store the entire selected source (even in word mode)
265 # if Rc = 1 then store the result of comparing a and b to CR0
266 if a <u b then RT <- (RA|0)
267 else RT <- (RB)
268 ```
269
270 Compute the integer minimum/maximum according to `MMM` of `(RA|0)` and `(RB)`
271 and store the result in `RT`.
272
273 Special Registers altered:
274
275 ```
276 CR0 (if Rc=1)
277 ```
278
279 Extended Mnemonics:
280
281 see [`MMM` -- Integer Min/Max Mode](#mmm-integer-min-max-mode)
282
283 ----------
284
285 \newpage{}
286
287 # Instruction Formats
288
289 Add the following entries to Book I 1.6.1 Word Instruction Formats:
290
291 ## MM-FORM
292
293 ```
294 |0 |6 |11 |16 |21 |24 |25 |31 |
295 | PO | FRT | FRA | FRB | FMM | XO | Rc |
296 | PO | RT | RA | RB | MMM | / | XO | Rc |
297 ```
298
299 Add the following new fields to Book I 1.6.2 Word Instruction Fields:
300
301 ```
302 FMM (21:24)
303 Field used to specify minimum/maximum mode for fminmax[s].
304
305 Formats: MM
306
307 MMM (21:23)
308 Field used to specify minimum/maximum mode for integer minmax.
309
310 Formats: MM
311 ```
312
313 Add `MM` to the `Formats:` list for all of `FRT`, `FRA`, `FRB`, `XO (25:30)`,
314 `Rc`, `RT`, `RA` and `RB`.
315
316 ----------
317
318 \newpage{}
319
320 # Appendices
321
322 Appendix E Power ISA sorted by opcode
323 Appendix F Power ISA sorted by version
324 Appendix G Power ISA sorted by Compliancy Subset
325 Appendix H Power ISA sorted by mnemonic
326
327 | Form | Book | Page | Version | Mnemonic | Description |
328 |------|------|------|---------|----------|-------------|
329 | MM | I | # | 3.2B | fminmax | Floating Minimum/Maximum |
330 | MM | I | # | 3.2B | fminmaxs | Floating Minimum/Maximum Single |
331 | MM | I | # | 3.2B | minmax | Minimum/Maximum |
332
333 ## fmax instruction count
334
335 32 instructions are required in SFFS to emulate fmax.
336
337 ```
338 #include <stdint.h>
339 #include <string.h>
340
341 inline uint64_t asuint64(double f) {
342 union {
343 double f;
344 uint64_t i;
345 } u = {f};
346 return u.i;
347 }
348
349 inline int issignaling(double v) {
350 // copied from glibc:
351 // https://github.com/bminor/glibc/blob/e2756903329365134089d23548e9083d23bc3dd9/sysdeps/ieee754/dbl-64/math_config.h#L101
352 uint64_t ix = asuint64(v);
353 return 2 * (ix ^ 0x0008000000000000) > 2 * 0x7ff8000000000000ULL;
354 }
355
356 double fmax(double x, double y) {
357 // copied from glibc:
358 // https://github.com/bminor/glibc/blob/e2756903329365134089d23548e9083d23bc3dd9/math/s_fmax_template.c
359 if(__builtin_isgreaterequal(x, y))
360 return x;
361 else if(__builtin_isless(x, y))
362 return y;
363 else if(issignaling(x) || issignaling(y))
364 return x + y;
365 else
366 return __builtin_isnan(y) ? x : y;
367 }
368 ```
369
370 Assembly listing:
371
372 ```
373 fmax(double, double):
374 fcmpu 0,1,2
375 fmr 0,1
376 cror 30,1,2
377 beq 7,.L12
378 blt 0,.L13
379 stfd 1,-16(1)
380 lis 9,0x8
381 li 8,-1
382 sldi 9,9,32
383 rldicr 8,8,0,11
384 ori 2,2,0
385 ld 10,-16(1)
386 xor 10,10,9
387 sldi 10,10,1
388 cmpld 0,10,8
389 bgt 0,.L5
390 stfd 2,-16(1)
391 ori 2,2,0
392 ld 10,-16(1)
393 xor 9,10,9
394 sldi 9,9,1
395 cmpld 0,9,8
396 ble 0,.L6
397 .L5:
398 fadd 1,0,2
399 blr
400 .L13:
401 fmr 1,2
402 blr
403 .L6:
404 fcmpu 0,2,2
405 fmr 1,2
406 bnulr 0
407 .L12:
408 fmr 1,0
409 blr
410 .long 0
411 .byte 0,9,0,0,0,0,0,0
412 ```
413
414 [[!tag opf_rfc]]
415