bug 676: although spotted under maxloc, sv.mcrf was incomplete
[openpower-isa.git] / src / openpower / decoder / isa / caller.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Copyright (C) 2020 Michael Nolan
4 # Funded by NLnet http://nlnet.nl
5 """core of the python-based POWER9 simulator
6
7 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
8 not speed, it is for both learning and educational purposes, as well as
9 a method of verifying the HDL.
10
11 related bugs:
12
13 * https://bugs.libre-soc.org/show_bug.cgi?id=424
14 """
15
16 from collections import namedtuple
17 from copy import deepcopy
18 from functools import wraps
19 import os
20 import errno
21 import struct
22 from openpower.syscalls import ppc_flags
23 import sys
24 from elftools.elf.elffile import ELFFile # for isinstance
25
26 from nmigen.sim import Settle
27 import openpower.syscalls
28 from openpower.consts import (MSRb, PIb, # big-endian (PowerISA versions)
29 SVP64CROffs, SVP64MODEb)
30 from openpower.decoder.helpers import (ISACallerHelper, ISAFPHelpers, exts,
31 gtu, undefined, copy_assign_rhs)
32 from openpower.decoder.isa.mem import Mem, MemMMap, MemException, LoadedELF
33 from openpower.decoder.isa.radixmmu import RADIX
34 from openpower.decoder.isa.svshape import SVSHAPE
35 from openpower.decoder.isa.svstate import SVP64State
36 from openpower.decoder.orderedset import OrderedSet
37 from openpower.decoder.power_enums import (FPTRANS_INSNS, CRInSel, CROutSel,
38 In1Sel, In2Sel, In3Sel, LDSTMode,
39 MicrOp, OutSel, SVMode,
40 SVP64LDSTmode, SVP64PredCR,
41 SVP64PredInt, SVP64PredMode,
42 SVP64RMMode, SVPType, XER_bits,
43 insns, spr_byname, spr_dict,
44 BFP_FLAG_NAMES)
45 from openpower.insndb.core import SVP64Instruction
46 from openpower.decoder.power_svp64 import SVP64RM, decode_extra
47 from openpower.decoder.selectable_int import (FieldSelectableInt,
48 SelectableInt, selectconcat,
49 EFFECTIVELY_UNLIMITED)
50 from openpower.consts import DEFAULT_MSR
51 from openpower.fpscr import FPSCRState
52 from openpower.xer import XERState
53 from openpower.util import LogType, log
54
55 LDST_UPDATE_INSNS = ['ldu', 'lwzu', 'lbzu', 'lhzu', 'lhau', 'lfsu', 'lfdu',
56 'stwu', 'stbu', 'sthu', 'stfsu', 'stfdu', 'stdu',
57 ]
58
59
60 instruction_info = namedtuple('instruction_info',
61 'func read_regs uninit_regs write_regs ' +
62 'special_regs op_fields form asmregs')
63
64 special_sprs = {
65 'LR': 8,
66 'CTR': 9,
67 'TAR': 815,
68 'XER': 1,
69 'VRSAVE': 256}
70
71
72 # rrright. this is here basically because the compiler pywriter returns
73 # results in a specific priority order. to make sure regs match up they
74 # need partial sorting. sigh.
75 REG_SORT_ORDER = {
76 # TODO (lkcl): adjust other registers that should be in a particular order
77 # probably CA, CA32, and CR
78 "FRT": 0,
79 "FRA": 0,
80 "FRB": 0,
81 "FRC": 0,
82 "FRS": 0,
83 "RT": 0,
84 "RA": 0,
85 "RB": 0,
86 "RC": 0,
87 "RS": 0,
88 "BI": 0,
89 "CR": 0,
90 "LR": 0,
91 "CTR": 0,
92 "TAR": 0,
93 "MSR": 0,
94 "SVSTATE": 0,
95 "SVSHAPE0": 0,
96 "SVSHAPE1": 0,
97 "SVSHAPE2": 0,
98 "SVSHAPE3": 0,
99
100 "CA": 0,
101 "CA32": 0,
102
103 "FPSCR": 1,
104
105 "overflow": 7, # should definitely be last
106 "CR0": 8, # likewise
107 }
108
109 fregs = ['FRA', 'FRB', 'FRC', 'FRS', 'FRT']
110
111
112 def get_masked_reg(regs, base, offs, ew_bits):
113 # rrrright. start by breaking down into row/col, based on elwidth
114 gpr_offs = offs // (64 // ew_bits)
115 gpr_col = offs % (64 // ew_bits)
116 # compute the mask based on ew_bits
117 mask = (1 << ew_bits) - 1
118 # now select the 64-bit register, but get its value (easier)
119 val = regs[base + gpr_offs]
120 # shift down so element we want is at LSB
121 val >>= gpr_col * ew_bits
122 # mask so we only return the LSB element
123 return val & mask
124
125
126 def set_masked_reg(regs, base, offs, ew_bits, value):
127 # rrrright. start by breaking down into row/col, based on elwidth
128 gpr_offs = offs // (64//ew_bits)
129 gpr_col = offs % (64//ew_bits)
130 # compute the mask based on ew_bits
131 mask = (1 << ew_bits)-1
132 # now select the 64-bit register, but get its value (easier)
133 val = regs[base+gpr_offs]
134 # now mask out the bit we don't want
135 val = val & ~(mask << (gpr_col*ew_bits))
136 # then wipe the bit we don't want from the value
137 value = value & mask
138 # OR the new value in, shifted up
139 val |= value << (gpr_col*ew_bits)
140 regs[base+gpr_offs] = val
141
142
143 def create_args(reglist, extra=None):
144 retval = list(OrderedSet(reglist))
145 retval.sort(key=lambda reg: REG_SORT_ORDER.get(reg, 0))
146 if extra is not None:
147 return [extra] + retval
148 return retval
149
150
151 def create_full_args(*, read_regs, special_regs, uninit_regs, write_regs,
152 extra=None):
153 return create_args([
154 *read_regs, *uninit_regs, *write_regs, *special_regs], extra=extra)
155
156
157 def is_ffirst_mode(dec2):
158 rm_mode = yield dec2.rm_dec.mode
159 return rm_mode == SVP64RMMode.FFIRST.value
160
161
162 class GPR(dict):
163 def __init__(self, decoder, isacaller, svstate, regfile):
164 dict.__init__(self)
165 self.sd = decoder
166 self.isacaller = isacaller
167 self.svstate = svstate
168 for i in range(len(regfile)):
169 self[i] = SelectableInt(regfile[i], 64)
170
171 def __call__(self, ridx, is_vec=False, offs=0, elwidth=64):
172 if isinstance(ridx, SelectableInt):
173 ridx = ridx.value
174 if elwidth == 64:
175 return self[ridx+offs]
176 # rrrright. start by breaking down into row/col, based on elwidth
177 gpr_offs = offs // (64//elwidth)
178 gpr_col = offs % (64//elwidth)
179 # now select the 64-bit register, but get its value (easier)
180 val = self[ridx+gpr_offs].value
181 # now shift down and mask out
182 val = val >> (gpr_col*elwidth) & ((1 << elwidth)-1)
183 # finally, return a SelectableInt at the required elwidth
184 log("GPR call", ridx, "isvec", is_vec, "offs", offs,
185 "elwid", elwidth, "offs/col", gpr_offs, gpr_col, "val", hex(val))
186 return SelectableInt(val, elwidth)
187
188 def set_form(self, form):
189 self.form = form
190
191 def write(self, rnum, value, is_vec=False, elwidth=64):
192 # get internal value
193 if isinstance(rnum, SelectableInt):
194 rnum = rnum.value
195 if isinstance(value, SelectableInt):
196 value = value.value
197 # compatibility...
198 if isinstance(rnum, tuple):
199 rnum, base, offs = rnum
200 else:
201 base, offs = rnum, 0
202 # rrrright. start by breaking down into row/col, based on elwidth
203 gpr_offs = offs // (64//elwidth)
204 gpr_col = offs % (64//elwidth)
205 # compute the mask based on elwidth
206 mask = (1 << elwidth)-1
207 # now select the 64-bit register, but get its value (easier)
208 val = self[base+gpr_offs].value
209 # now mask out the bit we don't want
210 val = val & ~(mask << (gpr_col*elwidth))
211 # then wipe the bit we don't want from the value
212 value = value & mask
213 # OR the new value in, shifted up
214 val |= value << (gpr_col*elwidth)
215 # finally put the damn value into the regfile
216 log("GPR write", base, "isvec", is_vec, "offs", offs,
217 "elwid", elwidth, "offs/col", gpr_offs, gpr_col, "val", hex(val),
218 "@", base+gpr_offs)
219 dict.__setitem__(self, base+gpr_offs, SelectableInt(val, 64))
220
221 def __setitem__(self, rnum, value):
222 # rnum = rnum.value # only SelectableInt allowed
223 log("GPR setitem", rnum, value)
224 if isinstance(rnum, SelectableInt):
225 rnum = rnum.value
226 dict.__setitem__(self, rnum, value)
227
228 def getz(self, rnum, rvalue=None):
229 # rnum = rnum.value # only SelectableInt allowed
230 log("GPR getzero?", rnum, rvalue)
231 if rvalue is not None:
232 if rnum == 0:
233 return SelectableInt(0, rvalue.bits)
234 return rvalue
235 if rnum == 0:
236 return SelectableInt(0, 64)
237 return self[rnum]
238
239 def _get_regnum(self, attr):
240 getform = self.sd.sigforms[self.form]
241 rnum = getattr(getform, attr)
242 return rnum
243
244 def ___getitem__(self, attr):
245 """ XXX currently not used
246 """
247 rnum = self._get_regnum(attr)
248 log("GPR getitem", attr, rnum)
249 return self.regfile[rnum]
250
251 def dump(self, printout=True):
252 res = []
253 for i in range(len(self)):
254 res.append(self[i].value)
255 if printout:
256 for i in range(0, len(res), 8):
257 s = []
258 for j in range(8):
259 s.append("%08x" % res[i+j])
260 s = ' '.join(s)
261 log("reg", "%2d" % i, s, kind=LogType.InstrInOuts)
262 return res
263
264
265 class SPR(dict):
266 def __init__(self, dec2, initial_sprs={}, gpr=None):
267 self.sd = dec2
268 self.gpr = gpr # for SVSHAPE[0-3]
269 dict.__init__(self)
270 for key, v in initial_sprs.items():
271 if isinstance(key, SelectableInt):
272 key = key.value
273 key = special_sprs.get(key, key)
274 if isinstance(key, int):
275 info = spr_dict[key]
276 else:
277 info = spr_byname[key]
278 if not isinstance(v, SelectableInt):
279 v = SelectableInt(v, info.length)
280 self[key] = v
281
282 def __getitem__(self, key):
283 #log("get spr", key)
284 #log("dict", self.items())
285 # if key in special_sprs get the special spr, otherwise return key
286 if isinstance(key, SelectableInt):
287 key = key.value
288 if isinstance(key, int):
289 key = spr_dict[key].SPR
290 key = special_sprs.get(key, key)
291 if key == 'HSRR0': # HACK!
292 key = 'SRR0'
293 if key == 'HSRR1': # HACK!
294 key = 'SRR1'
295 if key in self:
296 res = dict.__getitem__(self, key)
297 else:
298 if isinstance(key, int):
299 info = spr_dict[key]
300 else:
301 info = spr_byname[key]
302 self[key] = SelectableInt(0, info.length)
303 res = dict.__getitem__(self, key)
304 #log("spr returning", key, res)
305 return res
306
307 def __setitem__(self, key, value):
308 if isinstance(key, SelectableInt):
309 key = key.value
310 if isinstance(key, int):
311 key = spr_dict[key].SPR
312 log("spr key", key)
313 key = special_sprs.get(key, key)
314 if key == 'HSRR0': # HACK!
315 self.__setitem__('SRR0', value)
316 if key == 'HSRR1': # HACK!
317 self.__setitem__('SRR1', value)
318 if key == 1:
319 value = XERState(value)
320 if key in ('SVSHAPE0', 'SVSHAPE1', 'SVSHAPE2', 'SVSHAPE3'):
321 value = SVSHAPE(value, self.gpr)
322 log("setting spr", key, value)
323 dict.__setitem__(self, key, value)
324
325 def __call__(self, ridx):
326 return self[ridx]
327
328 def dump(self, printout=True):
329 res = []
330 keys = list(self.keys())
331 # keys.sort()
332 for k in keys:
333 sprname = spr_dict.get(k, None)
334 if sprname is None:
335 sprname = k
336 else:
337 sprname = sprname.SPR
338 res.append((sprname, self[k].value))
339 if printout:
340 for sprname, value in res:
341 print(" ", sprname, hex(value))
342 return res
343
344
345 class PC:
346 def __init__(self, pc_init=0):
347 self.CIA = SelectableInt(pc_init, 64)
348 self.NIA = self.CIA + SelectableInt(4, 64) # only true for v3.0B!
349
350 def update_nia(self, is_svp64):
351 increment = 8 if is_svp64 else 4
352 self.NIA = self.CIA + SelectableInt(increment, 64)
353
354 def update(self, namespace, is_svp64):
355 """updates the program counter (PC) by 4 if v3.0B mode or 8 if SVP64
356 """
357 self.CIA = namespace['NIA'].narrow(64)
358 self.update_nia(is_svp64)
359 namespace['CIA'] = self.CIA
360 namespace['NIA'] = self.NIA
361
362
363 # CR register fields
364 # See PowerISA Version 3.0 B Book 1
365 # Section 2.3.1 Condition Register pages 30 - 31
366 class CRFields:
367 LT = FL = 0 # negative, less than, floating-point less than
368 GT = FG = 1 # positive, greater than, floating-point greater than
369 EQ = FE = 2 # equal, floating-point equal
370 SO = FU = 3 # summary overflow, floating-point unordered
371
372 def __init__(self, init=0):
373 # rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
374 # self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
375 self.cr = SelectableInt(init, 64) # underlying reg
376 # field-selectable versions of Condition Register TODO check bitranges?
377 self.crl = []
378 for i in range(8):
379 bits = tuple(range(i*4+32, (i+1)*4+32))
380 _cr = FieldSelectableInt(self.cr, bits)
381 self.crl.append(_cr)
382
383
384 # decode SVP64 predicate integer to reg number and invert
385 def get_predint(gpr, mask):
386 r3 = gpr(3)
387 r10 = gpr(10)
388 r30 = gpr(30)
389 log("get_predint", mask, SVP64PredInt.ALWAYS.value)
390 if mask == SVP64PredInt.ALWAYS.value:
391 return 0xffff_ffff_ffff_ffff # 64 bits of 1
392 if mask == SVP64PredInt.R3_UNARY.value:
393 return 1 << (r3.value & 0b111111)
394 if mask == SVP64PredInt.R3.value:
395 return r3.value
396 if mask == SVP64PredInt.R3_N.value:
397 return ~r3.value
398 if mask == SVP64PredInt.R10.value:
399 return r10.value
400 if mask == SVP64PredInt.R10_N.value:
401 return ~r10.value
402 if mask == SVP64PredInt.R30.value:
403 return r30.value
404 if mask == SVP64PredInt.R30_N.value:
405 return ~r30.value
406
407
408 # decode SVP64 predicate CR to reg number and invert status
409 def _get_predcr(mask):
410 if mask == SVP64PredCR.LT.value:
411 return 0, 1
412 if mask == SVP64PredCR.GE.value:
413 return 0, 0
414 if mask == SVP64PredCR.GT.value:
415 return 1, 1
416 if mask == SVP64PredCR.LE.value:
417 return 1, 0
418 if mask == SVP64PredCR.EQ.value:
419 return 2, 1
420 if mask == SVP64PredCR.NE.value:
421 return 2, 0
422 if mask == SVP64PredCR.SO.value:
423 return 3, 1
424 if mask == SVP64PredCR.NS.value:
425 return 3, 0
426
427
428 # read individual CR fields (0..VL-1), extract the required bit
429 # and construct the mask
430 def get_predcr(crl, predselect, vl):
431 idx, noninv = _get_predcr(predselect)
432 mask = 0
433 for i in range(vl):
434 cr = crl[i+SVP64CROffs.CRPred]
435 if cr[idx].value == noninv:
436 mask |= (1 << i)
437 log("get_predcr", vl, idx, noninv, i+SVP64CROffs.CRPred,
438 bin(cr.asint()), cr[idx].value, bin(mask))
439 return mask
440
441
442 # TODO, really should just be using PowerDecoder2
443 def get_idx_map(dec2, name):
444 op = dec2.dec.op
445 in1_sel = yield op.in1_sel
446 in2_sel = yield op.in2_sel
447 in3_sel = yield op.in3_sel
448 in1 = yield dec2.e.read_reg1.data
449 # identify which regnames map to in1/2/3
450 if name == 'RA' or name == 'RA_OR_ZERO':
451 if (in1_sel == In1Sel.RA.value or
452 (in1_sel == In1Sel.RA_OR_ZERO.value and in1 != 0)):
453 return 1
454 if in1_sel == In1Sel.RA_OR_ZERO.value:
455 return 1
456 elif name == 'RB':
457 if in2_sel == In2Sel.RB.value:
458 return 2
459 if in3_sel == In3Sel.RB.value:
460 return 3
461 # XXX TODO, RC doesn't exist yet!
462 elif name == 'RC':
463 if in3_sel == In3Sel.RC.value:
464 return 3
465 elif name in ['EA', 'RS']:
466 if in1_sel == In1Sel.RS.value:
467 return 1
468 if in2_sel == In2Sel.RS.value:
469 return 2
470 if in3_sel == In3Sel.RS.value:
471 return 3
472 elif name == 'FRA':
473 if in1_sel == In1Sel.FRA.value:
474 return 1
475 if in3_sel == In3Sel.FRA.value:
476 return 3
477 elif name == 'FRB':
478 if in2_sel == In2Sel.FRB.value:
479 return 2
480 elif name == 'FRC':
481 if in3_sel == In3Sel.FRC.value:
482 return 3
483 elif name == 'FRS':
484 if in1_sel == In1Sel.FRS.value:
485 return 1
486 if in3_sel == In3Sel.FRS.value:
487 return 3
488 elif name == 'FRT':
489 if in1_sel == In1Sel.FRT.value:
490 return 1
491 elif name == 'RT':
492 if in1_sel == In1Sel.RT.value:
493 return 1
494 return None
495
496
497 # TODO, really should just be using PowerDecoder2
498 def get_idx_in(dec2, name, ewmode=False):
499 idx = yield from get_idx_map(dec2, name)
500 if idx is None:
501 return None, False
502 op = dec2.dec.op
503 in1_sel = yield op.in1_sel
504 in2_sel = yield op.in2_sel
505 in3_sel = yield op.in3_sel
506 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
507 in1 = yield dec2.e.read_reg1.data
508 in2 = yield dec2.e.read_reg2.data
509 in3 = yield dec2.e.read_reg3.data
510 if ewmode:
511 in1_base = yield dec2.e.read_reg1.base
512 in2_base = yield dec2.e.read_reg2.base
513 in3_base = yield dec2.e.read_reg3.base
514 in1_offs = yield dec2.e.read_reg1.offs
515 in2_offs = yield dec2.e.read_reg2.offs
516 in3_offs = yield dec2.e.read_reg3.offs
517 in1 = (in1, in1_base, in1_offs)
518 in2 = (in2, in2_base, in2_offs)
519 in3 = (in3, in3_base, in3_offs)
520
521 in1_isvec = yield dec2.in1_isvec
522 in2_isvec = yield dec2.in2_isvec
523 in3_isvec = yield dec2.in3_isvec
524 log("get_idx_in in1", name, in1_sel, In1Sel.RA.value,
525 in1, in1_isvec)
526 log("get_idx_in in2", name, in2_sel, In2Sel.RB.value,
527 in2, in2_isvec)
528 log("get_idx_in in3", name, in3_sel, In3Sel.RS.value,
529 in3, in3_isvec)
530 log("get_idx_in FRS in3", name, in3_sel, In3Sel.FRS.value,
531 in3, in3_isvec)
532 log("get_idx_in FRB in2", name, in2_sel, In2Sel.FRB.value,
533 in2, in2_isvec)
534 log("get_idx_in FRC in3", name, in3_sel, In3Sel.FRC.value,
535 in3, in3_isvec)
536 if idx == 1:
537 return in1, in1_isvec
538 if idx == 2:
539 return in2, in2_isvec
540 if idx == 3:
541 return in3, in3_isvec
542 return None, False
543
544
545 # TODO, really should just be using PowerDecoder2
546 def get_cr_in(dec2, name):
547 op = dec2.dec.op
548 in_sel = yield op.cr_in
549 in_bitfield = yield dec2.dec_cr_in.cr_bitfield.data
550 sv_cr_in = yield op.sv_cr_in
551 spec = yield dec2.crin_svdec.spec
552 sv_override = yield dec2.dec_cr_in.sv_override
553 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
554 in1 = yield dec2.e.read_cr1.data
555 cr_isvec = yield dec2.cr_in_isvec
556 log("get_cr_in", in_sel, CROutSel.CR0.value, in1, cr_isvec)
557 log(" sv_cr_in", sv_cr_in)
558 log(" cr_bf", in_bitfield)
559 log(" spec", spec)
560 log(" override", sv_override)
561 # identify which regnames map to in / o2
562 if name == 'BI':
563 if in_sel == CRInSel.BI.value:
564 return in1, cr_isvec
565 if name == 'BFA':
566 if in_sel == CRInSel.BFA.value:
567 if name in ['BA', 'BB']:
568 if in_sel == CRInSel.BA_BB.value:
569 if name == 'BFA':
570 if in_sel == CRInSel.BFA.value:
571 return in1, cr_isvec
572 log("get_cr_in not found", name)
573 return None, False
574
575
576 # TODO, really should just be using PowerDecoder2
577 def get_cr_out(dec2, name):
578 op = dec2.dec.op
579 out_sel = yield op.cr_out
580 out_bitfield = yield dec2.dec_cr_out.cr_bitfield.data
581 sv_cr_out = yield op.sv_cr_out
582 spec = yield dec2.crout_svdec.spec
583 sv_override = yield dec2.dec_cr_out.sv_override
584 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
585 out = yield dec2.e.write_cr.data
586 o_isvec = yield dec2.cr_out_isvec
587 log("get_cr_out", out_sel, CROutSel.CR0.value, out, o_isvec)
588 log(" sv_cr_out", sv_cr_out)
589 log(" cr_bf", out_bitfield)
590 log(" spec", spec)
591 log(" override", sv_override)
592 # identify which regnames map to out / o2
593 if name == 'BF':
594 if out_sel == CROutSel.BF.value:
595 return out, o_isvec
596 if name == 'BT':
597 if out_sel == CROutSel.BT.value:
598 return out, o_isvec
599 if name == 'CR0':
600 if out_sel == CROutSel.CR0.value:
601 return out, o_isvec
602 if name == 'CR1': # these are not actually calculated correctly
603 if out_sel == CROutSel.CR1.value:
604 return out, o_isvec
605 # check RC1 set? if so return implicit vector, this is a REAL bad hack
606 RC1 = yield dec2.rm_dec.RC1
607 if RC1:
608 log("get_cr_out RC1 mode")
609 if name == 'CR0':
610 return 0, True # XXX TODO: offset CR0 from SVSTATE SPR
611 if name == 'CR1':
612 return 1, True # XXX TODO: offset CR1 from SVSTATE SPR
613 # nope - not found.
614 log("get_cr_out not found", name)
615 return None, False
616
617
618 # TODO, really should just be using PowerDecoder2
619 def get_out_map(dec2, name):
620 op = dec2.dec.op
621 out_sel = yield op.out_sel
622 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
623 out = yield dec2.e.write_reg.data
624 # identify which regnames map to out / o2
625 if name == 'RA':
626 if out_sel == OutSel.RA.value:
627 return True
628 elif name == 'RT':
629 if out_sel == OutSel.RT.value:
630 return True
631 if out_sel == OutSel.RT_OR_ZERO.value and out != 0:
632 return True
633 elif name == 'RT_OR_ZERO':
634 if out_sel == OutSel.RT_OR_ZERO.value:
635 return True
636 elif name == 'FRA':
637 if out_sel == OutSel.FRA.value:
638 return True
639 elif name == 'FRS':
640 if out_sel == OutSel.FRS.value:
641 return True
642 elif name == 'FRT':
643 if out_sel == OutSel.FRT.value:
644 return True
645 return False
646
647
648 # TODO, really should just be using PowerDecoder2
649 def get_idx_out(dec2, name, ewmode=False):
650 op = dec2.dec.op
651 out_sel = yield op.out_sel
652 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
653 out = yield dec2.e.write_reg.data
654 o_isvec = yield dec2.o_isvec
655 if ewmode:
656 offs = yield dec2.e.write_reg.offs
657 base = yield dec2.e.write_reg.base
658 out = (out, base, offs)
659 # identify which regnames map to out / o2
660 ismap = yield from get_out_map(dec2, name)
661 if ismap:
662 log("get_idx_out", name, out_sel, out, o_isvec)
663 return out, o_isvec
664 log("get_idx_out not found", name, out_sel, out, o_isvec)
665 return None, False
666
667
668 # TODO, really should just be using PowerDecoder2
669 def get_out2_map(dec2, name):
670 # check first if register is activated for write
671 op = dec2.dec.op
672 out_sel = yield op.out_sel
673 out = yield dec2.e.write_ea.data
674 out_ok = yield dec2.e.write_ea.ok
675 if not out_ok:
676 return False
677
678 if name in ['EA', 'RA']:
679 if hasattr(op, "upd"):
680 # update mode LD/ST uses read-reg A also as an output
681 upd = yield op.upd
682 log("get_idx_out2", upd, LDSTMode.update.value,
683 out_sel, OutSel.RA.value,
684 out)
685 if upd == LDSTMode.update.value:
686 return True
687 if name == 'RS':
688 fft_en = yield dec2.implicit_rs
689 if fft_en:
690 log("get_idx_out2", out_sel, OutSel.RS.value,
691 out)
692 return True
693 if name == 'FRS':
694 fft_en = yield dec2.implicit_rs
695 if fft_en:
696 log("get_idx_out2", out_sel, OutSel.FRS.value,
697 out)
698 return True
699 return False
700
701
702 # TODO, really should just be using PowerDecoder2
703 def get_idx_out2(dec2, name, ewmode=False):
704 # check first if register is activated for write
705 op = dec2.dec.op
706 out_sel = yield op.out_sel
707 out = yield dec2.e.write_ea.data
708 if ewmode:
709 offs = yield dec2.e.write_ea.offs
710 base = yield dec2.e.write_ea.base
711 out = (out, base, offs)
712 o_isvec = yield dec2.o2_isvec
713 ismap = yield from get_out2_map(dec2, name)
714 if ismap:
715 log("get_idx_out2", name, out_sel, out, o_isvec)
716 return out, o_isvec
717 return None, False
718
719
720 class StepLoop:
721 """deals with svstate looping.
722 """
723
724 def __init__(self, svstate):
725 self.svstate = svstate
726 self.new_iterators()
727
728 def new_iterators(self):
729 self.src_it = self.src_iterator()
730 self.dst_it = self.dst_iterator()
731 self.loopend = False
732 self.new_srcstep = 0
733 self.new_dststep = 0
734 self.new_ssubstep = 0
735 self.new_dsubstep = 0
736 self.pred_dst_zero = 0
737 self.pred_src_zero = 0
738
739 def src_iterator(self):
740 """source-stepping iterator
741 """
742 pack = self.svstate.pack
743
744 # source step
745 if pack:
746 # pack advances subvl in *outer* loop
747 while True: # outer subvl loop
748 while True: # inner vl loop
749 vl = self.svstate.vl
750 subvl = self.subvl
751 srcmask = self.srcmask
752 srcstep = self.svstate.srcstep
753 pred_src_zero = ((1 << srcstep) & srcmask) != 0
754 if self.pred_sz or pred_src_zero:
755 self.pred_src_zero = not pred_src_zero
756 log(" advance src", srcstep, vl,
757 self.svstate.ssubstep, subvl)
758 # yield actual substep/srcstep
759 yield (self.svstate.ssubstep, srcstep)
760 # the way yield works these could have been modified.
761 vl = self.svstate.vl
762 subvl = self.subvl
763 srcstep = self.svstate.srcstep
764 log(" advance src check", srcstep, vl,
765 self.svstate.ssubstep, subvl, srcstep == vl-1,
766 self.svstate.ssubstep == subvl)
767 if srcstep == vl-1: # end-point
768 self.svstate.srcstep = SelectableInt(0, 7) # reset
769 if self.svstate.ssubstep == subvl: # end-point
770 log(" advance pack stop")
771 return
772 break # exit inner loop
773 self.svstate.srcstep += SelectableInt(1, 7) # advance ss
774 subvl = self.subvl
775 if self.svstate.ssubstep == subvl: # end-point
776 self.svstate.ssubstep = SelectableInt(0, 2) # reset
777 log(" advance pack stop")
778 return
779 self.svstate.ssubstep += SelectableInt(1, 2)
780
781 else:
782 # these cannot be done as for-loops because SVSTATE may change
783 # (srcstep/substep may be modified, interrupted, subvl/vl change)
784 # but they *can* be done as while-loops as long as every SVSTATE
785 # "thing" is re-read every single time a yield gives indices
786 while True: # outer vl loop
787 while True: # inner subvl loop
788 vl = self.svstate.vl
789 subvl = self.subvl
790 srcmask = self.srcmask
791 srcstep = self.svstate.srcstep
792 pred_src_zero = ((1 << srcstep) & srcmask) != 0
793 if self.pred_sz or pred_src_zero:
794 self.pred_src_zero = not pred_src_zero
795 log(" advance src", srcstep, vl,
796 self.svstate.ssubstep, subvl)
797 # yield actual substep/srcstep
798 yield (self.svstate.ssubstep, srcstep)
799 if self.svstate.ssubstep == subvl: # end-point
800 self.svstate.ssubstep = SelectableInt(0, 2) # reset
801 break # exit inner loop
802 self.svstate.ssubstep += SelectableInt(1, 2)
803 vl = self.svstate.vl
804 if srcstep == vl-1: # end-point
805 self.svstate.srcstep = SelectableInt(0, 7) # reset
806 self.loopend = True
807 return
808 self.svstate.srcstep += SelectableInt(1, 7) # advance srcstep
809
810 def dst_iterator(self):
811 """dest-stepping iterator
812 """
813 unpack = self.svstate.unpack
814
815 # dest step
816 if unpack:
817 # pack advances subvl in *outer* loop
818 while True: # outer subvl loop
819 while True: # inner vl loop
820 vl = self.svstate.vl
821 subvl = self.subvl
822 dstmask = self.dstmask
823 dststep = self.svstate.dststep
824 pred_dst_zero = ((1 << dststep) & dstmask) != 0
825 if self.pred_dz or pred_dst_zero:
826 self.pred_dst_zero = not pred_dst_zero
827 log(" advance dst", dststep, vl,
828 self.svstate.dsubstep, subvl)
829 # yield actual substep/dststep
830 yield (self.svstate.dsubstep, dststep)
831 # the way yield works these could have been modified.
832 vl = self.svstate.vl
833 dststep = self.svstate.dststep
834 log(" advance dst check", dststep, vl,
835 self.svstate.ssubstep, subvl)
836 if dststep == vl-1: # end-point
837 self.svstate.dststep = SelectableInt(0, 7) # reset
838 if self.svstate.dsubstep == subvl: # end-point
839 log(" advance unpack stop")
840 return
841 break
842 self.svstate.dststep += SelectableInt(1, 7) # advance ds
843 subvl = self.subvl
844 if self.svstate.dsubstep == subvl: # end-point
845 self.svstate.dsubstep = SelectableInt(0, 2) # reset
846 log(" advance unpack stop")
847 return
848 self.svstate.dsubstep += SelectableInt(1, 2)
849 else:
850 # these cannot be done as for-loops because SVSTATE may change
851 # (dststep/substep may be modified, interrupted, subvl/vl change)
852 # but they *can* be done as while-loops as long as every SVSTATE
853 # "thing" is re-read every single time a yield gives indices
854 while True: # outer vl loop
855 while True: # inner subvl loop
856 subvl = self.subvl
857 dstmask = self.dstmask
858 dststep = self.svstate.dststep
859 pred_dst_zero = ((1 << dststep) & dstmask) != 0
860 if self.pred_dz or pred_dst_zero:
861 self.pred_dst_zero = not pred_dst_zero
862 log(" advance dst", dststep, self.svstate.vl,
863 self.svstate.dsubstep, subvl)
864 # yield actual substep/dststep
865 yield (self.svstate.dsubstep, dststep)
866 if self.svstate.dsubstep == subvl: # end-point
867 self.svstate.dsubstep = SelectableInt(0, 2) # reset
868 break
869 self.svstate.dsubstep += SelectableInt(1, 2)
870 subvl = self.subvl
871 vl = self.svstate.vl
872 if dststep == vl-1: # end-point
873 self.svstate.dststep = SelectableInt(0, 7) # reset
874 return
875 self.svstate.dststep += SelectableInt(1, 7) # advance dststep
876
877 def src_iterate(self):
878 """source-stepping iterator
879 """
880 subvl = self.subvl
881 vl = self.svstate.vl
882 pack = self.svstate.pack
883 unpack = self.svstate.unpack
884 ssubstep = self.svstate.ssubstep
885 end_ssub = ssubstep == subvl
886 end_src = self.svstate.srcstep == vl-1
887 log(" pack/unpack/subvl", pack, unpack, subvl,
888 "end", end_src,
889 "sub", end_ssub)
890 # first source step
891 srcstep = self.svstate.srcstep
892 srcmask = self.srcmask
893 if pack:
894 # pack advances subvl in *outer* loop
895 while True:
896 assert srcstep <= vl-1
897 end_src = srcstep == vl-1
898 if end_src:
899 if end_ssub:
900 self.loopend = True
901 else:
902 self.svstate.ssubstep += SelectableInt(1, 2)
903 srcstep = 0 # reset
904 break
905 else:
906 srcstep += 1 # advance srcstep
907 if not self.srcstep_skip:
908 break
909 if ((1 << srcstep) & srcmask) != 0:
910 break
911 else:
912 log(" sskip", bin(srcmask), bin(1 << srcstep))
913 else:
914 # advance subvl in *inner* loop
915 if end_ssub:
916 while True:
917 assert srcstep <= vl-1
918 end_src = srcstep == vl-1
919 if end_src: # end-point
920 self.loopend = True
921 srcstep = 0
922 break
923 else:
924 srcstep += 1
925 if not self.srcstep_skip:
926 break
927 if ((1 << srcstep) & srcmask) != 0:
928 break
929 else:
930 log(" sskip", bin(srcmask), bin(1 << srcstep))
931 self.svstate.ssubstep = SelectableInt(0, 2) # reset
932 else:
933 # advance ssubstep
934 self.svstate.ssubstep += SelectableInt(1, 2)
935
936 self.svstate.srcstep = SelectableInt(srcstep, 7)
937 log(" advance src", self.svstate.srcstep, self.svstate.ssubstep,
938 self.loopend)
939
940 def dst_iterate(self):
941 """dest step iterator
942 """
943 vl = self.svstate.vl
944 subvl = self.subvl
945 pack = self.svstate.pack
946 unpack = self.svstate.unpack
947 dsubstep = self.svstate.dsubstep
948 end_dsub = dsubstep == subvl
949 dststep = self.svstate.dststep
950 end_dst = dststep == vl-1
951 dstmask = self.dstmask
952 log(" pack/unpack/subvl", pack, unpack, subvl,
953 "end", end_dst,
954 "sub", end_dsub)
955 # now dest step
956 if unpack:
957 # unpack advances subvl in *outer* loop
958 while True:
959 assert dststep <= vl-1
960 end_dst = dststep == vl-1
961 if end_dst:
962 if end_dsub:
963 self.loopend = True
964 else:
965 self.svstate.dsubstep += SelectableInt(1, 2)
966 dststep = 0 # reset
967 break
968 else:
969 dststep += 1 # advance dststep
970 if not self.dststep_skip:
971 break
972 if ((1 << dststep) & dstmask) != 0:
973 break
974 else:
975 log(" dskip", bin(dstmask), bin(1 << dststep))
976 else:
977 # advance subvl in *inner* loop
978 if end_dsub:
979 while True:
980 assert dststep <= vl-1
981 end_dst = dststep == vl-1
982 if end_dst: # end-point
983 self.loopend = True
984 dststep = 0
985 break
986 else:
987 dststep += 1
988 if not self.dststep_skip:
989 break
990 if ((1 << dststep) & dstmask) != 0:
991 break
992 else:
993 log(" dskip", bin(dstmask), bin(1 << dststep))
994 self.svstate.dsubstep = SelectableInt(0, 2) # reset
995 else:
996 # advance ssubstep
997 self.svstate.dsubstep += SelectableInt(1, 2)
998
999 self.svstate.dststep = SelectableInt(dststep, 7)
1000 log(" advance dst", self.svstate.dststep, self.svstate.dsubstep,
1001 self.loopend)
1002
1003 def at_loopend(self):
1004 """tells if this is the last possible element. uses the cached values
1005 for src/dst-step and sub-steps
1006 """
1007 subvl = self.subvl
1008 vl = self.svstate.vl
1009 srcstep, dststep = self.new_srcstep, self.new_dststep
1010 ssubstep, dsubstep = self.new_ssubstep, self.new_dsubstep
1011 end_ssub = ssubstep == subvl
1012 end_dsub = dsubstep == subvl
1013 if srcstep == vl-1 and end_ssub:
1014 return True
1015 if dststep == vl-1 and end_dsub:
1016 return True
1017 return False
1018
1019 def advance_svstate_steps(self):
1020 """ advance sub/steps. note that Pack/Unpack *INVERTS* the order.
1021 TODO when Pack/Unpack is set, substep becomes the *outer* loop
1022 """
1023 self.subvl = yield self.dec2.rm_dec.rm_in.subvl
1024 if self.loopend: # huhn??
1025 return
1026 self.src_iterate()
1027 self.dst_iterate()
1028
1029 def read_src_mask(self):
1030 """read/update pred_sz and src mask
1031 """
1032 # get SVSTATE VL (oh and print out some debug stuff)
1033 vl = self.svstate.vl
1034 srcstep = self.svstate.srcstep
1035 ssubstep = self.svstate.ssubstep
1036
1037 # get predicate mask (all 64 bits)
1038 srcmask = 0xffff_ffff_ffff_ffff
1039
1040 pmode = yield self.dec2.rm_dec.predmode
1041 sv_ptype = yield self.dec2.dec.op.SV_Ptype
1042 srcpred = yield self.dec2.rm_dec.srcpred
1043 dstpred = yield self.dec2.rm_dec.dstpred
1044 pred_sz = yield self.dec2.rm_dec.pred_sz
1045 if pmode == SVP64PredMode.INT.value:
1046 srcmask = dstmask = get_predint(self.gpr, dstpred)
1047 if sv_ptype == SVPType.P2.value:
1048 srcmask = get_predint(self.gpr, srcpred)
1049 elif pmode == SVP64PredMode.CR.value:
1050 srcmask = dstmask = get_predcr(self.crl, dstpred, vl)
1051 if sv_ptype == SVPType.P2.value:
1052 srcmask = get_predcr(self.crl, srcpred, vl)
1053 # work out if the ssubsteps are completed
1054 ssubstart = ssubstep == 0
1055 log(" pmode", pmode)
1056 log(" ptype", sv_ptype)
1057 log(" srcpred", bin(srcpred))
1058 log(" srcmask", bin(srcmask))
1059 log(" pred_sz", bin(pred_sz))
1060 log(" ssubstart", ssubstart)
1061
1062 # store all that above
1063 self.srcstep_skip = False
1064 self.srcmask = srcmask
1065 self.pred_sz = pred_sz
1066 self.new_ssubstep = ssubstep
1067 log(" new ssubstep", ssubstep)
1068 # until the predicate mask has a "1" bit... or we run out of VL
1069 # let srcstep==VL be the indicator to move to next instruction
1070 if not pred_sz:
1071 self.srcstep_skip = True
1072
1073 def read_dst_mask(self):
1074 """same as read_src_mask - check and record everything needed
1075 """
1076 # get SVSTATE VL (oh and print out some debug stuff)
1077 # yield Delay(1e-10) # make changes visible
1078 vl = self.svstate.vl
1079 dststep = self.svstate.dststep
1080 dsubstep = self.svstate.dsubstep
1081
1082 # get predicate mask (all 64 bits)
1083 dstmask = 0xffff_ffff_ffff_ffff
1084
1085 pmode = yield self.dec2.rm_dec.predmode
1086 reverse_gear = yield self.dec2.rm_dec.reverse_gear
1087 sv_ptype = yield self.dec2.dec.op.SV_Ptype
1088 dstpred = yield self.dec2.rm_dec.dstpred
1089 pred_dz = yield self.dec2.rm_dec.pred_dz
1090 if pmode == SVP64PredMode.INT.value:
1091 dstmask = get_predint(self.gpr, dstpred)
1092 elif pmode == SVP64PredMode.CR.value:
1093 dstmask = get_predcr(self.crl, dstpred, vl)
1094 # work out if the ssubsteps are completed
1095 dsubstart = dsubstep == 0
1096 log(" pmode", pmode)
1097 log(" ptype", sv_ptype)
1098 log(" dstpred", bin(dstpred))
1099 log(" dstmask", bin(dstmask))
1100 log(" pred_dz", bin(pred_dz))
1101 log(" dsubstart", dsubstart)
1102
1103 self.dststep_skip = False
1104 self.dstmask = dstmask
1105 self.pred_dz = pred_dz
1106 self.new_dsubstep = dsubstep
1107 log(" new dsubstep", dsubstep)
1108 if not pred_dz:
1109 self.dststep_skip = True
1110
1111 def svstate_pre_inc(self):
1112 """check if srcstep/dststep need to skip over masked-out predicate bits
1113 note that this is not supposed to do anything to substep,
1114 it is purely for skipping masked-out bits
1115 """
1116
1117 self.subvl = yield self.dec2.rm_dec.rm_in.subvl
1118 yield from self.read_src_mask()
1119 yield from self.read_dst_mask()
1120
1121 self.skip_src()
1122 self.skip_dst()
1123
1124 def skip_src(self):
1125
1126 srcstep = self.svstate.srcstep
1127 srcmask = self.srcmask
1128 pred_src_zero = self.pred_sz
1129 vl = self.svstate.vl
1130 # srcstep-skipping opportunity identified
1131 if self.srcstep_skip:
1132 # cannot do this with sv.bc - XXX TODO
1133 if srcmask == 0:
1134 self.loopend = True
1135 while (((1 << srcstep) & srcmask) == 0) and (srcstep != vl):
1136 log(" sskip", bin(1 << srcstep))
1137 srcstep += 1
1138
1139 # now work out if the relevant mask bits require zeroing
1140 if pred_src_zero:
1141 pred_src_zero = ((1 << srcstep) & srcmask) == 0
1142
1143 # store new srcstep / dststep
1144 self.new_srcstep = srcstep
1145 self.pred_src_zero = pred_src_zero
1146 log(" new srcstep", srcstep)
1147
1148 def skip_dst(self):
1149 # dststep-skipping opportunity identified
1150 dststep = self.svstate.dststep
1151 dstmask = self.dstmask
1152 pred_dst_zero = self.pred_dz
1153 vl = self.svstate.vl
1154 if self.dststep_skip:
1155 # cannot do this with sv.bc - XXX TODO
1156 if dstmask == 0:
1157 self.loopend = True
1158 while (((1 << dststep) & dstmask) == 0) and (dststep != vl):
1159 log(" dskip", bin(1 << dststep))
1160 dststep += 1
1161
1162 # now work out if the relevant mask bits require zeroing
1163 if pred_dst_zero:
1164 pred_dst_zero = ((1 << dststep) & dstmask) == 0
1165
1166 # store new srcstep / dststep
1167 self.new_dststep = dststep
1168 self.pred_dst_zero = pred_dst_zero
1169 log(" new dststep", dststep)
1170
1171
1172 class ExitSyscallCalled(Exception):
1173 pass
1174
1175
1176 class SyscallEmulator(openpower.syscalls.Dispatcher):
1177 def __init__(self, isacaller):
1178 self.__isacaller = isacaller
1179
1180 host = os.uname().machine
1181 bits = (64 if (sys.maxsize > (2**32)) else 32)
1182 host = openpower.syscalls.architecture(arch=host, bits=bits)
1183
1184 return super().__init__(guest="ppc64", host=host)
1185
1186 def __call__(self, identifier, *arguments):
1187 (identifier, *arguments) = map(int, (identifier, *arguments))
1188 return super().__call__(identifier, *arguments)
1189
1190 def sys_exit_group(self, status, *rest):
1191 self.__isacaller.halted = True
1192 raise ExitSyscallCalled(status)
1193
1194 def sys_write(self, fd, buf, count, *rest):
1195 if count != 0:
1196 buf = self.__isacaller.mem.get_ctypes(buf, count, is_write=False)
1197 else:
1198 buf = b""
1199 try:
1200 return os.write(fd, buf)
1201 except OSError as e:
1202 return -e.errno
1203
1204 def sys_writev(self, fd, iov, iovcnt, *rest):
1205 IOV_MAX = 1024
1206 if iovcnt < 0 or iovcnt > IOV_MAX:
1207 return -errno.EINVAL
1208 struct_iovec = struct.Struct("<QQ")
1209 try:
1210 if iovcnt > 0:
1211 iov = self.__isacaller.mem.get_ctypes(
1212 iov, struct_iovec.size * iovcnt, is_write=False)
1213 iov = list(struct_iovec.iter_unpack(iov))
1214 else:
1215 iov = []
1216 for i, iovec in enumerate(iov):
1217 iov_base, iov_len = iovec
1218 iov[i] = self.__isacaller.mem.get_ctypes(
1219 iov_base, iov_len, is_write=False)
1220 except (ValueError, MemException):
1221 return -errno.EFAULT
1222 try:
1223 return os.writev(fd, iov)
1224 except OSError as e:
1225 return -e.errno
1226
1227 def sys_read(self, fd, buf, count, *rest):
1228 if count != 0:
1229 buf = self.__isacaller.mem.get_ctypes(buf, count, is_write=True)
1230 else:
1231 buf = bytearray()
1232 try:
1233 return os.readv(fd, [buf])
1234 except OSError as e:
1235 return -e.errno
1236
1237 def sys_mmap(self, addr, length, prot, flags, fd, offset, *rest):
1238 return self.__isacaller.mem.mmap_syscall(
1239 addr, length, prot, flags, fd, offset, is_mmap2=False)
1240
1241 def sys_mmap2(self, addr, length, prot, flags, fd, offset, *rest):
1242 return self.__isacaller.mem.mmap_syscall(
1243 addr, length, prot, flags, fd, offset, is_mmap2=True)
1244
1245 def sys_brk(self, addr, *rest):
1246 return self.__isacaller.mem.brk_syscall(addr)
1247
1248 def sys_munmap(self, addr, length, *rest):
1249 return -errno.ENOSYS # TODO: implement
1250
1251 def sys_mprotect(self, addr, length, prot, *rest):
1252 return -errno.ENOSYS # TODO: implement
1253
1254 def sys_pkey_mprotect(self, addr, length, prot, pkey, *rest):
1255 return -errno.ENOSYS # TODO: implement
1256
1257 def sys_openat(self, dirfd, pathname, flags, mode, *rest):
1258 try:
1259 path = self.__isacaller.mem.read_cstr(pathname)
1260 except (ValueError, MemException):
1261 return -errno.EFAULT
1262 try:
1263 if dirfd == ppc_flags.AT_FDCWD:
1264 return os.open(path, flags, mode)
1265 else:
1266 return os.open(path, flags, mode, dir_fd=dirfd)
1267 except OSError as e:
1268 return -e.errno
1269
1270 def _uname(self):
1271 uname = os.uname()
1272 sysname = b'Linux'
1273 nodename = uname.nodename.encode()
1274 release = b'5.6.0-1-powerpc64le'
1275 version = b'#1 SMP Debian 5.6.7-1 (2020-04-29)'
1276 machine = b'ppc64le'
1277 domainname = b''
1278 return sysname, nodename, release, version, machine, domainname
1279
1280 def sys_uname(self, buf, *rest):
1281 s = struct.Struct("<65s65s65s65s65s")
1282 try:
1283 buf = self.__isacaller.mem.get_ctypes(buf, s.size, is_write=True)
1284 except (ValueError, MemException):
1285 return -errno.EFAULT
1286 sysname, nodename, release, version, machine, domainname = \
1287 self._uname()
1288 s.pack_into(buf, 0, sysname, nodename, release, version, machine)
1289 return 0
1290
1291 def sys_newuname(self, buf, *rest):
1292 name_len = ppc_flags.__NEW_UTS_LEN + 1
1293 s = struct.Struct("<%ds%ds%ds%ds%ds%ds" % ((name_len,) * 6))
1294 try:
1295 buf = self.__isacaller.mem.get_ctypes(buf, s.size, is_write=True)
1296 except (ValueError, MemException):
1297 return -errno.EFAULT
1298 sysname, nodename, release, version, machine, domainname = \
1299 self._uname()
1300 s.pack_into(buf, 0,
1301 sysname, nodename, release, version, machine, domainname)
1302 return 0
1303
1304 def sys_readlink(self, pathname, buf, bufsiz, *rest):
1305 dirfd = ppc_flags.AT_FDCWD
1306 return self.sys_readlinkat(dirfd, pathname, buf, bufsiz)
1307
1308 def sys_readlinkat(self, dirfd, pathname, buf, bufsiz, *rest):
1309 try:
1310 path = self.__isacaller.mem.read_cstr(pathname)
1311 if bufsiz != 0:
1312 buf = self.__isacaller.mem.get_ctypes(
1313 buf, bufsiz, is_write=True)
1314 else:
1315 buf = bytearray()
1316 except (ValueError, MemException):
1317 return -errno.EFAULT
1318 try:
1319 if dirfd == ppc_flags.AT_FDCWD:
1320 result = os.readlink(path)
1321 else:
1322 result = os.readlink(path, dir_fd=dirfd)
1323 retval = min(len(result), len(buf))
1324 buf[:retval] = result[:retval]
1325 return retval
1326 except OSError as e:
1327 return -e.errno
1328
1329
1330 class ISACaller(ISACallerHelper, ISAFPHelpers, StepLoop):
1331 # decoder2 - an instance of power_decoder2
1332 # regfile - a list of initial values for the registers
1333 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
1334 # respect_pc - tracks the program counter. requires initial_insns
1335 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
1336 initial_mem=None, initial_msr=0,
1337 initial_svstate=0,
1338 initial_insns=None,
1339 fpregfile=None,
1340 respect_pc=False,
1341 disassembly=None,
1342 initial_pc=0,
1343 bigendian=False,
1344 mmu=False,
1345 icachemmu=False,
1346 initial_fpscr=0,
1347 insnlog=None,
1348 use_mmap_mem=False,
1349 use_syscall_emu=False,
1350 emulating_mmap=False,
1351 real_page_size=None):
1352 if use_syscall_emu:
1353 self.syscall = SyscallEmulator(isacaller=self)
1354 if not use_mmap_mem:
1355 log("forcing use_mmap_mem due to use_syscall_emu active")
1356 use_mmap_mem = True
1357 else:
1358 self.syscall = None
1359
1360 # we will eventually be able to load ELF files without use_syscall_emu
1361 # (e.g. the linux kernel), so do it in a separate if block
1362 if isinstance(initial_insns, ELFFile):
1363 if not use_mmap_mem:
1364 log("forcing use_mmap_mem due to loading an ELF file")
1365 use_mmap_mem = True
1366 if not emulating_mmap:
1367 log("forcing emulating_mmap due to loading an ELF file")
1368 emulating_mmap = True
1369
1370 # trace log file for model output. if None do nothing
1371 self.insnlog = insnlog
1372 self.insnlog_is_file = hasattr(insnlog, "write")
1373 if not self.insnlog_is_file and self.insnlog:
1374 self.insnlog = open(self.insnlog, "w")
1375
1376 self.bigendian = bigendian
1377 self.halted = False
1378 self.is_svp64_mode = False
1379 self.respect_pc = respect_pc
1380 if initial_sprs is None:
1381 initial_sprs = {}
1382 if initial_mem is None:
1383 initial_mem = {}
1384 if fpregfile is None:
1385 fpregfile = [0] * 32
1386 if initial_insns is None:
1387 initial_insns = {}
1388 assert self.respect_pc == False, "instructions required to honor pc"
1389 if initial_msr is None:
1390 initial_msr = DEFAULT_MSR
1391
1392 log("ISACaller insns", respect_pc, initial_insns, disassembly)
1393 log("ISACaller initial_msr", initial_msr)
1394
1395 # "fake program counter" mode (for unit testing)
1396 self.fake_pc = 0
1397 disasm_start = 0
1398 if not respect_pc:
1399 if isinstance(initial_mem, tuple):
1400 self.fake_pc = initial_mem[0]
1401 disasm_start = self.fake_pc
1402 else:
1403 disasm_start = initial_pc
1404
1405 # disassembly: we need this for now (not given from the decoder)
1406 self.disassembly = {}
1407 if disassembly:
1408 for i, code in enumerate(disassembly):
1409 self.disassembly[i*4 + disasm_start] = code
1410
1411 # set up registers, instruction memory, data memory, PC, SPRs, MSR, CR
1412 self.svp64rm = SVP64RM()
1413 if initial_svstate is None:
1414 initial_svstate = 0
1415 if isinstance(initial_svstate, int):
1416 initial_svstate = SVP64State(initial_svstate)
1417 # SVSTATE, MSR and PC
1418 StepLoop.__init__(self, initial_svstate)
1419 self.msr = SelectableInt(initial_msr, 64) # underlying reg
1420 self.pc = PC()
1421 # GPR FPR SPR registers
1422 initial_sprs = deepcopy(initial_sprs) # so as not to get modified
1423 self.gpr = GPR(decoder2, self, self.svstate, regfile)
1424 self.fpr = GPR(decoder2, self, self.svstate, fpregfile)
1425 # initialise SPRs before MMU
1426 self.spr = SPR(decoder2, initial_sprs, gpr=self.gpr)
1427
1428 # set up 4 dummy SVSHAPEs if they aren't already set up
1429 for i in range(4):
1430 sname = 'SVSHAPE%d' % i
1431 val = self.spr.get(sname, 0)
1432 # make sure it's an SVSHAPE -- conversion done by SPR.__setitem__
1433 self.spr[sname] = val
1434 self.last_op_svshape = False
1435
1436 # "raw" memory
1437 if use_mmap_mem:
1438 self.mem = MemMMap(row_bytes=8,
1439 initial_mem=initial_mem,
1440 misaligned_ok=True,
1441 emulating_mmap=emulating_mmap)
1442 self.imem = self.mem
1443 lelf = self.mem.initialize(row_bytes=4, initial_mem=initial_insns)
1444 if isinstance(lelf, LoadedELF): # stuff parsed from ELF
1445 initial_pc = lelf.pc
1446 for k, v in lelf.gprs.items():
1447 self.gpr[k] = SelectableInt(v, 64)
1448 initial_fpscr = lelf.fpscr
1449 self.mem.log_fancy(kind=LogType.InstrInOuts)
1450 else:
1451 self.mem = Mem(row_bytes=8, initial_mem=initial_mem,
1452 misaligned_ok=True)
1453 self.mem.log_fancy(kind=LogType.InstrInOuts)
1454 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
1455 # MMU mode, redirect underlying Mem through RADIX
1456 if mmu:
1457 self.mem = RADIX(self.mem, self)
1458 if icachemmu:
1459 self.imem = RADIX(self.imem, self)
1460
1461 # TODO, needed here:
1462 # FPR (same as GPR except for FP nums)
1463 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
1464 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
1465 self.fpscr = FPSCRState(initial_fpscr)
1466
1467 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
1468 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
1469 # -- Done
1470 # 2.3.2 LR (actually SPR #8) -- Done
1471 # 2.3.3 CTR (actually SPR #9) -- Done
1472 # 2.3.4 TAR (actually SPR #815)
1473 # 3.2.2 p45 XER (actually SPR #1) -- Done
1474 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
1475
1476 # create CR then allow portions of it to be "selectable" (below)
1477 self.cr_fields = CRFields(initial_cr)
1478 self.cr = self.cr_fields.cr
1479 self.cr_backup = 0 # sigh, dreadful hack: for fail-first (VLi)
1480
1481 # "undefined", just set to variable-bit-width int (use exts "max")
1482 # self.undefined = SelectableInt(0, EFFECTIVELY_UNLIMITED)
1483
1484 self.namespace = {}
1485 self.namespace.update(self.spr)
1486 self.namespace.update({'GPR': self.gpr,
1487 'FPR': self.fpr,
1488 'MEM': self.mem,
1489 'SPR': self.spr,
1490 'memassign': self.memassign,
1491 'NIA': self.pc.NIA,
1492 'CIA': self.pc.CIA,
1493 'SVSTATE': self.svstate,
1494 'SVSHAPE0': self.spr['SVSHAPE0'],
1495 'SVSHAPE1': self.spr['SVSHAPE1'],
1496 'SVSHAPE2': self.spr['SVSHAPE2'],
1497 'SVSHAPE3': self.spr['SVSHAPE3'],
1498 'CR': self.cr,
1499 'MSR': self.msr,
1500 'FPSCR': self.fpscr,
1501 'undefined': undefined,
1502 'mode_is_64bit': True,
1503 'SO': XER_bits['SO'],
1504 'XLEN': 64, # elwidth overrides
1505 })
1506
1507 # for LR/SC
1508 if real_page_size is None:
1509 # PowerISA v3.1B Book III Section 6.7 page 1191 (1217)
1510 # defines real page size as 2 ** 12 bytes (4KiB)
1511 real_page_size = 2 ** 12
1512 self.real_page_size = real_page_size
1513 self.reserve_addr = SelectableInt(0, self.XLEN)
1514 self.reserve = SelectableInt(0, 1)
1515 self.reserve_length = SelectableInt(0, 4)
1516
1517 self.namespace.update({'RESERVE': self.RESERVE,
1518 'RESERVE_ADDR': self.RESERVE_ADDR,
1519 'RESERVE_LENGTH': self.RESERVE_LENGTH,
1520 'REAL_PAGE_SIZE': self.REAL_PAGE_SIZE,
1521 })
1522
1523 for name in BFP_FLAG_NAMES:
1524 setattr(self, name, 0)
1525
1526 # update pc to requested start point
1527 self.set_pc(initial_pc)
1528
1529 # field-selectable versions of Condition Register
1530 self.crl = self.cr_fields.crl
1531 for i in range(8):
1532 self.namespace["CR%d" % i] = self.crl[i]
1533
1534 self.decoder = decoder2.dec
1535 self.dec2 = decoder2
1536
1537 super().__init__(XLEN=self.namespace["XLEN"], FPSCR=self.fpscr)
1538
1539 def trace(self, out):
1540 if self.insnlog is None:
1541 return
1542 self.insnlog.write(out)
1543
1544 @property
1545 def XLEN(self):
1546 return self.namespace["XLEN"]
1547
1548 @property
1549 def RESERVE(self):
1550 return self.reserve
1551
1552 @property
1553 def RESERVE_LENGTH(self):
1554 return self.reserve_length
1555
1556 @property
1557 def RESERVE_ADDR(self):
1558 return self.reserve_addr
1559
1560 @property
1561 def REAL_PAGE_SIZE(self):
1562 return self.real_page_size
1563
1564 def real_addr(self, EA):
1565 """ get the "real address to which `EA` maps"
1566
1567 Specified in PowerISA v3.1B Book II Section 1.7.2.1 page 1049 (1075)
1568 """
1569 # FIXME: translate EA to a physical address
1570 return EA
1571
1572 @property
1573 def FPSCR(self):
1574 return self.fpscr
1575
1576 def call_trap(self, trap_addr, trap_bit):
1577 """calls TRAP and sets up NIA to the new execution location.
1578 next instruction will begin at trap_addr.
1579 """
1580 self.TRAP(trap_addr, trap_bit)
1581 self.namespace['NIA'] = self.trap_nia
1582 self.pc.update(self.namespace, self.is_svp64_mode)
1583
1584 def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
1585 """TRAP> saves PC, MSR (and TODO SVSTATE), and updates MSR
1586
1587 TRAP function is callable from inside the pseudocode itself,
1588 hence the default arguments. when calling from inside ISACaller
1589 it is best to use call_trap()
1590
1591 trap_addr: int | SelectableInt
1592 the address to go to (before any modifications from `KAIVB`)
1593 trap_bit: int | None
1594 the bit in `SRR1` to set, `None` means don't set any bits.
1595 """
1596 if isinstance(trap_addr, SelectableInt):
1597 trap_addr = trap_addr.value
1598 # https://bugs.libre-soc.org/show_bug.cgi?id=859
1599 kaivb = self.spr['KAIVB'].value
1600 msr = self.namespace['MSR'].value
1601 log("TRAP:", hex(trap_addr), hex(msr), "kaivb", hex(kaivb))
1602 # store CIA(+4?) in SRR0, set NIA to 0x700
1603 # store MSR in SRR1, set MSR to um errr something, have to check spec
1604 # store SVSTATE (if enabled) in SVSRR0
1605 self.spr['SRR0'].value = self.pc.CIA.value
1606 self.spr['SRR1'].value = msr
1607 if self.is_svp64_mode:
1608 self.spr['SVSRR0'] = self.namespace['SVSTATE'].value
1609 self.trap_nia = SelectableInt(trap_addr | (kaivb & ~0x1fff), 64)
1610 if trap_bit is not None:
1611 self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
1612
1613 # set exception bits. TODO: this should, based on the address
1614 # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
1615 # bits appropriately. however it turns out that *for now* in all
1616 # cases (all trap_addrs) the exact same thing is needed.
1617 self.msr[MSRb.IR] = 0
1618 self.msr[MSRb.DR] = 0
1619 self.msr[MSRb.FE0] = 0
1620 self.msr[MSRb.FE1] = 0
1621 self.msr[MSRb.EE] = 0
1622 self.msr[MSRb.RI] = 0
1623 self.msr[MSRb.SF] = 1
1624 self.msr[MSRb.TM] = 0
1625 self.msr[MSRb.VEC] = 0
1626 self.msr[MSRb.VSX] = 0
1627 self.msr[MSRb.PR] = 0
1628 self.msr[MSRb.FP] = 0
1629 self.msr[MSRb.PMM] = 0
1630 self.msr[MSRb.TEs] = 0
1631 self.msr[MSRb.TEe] = 0
1632 self.msr[MSRb.UND] = 0
1633 self.msr[MSRb.LE] = 1
1634
1635 def memassign(self, ea, sz, val):
1636 self.mem.memassign(ea, sz, val)
1637
1638 def prep_namespace(self, insn_name, formname, op_fields, xlen):
1639 # TODO: get field names from form in decoder*1* (not decoder2)
1640 # decoder2 is hand-created, and decoder1.sigform is auto-generated
1641 # from spec
1642 # then "yield" fields only from op_fields rather than hard-coded
1643 # list, here.
1644 fields = self.decoder.sigforms[formname]
1645 log("prep_namespace", formname, op_fields, insn_name)
1646 for name in op_fields:
1647 # CR immediates. deal with separately. needs modifying
1648 # pseudocode
1649 crlen5 = ['BC', 'BA', 'BB', 'BT', 'BI'] # 5-bit
1650 crlen3 = ['BF', 'BFA'] # 3-bit (BF: bit-field)
1651 if self.is_svp64_mode and name in crlen5:
1652 # 5-bit, must reconstruct the value
1653 if name in ['BT']:
1654 regnum, is_vec = yield from get_cr_out(self.dec2, name)
1655 else:
1656 regnum, is_vec = yield from get_cr_in(self.dec2, name)
1657 sig = getattr(fields, name)
1658 val = yield sig
1659 # low 2 LSBs (CR field selector) remain same, CR num extended
1660 assert regnum <= 7, "sigh, TODO, 128 CR fields"
1661 val = (val & 0b11) | (regnum << 2)
1662 elif self.is_svp64_mode and name in crlen3:
1663 if name in ['BF']:
1664 regnum, is_vec = yield from get_cr_out(self.dec2, name)
1665 else:
1666 regnum, is_vec = yield from get_cr_in(self.dec2, name)
1667 log('hack %s' % name, regnum, is_vec)
1668 val = regnum
1669 else:
1670 sig = getattr(fields, name)
1671 val = yield sig
1672 # these are all opcode fields involved in index-selection of CR,
1673 # and need to do "standard" arithmetic. CR[BA+32] for example
1674 # would, if using SelectableInt, only be 5-bit.
1675 if name not in crlen3 and name not in crlen5:
1676 val = SelectableInt(val, sig.width)
1677
1678 # finally put the field into the namespace
1679 self.namespace[name] = val
1680
1681 self.namespace['XER'] = self.spr['XER']
1682 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
1683 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
1684 self.namespace['OV'] = self.spr['XER'][XER_bits['OV']].value
1685 self.namespace['OV32'] = self.spr['XER'][XER_bits['OV32']].value
1686 self.namespace['XLEN'] = xlen
1687 self.namespace['RESERVE'] = self.reserve
1688 self.namespace['RESERVE_ADDR'] = self.reserve_addr
1689 self.namespace['RESERVE_LENGTH'] = self.reserve_length
1690
1691 # add some SVSTATE convenience variables
1692 vl = self.svstate.vl
1693 srcstep = self.svstate.srcstep
1694 self.namespace['VL'] = vl
1695 self.namespace['srcstep'] = srcstep
1696
1697 # take a copy of the CR field value: if non-VLi fail-first fails
1698 # this is because the pseudocode writes *directly* to CR. sigh
1699 self.cr_backup = self.cr.value
1700
1701 # sv.bc* need some extra fields
1702 if not self.is_svp64_mode or not insn_name.startswith("sv.bc"):
1703 return
1704
1705 # blegh grab bits manually
1706 mode = yield self.dec2.rm_dec.rm_in.mode
1707 # convert to SelectableInt before test
1708 mode = SelectableInt(mode, 5)
1709 bc_vlset = mode[SVP64MODEb.BC_VLSET] != 0
1710 bc_vli = mode[SVP64MODEb.BC_VLI] != 0
1711 bc_snz = mode[SVP64MODEb.BC_SNZ] != 0
1712 bc_vsb = yield self.dec2.rm_dec.bc_vsb
1713 bc_ctrtest = yield self.dec2.rm_dec.bc_ctrtest
1714 bc_lru = yield self.dec2.rm_dec.bc_lru
1715 bc_gate = yield self.dec2.rm_dec.bc_gate
1716 sz = yield self.dec2.rm_dec.pred_sz
1717 self.namespace['mode'] = SelectableInt(mode, 5)
1718 self.namespace['ALL'] = SelectableInt(bc_gate, 1)
1719 self.namespace['VSb'] = SelectableInt(bc_vsb, 1)
1720 self.namespace['LRu'] = SelectableInt(bc_lru, 1)
1721 self.namespace['CTRtest'] = SelectableInt(bc_ctrtest, 1)
1722 self.namespace['VLSET'] = SelectableInt(bc_vlset, 1)
1723 self.namespace['VLI'] = SelectableInt(bc_vli, 1)
1724 self.namespace['sz'] = SelectableInt(sz, 1)
1725 self.namespace['SNZ'] = SelectableInt(bc_snz, 1)
1726
1727 def get_kludged_op_add_ca_ov(self, inputs, inp_ca_ov):
1728 """ this was not at all necessary to do. this function massively
1729 duplicates - in a laborious and complex fashion - the contents of
1730 the CSV files that were extracted two years ago from microwatt's
1731 source code. A-inversion is the "inv A" column, output inversion
1732 is the "inv out" column, carry-in equal to 0 or 1 or CA is the
1733 "cry in" column
1734
1735 all of that information is available in
1736 self.instrs[ins_name].op_fields
1737 where info is usually assigned to self.instrs[ins_name]
1738
1739 https://git.libre-soc.org/?p=openpower-isa.git;a=blob;f=openpower/isatables/minor_31.csv;hb=HEAD
1740
1741 the immediate constants are *also* decoded correctly and placed
1742 usually by DecodeIn2Imm into operand2, as part of power_decoder2.py
1743 """
1744 def ca(a, b, ca_in, width):
1745 mask = (1 << width) - 1
1746 y = (a & mask) + (b & mask) + ca_in
1747 return y >> width
1748
1749 asmcode = yield self.dec2.dec.op.asmcode
1750 insn = insns.get(asmcode)
1751 SI = yield self.dec2.dec.SI
1752 SI &= 0xFFFF
1753 CA, OV = inp_ca_ov
1754 inputs = [i.value for i in inputs]
1755 if SI & 0x8000:
1756 SI -= 0x10000
1757 if insn in ("add", "addo", "addc", "addco"):
1758 a = inputs[0]
1759 b = inputs[1]
1760 ca_in = 0
1761 elif insn == "addic" or insn == "addic.":
1762 a = inputs[0]
1763 b = SI
1764 ca_in = 0
1765 elif insn in ("subf", "subfo", "subfc", "subfco"):
1766 a = ~inputs[0]
1767 b = inputs[1]
1768 ca_in = 1
1769 elif insn == "subfic":
1770 a = ~inputs[0]
1771 b = SI
1772 ca_in = 1
1773 elif insn == "adde" or insn == "addeo":
1774 a = inputs[0]
1775 b = inputs[1]
1776 ca_in = CA
1777 elif insn == "subfe" or insn == "subfeo":
1778 a = ~inputs[0]
1779 b = inputs[1]
1780 ca_in = CA
1781 elif insn == "addme" or insn == "addmeo":
1782 a = inputs[0]
1783 b = ~0
1784 ca_in = CA
1785 elif insn == "addze" or insn == "addzeo":
1786 a = inputs[0]
1787 b = 0
1788 ca_in = CA
1789 elif insn == "subfme" or insn == "subfmeo":
1790 a = ~inputs[0]
1791 b = ~0
1792 ca_in = CA
1793 elif insn == "subfze" or insn == "subfzeo":
1794 a = ~inputs[0]
1795 b = 0
1796 ca_in = CA
1797 elif insn == "addex":
1798 # CA[32] aren't actually written, just generate so we have
1799 # something to return
1800 ca64 = ov64 = ca(inputs[0], inputs[1], OV, 64)
1801 ca32 = ov32 = ca(inputs[0], inputs[1], OV, 32)
1802 return ca64, ca32, ov64, ov32
1803 elif insn == "neg" or insn == "nego":
1804 a = ~inputs[0]
1805 b = 0
1806 ca_in = 1
1807 else:
1808 raise NotImplementedError(
1809 "op_add kludge unimplemented instruction: ", asmcode, insn)
1810
1811 ca64 = ca(a, b, ca_in, 64)
1812 ca32 = ca(a, b, ca_in, 32)
1813 ov64 = ca64 != ca(a, b, ca_in, 63)
1814 ov32 = ca32 != ca(a, b, ca_in, 31)
1815 return ca64, ca32, ov64, ov32
1816
1817 def handle_carry_(self, inputs, output, ca, ca32, inp_ca_ov):
1818 if ca is not None and ca32 is not None:
1819 return
1820 op = yield self.dec2.e.do.insn_type
1821 if op == MicrOp.OP_ADD.value and ca is None and ca32 is None:
1822 retval = yield from self.get_kludged_op_add_ca_ov(
1823 inputs, inp_ca_ov)
1824 ca, ca32, ov, ov32 = retval
1825 asmcode = yield self.dec2.dec.op.asmcode
1826 if insns.get(asmcode) == 'addex':
1827 # TODO: if 32-bit mode, set ov to ov32
1828 self.spr['XER'][XER_bits['OV']] = ov
1829 self.spr['XER'][XER_bits['OV32']] = ov32
1830 log(f"write OV/OV32 OV={ov} OV32={ov32}",
1831 kind=LogType.InstrInOuts)
1832 else:
1833 # TODO: if 32-bit mode, set ca to ca32
1834 self.spr['XER'][XER_bits['CA']] = ca
1835 self.spr['XER'][XER_bits['CA32']] = ca32
1836 log(f"write CA/CA32 CA={ca} CA32={ca32}",
1837 kind=LogType.InstrInOuts)
1838 return
1839 inv_a = yield self.dec2.e.do.invert_in
1840 if inv_a:
1841 inputs[0] = ~inputs[0]
1842
1843 imm_ok = yield self.dec2.e.do.imm_data.ok
1844 if imm_ok:
1845 imm = yield self.dec2.e.do.imm_data.data
1846 inputs.append(SelectableInt(imm, 64))
1847 gts = []
1848 for x in inputs:
1849 log("gt input", x, output)
1850 gt = (gtu(x, output))
1851 gts.append(gt)
1852 log(gts)
1853 cy = 1 if any(gts) else 0
1854 log("CA", cy, gts)
1855 if ca is None: # already written
1856 self.spr['XER'][XER_bits['CA']] = cy
1857
1858 # 32 bit carry
1859 # ARGH... different for OP_ADD... *sigh*...
1860 op = yield self.dec2.e.do.insn_type
1861 if op == MicrOp.OP_ADD.value:
1862 res32 = (output.value & (1 << 32)) != 0
1863 a32 = (inputs[0].value & (1 << 32)) != 0
1864 if len(inputs) >= 2:
1865 b32 = (inputs[1].value & (1 << 32)) != 0
1866 else:
1867 b32 = False
1868 cy32 = res32 ^ a32 ^ b32
1869 log("CA32 ADD", cy32)
1870 else:
1871 gts = []
1872 for x in inputs:
1873 log("input", x, output)
1874 log(" x[32:64]", x, x[32:64])
1875 log(" o[32:64]", output, output[32:64])
1876 gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
1877 gts.append(gt)
1878 cy32 = 1 if any(gts) else 0
1879 log("CA32", cy32, gts)
1880 if ca32 is None: # already written
1881 self.spr['XER'][XER_bits['CA32']] = cy32
1882
1883 def handle_overflow(self, inputs, output, div_overflow, inp_ca_ov):
1884 op = yield self.dec2.e.do.insn_type
1885 if op == MicrOp.OP_ADD.value:
1886 retval = yield from self.get_kludged_op_add_ca_ov(
1887 inputs, inp_ca_ov)
1888 ca, ca32, ov, ov32 = retval
1889 # TODO: if 32-bit mode, set ov to ov32
1890 self.spr['XER'][XER_bits['OV']] = ov
1891 self.spr['XER'][XER_bits['OV32']] = ov32
1892 self.spr['XER'][XER_bits['SO']] |= ov
1893 return
1894 if hasattr(self.dec2.e.do, "invert_in"):
1895 inv_a = yield self.dec2.e.do.invert_in
1896 if inv_a:
1897 inputs[0] = ~inputs[0]
1898
1899 imm_ok = yield self.dec2.e.do.imm_data.ok
1900 if imm_ok:
1901 imm = yield self.dec2.e.do.imm_data.data
1902 inputs.append(SelectableInt(imm, 64))
1903 log("handle_overflow", inputs, output, div_overflow)
1904 if len(inputs) < 2 and div_overflow is None:
1905 return
1906
1907 # div overflow is different: it's returned by the pseudo-code
1908 # because it's more complex than can be done by analysing the output
1909 if div_overflow is not None:
1910 ov, ov32 = div_overflow, div_overflow
1911 # arithmetic overflow can be done by analysing the input and output
1912 elif len(inputs) >= 2:
1913 # OV (64-bit)
1914 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
1915 output_sgn = exts(output.value, output.bits) < 0
1916 ov = 1 if input_sgn[0] == input_sgn[1] and \
1917 output_sgn != input_sgn[0] else 0
1918
1919 # OV (32-bit)
1920 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
1921 output32_sgn = exts(output.value, 32) < 0
1922 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
1923 output32_sgn != input32_sgn[0] else 0
1924
1925 # now update XER OV/OV32/SO
1926 so = self.spr['XER'][XER_bits['SO']]
1927 new_so = so | ov # sticky overflow ORs in old with new
1928 self.spr['XER'][XER_bits['OV']] = ov
1929 self.spr['XER'][XER_bits['OV32']] = ov32
1930 self.spr['XER'][XER_bits['SO']] = new_so
1931 log(" set overflow", ov, ov32, so, new_so)
1932
1933 def handle_comparison(self, out, cr_idx=0, overflow=None, no_so=False):
1934 assert isinstance(out, SelectableInt), \
1935 "out zero not a SelectableInt %s" % repr(outputs)
1936 log("handle_comparison", out.bits, hex(out.value))
1937 # TODO - XXX *processor* in 32-bit mode
1938 # https://bugs.libre-soc.org/show_bug.cgi?id=424
1939 # if is_32bit:
1940 # o32 = exts(out.value, 32)
1941 # print ("handle_comparison exts 32 bit", hex(o32))
1942 out = exts(out.value, out.bits)
1943 log("handle_comparison exts", hex(out))
1944 # create the three main CR flags, EQ GT LT
1945 zero = SelectableInt(out == 0, 1)
1946 positive = SelectableInt(out > 0, 1)
1947 negative = SelectableInt(out < 0, 1)
1948 # get (or not) XER.SO. for setvl this is important *not* to read SO
1949 if no_so:
1950 SO = SelectableInt(1, 0)
1951 else:
1952 SO = self.spr['XER'][XER_bits['SO']]
1953 log("handle_comparison SO", SO.value,
1954 "overflow", overflow,
1955 "zero", zero.value,
1956 "+ve", positive.value,
1957 "-ve", negative.value)
1958 # alternative overflow checking (setvl mainly at the moment)
1959 if overflow is not None and overflow == 1:
1960 SO = SelectableInt(1, 1)
1961 # create the four CR field values and set the required CR field
1962 cr_field = selectconcat(negative, positive, zero, SO)
1963 log("handle_comparison cr_field", self.cr, cr_idx, cr_field)
1964 self.crl[cr_idx].eq(cr_field)
1965 return cr_field
1966
1967 def set_pc(self, pc_val):
1968 self.namespace['NIA'] = SelectableInt(pc_val, 64)
1969 self.pc.update(self.namespace, self.is_svp64_mode)
1970
1971 def get_next_insn(self):
1972 """check instruction
1973 """
1974 if self.respect_pc:
1975 pc = self.pc.CIA.value
1976 else:
1977 pc = self.fake_pc
1978 ins = self.imem.ld(pc, 4, False, True, instr_fetch=True)
1979 if ins is None:
1980 raise KeyError("no instruction at 0x%x" % pc)
1981 return pc, ins
1982
1983 def setup_one(self):
1984 """set up one instruction
1985 """
1986 pc, insn = self.get_next_insn()
1987 yield from self.setup_next_insn(pc, insn)
1988
1989 # cache since it's really slow to construct
1990 __PREFIX_CACHE = SVP64Instruction.Prefix(SelectableInt(value=0, bits=32))
1991
1992 def __decode_prefix(self, opcode):
1993 pfx = self.__PREFIX_CACHE
1994 pfx.storage.eq(opcode)
1995 return pfx
1996
1997 def setup_next_insn(self, pc, ins):
1998 """set up next instruction
1999 """
2000 self._pc = pc
2001 log("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
2002 log("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
2003
2004 yield self.dec2.sv_rm.eq(0)
2005 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
2006 yield self.dec2.dec.bigendian.eq(self.bigendian)
2007 yield self.dec2.state.msr.eq(self.msr.value)
2008 yield self.dec2.state.pc.eq(pc)
2009 if self.svstate is not None:
2010 yield self.dec2.state.svstate.eq(self.svstate.value)
2011
2012 # SVP64. first, check if the opcode is EXT001, and SVP64 id bits set
2013 yield Settle()
2014 opcode = yield self.dec2.dec.opcode_in
2015 opcode = SelectableInt(value=opcode, bits=32)
2016 pfx = self.__decode_prefix(opcode)
2017 log("prefix test: opcode:", pfx.PO, bin(pfx.PO), pfx.id)
2018 self.is_svp64_mode = bool((pfx.PO == 0b000001) and (pfx.id == 0b11))
2019 self.pc.update_nia(self.is_svp64_mode)
2020 # set SVP64 decode
2021 yield self.dec2.is_svp64_mode.eq(self.is_svp64_mode)
2022 self.namespace['NIA'] = self.pc.NIA
2023 self.namespace['SVSTATE'] = self.svstate
2024 if not self.is_svp64_mode:
2025 return
2026
2027 # in SVP64 mode. decode/print out svp64 prefix, get v3.0B instruction
2028 log("svp64.rm", bin(pfx.rm))
2029 log(" svstate.vl", self.svstate.vl)
2030 log(" svstate.mvl", self.svstate.maxvl)
2031 ins = self.imem.ld(pc+4, 4, False, True, instr_fetch=True)
2032 log(" svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
2033 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
2034 yield self.dec2.sv_rm.eq(int(pfx.rm)) # svp64 prefix
2035 yield Settle()
2036
2037 def execute_one(self):
2038 """execute one instruction
2039 """
2040 # get the disassembly code for this instruction
2041 if not self.disassembly:
2042 code = yield from self.get_assembly_name()
2043 else:
2044 offs, dbg = 0, ""
2045 if self.is_svp64_mode:
2046 offs, dbg = 4, "svp64 "
2047 code = self.disassembly[self._pc+offs]
2048 log(" %s sim-execute" % dbg, hex(self._pc), code)
2049 opname = code.split(' ')[0]
2050 try:
2051 yield from self.call(opname) # execute the instruction
2052 except MemException as e: # check for memory errors
2053 if e.args[0] == 'unaligned': # alignment error
2054 # run a Trap but set DAR first
2055 print("memory unaligned exception, DAR", e.dar, repr(e))
2056 self.spr['DAR'] = SelectableInt(e.dar, 64)
2057 self.call_trap(0x600, PIb.PRIV) # 0x600, privileged
2058 return
2059 elif e.args[0] == 'invalid': # invalid
2060 # run a Trap but set DAR first
2061 log("RADIX MMU memory invalid error, mode %s" % e.mode)
2062 if e.mode == 'EXECUTE':
2063 # XXX TODO: must set a few bits in SRR1,
2064 # see microwatt loadstore1.vhdl
2065 # if m_in.segerr = '0' then
2066 # v.srr1(47 - 33) := m_in.invalid;
2067 # v.srr1(47 - 35) := m_in.perm_error; -- noexec fault
2068 # v.srr1(47 - 44) := m_in.badtree;
2069 # v.srr1(47 - 45) := m_in.rc_error;
2070 # v.intr_vec := 16#400#;
2071 # else
2072 # v.intr_vec := 16#480#;
2073 self.call_trap(0x400, PIb.PRIV) # 0x400, privileged
2074 else:
2075 self.call_trap(0x300, PIb.PRIV) # 0x300, privileged
2076 return
2077 # not supported yet:
2078 raise e # ... re-raise
2079
2080 # append to the trace log file
2081 self.trace(" # %s\n" % code)
2082
2083 log("gprs after code", code)
2084 self.gpr.dump()
2085 crs = []
2086 for i in range(len(self.crl)):
2087 crs.append(bin(self.crl[i].asint()))
2088 log("crs", " ".join(crs))
2089 log("vl,maxvl", self.svstate.vl, self.svstate.maxvl)
2090
2091 # don't use this except in special circumstances
2092 if not self.respect_pc:
2093 self.fake_pc += 4
2094
2095 log("execute one, CIA NIA", hex(self.pc.CIA.value),
2096 hex(self.pc.NIA.value))
2097
2098 def get_assembly_name(self):
2099 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
2100 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
2101 dec_insn = yield self.dec2.e.do.insn
2102 insn_1_11 = yield self.dec2.e.do.insn[1:11]
2103 asmcode = yield self.dec2.dec.op.asmcode
2104 int_op = yield self.dec2.dec.op.internal_op
2105 log("get assembly name asmcode", asmcode, int_op,
2106 hex(dec_insn), bin(insn_1_11))
2107 asmop = insns.get(asmcode, None)
2108
2109 # sigh reconstruct the assembly instruction name
2110 if hasattr(self.dec2.e.do, "oe"):
2111 ov_en = yield self.dec2.e.do.oe.oe
2112 ov_ok = yield self.dec2.e.do.oe.ok
2113 else:
2114 ov_en = False
2115 ov_ok = False
2116 if hasattr(self.dec2.e.do, "rc"):
2117 rc_en = yield self.dec2.e.do.rc.rc
2118 rc_ok = yield self.dec2.e.do.rc.ok
2119 else:
2120 rc_en = False
2121 rc_ok = False
2122 # annoying: ignore rc_ok if RC1 is set (for creating *assembly name*)
2123 RC1 = yield self.dec2.rm_dec.RC1
2124 if RC1:
2125 rc_en = False
2126 rc_ok = False
2127 # grrrr have to special-case MUL op (see DecodeOE)
2128 log("ov %d en %d rc %d en %d op %d" %
2129 (ov_ok, ov_en, rc_ok, rc_en, int_op))
2130 if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
2131 log("mul op")
2132 if rc_en & rc_ok:
2133 asmop += "."
2134 else:
2135 if not asmop.endswith("."): # don't add "." to "andis."
2136 if rc_en & rc_ok:
2137 asmop += "."
2138 if hasattr(self.dec2.e.do, "lk"):
2139 lk = yield self.dec2.e.do.lk
2140 if lk:
2141 asmop += "l"
2142 log("int_op", int_op)
2143 if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
2144 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
2145 log("AA", AA)
2146 if AA:
2147 asmop += "a"
2148 spr_msb = yield from self.get_spr_msb()
2149 if int_op == MicrOp.OP_MFCR.value:
2150 if spr_msb:
2151 asmop = 'mfocrf'
2152 else:
2153 asmop = 'mfcr'
2154 # XXX TODO: for whatever weird reason this doesn't work
2155 # https://bugs.libre-soc.org/show_bug.cgi?id=390
2156 if int_op == MicrOp.OP_MTCRF.value:
2157 if spr_msb:
2158 asmop = 'mtocrf'
2159 else:
2160 asmop = 'mtcrf'
2161 return asmop
2162
2163 def reset_remaps(self):
2164 self.remap_loopends = [0] * 4
2165 self.remap_idxs = [0, 1, 2, 3]
2166
2167 def get_remap_indices(self):
2168 """WARNING, this function stores remap_idxs and remap_loopends
2169 in the class for later use. this to avoid problems with yield
2170 """
2171 # go through all iterators in lock-step, advance to next remap_idx
2172 srcstep, dststep, ssubstep, dsubstep = self.get_src_dststeps()
2173 # get four SVSHAPEs. here we are hard-coding
2174 self.reset_remaps()
2175 SVSHAPE0 = self.spr['SVSHAPE0']
2176 SVSHAPE1 = self.spr['SVSHAPE1']
2177 SVSHAPE2 = self.spr['SVSHAPE2']
2178 SVSHAPE3 = self.spr['SVSHAPE3']
2179 # set up the iterators
2180 remaps = [(SVSHAPE0, SVSHAPE0.get_iterator()),
2181 (SVSHAPE1, SVSHAPE1.get_iterator()),
2182 (SVSHAPE2, SVSHAPE2.get_iterator()),
2183 (SVSHAPE3, SVSHAPE3.get_iterator()),
2184 ]
2185
2186 dbg = []
2187 for i, (shape, remap) in enumerate(remaps):
2188 # zero is "disabled"
2189 if shape.value == 0x0:
2190 self.remap_idxs[i] = 0
2191 # pick src or dststep depending on reg num (0-2=in, 3-4=out)
2192 step = dststep if (i in [3, 4]) else srcstep
2193 # this is terrible. O(N^2) looking for the match. but hey.
2194 for idx, (remap_idx, loopends) in enumerate(remap):
2195 if idx == step:
2196 break
2197 self.remap_idxs[i] = remap_idx
2198 self.remap_loopends[i] = loopends
2199 dbg.append((i, step, remap_idx, loopends))
2200 for (i, step, remap_idx, loopends) in dbg:
2201 log("SVSHAPE %d idx, end" % i, step, remap_idx, bin(loopends))
2202 return remaps
2203
2204 def get_spr_msb(self):
2205 dec_insn = yield self.dec2.e.do.insn
2206 return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
2207
2208 def call(self, name, syscall_emu_active=False):
2209 """call(opcode) - the primary execution point for instructions
2210 """
2211 self.last_st_addr = None # reset the last known store address
2212 self.last_ld_addr = None # etc.
2213
2214 ins_name = name.strip() # remove spaces if not already done so
2215 if self.halted:
2216 log("halted - not executing", ins_name)
2217 return
2218
2219 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
2220 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
2221 asmop = yield from self.get_assembly_name()
2222 log("call", ins_name, asmop,
2223 kind=LogType.InstrInOuts)
2224
2225 # sv.setvl is *not* a loop-function. sigh
2226 log("is_svp64_mode", self.is_svp64_mode, asmop)
2227
2228 # check privileged
2229 int_op = yield self.dec2.dec.op.internal_op
2230 spr_msb = yield from self.get_spr_msb()
2231
2232 instr_is_privileged = False
2233 if int_op in [MicrOp.OP_ATTN.value,
2234 MicrOp.OP_MFMSR.value,
2235 MicrOp.OP_MTMSR.value,
2236 MicrOp.OP_MTMSRD.value,
2237 # TODO: OP_TLBIE
2238 MicrOp.OP_RFID.value]:
2239 instr_is_privileged = True
2240 if int_op in [MicrOp.OP_MFSPR.value,
2241 MicrOp.OP_MTSPR.value] and spr_msb:
2242 instr_is_privileged = True
2243
2244 # check MSR priv bit and whether op is privileged: if so, throw trap
2245 PR = self.msr[MSRb.PR]
2246 log("is priv", instr_is_privileged, hex(self.msr.value), PR)
2247 if instr_is_privileged and PR == 1:
2248 self.call_trap(0x700, PIb.PRIV)
2249 return
2250
2251 # check halted condition
2252 if ins_name == 'attn':
2253 self.halted = True
2254 return
2255
2256 # User mode system call emulation consists of several steps:
2257 # 1. Detect whether instruction is sc or scv.
2258 # 2. Call the HDL implementation which invokes trap.
2259 # 3. Reroute the guest system call to host system call.
2260 # 4. Force return from the interrupt as if we had guest OS.
2261 # FIXME: enable PPC_FEATURE2_SCV in mem.py DEFAULT_AT_HWCAP2 when
2262 # scv emulation works.
2263 if ((asmop in ("sc", "scv")) and
2264 (self.syscall is not None) and
2265 not syscall_emu_active):
2266 # Memoize PC and trigger an interrupt
2267 if self.respect_pc:
2268 pc = self.pc.CIA.value
2269 else:
2270 pc = self.fake_pc
2271 yield from self.call(asmop, syscall_emu_active=True)
2272
2273 # Reroute the syscall to host OS
2274 identifier = self.gpr(0)
2275 arguments = map(self.gpr, range(3, 9))
2276 result = self.syscall(identifier, *arguments)
2277 self.gpr.write(3, result, False, self.namespace["XLEN"])
2278
2279 # Return from interrupt
2280 yield from self.call("rfid", syscall_emu_active=True)
2281 return
2282 elif ((name in ("rfid", "hrfid")) and syscall_emu_active):
2283 asmop = "rfid"
2284
2285 # check illegal instruction
2286 illegal = False
2287 if ins_name not in ['mtcrf', 'mtocrf']:
2288 illegal = ins_name != asmop
2289
2290 # list of instructions not being supported by binutils (.long)
2291 dotstrp = asmop[:-1] if asmop[-1] == '.' else asmop
2292 if dotstrp in [*FPTRANS_INSNS,
2293 *LDST_UPDATE_INSNS,
2294 'ffmadds', 'fdmadds', 'ffadds',
2295 'minmax',
2296 "brh", "brw", "brd",
2297 'setvl', 'svindex', 'svremap', 'svstep',
2298 'svshape', 'svshape2',
2299 'ternlogi', 'bmask', 'cprop', 'gbbd',
2300 'absdu', 'absds', 'absdacs', 'absdacu', 'avgadd',
2301 'fmvis', 'fishmv', 'pcdec', "maddedu", "divmod2du",
2302 "dsld", "dsrd", "maddedus",
2303 "sadd", "saddw", "sadduw",
2304 "cffpr", "cffpro",
2305 "mffpr", "mffprs",
2306 "ctfpr", "ctfprs",
2307 "mtfpr", "mtfprs",
2308 "maddsubrs", "maddrs", "msubrs",
2309 "cfuged", "cntlzdm", "cnttzdm", "pdepd", "pextd",
2310 "setbc", "setbcr", "setnbc", "setnbcr",
2311 ]:
2312 illegal = False
2313 ins_name = dotstrp
2314
2315 # match against instructions treated as nop, see nop below
2316 if asmop.startswith("dcbt"):
2317 illegal = False
2318 ins_name = "nop"
2319
2320 # branch-conditional redirects to sv.bc
2321 if asmop.startswith('bc') and self.is_svp64_mode:
2322 ins_name = 'sv.%s' % ins_name
2323
2324 # ld-immediate-with-pi mode redirects to ld-with-postinc
2325 ldst_imm_postinc = False
2326 if 'u' in ins_name and self.is_svp64_mode:
2327 ldst_pi = yield self.dec2.rm_dec.ldst_postinc
2328 if ldst_pi:
2329 ins_name = ins_name.replace("u", "up")
2330 ldst_imm_postinc = True
2331 log(" enable ld/st postinc", ins_name)
2332
2333 log(" post-processed name", dotstrp, ins_name, asmop)
2334
2335 # illegal instructions call TRAP at 0x700
2336 if illegal:
2337 print("illegal", ins_name, asmop)
2338 self.call_trap(0x700, PIb.ILLEG)
2339 print("name %s != %s - calling ILLEGAL trap, PC: %x" %
2340 (ins_name, asmop, self.pc.CIA.value))
2341 return
2342
2343 # this is for setvl "Vertical" mode: if set true,
2344 # srcstep/dststep is explicitly advanced. mode says which SVSTATE to
2345 # test for Rc=1 end condition. 3 bits of all 3 loops are put into CR0
2346 self.allow_next_step_inc = False
2347 self.svstate_next_mode = 0
2348
2349 # nop has to be supported, we could let the actual op calculate
2350 # but PowerDecoder has a pattern for nop
2351 if ins_name == 'nop':
2352 self.update_pc_next()
2353 return
2354
2355 # get elwidths, defaults to 64
2356 xlen = 64
2357 ew_src = 64
2358 ew_dst = 64
2359 if self.is_svp64_mode:
2360 ew_src = yield self.dec2.rm_dec.ew_src
2361 ew_dst = yield self.dec2.rm_dec.ew_dst
2362 ew_src = 8 << (3-int(ew_src)) # convert to bitlength
2363 ew_dst = 8 << (3-int(ew_dst)) # convert to bitlength
2364 xlen = max(ew_src, ew_dst)
2365 log("elwidth", ew_src, ew_dst)
2366 log("XLEN:", self.is_svp64_mode, xlen)
2367
2368 # look up instruction in ISA.instrs, prepare namespace
2369 if ins_name == 'pcdec': # grrrr yes there are others ("stbcx." etc.)
2370 info = self.instrs[ins_name+"."]
2371 elif asmop[-1] == '.' and asmop in self.instrs:
2372 info = self.instrs[asmop]
2373 else:
2374 info = self.instrs[ins_name]
2375 yield from self.prep_namespace(ins_name, info.form, info.op_fields,
2376 xlen)
2377
2378 # dict retains order
2379 inputs = dict.fromkeys(create_full_args(
2380 read_regs=info.read_regs, special_regs=info.special_regs,
2381 uninit_regs=info.uninit_regs, write_regs=info.write_regs))
2382
2383 # preserve order of register names
2384 write_without_special_regs = OrderedSet(info.write_regs)
2385 write_without_special_regs -= OrderedSet(info.special_regs)
2386 input_names = create_args([
2387 *info.read_regs, *info.uninit_regs, *write_without_special_regs])
2388 log("input names", input_names)
2389
2390 # get SVP64 entry for the current instruction
2391 sv_rm = self.svp64rm.instrs.get(ins_name)
2392 if sv_rm is not None:
2393 dest_cr, src_cr, src_byname, dest_byname = decode_extra(sv_rm)
2394 else:
2395 dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
2396 log("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
2397
2398 # see if srcstep/dststep need skipping over masked-out predicate bits
2399 # svstep also needs advancement because it calls SVSTATE_NEXT.
2400 # bit the remaps get computed just after pre_inc moves them on
2401 # with remap_set_steps substituting for PowerDecider2 not doing it,
2402 # and SVSTATE_NEXT not being able to.use yield, the preinc on
2403 # svstep is necessary for now.
2404 self.reset_remaps()
2405 if (self.is_svp64_mode or ins_name in ['svstep']):
2406 yield from self.svstate_pre_inc()
2407 if self.is_svp64_mode:
2408 pre = yield from self.update_new_svstate_steps()
2409 if pre:
2410 self.svp64_reset_loop()
2411 self.update_nia()
2412 self.update_pc_next()
2413 return
2414 srcstep, dststep, ssubstep, dsubstep = self.get_src_dststeps()
2415 pred_dst_zero = self.pred_dst_zero
2416 pred_src_zero = self.pred_src_zero
2417 vl = self.svstate.vl
2418 subvl = yield self.dec2.rm_dec.rm_in.subvl
2419
2420 # VL=0 in SVP64 mode means "do nothing: skip instruction"
2421 if self.is_svp64_mode and vl == 0:
2422 self.pc.update(self.namespace, self.is_svp64_mode)
2423 log("SVP64: VL=0, end of call", self.namespace['CIA'],
2424 self.namespace['NIA'], kind=LogType.InstrInOuts)
2425 return
2426
2427 # for when SVREMAP is active, using pre-arranged schedule.
2428 # note: modifying PowerDecoder2 needs to "settle"
2429 remap_en = self.svstate.SVme
2430 persist = self.svstate.RMpst
2431 active = (persist or self.last_op_svshape) and remap_en != 0
2432 if self.is_svp64_mode:
2433 yield self.dec2.remap_active.eq(remap_en if active else 0)
2434 yield Settle()
2435 if persist or self.last_op_svshape:
2436 remaps = self.get_remap_indices()
2437 if self.is_svp64_mode and (persist or self.last_op_svshape):
2438 yield from self.remap_set_steps(remaps)
2439 # after that, settle down (combinatorial) to let Vector reg numbers
2440 # work themselves out
2441 yield Settle()
2442 if self.is_svp64_mode:
2443 remap_active = yield self.dec2.remap_active
2444 else:
2445 remap_active = False
2446 log("remap active", bin(remap_active), self.is_svp64_mode)
2447
2448 # LDST does *not* allow elwidth overrides on RA (Effective Address).
2449 # this has to be detected. XXX TODO: RB for ldst-idx *may* need
2450 # conversion (to 64-bit) also.
2451 # see write reg this *HAS* to also override XLEN to 64 on LDST/Update
2452 sv_mode = yield self.dec2.rm_dec.sv_mode
2453 is_ldst = (sv_mode in [SVMode.LDST_IDX.value, SVMode.LDST_IMM.value] \
2454 and self.is_svp64_mode)
2455 log("is_ldst", sv_mode, is_ldst)
2456
2457 # main input registers (RT, RA ...)
2458 for name in input_names:
2459 if name == "overflow":
2460 inputs[name] = SelectableInt(0, 1)
2461 elif name.startswith("RESERVE"):
2462 inputs[name] = getattr(self, name)
2463 elif name == "FPSCR":
2464 inputs[name] = self.FPSCR
2465 elif name in ("CA", "CA32", "OV", "OV32"):
2466 inputs[name] = self.spr['XER'][XER_bits[name]]
2467 elif name in "CR0":
2468 inputs[name] = self.crl[0]
2469 elif name in spr_byname:
2470 inputs[name] = self.spr[name]
2471 elif is_ldst and name == 'RA':
2472 regval = (yield from self.get_input(name, ew_src, 64))
2473 log("EA (RA) regval name", name, regval)
2474 inputs[name] = regval
2475 else:
2476 regval = (yield from self.get_input(name, ew_src, xlen))
2477 log("regval name", name, regval)
2478 inputs[name] = regval
2479
2480 # arrrrgh, awful hack, to get _RT into namespace
2481 if ins_name in ['setvl', 'svstep']:
2482 regname = "_RT"
2483 RT = yield self.dec2.dec.RT
2484 self.namespace[regname] = SelectableInt(RT, 5)
2485 if RT == 0:
2486 self.namespace["RT"] = SelectableInt(0, 5)
2487 regnum, is_vec = yield from get_idx_out(self.dec2, "RT")
2488 log('hack input reg %s %s' % (name, str(regnum)), is_vec)
2489
2490 # in SVP64 mode for LD/ST work out immediate
2491 # XXX TODO: replace_ds for DS-Form rather than D-Form.
2492 # use info.form to detect
2493 if self.is_svp64_mode and not ldst_imm_postinc:
2494 yield from self.check_replace_d(info, remap_active)
2495
2496 # "special" registers
2497 for special in info.special_regs:
2498 if special in special_sprs:
2499 inputs[special] = self.spr[special]
2500 else:
2501 inputs[special] = self.namespace[special]
2502
2503 # clear trap (trap) NIA
2504 self.trap_nia = None
2505
2506 # check if this was an sv.bc* and create an indicator that
2507 # this is the last check to be made as a loop. combined with
2508 # the ALL/ANY mode we can early-exit. note that BI (to test)
2509 # is an input so there is no termination if BI is scalar
2510 # (because early-termination is for *output* scalars)
2511 if self.is_svp64_mode and ins_name.startswith("sv.bc"):
2512 end_loop = srcstep == vl-1 or dststep == vl-1
2513 self.namespace['end_loop'] = SelectableInt(end_loop, 1)
2514
2515 inp_ca_ov = (self.spr['XER'][XER_bits['CA']].value,
2516 self.spr['XER'][XER_bits['OV']].value)
2517
2518 for k, v in inputs.items():
2519 if v is None:
2520 v = SelectableInt(0, self.XLEN)
2521 # prevent pseudo-code from modifying input registers
2522 v = copy_assign_rhs(v)
2523 if isinstance(v, SelectableInt):
2524 v.ok = False
2525 inputs[k] = v
2526
2527 # execute actual instruction here (finally)
2528 log("inputs", inputs)
2529 inputs = list(inputs.values())
2530 results = info.func(self, *inputs)
2531 output_names = create_args(info.write_regs)
2532 outs = {}
2533 # record .ok before anything after the pseudo-code can modify it
2534 outs_ok = {}
2535 for out, n in zip(results or [], output_names):
2536 outs[n] = out
2537 outs_ok[n] = True
2538 if isinstance(out, SelectableInt):
2539 outs_ok[n] = out.ok
2540 log("results", outs)
2541 log("results ok", outs_ok)
2542
2543 # "inject" decorator takes namespace from function locals: we need to
2544 # overwrite NIA being overwritten (sigh)
2545 if self.trap_nia is not None:
2546 self.namespace['NIA'] = self.trap_nia
2547
2548 log("after func", self.namespace['CIA'], self.namespace['NIA'])
2549
2550 # check if op was a LD/ST so that debugging can check the
2551 # address
2552 if int_op in [MicrOp.OP_STORE.value,
2553 ]:
2554 self.last_st_addr = self.mem.last_st_addr
2555 if int_op in [MicrOp.OP_LOAD.value,
2556 ]:
2557 self.last_ld_addr = self.mem.last_ld_addr
2558 log("op", int_op, MicrOp.OP_STORE.value, MicrOp.OP_LOAD.value,
2559 self.last_st_addr, self.last_ld_addr)
2560
2561 # detect if CA/CA32 already in outputs (sra*, basically)
2562 ca = outs.get("CA")
2563 ca32 = outs.get("CA32")
2564
2565 log("carry already done?", ca, ca32, output_names)
2566 # soc test_pipe_caller tests don't have output_carry
2567 has_output_carry = hasattr(self.dec2.e.do, "output_carry")
2568 carry_en = has_output_carry and (yield self.dec2.e.do.output_carry)
2569 if carry_en:
2570 yield from self.handle_carry_(
2571 inputs, results[0], ca, ca32, inp_ca_ov=inp_ca_ov)
2572
2573 # get output named "overflow" and "CR0"
2574 overflow = outs.get('overflow')
2575 cr0 = outs.get('CR0')
2576 cr1 = outs.get('CR1')
2577
2578 # soc test_pipe_caller tests don't have oe
2579 has_oe = hasattr(self.dec2.e.do, "oe")
2580 # yeah just no. not in parallel processing
2581 if has_oe and not self.is_svp64_mode:
2582 # detect if overflow was in return result
2583 ov_en = yield self.dec2.e.do.oe.oe
2584 ov_ok = yield self.dec2.e.do.oe.ok
2585 log("internal overflow", ins_name, overflow, "en?", ov_en, ov_ok)
2586 if ov_en & ov_ok:
2587 yield from self.handle_overflow(
2588 inputs, results[0], overflow, inp_ca_ov=inp_ca_ov)
2589
2590 # only do SVP64 dest predicated Rc=1 if dest-pred is not enabled
2591 rc_en = False
2592 if not self.is_svp64_mode or not pred_dst_zero:
2593 if hasattr(self.dec2.e.do, "rc"):
2594 rc_en = yield self.dec2.e.do.rc.rc
2595 # don't do Rc=1 for svstep it is handled explicitly.
2596 # XXX TODO: now that CR0 is supported, sort out svstep's pseudocode
2597 # to write directly to CR0 instead of in ISACaller. hooyahh.
2598 if rc_en and ins_name not in ['svstep']:
2599 if outs_ok.get('FPSCR', False):
2600 FPSCR = outs['FPSCR']
2601 else:
2602 FPSCR = self.FPSCR
2603 yield from self.do_rc_ov(
2604 ins_name, results[0], overflow, cr0, cr1, FPSCR)
2605
2606 # check failfirst
2607 ffirst_hit = False, False
2608 if self.is_svp64_mode:
2609 sv_mode = yield self.dec2.rm_dec.sv_mode
2610 is_cr = sv_mode == SVMode.CROP.value
2611 chk = rc_en or is_cr
2612 if outs_ok.get('CR', False):
2613 # early write so check_ffirst can see value
2614 self.namespace['CR'].eq(outs['CR'])
2615 ffirst_hit = (yield from self.check_ffirst(info, chk, srcstep))
2616
2617 # any modified return results?
2618 yield from self.do_outregs(
2619 info, outs, carry_en, ffirst_hit, ew_dst, outs_ok)
2620
2621 # check if a FP Exception occurred. TODO for DD-FFirst, check VLi
2622 # and raise the exception *after* if VLi=1 but if VLi=0 then
2623 # truncate and make the exception "disappear".
2624 if self.FPSCR.FEX and (self.msr[MSRb.FE0] or self.msr[MSRb.FE1]):
2625 self.call_trap(0x700, PIb.FP)
2626 return
2627
2628 yield from self.do_nia(asmop, ins_name, rc_en, ffirst_hit)
2629
2630 def check_ffirst(self, info, rc_en, srcstep):
2631 """fail-first mode: checks a bit of Rc Vector, truncates VL
2632 """
2633 rm_mode = yield self.dec2.rm_dec.mode
2634 ff_inv = yield self.dec2.rm_dec.inv
2635 cr_bit = yield self.dec2.rm_dec.cr_sel
2636 RC1 = yield self.dec2.rm_dec.RC1
2637 vli_ = yield self.dec2.rm_dec.vli # VL inclusive if truncated
2638 log(" ff rm_mode", rc_en, rm_mode, SVP64RMMode.FFIRST.value)
2639 log(" inv", ff_inv)
2640 log(" RC1", RC1)
2641 log(" vli", vli_)
2642 log(" cr_bit", cr_bit)
2643 log(" rc_en", rc_en)
2644 ffirst = yield from is_ffirst_mode(self.dec2)
2645 if not rc_en or not ffirst:
2646 return False, False
2647 # get the CR vevtor, do BO-test
2648 crf = "CR0"
2649 log("asmregs", info.asmregs[0], info.write_regs)
2650 if 'CR' in info.write_regs and 'BF' in info.asmregs[0]:
2651 crf = 'BF'
2652 regnum, is_vec = yield from get_cr_out(self.dec2, crf)
2653 crtest = self.crl[regnum]
2654 ffirst_hit = crtest[cr_bit] != ff_inv
2655 log("cr test", crf, regnum, int(crtest), crtest, cr_bit, ff_inv)
2656 log("cr test?", ffirst_hit)
2657 if not ffirst_hit:
2658 return False, False
2659 # Fail-first activated, truncate VL
2660 vli = SelectableInt(int(vli_), 7)
2661 self.svstate.vl = srcstep + vli
2662 yield self.dec2.state.svstate.eq(self.svstate.value)
2663 yield Settle() # let decoder update
2664 return True, vli_
2665
2666 def do_rc_ov(self, ins_name, result, overflow, cr0, cr1, FPSCR):
2667 cr_out = yield self.dec2.op.cr_out
2668 if cr_out == CROutSel.CR1.value:
2669 rc_reg = "CR1"
2670 else:
2671 rc_reg = "CR0"
2672 regnum, is_vec = yield from get_cr_out(self.dec2, rc_reg)
2673 # hang on... for `setvl` actually you want to test SVSTATE.VL
2674 is_setvl = ins_name in ('svstep', 'setvl')
2675 if is_setvl:
2676 result = SelectableInt(result.vl, 64)
2677 # else:
2678 # overflow = None # do not override overflow except in setvl
2679
2680 if rc_reg == "CR1":
2681 if cr1 is None:
2682 cr1 = int(FPSCR.FX) << 3
2683 cr1 |= int(FPSCR.FEX) << 2
2684 cr1 |= int(FPSCR.VX) << 1
2685 cr1 |= int(FPSCR.OX)
2686 log("default fp cr1", cr1)
2687 else:
2688 log("explicit cr1", cr1)
2689 self.crl[regnum].eq(cr1)
2690 elif cr0 is None:
2691 # if there was not an explicit CR0 in the pseudocode,
2692 # do implicit Rc=1
2693 c = self.handle_comparison(result, regnum, overflow, no_so=is_setvl)
2694 log("implicit cr0 %d" % regnum, c)
2695 else:
2696 # otherwise we just blat CR0 into the required regnum
2697 log("explicit cr0 %d" % regnum, cr0)
2698 self.crl[regnum].eq(cr0)
2699
2700 def do_outregs(self, info, outs, ca_en, ffirst_hit, ew_dst, outs_ok):
2701 ffirst_hit, vli = ffirst_hit
2702 # write out any regs for this instruction, but only if fail-first is ok
2703 # XXX TODO: allow CR-vector to be written out even if ffirst fails
2704 if not ffirst_hit or vli:
2705 for name, output in outs.items():
2706 if not outs_ok[name]:
2707 log("skipping writing output with .ok=False", name, output)
2708 continue
2709 yield from self.check_write(info, name, output, ca_en, ew_dst)
2710 # restore the CR value on non-VLI failfirst (from sv.cmp and others
2711 # which write directly to CR in the pseudocode (gah, what a mess)
2712 # if ffirst_hit and not vli:
2713 # self.cr.value = self.cr_backup
2714
2715 def do_nia(self, asmop, ins_name, rc_en, ffirst_hit):
2716 ffirst_hit, vli = ffirst_hit
2717 if ffirst_hit:
2718 self.svp64_reset_loop()
2719 nia_update = True
2720 else:
2721 # check advancement of src/dst/sub-steps and if PC needs updating
2722 nia_update = (yield from self.check_step_increment(
2723 rc_en, asmop, ins_name))
2724 if nia_update:
2725 self.update_pc_next()
2726
2727 def check_replace_d(self, info, remap_active):
2728 replace_d = False # update / replace constant in pseudocode
2729 ldstmode = yield self.dec2.rm_dec.ldstmode
2730 vl = self.svstate.vl
2731 subvl = yield self.dec2.rm_dec.rm_in.subvl
2732 srcstep, dststep = self.new_srcstep, self.new_dststep
2733 ssubstep, dsubstep = self.new_ssubstep, self.new_dsubstep
2734 if info.form == 'DS':
2735 # DS-Form, multiply by 4 then knock 2 bits off after
2736 imm = yield self.dec2.dec.fields.FormDS.DS[0:14] * 4
2737 else:
2738 imm = yield self.dec2.dec.fields.FormD.D[0:16]
2739 imm = exts(imm, 16) # sign-extend to integer
2740 # get the right step. LD is from srcstep, ST is dststep
2741 op = yield self.dec2.e.do.insn_type
2742 offsmul = 0
2743 if op == MicrOp.OP_LOAD.value:
2744 if remap_active:
2745 offsmul = yield self.dec2.in1_step
2746 log("D-field REMAP src", imm, offsmul, ldstmode)
2747 else:
2748 offsmul = (srcstep * (subvl+1)) + ssubstep
2749 log("D-field src", imm, offsmul, ldstmode)
2750 elif op == MicrOp.OP_STORE.value:
2751 # XXX NOTE! no bit-reversed STORE! this should not ever be used
2752 offsmul = (dststep * (subvl+1)) + dsubstep
2753 log("D-field dst", imm, offsmul, ldstmode)
2754 # Unit-Strided LD/ST adds offset*width to immediate
2755 if ldstmode == SVP64LDSTmode.UNITSTRIDE.value:
2756 ldst_len = yield self.dec2.e.do.data_len
2757 imm = SelectableInt(imm + offsmul * ldst_len, 32)
2758 replace_d = True
2759 # Element-strided multiplies the immediate by element step
2760 elif ldstmode == SVP64LDSTmode.ELSTRIDE.value:
2761 imm = SelectableInt(imm * offsmul, 32)
2762 replace_d = True
2763 if replace_d:
2764 ldst_ra_vec = yield self.dec2.rm_dec.ldst_ra_vec
2765 ldst_imz_in = yield self.dec2.rm_dec.ldst_imz_in
2766 log("LDSTmode", SVP64LDSTmode(ldstmode),
2767 offsmul, imm, ldst_ra_vec, ldst_imz_in)
2768 # new replacement D... errr.. DS
2769 if replace_d:
2770 if info.form == 'DS':
2771 # TODO: assert 2 LSBs are zero?
2772 log("DS-Form, TODO, assert 2 LSBs zero?", bin(imm.value))
2773 imm.value = imm.value >> 2
2774 self.namespace['DS'] = imm
2775 else:
2776 self.namespace['D'] = imm
2777
2778 def get_input(self, name, ew_src, xlen):
2779 # using PowerDecoder2, first, find the decoder index.
2780 # (mapping name RA RB RC RS to in1, in2, in3)
2781 regnum, is_vec = yield from get_idx_in(self.dec2, name, True)
2782 if regnum is None:
2783 # doing this is not part of svp64, it's because output
2784 # registers, to be modified, need to be in the namespace.
2785 regnum, is_vec = yield from get_idx_out(self.dec2, name, True)
2786 if regnum is None:
2787 regnum, is_vec = yield from get_idx_out2(self.dec2, name, True)
2788
2789 if isinstance(regnum, tuple):
2790 (regnum, base, offs) = regnum
2791 else:
2792 base, offs = regnum, 0 # temporary HACK
2793
2794 # in case getting the register number is needed, _RA, _RB
2795 # (HACK: only in straight non-svp64-mode for now, or elwidth == 64)
2796 regname = "_" + name
2797 if not self.is_svp64_mode or ew_src == 64:
2798 self.namespace[regname] = regnum
2799 else:
2800 # FIXME: we're trying to access a sub-register, plain register
2801 # numbers don't work for that. for now, just pass something that
2802 # can be compared to 0 and probably will cause an error if misused.
2803 # see https://bugs.libre-soc.org/show_bug.cgi?id=1221
2804 self.namespace[regname] = regnum * 10000
2805
2806 if not self.is_svp64_mode or not self.pred_src_zero:
2807 log('reading reg %s %s' % (name, str(regnum)), is_vec)
2808 if name in fregs:
2809 fval = self.fpr(base, is_vec, offs, ew_src)
2810 reg_val = SelectableInt(fval)
2811 assert ew_src == self.XLEN, "TODO fix elwidth conversion"
2812 self.trace("r:FPR:%d:%d:%d " % (base, offs, ew_src))
2813 log("read fp reg %d/%d: 0x%x" % (base, offs, reg_val.value),
2814 kind=LogType.InstrInOuts)
2815 elif name is not None:
2816 gval = self.gpr(base, is_vec, offs, ew_src)
2817 reg_val = SelectableInt(gval.value, bits=xlen)
2818 self.trace("r:GPR:%d:%d:%d " % (base, offs, ew_src))
2819 log("read int reg %d/%d: 0x%x" % (base, offs, reg_val.value),
2820 kind=LogType.InstrInOuts)
2821 else:
2822 log('zero input reg %s %s' % (name, str(regnum)), is_vec)
2823 reg_val = SelectableInt(0, ew_src)
2824 return reg_val
2825
2826 def remap_set_steps(self, remaps):
2827 """remap_set_steps sets up the in1/2/3 and out1/2 steps.
2828 they work in concert with PowerDecoder2 at the moment,
2829 there is no HDL implementation of REMAP. therefore this
2830 function, because ISACaller still uses PowerDecoder2,
2831 will *explicitly* write the dec2.XX_step values. this has
2832 to get sorted out.
2833 """
2834 # just some convenient debug info
2835 for i in range(4):
2836 sname = 'SVSHAPE%d' % i
2837 shape = self.spr[sname]
2838 log(sname, bin(shape.value))
2839 log(" lims", shape.lims)
2840 log(" mode", shape.mode)
2841 log(" skip", shape.skip)
2842
2843 # set up the list of steps to remap
2844 mi0 = self.svstate.mi0
2845 mi1 = self.svstate.mi1
2846 mi2 = self.svstate.mi2
2847 mo0 = self.svstate.mo0
2848 mo1 = self.svstate.mo1
2849 steps = [[self.dec2.in1_step, mi0], # RA
2850 [self.dec2.in2_step, mi1], # RB
2851 [self.dec2.in3_step, mi2], # RC
2852 [self.dec2.o_step, mo0], # RT
2853 [self.dec2.o2_step, mo1], # EA
2854 ]
2855 if False: # TODO
2856 rnames = ['RA', 'RB', 'RC', 'RT', 'RS']
2857 for i, reg in enumerate(rnames):
2858 idx = yield from get_idx_map(self.dec2, reg)
2859 if idx is None:
2860 idx = yield from get_idx_map(self.dec2, "F"+reg)
2861 if idx == 1: # RA
2862 steps[i][0] = self.dec2.in1_step
2863 elif idx == 2: # RB
2864 steps[i][0] = self.dec2.in2_step
2865 elif idx == 3: # RC
2866 steps[i][0] = self.dec2.in3_step
2867 log("remap step", i, reg, idx, steps[i][1])
2868 remap_idxs = self.remap_idxs
2869 rremaps = []
2870 # now cross-index the required SHAPE for each of 3-in 2-out regs
2871 rnames = ['RA', 'RB', 'RC', 'RT', 'EA']
2872 for i, (dstep, shape_idx) in enumerate(steps):
2873 (shape, remap) = remaps[shape_idx]
2874 remap_idx = remap_idxs[shape_idx]
2875 # zero is "disabled"
2876 if shape.value == 0x0:
2877 continue
2878 # now set the actual requested step to the current index
2879 if dstep is not None:
2880 yield dstep.eq(remap_idx)
2881
2882 # debug printout info
2883 rremaps.append((shape.mode, hex(shape.value), dstep,
2884 i, rnames[i], shape_idx, remap_idx))
2885 for x in rremaps:
2886 log("shape remap", x)
2887
2888 def check_write(self, info, name, output, carry_en, ew_dst):
2889 if name == 'overflow': # ignore, done already (above)
2890 return
2891 if name == 'CR0': # ignore, done already (above)
2892 return
2893 if isinstance(output, int):
2894 output = SelectableInt(output, EFFECTIVELY_UNLIMITED)
2895 # write FPSCR
2896 if name.startswith("RESERVE"):
2897 log("write %s 0x%x" % (name, output.value))
2898 getattr(self, name).eq(output)
2899 return
2900 if name in ['FPSCR', ]:
2901 log("write FPSCR 0x%x" % (output.value))
2902 self.FPSCR.eq(output)
2903 return
2904 # write carry flags
2905 if name in ['CA', 'CA32']:
2906 if carry_en:
2907 log("writing %s to XER" % name, output)
2908 log("write XER %s 0x%x" % (name, output.value))
2909 self.spr['XER'][XER_bits[name]] = output.value
2910 else:
2911 log("NOT writing %s to XER" % name, output)
2912 return
2913 # write special SPRs
2914 if name in info.special_regs:
2915 log('writing special %s' % name, output, special_sprs)
2916 log("write reg %s 0x%x" % (name, output.value),
2917 kind=LogType.InstrInOuts)
2918 if name in special_sprs:
2919 self.spr[name] = output
2920 else:
2921 self.namespace[name].eq(output)
2922 if name == 'MSR':
2923 log('msr written', hex(self.msr.value))
2924 return
2925 # find out1/out2 PR/FPR
2926 regnum, is_vec = yield from get_idx_out(self.dec2, name, True)
2927 if regnum is None:
2928 regnum, is_vec = yield from get_idx_out2(self.dec2, name, True)
2929 if regnum is None:
2930 # temporary hack for not having 2nd output
2931 regnum = yield getattr(self.decoder, name)
2932 is_vec = False
2933 # convenient debug prefix
2934 if name in fregs:
2935 reg_prefix = 'f'
2936 else:
2937 reg_prefix = 'r'
2938 # check zeroing due to predicate bit being zero
2939 if self.is_svp64_mode and self.pred_dst_zero:
2940 log('zeroing reg %s %s' % (str(regnum), str(output)), is_vec)
2941 output = SelectableInt(0, EFFECTIVELY_UNLIMITED)
2942 log("write reg %s%s 0x%x ew %d" % (reg_prefix, str(regnum),
2943 output.value, ew_dst),
2944 kind=LogType.InstrInOuts)
2945 # zero-extend tov64 bit begore storing (should use EXT oh well)
2946 if output.bits > 64:
2947 output = SelectableInt(output.value, 64)
2948 rnum, base, offset = regnum
2949 if name in fregs:
2950 self.fpr.write(regnum, output, is_vec, ew_dst)
2951 self.trace("w:FPR:%d:%d:%d " % (rnum, offset, ew_dst))
2952 return
2953
2954 # LDST/Update does *not* allow elwidths on RA (Effective Address).
2955 # this has to be detected, and overridden. see get_input (related)
2956 sv_mode = yield self.dec2.rm_dec.sv_mode
2957 is_ldst = (sv_mode in [SVMode.LDST_IDX.value, SVMode.LDST_IMM.value] \
2958 and self.is_svp64_mode)
2959 if is_ldst and name in ['EA', 'RA']:
2960 op = self.dec2.dec.op
2961 if hasattr(op, "upd"):
2962 # update mode LD/ST uses read-reg A also as an output
2963 upd = yield op.upd
2964 log("write is_ldst is_update", sv_mode, is_ldst, upd)
2965 if upd == LDSTMode.update.value:
2966 ew_dst = 64 # override for RA (EA) to 64-bit
2967
2968 self.gpr.write(regnum, output, is_vec, ew_dst)
2969 self.trace("w:GPR:%d:%d:%d " % (rnum, offset, ew_dst))
2970
2971 def check_step_increment(self, rc_en, asmop, ins_name):
2972 # check if it is the SVSTATE.src/dest step that needs incrementing
2973 # this is our Sub-Program-Counter loop from 0 to VL-1
2974 if not self.allow_next_step_inc:
2975 if self.is_svp64_mode:
2976 return (yield from self.svstate_post_inc(ins_name))
2977
2978 # XXX only in non-SVP64 mode!
2979 # record state of whether the current operation was an svshape,
2980 # OR svindex!
2981 # to be able to know if it should apply in the next instruction.
2982 # also (if going to use this instruction) should disable ability
2983 # to interrupt in between. sigh.
2984 self.last_op_svshape = asmop in ['svremap', 'svindex',
2985 'svshape2']
2986 return True
2987
2988 pre = False
2989 post = False
2990 nia_update = True
2991 log("SVSTATE_NEXT: inc requested, mode",
2992 self.svstate_next_mode, self.allow_next_step_inc)
2993 yield from self.svstate_pre_inc()
2994 pre = yield from self.update_new_svstate_steps()
2995 if pre:
2996 # reset at end of loop including exit Vertical Mode
2997 log("SVSTATE_NEXT: end of loop, reset")
2998 self.svp64_reset_loop()
2999 self.svstate.vfirst = 0
3000 self.update_nia()
3001 if not rc_en:
3002 return True
3003 self.handle_comparison(SelectableInt(0, 64)) # CR0
3004 return True
3005 if self.allow_next_step_inc == 2:
3006 log("SVSTATE_NEXT: read")
3007 nia_update = (yield from self.svstate_post_inc(ins_name))
3008 else:
3009 log("SVSTATE_NEXT: post-inc")
3010 # use actual (cached) src/dst-step here to check end
3011 remaps = self.get_remap_indices()
3012 remap_idxs = self.remap_idxs
3013 vl = self.svstate.vl
3014 subvl = yield self.dec2.rm_dec.rm_in.subvl
3015 if self.allow_next_step_inc != 2:
3016 yield from self.advance_svstate_steps()
3017 #self.namespace['SVSTATE'] = self.svstate.spr
3018 # set CR0 (if Rc=1) based on end
3019 endtest = 1 if self.at_loopend() else 0
3020 if rc_en:
3021 #results = [SelectableInt(endtest, 64)]
3022 # self.handle_comparison(results) # CR0
3023
3024 # see if svstep was requested, if so, which SVSTATE
3025 endings = 0b111
3026 if self.svstate_next_mode > 0:
3027 shape_idx = self.svstate_next_mode.value-1
3028 endings = self.remap_loopends[shape_idx]
3029 cr_field = SelectableInt((~endings) << 1 | endtest, 4)
3030 log("svstep Rc=1, CR0", cr_field, endtest)
3031 self.crl[0].eq(cr_field) # CR0
3032 if endtest:
3033 # reset at end of loop including exit Vertical Mode
3034 log("SVSTATE_NEXT: after increments, reset")
3035 self.svp64_reset_loop()
3036 self.svstate.vfirst = 0
3037 return nia_update
3038
3039 def SVSTATE_NEXT(self, mode, submode, RA=None):
3040 """explicitly moves srcstep/dststep on to next element, for
3041 "Vertical-First" mode. this function is called from
3042 setvl pseudo-code, as a pseudo-op "svstep"
3043
3044 WARNING: this function uses information that was created EARLIER
3045 due to it being in the middle of a yield, but this function is
3046 *NOT* called from yield (it's called from compiled pseudocode).
3047 """
3048 self.allow_next_step_inc = submode.value + 1
3049 log("SVSTATE_NEXT mode", mode, submode, self.allow_next_step_inc)
3050 self.svstate_next_mode = mode
3051 if self.svstate_next_mode > 0 and self.svstate_next_mode < 5:
3052 shape_idx = self.svstate_next_mode.value-1
3053 return SelectableInt(self.remap_idxs[shape_idx], 7)
3054 if self.svstate_next_mode == 5:
3055 self.svstate_next_mode = 0
3056 return SelectableInt(self.svstate.srcstep, 7)
3057 if self.svstate_next_mode == 6:
3058 self.svstate_next_mode = 0
3059 return SelectableInt(self.svstate.dststep, 7)
3060 if self.svstate_next_mode == 7:
3061 self.svstate_next_mode = 0
3062 return SelectableInt(self.svstate.ssubstep, 7)
3063 if self.svstate_next_mode == 8:
3064 self.svstate_next_mode = 0
3065 return SelectableInt(self.svstate.dsubstep, 7)
3066 return SelectableInt(0, 7)
3067
3068 def get_src_dststeps(self):
3069 """gets srcstep, dststep, and ssubstep, dsubstep
3070 """
3071 return (self.new_srcstep, self.new_dststep,
3072 self.new_ssubstep, self.new_dsubstep)
3073
3074 def update_svstate_namespace(self, overwrite_svstate=True):
3075 if overwrite_svstate:
3076 # note, do not get the bit-reversed srcstep here!
3077 srcstep, dststep = self.new_srcstep, self.new_dststep
3078 ssubstep, dsubstep = self.new_ssubstep, self.new_dsubstep
3079
3080 # update SVSTATE with new srcstep
3081 self.svstate.srcstep = srcstep
3082 self.svstate.dststep = dststep
3083 self.svstate.ssubstep = ssubstep
3084 self.svstate.dsubstep = dsubstep
3085 self.namespace['SVSTATE'] = self.svstate
3086 yield self.dec2.state.svstate.eq(self.svstate.value)
3087 yield Settle() # let decoder update
3088
3089 def update_new_svstate_steps(self, overwrite_svstate=True):
3090 yield from self.update_svstate_namespace(overwrite_svstate)
3091 srcstep = self.svstate.srcstep
3092 dststep = self.svstate.dststep
3093 ssubstep = self.svstate.ssubstep
3094 dsubstep = self.svstate.dsubstep
3095 pack = self.svstate.pack
3096 unpack = self.svstate.unpack
3097 vl = self.svstate.vl
3098 sv_mode = yield self.dec2.rm_dec.sv_mode
3099 subvl = yield self.dec2.rm_dec.rm_in.subvl
3100 rm_mode = yield self.dec2.rm_dec.mode
3101 ff_inv = yield self.dec2.rm_dec.inv
3102 cr_bit = yield self.dec2.rm_dec.cr_sel
3103 log(" srcstep", srcstep)
3104 log(" dststep", dststep)
3105 log(" pack", pack)
3106 log(" unpack", unpack)
3107 log(" ssubstep", ssubstep)
3108 log(" dsubstep", dsubstep)
3109 log(" vl", vl)
3110 log(" subvl", subvl)
3111 log(" rm_mode", rm_mode)
3112 log(" sv_mode", sv_mode)
3113 log(" inv", ff_inv)
3114 log(" cr_bit", cr_bit)
3115
3116 # check if end reached (we let srcstep overrun, above)
3117 # nothing needs doing (TODO zeroing): just do next instruction
3118 if self.loopend:
3119 return True
3120 return ((ssubstep == subvl and srcstep == vl) or
3121 (dsubstep == subvl and dststep == vl))
3122
3123 def svstate_post_inc(self, insn_name, vf=0):
3124 # check if SV "Vertical First" mode is enabled
3125 vfirst = self.svstate.vfirst
3126 log(" SV Vertical First", vf, vfirst)
3127 if not vf and vfirst == 1:
3128 # SV Branch-Conditional required to be as-if-vector
3129 # because there *is* no destination register
3130 # (SV normally only terminates on 1st scalar reg written
3131 # except in [slightly-misnamed] mapreduce mode)
3132 ffirst = yield from is_ffirst_mode(self.dec2)
3133 if insn_name.startswith("sv.bc") or ffirst:
3134 self.update_pc_next()
3135 return False
3136 self.update_nia()
3137 return True
3138
3139 # check if it is the SVSTATE.src/dest step that needs incrementing
3140 # this is our Sub-Program-Counter loop from 0 to VL-1
3141 # XXX twin predication TODO
3142 vl = self.svstate.vl
3143 subvl = yield self.dec2.rm_dec.rm_in.subvl
3144 mvl = self.svstate.maxvl
3145 srcstep = self.svstate.srcstep
3146 dststep = self.svstate.dststep
3147 ssubstep = self.svstate.ssubstep
3148 dsubstep = self.svstate.dsubstep
3149 pack = self.svstate.pack
3150 unpack = self.svstate.unpack
3151 rm_mode = yield self.dec2.rm_dec.mode
3152 reverse_gear = yield self.dec2.rm_dec.reverse_gear
3153 sv_ptype = yield self.dec2.dec.op.SV_Ptype
3154 out_vec = not (yield self.dec2.no_out_vec)
3155 in_vec = not (yield self.dec2.no_in_vec)
3156 rm_mode = yield self.dec2.rm_dec.mode
3157 log(" svstate.vl", vl)
3158 log(" svstate.mvl", mvl)
3159 log(" rm.subvl", subvl)
3160 log(" svstate.srcstep", srcstep)
3161 log(" svstate.dststep", dststep)
3162 log(" svstate.ssubstep", ssubstep)
3163 log(" svstate.dsubstep", dsubstep)
3164 log(" svstate.pack", pack)
3165 log(" svstate.unpack", unpack)
3166 log(" mode", rm_mode)
3167 log(" reverse", reverse_gear)
3168 log(" out_vec", out_vec)
3169 log(" in_vec", in_vec)
3170 log(" sv_ptype", sv_ptype, sv_ptype == SVPType.P2.value)
3171 log(" rm_mode", rm_mode)
3172 # check if this was an sv.bc* and if so did it succeed
3173 if self.is_svp64_mode and insn_name.startswith("sv.bc"):
3174 end_loop = self.namespace['end_loop']
3175 log("branch %s end_loop" % insn_name, end_loop)
3176 if end_loop.value:
3177 self.svp64_reset_loop()
3178 self.update_pc_next()
3179 return False
3180 # check if srcstep needs incrementing by one, stop PC advancing
3181 # but for 2-pred both src/dest have to be checked.
3182 # XXX this might not be true! it may just be LD/ST
3183 if sv_ptype == SVPType.P2.value:
3184 svp64_is_vector = (out_vec or in_vec)
3185 else:
3186 svp64_is_vector = out_vec
3187 # also if data-dependent fail-first is used, only in_vec is tested,
3188 # allowing *scalar destinations* to be used as an accumulator.
3189 # effectively this implies /mr (mapreduce mode) is 100% on with ddffirst
3190 # see https://bugs.libre-soc.org/show_bug.cgi?id=1183#c16
3191 ffirst = yield from is_ffirst_mode(self.dec2)
3192 if ffirst:
3193 svp64_is_vector = in_vec
3194
3195 # loops end at the first "hit" (source or dest)
3196 yield from self.advance_svstate_steps()
3197 loopend = self.loopend
3198 log("loopend", svp64_is_vector, loopend)
3199 if not svp64_is_vector or loopend:
3200 # reset loop to zero and update NIA
3201 self.svp64_reset_loop()
3202 self.update_nia()
3203
3204 return True
3205
3206 # still looping, advance and update NIA
3207 self.namespace['SVSTATE'] = self.svstate
3208
3209 # not an SVP64 branch, so fix PC (NIA==CIA) for next loop
3210 # (by default, NIA is CIA+4 if v3.0B or CIA+8 if SVP64)
3211 # this way we keep repeating the same instruction (with new steps)
3212 self.pc.NIA.eq(self.pc.CIA)
3213 self.namespace['NIA'] = self.pc.NIA
3214 log("end of sub-pc call", self.namespace['CIA'], self.namespace['NIA'])
3215 return False # DO NOT allow PC update whilst Sub-PC loop running
3216
3217 def update_pc_next(self):
3218 # UPDATE program counter
3219 self.pc.update(self.namespace, self.is_svp64_mode)
3220 #self.svstate.spr = self.namespace['SVSTATE']
3221 log("end of call", self.namespace['CIA'],
3222 self.namespace['NIA'],
3223 self.namespace['SVSTATE'])
3224
3225 def svp64_reset_loop(self):
3226 self.svstate.srcstep = 0
3227 self.svstate.dststep = 0
3228 self.svstate.ssubstep = 0
3229 self.svstate.dsubstep = 0
3230 self.loopend = False
3231 log(" svstate.srcstep loop end (PC to update)")
3232 self.namespace['SVSTATE'] = self.svstate
3233
3234 def update_nia(self):
3235 self.pc.update_nia(self.is_svp64_mode)
3236 self.namespace['NIA'] = self.pc.NIA
3237
3238
3239 def inject():
3240 """Decorator factory.
3241
3242 this decorator will "inject" variables into the function's namespace,
3243 from the *dictionary* in self.namespace. it therefore becomes possible
3244 to make it look like a whole stack of variables which would otherwise
3245 need "self." inserted in front of them (*and* for those variables to be
3246 added to the instance) "appear" in the function.
3247
3248 "self.namespace['SI']" for example becomes accessible as just "SI" but
3249 *only* inside the function, when decorated.
3250 """
3251 def variable_injector(func):
3252 @wraps(func)
3253 def decorator(*args, **kwargs):
3254 try:
3255 func_globals = func.__globals__ # Python 2.6+
3256 except AttributeError:
3257 func_globals = func.func_globals # Earlier versions.
3258
3259 context = args[0].namespace # variables to be injected
3260 saved_values = func_globals.copy() # Shallow copy of dict.
3261 log("globals before", context.keys())
3262 func_globals.update(context)
3263 result = func(*args, **kwargs)
3264 log("globals after", func_globals['CIA'], func_globals['NIA'])
3265 log("args[0]", args[0].namespace['CIA'],
3266 args[0].namespace['NIA'],
3267 args[0].namespace['SVSTATE'])
3268 if 'end_loop' in func_globals:
3269 log("args[0] end_loop", func_globals['end_loop'])
3270 args[0].namespace = func_globals
3271 #exec (func.__code__, func_globals)
3272
3273 # finally:
3274 # func_globals = saved_values # Undo changes.
3275
3276 return result
3277
3278 return decorator
3279
3280 return variable_injector