8c1b46d882dcfef04fd61c58bafc3c323c474759
[soc.git] / src / scoreboard / issue_unit.py
1 from nmigen.compat.sim import run_simulation
2 from nmigen.cli import verilog, rtlil
3 from nmigen import Module, Signal, Cat, Array, Const, Repl, Elaboratable
4 from nmigen.lib.coding import Decoder
5
6 from scoreboard.group_picker import PriorityPicker
7
8
9 class RegDecode(Elaboratable):
10 """ decodes registers into unary
11
12 Inputs
13
14 * :wid: register file width
15 """
16 def __init__(self, wid):
17 self.reg_width = wid
18
19 # inputs
20 self.enable_i = Signal(reset_less=True) # enable decoders
21 self.dest_i = Signal(max=wid, reset_less=True) # Dest R# in
22 self.src1_i = Signal(max=wid, reset_less=True) # oper1 R# in
23 self.src2_i = Signal(max=wid, reset_less=True) # oper2 R# in
24
25 # outputs
26 self.dest_o = Signal(wid, reset_less=True) # Dest unary out
27 self.src1_o = Signal(wid, reset_less=True) # oper1 unary out
28 self.src2_o = Signal(wid, reset_less=True) # oper2 unary out
29
30 def elaborate(self, platform):
31 m = Module()
32 m.submodules.dest_d = dest_d = Decoder(self.reg_width)
33 m.submodules.src1_d = src1_d = Decoder(self.reg_width)
34 m.submodules.src2_d = src2_d = Decoder(self.reg_width)
35
36 # dest decoder: write-pending
37 for d, i, o in [(dest_d, self.dest_i, self.dest_o),
38 (src1_d, self.src1_i, self.src1_o),
39 (src2_d, self.src2_i, self.src2_o)]:
40 m.d.comb += d.i.eq(i)
41 m.d.comb += d.n.eq(~self.enable_i)
42 m.d.comb += o.eq(d.o)
43
44 return m
45
46 def __iter__(self):
47 yield self.enable_i
48 yield self.dest_i
49 yield self.src1_i
50 yield self.src2_i
51 yield self.dest_o
52 yield self.src1_o
53 yield self.src2_o
54
55 def ports(self):
56 return list(self)
57
58
59 class IssueUnitGroup(Elaboratable):
60 """ Manages a batch of Computation Units all of which can do the same task
61
62 A priority picker will allocate one instruction in this cycle based
63 on whether the others are busy.
64
65 insn_i indicates to this module that there is an instruction to be
66 issued which this group can handle
67
68 busy_i is a vector of signals that indicate, in this cycle, which
69 of the units are currently busy.
70
71 busy_o indicates whether it is "safe to proceed" i.e. whether
72 there is a unit here that can *be* issued an instruction
73
74 fn_issue_o indicates, out of the available (non-busy) units,
75 which one may be selected
76 """
77 def __init__(self, n_insns):
78 """ Set up inputs and outputs for the Group
79
80 Input Parameters
81
82 * :n_insns: number of instructions in this issue unit.
83 """
84 self.n_insns = n_insns
85
86 # inputs
87 self.insn_i = Signal(reset_less=True, name="insn_i")
88 self.busy_i = Signal(n_insns, reset_less=True, name="busy_i")
89
90 # outputs
91 self.fn_issue_o = Signal(n_insns, reset_less=True, name="fn_issue_o")
92 self.busy_o = Signal(reset_less=True)
93
94 def elaborate(self, platform):
95 m = Module()
96
97 if self.n_insns == 0:
98 return m
99
100 m.submodules.pick = pick = PriorityPicker(self.n_insns)
101
102 # temporaries
103 allissue = Signal(self.n_insns, reset_less=True)
104 all1 = Const(-1, self.n_insns)
105
106 m.d.comb += allissue.eq(Repl(self.insn_i, self.n_insns))
107 # Pick one (and only one) of the units to proceed in this cycle
108 m.d.comb += pick.i.eq(~self.busy_i & allissue)
109
110 # "Safe to issue" condition is basically when all units are not busy
111 m.d.comb += self.g_issue_o.eq((self.busy_i == all1))
112
113 # Picker only raises one signal, therefore it's also the fn_issue
114 m.d.comb += self.fn_issue_o.eq(pick.o)
115
116 return m
117
118 def __iter__(self):
119 yield self.insn_i
120 yield self.busy_i
121 yield self.fn_issue_o
122 yield self.g_issue_o
123
124 def ports(self):
125 return list(self)
126
127
128 class IssueUnit(Elaboratable):
129 """ implements 11.4.14 issue unit, p50
130
131 Inputs
132
133 * :n_insns: number of instructions in this issue unit.
134 """
135 def __init__(self, n_insns):
136 self.n_insns = n_insns
137
138 # inputs
139 self.insn_i = Signal(n_insns, reset_less=True, name="insn_i")
140 self.busy_i = Signal(n_insns, reset_less=True, name="busy_i")
141
142 # outputs
143 self.fn_issue_o = Signal(n_insns, reset_less=True, name="fn_issue_o")
144 self.g_issue_o = Signal(reset_less=True)
145
146 def elaborate(self, platform):
147 m = Module()
148
149 if self.n_insns == 0:
150 return m
151
152 # temporaries
153 fu_stall = Signal(reset_less=True)
154
155 ib_l = []
156 for i in range(self.n_insns):
157 ib_l.append(self.insn_i[i] & self.busy_i[i])
158 m.d.comb += fu_stall.eq(Cat(*ib_l).bool())
159 m.d.comb += self.g_issue_o.eq(~(fu_stall))
160 for i in range(self.n_insns):
161 m.d.comb += self.fn_issue_o[i].eq(self.g_issue_o & self.insn_i[i])
162
163 return m
164
165 def __iter__(self):
166 yield self.insn_i
167 yield self.busy_i
168 yield self.fn_issue_o
169 yield self.g_issue_o
170
171 def ports(self):
172 return list(self)
173
174
175 class IntFPIssueUnit(Elaboratable):
176 def __init__(self, n_int_insns, n_fp_insns):
177 self.i = IssueUnit(n_int_insns)
178 self.f = IssueUnit(n_fp_insns)
179 self.issue_o = Signal(reset_less=True)
180
181 def elaborate(self, platform):
182 m = Module()
183 m.submodules.intissue = self.i
184 m.submodules.fpissue = self.f
185
186 m.d.comb += self.issue_o.eq(self.i.g_issue_o | self.f.g_issue_o)
187
188 return m
189
190 def ports(self):
191 yield self.issue_o
192 yield from self.i
193 yield from self.f
194
195
196 def issue_unit_sim(dut):
197 yield dut.dest_i.eq(1)
198 yield dut.issue_i.eq(1)
199 yield
200 yield dut.issue_i.eq(0)
201 yield
202 yield dut.src1_i.eq(1)
203 yield dut.issue_i.eq(1)
204 yield
205 yield
206 yield
207 yield dut.issue_i.eq(0)
208 yield
209 yield dut.go_rd_i.eq(1)
210 yield
211 yield dut.go_rd_i.eq(0)
212 yield
213 yield dut.go_wr_i.eq(1)
214 yield
215 yield dut.go_wr_i.eq(0)
216 yield
217
218 def test_issue_unit():
219 dut = IssueUnitGroup(3)
220 vl = rtlil.convert(dut, ports=dut.ports())
221 with open("test_issue_unit_group.il", "w") as f:
222 f.write(vl)
223
224 dut = IssueUnit(32, 3)
225 vl = rtlil.convert(dut, ports=dut.ports())
226 with open("test_issue_unit.il", "w") as f:
227 f.write(vl)
228
229 dut = IntFPIssueUnit(32, 3, 3)
230 vl = rtlil.convert(dut, ports=dut.ports())
231 with open("test_intfp_issue_unit.il", "w") as f:
232 f.write(vl)
233
234 run_simulation(dut, issue_unit_sim(dut), vcd_name='test_issue_unit.vcd')
235
236 if __name__ == '__main__':
237 test_issue_unit()