00f5c8ebd71b161307d3e88c1a2286a43011465b
[soc.git] / src / soc / decoder / isa / caller.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2020, 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Copyright (C) 2020 Michael Nolan
4 # Funded by NLnet http://nlnet.nl
5 """core of the python-based POWER9 simulator
6
7 this is part of a cycle-accurate POWER9 simulator. its primary purpose is
8 not speed, it is for both learning and educational purposes, as well as
9 a method of verifying the HDL.
10
11 related bugs:
12
13 * https://bugs.libre-soc.org/show_bug.cgi?id=424
14 """
15
16 from nmigen.back.pysim import Settle
17 from functools import wraps
18 from copy import copy
19 from soc.decoder.orderedset import OrderedSet
20 from soc.decoder.selectable_int import (FieldSelectableInt, SelectableInt,
21 selectconcat)
22 from soc.decoder.power_enums import (spr_dict, spr_byname, XER_bits,
23 insns, MicrOp, In1Sel, In2Sel, In3Sel,
24 OutSel, CROutSel)
25
26 from soc.decoder.power_enums import SPR as DEC_SPR
27
28 from soc.decoder.helpers import exts, gtu, ltu, undefined
29 from soc.consts import PIb, MSRb # big-endian (PowerISA versions)
30 from soc.decoder.power_svp64 import SVP64RM, decode_extra
31
32 from collections import namedtuple
33 import math
34 import sys
35
36 instruction_info = namedtuple('instruction_info',
37 'func read_regs uninit_regs write_regs ' +
38 'special_regs op_fields form asmregs')
39
40 special_sprs = {
41 'LR': 8,
42 'CTR': 9,
43 'TAR': 815,
44 'XER': 1,
45 'VRSAVE': 256}
46
47
48 def swap_order(x, nbytes):
49 x = x.to_bytes(nbytes, byteorder='little')
50 x = int.from_bytes(x, byteorder='big', signed=False)
51 return x
52
53
54 REG_SORT_ORDER = {
55 # TODO (lkcl): adjust other registers that should be in a particular order
56 # probably CA, CA32, and CR
57 "RT": 0,
58 "RA": 0,
59 "RB": 0,
60 "RS": 0,
61 "CR": 0,
62 "LR": 0,
63 "CTR": 0,
64 "TAR": 0,
65 "CA": 0,
66 "CA32": 0,
67 "MSR": 0,
68
69 "overflow": 1,
70 }
71
72
73 def create_args(reglist, extra=None):
74 retval = list(OrderedSet(reglist))
75 retval.sort(key=lambda reg: REG_SORT_ORDER[reg])
76 if extra is not None:
77 return [extra] + retval
78 return retval
79
80
81 # very quick, TODO move to SelectableInt utils later
82 def genmask(shift, size):
83 res = SelectableInt(0, size)
84 for i in range(size):
85 if i < shift:
86 res[size-1-i] = SelectableInt(1, 1)
87 return res
88
89 """
90 Get Root Page
91
92 //Accessing 2nd double word of partition table (pate1)
93 //Ref: Power ISA Manual v3.0B, Book-III, section 5.7.6.1
94 // PTCR Layout
95 // ====================================================
96 // -----------------------------------------------
97 // | /// | PATB | /// | PATS |
98 // -----------------------------------------------
99 // 0 4 51 52 58 59 63
100 // PATB[4:51] holds the base address of the Partition Table,
101 // right shifted by 12 bits.
102 // This is because the address of the Partition base is
103 // 4k aligned. Hence, the lower 12bits, which are always
104 // 0 are ommitted from the PTCR.
105 //
106 // Thus, The Partition Table Base is obtained by (PATB << 12)
107 //
108 // PATS represents the partition table size right-shifted by 12 bits.
109 // The minimal size of the partition table is 4k.
110 // Thus partition table size = (1 << PATS + 12).
111 //
112 // Partition Table
113 // ====================================================
114 // 0 PATE0 63 PATE1 127
115 // |----------------------|----------------------|
116 // | | |
117 // |----------------------|----------------------|
118 // | | |
119 // |----------------------|----------------------|
120 // | | | <-- effLPID
121 // |----------------------|----------------------|
122 // .
123 // .
124 // .
125 // |----------------------|----------------------|
126 // | | |
127 // |----------------------|----------------------|
128 //
129 // The effective LPID forms the index into the Partition Table.
130 //
131 // Each entry in the partition table contains 2 double words, PATE0, PATE1,
132 // corresponding to that partition.
133 //
134 // In case of Radix, The structure of PATE0 and PATE1 is as follows.
135 //
136 // PATE0 Layout
137 // -----------------------------------------------
138 // |1|RTS1|/| RPDB | RTS2 | RPDS |
139 // -----------------------------------------------
140 // 0 1 2 3 4 55 56 58 59 63
141 //
142 // HR[0] : For Radix Page table, first bit should be 1.
143 // RTS1[1:2] : Gives one fragment of the Radix treesize
144 // RTS2[56:58] : Gives the second fragment of the Radix Tree size.
145 // RTS = (RTS1 << 3 + RTS2) + 31.
146 //
147 // RPDB[4:55] = Root Page Directory Base.
148 // RPDS = Logarithm of Root Page Directory Size right shifted by 3.
149 // Thus, Root page directory size = 1 << (RPDS + 3).
150 // Note: RPDS >= 5.
151 //
152 // PATE1 Layout
153 // -----------------------------------------------
154 // |///| PRTB | // | PRTS |
155 // -----------------------------------------------
156 // 0 3 4 51 52 58 59 63
157 //
158 // PRTB[4:51] = Process Table Base. This is aligned to size.
159 // PRTS[59: 63] = Process Table Size right shifted by 12.
160 // Minimal size of the process table is 4k.
161 // Process Table Size = (1 << PRTS + 12).
162 // Note: PRTS <= 24.
163 //
164 // Computing the size aligned Process Table Base:
165 // table_base = (PRTB & ~((1 << PRTS) - 1)) << 12
166 // Thus, the lower 12+PRTS bits of table_base will
167 // be zero.
168
169
170 //Ref: Power ISA Manual v3.0B, Book-III, section 5.7.6.2
171 //
172 // Process Table
173 // ==========================
174 // 0 PRTE0 63 PRTE1 127
175 // |----------------------|----------------------|
176 // | | |
177 // |----------------------|----------------------|
178 // | | |
179 // |----------------------|----------------------|
180 // | | | <-- effPID
181 // |----------------------|----------------------|
182 // .
183 // .
184 // .
185 // |----------------------|----------------------|
186 // | | |
187 // |----------------------|----------------------|
188 //
189 // The effective Process id (PID) forms the index into the Process Table.
190 //
191 // Each entry in the partition table contains 2 double words, PRTE0, PRTE1,
192 // corresponding to that process
193 //
194 // In case of Radix, The structure of PRTE0 and PRTE1 is as follows.
195 //
196 // PRTE0 Layout
197 // -----------------------------------------------
198 // |/|RTS1|/| RPDB | RTS2 | RPDS |
199 // -----------------------------------------------
200 // 0 1 2 3 4 55 56 58 59 63
201 //
202 // RTS1[1:2] : Gives one fragment of the Radix treesize
203 // RTS2[56:58] : Gives the second fragment of the Radix Tree size.
204 // RTS = (RTS1 << 3 + RTS2) << 31,
205 // since minimal Radix Tree size is 4G.
206 //
207 // RPDB = Root Page Directory Base.
208 // RPDS = Root Page Directory Size right shifted by 3.
209 // Thus, Root page directory size = RPDS << 3.
210 // Note: RPDS >= 5.
211 //
212 // PRTE1 Layout
213 // -----------------------------------------------
214 // | /// |
215 // -----------------------------------------------
216 // 0 63
217 // All bits are reserved.
218
219
220 """
221
222 # see qemu/target/ppc/mmu-radix64.c for reference
223 class RADIX:
224 def __init__(self, mem, caller):
225 self.mem = mem
226 self.caller = caller
227
228 # cached page table stuff
229 self.pgtbl0 = 0
230 self.pt0_valid = False
231 self.pgtbl3 = 0
232 self.pt3_valid = False
233
234 def __call__(self,*args, **kwargs):
235 print("TODO: implement RADIX.__call__()")
236 print(args)
237 print(kwargs)
238 return None
239
240 def ld(self, address, width=8, swap=True, check_in_mem=False):
241 print("RADIX: ld from addr 0x%x width %d" % (address, width))
242 dsisr = self.caller.spr[DEC_SPR.DSISR.value]
243 dar = self.caller.spr[DEC_SPR.DAR.value]
244 pidr = self.caller.spr[DEC_SPR.PIDR.value]
245 prtbl = self.caller.spr[DEC_SPR.PRTBL.value]
246
247 pte = self._walk_tree()
248 # use pte to caclculate phys address
249 return self.mem.ld(address, width, swap, check_in_mem)
250
251 # XXX set SPRs on error
252
253 # TODO implement
254 def st(self, addr, v, width=8, swap=True):
255 print("RADIX: st to addr 0x%x width %d data %x" % (addr, width, v))
256 dsisr = self.caller.spr[DEC_SPR.DSISR.value]
257 dar = self.caller.spr[DEC_SPR.DAR.value]
258 pidr = self.caller.spr[DEC_SPR.PIDR.value]
259 prtbl = self.caller.spr[DEC_SPR.PRTBL.value]
260
261 # use pte to caclculate phys address (addr)
262 return self.mem.st(addr, v, width, swap)
263
264 # XXX set SPRs on error
265
266 def memassign(self, addr, sz, val):
267 print("memassign", addr, sz, val)
268 self.st(addr.value, val.value, sz, swap=False)
269
270 def _next_level(self):
271 return True
272 ## DSISR_R_BADCONFIG
273 ## read_entry
274 ## DSISR_NOPTE
275 ## Prepare for next iteration
276
277 def _walk_tree(self):
278 """walk tree
279
280 // vaddr 64 Bit
281 // vaddr |-----------------------------------------------------|
282 // | Unused | Used |
283 // |-----------|-----------------------------------------|
284 // | 0000000 | usefulBits = X bits (typically 52) |
285 // |-----------|-----------------------------------------|
286 // | |<--Cursize---->| |
287 // | | Index | |
288 // | | into Page | |
289 // | | Directory | |
290 // |-----------------------------------------------------|
291 // | |
292 // V |
293 // PDE |---------------------------| |
294 // |V|L|//| NLB |///|NLS| |
295 // |---------------------------| |
296 // PDE = Page Directory Entry |
297 // [0] = V = Valid Bit |
298 // [1] = L = Leaf bit. If 0, then |
299 // [4:55] = NLB = Next Level Base |
300 // right shifted by 8 |
301 // [59:63] = NLS = Next Level Size |
302 // | NLS >= 5 |
303 // | V
304 // | |--------------------------|
305 // | | usfulBits = X-Cursize |
306 // | |--------------------------|
307 // |---------------------><--NLS-->| |
308 // | Index | |
309 // | into | |
310 // | PDE | |
311 // |--------------------------|
312 // |
313 // If the next PDE obtained by |
314 // (NLB << 8 + 8 * index) is a |
315 // nonleaf, then repeat the above. |
316 // |
317 // If the next PDE is a leaf, |
318 // then Leaf PDE structure is as |
319 // follows |
320 // |
321 // |
322 // Leaf PDE |
323 // |------------------------------| |----------------|
324 // |V|L|sw|//|RPN|sw|R|C|/|ATT|EAA| | usefulBits |
325 // |------------------------------| |----------------|
326 // [0] = V = Valid Bit |
327 // [1] = L = Leaf Bit = 1 if leaf |
328 // PDE |
329 // [2] = Sw = Sw bit 0. |
330 // [7:51] = RPN = Real Page Number, V
331 // real_page = RPN << 12 -------------> Logical OR
332 // [52:54] = Sw Bits 1:3 |
333 // [55] = R = Reference |
334 // [56] = C = Change V
335 // [58:59] = Att = Physical Address
336 // 0b00 = Normal Memory
337 // 0b01 = SAO
338 // 0b10 = Non Idenmpotent
339 // 0b11 = Tolerant I/O
340 // [60:63] = Encoded Access
341 // Authority
342 //
343 """
344 # walk tree starts on prtbl
345 while True:
346 ret = self._next_level()
347 if ret: return ret
348
349 def _decode_prte(self, data):
350 """PRTE0 Layout
351 -----------------------------------------------
352 |/|RTS1|/| RPDB | RTS2 | RPDS |
353 -----------------------------------------------
354 0 1 2 3 4 55 56 58 59 63
355 """
356 # note that SelectableInt does big-endian! so the indices
357 # below *directly* match the spec, unlike microwatt which
358 # has to turn them around (to LE)
359 zero = SelectableInt(0, 1)
360 rts = selectconcat(zero,
361 data[56:59], # RTS2
362 data[1:3], # RTS1
363 )
364 masksize = data[59:64] # RPDS
365 mbits = selectconcat(zero, masksize)
366 pgbase = selectconcat(data[8:56], # part of RPDB
367 SelectableInt(0, 16),)
368
369 return (rts, mbits, pgbase)
370
371 def _segment_check(self, addr, mbits, shift):
372 """checks segment valid
373 mbits := '0' & r.mask_size;
374 v.shift := r.shift + (31 - 12) - mbits;
375 nonzero := or(r.addr(61 downto 31) and not finalmask(30 downto 0));
376 if r.addr(63) /= r.addr(62) or nonzero = '1' then
377 v.state := RADIX_FINISH;
378 v.segerror := '1';
379 elsif mbits < 5 or mbits > 16 or mbits > (r.shift + (31 - 12)) then
380 v.state := RADIX_FINISH;
381 v.badtree := '1';
382 else
383 v.state := RADIX_LOOKUP;
384 """
385 # note that SelectableInt does big-endian! so the indices
386 # below *directly* match the spec, unlike microwatt which
387 # has to turn them around (to LE)
388 mask = genmask(shift, 43)
389 nonzero = addr[1:32] & mask[12:43] # mask 31 LSBs (BE numbered 12:43)
390 print ("RADIX _segment_check nonzero", bin(nonzero.value))
391 print ("RADIX _segment_check addr[0-1]", addr[0].value, addr[1].value)
392 if addr[0] != addr[1] or nonzero == 1:
393 return "segerror"
394 limit = shift + (31 - 12)
395 if mbits < 5 or mbits > 16 or mbits > limit:
396 return "badtree"
397 new_shift = shift + (31 - 12) - mbits
398 return new_shift
399
400 def _check_perms(self):
401 """check page permissions
402 -- test leaf bit
403 if data(62) = '1' then
404 -- check permissions and RC bits
405 perm_ok := '0';
406 if r.priv = '1' or data(3) = '0' then
407 if r.iside = '0' then
408 perm_ok := data(1) or (data(2) and not r.store);
409 else
410 -- no IAMR, so no KUEP support for now
411 -- deny execute permission if cache inhibited
412 perm_ok := data(0) and not data(5);
413 end if;
414 end if;
415 rc_ok := data(8) and (data(7) or not r.store);
416 if perm_ok = '1' and rc_ok = '1' then
417 v.state := RADIX_LOAD_TLB;
418 else
419 v.state := RADIX_FINISH;
420 v.perm_err := not perm_ok;
421 -- permission error takes precedence over RC error
422 v.rc_error := perm_ok;
423 end if;
424 """
425
426 def _get_prtable_addr(self, prtbl, addr):
427 """
428 if r.addr(63) = '1' then
429 effpid := x"00000000";
430 else
431 effpid := r.pid;
432 end if;
433 prtable_addr := x"00" & r.prtbl(55 downto 36) &
434 ((r.prtbl(35 downto 12) and not finalmask(23 downto 0)) or
435 (effpid(31 downto 8) and finalmask(23 downto 0))) &
436 effpid(7 downto 0) & "0000";
437 """
438
439 def _get_pgtable_addr(self):
440 """
441 pgtable_addr := x"00" & r.pgbase(55 downto 19) &
442 ((r.pgbase(18 downto 3) and not mask) or (addrsh and mask)) &
443 "000";
444 """
445
446 def _get_pte(self):
447 """
448 pte := x"00" &
449 ((r.pde(55 downto 12) and not finalmask) or (r.addr(55 downto 12) and finalmask))
450 & r.pde(11 downto 0);
451 """
452
453
454 class Mem:
455
456 def __init__(self, row_bytes=8, initial_mem=None):
457 self.mem = {}
458 self.bytes_per_word = row_bytes
459 self.word_log2 = math.ceil(math.log2(row_bytes))
460 print("Sim-Mem", initial_mem, self.bytes_per_word, self.word_log2)
461 if not initial_mem:
462 return
463
464 # different types of memory data structures recognised (for convenience)
465 if isinstance(initial_mem, list):
466 initial_mem = (0, initial_mem)
467 if isinstance(initial_mem, tuple):
468 startaddr, mem = initial_mem
469 initial_mem = {}
470 for i, val in enumerate(mem):
471 initial_mem[startaddr + row_bytes*i] = (val, row_bytes)
472
473 for addr, (val, width) in initial_mem.items():
474 #val = swap_order(val, width)
475 self.st(addr, val, width, swap=False)
476
477 def _get_shifter_mask(self, wid, remainder):
478 shifter = ((self.bytes_per_word - wid) - remainder) * \
479 8 # bits per byte
480 # XXX https://bugs.libre-soc.org/show_bug.cgi?id=377
481 # BE/LE mode?
482 shifter = remainder * 8
483 mask = (1 << (wid * 8)) - 1
484 print("width,rem,shift,mask", wid, remainder, hex(shifter), hex(mask))
485 return shifter, mask
486
487 # TODO: Implement ld/st of lesser width
488 def ld(self, address, width=8, swap=True, check_in_mem=False):
489 print("ld from addr 0x{:x} width {:d}".format(address, width))
490 remainder = address & (self.bytes_per_word - 1)
491 address = address >> self.word_log2
492 assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
493 if address in self.mem:
494 val = self.mem[address]
495 elif check_in_mem:
496 return None
497 else:
498 val = 0
499 print("mem @ 0x{:x} rem {:d} : 0x{:x}".format(address, remainder, val))
500
501 if width != self.bytes_per_word:
502 shifter, mask = self._get_shifter_mask(width, remainder)
503 print("masking", hex(val), hex(mask << shifter), shifter)
504 val = val & (mask << shifter)
505 val >>= shifter
506 if swap:
507 val = swap_order(val, width)
508 print("Read 0x{:x} from addr 0x{:x}".format(val, address))
509 return val
510
511 def st(self, addr, v, width=8, swap=True):
512 staddr = addr
513 remainder = addr & (self.bytes_per_word - 1)
514 addr = addr >> self.word_log2
515 print("Writing 0x{:x} to ST 0x{:x} "
516 "memaddr 0x{:x}/{:x}".format(v, staddr, addr, remainder, swap))
517 assert remainder & (width - 1) == 0, "Unaligned access unsupported!"
518 if swap:
519 v = swap_order(v, width)
520 if width != self.bytes_per_word:
521 if addr in self.mem:
522 val = self.mem[addr]
523 else:
524 val = 0
525 shifter, mask = self._get_shifter_mask(width, remainder)
526 val &= ~(mask << shifter)
527 val |= v << shifter
528 self.mem[addr] = val
529 else:
530 self.mem[addr] = v
531 print("mem @ 0x{:x}: 0x{:x}".format(addr, self.mem[addr]))
532
533 def __call__(self, addr, sz):
534 val = self.ld(addr.value, sz, swap=False)
535 print("memread", addr, sz, val)
536 return SelectableInt(val, sz*8)
537
538 def memassign(self, addr, sz, val):
539 print("memassign", addr, sz, val)
540 self.st(addr.value, val.value, sz, swap=False)
541
542
543 class GPR(dict):
544 def __init__(self, decoder, isacaller, svstate, regfile):
545 dict.__init__(self)
546 self.sd = decoder
547 self.isacaller = isacaller
548 self.svstate = svstate
549 for i in range(32):
550 self[i] = SelectableInt(regfile[i], 64)
551
552 def __call__(self, ridx):
553 return self[ridx]
554
555 def set_form(self, form):
556 self.form = form
557
558 def getz(self, rnum):
559 # rnum = rnum.value # only SelectableInt allowed
560 print("GPR getzero", rnum)
561 if rnum == 0:
562 return SelectableInt(0, 64)
563 return self[rnum]
564
565 def _get_regnum(self, attr):
566 getform = self.sd.sigforms[self.form]
567 rnum = getattr(getform, attr)
568 return rnum
569
570 def ___getitem__(self, attr):
571 """ XXX currently not used
572 """
573 rnum = self._get_regnum(attr)
574 offs = self.svstate.srcstep
575 print("GPR getitem", attr, rnum, "srcoffs", offs)
576 return self.regfile[rnum]
577
578 def dump(self):
579 for i in range(0, len(self), 8):
580 s = []
581 for j in range(8):
582 s.append("%08x" % self[i+j].value)
583 s = ' '.join(s)
584 print("reg", "%2d" % i, s)
585
586
587 class PC:
588 def __init__(self, pc_init=0):
589 self.CIA = SelectableInt(pc_init, 64)
590 self.NIA = self.CIA + SelectableInt(4, 64) # only true for v3.0B!
591
592 def update_nia(self, is_svp64):
593 increment = 8 if is_svp64 else 4
594 self.NIA = self.CIA + SelectableInt(increment, 64)
595
596 def update(self, namespace, is_svp64):
597 """updates the program counter (PC) by 4 if v3.0B mode or 8 if SVP64
598 """
599 self.CIA = namespace['NIA'].narrow(64)
600 self.update_nia(is_svp64)
601 namespace['CIA'] = self.CIA
602 namespace['NIA'] = self.NIA
603
604
605 # Simple-V: see https://libre-soc.org/openpower/sv
606 class SVP64State:
607 def __init__(self, init=0):
608 self.spr = SelectableInt(init, 32)
609 # fields of SVSTATE, see https://libre-soc.org/openpower/sv/sprs/
610 self.maxvl = FieldSelectableInt(self.spr, tuple(range(0,7)))
611 self.vl = FieldSelectableInt(self.spr, tuple(range(7,14)))
612 self.srcstep = FieldSelectableInt(self.spr, tuple(range(14,21)))
613 self.dststep = FieldSelectableInt(self.spr, tuple(range(21,28)))
614 self.subvl = FieldSelectableInt(self.spr, tuple(range(28,30)))
615 self.svstep = FieldSelectableInt(self.spr, tuple(range(30,32)))
616
617
618 # SVP64 ReMap field
619 class SVP64RMFields:
620 def __init__(self, init=0):
621 self.spr = SelectableInt(init, 24)
622 # SVP64 RM fields: see https://libre-soc.org/openpower/sv/svp64/
623 self.mmode = FieldSelectableInt(self.spr, [0])
624 self.mask = FieldSelectableInt(self.spr, tuple(range(1,4)))
625 self.elwidth = FieldSelectableInt(self.spr, tuple(range(4,6)))
626 self.ewsrc = FieldSelectableInt(self.spr, tuple(range(6,8)))
627 self.subvl = FieldSelectableInt(self.spr, tuple(range(8,10)))
628 self.extra = FieldSelectableInt(self.spr, tuple(range(10,19)))
629 self.mode = FieldSelectableInt(self.spr, tuple(range(19,24)))
630 # these cover the same extra field, split into parts as EXTRA2
631 self.extra2 = list(range(4))
632 self.extra2[0] = FieldSelectableInt(self.spr, tuple(range(10,12)))
633 self.extra2[1] = FieldSelectableInt(self.spr, tuple(range(12,14)))
634 self.extra2[2] = FieldSelectableInt(self.spr, tuple(range(14,16)))
635 self.extra2[3] = FieldSelectableInt(self.spr, tuple(range(16,18)))
636 self.smask = FieldSelectableInt(self.spr, tuple(range(16,19)))
637 # and here as well, but EXTRA3
638 self.extra3 = list(range(3))
639 self.extra3[0] = FieldSelectableInt(self.spr, tuple(range(10,13)))
640 self.extra3[1] = FieldSelectableInt(self.spr, tuple(range(13,16)))
641 self.extra3[2] = FieldSelectableInt(self.spr, tuple(range(16,19)))
642
643
644 SVP64RM_MMODE_SIZE = len(SVP64RMFields().mmode.br)
645 SVP64RM_MASK_SIZE = len(SVP64RMFields().mask.br)
646 SVP64RM_ELWIDTH_SIZE = len(SVP64RMFields().elwidth.br)
647 SVP64RM_EWSRC_SIZE = len(SVP64RMFields().ewsrc.br)
648 SVP64RM_SUBVL_SIZE = len(SVP64RMFields().subvl.br)
649 SVP64RM_EXTRA2_SPEC_SIZE = len(SVP64RMFields().extra2[0].br)
650 SVP64RM_EXTRA3_SPEC_SIZE = len(SVP64RMFields().extra3[0].br)
651 SVP64RM_SMASK_SIZE = len(SVP64RMFields().smask.br)
652 SVP64RM_MODE_SIZE = len(SVP64RMFields().mode.br)
653
654
655 # SVP64 Prefix fields: see https://libre-soc.org/openpower/sv/svp64/
656 class SVP64PrefixFields:
657 def __init__(self):
658 self.insn = SelectableInt(0, 32)
659 # 6 bit major opcode EXT001, 2 bits "identifying" (7, 9), 24 SV ReMap
660 self.major = FieldSelectableInt(self.insn, tuple(range(0,6)))
661 self.pid = FieldSelectableInt(self.insn, (7, 9)) # must be 0b11
662 rmfields = [6, 8] + list(range(10,32)) # SVP64 24-bit RM (ReMap)
663 self.rm = FieldSelectableInt(self.insn, rmfields)
664
665
666 SV64P_MAJOR_SIZE = len(SVP64PrefixFields().major.br)
667 SV64P_PID_SIZE = len(SVP64PrefixFields().pid.br)
668 SV64P_RM_SIZE = len(SVP64PrefixFields().rm.br)
669
670
671 class SPR(dict):
672 def __init__(self, dec2, initial_sprs={}):
673 self.sd = dec2
674 dict.__init__(self)
675 for key, v in initial_sprs.items():
676 if isinstance(key, SelectableInt):
677 key = key.value
678 key = special_sprs.get(key, key)
679 if isinstance(key, int):
680 info = spr_dict[key]
681 else:
682 info = spr_byname[key]
683 if not isinstance(v, SelectableInt):
684 v = SelectableInt(v, info.length)
685 self[key] = v
686
687 def __getitem__(self, key):
688 print("get spr", key)
689 print("dict", self.items())
690 # if key in special_sprs get the special spr, otherwise return key
691 if isinstance(key, SelectableInt):
692 key = key.value
693 if isinstance(key, int):
694 key = spr_dict[key].SPR
695 key = special_sprs.get(key, key)
696 if key == 'HSRR0': # HACK!
697 key = 'SRR0'
698 if key == 'HSRR1': # HACK!
699 key = 'SRR1'
700 if key in self:
701 res = dict.__getitem__(self, key)
702 else:
703 if isinstance(key, int):
704 info = spr_dict[key]
705 else:
706 info = spr_byname[key]
707 dict.__setitem__(self, key, SelectableInt(0, info.length))
708 res = dict.__getitem__(self, key)
709 print("spr returning", key, res)
710 return res
711
712 def __setitem__(self, key, value):
713 if isinstance(key, SelectableInt):
714 key = key.value
715 if isinstance(key, int):
716 key = spr_dict[key].SPR
717 print("spr key", key)
718 key = special_sprs.get(key, key)
719 if key == 'HSRR0': # HACK!
720 self.__setitem__('SRR0', value)
721 if key == 'HSRR1': # HACK!
722 self.__setitem__('SRR1', value)
723 print("setting spr", key, value)
724 dict.__setitem__(self, key, value)
725
726 def __call__(self, ridx):
727 return self[ridx]
728
729 def get_pdecode_idx_in(dec2, name):
730 op = dec2.dec.op
731 in1_sel = yield op.in1_sel
732 in2_sel = yield op.in2_sel
733 in3_sel = yield op.in3_sel
734 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
735 in1 = yield dec2.e.read_reg1.data
736 in2 = yield dec2.e.read_reg2.data
737 in3 = yield dec2.e.read_reg3.data
738 in1_isvec = yield dec2.in1_isvec
739 in2_isvec = yield dec2.in2_isvec
740 in3_isvec = yield dec2.in3_isvec
741 print ("get_pdecode_idx", in1_sel, In1Sel.RA.value, in1, in1_isvec)
742 # identify which regnames map to in1/2/3
743 if name == 'RA':
744 if (in1_sel == In1Sel.RA.value or
745 (in1_sel == In1Sel.RA_OR_ZERO.value and in1 != 0)):
746 return in1, in1_isvec
747 if in1_sel == In1Sel.RA_OR_ZERO.value:
748 return in1, in1_isvec
749 elif name == 'RB':
750 if in2_sel == In2Sel.RB.value:
751 return in2, in2_isvec
752 if in3_sel == In3Sel.RB.value:
753 return in3, in3_isvec
754 # XXX TODO, RC doesn't exist yet!
755 elif name == 'RC':
756 assert False, "RC does not exist yet"
757 elif name == 'RS':
758 if in1_sel == In1Sel.RS.value:
759 return in1, in1_isvec
760 if in2_sel == In2Sel.RS.value:
761 return in2, in2_isvec
762 if in3_sel == In3Sel.RS.value:
763 return in3, in3_isvec
764 return None, False
765
766
767 def get_pdecode_cr_out(dec2, name):
768 op = dec2.dec.op
769 out_sel = yield op.cr_out
770 out_bitfield = yield dec2.dec_cr_out.cr_bitfield.data
771 sv_cr_out = yield op.sv_cr_out
772 spec = yield dec2.crout_svdec.spec
773 sv_override = yield dec2.dec_cr_out.sv_override
774 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
775 out = yield dec2.e.write_cr.data
776 o_isvec = yield dec2.o_isvec
777 print ("get_pdecode_cr_out", out_sel, CROutSel.CR0.value, out, o_isvec)
778 print (" sv_cr_out", sv_cr_out)
779 print (" cr_bf", out_bitfield)
780 print (" spec", spec)
781 print (" override", sv_override)
782 # identify which regnames map to out / o2
783 if name == 'CR0':
784 if out_sel == CROutSel.CR0.value:
785 return out, o_isvec
786 print ("get_pdecode_idx_out not found", name)
787 return None, False
788
789
790 def get_pdecode_idx_out(dec2, name):
791 op = dec2.dec.op
792 out_sel = yield op.out_sel
793 # get the IN1/2/3 from the decoder (includes SVP64 remap and isvec)
794 out = yield dec2.e.write_reg.data
795 o_isvec = yield dec2.o_isvec
796 print ("get_pdecode_idx_out", out_sel, OutSel.RA.value, out, o_isvec)
797 # identify which regnames map to out / o2
798 if name == 'RA':
799 if out_sel == OutSel.RA.value:
800 return out, o_isvec
801 elif name == 'RT':
802 if out_sel == OutSel.RT.value:
803 return out, o_isvec
804 print ("get_pdecode_idx_out not found", name)
805 return None, False
806
807
808 # XXX TODO
809 def get_pdecode_idx_out2(dec2, name):
810 op = dec2.dec.op
811 print ("TODO: get_pdecode_idx_out2", name)
812 return None, False
813
814
815 class ISACaller:
816 # decoder2 - an instance of power_decoder2
817 # regfile - a list of initial values for the registers
818 # initial_{etc} - initial values for SPRs, Condition Register, Mem, MSR
819 # respect_pc - tracks the program counter. requires initial_insns
820 def __init__(self, decoder2, regfile, initial_sprs=None, initial_cr=0,
821 initial_mem=None, initial_msr=0,
822 initial_svstate=0,
823 initial_insns=None, respect_pc=False,
824 disassembly=None,
825 initial_pc=0,
826 bigendian=False,
827 mmu=False):
828
829 self.bigendian = bigendian
830 self.halted = False
831 self.is_svp64_mode = False
832 self.respect_pc = respect_pc
833 if initial_sprs is None:
834 initial_sprs = {}
835 if initial_mem is None:
836 initial_mem = {}
837 if initial_insns is None:
838 initial_insns = {}
839 assert self.respect_pc == False, "instructions required to honor pc"
840
841 print("ISACaller insns", respect_pc, initial_insns, disassembly)
842 print("ISACaller initial_msr", initial_msr)
843
844 # "fake program counter" mode (for unit testing)
845 self.fake_pc = 0
846 disasm_start = 0
847 if not respect_pc:
848 if isinstance(initial_mem, tuple):
849 self.fake_pc = initial_mem[0]
850 disasm_start = self.fake_pc
851 else:
852 disasm_start = initial_pc
853
854 # disassembly: we need this for now (not given from the decoder)
855 self.disassembly = {}
856 if disassembly:
857 for i, code in enumerate(disassembly):
858 self.disassembly[i*4 + disasm_start] = code
859
860 # set up registers, instruction memory, data memory, PC, SPRs, MSR
861 self.svp64rm = SVP64RM()
862 if isinstance(initial_svstate, int):
863 initial_svstate = SVP64State(initial_svstate)
864 self.svstate = initial_svstate
865 self.gpr = GPR(decoder2, self, self.svstate, regfile)
866 self.mem = Mem(row_bytes=8, initial_mem=initial_mem)
867 if mmu:
868 self.mem = RADIX(self.mem, self)
869 self.imem = Mem(row_bytes=4, initial_mem=initial_insns)
870 self.pc = PC()
871 self.spr = SPR(decoder2, initial_sprs)
872 self.msr = SelectableInt(initial_msr, 64) # underlying reg
873
874 # TODO, needed here:
875 # FPR (same as GPR except for FP nums)
876 # 4.2.2 p124 FPSCR (definitely "separate" - not in SPR)
877 # note that mffs, mcrfs, mtfsf "manage" this FPSCR
878 # 2.3.1 CR (and sub-fields CR0..CR6 - CR0 SO comes from XER.SO)
879 # note that mfocrf, mfcr, mtcr, mtocrf, mcrxrx "manage" CRs
880 # -- Done
881 # 2.3.2 LR (actually SPR #8) -- Done
882 # 2.3.3 CTR (actually SPR #9) -- Done
883 # 2.3.4 TAR (actually SPR #815)
884 # 3.2.2 p45 XER (actually SPR #1) -- Done
885 # 3.2.3 p46 p232 VRSAVE (actually SPR #256)
886
887 # create CR then allow portions of it to be "selectable" (below)
888 #rev_cr = int('{:016b}'.format(initial_cr)[::-1], 2)
889 self.cr = SelectableInt(initial_cr, 64) # underlying reg
890 #self.cr = FieldSelectableInt(self._cr, list(range(32, 64)))
891
892 # "undefined", just set to variable-bit-width int (use exts "max")
893 #self.undefined = SelectableInt(0, 256) # TODO, not hard-code 256!
894
895 self.namespace = {}
896 self.namespace.update(self.spr)
897 self.namespace.update({'GPR': self.gpr,
898 'MEM': self.mem,
899 'SPR': self.spr,
900 'memassign': self.memassign,
901 'NIA': self.pc.NIA,
902 'CIA': self.pc.CIA,
903 'CR': self.cr,
904 'MSR': self.msr,
905 'undefined': undefined,
906 'mode_is_64bit': True,
907 'SO': XER_bits['SO']
908 })
909
910 # update pc to requested start point
911 self.set_pc(initial_pc)
912
913 # field-selectable versions of Condition Register TODO check bitranges?
914 self.crl = []
915 for i in range(8):
916 bits = tuple(range(i*4+32, (i+1)*4+32)) # errr... maybe?
917 _cr = FieldSelectableInt(self.cr, bits)
918 self.crl.append(_cr)
919 self.namespace["CR%d" % i] = _cr
920
921 self.decoder = decoder2.dec
922 self.dec2 = decoder2
923
924 def TRAP(self, trap_addr=0x700, trap_bit=PIb.TRAP):
925 print("TRAP:", hex(trap_addr), hex(self.namespace['MSR'].value))
926 # store CIA(+4?) in SRR0, set NIA to 0x700
927 # store MSR in SRR1, set MSR to um errr something, have to check spec
928 self.spr['SRR0'].value = self.pc.CIA.value
929 self.spr['SRR1'].value = self.namespace['MSR'].value
930 self.trap_nia = SelectableInt(trap_addr, 64)
931 self.spr['SRR1'][trap_bit] = 1 # change *copy* of MSR in SRR1
932
933 # set exception bits. TODO: this should, based on the address
934 # in figure 66 p1065 V3.0B and the table figure 65 p1063 set these
935 # bits appropriately. however it turns out that *for now* in all
936 # cases (all trap_addrs) the exact same thing is needed.
937 self.msr[MSRb.IR] = 0
938 self.msr[MSRb.DR] = 0
939 self.msr[MSRb.FE0] = 0
940 self.msr[MSRb.FE1] = 0
941 self.msr[MSRb.EE] = 0
942 self.msr[MSRb.RI] = 0
943 self.msr[MSRb.SF] = 1
944 self.msr[MSRb.TM] = 0
945 self.msr[MSRb.VEC] = 0
946 self.msr[MSRb.VSX] = 0
947 self.msr[MSRb.PR] = 0
948 self.msr[MSRb.FP] = 0
949 self.msr[MSRb.PMM] = 0
950 self.msr[MSRb.TEs] = 0
951 self.msr[MSRb.TEe] = 0
952 self.msr[MSRb.UND] = 0
953 self.msr[MSRb.LE] = 1
954
955 def memassign(self, ea, sz, val):
956 self.mem.memassign(ea, sz, val)
957
958 def prep_namespace(self, formname, op_fields):
959 # TODO: get field names from form in decoder*1* (not decoder2)
960 # decoder2 is hand-created, and decoder1.sigform is auto-generated
961 # from spec
962 # then "yield" fields only from op_fields rather than hard-coded
963 # list, here.
964 fields = self.decoder.sigforms[formname]
965 for name in op_fields:
966 if name == 'spr':
967 sig = getattr(fields, name.upper())
968 else:
969 sig = getattr(fields, name)
970 val = yield sig
971 # these are all opcode fields involved in index-selection of CR,
972 # and need to do "standard" arithmetic. CR[BA+32] for example
973 # would, if using SelectableInt, only be 5-bit.
974 if name in ['BF', 'BFA', 'BC', 'BA', 'BB', 'BT', 'BI']:
975 self.namespace[name] = val
976 else:
977 self.namespace[name] = SelectableInt(val, sig.width)
978
979 self.namespace['XER'] = self.spr['XER']
980 self.namespace['CA'] = self.spr['XER'][XER_bits['CA']].value
981 self.namespace['CA32'] = self.spr['XER'][XER_bits['CA32']].value
982
983 def handle_carry_(self, inputs, outputs, already_done):
984 inv_a = yield self.dec2.e.do.invert_in
985 if inv_a:
986 inputs[0] = ~inputs[0]
987
988 imm_ok = yield self.dec2.e.do.imm_data.ok
989 if imm_ok:
990 imm = yield self.dec2.e.do.imm_data.data
991 inputs.append(SelectableInt(imm, 64))
992 assert len(outputs) >= 1
993 print("outputs", repr(outputs))
994 if isinstance(outputs, list) or isinstance(outputs, tuple):
995 output = outputs[0]
996 else:
997 output = outputs
998 gts = []
999 for x in inputs:
1000 print("gt input", x, output)
1001 gt = (gtu(x, output))
1002 gts.append(gt)
1003 print(gts)
1004 cy = 1 if any(gts) else 0
1005 print("CA", cy, gts)
1006 if not (1 & already_done):
1007 self.spr['XER'][XER_bits['CA']] = cy
1008
1009 print("inputs", already_done, inputs)
1010 # 32 bit carry
1011 # ARGH... different for OP_ADD... *sigh*...
1012 op = yield self.dec2.e.do.insn_type
1013 if op == MicrOp.OP_ADD.value:
1014 res32 = (output.value & (1 << 32)) != 0
1015 a32 = (inputs[0].value & (1 << 32)) != 0
1016 if len(inputs) >= 2:
1017 b32 = (inputs[1].value & (1 << 32)) != 0
1018 else:
1019 b32 = False
1020 cy32 = res32 ^ a32 ^ b32
1021 print("CA32 ADD", cy32)
1022 else:
1023 gts = []
1024 for x in inputs:
1025 print("input", x, output)
1026 print(" x[32:64]", x, x[32:64])
1027 print(" o[32:64]", output, output[32:64])
1028 gt = (gtu(x[32:64], output[32:64])) == SelectableInt(1, 1)
1029 gts.append(gt)
1030 cy32 = 1 if any(gts) else 0
1031 print("CA32", cy32, gts)
1032 if not (2 & already_done):
1033 self.spr['XER'][XER_bits['CA32']] = cy32
1034
1035 def handle_overflow(self, inputs, outputs, div_overflow):
1036 if hasattr(self.dec2.e.do, "invert_in"):
1037 inv_a = yield self.dec2.e.do.invert_in
1038 if inv_a:
1039 inputs[0] = ~inputs[0]
1040
1041 imm_ok = yield self.dec2.e.do.imm_data.ok
1042 if imm_ok:
1043 imm = yield self.dec2.e.do.imm_data.data
1044 inputs.append(SelectableInt(imm, 64))
1045 assert len(outputs) >= 1
1046 print("handle_overflow", inputs, outputs, div_overflow)
1047 if len(inputs) < 2 and div_overflow is None:
1048 return
1049
1050 # div overflow is different: it's returned by the pseudo-code
1051 # because it's more complex than can be done by analysing the output
1052 if div_overflow is not None:
1053 ov, ov32 = div_overflow, div_overflow
1054 # arithmetic overflow can be done by analysing the input and output
1055 elif len(inputs) >= 2:
1056 output = outputs[0]
1057
1058 # OV (64-bit)
1059 input_sgn = [exts(x.value, x.bits) < 0 for x in inputs]
1060 output_sgn = exts(output.value, output.bits) < 0
1061 ov = 1 if input_sgn[0] == input_sgn[1] and \
1062 output_sgn != input_sgn[0] else 0
1063
1064 # OV (32-bit)
1065 input32_sgn = [exts(x.value, 32) < 0 for x in inputs]
1066 output32_sgn = exts(output.value, 32) < 0
1067 ov32 = 1 if input32_sgn[0] == input32_sgn[1] and \
1068 output32_sgn != input32_sgn[0] else 0
1069
1070 self.spr['XER'][XER_bits['OV']] = ov
1071 self.spr['XER'][XER_bits['OV32']] = ov32
1072 so = self.spr['XER'][XER_bits['SO']]
1073 so = so | ov
1074 self.spr['XER'][XER_bits['SO']] = so
1075
1076 def handle_comparison(self, outputs, cr_idx=0):
1077 out = outputs[0]
1078 assert isinstance(out, SelectableInt), \
1079 "out zero not a SelectableInt %s" % repr(outputs)
1080 print("handle_comparison", out.bits, hex(out.value))
1081 # TODO - XXX *processor* in 32-bit mode
1082 # https://bugs.libre-soc.org/show_bug.cgi?id=424
1083 # if is_32bit:
1084 # o32 = exts(out.value, 32)
1085 # print ("handle_comparison exts 32 bit", hex(o32))
1086 out = exts(out.value, out.bits)
1087 print("handle_comparison exts", hex(out))
1088 zero = SelectableInt(out == 0, 1)
1089 positive = SelectableInt(out > 0, 1)
1090 negative = SelectableInt(out < 0, 1)
1091 SO = self.spr['XER'][XER_bits['SO']]
1092 print("handle_comparison SO", SO)
1093 cr_field = selectconcat(negative, positive, zero, SO)
1094 self.crl[cr_idx].eq(cr_field)
1095
1096 def set_pc(self, pc_val):
1097 self.namespace['NIA'] = SelectableInt(pc_val, 64)
1098 self.pc.update(self.namespace, self.is_svp64_mode)
1099
1100 def setup_one(self):
1101 """set up one instruction
1102 """
1103 if self.respect_pc:
1104 pc = self.pc.CIA.value
1105 else:
1106 pc = self.fake_pc
1107 self._pc = pc
1108 ins = self.imem.ld(pc, 4, False, True)
1109 if ins is None:
1110 raise KeyError("no instruction at 0x%x" % pc)
1111 print("setup: 0x%x 0x%x %s" % (pc, ins & 0xffffffff, bin(ins)))
1112 print("CIA NIA", self.respect_pc, self.pc.CIA.value, self.pc.NIA.value)
1113
1114 yield self.dec2.sv_rm.eq(0)
1115 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff)
1116 yield self.dec2.dec.bigendian.eq(self.bigendian)
1117 yield self.dec2.state.msr.eq(self.msr.value)
1118 yield self.dec2.state.pc.eq(pc)
1119 yield self.dec2.state.svstate.eq(self.svstate.spr.value)
1120
1121 # SVP64. first, check if the opcode is EXT001, and SVP64 id bits set
1122 yield Settle()
1123 opcode = yield self.dec2.dec.opcode_in
1124 pfx = SVP64PrefixFields() # TODO should probably use SVP64PrefixDecoder
1125 pfx.insn.value = opcode
1126 major = pfx.major.asint(msb0=True) # MSB0 inversion
1127 print ("prefix test: opcode:", major, bin(major),
1128 pfx.insn[7] == 0b1, pfx.insn[9] == 0b1)
1129 self.is_svp64_mode = ((major == 0b000001) and
1130 pfx.insn[7].value == 0b1 and
1131 pfx.insn[9].value == 0b1)
1132 self.pc.update_nia(self.is_svp64_mode)
1133 if not self.is_svp64_mode:
1134 return
1135
1136 # in SVP64 mode. decode/print out svp64 prefix, get v3.0B instruction
1137 print ("svp64.rm", bin(pfx.rm.asint(msb0=True)))
1138 print (" svstate.vl", self.svstate.vl.asint(msb0=True))
1139 print (" svstate.mvl", self.svstate.maxvl.asint(msb0=True))
1140 sv_rm = pfx.rm.asint(msb0=True)
1141 ins = self.imem.ld(pc+4, 4, False, True)
1142 print(" svsetup: 0x%x 0x%x %s" % (pc+4, ins & 0xffffffff, bin(ins)))
1143 yield self.dec2.dec.raw_opcode_in.eq(ins & 0xffffffff) # v3.0B suffix
1144 yield self.dec2.sv_rm.eq(sv_rm) # svp64 prefix
1145 yield Settle()
1146
1147 def execute_one(self):
1148 """execute one instruction
1149 """
1150 # get the disassembly code for this instruction
1151 if self.is_svp64_mode:
1152 code = self.disassembly[self._pc+4]
1153 print(" svp64 sim-execute", hex(self._pc), code)
1154 else:
1155 code = self.disassembly[self._pc]
1156 print("sim-execute", hex(self._pc), code)
1157 opname = code.split(' ')[0]
1158 yield from self.call(opname)
1159
1160 # don't use this except in special circumstances
1161 if not self.respect_pc:
1162 self.fake_pc += 4
1163
1164 print("execute one, CIA NIA", self.pc.CIA.value, self.pc.NIA.value)
1165
1166 def get_assembly_name(self):
1167 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
1168 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
1169 dec_insn = yield self.dec2.e.do.insn
1170 asmcode = yield self.dec2.dec.op.asmcode
1171 print("get assembly name asmcode", asmcode, hex(dec_insn))
1172 asmop = insns.get(asmcode, None)
1173 int_op = yield self.dec2.dec.op.internal_op
1174
1175 # sigh reconstruct the assembly instruction name
1176 if hasattr(self.dec2.e.do, "oe"):
1177 ov_en = yield self.dec2.e.do.oe.oe
1178 ov_ok = yield self.dec2.e.do.oe.ok
1179 else:
1180 ov_en = False
1181 ov_ok = False
1182 if hasattr(self.dec2.e.do, "rc"):
1183 rc_en = yield self.dec2.e.do.rc.rc
1184 rc_ok = yield self.dec2.e.do.rc.ok
1185 else:
1186 rc_en = False
1187 rc_ok = False
1188 # grrrr have to special-case MUL op (see DecodeOE)
1189 print("ov %d en %d rc %d en %d op %d" %
1190 (ov_ok, ov_en, rc_ok, rc_en, int_op))
1191 if int_op in [MicrOp.OP_MUL_H64.value, MicrOp.OP_MUL_H32.value]:
1192 print("mul op")
1193 if rc_en & rc_ok:
1194 asmop += "."
1195 else:
1196 if not asmop.endswith("."): # don't add "." to "andis."
1197 if rc_en & rc_ok:
1198 asmop += "."
1199 if hasattr(self.dec2.e.do, "lk"):
1200 lk = yield self.dec2.e.do.lk
1201 if lk:
1202 asmop += "l"
1203 print("int_op", int_op)
1204 if int_op in [MicrOp.OP_B.value, MicrOp.OP_BC.value]:
1205 AA = yield self.dec2.dec.fields.FormI.AA[0:-1]
1206 print("AA", AA)
1207 if AA:
1208 asmop += "a"
1209 spr_msb = yield from self.get_spr_msb()
1210 if int_op == MicrOp.OP_MFCR.value:
1211 if spr_msb:
1212 asmop = 'mfocrf'
1213 else:
1214 asmop = 'mfcr'
1215 # XXX TODO: for whatever weird reason this doesn't work
1216 # https://bugs.libre-soc.org/show_bug.cgi?id=390
1217 if int_op == MicrOp.OP_MTCRF.value:
1218 if spr_msb:
1219 asmop = 'mtocrf'
1220 else:
1221 asmop = 'mtcrf'
1222 return asmop
1223
1224 def get_spr_msb(self):
1225 dec_insn = yield self.dec2.e.do.insn
1226 return dec_insn & (1 << 20) != 0 # sigh - XFF.spr[-1]?
1227
1228 def call(self, name):
1229 """call(opcode) - the primary execution point for instructions
1230 """
1231 name = name.strip() # remove spaces if not already done so
1232 if self.halted:
1233 print("halted - not executing", name)
1234 return
1235
1236 # TODO, asmregs is from the spec, e.g. add RT,RA,RB
1237 # see http://bugs.libre-riscv.org/show_bug.cgi?id=282
1238 asmop = yield from self.get_assembly_name()
1239 print("call", name, asmop)
1240
1241 # check privileged
1242 int_op = yield self.dec2.dec.op.internal_op
1243 spr_msb = yield from self.get_spr_msb()
1244
1245 instr_is_privileged = False
1246 if int_op in [MicrOp.OP_ATTN.value,
1247 MicrOp.OP_MFMSR.value,
1248 MicrOp.OP_MTMSR.value,
1249 MicrOp.OP_MTMSRD.value,
1250 # TODO: OP_TLBIE
1251 MicrOp.OP_RFID.value]:
1252 instr_is_privileged = True
1253 if int_op in [MicrOp.OP_MFSPR.value,
1254 MicrOp.OP_MTSPR.value] and spr_msb:
1255 instr_is_privileged = True
1256
1257 print("is priv", instr_is_privileged, hex(self.msr.value),
1258 self.msr[MSRb.PR])
1259 # check MSR priv bit and whether op is privileged: if so, throw trap
1260 if instr_is_privileged and self.msr[MSRb.PR] == 1:
1261 self.TRAP(0x700, PIb.PRIV)
1262 self.namespace['NIA'] = self.trap_nia
1263 self.pc.update(self.namespace, self.is_svp64_mode)
1264 return
1265
1266 # check halted condition
1267 if name == 'attn':
1268 self.halted = True
1269 return
1270
1271 # check illegal instruction
1272 illegal = False
1273 if name not in ['mtcrf', 'mtocrf']:
1274 illegal = name != asmop
1275
1276 if illegal:
1277 print("illegal", name, asmop)
1278 self.TRAP(0x700, PIb.ILLEG)
1279 self.namespace['NIA'] = self.trap_nia
1280 self.pc.update(self.namespace, self.is_svp64_mode)
1281 print("name %s != %s - calling ILLEGAL trap, PC: %x" %
1282 (name, asmop, self.pc.CIA.value))
1283 return
1284
1285 info = self.instrs[name]
1286 yield from self.prep_namespace(info.form, info.op_fields)
1287
1288 # preserve order of register names
1289 input_names = create_args(list(info.read_regs) +
1290 list(info.uninit_regs))
1291 print(input_names)
1292
1293 # get SVP64 entry for the current instruction
1294 sv_rm = self.svp64rm.instrs.get(name)
1295 if sv_rm is not None:
1296 dest_cr, src_cr, src_byname, dest_byname = decode_extra(sv_rm)
1297 else:
1298 dest_cr, src_cr, src_byname, dest_byname = False, False, {}, {}
1299 print ("sv rm", sv_rm, dest_cr, src_cr, src_byname, dest_byname)
1300
1301 # get SVSTATE srcstep. TODO: dststep (twin predication)
1302 srcstep = self.svstate.srcstep.asint(msb0=True)
1303 vl = self.svstate.vl.asint(msb0=True)
1304 mvl = self.svstate.maxvl.asint(msb0=True)
1305
1306 # VL=0 in SVP64 mode means "do nothing: skip instruction"
1307 if self.is_svp64_mode and vl == 0:
1308 self.pc.update(self.namespace, self.is_svp64_mode)
1309 print("end of call", self.namespace['CIA'], self.namespace['NIA'])
1310 return
1311
1312 # main input registers (RT, RA ...)
1313 inputs = []
1314 for name in input_names:
1315 # using PowerDecoder2, first, find the decoder index.
1316 # (mapping name RA RB RC RS to in1, in2, in3)
1317 regnum, is_vec = yield from get_pdecode_idx_in(self.dec2, name)
1318 if regnum is None:
1319 # doing this is not part of svp64, it's because output
1320 # registers, to be modified, need to be in the namespace.
1321 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2, name)
1322 # here's where we go "vector". TODO: zero-testing (RA_IS_ZERO)
1323 # XXX already done by PowerDecoder2, now
1324 #if is_vec:
1325 # regnum += srcstep # TODO, elwidth overrides
1326
1327 # in case getting the register number is needed, _RA, _RB
1328 regname = "_" + name
1329 self.namespace[regname] = regnum
1330 print('reading reg %s %d' % (name, regnum), is_vec)
1331 reg_val = self.gpr(regnum)
1332 inputs.append(reg_val)
1333
1334 # "special" registers
1335 for special in info.special_regs:
1336 if special in special_sprs:
1337 inputs.append(self.spr[special])
1338 else:
1339 inputs.append(self.namespace[special])
1340
1341 # clear trap (trap) NIA
1342 self.trap_nia = None
1343
1344 print("inputs", inputs)
1345 results = info.func(self, *inputs)
1346 print("results", results)
1347
1348 # "inject" decorator takes namespace from function locals: we need to
1349 # overwrite NIA being overwritten (sigh)
1350 if self.trap_nia is not None:
1351 self.namespace['NIA'] = self.trap_nia
1352
1353 print("after func", self.namespace['CIA'], self.namespace['NIA'])
1354
1355 # detect if CA/CA32 already in outputs (sra*, basically)
1356 already_done = 0
1357 if info.write_regs:
1358 output_names = create_args(info.write_regs)
1359 for name in output_names:
1360 if name == 'CA':
1361 already_done |= 1
1362 if name == 'CA32':
1363 already_done |= 2
1364
1365 print("carry already done?", bin(already_done))
1366 if hasattr(self.dec2.e.do, "output_carry"):
1367 carry_en = yield self.dec2.e.do.output_carry
1368 else:
1369 carry_en = False
1370 if carry_en:
1371 yield from self.handle_carry_(inputs, results, already_done)
1372
1373 # detect if overflow was in return result
1374 overflow = None
1375 if info.write_regs:
1376 for name, output in zip(output_names, results):
1377 if name == 'overflow':
1378 overflow = output
1379
1380 if hasattr(self.dec2.e.do, "oe"):
1381 ov_en = yield self.dec2.e.do.oe.oe
1382 ov_ok = yield self.dec2.e.do.oe.ok
1383 else:
1384 ov_en = False
1385 ov_ok = False
1386 print("internal overflow", overflow, ov_en, ov_ok)
1387 if ov_en & ov_ok:
1388 yield from self.handle_overflow(inputs, results, overflow)
1389
1390 if hasattr(self.dec2.e.do, "rc"):
1391 rc_en = yield self.dec2.e.do.rc.rc
1392 else:
1393 rc_en = False
1394 if rc_en:
1395 regnum, is_vec = yield from get_pdecode_cr_out(self.dec2, "CR0")
1396 self.handle_comparison(results, regnum)
1397
1398 # any modified return results?
1399 if info.write_regs:
1400 for name, output in zip(output_names, results):
1401 if name == 'overflow': # ignore, done already (above)
1402 continue
1403 if isinstance(output, int):
1404 output = SelectableInt(output, 256)
1405 if name in ['CA', 'CA32']:
1406 if carry_en:
1407 print("writing %s to XER" % name, output)
1408 self.spr['XER'][XER_bits[name]] = output.value
1409 else:
1410 print("NOT writing %s to XER" % name, output)
1411 elif name in info.special_regs:
1412 print('writing special %s' % name, output, special_sprs)
1413 if name in special_sprs:
1414 self.spr[name] = output
1415 else:
1416 self.namespace[name].eq(output)
1417 if name == 'MSR':
1418 print('msr written', hex(self.msr.value))
1419 else:
1420 regnum, is_vec = yield from get_pdecode_idx_out(self.dec2,
1421 name)
1422 if regnum is None:
1423 # temporary hack for not having 2nd output
1424 regnum = yield getattr(self.decoder, name)
1425 is_vec = False
1426 print('writing reg %d %s' % (regnum, str(output)), is_vec)
1427 if output.bits > 64:
1428 output = SelectableInt(output.value, 64)
1429 self.gpr[regnum] = output
1430
1431 # check if it is the SVSTATE.src/dest step that needs incrementing
1432 # this is our Sub-Program-Counter loop from 0 to VL-1
1433 if self.is_svp64_mode:
1434 # XXX twin predication TODO
1435 vl = self.svstate.vl.asint(msb0=True)
1436 mvl = self.svstate.maxvl.asint(msb0=True)
1437 srcstep = self.svstate.srcstep.asint(msb0=True)
1438 print (" svstate.vl", vl)
1439 print (" svstate.mvl", mvl)
1440 print (" svstate.srcstep", srcstep)
1441 # check if srcstep needs incrementing by one, stop PC advancing
1442 # svp64 loop can end early if the dest is scalar
1443 svp64_dest_vector = not (yield self.dec2.no_out_vec)
1444 if svp64_dest_vector and srcstep != vl-1:
1445 self.svstate.srcstep += SelectableInt(1, 7)
1446 self.pc.NIA.value = self.pc.CIA.value
1447 self.namespace['NIA'] = self.pc.NIA
1448 print("end of sub-pc call", self.namespace['CIA'],
1449 self.namespace['NIA'])
1450 return # DO NOT allow PC to update whilst Sub-PC loop running
1451 # reset to zero
1452 self.svstate.srcstep[0:7] = 0
1453 print (" svstate.srcstep loop end (PC to update)")
1454 self.pc.update_nia(self.is_svp64_mode)
1455 self.namespace['NIA'] = self.pc.NIA
1456
1457 # UPDATE program counter
1458 self.pc.update(self.namespace, self.is_svp64_mode)
1459 print("end of call", self.namespace['CIA'], self.namespace['NIA'])
1460
1461
1462 def inject():
1463 """Decorator factory.
1464
1465 this decorator will "inject" variables into the function's namespace,
1466 from the *dictionary* in self.namespace. it therefore becomes possible
1467 to make it look like a whole stack of variables which would otherwise
1468 need "self." inserted in front of them (*and* for those variables to be
1469 added to the instance) "appear" in the function.
1470
1471 "self.namespace['SI']" for example becomes accessible as just "SI" but
1472 *only* inside the function, when decorated.
1473 """
1474 def variable_injector(func):
1475 @wraps(func)
1476 def decorator(*args, **kwargs):
1477 try:
1478 func_globals = func.__globals__ # Python 2.6+
1479 except AttributeError:
1480 func_globals = func.func_globals # Earlier versions.
1481
1482 context = args[0].namespace # variables to be injected
1483 saved_values = func_globals.copy() # Shallow copy of dict.
1484 func_globals.update(context)
1485 result = func(*args, **kwargs)
1486 print("globals after", func_globals['CIA'], func_globals['NIA'])
1487 print("args[0]", args[0].namespace['CIA'],
1488 args[0].namespace['NIA'])
1489 args[0].namespace = func_globals
1490 #exec (func.__code__, func_globals)
1491
1492 # finally:
1493 # func_globals = saved_values # Undo changes.
1494
1495 return result
1496
1497 return decorator
1498
1499 return variable_injector
1500
1501
1502 # very quick test of maskgen function (TODO, move to util later)
1503 if __name__ == '__main__':
1504 shift = SelectableInt(5, 6)
1505 mask = genmask(shift, 43)
1506 print (" mask", bin(mask.value))
1507
1508 mem = Mem(row_bytes=8)
1509 mem = RADIX(mem, None)
1510 # -----------------------------------------------
1511 # |/|RTS1|/| RPDB | RTS2 | RPDS |
1512 # -----------------------------------------------
1513 # |0|1 2|3|4 55|56 58|59 63|
1514 data = SelectableInt(0, 64)
1515 data[1:3] = 0b01
1516 data[56:59] = 0b11
1517 data[59:64] = 0b01101 # mask
1518 data[55] = 1
1519 (rts, mbits, pgbase) = mem._decode_prte(data)
1520 print (" rts", bin(rts.value), rts.bits)
1521 print (" mbits", bin(mbits.value), mbits.bits)
1522 print (" pgbase", hex(pgbase.value), pgbase.bits)
1523 addr = SelectableInt(0x1000, 64)
1524 check = mem._segment_check(addr, mbits, shift)
1525 print (" segment check", check)