initial commit
[glibc.git] / sysdeps / ia64 / fpu / e_pow.S
1 .file "pow.s"
2
3
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 //
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 //
15 // * Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the distribution.
18 //
19 // * The name of Intel Corporation may not be used to endorse or promote
20 // products derived from this software without specific prior written
21 // permission.
22
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 //
35 // Intel Corporation is the author of this code, and requests that all
36 // problem reports or change requests be submitted to it directly at
37 // http://www.intel.com/software/products/opensource/libraries/num.htm.
38 //
39 // History
40 //==============================================================
41 // 02/02/00 Initial version
42 // 02/03/00 Added p12 to definite over/under path. With odd power we did not
43 // maintain the sign of x in this path.
44 // 04/04/00 Unwind support added
45 // 04/19/00 pow(+-1,inf) now returns NaN
46 // pow(+-val, +-inf) returns 0 or inf, but now does not call error
47 // support
48 // Added s1 to fcvt.fx because invalid flag was incorrectly set.
49 // 08/15/00 Bundle added after call to __libm_error_support to properly
50 // set [the previously overwritten] GR_Parameter_RESULT.
51 // 09/07/00 Improved performance by eliminating bank conflicts and other stalls,
52 // and tweaking the critical path
53 // 09/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
54 // 09/28/00 Updated NaN**0 path
55 // 01/20/01 Fixed denormal flag settings.
56 // 02/13/01 Improved speed.
57 // 03/19/01 Reordered exp polynomial to improve speed and eliminate monotonicity
58 // problem in round up, down, and to zero modes. Also corrected
59 // overflow result when x negative, y odd in round up, down, zero.
60 // 06/14/01 Added brace missing from bundle
61 // 12/10/01 Corrected case where x negative, 2^52 <= |y| < 2^53, y odd integer.
62 // 12/20/01 Fixed monotonity problem in round to nearest.
63 // 02/08/02 Fixed overflow/underflow cases that were not calling error support.
64 // 05/20/02 Cleaned up namespace and sf0 syntax
65 // 08/29/02 Improved Itanium 2 performance
66 // 09/21/02 Added branch for |y*log(x)|<2^-11 to fix monotonicity problems.
67 // 02/10/03 Reordered header: .section, .global, .proc, .align
68 // 03/31/05 Reformatted delimiters between data tables
69 //
70 // API
71 //==============================================================
72 // double pow(double x, double y)
73 //
74 // Overview of operation
75 //==============================================================
76 //
77 // Three steps...
78 // 1. Log(x)
79 // 2. y Log(x)
80 // 3. exp(y log(x))
81 //
82 // This means we work with the absolute value of x and merge in the sign later.
83 // Log(x) = G + delta + r -rsq/2 + p
84 // G,delta depend on the exponent of x and table entries. The table entries are
85 // indexed by the exponent of x, called K.
86 //
87 // The G and delta come out of the reduction; r is the reduced x.
88 //
89 // B = frcpa(x)
90 // xB-1 is small means that B is the approximate inverse of x.
91 //
92 // Log(x) = Log( (1/B)(Bx) )
93 // = Log(1/B) + Log(Bx)
94 // = Log(1/B) + Log( 1 + (Bx-1))
95 //
96 // x = 2^K 1.x_1x_2.....x_52
97 // B= frcpa(x) = 2^-k Cm
98 // Log(1/B) = Log(1/(2^-K Cm))
99 // Log(1/B) = Log((2^K/ Cm))
100 // Log(1/B) = K Log(2) + Log(1/Cm)
101 //
102 // Log(x) = K Log(2) + Log(1/Cm) + Log( 1 + (Bx-1))
103 //
104 // If you take the significand of x, set the exponent to true 0, then Cm is
105 // the frcpa. We tabulate the Log(1/Cm) values. There are 256 of them.
106 // The frcpa table is indexed by 8 bits, the x_1 thru x_8.
107 // m = x_1x_2...x_8 is an 8-bit index.
108 //
109 // Log(1/Cm) = log(1/frcpa(1+m/256)) where m goes from 0 to 255.
110 //
111 // We tabluate as two doubles, T and t, where T +t is the value itself.
112 //
113 // Log(x) = (K Log(2)_hi + T) + (Log(2)_hi + t) + Log( 1 + (Bx-1))
114 // Log(x) = G + delta + Log( 1 + (Bx-1))
115 //
116 // The Log( 1 + (Bx-1)) can be calculated as a series in r = Bx-1.
117 //
118 // Log( 1 + (Bx-1)) = r - rsq/2 + p
119 //
120 // Then,
121 //
122 // yLog(x) = yG + y delta + y(r-rsq/2) + yp
123 // yLog(x) = Z1 + e3 + Z2 + Z3 + (e2 + e3)
124 //
125 //
126 // exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3)
127 //
128 //
129 // exp(Z3) is another series.
130 // exp(e1 + e2 + e3) is approximated as f3 = 1 + (e1 + e2 + e3)
131 //
132 // Z1 (128/log2) = number of log2/128 in Z1 is N1
133 // Z2 (128/log2) = number of log2/128 in Z2 is N2
134 //
135 // s1 = Z1 - N1 log2/128
136 // s2 = Z2 - N2 log2/128
137 //
138 // s = s1 + s2
139 // N = N1 + N2
140 //
141 // exp(Z1 + Z2) = exp(Z)
142 // exp(Z) = exp(s) exp(N log2/128)
143 //
144 // exp(r) = exp(Z - N log2/128)
145 //
146 // r = s + d = (Z - N (log2/128)_hi) -N (log2/128)_lo
147 // = Z - N (log2/128)
148 //
149 // Z = s+d +N (log2/128)
150 //
151 // exp(Z) = exp(s) (1+d) exp(N log2/128)
152 //
153 // N = M 128 + n
154 //
155 // N log2/128 = M log2 + n log2/128
156 //
157 // n is 8 binary digits = n_7n_6...n_1
158 //
159 // n log2/128 = n_7n_6n_5 16 log2/128 + n_4n_3n_2n_1 log2/128
160 // n log2/128 = n_7n_6n_5 log2/8 + n_4n_3n_2n_1 log2/128
161 // n log2/128 = I2 log2/8 + I1 log2/128
162 //
163 // N log2/128 = M log2 + I2 log2/8 + I1 log2/128
164 //
165 // exp(Z) = exp(s) (1+d) exp(log(2^M) + log(2^I2/8) + log(2^I1/128))
166 // exp(Z) = exp(s) (1+d1) (1+d2)(2^M) 2^I2/8 2^I1/128
167 // exp(Z) = exp(s) f1 f2 (2^M) 2^I2/8 2^I1/128
168 //
169 // I1, I2 are table indices. Use a series for exp(s).
170 // Then get exp(Z)
171 //
172 // exp(yLog(x)) = exp(Z1 + Z2 + Z3) exp(e1 + e2 + e3)
173 // exp(yLog(x)) = exp(Z) exp(Z3) f3
174 // exp(yLog(x)) = exp(Z)f3 exp(Z3)
175 // exp(yLog(x)) = A exp(Z3)
176 //
177 // We actually calculate exp(Z3) -1.
178 // Then,
179 // exp(yLog(x)) = A + A( exp(Z3) -1)
180 //
181
182 // Table Generation
183 //==============================================================
184
185 // The log values
186 // ==============
187 // The operation (K*log2_hi) must be exact. K is the true exponent of x.
188 // If we allow gradual underflow (denormals), K can be represented in 12 bits
189 // (as a two's complement number). We assume 13 bits as an engineering
190 // precaution.
191 //
192 // +------------+----------------+-+
193 // | 13 bits | 50 bits | |
194 // +------------+----------------+-+
195 // 0 1 66
196 // 2 34
197 //
198 // So we want the lsb(log2_hi) to be 2^-50
199 // We get log2 as a quad-extended (15-bit exponent, 128-bit significand)
200 //
201 // 0 fffe b17217f7d1cf79ab c9e3b39803f2f6af (4...)
202 //
203 // Consider numbering the bits left to right, starting at 0 thru 127.
204 // Bit 0 is the 2^-1 bit; bit 49 is the 2^-50 bit.
205 //
206 // ...79ab
207 // 0111 1001 1010 1011
208 // 44
209 // 89
210 //
211 // So if we shift off the rightmost 14 bits, then (shift back only
212 // the top half) we get
213 //
214 // 0 fffe b17217f7d1cf4000 e6af278ece600fcb dabc000000000000
215 //
216 // Put the right 64-bit signficand in an FR register, convert to double;
217 // it is exact. Put the next 128 bits into a quad register and round to double.
218 // The true exponent of the low part is -51.
219 //
220 // hi is 0 fffe b17217f7d1cf4000
221 // lo is 0 ffcc e6af278ece601000
222 //
223 // Convert to double memory format and get
224 //
225 // hi is 0x3fe62e42fefa39e8
226 // lo is 0x3cccd5e4f1d9cc02
227 //
228 // log2_hi + log2_lo is an accurate value for log2.
229 //
230 //
231 // The T and t values
232 // ==================
233 // A similar method is used to generate the T and t values.
234 //
235 // K * log2_hi + T must be exact.
236 //
237 // Smallest T,t
238 // ----------
239 // The smallest T,t is
240 // T t
241 // 0x3f60040155d58800, 0x3c93bce0ce3ddd81 log(1/frcpa(1+0/256))= +1.95503e-003
242 //
243 // The exponent is 0x3f6 (biased) or -9 (true).
244 // For the smallest T value, what we want is to clip the significand such that
245 // when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the
246 // specific for the first entry. In general, it is 0xffff - (biased 15-bit
247 // exponent).
248
249 // Independently, what we have calculated is the table value as a quad
250 // precision number.
251 // Table entry 1 is
252 // 0 fff6 80200aaeac44ef38 338f77605fdf8000
253 //
254 // We store this quad precision number in a data structure that is
255 // sign: 1
256 // exponent: 15
257 // signficand_hi: 64 (includes explicit bit)
258 // signficand_lo: 49
259 // Because the explicit bit is included, the significand is 113 bits.
260 //
261 // Consider significand_hi for table entry 1.
262 //
263 //
264 // +-+--- ... -------+--------------------+
265 // | |
266 // +-+--- ... -------+--------------------+
267 // 0 1 4444444455555555556666
268 // 2345678901234567890123
269 //
270 // Labeled as above, bit 0 is 2^0, bit 1 is 2^-1, etc.
271 // Bit 42 is 2^-42. If we shift to the right by 9, the bit in
272 // bit 42 goes in 51.
273 //
274 // So what we want to do is shift bits 43 thru 63 into significand_lo.
275 // This is shifting bit 42 into bit 63, taking care to retain shifted-off bits.
276 // Then shifting (just with signficaand_hi) back into bit 42.
277 //
278 // The shift_value is 63-42 = 21. In general, this is
279 // 63 - (51 -(0xffff - 0xfff6))
280 // For this example, it is
281 // 63 - (51 - 9) = 63 - 42 = 21
282 //
283 // This means we are shifting 21 bits into significand_lo. We must maintain more
284 // that a 128-bit signficand not to lose bits. So before the shift we put the
285 // 128-bit significand into a 256-bit signficand and then shift.
286 // The 256-bit significand has four parts: hh, hl, lh, and ll.
287 //
288 // Start off with
289 // hh hl lh ll
290 // <64> <49><15_0> <64_0> <64_0>
291 //
292 // After shift by 21 (then return for significand_hi),
293 // <43><21_0> <21><43> <6><58_0> <64_0>
294 //
295 // Take the hh part and convert to a double. There is no rounding here.
296 // The conversion is exact. The true exponent of the high part is the same as
297 // the true exponent of the input quad.
298 //
299 // We have some 64 plus significand bits for the low part. In this example, we
300 // have 70 bits. We want to round this to a double. Put them in a quad and then
301 // do a quad fnorm.
302 // For this example the true exponent of the low part is
303 // true_exponent_of_high - 43 = true_exponent_of_high - (64-21)
304 // In general, this is
305 // true_exponent_of_high - (64 - shift_value)
306 //
307 //
308 // Largest T,t
309 // ----------
310 // The largest T,t is
311 // 0x3fe62643fecf9742, 0x3c9e3147684bd37d log(1/frcpa(1+255/256))=+6.92171e-001
312 //
313 // Table entry 256 is
314 // 0 fffe b1321ff67cba178c 51da12f4df5a0000
315 //
316 // The shift value is
317 // 63 - (51 -(0xffff - 0xfffe)) = 13
318 //
319 // The true exponent of the low part is
320 // true_exponent_of_high - (64 - shift_value)
321 // -1 - (64-13) = -52
322 // Biased as a double, this is 0x3cb
323 //
324 //
325 //
326 // So then lsb(T) must be >= 2^-51
327 // msb(Klog2_hi) <= 2^12
328 //
329 // +--------+---------+
330 // | 51 bits | <== largest T
331 // +--------+---------+
332 // | 9 bits | 42 bits | <== smallest T
333 // +------------+----------------+-+
334 // | 13 bits | 50 bits | |
335 // +------------+----------------+-+
336
337
338 // Special Cases
339 //==============================================================
340
341 // double float
342 // overflow error 24 30
343
344 // underflow error 25 31
345
346 // X zero Y zero
347 // +0 +0 +1 error 26 32
348 // -0 +0 +1 error 26 32
349 // +0 -0 +1 error 26 32
350 // -0 -0 +1 error 26 32
351
352 // X zero Y negative
353 // +0 -odd integer +inf error 27 33 divide-by-zero
354 // -0 -odd integer -inf error 27 33 divide-by-zero
355 // +0 !-odd integer +inf error 27 33 divide-by-zero
356 // -0 !-odd integer +inf error 27 33 divide-by-zero
357 // +0 -inf +inf error 27 33 divide-by-zero
358 // -0 -inf +inf error 27 33 divide-by-zero
359
360 // X zero Y positve
361 // +0 +odd integer +0
362 // -0 +odd integer -0
363 // +0 !+odd integer +0
364 // -0 !+odd integer +0
365 // +0 +inf +0
366 // -0 +inf +0
367 // +0 Y NaN quiet Y invalid if Y SNaN
368 // -0 Y NaN quiet Y invalid if Y SNaN
369
370 // X one
371 // -1 Y inf +1
372 // -1 Y NaN quiet Y invalid if Y SNaN
373 // +1 Y NaN +1 invalid if Y SNaN
374 // +1 Y any else +1
375
376 // X - Y not integer QNAN error 28 34 invalid
377
378 // X NaN Y 0 +1 error 29 35
379 // X NaN Y NaN quiet X invalid if X or Y SNaN
380 // X NaN Y any else quiet X invalid if X SNaN
381 // X !+1 Y NaN quiet Y invalid if Y SNaN
382
383
384 // X +inf Y >0 +inf
385 // X -inf Y >0, !odd integer +inf
386 // X -inf Y >0, odd integer -inf
387
388 // X +inf Y <0 +0
389 // X -inf Y <0, !odd integer +0
390 // X -inf Y <0, odd integer -0
391
392 // X +inf Y =0 +1
393 // X -inf Y =0 +1
394
395 // |X|<1 Y +inf +0
396 // |X|<1 Y -inf +inf
397 // |X|>1 Y +inf +inf
398 // |X|>1 Y -inf +0
399
400 // X any Y =0 +1
401
402 // Assembly macros
403 //==============================================================
404
405 // integer registers used
406
407 pow_GR_signexp_X = r14
408 pow_GR_17ones = r15
409 pow_AD_P = r16
410 pow_GR_exp_2tom8 = r17
411 pow_GR_sig_X = r18
412 pow_GR_10033 = r19
413 pow_GR_16ones = r20
414
415 pow_AD_Tt = r21
416 pow_GR_exp_X = r22
417 pow_AD_Q = r23
418 pow_GR_true_exp_X = r24
419 pow_GR_y_zero = r25
420
421 pow_GR_exp_Y = r26
422 pow_AD_tbl1 = r27
423 pow_AD_tbl2 = r28
424 pow_GR_offset = r29
425 pow_GR_exp_Xm1 = r30
426 pow_GR_xneg_yodd = r31
427
428 pow_GR_signexp_Xm1 = r35
429 pow_GR_int_W1 = r36
430 pow_GR_int_W2 = r37
431 pow_GR_int_N = r38
432 pow_GR_index1 = r39
433 pow_GR_index2 = r40
434
435 pow_AD_T1 = r41
436 pow_AD_T2 = r42
437 pow_int_GR_M = r43
438 pow_GR_sig_int_Y = r44
439 pow_GR_sign_Y_Gpr = r45
440
441 pow_GR_17ones_m1 = r46
442 pow_GR_one = r47
443 pow_GR_sign_Y = r48
444 pow_GR_signexp_Y_Gpr = r49
445 pow_GR_exp_Y_Gpr = r50
446
447 pow_GR_true_exp_Y_Gpr = r51
448 pow_GR_signexp_Y = r52
449 pow_GR_x_one = r53
450 pow_GR_exp_2toM63 = r54
451 pow_GR_big_pos = r55
452
453 pow_GR_big_neg = r56
454
455 GR_SAVE_B0 = r50
456 GR_SAVE_GP = r51
457 GR_SAVE_PFS = r52
458
459 GR_Parameter_X = r53
460 GR_Parameter_Y = r54
461 GR_Parameter_RESULT = r55
462 pow_GR_tag = r56
463
464
465 // floating point registers used
466
467 POW_B = f32
468 POW_NORM_X = f33
469 POW_Xm1 = f34
470 POW_r1 = f34
471 POW_P4 = f35
472
473 POW_P5 = f36
474 POW_NORM_Y = f37
475 POW_Q2 = f38
476 POW_Q3 = f39
477 POW_P2 = f40
478
479 POW_P3 = f41
480 POW_P0 = f42
481 POW_log2_lo = f43
482 POW_r = f44
483 POW_Q0_half = f45
484
485 POW_Q1 = f46
486 POW_tmp = f47
487 POW_log2_hi = f48
488 POW_Q4 = f49
489 POW_P1 = f50
490
491 POW_log2_by_128_hi = f51
492 POW_inv_log2_by_128 = f52
493 POW_rsq = f53
494 POW_Yrcub = f54
495 POW_log2_by_128_lo = f55
496
497 POW_v6 = f56
498 POW_xsq = f57
499 POW_v4 = f58
500 POW_v2 = f59
501 POW_T = f60
502
503 POW_Tt = f61
504 POW_RSHF = f62
505 POW_v21ps = f63
506 POW_s4 = f64
507 POW_twoV = f65
508
509 POW_U = f66
510 POW_G = f67
511 POW_delta = f68
512 POW_v3 = f69
513 POW_V = f70
514
515 POW_p = f71
516 POW_Z1 = f72
517 POW_e3 = f73
518 POW_e2 = f74
519 POW_Z2 = f75
520
521 POW_e1 = f76
522 POW_W1 = f77
523 POW_UmZ2 = f78
524 POW_W2 = f79
525 POW_Z3 = f80
526
527 POW_int_W1 = f81
528 POW_e12 = f82
529 POW_int_W2 = f83
530 POW_UmZ2pV = f84
531 POW_Z3sq = f85
532
533 POW_e123 = f86
534 POW_N1float = f87
535 POW_N2float = f88
536 POW_f3 = f89
537 POW_q = f90
538
539 POW_s1 = f91
540 POW_Nfloat = f92
541 POW_s2 = f93
542 POW_f2 = f94
543 POW_f1 = f95
544
545 POW_T1 = f96
546 POW_T2 = f97
547 POW_2M = f98
548 POW_s = f99
549 POW_f12 = f100
550
551 POW_ssq = f101
552 POW_T1T2 = f102
553 POW_1ps = f103
554 POW_A = f104
555 POW_es = f105
556
557 POW_Xp1 = f106
558 POW_int_K = f107
559 POW_K = f108
560 POW_f123 = f109
561 POW_Gpr = f110
562
563 POW_Y_Gpr = f111
564 POW_int_Y = f112
565 POW_abs_q = f114
566 POW_2toM63 = f115
567
568 POW_float_int_Y = f116
569 POW_ftz_urm_f8 = f117
570 POW_wre_urm_f8 = f118
571 POW_big_neg = f119
572 POW_big_pos = f120
573
574 POW_GY_Z2 = f121
575 POW_pYrcub_e3 = f122
576 POW_d = f123
577 POW_d2 = f124
578 POW_poly_d_hi = f121
579 POW_poly_d_lo = f122
580 POW_poly_d = f121
581
582 // Data tables
583 //==============================================================
584
585 RODATA
586
587 .align 16
588
589 LOCAL_OBJECT_START(pow_table_P)
590 data8 0x8000F7B249FF332D, 0x0000BFFC // P_5
591 data8 0xAAAAAAA9E7902C7F, 0x0000BFFC // P_3
592 data8 0x80000000000018E5, 0x0000BFFD // P_1
593 data8 0xb8aa3b295c17f0bc, 0x00004006 // inv_ln2_by_128
594 //
595 //
596 data8 0x3FA5555555554A9E // Q_2
597 data8 0x3F8111124F4DD9F9 // Q_3
598 data8 0x3FE0000000000000 // Q_0
599 data8 0x3FC5555555554733 // Q_1
600 data8 0x3F56C16D9360FFA0 // Q_4
601 data8 0x43e8000000000000 // Right shift constant for exp
602 data8 0xc9e3b39803f2f6af, 0x00003fb7 // ln2_by_128_lo
603 data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q
604 data8 0x0000000000000000 // pad to eliminate bank conflicts with pow_table_Q
605 LOCAL_OBJECT_END(pow_table_P)
606
607 LOCAL_OBJECT_START(pow_table_Q)
608 data8 0x9249FE7F0DC423CF, 0x00003FFC // P_4
609 data8 0xCCCCCCCC4ED2BA7F, 0x00003FFC // P_2
610 data8 0xAAAAAAAAAAAAB505, 0x00003FFD // P_0
611 data8 0x3fe62e42fefa39e8, 0x3cccd5e4f1d9cc02 // log2 hi lo = +6.93147e-001
612 data8 0xb17217f7d1cf79ab, 0x00003ff7 // ln2_by_128_hi
613 LOCAL_OBJECT_END(pow_table_Q)
614
615
616 LOCAL_OBJECT_START(pow_Tt)
617 data8 0x3f60040155d58800, 0x3c93bce0ce3ddd81 // log(1/frcpa(1+0/256))= +1.95503e-003
618 data8 0x3f78121214586a00, 0x3cb540e0a5cfc9bc // log(1/frcpa(1+1/256))= +5.87661e-003
619 data8 0x3f841929f9683200, 0x3cbdf1d57404da1f // log(1/frcpa(1+2/256))= +9.81362e-003
620 data8 0x3f8c317384c75f00, 0x3c69806208c04c22 // log(1/frcpa(1+3/256))= +1.37662e-002
621 data8 0x3f91a6b91ac73380, 0x3c7874daa716eb32 // log(1/frcpa(1+4/256))= +1.72376e-002
622 data8 0x3f95ba9a5d9ac000, 0x3cacbb84e08d78ac // log(1/frcpa(1+5/256))= +2.12196e-002
623 data8 0x3f99d2a807432580, 0x3cbcf80538b441e1 // log(1/frcpa(1+6/256))= +2.52177e-002
624 data8 0x3f9d6b2725979800, 0x3c6095e5c8f8f359 // log(1/frcpa(1+7/256))= +2.87291e-002
625 data8 0x3fa0c58fa19dfa80, 0x3cb4c5d4e9d0dda2 // log(1/frcpa(1+8/256))= +3.27573e-002
626 data8 0x3fa2954c78cbce00, 0x3caa932b860ab8d6 // log(1/frcpa(1+9/256))= +3.62953e-002
627 data8 0x3fa4a94d2da96c40, 0x3ca670452b76bbd5 // log(1/frcpa(1+10/256))= +4.03542e-002
628 data8 0x3fa67c94f2d4bb40, 0x3ca84104f9941798 // log(1/frcpa(1+11/256))= +4.39192e-002
629 data8 0x3fa85188b630f040, 0x3cb40a882cbf0153 // log(1/frcpa(1+12/256))= +4.74971e-002
630 data8 0x3faa6b8abe73af40, 0x3c988d46e25c9059 // log(1/frcpa(1+13/256))= +5.16017e-002
631 data8 0x3fac441e06f72a80, 0x3cae3e930a1a2a96 // log(1/frcpa(1+14/256))= +5.52072e-002
632 data8 0x3fae1e6713606d00, 0x3c8a796f6283b580 // log(1/frcpa(1+15/256))= +5.88257e-002
633 data8 0x3faffa6911ab9300, 0x3c5193070351e88a // log(1/frcpa(1+16/256))= +6.24574e-002
634 data8 0x3fb0ec139c5da600, 0x3c623f2a75eb992d // log(1/frcpa(1+17/256))= +6.61022e-002
635 data8 0x3fb1dbd2643d1900, 0x3ca649b2ef8927f0 // log(1/frcpa(1+18/256))= +6.97605e-002
636 data8 0x3fb2cc7284fe5f00, 0x3cbc5e86599513e2 // log(1/frcpa(1+19/256))= +7.34321e-002
637 data8 0x3fb3bdf5a7d1ee60, 0x3c90bd4bb69dada3 // log(1/frcpa(1+20/256))= +7.71173e-002
638 data8 0x3fb4b05d7aa012e0, 0x3c54e377c9b8a54f // log(1/frcpa(1+21/256))= +8.08161e-002
639 data8 0x3fb580db7ceb5700, 0x3c7fdb2f98354cde // log(1/frcpa(1+22/256))= +8.39975e-002
640 data8 0x3fb674f089365a60, 0x3cb9994c9d3301c1 // log(1/frcpa(1+23/256))= +8.77219e-002
641 data8 0x3fb769ef2c6b5680, 0x3caaec639db52a79 // log(1/frcpa(1+24/256))= +9.14602e-002
642 data8 0x3fb85fd927506a40, 0x3c9f9f99a3cf8e25 // log(1/frcpa(1+25/256))= +9.52125e-002
643 data8 0x3fb9335e5d594980, 0x3ca15c3abd47d99a // log(1/frcpa(1+26/256))= +9.84401e-002
644 data8 0x3fba2b0220c8e5e0, 0x3cb4ca639adf6fc3 // log(1/frcpa(1+27/256))= +1.02219e-001
645 data8 0x3fbb0004ac1a86a0, 0x3ca7cb81bf959a59 // log(1/frcpa(1+28/256))= +1.05469e-001
646 data8 0x3fbbf968769fca00, 0x3cb0c646c121418e // log(1/frcpa(1+29/256))= +1.09274e-001
647 data8 0x3fbccfedbfee13a0, 0x3ca0465fce24ab4b // log(1/frcpa(1+30/256))= +1.12548e-001
648 data8 0x3fbda727638446a0, 0x3c82803f4e2e6603 // log(1/frcpa(1+31/256))= +1.15832e-001
649 data8 0x3fbea3257fe10f60, 0x3cb986a3f2313d1a // log(1/frcpa(1+32/256))= +1.19677e-001
650 data8 0x3fbf7be9fedbfde0, 0x3c97d16a6a621cf4 // log(1/frcpa(1+33/256))= +1.22985e-001
651 data8 0x3fc02ab352ff25f0, 0x3c9cc6baad365600 // log(1/frcpa(1+34/256))= +1.26303e-001
652 data8 0x3fc097ce579d2040, 0x3cb9ba16d329440b // log(1/frcpa(1+35/256))= +1.29633e-001
653 data8 0x3fc1178e8227e470, 0x3cb7bc671683f8e6 // log(1/frcpa(1+36/256))= +1.33531e-001
654 data8 0x3fc185747dbecf30, 0x3c9d1116f66d2345 // log(1/frcpa(1+37/256))= +1.36885e-001
655 data8 0x3fc1f3b925f25d40, 0x3c8162c9ef939ac6 // log(1/frcpa(1+38/256))= +1.40250e-001
656 data8 0x3fc2625d1e6ddf50, 0x3caad3a1ec384fc3 // log(1/frcpa(1+39/256))= +1.43627e-001
657 data8 0x3fc2d1610c868130, 0x3cb3ad997036941b // log(1/frcpa(1+40/256))= +1.47015e-001
658 data8 0x3fc340c597411420, 0x3cbc2308262c7998 // log(1/frcpa(1+41/256))= +1.50414e-001
659 data8 0x3fc3b08b6757f2a0, 0x3cb2170d6cdf0526 // log(1/frcpa(1+42/256))= +1.53825e-001
660 data8 0x3fc40dfb08378000, 0x3c9bb453c4f7b685 // log(1/frcpa(1+43/256))= +1.56677e-001
661 data8 0x3fc47e74e8ca5f70, 0x3cb836a48fdfce9d // log(1/frcpa(1+44/256))= +1.60109e-001
662 data8 0x3fc4ef51f6466de0, 0x3ca07a43919aa64b // log(1/frcpa(1+45/256))= +1.63553e-001
663 data8 0x3fc56092e02ba510, 0x3ca85006899d97b0 // log(1/frcpa(1+46/256))= +1.67010e-001
664 data8 0x3fc5d23857cd74d0, 0x3ca30a5ba6e7abbe // log(1/frcpa(1+47/256))= +1.70478e-001
665 data8 0x3fc6313a37335d70, 0x3ca905586f0ac97e // log(1/frcpa(1+48/256))= +1.73377e-001
666 data8 0x3fc6a399dabbd380, 0x3c9b2c6657a96684 // log(1/frcpa(1+49/256))= +1.76868e-001
667 data8 0x3fc70337dd3ce410, 0x3cb50bc52f55cdd8 // log(1/frcpa(1+50/256))= +1.79786e-001
668 data8 0x3fc77654128f6120, 0x3cad2eb7c9a39efe // log(1/frcpa(1+51/256))= +1.83299e-001
669 data8 0x3fc7e9d82a0b0220, 0x3cba127e90393c01 // log(1/frcpa(1+52/256))= +1.86824e-001
670 data8 0x3fc84a6b759f5120, 0x3cbd7fd52079f706 // log(1/frcpa(1+53/256))= +1.89771e-001
671 data8 0x3fc8ab47d5f5a300, 0x3cbfae141751a3de // log(1/frcpa(1+54/256))= +1.92727e-001
672 data8 0x3fc91fe490965810, 0x3cb69cf30a1c319e // log(1/frcpa(1+55/256))= +1.96286e-001
673 data8 0x3fc981634011aa70, 0x3ca5bb3d208bc42a // log(1/frcpa(1+56/256))= +1.99261e-001
674 data8 0x3fc9f6c407089660, 0x3ca04d68658179a0 // log(1/frcpa(1+57/256))= +2.02843e-001
675 data8 0x3fca58e729348f40, 0x3c99f5411546c286 // log(1/frcpa(1+58/256))= +2.05838e-001
676 data8 0x3fcabb55c31693a0, 0x3cb9a5350eb327d5 // log(1/frcpa(1+59/256))= +2.08842e-001
677 data8 0x3fcb1e104919efd0, 0x3c18965fcce7c406 // log(1/frcpa(1+60/256))= +2.11855e-001
678 data8 0x3fcb94ee93e367c0, 0x3cb503716da45184 // log(1/frcpa(1+61/256))= +2.15483e-001
679 data8 0x3fcbf851c0675550, 0x3cbdf1b3f7ab5378 // log(1/frcpa(1+62/256))= +2.18516e-001
680 data8 0x3fcc5c0254bf23a0, 0x3ca7aab9ed0b1d7b // log(1/frcpa(1+63/256))= +2.21558e-001
681 data8 0x3fccc000c9db3c50, 0x3c92a7a2a850072a // log(1/frcpa(1+64/256))= +2.24609e-001
682 data8 0x3fcd244d99c85670, 0x3c9f6019120edf4c // log(1/frcpa(1+65/256))= +2.27670e-001
683 data8 0x3fcd88e93fb2f450, 0x3c6affb96815e081 // log(1/frcpa(1+66/256))= +2.30741e-001
684 data8 0x3fcdedd437eaef00, 0x3c72553595897976 // log(1/frcpa(1+67/256))= +2.33820e-001
685 data8 0x3fce530effe71010, 0x3c90913b020fa182 // log(1/frcpa(1+68/256))= +2.36910e-001
686 data8 0x3fceb89a1648b970, 0x3c837ba4045bfd25 // log(1/frcpa(1+69/256))= +2.40009e-001
687 data8 0x3fcf1e75fadf9bd0, 0x3cbcea6d13e0498d // log(1/frcpa(1+70/256))= +2.43117e-001
688 data8 0x3fcf84a32ead7c30, 0x3ca5e3a67b3c6d77 // log(1/frcpa(1+71/256))= +2.46235e-001
689 data8 0x3fcfeb2233ea07c0, 0x3cba0c6f0049c5a6 // log(1/frcpa(1+72/256))= +2.49363e-001
690 data8 0x3fd028f9c7035c18, 0x3cb0a30b06677ff6 // log(1/frcpa(1+73/256))= +2.52501e-001
691 data8 0x3fd05c8be0d96358, 0x3ca0f1c77ccb5865 // log(1/frcpa(1+74/256))= +2.55649e-001
692 data8 0x3fd085eb8f8ae790, 0x3cbd513f45fe7a97 // log(1/frcpa(1+75/256))= +2.58174e-001
693 data8 0x3fd0b9c8e32d1910, 0x3c927449047ca006 // log(1/frcpa(1+76/256))= +2.61339e-001
694 data8 0x3fd0edd060b78080, 0x3c89b52d8435f53e // log(1/frcpa(1+77/256))= +2.64515e-001
695 data8 0x3fd122024cf00638, 0x3cbdd976fabda4bd // log(1/frcpa(1+78/256))= +2.67701e-001
696 data8 0x3fd14be2927aecd0, 0x3cb02f90ad0bc471 // log(1/frcpa(1+79/256))= +2.70257e-001
697 data8 0x3fd180618ef18ad8, 0x3cbd003792c71a98 // log(1/frcpa(1+80/256))= +2.73461e-001
698 data8 0x3fd1b50bbe2fc638, 0x3ca9ae64c6403ead // log(1/frcpa(1+81/256))= +2.76675e-001
699 data8 0x3fd1df4cc7cf2428, 0x3cb43f0455f7e395 // log(1/frcpa(1+82/256))= +2.79254e-001
700 data8 0x3fd214456d0eb8d0, 0x3cb0fbd748d75d30 // log(1/frcpa(1+83/256))= +2.82487e-001
701 data8 0x3fd23ec5991eba48, 0x3c906edd746b77e2 // log(1/frcpa(1+84/256))= +2.85081e-001
702 data8 0x3fd2740d9f870af8, 0x3ca9802e6a00a670 // log(1/frcpa(1+85/256))= +2.88333e-001
703 data8 0x3fd29ecdabcdfa00, 0x3cacecef70890cfa // log(1/frcpa(1+86/256))= +2.90943e-001
704 data8 0x3fd2d46602adcce8, 0x3cb97911955f3521 // log(1/frcpa(1+87/256))= +2.94214e-001
705 data8 0x3fd2ff66b04ea9d0, 0x3cb12dabe191d1c9 // log(1/frcpa(1+88/256))= +2.96838e-001
706 data8 0x3fd335504b355a30, 0x3cbdf9139df924ec // log(1/frcpa(1+89/256))= +3.00129e-001
707 data8 0x3fd360925ec44f58, 0x3cb253e68977a1e3 // log(1/frcpa(1+90/256))= +3.02769e-001
708 data8 0x3fd38bf1c3337e70, 0x3cb3d283d2a2da21 // log(1/frcpa(1+91/256))= +3.05417e-001
709 data8 0x3fd3c25277333180, 0x3cadaa5b035eae27 // log(1/frcpa(1+92/256))= +3.08735e-001
710 data8 0x3fd3edf463c16838, 0x3cb983d680d3c108 // log(1/frcpa(1+93/256))= +3.11399e-001
711 data8 0x3fd419b423d5e8c0, 0x3cbc86dd921c139d // log(1/frcpa(1+94/256))= +3.14069e-001
712 data8 0x3fd44591e0539f48, 0x3c86a76d6dc2782e // log(1/frcpa(1+95/256))= +3.16746e-001
713 data8 0x3fd47c9175b6f0a8, 0x3cb59a2e013c6b5f // log(1/frcpa(1+96/256))= +3.20103e-001
714 data8 0x3fd4a8b341552b08, 0x3c93f1e86e468694 // log(1/frcpa(1+97/256))= +3.22797e-001
715 data8 0x3fd4d4f390890198, 0x3cbf5e4ea7c5105a // log(1/frcpa(1+98/256))= +3.25498e-001
716 data8 0x3fd501528da1f960, 0x3cbf58da53e9ad10 // log(1/frcpa(1+99/256))= +3.28206e-001
717 data8 0x3fd52dd06347d4f0, 0x3cb98a28cebf6eef // log(1/frcpa(1+100/256))= +3.30921e-001
718 data8 0x3fd55a6d3c7b8a88, 0x3c9c76b67c2d1fd4 // log(1/frcpa(1+101/256))= +3.33644e-001
719 data8 0x3fd5925d2b112a58, 0x3c9029616a4331b8 // log(1/frcpa(1+102/256))= +3.37058e-001
720 data8 0x3fd5bf406b543db0, 0x3c9fb8292ecfc820 // log(1/frcpa(1+103/256))= +3.39798e-001
721 data8 0x3fd5ec433d5c35a8, 0x3cb71a1229d17eec // log(1/frcpa(1+104/256))= +3.42545e-001
722 data8 0x3fd61965cdb02c18, 0x3cbba94fe1dbb8d2 // log(1/frcpa(1+105/256))= +3.45300e-001
723 data8 0x3fd646a84935b2a0, 0x3c9ee496d2c9ae57 // log(1/frcpa(1+106/256))= +3.48063e-001
724 data8 0x3fd6740add31de90, 0x3cb1da3a6c7a9dfd // log(1/frcpa(1+107/256))= +3.50833e-001
725 data8 0x3fd6a18db74a58c0, 0x3cb494c257add8dc // log(1/frcpa(1+108/256))= +3.53610e-001
726 data8 0x3fd6cf31058670e8, 0x3cb0b244a70a8da9 // log(1/frcpa(1+109/256))= +3.56396e-001
727 data8 0x3fd6f180e852f0b8, 0x3c9db7aefa866720 // log(1/frcpa(1+110/256))= +3.58490e-001
728 data8 0x3fd71f5d71b894e8, 0x3cbe91c4bf324957 // log(1/frcpa(1+111/256))= +3.61289e-001
729 data8 0x3fd74d5aefd66d58, 0x3cb06b3d9bfac023 // log(1/frcpa(1+112/256))= +3.64096e-001
730 data8 0x3fd77b79922bd378, 0x3cb727d8804491f4 // log(1/frcpa(1+113/256))= +3.66911e-001
731 data8 0x3fd7a9b9889f19e0, 0x3ca2ef22df5bc543 // log(1/frcpa(1+114/256))= +3.69734e-001
732 data8 0x3fd7d81b037eb6a0, 0x3cb8fd3ba07a7ece // log(1/frcpa(1+115/256))= +3.72565e-001
733 data8 0x3fd8069e33827230, 0x3c8bd1e25866e61a // log(1/frcpa(1+116/256))= +3.75404e-001
734 data8 0x3fd82996d3ef8bc8, 0x3ca5aab9f5928928 // log(1/frcpa(1+117/256))= +3.77538e-001
735 data8 0x3fd85855776dcbf8, 0x3ca56f33337789d6 // log(1/frcpa(1+118/256))= +3.80391e-001
736 data8 0x3fd8873658327cc8, 0x3cbb8ef0401db49d // log(1/frcpa(1+119/256))= +3.83253e-001
737 data8 0x3fd8aa75973ab8c8, 0x3cbb9961f509a680 // log(1/frcpa(1+120/256))= +3.85404e-001
738 data8 0x3fd8d992dc8824e0, 0x3cb220512a53732d // log(1/frcpa(1+121/256))= +3.88280e-001
739 data8 0x3fd908d2ea7d9510, 0x3c985f0e513bfb5c // log(1/frcpa(1+122/256))= +3.91164e-001
740 data8 0x3fd92c59e79c0e50, 0x3cb82e073fd30d63 // log(1/frcpa(1+123/256))= +3.93332e-001
741 data8 0x3fd95bd750ee3ed0, 0x3ca4aa7cdb6dd8a8 // log(1/frcpa(1+124/256))= +3.96231e-001
742 data8 0x3fd98b7811a3ee58, 0x3caa93a5b660893e // log(1/frcpa(1+125/256))= +3.99138e-001
743 data8 0x3fd9af47f33d4068, 0x3cac294b3b3190ba // log(1/frcpa(1+126/256))= +4.01323e-001
744 data8 0x3fd9df270c1914a0, 0x3cbe1a58fd0cd67e // log(1/frcpa(1+127/256))= +4.04245e-001
745 data8 0x3fda0325ed14fda0, 0x3cb1efa7950fb57e // log(1/frcpa(1+128/256))= +4.06442e-001
746 data8 0x3fda33440224fa78, 0x3c8915fe75e7d477 // log(1/frcpa(1+129/256))= +4.09379e-001
747 data8 0x3fda57725e80c380, 0x3ca72bd1062b1b7f // log(1/frcpa(1+130/256))= +4.11587e-001
748 data8 0x3fda87d0165dd198, 0x3c91f7845f58dbad // log(1/frcpa(1+131/256))= +4.14539e-001
749 data8 0x3fdaac2e6c03f890, 0x3cb6f237a911c509 // log(1/frcpa(1+132/256))= +4.16759e-001
750 data8 0x3fdadccc6fdf6a80, 0x3c90ddc4b7687169 // log(1/frcpa(1+133/256))= +4.19726e-001
751 data8 0x3fdb015b3eb1e790, 0x3c692dd7d90e1e8e // log(1/frcpa(1+134/256))= +4.21958e-001
752 data8 0x3fdb323a3a635948, 0x3c6f85655cbe14de // log(1/frcpa(1+135/256))= +4.24941e-001
753 data8 0x3fdb56fa04462908, 0x3c95252d841994de // log(1/frcpa(1+136/256))= +4.27184e-001
754 data8 0x3fdb881aa659bc90, 0x3caa53a745a3642f // log(1/frcpa(1+137/256))= +4.30182e-001
755 data8 0x3fdbad0bef3db160, 0x3cb32f2540dcc16a // log(1/frcpa(1+138/256))= +4.32437e-001
756 data8 0x3fdbd21297781c28, 0x3cbd8e891e106f1d // log(1/frcpa(1+139/256))= +4.34697e-001
757 data8 0x3fdc039236f08818, 0x3c809435af522ba7 // log(1/frcpa(1+140/256))= +4.37718e-001
758 data8 0x3fdc28cb1e4d32f8, 0x3cb3944752fbd81e // log(1/frcpa(1+141/256))= +4.39990e-001
759 data8 0x3fdc4e19b84723c0, 0x3c9a465260cd3fe5 // log(1/frcpa(1+142/256))= +4.42267e-001
760 data8 0x3fdc7ff9c74554c8, 0x3c92447d5b6ca369 // log(1/frcpa(1+143/256))= +4.45311e-001
761 data8 0x3fdca57b64e9db00, 0x3cb44344a8a00c82 // log(1/frcpa(1+144/256))= +4.47600e-001
762 data8 0x3fdccb130a5ceba8, 0x3cbefaddfb97b73f // log(1/frcpa(1+145/256))= +4.49895e-001
763 data8 0x3fdcf0c0d18f3268, 0x3cbd3e7bfee57898 // log(1/frcpa(1+146/256))= +4.52194e-001
764 data8 0x3fdd232075b5a200, 0x3c9222599987447c // log(1/frcpa(1+147/256))= +4.55269e-001
765 data8 0x3fdd490246defa68, 0x3cabafe9a767a80d // log(1/frcpa(1+148/256))= +4.57581e-001
766 data8 0x3fdd6efa918d25c8, 0x3cb58a2624e1c6fd // log(1/frcpa(1+149/256))= +4.59899e-001
767 data8 0x3fdd9509707ae528, 0x3cbdc3babce578e7 // log(1/frcpa(1+150/256))= +4.62221e-001
768 data8 0x3fddbb2efe92c550, 0x3cb0ac0943c434a4 // log(1/frcpa(1+151/256))= +4.64550e-001
769 data8 0x3fddee2f3445e4a8, 0x3cbba9d07ce820e8 // log(1/frcpa(1+152/256))= +4.67663e-001
770 data8 0x3fde148a1a2726c8, 0x3cb6537e3375b205 // log(1/frcpa(1+153/256))= +4.70004e-001
771 data8 0x3fde3afc0a49ff38, 0x3cbfed5518dbc20e // log(1/frcpa(1+154/256))= +4.72350e-001
772 data8 0x3fde6185206d5168, 0x3cb6572601f73d5c // log(1/frcpa(1+155/256))= +4.74702e-001
773 data8 0x3fde882578823d50, 0x3c9b24abd4584d1a // log(1/frcpa(1+156/256))= +4.77060e-001
774 data8 0x3fdeaedd2eac9908, 0x3cb0ceb5e4d2c8f7 // log(1/frcpa(1+157/256))= +4.79423e-001
775 data8 0x3fded5ac5f436be0, 0x3ca72f21f1f5238e // log(1/frcpa(1+158/256))= +4.81792e-001
776 data8 0x3fdefc9326d16ab8, 0x3c85081a1639a45c // log(1/frcpa(1+159/256))= +4.84166e-001
777 data8 0x3fdf2391a21575f8, 0x3cbf11015bdd297a // log(1/frcpa(1+160/256))= +4.86546e-001
778 data8 0x3fdf4aa7ee031928, 0x3cb3795bc052a2d1 // log(1/frcpa(1+161/256))= +4.88932e-001
779 data8 0x3fdf71d627c30bb0, 0x3c35c61f0f5a88f3 // log(1/frcpa(1+162/256))= +4.91323e-001
780 data8 0x3fdf991c6cb3b378, 0x3c97d99419be6028 // log(1/frcpa(1+163/256))= +4.93720e-001
781 data8 0x3fdfc07ada69a908, 0x3cbfe9341ded70b1 // log(1/frcpa(1+164/256))= +4.96123e-001
782 data8 0x3fdfe7f18eb03d38, 0x3cb85718a640c33f // log(1/frcpa(1+165/256))= +4.98532e-001
783 data8 0x3fe007c053c5002c, 0x3cb3addc9c065f09 // log(1/frcpa(1+166/256))= +5.00946e-001
784 data8 0x3fe01b942198a5a0, 0x3c9d5aa4c77da6ac // log(1/frcpa(1+167/256))= +5.03367e-001
785 data8 0x3fe02f74400c64e8, 0x3cb5a0ee4450ef52 // log(1/frcpa(1+168/256))= +5.05793e-001
786 data8 0x3fe04360be7603ac, 0x3c9dd00c35630fe0 // log(1/frcpa(1+169/256))= +5.08225e-001
787 data8 0x3fe05759ac47fe30, 0x3cbd063e1f0bd82c // log(1/frcpa(1+170/256))= +5.10663e-001
788 data8 0x3fe06b5f1911cf50, 0x3cae8da674af5289 // log(1/frcpa(1+171/256))= +5.13107e-001
789 data8 0x3fe078bf0533c568, 0x3c62241edf5fd1f7 // log(1/frcpa(1+172/256))= +5.14740e-001
790 data8 0x3fe08cd9687e7b0c, 0x3cb3007febcca227 // log(1/frcpa(1+173/256))= +5.17194e-001
791 data8 0x3fe0a10074cf9018, 0x3ca496e84603816b // log(1/frcpa(1+174/256))= +5.19654e-001
792 data8 0x3fe0b5343a234474, 0x3cb46098d14fc90a // log(1/frcpa(1+175/256))= +5.22120e-001
793 data8 0x3fe0c974c89431cc, 0x3cac0a7cdcbb86c6 // log(1/frcpa(1+176/256))= +5.24592e-001
794 data8 0x3fe0ddc2305b9884, 0x3cb2f753210410ff // log(1/frcpa(1+177/256))= +5.27070e-001
795 data8 0x3fe0eb524bafc918, 0x3c88affd6682229e // log(1/frcpa(1+178/256))= +5.28726e-001
796 data8 0x3fe0ffb54213a474, 0x3cadeefbab9af993 // log(1/frcpa(1+179/256))= +5.31214e-001
797 data8 0x3fe114253da97d9c, 0x3cbaf1c2b8bc160a // log(1/frcpa(1+180/256))= +5.33709e-001
798 data8 0x3fe128a24f1d9afc, 0x3cb9cf4df375e650 // log(1/frcpa(1+181/256))= +5.36210e-001
799 data8 0x3fe1365252bf0864, 0x3c985a621d4be111 // log(1/frcpa(1+182/256))= +5.37881e-001
800 data8 0x3fe14ae558b4a92c, 0x3ca104c4aa8977d1 // log(1/frcpa(1+183/256))= +5.40393e-001
801 data8 0x3fe15f85a19c7658, 0x3cbadf26e540f375 // log(1/frcpa(1+184/256))= +5.42910e-001
802 data8 0x3fe16d4d38c119f8, 0x3cb3aea11caec416 // log(1/frcpa(1+185/256))= +5.44592e-001
803 data8 0x3fe18203c20dd130, 0x3cba82d1211d1d6d // log(1/frcpa(1+186/256))= +5.47121e-001
804 data8 0x3fe196c7bc4b1f38, 0x3cb6267acc4f4f4a // log(1/frcpa(1+187/256))= +5.49656e-001
805 data8 0x3fe1a4a738b7a33c, 0x3c858930213c987d // log(1/frcpa(1+188/256))= +5.51349e-001
806 data8 0x3fe1b981c0c9653c, 0x3c9bc2a4a30f697b // log(1/frcpa(1+189/256))= +5.53895e-001
807 data8 0x3fe1ce69e8bb1068, 0x3cb7ae6199cf2a00 // log(1/frcpa(1+190/256))= +5.56447e-001
808 data8 0x3fe1dc619de06944, 0x3c6b50bb38388177 // log(1/frcpa(1+191/256))= +5.58152e-001
809 data8 0x3fe1f160a2ad0da0, 0x3cbd05b2778a5e1d // log(1/frcpa(1+192/256))= +5.60715e-001
810 data8 0x3fe2066d7740737c, 0x3cb32e828f9c6bd6 // log(1/frcpa(1+193/256))= +5.63285e-001
811 data8 0x3fe2147dba47a390, 0x3cbd579851b8b672 // log(1/frcpa(1+194/256))= +5.65001e-001
812 data8 0x3fe229a1bc5ebac0, 0x3cbb321be5237ce8 // log(1/frcpa(1+195/256))= +5.67582e-001
813 data8 0x3fe237c1841a502c, 0x3cb3b56e0915ea64 // log(1/frcpa(1+196/256))= +5.69306e-001
814 data8 0x3fe24cfce6f80d98, 0x3cb34a4d1a422919 // log(1/frcpa(1+197/256))= +5.71898e-001
815 data8 0x3fe25b2c55cd5760, 0x3cb237401ea5015e // log(1/frcpa(1+198/256))= +5.73630e-001
816 data8 0x3fe2707f4d5f7c40, 0x3c9d30f20acc8341 // log(1/frcpa(1+199/256))= +5.76233e-001
817 data8 0x3fe285e0842ca380, 0x3cbc4d866d5f21c0 // log(1/frcpa(1+200/256))= +5.78842e-001
818 data8 0x3fe294294708b770, 0x3cb85e14d5dc54fa // log(1/frcpa(1+201/256))= +5.80586e-001
819 data8 0x3fe2a9a2670aff0c, 0x3c7e6f8f468bbf91 // log(1/frcpa(1+202/256))= +5.83207e-001
820 data8 0x3fe2b7fb2c8d1cc0, 0x3c930ffcf63c8b65 // log(1/frcpa(1+203/256))= +5.84959e-001
821 data8 0x3fe2c65a6395f5f4, 0x3ca0afe20b53d2d2 // log(1/frcpa(1+204/256))= +5.86713e-001
822 data8 0x3fe2dbf557b0df40, 0x3cb646be1188fbc9 // log(1/frcpa(1+205/256))= +5.89350e-001
823 data8 0x3fe2ea64c3f97654, 0x3c96516fa8df33b2 // log(1/frcpa(1+206/256))= +5.91113e-001
824 data8 0x3fe3001823684d70, 0x3cb96d64e16d1360 // log(1/frcpa(1+207/256))= +5.93762e-001
825 data8 0x3fe30e97e9a8b5cc, 0x3c98ef96bc97cca0 // log(1/frcpa(1+208/256))= +5.95531e-001
826 data8 0x3fe32463ebdd34e8, 0x3caef1dc9a56c1bf // log(1/frcpa(1+209/256))= +5.98192e-001
827 data8 0x3fe332f4314ad794, 0x3caa4f0ac5d5fa11 // log(1/frcpa(1+210/256))= +5.99970e-001
828 data8 0x3fe348d90e7464cc, 0x3cbe7889f0516acd // log(1/frcpa(1+211/256))= +6.02643e-001
829 data8 0x3fe35779f8c43d6c, 0x3ca96bbab7245411 // log(1/frcpa(1+212/256))= +6.04428e-001
830 data8 0x3fe36621961a6a98, 0x3ca31f32262db9fb // log(1/frcpa(1+213/256))= +6.06217e-001
831 data8 0x3fe37c299f3c3668, 0x3cb15c72c107ee29 // log(1/frcpa(1+214/256))= +6.08907e-001
832 data8 0x3fe38ae2171976e4, 0x3cba42a2554b2dd4 // log(1/frcpa(1+215/256))= +6.10704e-001
833 data8 0x3fe399a157a603e4, 0x3cb99c62286d8919 // log(1/frcpa(1+216/256))= +6.12504e-001
834 data8 0x3fe3afccfe77b9d0, 0x3ca11048f96a43bd // log(1/frcpa(1+217/256))= +6.15210e-001
835 data8 0x3fe3be9d503533b4, 0x3ca4022f47588c3e // log(1/frcpa(1+218/256))= +6.17018e-001
836 data8 0x3fe3cd7480b4a8a0, 0x3cb4ba7afc2dc56a // log(1/frcpa(1+219/256))= +6.18830e-001
837 data8 0x3fe3e3c43918f76c, 0x3c859673d064b8ba // log(1/frcpa(1+220/256))= +6.21554e-001
838 data8 0x3fe3f2acb27ed6c4, 0x3cb55c6b452a16a8 // log(1/frcpa(1+221/256))= +6.23373e-001
839 data8 0x3fe4019c2125ca90, 0x3cb8c367879c5a31 // log(1/frcpa(1+222/256))= +6.25197e-001
840 data8 0x3fe4181061389720, 0x3cb2c17a79c5cc6c // log(1/frcpa(1+223/256))= +6.27937e-001
841 data8 0x3fe42711518df544, 0x3ca5f38d47012fc5 // log(1/frcpa(1+224/256))= +6.29769e-001
842 data8 0x3fe436194e12b6bc, 0x3cb9854d65a9b426 // log(1/frcpa(1+225/256))= +6.31604e-001
843 data8 0x3fe445285d68ea68, 0x3ca3ff9b3a81cd81 // log(1/frcpa(1+226/256))= +6.33442e-001
844 data8 0x3fe45bcc464c8938, 0x3cb0a2d8011a6c05 // log(1/frcpa(1+227/256))= +6.36206e-001
845 data8 0x3fe46aed21f117fc, 0x3c8a2be41f8e9f3d // log(1/frcpa(1+228/256))= +6.38053e-001
846 data8 0x3fe47a1527e8a2d0, 0x3cba4a83594fab09 // log(1/frcpa(1+229/256))= +6.39903e-001
847 data8 0x3fe489445efffcc8, 0x3cbf306a23dcbcde // log(1/frcpa(1+230/256))= +6.41756e-001
848 data8 0x3fe4a018bcb69834, 0x3ca46c9285029fd1 // log(1/frcpa(1+231/256))= +6.44543e-001
849 data8 0x3fe4af5a0c9d65d4, 0x3cbbc1db897580e3 // log(1/frcpa(1+232/256))= +6.46405e-001
850 data8 0x3fe4bea2a5bdbe84, 0x3cb84d880d7ef775 // log(1/frcpa(1+233/256))= +6.48271e-001
851 data8 0x3fe4cdf28f10ac44, 0x3cb3ec4b7893ce1f // log(1/frcpa(1+234/256))= +6.50140e-001
852 data8 0x3fe4dd49cf994058, 0x3c897224d59d3408 // log(1/frcpa(1+235/256))= +6.52013e-001
853 data8 0x3fe4eca86e64a680, 0x3cbccf620f24f0cd // log(1/frcpa(1+236/256))= +6.53889e-001
854 data8 0x3fe503c43cd8eb68, 0x3c3f872c65971084 // log(1/frcpa(1+237/256))= +6.56710e-001
855 data8 0x3fe513356667fc54, 0x3cb9ca64cc3d52c8 // log(1/frcpa(1+238/256))= +6.58595e-001
856 data8 0x3fe522ae0738a3d4, 0x3cbe708164c75968 // log(1/frcpa(1+239/256))= +6.60483e-001
857 data8 0x3fe5322e26867854, 0x3cb9988ba4aea615 // log(1/frcpa(1+240/256))= +6.62376e-001
858 data8 0x3fe541b5cb979808, 0x3ca1662e3a6b95f5 // log(1/frcpa(1+241/256))= +6.64271e-001
859 data8 0x3fe55144fdbcbd60, 0x3cb3acd4ca45c1e0 // log(1/frcpa(1+242/256))= +6.66171e-001
860 data8 0x3fe560dbc45153c4, 0x3cb4988947959fed // log(1/frcpa(1+243/256))= +6.68074e-001
861 data8 0x3fe5707a26bb8c64, 0x3cb3017fe6607ba9 // log(1/frcpa(1+244/256))= +6.69980e-001
862 data8 0x3fe587f60ed5b8fc, 0x3cbe7a3266366ed4 // log(1/frcpa(1+245/256))= +6.72847e-001
863 data8 0x3fe597a7977c8f30, 0x3ca1e12b9959a90e // log(1/frcpa(1+246/256))= +6.74763e-001
864 data8 0x3fe5a760d634bb88, 0x3cb7c365e53d9602 // log(1/frcpa(1+247/256))= +6.76682e-001
865 data8 0x3fe5b721d295f10c, 0x3cb716c2551ccbf0 // log(1/frcpa(1+248/256))= +6.78605e-001
866 data8 0x3fe5c6ea94431ef8, 0x3ca02b2ed0e28261 // log(1/frcpa(1+249/256))= +6.80532e-001
867 data8 0x3fe5d6bb22ea86f4, 0x3caf43a8bbb2f974 // log(1/frcpa(1+250/256))= +6.82462e-001
868 data8 0x3fe5e6938645d38c, 0x3cbcedc98821b333 // log(1/frcpa(1+251/256))= +6.84397e-001
869 data8 0x3fe5f673c61a2ed0, 0x3caa385eef5f2789 // log(1/frcpa(1+252/256))= +6.86335e-001
870 data8 0x3fe6065bea385924, 0x3cb11624f165c5b4 // log(1/frcpa(1+253/256))= +6.88276e-001
871 data8 0x3fe6164bfa7cc068, 0x3cbad884f87073fa // log(1/frcpa(1+254/256))= +6.90222e-001
872 data8 0x3fe62643fecf9740, 0x3cb78c51da12f4df // log(1/frcpa(1+255/256))= +6.92171e-001
873 LOCAL_OBJECT_END(pow_Tt)
874
875
876 // Table 1 is 2^(index_1/128) where
877 // index_1 goes from 0 to 15
878 LOCAL_OBJECT_START(pow_tbl1)
879 data8 0x8000000000000000 , 0x00003FFF
880 data8 0x80B1ED4FD999AB6C , 0x00003FFF
881 data8 0x8164D1F3BC030773 , 0x00003FFF
882 data8 0x8218AF4373FC25EC , 0x00003FFF
883 data8 0x82CD8698AC2BA1D7 , 0x00003FFF
884 data8 0x8383594EEFB6EE37 , 0x00003FFF
885 data8 0x843A28C3ACDE4046 , 0x00003FFF
886 data8 0x84F1F656379C1A29 , 0x00003FFF
887 data8 0x85AAC367CC487B15 , 0x00003FFF
888 data8 0x8664915B923FBA04 , 0x00003FFF
889 data8 0x871F61969E8D1010 , 0x00003FFF
890 data8 0x87DB357FF698D792 , 0x00003FFF
891 data8 0x88980E8092DA8527 , 0x00003FFF
892 data8 0x8955EE03618E5FDD , 0x00003FFF
893 data8 0x8A14D575496EFD9A , 0x00003FFF
894 data8 0x8AD4C6452C728924 , 0x00003FFF
895 LOCAL_OBJECT_END(pow_tbl1)
896
897
898 // Table 2 is 2^(index_1/8) where
899 // index_2 goes from 0 to 7
900 LOCAL_OBJECT_START(pow_tbl2)
901 data8 0x8000000000000000 , 0x00003FFF
902 data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
903 data8 0x9837F0518DB8A96F , 0x00003FFF
904 data8 0xA5FED6A9B15138EA , 0x00003FFF
905 data8 0xB504F333F9DE6484 , 0x00003FFF
906 data8 0xC5672A115506DADD , 0x00003FFF
907 data8 0xD744FCCAD69D6AF4 , 0x00003FFF
908 data8 0xEAC0C6E7DD24392F , 0x00003FFF
909 LOCAL_OBJECT_END(pow_tbl2)
910
911 .section .text
912 WEAK_LIBM_ENTRY(pow)
913
914 // Get exponent of x. Will be used to calculate K.
915 { .mfi
916 getf.exp pow_GR_signexp_X = f8
917 fms.s1 POW_Xm1 = f8,f1,f1 // Will be used for r1 if x>0
918 mov pow_GR_17ones = 0x1FFFF
919 }
920 { .mfi
921 addl pow_AD_P = @ltoff(pow_table_P), gp
922 fma.s1 POW_Xp1 = f8,f1,f1 // Will be used for r1 if x<0
923 nop.i 999
924 ;;
925 }
926
927 // Get significand of x. Will be used to get index to fetch T, Tt.
928 { .mfi
929 getf.sig pow_GR_sig_X = f8
930 frcpa.s1 POW_B, p6 = f1,f8
931 nop.i 999
932 }
933 { .mfi
934 ld8 pow_AD_P = [pow_AD_P]
935 fma.s1 POW_NORM_X = f8,f1,f0
936 mov pow_GR_exp_2tom8 = 0xFFF7
937 }
938 ;;
939
940 // p13 = TRUE ==> X is unorm
941 // DOUBLE 0x10033 exponent limit at which y is an integer
942 { .mfi
943 nop.m 999
944 fclass.m p13,p0 = f8, 0x0b // Test for x unorm
945 addl pow_GR_10033 = 0x10033, r0
946 }
947 { .mfi
948 mov pow_GR_16ones = 0xFFFF
949 fma.s1 POW_NORM_Y = f9,f1,f0
950 nop.i 999
951 }
952 ;;
953
954 // p14 = TRUE ==> X is ZERO
955 { .mfi
956 adds pow_AD_Tt = pow_Tt - pow_table_P, pow_AD_P
957 fclass.m p14,p0 = f8, 0x07
958 and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
959 }
960 { .mfi
961 adds pow_AD_Q = pow_table_Q - pow_table_P, pow_AD_P
962 nop.f 999
963 nop.i 999
964 }
965 ;;
966
967 { .mfi
968 ldfe POW_P5 = [pow_AD_P], 16
969 fcmp.lt.s1 p8,p9 = f8, f0 // Test for x<0
970 nop.i 999
971 }
972 { .mib
973 ldfe POW_P4 = [pow_AD_Q], 16
974 sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
975 (p13) br.cond.spnt POW_X_DENORM
976 }
977 ;;
978
979 // Continue normal and denormal paths here
980 POW_COMMON:
981 // p11 = TRUE ==> Y is a NAN
982 { .mfi
983 ldfe POW_P3 = [pow_AD_P], 16
984 fclass.m p11,p0 = f9, 0xc3
985 nop.i 999
986 }
987 { .mfi
988 ldfe POW_P2 = [pow_AD_Q], 16
989 nop.f 999
990 mov pow_GR_y_zero = 0
991 }
992 ;;
993
994 // Note POW_Xm1 and POW_r1 are used interchangably
995 { .mfi
996 alloc r32=ar.pfs,2,19,4,0
997 fms.s1 POW_r = POW_B, POW_NORM_X,f1
998 nop.i 999
999 }
1000 { .mfi
1001 setf.sig POW_int_K = pow_GR_true_exp_X
1002 (p8) fnma.s1 POW_Xm1 = POW_Xp1,f1,f0
1003 nop.i 999
1004 }
1005 ;;
1006
1007 // p12 = TRUE if Y is ZERO
1008 // Compute xsq to decide later if |x|=1
1009 { .mfi
1010 ldfe POW_P1 = [pow_AD_P], 16
1011 fclass.m p12,p0 = f9, 0x07
1012 shl pow_GR_offset = pow_GR_sig_X, 1
1013 }
1014 { .mfb
1015 ldfe POW_P0 = [pow_AD_Q], 16
1016 fma.s1 POW_xsq = POW_NORM_X, POW_NORM_X, f0
1017 (p11) br.cond.spnt POW_Y_NAN // Branch if y=nan
1018 }
1019 ;;
1020
1021 // Get exponent of |x|-1 to use in comparison to 2^-8
1022 { .mfi
1023 getf.exp pow_GR_signexp_Xm1 = POW_Xm1
1024 fcvt.fx.s1 POW_int_Y = POW_NORM_Y
1025 shr.u pow_GR_offset = pow_GR_offset,56
1026 }
1027 ;;
1028
1029 // p11 = TRUE ==> X is a NAN
1030 { .mfi
1031 ldfpd POW_log2_hi, POW_log2_lo = [pow_AD_Q], 16
1032 fclass.m p11,p0 = f8, 0xc3
1033 shladd pow_AD_Tt = pow_GR_offset, 4, pow_AD_Tt
1034 }
1035 { .mfi
1036 ldfe POW_inv_log2_by_128 = [pow_AD_P], 16
1037 fma.s1 POW_delta = f0,f0,f0 // delta=0 in case |x| near 1
1038 (p12) mov pow_GR_y_zero = 1
1039 }
1040 ;;
1041
1042 { .mfi
1043 ldfpd POW_Q2, POW_Q3 = [pow_AD_P], 16
1044 fma.s1 POW_G = f0,f0,f0 // G=0 in case |x| near 1
1045 and pow_GR_exp_Xm1 = pow_GR_signexp_Xm1, pow_GR_17ones
1046 }
1047 ;;
1048
1049 // Determine if we will use the |x| near 1 path (p6) or normal path (p7)
1050 { .mfi
1051 getf.exp pow_GR_signexp_Y = POW_NORM_Y
1052 nop.f 999
1053 cmp.lt p6,p7 = pow_GR_exp_Xm1, pow_GR_exp_2tom8
1054 }
1055 { .mfb
1056 ldfpd POW_T, POW_Tt = [pow_AD_Tt], 16
1057 fma.s1 POW_rsq = POW_r, POW_r,f0
1058 (p11) br.cond.spnt POW_X_NAN // Branch if x=nan and y not nan
1059 }
1060 ;;
1061
1062 // If on the x near 1 path, assign r1 to r and r1*r1 to rsq
1063 { .mfi
1064 ldfpd POW_Q0_half, POW_Q1 = [pow_AD_P], 16
1065 (p6) fma.s1 POW_r = POW_r1, f1, f0
1066 nop.i 999
1067 }
1068 { .mfb
1069 nop.m 999
1070 (p6) fma.s1 POW_rsq = POW_r1, POW_r1, f0
1071 (p14) br.cond.spnt POW_X_0 // Branch if x zero and y not nan
1072 }
1073 ;;
1074
1075 { .mfi
1076 ldfpd POW_Q4, POW_RSHF = [pow_AD_P], 16
1077 (p7) fma.s1 POW_v6 = POW_r, POW_P5, POW_P4
1078 nop.i 999
1079 }
1080 { .mfi
1081 mov pow_GR_exp_2toM63 = 0xffc0 // Exponent of 2^-63
1082 (p6) fma.s1 POW_v6 = POW_r1, POW_P5, POW_P4
1083 nop.i 999
1084 }
1085 ;;
1086
1087 { .mfi
1088 setf.exp POW_2toM63 = pow_GR_exp_2toM63 // Form 2^-63 for test of q
1089 (p7) fma.s1 POW_v4 = POW_P3, POW_r, POW_P2
1090 nop.i 999
1091 }
1092 { .mfi
1093 nop.m 999
1094 (p6) fma.s1 POW_v4 = POW_P3, POW_r1, POW_P2
1095 nop.i 999
1096 }
1097 ;;
1098
1099 { .mfi
1100 nop.m 999
1101 fcvt.xf POW_K = POW_int_K
1102 nop.i 999
1103 }
1104 ;;
1105
1106 { .mfi
1107 getf.sig pow_GR_sig_int_Y = POW_int_Y
1108 fnma.s1 POW_twoV = POW_NORM_Y, POW_rsq,f0
1109 and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
1110 }
1111 { .mfb
1112 andcm pow_GR_sign_Y = pow_GR_signexp_Y, pow_GR_17ones
1113 fma.s1 POW_U = POW_NORM_Y,POW_r,f0
1114 (p12) br.cond.spnt POW_Y_0 // Branch if y=zero, x not zero or nan
1115 }
1116 ;;
1117
1118 // p11 = TRUE ==> X is NEGATIVE but not inf
1119 { .mfi
1120 ldfe POW_log2_by_128_lo = [pow_AD_P], 16
1121 fclass.m p11,p0 = f8, 0x1a
1122 nop.i 999
1123 }
1124 { .mfi
1125 ldfe POW_log2_by_128_hi = [pow_AD_Q], 16
1126 fma.s1 POW_v2 = POW_P1, POW_r, POW_P0
1127 nop.i 999
1128 }
1129 ;;
1130
1131 { .mfi
1132 nop.m 999
1133 fcvt.xf POW_float_int_Y = POW_int_Y
1134 nop.i 999
1135 }
1136 { .mfi
1137 nop.m 999
1138 fma.s1 POW_v3 = POW_v6, POW_rsq, POW_v4
1139 adds pow_AD_tbl1 = pow_tbl1 - pow_Tt, pow_AD_Q
1140 }
1141 ;;
1142
1143 { .mfi
1144 nop.m 999
1145 (p7) fma.s1 POW_delta = POW_K, POW_log2_lo, POW_Tt
1146 nop.i 999
1147 }
1148 { .mfi
1149 nop.m 999
1150 (p7) fma.s1 POW_G = POW_K, POW_log2_hi, POW_T
1151 adds pow_AD_tbl2 = pow_tbl2 - pow_tbl1, pow_AD_tbl1
1152 }
1153 ;;
1154
1155 { .mfi
1156 nop.m 999
1157 fms.s1 POW_e2 = POW_NORM_Y, POW_r, POW_U
1158 nop.i 999
1159 }
1160 { .mfi
1161 nop.m 999
1162 fma.s1 POW_Z2 = POW_twoV, POW_Q0_half, POW_U
1163 nop.i 999
1164 }
1165 ;;
1166
1167 { .mfi
1168 nop.m 999
1169 fma.s1 POW_Yrcub = POW_rsq, POW_U, f0
1170 nop.i 999
1171 }
1172 { .mfi
1173 nop.m 999
1174 fma.s1 POW_p = POW_rsq, POW_v3, POW_v2
1175 nop.i 999
1176 }
1177 ;;
1178
1179 // p11 = TRUE ==> X is NEGATIVE but not inf
1180 // p12 = TRUE ==> X is NEGATIVE AND Y already even int
1181 // p13 = TRUE ==> X is NEGATIVE AND Y possible int
1182 { .mfi
1183 nop.m 999
1184 fma.s1 POW_Z1 = POW_NORM_Y, POW_G, f0
1185 (p11) cmp.gt.unc p12,p13 = pow_GR_exp_Y, pow_GR_10033
1186 }
1187 { .mfi
1188 nop.m 999
1189 fma.s1 POW_Gpr = POW_G, f1, POW_r
1190 nop.i 999
1191 }
1192 ;;
1193
1194 // By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
1195 { .mfi
1196 nop.m 999
1197 fma.s1 POW_W2 = POW_Z2, POW_inv_log2_by_128, POW_RSHF
1198 nop.i 999
1199 }
1200 { .mfi
1201 nop.m 999
1202 fms.s1 POW_UmZ2 = POW_U, f1, POW_Z2
1203 nop.i 999
1204 }
1205 ;;
1206
1207 { .mfi
1208 nop.m 999
1209 fma.s1 POW_e3 = POW_NORM_Y, POW_delta, f0
1210 nop.i 999
1211 }
1212 ;;
1213
1214 { .mfi
1215 nop.m 999
1216 fma.s1 POW_Z3 = POW_p, POW_Yrcub, f0
1217 nop.i 999
1218 }
1219 { .mfi
1220 nop.m 999
1221 fma.s1 POW_GY_Z2 = POW_G, POW_NORM_Y, POW_Z2
1222 nop.i 999
1223 }
1224 ;;
1225
1226 // By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
1227 { .mfi
1228 nop.m 999
1229 fms.s1 POW_e1 = POW_NORM_Y, POW_G, POW_Z1
1230 nop.i 999
1231 }
1232 { .mfi
1233 nop.m 999
1234 fma.s1 POW_W1 = POW_Z1, POW_inv_log2_by_128, POW_RSHF
1235 nop.i 999
1236 }
1237 ;;
1238
1239 // p13 = TRUE ==> X is NEGATIVE AND Y possible int
1240 // p10 = TRUE ==> X is NEG and Y is an int
1241 // p12 = TRUE ==> X is NEG and Y is not an int
1242 { .mfi
1243 nop.m 999
1244 (p13) fcmp.eq.unc.s1 p10,p12 = POW_float_int_Y, POW_NORM_Y
1245 mov pow_GR_xneg_yodd = 0
1246 }
1247 { .mfi
1248 nop.m 999
1249 fma.s1 POW_Y_Gpr = POW_NORM_Y, POW_Gpr, f0
1250 nop.i 999
1251 }
1252 ;;
1253
1254 // By subtracting RSHF we get rounded integer POW_N2float
1255 { .mfi
1256 nop.m 999
1257 fms.s1 POW_N2float = POW_W2, f1, POW_RSHF
1258 nop.i 999
1259 }
1260 { .mfi
1261 nop.m 999
1262 fma.s1 POW_UmZ2pV = POW_twoV,POW_Q0_half,POW_UmZ2
1263 nop.i 999
1264 }
1265 ;;
1266
1267 { .mfi
1268 nop.m 999
1269 fma.s1 POW_Z3sq = POW_Z3, POW_Z3, f0
1270 nop.i 999
1271 }
1272 { .mfi
1273 nop.m 999
1274 fma.s1 POW_v4 = POW_Z3, POW_Q3, POW_Q2
1275 nop.i 999
1276 }
1277 ;;
1278
1279 // Extract rounded integer from rightmost significand of POW_W2
1280 // By subtracting RSHF we get rounded integer POW_N1float
1281 { .mfi
1282 getf.sig pow_GR_int_W2 = POW_W2
1283 fms.s1 POW_N1float = POW_W1, f1, POW_RSHF
1284 nop.i 999
1285 }
1286 { .mfi
1287 nop.m 999
1288 fma.s1 POW_v2 = POW_Z3, POW_Q1, POW_Q0_half
1289 nop.i 999
1290 }
1291 ;;
1292
1293 { .mfi
1294 nop.m 999
1295 fnma.s1 POW_s2 = POW_N2float, POW_log2_by_128_hi, POW_Z2
1296 nop.i 999
1297 }
1298 { .mfi
1299 nop.m 999
1300 fma.s1 POW_e2 = POW_e2,f1,POW_UmZ2pV
1301 nop.i 999
1302 }
1303 ;;
1304
1305 // Extract rounded integer from rightmost significand of POW_W1
1306 // Test if x inf
1307 { .mfi
1308 getf.sig pow_GR_int_W1 = POW_W1
1309 fclass.m p15,p0 = POW_NORM_X, 0x23
1310 nop.i 999
1311 }
1312 { .mfb
1313 nop.m 999
1314 fnma.s1 POW_f2 = POW_N2float, POW_log2_by_128_lo, f1
1315 (p12) br.cond.spnt POW_X_NEG_Y_NONINT // Branch if x neg, y not integer
1316 }
1317 ;;
1318
1319 // p11 = TRUE ==> X is +1.0
1320 // p12 = TRUE ==> X is NEGATIVE AND Y is an odd integer
1321 { .mfi
1322 getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
1323 fcmp.eq.s1 p11,p0 = POW_NORM_X, f1
1324 (p10) tbit.nz.unc p12,p0 = pow_GR_sig_int_Y,0
1325 }
1326 { .mfi
1327 nop.m 999
1328 fma.s1 POW_v3 = POW_Z3sq, POW_Q4, POW_v4
1329 nop.i 999
1330 }
1331 ;;
1332
1333 { .mfi
1334 nop.m 999
1335 fnma.s1 POW_f1 = POW_N1float, POW_log2_by_128_lo, f1
1336 nop.i 999
1337 }
1338 { .mfb
1339 nop.m 999
1340 fnma.s1 POW_s1 = POW_N1float, POW_log2_by_128_hi, POW_Z1
1341 (p15) br.cond.spnt POW_X_INF
1342 }
1343 ;;
1344
1345 // Test x and y and flag denormal
1346 { .mfi
1347 nop.m 999
1348 fcmp.eq.s0 p15,p0 = f8,f9
1349 nop.i 999
1350 }
1351 { .mfi
1352 nop.m 999
1353 fma.s1 POW_pYrcub_e3 = POW_p, POW_Yrcub, POW_e3
1354 nop.i 999
1355 }
1356 ;;
1357
1358 { .mfi
1359 nop.m 999
1360 fcmp.eq.s1 p7,p0 = POW_NORM_Y, f1 // Test for y=1.0
1361 nop.i 999
1362 }
1363 { .mfi
1364 nop.m 999
1365 fma.s1 POW_e12 = POW_e1,f1,POW_e2
1366 nop.i 999
1367 }
1368 ;;
1369
1370 { .mfi
1371 add pow_GR_int_N = pow_GR_int_W1, pow_GR_int_W2
1372 (p11) fma.d.s0 f8 = f1,f1,f0 // If x=1, result is +1
1373 nop.i 999
1374 }
1375 { .mib
1376 (p12) mov pow_GR_xneg_yodd = 1
1377 nop.i 999
1378 (p11) br.ret.spnt b0 // Early exit if x=1.0, result is +1
1379 }
1380 ;;
1381
1382 { .mfi
1383 and pow_GR_index1 = 0x0f, pow_GR_int_N
1384 fma.s1 POW_q = POW_Z3sq, POW_v3, POW_v2
1385 shr pow_int_GR_M = pow_GR_int_N, 7 // M = N/128
1386 }
1387 { .mib
1388 and pow_GR_index2 = 0x70, pow_GR_int_N
1389 cmp.eq p6, p0 = pow_GR_xneg_yodd, r0
1390 (p7) br.ret.spnt b0 // Early exit if y=1.0, result is x
1391 }
1392 ;;
1393
1394 { .mfi
1395 shladd pow_AD_T1 = pow_GR_index1, 4, pow_AD_tbl1
1396 fma.s1 POW_s = POW_s1, f1, POW_s2
1397 add pow_int_GR_M = pow_GR_16ones, pow_int_GR_M
1398 }
1399 { .mfi
1400 add pow_AD_T2 = pow_AD_tbl2, pow_GR_index2
1401 fma.s1 POW_f12 = POW_f1, POW_f2,f0
1402 and pow_GR_exp_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
1403 }
1404 ;;
1405
1406 { .mmi
1407 ldfe POW_T1 = [pow_AD_T1]
1408 ldfe POW_T2 = [pow_AD_T2]
1409 sub pow_GR_true_exp_Y_Gpr = pow_GR_exp_Y_Gpr, pow_GR_16ones
1410 }
1411 ;;
1412
1413 { .mfi
1414 setf.exp POW_2M = pow_int_GR_M
1415 fma.s1 POW_e123 = POW_e12, f1, POW_e3
1416 nop.i 999
1417 }
1418 { .mfb
1419 (p6) cmp.gt p6, p0 = -11, pow_GR_true_exp_Y_Gpr
1420 fma.s1 POW_d = POW_GY_Z2, f1, POW_pYrcub_e3
1421 (p6) br.cond.spnt POW_NEAR_ONE // branch if |y*log(x)| < 2^(-11)
1422 }
1423 ;;
1424
1425 { .mfi
1426 nop.m 999
1427 fma.s1 POW_q = POW_Z3sq, POW_q, POW_Z3
1428 nop.i 999
1429 }
1430 ;;
1431
1432 // p8 TRUE ==> |Y(G + r)| >= 10
1433
1434 // double
1435 // -2^10 -2^9 2^9 2^10
1436 // -----+-----+----+ ... +-----+-----+-----
1437 // p8 | p9 | p8
1438 // | | p10 | |
1439
1440 // Form signexp of constants to indicate overflow
1441 { .mfi
1442 mov pow_GR_big_pos = 0x103ff
1443 fma.s1 POW_ssq = POW_s, POW_s, f0
1444 cmp.le p8,p9 = 10, pow_GR_true_exp_Y_Gpr
1445 }
1446 { .mfi
1447 mov pow_GR_big_neg = 0x303ff
1448 fma.s1 POW_v4 = POW_s, POW_Q3, POW_Q2
1449 andcm pow_GR_sign_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
1450 }
1451 ;;
1452
1453 // Form big positive and negative constants to test for possible overflow
1454 { .mfi
1455 setf.exp POW_big_pos = pow_GR_big_pos
1456 fma.s1 POW_v2 = POW_s, POW_Q1, POW_Q0_half
1457 (p9) cmp.le.unc p0,p10 = 9, pow_GR_true_exp_Y_Gpr
1458 }
1459 { .mfb
1460 setf.exp POW_big_neg = pow_GR_big_neg
1461 fma.s1 POW_1ps = f1,f1,POW_s
1462 (p8) br.cond.spnt POW_OVER_UNDER_X_NOT_INF
1463 }
1464 ;;
1465
1466 // f123 = f12*(e123+1) = f12*e123+f12
1467 { .mfi
1468 nop.m 999
1469 fma.s1 POW_f123 = POW_e123,POW_f12,POW_f12
1470 nop.i 999
1471 }
1472 ;;
1473
1474 { .mfi
1475 nop.m 999
1476 fma.s1 POW_T1T2 = POW_T1, POW_T2, f0
1477 nop.i 999
1478 }
1479 { .mfi
1480 nop.m 999
1481 fma.s1 POW_v3 = POW_ssq, POW_Q4, POW_v4
1482 cmp.ne p12,p13 = pow_GR_xneg_yodd, r0
1483 }
1484 ;;
1485
1486 { .mfi
1487 nop.m 999
1488 fma.s1 POW_v21ps = POW_ssq, POW_v2, POW_1ps
1489 nop.i 999
1490 }
1491 { .mfi
1492 nop.m 999
1493 fma.s1 POW_s4 = POW_ssq, POW_ssq, f0
1494 nop.i 999
1495 }
1496 ;;
1497
1498 { .mfi
1499 nop.m 999
1500 (p12) fnma.s1 POW_A = POW_2M, POW_f123, f0
1501 nop.i 999
1502 }
1503 { .mfi
1504 nop.m 999
1505 (p13) fma.s1 POW_A = POW_2M, POW_f123, f0
1506 cmp.eq p14,p11 = r0,r0 // Initialize p14 on, p11 off
1507 }
1508 ;;
1509
1510 { .mfi
1511 nop.m 999
1512 fmerge.s POW_abs_q = f0, POW_q // Form |q| so can test its size
1513 nop.i 999
1514 }
1515 ;;
1516
1517 { .mfi
1518 (p10) cmp.eq p0,p14 = r0,r0 // Turn off p14 if no overflow
1519 fma.s1 POW_es = POW_s4, POW_v3, POW_v21ps
1520 nop.i 999
1521 }
1522 { .mfi
1523 nop.m 999
1524 fma.s1 POW_A = POW_A, POW_T1T2, f0
1525 nop.i 999
1526 }
1527 ;;
1528
1529 { .mfi
1530 // Test for |q| < 2^-63. If so then reverse last two steps of the result
1531 // to avoid monotonicity problems for results near 1.0 in round up/down/zero.
1532 // p11 will be set if need to reverse the order, p14 if not.
1533 nop.m 999
1534 (p10) fcmp.lt.s0 p11,p14 = POW_abs_q, POW_2toM63 // Test |q| <2^-63
1535 nop.i 999
1536 }
1537 ;;
1538
1539 .pred.rel "mutex",p11,p14
1540 { .mfi
1541 nop.m 999
1542 (p14) fma.s1 POW_A = POW_A, POW_es, f0
1543 nop.i 999
1544 }
1545 { .mfi
1546 nop.m 999
1547 (p11) fma.s1 POW_A = POW_A, POW_q, POW_A
1548 nop.i 999
1549 }
1550 ;;
1551
1552 // Dummy op to set inexact if |q| < 2^-63
1553 { .mfi
1554 nop.m 999
1555 (p11) fma.d.s0 POW_tmp = POW_A, POW_q, POW_A
1556 nop.i 999
1557 }
1558 ;;
1559
1560 { .mfi
1561 nop.m 999
1562 (p14) fma.d.s0 f8 = POW_A, POW_q, POW_A
1563 nop.i 999
1564 }
1565 { .mfb
1566 nop.m 999
1567 (p11) fma.d.s0 f8 = POW_A, POW_es, f0
1568 (p10) br.ret.sptk b0 // Exit main branch if no over/underflow
1569 }
1570 ;;
1571
1572 // POSSIBLE_OVER_UNDER
1573 // p6 = TRUE ==> Y_Gpr negative
1574 // Result is already computed. We just need to know if over/underflow occurred.
1575
1576 { .mfb
1577 cmp.eq p0,p6 = pow_GR_sign_Y_Gpr, r0
1578 nop.f 999
1579 (p6) br.cond.spnt POW_POSSIBLE_UNDER
1580 }
1581 ;;
1582
1583 // POSSIBLE_OVER
1584 // We got an answer.
1585 // overflow is a possibility, not a certainty
1586
1587
1588 // We define an overflow when the answer with
1589 // WRE set
1590 // user-defined rounding mode
1591
1592 // double
1593 // Largest double is 7FE (biased double)
1594 // 7FE - 3FF + FFFF = 103FE
1595 // Create + largest_double_plus_ulp
1596 // Create - largest_double_plus_ulp
1597 // Calculate answer with WRE set.
1598
1599 // single
1600 // Largest single is FE (biased double)
1601 // FE - 7F + FFFF = 1007E
1602 // Create + largest_single_plus_ulp
1603 // Create - largest_single_plus_ulp
1604 // Calculate answer with WRE set.
1605
1606 // Cases when answer is ldn+1 are as follows:
1607 // ldn ldn+1
1608 // --+----------|----------+------------
1609 // |
1610 // +inf +inf -inf
1611 // RN RN
1612 // RZ
1613
1614 // Put in s2 (td set, wre set)
1615 { .mfi
1616 nop.m 999
1617 fsetc.s2 0x7F,0x42
1618 nop.i 999
1619 }
1620 ;;
1621
1622 { .mfi
1623 nop.m 999
1624 fma.d.s2 POW_wre_urm_f8 = POW_A, POW_q, POW_A
1625 nop.i 999
1626 }
1627 ;;
1628
1629 // Return s2 to default
1630 { .mfi
1631 nop.m 999
1632 fsetc.s2 0x7F,0x40
1633 nop.i 999
1634 }
1635 ;;
1636
1637 // p7 = TRUE ==> yes, we have an overflow
1638 { .mfi
1639 nop.m 999
1640 fcmp.ge.s1 p7, p8 = POW_wre_urm_f8, POW_big_pos
1641 nop.i 999
1642 }
1643 ;;
1644
1645 { .mfi
1646 nop.m 999
1647 (p8) fcmp.le.s1 p7, p0 = POW_wre_urm_f8, POW_big_neg
1648 nop.i 999
1649 }
1650 ;;
1651
1652 { .mbb
1653 (p7) mov pow_GR_tag = 24
1654 (p7) br.cond.spnt __libm_error_region // Branch if overflow
1655 br.ret.sptk b0 // Exit if did not overflow
1656 }
1657 ;;
1658
1659 // Here if |y*log(x)| < 2^(-11)
1660 // pow(x,y) ~ exp(d) ~ 1 + d + 0.5*d^2 + Q1*d^3 + Q2*d^4, where d = y*log(x)
1661 .align 32
1662 POW_NEAR_ONE:
1663
1664 { .mfi
1665 nop.m 999
1666 fma.s1 POW_d2 = POW_d, POW_d, f0
1667 nop.i 999
1668 }
1669 ;;
1670
1671 { .mfi
1672 nop.m 999
1673 fma.s1 POW_poly_d_hi = POW_d, POW_Q0_half, f1
1674 nop.i 999
1675 }
1676 { .mfi
1677 nop.m 999
1678 fma.s1 POW_poly_d_lo = POW_d, POW_Q2, POW_Q1
1679 nop.i 999
1680 }
1681 ;;
1682
1683 { .mfi
1684 nop.m 999
1685 fma.s1 POW_poly_d = POW_d2, POW_poly_d_lo, POW_poly_d_hi
1686 nop.i 999
1687 }
1688 ;;
1689
1690 { .mfb
1691 nop.m 999
1692 fma.d.s0 f8 = POW_d, POW_poly_d, f1
1693 br.ret.sptk b0 // exit function for arguments |y*log(x)| < 2^(-11)
1694 }
1695 ;;
1696
1697 POW_POSSIBLE_UNDER:
1698 // We got an answer. input was < -2^9 but > -2^10 (double)
1699 // We got an answer. input was < -2^6 but > -2^7 (float)
1700 // underflow is a possibility, not a certainty
1701
1702 // We define an underflow when the answer with
1703 // ftz set
1704 // is zero (tiny numbers become zero)
1705 // Notice (from below) that if we have an unlimited exponent range,
1706 // then there is an extra machine number E between the largest denormal and
1707 // the smallest normal.
1708 // So if with unbounded exponent we round to E or below, then we are
1709 // tiny and underflow has occurred.
1710 // But notice that you can be in a situation where we are tiny, namely
1711 // rounded to E, but when the exponent is bounded we round to smallest
1712 // normal. So the answer can be the smallest normal with underflow.
1713 // E
1714 // -----+--------------------+--------------------+-----
1715 // | | |
1716 // 1.1...10 2^-3fff 1.1...11 2^-3fff 1.0...00 2^-3ffe
1717 // 0.1...11 2^-3ffe (biased, 1)
1718 // largest dn smallest normal
1719
1720 // Put in s2 (td set, ftz set)
1721 { .mfi
1722 nop.m 999
1723 fsetc.s2 0x7F,0x41
1724 nop.i 999
1725 }
1726 ;;
1727
1728 { .mfi
1729 nop.m 999
1730 fma.d.s2 POW_ftz_urm_f8 = POW_A, POW_q, POW_A
1731 nop.i 999
1732 }
1733 ;;
1734
1735 // Return s2 to default
1736 { .mfi
1737 nop.m 999
1738 fsetc.s2 0x7F,0x40
1739 nop.i 999
1740 }
1741 ;;
1742
1743 // p7 = TRUE ==> yes, we have an underflow
1744 { .mfi
1745 nop.m 999
1746 fcmp.eq.s1 p7, p0 = POW_ftz_urm_f8, f0
1747 nop.i 999
1748 }
1749 ;;
1750
1751 { .mbb
1752 (p7) mov pow_GR_tag = 25
1753 (p7) br.cond.spnt __libm_error_region // Branch if underflow
1754 br.ret.sptk b0 // Exit if did not underflow
1755 }
1756 ;;
1757
1758 POW_X_DENORM:
1759 // Here if x unorm. Use the NORM_X for getf instructions, and then back
1760 // to normal path
1761 { .mfi
1762 getf.exp pow_GR_signexp_X = POW_NORM_X
1763 nop.f 999
1764 nop.i 999
1765 }
1766 ;;
1767
1768 { .mmi
1769 getf.sig pow_GR_sig_X = POW_NORM_X
1770 ;;
1771 and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
1772 nop.i 999
1773 }
1774 ;;
1775
1776 { .mib
1777 sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
1778 nop.i 999
1779 br.cond.sptk POW_COMMON
1780 }
1781 ;;
1782
1783 POW_X_0:
1784 // Here if x=0 and y not nan
1785 //
1786 // We have the following cases:
1787 // p6 x=0 and y>0 and is an integer (may be even or odd)
1788 // p7 x=0 and y>0 and is NOT an integer, return +0
1789 // p8 x=0 and y>0 and so big as to always be an even integer, return +0
1790 // p9 x=0 and y>0 and may not be integer
1791 // p10 x=0 and y>0 and is an odd integer, return x
1792 // p11 x=0 and y>0 and is an even integer, return +0
1793 // p12 used in dummy fcmp to set denormal flag if y=unorm
1794 // p13 x=0 and y>0
1795 // p14 x=0 and y=0, branch to code for calling error handling
1796 // p15 x=0 and y<0, branch to code for calling error handling
1797 //
1798 { .mfi
1799 getf.sig pow_GR_sig_int_Y = POW_int_Y // Get signif of int_Y
1800 fcmp.lt.s1 p15,p13 = f9, f0 // Test for y<0
1801 and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
1802 }
1803 { .mfb
1804 cmp.ne p14,p0 = pow_GR_y_zero,r0 // Test for y=0
1805 fcvt.xf POW_float_int_Y = POW_int_Y
1806 (p14) br.cond.spnt POW_X_0_Y_0 // Branch if x=0 and y=0
1807 }
1808 ;;
1809
1810 // If x=0 and y>0, test y and flag denormal
1811 { .mfb
1812 (p13) cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033 // Test y +big = even int
1813 (p13) fcmp.eq.s0 p12,p0 = f9,f0 // If x=0, y>0 dummy op to flag denormal
1814 (p15) br.cond.spnt POW_X_0_Y_NEG // Branch if x=0 and y<0
1815 }
1816 ;;
1817
1818 // Here if x=0 and y>0
1819 { .mfi
1820 nop.m 999
1821 (p9) fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y, POW_NORM_Y // Test y=int
1822 nop.i 999
1823 }
1824 { .mfi
1825 nop.m 999
1826 (p8) fma.d.s0 f8 = f0,f0,f0 // If x=0, y>0 and large even int, return +0
1827 nop.i 999
1828 }
1829 ;;
1830
1831 { .mfi
1832 nop.m 999
1833 (p7) fma.d.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y>0 and not integer
1834 (p6) tbit.nz.unc p10,p11 = pow_GR_sig_int_Y,0 // If y>0 int, test y even/odd
1835 }
1836 ;;
1837
1838 // Note if x=0, y>0 and odd integer, just return x
1839 { .mfb
1840 nop.m 999
1841 (p11) fma.d.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y even integer
1842 br.ret.sptk b0 // Exit if x=0 and y>0
1843 }
1844 ;;
1845
1846 POW_X_0_Y_0:
1847 // When X is +-0 and Y is +-0, IEEE returns 1.0
1848 // We call error support with this value
1849
1850 { .mfb
1851 mov pow_GR_tag = 26
1852 fma.d.s0 f8 = f1,f1,f0
1853 br.cond.sptk __libm_error_region
1854 }
1855 ;;
1856
1857 POW_X_0_Y_NEG:
1858 // When X is +-0 and Y is negative, IEEE returns
1859 // X Y answer
1860 // +0 -odd int +inf
1861 // -0 -odd int -inf
1862
1863 // +0 !-odd int +inf
1864 // -0 !-odd int +inf
1865
1866 // p6 == Y is a floating point number outside the integer.
1867 // Hence it is an integer and is even.
1868 // return +inf
1869
1870 // p7 == Y is a floating point number within the integer range.
1871 // p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
1872 // p11 odd
1873 // return (sign_of_x)inf
1874 // p12 even
1875 // return +inf
1876 // p10 == Y is not an integer
1877 // return +inf
1878 //
1879
1880 { .mfi
1881 nop.m 999
1882 nop.f 999
1883 cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033
1884 }
1885 ;;
1886
1887 { .mfi
1888 mov pow_GR_tag = 27
1889 (p7) fcmp.eq.unc.s1 p9,p10 = POW_float_int_Y, POW_NORM_Y
1890 nop.i 999
1891 }
1892 ;;
1893
1894 { .mfb
1895 nop.m 999
1896 (p6) frcpa.s0 f8,p13 = f1, f0
1897 (p6) br.cond.sptk __libm_error_region // x=0, y<0, y large neg int
1898 }
1899 ;;
1900
1901 { .mfb
1902 nop.m 999
1903 (p10) frcpa.s0 f8,p13 = f1, f0
1904 (p10) br.cond.sptk __libm_error_region // x=0, y<0, y not int
1905 }
1906 ;;
1907
1908 // x=0, y<0, y an int
1909 { .mib
1910 nop.m 999
1911 (p9) tbit.nz.unc p11,p12 = pow_GR_sig_int_Y,0
1912 nop.b 999
1913 }
1914 ;;
1915
1916 { .mfi
1917 nop.m 999
1918 (p12) frcpa.s0 f8,p13 = f1,f0
1919 nop.i 999
1920 }
1921 ;;
1922
1923 { .mfb
1924 nop.m 999
1925 (p11) frcpa.s0 f8,p13 = f1,f8
1926 br.cond.sptk __libm_error_region
1927 }
1928 ;;
1929
1930
1931 POW_Y_0:
1932 // Here for y zero, x anything but zero and nan
1933 // Set flag if x denormal
1934 // Result is +1.0
1935 { .mfi
1936 nop.m 999
1937 fcmp.eq.s0 p6,p0 = f8,f0 // Sets flag if x denormal
1938 nop.i 999
1939 }
1940 { .mfb
1941 nop.m 999
1942 fma.d.s0 f8 = f1,f1,f0
1943 br.ret.sptk b0
1944 }
1945 ;;
1946
1947
1948 POW_X_INF:
1949 // Here when X is +-inf
1950
1951 // X +inf Y +inf +inf
1952 // X -inf Y +inf +inf
1953
1954 // X +inf Y >0 +inf
1955 // X -inf Y >0, !odd integer +inf <== (-inf)^0.5 = +inf !!
1956 // X -inf Y >0, odd integer -inf
1957
1958 // X +inf Y -inf +0
1959 // X -inf Y -inf +0
1960
1961 // X +inf Y <0 +0
1962 // X -inf Y <0, !odd integer +0
1963 // X -inf Y <0, odd integer -0
1964
1965 // X + inf Y=+0 +1
1966 // X + inf Y=-0 +1
1967 // X - inf Y=+0 +1
1968 // X - inf Y=-0 +1
1969
1970 // p13 == Y negative
1971 // p14 == Y positive
1972
1973 // p6 == Y is a floating point number outside the integer.
1974 // Hence it is an integer and is even.
1975 // p13 == (Y negative)
1976 // return +inf
1977 // p14 == (Y positive)
1978 // return +0
1979
1980 // p7 == Y is a floating point number within the integer range.
1981 // p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
1982 // p11 odd
1983 // p13 == (Y negative)
1984 // return (sign_of_x)inf
1985 // p14 == (Y positive)
1986 // return (sign_of_x)0
1987 // pxx even
1988 // p13 == (Y negative)
1989 // return +inf
1990 // p14 == (Y positive)
1991 // return +0
1992
1993 // pxx == Y is not an integer
1994 // p13 == (Y negative)
1995 // return +inf
1996 // p14 == (Y positive)
1997 // return +0
1998 //
1999
2000 // If x=inf, test y and flag denormal
2001 { .mfi
2002 nop.m 999
2003 fcmp.eq.s0 p10,p11 = f9,f0
2004 nop.i 999
2005 }
2006 ;;
2007
2008 { .mfi
2009 nop.m 999
2010 fcmp.lt.s0 p13,p14 = POW_NORM_Y,f0
2011 cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033
2012 }
2013 { .mfi
2014 nop.m 999
2015 fclass.m p12,p0 = f9, 0x23 //@inf
2016 nop.i 999
2017 }
2018 ;;
2019
2020 { .mfi
2021 nop.m 999
2022 fclass.m p15,p0 = f9, 0x07 //@zero
2023 nop.i 999
2024 }
2025 ;;
2026
2027 { .mfb
2028 nop.m 999
2029 (p15) fmerge.s f8 = f1,f1 // Return +1.0 if x=inf, y=0
2030 (p15) br.ret.spnt b0 // Exit if x=inf, y=0
2031 }
2032 ;;
2033
2034 { .mfi
2035 nop.m 999
2036 (p14) frcpa.s1 f8,p10 = f1,f0 // If x=inf, y>0, assume result +inf
2037 nop.i 999
2038 }
2039 { .mfb
2040 nop.m 999
2041 (p13) fma.d.s0 f8 = f0,f0,f0 // If x=inf, y<0, assume result +0.0
2042 (p12) br.ret.spnt b0 // Exit if x=inf, y=inf
2043 }
2044 ;;
2045
2046 // Here if x=inf, and 0 < |y| < inf. Need to correct results if y odd integer.
2047 { .mfi
2048 nop.m 999
2049 (p7) fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y, POW_NORM_Y // Is y integer?
2050 nop.i 999
2051 }
2052 ;;
2053
2054 { .mfi
2055 nop.m 999
2056 nop.f 999
2057 (p9) tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0 // Test for y odd integer
2058 }
2059 ;;
2060
2061 { .mfb
2062 nop.m 999
2063 (p11) fmerge.s f8 = POW_NORM_X,f8 // If y odd integer use sign of x
2064 br.ret.sptk b0 // Exit for x=inf, 0 < |y| < inf
2065 }
2066 ;;
2067
2068
2069 POW_X_NEG_Y_NONINT:
2070 // When X is negative and Y is a non-integer, IEEE
2071 // returns a qnan indefinite.
2072 // We call error support with this value
2073
2074 { .mfb
2075 mov pow_GR_tag = 28
2076 frcpa.s0 f8,p6 = f0,f0
2077 br.cond.sptk __libm_error_region
2078 }
2079 ;;
2080
2081 POW_X_NAN:
2082 // Here if x=nan, y not nan
2083 { .mfi
2084 nop.m 999
2085 fclass.m p9,p13 = f9, 0x07 // Test y=zero
2086 nop.i 999
2087 }
2088 ;;
2089
2090 { .mfb
2091 nop.m 999
2092 (p13) fma.d.s0 f8 = f8,f1,f0
2093 (p13) br.ret.sptk b0 // Exit if x nan, y anything but zero or nan
2094 }
2095 ;;
2096
2097 POW_X_NAN_Y_0:
2098 // When X is a NAN and Y is zero, IEEE returns 1.
2099 // We call error support with this value.
2100 { .mfi
2101 nop.m 999
2102 fcmp.eq.s0 p6,p0 = f8,f0 // Dummy op to set invalid on snan
2103 nop.i 999
2104 }
2105 { .mfb
2106 mov pow_GR_tag = 29
2107 fma.d.s0 f8 = f0,f0,f1
2108 br.cond.sptk __libm_error_region
2109 }
2110 ;;
2111
2112
2113 POW_OVER_UNDER_X_NOT_INF:
2114
2115 // p8 is TRUE for overflow
2116 // p9 is TRUE for underflow
2117
2118 // if y is infinity, we should not over/underflow
2119
2120 { .mfi
2121 nop.m 999
2122 fcmp.eq.s1 p14, p13 = POW_xsq,f1 // Test |x|=1
2123 cmp.eq p8,p9 = pow_GR_sign_Y_Gpr, r0
2124 }
2125 ;;
2126
2127 { .mfi
2128 nop.m 999
2129 (p14) fclass.m.unc p15, p0 = f9, 0x23 // If |x|=1, test y=inf
2130 nop.i 999
2131 }
2132 { .mfi
2133 nop.m 999
2134 (p13) fclass.m.unc p11,p0 = f9, 0x23 // If |x| not 1, test y=inf
2135 nop.i 999
2136 }
2137 ;;
2138
2139 // p15 = TRUE if |x|=1, y=inf, return +1
2140 { .mfb
2141 nop.m 999
2142 (p15) fma.d.s0 f8 = f1,f1,f0 // If |x|=1, y=inf, result +1
2143 (p15) br.ret.spnt b0 // Exit if |x|=1, y=inf
2144 }
2145 ;;
2146
2147 .pred.rel "mutex",p8,p9
2148 { .mfb
2149 (p8) setf.exp f8 = pow_GR_17ones // If exp(+big), result inf
2150 (p9) fmerge.s f8 = f0,f0 // If exp(-big), result 0
2151 (p11) br.ret.sptk b0 // Exit if |x| not 1, y=inf
2152 }
2153 ;;
2154
2155 { .mfb
2156 nop.m 999
2157 nop.f 999
2158 br.cond.sptk POW_OVER_UNDER_ERROR // Branch if y not inf
2159 }
2160 ;;
2161
2162
2163 POW_Y_NAN:
2164 // Here if y=nan, x anything
2165 // If x = +1 then result is +1, else result is quiet Y
2166 { .mfi
2167 nop.m 999
2168 fcmp.eq.s1 p10,p9 = POW_NORM_X, f1
2169 nop.i 999
2170 }
2171 ;;
2172
2173 { .mfi
2174 nop.m 999
2175 (p10) fcmp.eq.s0 p6,p0 = f9,f1 // Set invalid, even if x=+1
2176 nop.i 999
2177 }
2178 ;;
2179
2180 { .mfi
2181 nop.m 999
2182 (p10) fma.d.s0 f8 = f1,f1,f0
2183 nop.i 999
2184 }
2185 { .mfb
2186 nop.m 999
2187 (p9) fma.d.s0 f8 = f9,f8,f0
2188 br.ret.sptk b0 // Exit y=nan
2189 }
2190 ;;
2191
2192
2193 POW_OVER_UNDER_ERROR:
2194 // Here if we have overflow or underflow.
2195 // Enter with p12 true if x negative and y odd int to force -0 or -inf
2196
2197 { .mfi
2198 sub pow_GR_17ones_m1 = pow_GR_17ones, r0, 1
2199 nop.f 999
2200 mov pow_GR_one = 0x1
2201 }
2202 ;;
2203
2204 // overflow, force inf with O flag
2205 { .mmb
2206 (p8) mov pow_GR_tag = 24
2207 (p8) setf.exp POW_tmp = pow_GR_17ones_m1
2208 nop.b 999
2209 }
2210 ;;
2211
2212 // underflow, force zero with I, U flags
2213 { .mmi
2214 (p9) mov pow_GR_tag = 25
2215 (p9) setf.exp POW_tmp = pow_GR_one
2216 nop.i 999
2217 }
2218 ;;
2219
2220 { .mfi
2221 nop.m 999
2222 fma.d.s0 f8 = POW_tmp, POW_tmp, f0
2223 nop.i 999
2224 }
2225 ;;
2226
2227 // p12 x is negative and y is an odd integer, change sign of result
2228 { .mfi
2229 nop.m 999
2230 (p12) fnma.d.s0 f8 = POW_tmp, POW_tmp, f0
2231 nop.i 999
2232 }
2233 ;;
2234
2235 WEAK_LIBM_END(pow)
2236 libm_alias_double_other (__pow, pow)
2237 #ifdef SHARED
2238 .symver pow,pow@@GLIBC_2.29
2239 .weak __pow_compat
2240 .set __pow_compat,__pow
2241 .symver __pow_compat,pow@GLIBC_2.2
2242 #endif
2243
2244
2245 LOCAL_LIBM_ENTRY(__libm_error_region)
2246
2247 .prologue
2248 { .mfi
2249 add GR_Parameter_Y=-32,sp // Parameter 2 value
2250 nop.f 0
2251 .save ar.pfs,GR_SAVE_PFS
2252 mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
2253 }
2254 { .mfi
2255 .fframe 64
2256 add sp=-64,sp // Create new stack
2257 nop.f 0
2258 mov GR_SAVE_GP=gp // Save gp
2259 };;
2260
2261 { .mmi
2262 stfd [GR_Parameter_Y] = POW_NORM_Y,16 // STORE Parameter 2 on stack
2263 add GR_Parameter_X = 16,sp // Parameter 1 address
2264 .save b0, GR_SAVE_B0
2265 mov GR_SAVE_B0=b0 // Save b0
2266 };;
2267
2268 .body
2269 { .mib
2270 stfd [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
2271 add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
2272 nop.b 0
2273 }
2274 { .mib
2275 stfd [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
2276 add GR_Parameter_Y = -16,GR_Parameter_Y
2277 br.call.sptk b0=__libm_error_support# // Call error handling function
2278 };;
2279
2280 { .mmi
2281 add GR_Parameter_RESULT = 48,sp
2282 nop.m 0
2283 nop.i 0
2284 };;
2285
2286 { .mmi
2287 ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
2288 .restore sp
2289 add sp = 64,sp // Restore stack pointer
2290 mov b0 = GR_SAVE_B0 // Restore return address
2291 };;
2292
2293 { .mib
2294 mov gp = GR_SAVE_GP // Restore gp
2295 mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
2296 br.ret.sptk b0 // Return
2297 };;
2298
2299 LOCAL_LIBM_END(__libm_error_region)
2300
2301 .type __libm_error_support#,@function
2302 .global __libm_error_support#